AR

Ardelyx

- NASDAQ:ARDX
Last Updated 2024-05-02

Patent Grants Data

Patents granted to organizations.
Ticker Symbol Entity Name Publication Date Filing Date Patent ID Invention Title Abstract Patent Number Claims Number of Claims Description Application Number Assignee Country Kind Code Kind Code Description url Classification Code Length of Grant Date Added Date Updated Company Name Sector Industry
nasdaq:ardx Ardelyx Mar 3rd, 2015 12:00AM Mar 14th, 2013 12:00AM https://www.uspto.gov?id=US08969377-20150303 Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders The present disclosure is directed to compounds of the structure (X): wherein: n is 2 or 3; NHE has the structure wherein: R1 is H or —SO2—NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker; and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH— and —NHSO2—; and Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted benzene, pyridinyl, a polyethylene glycol linker and —(CH2)1-6O(CH2)1-6—, and methods of using such compounds for the treatment of irritable bowel syndrome, chronic kidney disease and end-stage renal disease. 8969377 1. A compound, or a pharmaceutically acceptable salt thereof, wherein the compound has the following structure (X): wherein: n is 2; NHE has the structure wherein: R1 is H or —SO2—NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker; and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH— and —NHSO2—; and Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted benzene, pyridinyl, a polyethylene glycol linker and —(CH2)1-6O(CH2)1-6. 2. The compound of claim 1, wherein the NHE has one of the following structures: or pharmaceutically acceptable salt thereof. 3. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein L is a polyethylene glycol linker. 4. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the Core is selected from the group consisting of: 5. The compound of claim 1, wherein the compound is selected from the group consisting of: . 6. The pharmaceutically acceptable salt of claim 1, wherein the pharmaceutically acceptable salt is selected from the group consisting of 7. A pharmaceutical composition comprising a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient. 7 CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation application of U.S. patent application Ser. No. 13/172,394, filed Dec. 30, 2009, allowed, which is a continuation of International PCT Patent Application No. PCT/US2009/069852, which was filed on Dec. 30, 2009, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/141,853, filed Dec. 31, 2008, U.S. Provisional Patent Application No. 61/169,509, filed Apr. 15, 2009, and U.S. Provisional Patent Application No. 61/237,842, filed Aug. 28, 2009, which applications are incorporated herein by reference in their entireties. BACKGROUND 1. Field The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. 2. Description of the Related Art Disorders Associated with Fluid Retention and Salt Overload According to the American Heart Association, more than 5 million Americans have suffered from heart failure, and an estimated 550,000 cases of congestive heart failure (CHF) occur each year (Schocken, D. D. et al., Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group: Circulation, v. 117, no. 19, p. 2544-2565 (2008)). The clinical syndrome of congestive heart failure occurs when cardiac dysfunction prevents adequate perfusion of peripheral tissues. The most common form of heart failure leading to CHF is systolic heart failure, caused by contractile failure of the myocardium. A main cause of CHF is due to ischemic coronary artery disease, with or without infarction. Long standing hypertension, particularly when it is poorly controlled, may lead to CHF. In patients with CHF, neurohumoral compensatory mechanisms (i.e., the sympathetic nervous system and the renin-angiotensin system) are activated in an effort to maintain normal circulation. The renin-angiotensin system is activated in response to decreased cardiac output, causing increased levels of plasma renin, angiotensin II, and aldosterone. As blood volume increases in the heart, cardiac output increases proportionally, to a point where the heart is unable to dilate further. In the failing heart, contractility is reduced, so the heart operates at higher volumes and higher filling pressures to maintain output. Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath). All of these symptoms are related to fluid volume and salt retention, and this chronic fluid and salt overload further contribute to disease progression. Compliance with the medication regimen and with dietary sodium restrictions is a critical component of self-management for patients with heart failure and may lengthen life, reduce hospitalizations and improve quality of life. Physicians often recommend keeping salt intake below 2.3 g per day and no more than 2 g per day for people with heart failure. Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt. A number of drug therapies currently exist for patients suffering from CHF. For example, diuretics may be used or administered to relieve congestion by decreasing volume and, consequently, filling pressures to below those that cause pulmonary edema. By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms. Among the classes or types of diuretics currently being used is thiazides. Thiazides inhibit NaCl transport in the kidney, thereby preventing reabsorption of Na in the cortical diluting segment at the ending portion of the loop of Henle and the proximal portion of the distal convoluted tubule. However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml/min. Additionally, thiazides, as well as other diuretics, may cause hypokalemia. Also among the classes or types of diuretics currently being used is loop diuretics (e.g., furosemide). These are the most potent diuretics and are particularly effective in treating pulmonary edema. Loop diuretics inhibit the NaKCl transport system, thus preventing reabsorption of Na in the loop of Henle. Patients that have persistent edema despite receiving high doses of diuretics may be or become diuretic-resistant. Diuretic resistance may be caused by poor availability of the drug. In patients with renal failure, which has a high occurrence in the CHF population, endogenous acids compete with loop diuretics such as furosemide for the organic acid secretory pathway in the tubular lumen of the nephron. Higher doses, or continuous infusion, are therefore needed to achieve entrance of an adequate amount of drug into the nephron. However, recent meta-analysis have raised awareness about the long-term risk of chronic use of diuretics in the treatment of CHF. For instance, in a recent study (Ahmed et al., Int J Cardiol. 2008 Apr. 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics. Angiotensin-converting enzyme (“ACE”) inhibitors are an example of another drug therapy that may be used to treat congestive heart failure. ACE inhibitors cause vasodilatation by blocking the renin-angiotensin-aldosterone system. Abnormally low cardiac output may cause the renal system to respond by releasing renin, which then converts angiotensinogen into angiotensin I. ACE converts angiotensin I into angiotensin II. Angiotensin II stimulates the thirst centers in the hypothalamus and causes vasoconstriction, thus increasing blood pressure and venous return. Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase. ACE inhibitors block this compensatory system and improve cardiac performance by decreasing systemic and pulmonary vascular resistance. ACE inhibitors have shown survival benefit and conventionally have been a treatment of choice for CHF. However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia. In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients. (See, e.g., C. S. Cruz et al., “Incidence and Predictors of Development of Acute Renal Failure Related to the Treatment of Congestive Heart Failure with ACE Inhibitors, Nephron Clin. Pract., v. 105, no. 2, pp c77-c83 (2007)). Patients with end stage renal disease (“ESRD”), i.e., stage 5 chronic kidney failure, must undergo hemodialysis three times per week. The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium/volume overload). The fluid overload is characterized as interdialytic weight gain. High fluid overload is also worsened by heart dysfunction, specifically CHF. Dialysis is used to remove uremic toxins and also adjust salt and fluid homeostasis. However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed. SIH is exhibited in about 15% to 25% of the ESRD population (Davenport, A., C. Cox, and R. Thuraisingham, Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey; Nephron Clin. Pract., v. 109, no. 2, p. c65-c71 (2008)). Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food The cause of primary or “essential” hypertension is elusive. However, several observations point to the kidney as a primary factor. The strongest data for excess salt intake and elevated blood pressure come from INTERSALT, a cross-sectional study of greater than 10,000 participants. For individuals, a significant, positive, independent linear relation between 24-hour sodium excretion and systolic blood pressure was found. Higher individual 24-hour urinary sodium excretions were found to be associated with higher systolic/diastolic blood pressure on average, by 6-3/3-0 mm Hg. Primary hypertension is a typical example of a complex, multifactorial, and polygenic trait. All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention. In a broad sense, these syndromes are characterized by increased renal sodium reabsorption arising through either primary defects in sodium transport systems or stimulation of mineralocorticoid receptor activity (Altun, B., and M. Arici, 2006, Salt and blood pressure: time to challenge; Cardiology, v. 105, no. 1, p. 9-16 (2006)). A much larger number of controlled studies have been performed on hypertensive subjects during the last three decades to determine whether sodium reduction will reduce established high blood pressure. Meta-analyses of these studies have clearly shown a large decrease in blood pressure in hypertensive patients. In end stage liver disease (ESLD), accumulation of fluid as ascites, edema or pleural effusion due to cirrhosis is common and results from a derangement in the extracellular fluid volume regulatory mechanisms. Fluid retention is the most frequent complication of ESLD and occurs in about 50% of patients within 10 years of the diagnosis of cirrhosis. This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis. The one-year and five-year survival rate is 85% and 56%, respectively (Kashani et al., Fluid retention in cirrhosis: pathophysiology and management; QJM, v. 101, no. 2, p. 71-85 (2008)). The most acceptable theories postulate that the initial event in ascites formation in the cirrhotic patient is sinusoidal hypertension. Portal hypertension due to an increase in sinusoidal pressure activates vasodilatory mechanisms. In advanced stages of cirrhosis, arteriolar vasodilation causes underfilling of systemic arterial vascular space. This event, through a decrease in effective blood volume, leads to a drop in arterial pressure. Consequently, baroreceptor-mediated activation of renin-angiotensin aldosterone system, sympathetic nervous system and nonosmotic release of antidiuretic hormone occur to restore the normal blood homeostasis. These events cause further retention of renal sodium and fluid. Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity. Persistent renal sodium and fluid retention, alongside increased splanchnic vascular permeability in addition to lymph leakage into the peritoneal cavity, play a major role in a sustained ascites formation. Thiazolidinediones (TZD's), such as rosiglitazone, are peroxisome proliferator-activated receptor (PPAR) gamma agonist agents used for the treatment of type-2 diabetes and are widely prescribed. Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy. The incidence of TZD-induced fluid retention ranges from 7% in monotherapy and to as high as 15% when combined with insulin (Yan, T., Soodvilai, S., PPAR Research volume 2008, article ID 943614). The mechanisms for such side-effects are not fully understood but may be related in Na and fluid re-absorption in the kidney. However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events. In view of the foregoing, it is recognized that salt and fluid accumulation contribute to the morbidity and mortality of many diseases, including heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and the like. It is also accepted that salt and fluid accumulation are risk factors for hypertension. Accordingly, there is a clear need for a medicament that, when administered to a patient in need, would result in a reduction in sodium retention, fluid retention, or preferably both. Such a medicament would more preferably also not involve or otherwise impair renal mechanisms of fluid/Na homeostasis. One option to consider for treating excessive fluid overload is to induce diarrhea. Diarrhea may be triggered by several agents including, for example, laxatives such as sorbitol, polyethyleneglycol, bisacodyl and phenolphthaleine. Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited. The mechanism of action of phenolphthalein is not clearly established, but is thought to be caused by inhibition of the Na/K ATPase and the Cl/HCO3 anion exchanger and stimulation of electrogenic anion secretion (see, e.g., Eherer, A. J., C. A. Santa Ana, J. Porter, and J. S. Fordtran, 1993, Gastroenterology, v. 104, no. 4, p. 1007-1012). However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans. Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage. Accordingly, it should also be recognized that the induction of chronic diarrhea as part of an effort to control salt and fluid overload would be an undesired treatment modality for most patients. Any medicament utilizing the GI tract for this purpose would therefore need to control diarrhea in order to be of practical benefit. One approach for the treatment of mild diarrhea is the administration of a fluid-absorbing polymer, such as the natural plant fiber psyllium. Polymeric materials, and more specifically hydrogel polymers, may also be used for the removal of fluid from the gastrointestinal (GI) tract. The use of such polymers is described in, for example, U.S. Pat. No. 4,470,975 and No. 6,908,609, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract. Many mammals, including humans, make a soft feces with a water content of about 70%, and do so by transporting fluid against the high hydraulic resistance imposed by the fecal mass. Several studies show that the pressure required to dehydrate feces from about 80% to about 60% is between about 500 kPa and about 1000 kPa (i.e., about 5 to about 10 atm). (See, e.g., McKie, A. T., W. Powrie, and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G391-G394; Bleakman, D., and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G377-G390; Zammit, P. S., M. Mendizabal, and R. J. Naftalin, 1994, J Physiol, v. 477 (Pt 3), p. 539-548.) However, the static pressure measured intraluminally is usually between about 6 kPa and about 15 kPa. The rather high pressure needed to dehydrate feces is essentially due to an osmotic process and not a mechanical process produced by muscular forces. The osmotic pressure arises from the active transport of salt across the colonic mucosa that ultimately produces a hypertonic fluid absorption. The osmotic gradient produced drives fluid from the lumen to the serosal side of the mucosa. Fluid-absorbing polymers, such as those described in for example U.S. Pat. Nos. 4,470,975 and 6,908,609, may not be able to sustain such pressure. Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt. Synthetic polymers that bind sodium have also been described. For example, ion-exchange polymeric resins, such as Dowex-type cation exchange resins, have been known since about the 1950's. However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity. Additionally, during the ion-exchange process, the resins may release a stoichiometric amount of exogenous cations (e.g., H, K, Ca), which may in turn potentially cause acidosis (H), hyperkalemia (K) or contribute to vascular calcification (Ca). Such resins may also cause constipation. Gastrointestinal Tract Disorders Constipation is characterized by infrequent and difficult passage of stool and becomes chronic when a patient suffers specified symptoms for over 12 non-consecutive weeks within a 12-month period. Chronic constipation is idiopathic if it is not caused by other diseases or by use of medications. An evidence-based approach to the management of chronic constipation in North America (Brandt et al., 2005, Am. J. Gastroenterol. 100(Suppl. 1):S5-S21) revealed that prevalence is approximately 15% of the general population. Constipation is reported more commonly in women, the elderly, non-whites, and individuals from lower socioeconomic groups. Irritable bowel syndrome (IBS) is a common GI disorder associated with alterations in motility, secretion and visceral sensation. A range of clinical symptoms characterizes this disorder, including stool frequency and form, abdominal pain and bloating. The recognition of clinical symptoms of IBS are yet to be defined, but it is now common to refer to diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS), wherein D-IBS is defined as continuous passage of loose or watery stools and C-IBS as a group of functional disorders which present as difficult, infrequent or seemingly incomplete defecation. The pathophysiology of IBS is not fully understood, and a number of mechanisms have been suggested. Visceral hypersensitivity is often considered to play a major etiologic role and has been proposed to be a biological marker even useful to discriminate IBS from other causes of abdominal pain. In a recent clinical study (Posserud, I. et al, Gastroenterology, 2007; 133:1113-1123) IBS patients were submitted to a visceral sensitivity test (Balloon distention) and compared with healthy subjects. It revealed that 61% of the IBS patients had an altered visceral perception as measured by pain and discomfort threshold. Other reviews have documented the role of visceral hypersensitivity in abdominal pain symptomatic of various gastrointestinal tract disorders (Akbar, A, et al, Aliment. Pharmaco. Ther., 2009, 30, 423-435; Bueno et al., Neurogastroenterol Motility (2007) 19 (suppl. 1), 89-119). Colonic and rectal distention have been widely used as a tool to assess visceral sensitivity in animal and human studies. The type of stress used to induce visceral sensitivity varies upon the models (see for instance Eutamen, H Neurogastroenterol Motil. 2009 Aug. 25. [Epub ahead of print]), however stress such as Partial restraint stress (PRS) is a relatively mild, non-ulcerogenic model that is considered more representative of the IBS setting. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects. Opioid-induced constipation (OIC) (also referred to as opioid-induced bowel dysfunction or opioid bowel dysfuntion (OBD)) is a common adverse effect associated with opioid therapy. OIC is commonly described as constipation; however, it is a constellation of adverse gastrointestinal (GI) effects, which also includes abdominal cramping, bloating, and gastroesophageal reflux. Patients with cancer may have disease-related constipation, which is usually worsened by opioid therapy. However, OIC is not limited to cancer patients. A recent survey of patients taking opioid therapy for pain of non-cancer origin found that approximately 40% of patients experienced constipation related to opioid therapy (<3 complete bowel movements per week) compared with 7.6% in a control group. Of subjects who required laxative therapy, only 46% of opioid-treated patients (control subjects, 84%) reported achieving the desired treatment results >50% of the time (Pappagallo, 2001, Am. J. Surg. 182(5A Suppl.):11S-18S). Some patients suffering from chronic idiopathic constipation can be successfully treated with lifestyle modification, dietary changes and increased fluid and fiber intake, and these treatments are generally tried first. For patients who fail to respond to these approaches, physicians typically recommend laxatives, most of which are available over-the-counter. Use of laxatives provided over-the-counter is judged inefficient by about half of the patients (Johanson and Kralstein, 2007, Aliment. Pharmacol. Ther. 25(5):599-608). Other therapeutic options currently prescribed or in clinical development for the treatment of IBS and chronic constipation including OIC are described in, for example: Chang et al., 2006, Curr. Teat. Options Gastroenterol. 9(4):314-323; Gershon and Tack, 2007, Gastroenterology 132(1):397-414; and, Hammerle and Surawicz, 2008, World J. Gastroenterol. 14(17):2639-2649. Such treatments include but are not limited to serotonin receptor ligands, chloride channel activators, opioid receptor antagonists, guanylate-cyclase receptor agonists and nucleotide P2Y(2) receptor agonists. Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal. Na+/H+ Exchanger (NHE) Inhibitors A major function of the GI tract is to maintain water/Na homeostasis by absorbing virtually all water and Na to which the GI tract is exposed. The epithelial layer covering the apical surface of the mammalian colon is a typical electrolyte-transporting epithelium, which is able to move large quantities of salt and water in both directions across the mucosa. For example, each day the GI tract processes about 9 liters of fluid and about 800 meq of Na. (See, e.g., Zachos et al., Molecular physiology of intestinal Na+/H+ exchange; Annu Rev. Physiol., v. 67, p. 411-443 (2005).) Only about 1.5 liters of this fluid and about 150 meq of this sodium originates from ingestion; rather, the majority of the fluid (e.g., about 7.5 liters) and sodium (about 650 meq) is secreted via the GI organs as part of digestion. The GI tract therefore represents a viable target for modulating systemic sodium and fluid levels. Many reviews have been published on the physiology and secretory and/or absorption mechanisms of the GI tract (see, e.g., Kunzelmann et al., Electrolyte transport in the mammalian colon: mechanisms and implications for disease; Physiol. Rev., v. 82, no. 1, p. 245-289 (2002); Geibel, J. P. Secretion and absorption by colonic crypts; Annu Rev. Physiol, v. 67, p. 471-490 (2005); Zachos et al., supra; Kiela, P. R. et al., Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl. 7, p. 51-79 (2006)). The two main mechanisms of Na absorption are electroneutral and electrogenic transport. Electroneutral transport is essentially due to the Na+/H+ antiport NHE (e.g., NHE-3) and is responsible for the bulk of Na absorption. Electrogenic transport is provided by the epithelium sodium channel (“ENaC”). Electroneutral transport is located primarily in the ileal segment and proximal colon and electrogenic transport is located in the distal colon. Plasma membrane NHEs contribute to maintenance of intracellular pH and volume, transcellular absorption of NaCl and NaHCO3, and fluid balance carried out by epithelial cells, especially in the kidney, intestine, gallbladder, and salivary glands, as well as regulation of systemic pH. There exists a body of literature devoted to the role and clinical intervention on systemic NHEs to treat disorders related to ischemia and reperfusion for cardioprotection or renal protection. Nine isoforms of NHEs have been identified (Kiela, P. R., et al. Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl 7, p. 51-79 (2006)), of which NHE-2, NHE-3 and NHE-8 are expressed on the apical side of the GI tract, with NHE-3 providing a larger contribution to transport. Another, yet to be identified, Cl-dependant NHE has been identified in the crypt of rat cells. In addition, much research has been devoted to identifying inhibitors of NHEs. The primary targets of such research have been NHE-1 and NHE-3. Small molecule NHE inhibitors are, for example, described in: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,736,705; 6,887,870; 6,737,423; 7,326,705; 5,824,691 (WO 94/026709); U.S. Pat. No. 6,399,824 (WO 02/024637); U.S. Pat. Pub. Nos. 2004/0039001 (WO 02/020496); 2005/0020612 (WO 03/055490); 2004/0113396 (WO 03/051866); 2005/0020612; 2005/0054705; 2008/0194621; 2007/0225323; 2004/0039001; 2004/0224965; 2005/0113396; 2007/0135383; 2007/0135385; 2005/0244367; 2007/0270414; International Publication Nos. WO 01/072742; WO 01021582 (CA2387529); WO 97/024113 (CA02241531) and European Pat. No. EP0744397 (CA2177007); all of which are incorporated herein by reference in their entirety for all relevant and consistent purposes. However, to-date, such research has failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract. Such inhibitors could be utilized in the treatment of disorders associated with fluid retention and salt overload and in the treatment of GI tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. Such inhibitors would be particular advantageous because they could be delivered with reduced fear of systemic on-target or off-target effects (e.g., little or no risk of renal involvement or other systemic effects. Accordingly, while progress has been made in the foregoing fields, there remains a need in the art for novel compounds for use in the disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY In brief, the present invention is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. In one embodiment, a compound is provided having: (i) a topological Polar Surface Area (tPSA) of at least about 200 Å2 and a molecular weight of at least about 710 Daltons in the non-salt form; or (ii) a tPSA of at least about 270 Å2, wherein the compound is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein upon administration to a patient in need thereof. In further embodiments, the compound has a molecular weight of at least about 500 Da, at least about 1000 Da, at least about 2500 Da, or at least about 5000 Da. In further embodiments, the compound has a tPSA of at least about 250 Å2, at least about 270 Å2, at least about 300 Å2, at least about 350 Å2, at least about 400 Å2, or at least about 500 Å2. In further embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit antiport of sodium ions and hydrogen ions mediated by NHE-3, NHE-2, NHE-8, or a combination thereof. In further embodiments, the compound is substantially systemically non-bioavailable and/or substantially impermeable to the epithelium of the gastrointestinal tract. In further embodiments, the compound is substantially active in the lower gastrointestinal tract. In further embodiments, the compound has (i) a total number of NH and/or OH and/or other potential hydrogen bond donor moieties greater than about 5; (ii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 10; and/or (iii) a Moriguchi partition coefficient greater than about 105 or less than about 10. In further embodiments, the compound has a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s. In further embodiments, the compound is substantially localized in the gastrointestinal tract or lumen. In further embodiments, the compound inhibits NHE irreversibly. In further embodiments, the compound is capable of providing a substantially persistent inhibitory action and wherein the compound is orally administered once-a-day. In further embodiments, the compound is substantially stable under physiological conditions in the gastrointestinal tract. In further embodiments, the compound is inert with regard to gastrointestinal flora. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract past the duodenum. In further embodiments, the compound, when administered at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, less than about 10× the IC50, or less than about 100× the IC50. In further embodiments, upon administration of the compound to a patient in need thereof, the compound exhibits a maximum concentration detected in the serum, defined as Cmax, that is lower than the NHE inhibitory concentration IC50 of the compound. In further embodiments, upon administration of the compound to a patient in need thereof, greater than about 80%, greater than about 90% or greater than about 95% of the amount of compound administered is present in the patient's feces. In further embodiments, the compound has a structure of Formula (I) or (IX): wherein: NHE is a NHE-inhibiting small molecule that comprises (i) a hetero-atom containing moiety, and (ii) a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto, the heteroatom-containing moiety being selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the scaffold or support moiety to form a fused bicyclic structure; and, Z is a moiety having at least one site thereon for attachment to the NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; and, E is an integer having a value of 1 or more. In further embodiments, the total number of freely rotatable bonds in the NHE-Z molecule is at least about 10. In further embodiments, the total number hydrogen bond donors in the NHE-Z molecule is at least about 5. In further embodiments, the total number of hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the total number of hydrogen bond donors and hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the Log P of the NHE-Z inhibiting compound is at least about 5. In further embodiments, the log P of the NHE-Z inhibiting compound is less than about 1, or less than about 0. In further embodiments, the scaffold is a 5-member or 6-member cyclic or heterocyclic moiety. In further embodiments, the scaffold is aromatic. In further embodiments, the scaffold of the NHE-inhibiting small molecule is bound to the moiety, Z, and the compound has the structure of Formula (II): wherein: Z is a Core having one or more sites thereon for attachment to one or more NHE-inhibiting small molecules, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; Scaffold is the cyclic or heterocyclic scaffold or support moiety of the NHE-inhibiting small molecule, which is bound directly or indirectly to heteroatom-containing moiety, B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl, and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties, which links B and the Scaffold; and, D and E are integers, each independently having a value of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a Core moiety having two or more sites thereon for attachment to multiple NHE-inhibiting small molecules, either directly or indirectly through a linking moiety, L, and the compound has the structure of Formula (X): wherein L is a bond or linker connecting the Core to the NHE-inhibiting small molecule, and n is an integer of 2 or more, and further wherein each NHE-inhibiting small molecule may be the same or differ from the others. In further embodiments, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further embodiments, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further embodiments, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further embodiments, L is a polyalkylene glycol linker. In further embodiments, L is a polyethylene glycol linker. In further embodiments, n is 2. In further embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further embodiments, the Core is selected from the group consisting of: In further embodiments, the compound is an oligomer, and Z is a linking moiety, L, that links two or more NHE-inhibiting small molecules together, when the two or more NHE-inhibiting small molecules may be the same or different, and the compound has the structure of Formula (XI): wherein L is a bond or linker connecting one NHE-inhibiting small molecule to another, and m is 0 or an integer of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a backbone, denoted Repeat Unit, to which is bound multiple NHE-inhibiting moieties, and the compound has the structure of Formula (XIIB): wherein: L is a bond or a linking moiety; NHE is a NHE-inhibiting small molecule; and n is a non-zero integer. In another embodiment, a pharmaceutical composition is provided comprising a compound as set forth above, or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the composition further comprises a fluid-absorbing polymer. In further embodiments, the fluid-absorbing polymer is delivered directly to the colon. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 5 kPa. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 10 kPa. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 10 g/g. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 15 g/g. In further embodiments, the fluid-absorbing polymer is superabsorbent. In further embodiments, the fluid-absorbing polymer is a crosslinked, partially neutralized polyelectrolyte hydrogel. In further embodiments, the fluid-absorbing polymer is a crosslinked polyacrylate. In further embodiments, the fluid-absorbing polymer is a polyelectrolyte. In further embodiments, the fluid-absorbing polymer is calcium Carbophil. In further embodiments, the fluid-absorbing polymer is prepared by a high internal phase emulsion process. In further embodiments, the fluid-absorbing polymer is a foam. In further embodiments, the fluid-absorbing polymer is prepared by a aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker and a free radical initiator redox system in water. In further embodiments, the fluid-absorbing polymer is a hydrogel. In further embodiments, the fluid-absorbing polymer is an N-alkyl acrylamide. In further embodiments, the fluid-absorbing polymer is a superporous gel. In further embodiments, the fluid-absorbing polymer is naturally occurring. In further embodiments, the fluid-absorbing polymer is selected from the group consisting of xanthan, guar, wellan, hemicelluloses, alkyl-cellulose hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In further embodiments, the fluid-absorbing polymer is psyllium. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight. In further embodiments, the composition further comprises another pharmaceutically active agent or compound. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of an analgesic peptide or agent. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In another embodiment, a method for inhibiting NHE-mediated antiport of sodium and hydrogen ions is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder associated with fluid retention or salt overload is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder selected from the group consisting of heart failure (such as congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating hypertension is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium and/or fluid. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium by at least about 30 mmol, and/or fluid by at least about 200 ml. In further embodiments, the mammal's fecal output of sodium and/or fluid is increased without introducing another type of cation in a stoichiometric or near stoichiometric fashion via an ion exchange process. In further embodiments, the method further comprises administering to the mammal a fluid-absorbing polymer to absorb fecal fluid resulting from the use of the compound that is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. In further embodiments, the compound or composition is administered to treat hypertension. In further embodiments, the compound or composition is administered to treat hypertension associated with dietary salt intake. In further embodiments, administration of the compound or composition allows the mammal to intake a more palatable diet. In further embodiments, the compound or composition is administered to treat fluid overload. In further embodiments, the fluid overload is associated with congestive heart failure. In further embodiments, the fluid overload is associated with end stage renal disease. In further embodiments, the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. In further embodiments, the compound or composition is administered to treat sodium overload. In further embodiments, the compound or composition is administered to reduce interdialytic weight gain in ESRD patients. In further embodiments, the compound or composition is administered to treat edema. In further embodiments, the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. In further embodiments, the compound or composition is administered orally, by rectal suppository, or enema. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. In another embodiment, a method for treating a gastrointestinal tract disorder is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the gastrointestinal tract disorder is a gastrointestinal motility disorder. In further embodiments, the gastrointestinal tract disorder is irritable bowel syndrome. In further embodiments, the gastrointestinal tract disorder is chronic constipation. In further embodiments, the gastrointestinal tract disorder is chronic idiopathic constipation. In further embodiments, the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. In further embodiments, the gastrointestinal tract disorder is opioid-induced constipation. In further embodiments, the gastrointestinal tract disorder is a functional gastrointestinal tract disorder. In further embodiments, the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. In further embodiments, the gastrointestinal tract disorder is Crohn's disease. In further embodiments, the gastrointestinal tract disorder is ulcerative colitis. In further embodiments, the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. In further embodiments, the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). In further embodiments, the gastrointestinal tract disorder is constipation induced by calcium supplement. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with the use of a therapeutic agent. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with a neuropathic disorder. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is post-surgical constipation (postoperative ileus). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is idiopathic (functional constipation or slow transit constipation). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is due the use of drugs selected from analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In another embodiment, a method for treating irritable bowel syndrome is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of an NHE-3 inhibitor compound or a pharmaceutical composition comprising an NHE-3 inhibitor compound. In further embodiments, the NHE-3 inhibitor compound or the pharmaceutical composition comprising an NHE-3 inhibitor compound is a compound or pharmaceutical composition as set forth above. In further embodiments of the above embodiments, the compound or composition is administered to treat or reduce pain associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce inflammation of the gastrointestinal tract. In further embodiments, the compound or composition is administered to reduce gastrointestinal transit time. In further embodiments, the compound or composition is administered either orally or by rectal suppository. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition, in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. In further embodiments, the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), and a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a graph that illustrates the relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of certain example compounds, as further discussed in the Examples (under the subheading “2. Pharmacological Test Example 2”). FIGS. 2A and 2B are graphs that illustrate the cecum and colon water content after oral administration of certain example compounds, as further discussed in the Examples (under the subheading “3. Pharmacological Test Example 3”). FIGS. 3A and 3B are graphs that illustrate the dose dependent decrease of urinary salt levels after administration of certain example compounds, as further discussed in the Examples (under the subheading “14. Pharmacological Test Example 14”). FIG. 4 is a graph that illustrates a dose dependent increase in fecal water content after administration of a certain example compound, as further discussed in the Examples (under the subheading “15. Pharmacological Test Example 15”). FIGS. 5A, 5B and 5C are graphs that illustrate that supplementing the diet with Psyllium results in a slight reduction of fecal stool form, but without impacting the ability of a certain example compound to increase fecal water content or decrease urinary sodium, as further discussed in the Examples (under the subheading “16. Pharmacological Test Example 16”). FIG. 6 is a graph that illustrates that inhibition of NHE-3 reduces hypersensitivity to distention, as further discussed in the Examples (under the subheading “17. Pharmacological Test Example 17”). FIGS. 7A and 7B are graphs that illustrate that inhibition of NHE-3 increases the amount of sodium excreted in feces, as further discussed in the Examples (under subheading “18. Pharmacological Test Example 18”). DETAILED DESCRIPTION In accordance with the present disclosure, and as further detailed herein below, it has been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various disorders that may be associated with or caused by fluid retention and/or salt overload, and/or disorders such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from, for example, CHF, ESRD/CKD and/or liver disease. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of hypertension, that may be associated with or caused by fluid retention and/or salt overload. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from hypertension. Such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. and/or hypertension. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, and more particularly to the restoration of appropriate fluid secretion in the gut and the improvement of pathological conditions encountered in constipation states. Applicants have further recognized that by blocking sodium ion re-absorption, the compound of the invention restore fluid homeostasis in the GI tract, particularly in situations wherein fluid secretion/absorption is altered in such a way that it results in a high degree of feces dehydration, low gut motility, and/or a slow transit-time producing constipation states and GI discomfort generally. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Due to the presence of NHEs in other organs or tissues in the body, the method of the present disclosure employs the use of compounds and compositions that are desirably highly selective or localized, thus acting substantially in the gastrointestinal tract without exposure to other tissues or organs. In this way, any systemic effects can be minimized (whether they are on-target or off-target). Accordingly, it is to be noted that, as used herein, and as further detailed elsewhere herein, “substantially active in the gastrointestinal tract” generally refers to compounds that are substantially systemically non-bioavailable and/or substantially impermeable to the layer of epithelial cells, and more specifically epithelium of the GI tract. It is to be further noted that, as used herein, and as further detailed elsewhere herein, “substantially impermeable” more particularly encompasses compounds that are impermeable to the layer of epithelial cells, and more specifically the gastrointestinal epithelium (or epithelial layer). “Gastrointestinal epithelium” refers to the membranous tissue covering the internal surface of the gastrointestinal tract. Accordingly, by being substantially impermeable, a compound has very limited ability to be transferred across the gastrointestinal epithelium, and thus contact other internal organs (e.g., the brain, heart, liver, etc.). The typical mechanism by which a compound can be transferred across the gastrointestinal epithelium is by either transcellular transit (a substance travels through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes) and/or by paracellular transit, where a substance travels between cells of an epithelium, usually through highly restrictive structures known as “tight junctions”. The compounds of the present disclosure may therefore not be absorbed, and are thus essentially not systemically bioavailable at all (e.g., impermeable to the gastrointestinal epithelium at all), or they show no detectable concentration of the compound in serum. Alternatively, the compounds may: (i) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the liver (i.e., hepatic extraction) via first-pass metabolism; and/or (ii) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the kidney (i.e., renal excretion). In this regard it is to be still further noted that, as used herein, “substantially systemically non-bioavailable” generally refers to the inability to detect a compound in the systemic circulation of an animal or human following an oral dose of the compound. For a compound to be bioavailable, it must be transferred across the gastrointestinal epithelium (that is, substantially permeable as defined above), be transported via the portal circulation to the liver, avoid substantial metabolism in the liver, and then be transferred into systemic circulation. As further detailed elsewhere herein, small molecules exhibiting an inhibitory effect on NHE-mediated antiport of sodium and hydrogen ions described herein may be modified or functionalized to render them “substantially active” in the GI tract (or “substantially impermeable” to the GI tract and/or “substantially systemically non-bioavailable” from the GI tract) by, for example, ensuring that the final compound has: (i) a molecular weight of greater than about 500 Daltons (Da) (e.g., greater than about 1000 Da, about 2500 Da, about 5000 Da, or even about 10000 Da) in its non-salt form; and/or (ii) at least about 10 freely rotatable bonds therein (e.g., about 10, about 15 or even about 20); and/or (iii) a Moriguchi Partition Coefficient of at least about 105 (or log P of at least about 5), by for example increasing the hydrophobicity of the compound (e.g., inserting or installing a hydrocarbon chain of a sufficient or suitable length therein), or alternatively a Moriguchi Partition Coefficient of less than 10 (or alternatively a log P of less than about 1, or less than about 0); and/or (iv) a number of hydrogen-bond donors therein greater than about 5, about 10, or about 15; and/or (v) a number of hydrogen-bond acceptors therein greater than about 5, about 10, or about 15; and/or (vi) a total number of hydrogen-bond donors and acceptors therein of greater than about 5, about 10, or about 15; and/or, (vii) a topological polar surface area (tPSA) therein of greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, by for example inserting or installing a sufficiently hydrophilic functional group therein (e.g., a polyalkylene ether or a polyol or an ionizable group, such as a phosphonate, sulfonate, carboxylate, amine, quaternary amine, etc.), the hydrogen-bond donors/acceptor groups also contributing to compound tPSA. One or more of the above-noted methods for structurally modifying or functionalizing the NHE-inhibiting small molecule may be utilized in order to prepare a compound suitable for use in the methods of the present disclosure, so as to render the compound substantially impermeable or substantially systemically non-bioavailable; that is, one or more of the noted exemplary physical properties may be “engineered” into the NHE-inhibiting small molecule to render the resulting compound substantially impermeable or substantially systemically non-bioavailable, or more generally substantially active, in the GI tract, while still possessing a region or moiety therein that is active to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. Without being held to any particular theory, the NHE-inhibitors (e.g., NHE-3, -2 and/or -8) of the instant disclosure are believed to act via a distinct and unique mechanism, causing the retention of fluid and ions in the GI tract (and stimulating fecal excretion) rather than stimulating increased secretion of said fluid and ions. For example, lubiprostone (Amitiza® Sucampo/Takeda) is a bicyclic fatty acid prostaglandin E1 analog that activates the Type 2 Chloride Channel (ClC-2) and increases chloride-rich fluid secretion from the serosal to the mucosal side of the GI tract (see, e.g., Pharmacological Reviews for Amitiza®, NDA package). Linaclotide (MD-1100 acetate, Microbia/Forest Labs) is a 14 amino acid peptide analogue of an endogenous hormone, guanylin, and indirectly activates the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) thereby inducing fluid and electrolyte secretion into the GI (see, e.g., Li et al., J. Exp. Med., vol. 202 (2005), pp. 975-986). The substantially impermeable NHE inhibitors described in the instant disclosure act to inhibit the reuptake of salt and fluid rather than promote secretion. Since the GI tract processes about 9 liters of fluid and about 800 meq of Na each day, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to resorb edema and resolve CHF symptoms. I. Substantially Impermeable or Substantially Systemically Non-Bioavailable NHE-Inhibiting Compounds A. General Structure Generally speaking, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that is effective or active as a NHE inhibitor and that is substantially active in the GI tract, and more particularly substantially impermeable or substantially systemically non-bioavalable therein, including known NHE inhibitors that may be modified or functionalized in accordance with the present disclosure to alter the physicochemical properties thereof so as to render the overall compound substantially active in the GI tract. In particular, however, the present disclosure encompasses monovalent or polyvalent compounds that are effective or active as NHE-3, NHE-2 and/or NHE-8 inhibitors. Accordingly, the compounds of the present disclosure may be generally represented by Formula (I): NHE-Z  (I) wherein: (i) NHE represents a NHE-inhibiting small molecule, and (ii) Z represents a moiety having at least one site thereon for attachment to an NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The NHE-inhibiting small molecule generally comprises a heteroatom-containing moiety and a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto. In particular, examination of the structures of small molecules reported to-date to be NHE inhibitors suggest, as further illustrated herein below, that most comprise a cyclic or heterocyclic support or scaffold bound directly or indirectly (by, for example, an acyl moiety or a hydrocarbyl or heterohydrocarbyl moiety, such as an alkyl, an alkenyl, a heteroalkyl or a heteroalkenyl moiety) to a heteroatom-containing moiety that is capable of acting as a sodium atom or sodium ion mimic, which is typically selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety (e.g., a nitrogen-containing hetrocyclic moiety). Optionally, the heteroatom-containing moiety may be fused with the scaffold or support moiety to form a fused, bicyclic structure, and/or it may be capable of forming a positive charge at a physiological pH. In this regard it is to be noted that, while the heteroatom-containing moiety that is capable of acting as a sodium atom or ion mimic may optionally form a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein. Rather, in various embodiments, the compound may have no charged moieties, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof, the compound for example being a zwitterion). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge (e.g., +1, +2, +3, etc.), or a net negative charge (e.g., −1, −2, −3, etc.). The Z moiety may be bound to essentially any position on, or within, the NHE small molecule, and in particular may be: (i) bound to the scaffold or support moiety, (ii) bound to a position on, or within, the heteroatom-containing moiety, and/or (iii) bound to a position on, or within, a spacer moiety that links the scaffold to the heteroatom-containing moiety, provided that the installation of the Z moiety does not significantly adversely impact NHE-inhibiting activity. In one particular embodiment, Z may be in the form of an oligomer, dendrimer or polymer bound to the NHE small molecule (e.g., bound for example to the scaffold or the spacer moiety), or alternatively Z may be in the form of a linker that links multiple NHE small molecules together, and therefore that acts to increase: (i) the overall molecular weight and/or polar surface area of the NHE-Z molecule; and/or, (ii) the number of freely rotatable bonds in the NHE-Z molecule; and/or, (iii) the number of hydrogen-bond donors and/or acceptors in the NHE-Z molecule; and/or, (iv) the Log P value of the NHE-Z molecule to a value of at least about 5 (or alternatively less than 1, or even about 0), all as set forth herein; such that the overall NHE-inhibiting compound (i.e., the NHE-Z compound) is substantially impermeable or substantially systemically non-bioavailable. The present disclosure is more particularly directed to such a substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound, or a pharmaceutical salt thereof, wherein the compound has the structure of Formula (II): wherein: (i) Z, as previously defined above, is a moiety bound to or incorporated in the NHE-inhibiting small molecule, such that the resulting NHE-Z molecule possesses overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; (ii) B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and in one particular embodiment is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; (iii) Scaffold is the cyclic or heterocyclic moiety to which is bound directly or indirectly the hetero-atom containing moiety (e.g., the substituted guanidinyl moiety or a substituted heterocyclic moiety), B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; (iv) X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-C7 hydrocarbyl or heterohydrocarbyl (e.g., C1-C7 alkyl, alkenyl, heteroalkyl or heteroalkenyl), and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties (e.g., C4-C7 cyclic or heterocyclic moieties), which links B and the Scaffold; and, (v) D and E are integers, each independently having a value of 1, 2 or more. In one or more particular embodiments, as further illustrated herein below, B may be selected from a guanidinyl moiety or a moiety that is a guanidinyl bioisostere selected from the group consisting of substituted cyclobutenedione, substituted imidazole, substituted thiazole, substituted oxadiazole, substituted pyrazole, or a substituted amine. More particularly, B may be selected from guanidinyl, acylguanidinyl, sulfonylguanidinyl, or a guanidine bioisostere such as a cyclobutenedione, a substituted or unsubstituted 5- or 6-member heterocycle such as substituted or unsubstituted imidazole, aminoimidazole, alkylimidizole, thiazole, oxadiazole, pyrazole, alkylthioimidazole, or other functionality that may optionally become positively charged or function as a sodium mimetic, including amines (e.g., tertiary amines), alkylamines, and the like, at a physiological pH. In one particularly preferred embodiment, B is a substituted guanidinyl moiety or a substituted heterocyclic moiety that may optionally become positively charged at a physiological pH to function as a sodium mimetic. In one exemplary embodiment, the compound of the present disclosure (or more particularly the pharmaceutically acceptable HCl salt thereof, as illustrated) may have the structure of Formula (III): wherein Z may be optionally attached to any one of a number of sites on the NHE-inhibiting small molecule, and further wherein the R1, R2 and R3 substituents on the aromatic rings are as detailed elsewhere herein, and/or in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. In this regard it is to be noted, however, that the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may have a structure other than illustrated above, without departing from the scope of the present disclosure. For example, in various alternative embodiments, one or both of the terminal nitrogen atoms in the guanidine moiety may be substituted with one or more substituents, and/or the modifying or functionalizing moiety Z may be attached to the NHE-inhibiting compound by means of (i) the Scaffold, (ii) the spacer X, or (iii) the heteroatom-containing moiety, B, as further illustrated generally in the structures provided below: In this regard it is to be further noted that, as used herein, “bioisostere” generally refers to a moiety with similar physical and chemical properties to a guanidine moiety, which in turn imparts biological properties to that given moiety similar to, again, a guanidine moiety, in this instance. (See, for example, Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes.) As further detailed below, known NHE-inhibiting small molecules or chemotypes that may serve as suitable starting materials (for modification or functionalization, in order to render the small molecules substantially impermeable or substantially systemically non-bioavailable, and/or used in pharmaceutical preparations in combination with, for example, a fluid-absorbing polymer) may generally be organized into a number of subsets, such as for example: wherein: the terminal ring (or, in the case of the non-acyl guanidines, “R”), represent the scaffold or support moiety; the guanidine moiety (or the substituted heterocycle, and more specifically the piperidine ring, in the case of the non-guanidine inhibitors) represents B; and, X is the acyl moiety, or the -A-B-acyl-moiety (or a bond in the case of the non-acyl guanidines and the non-guanidine inhibitors). (See, e.g., Lang, H. J., “Chemistry of NHE Inhibitors” in The Sodium-Hydrogen Exchanger, Harmazyn, M., Avkiran, M. and Fliegel, L., Eds., Kluwer Academic Publishers 2003. See also B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Without being held to any particular theory, it has been proposed that a guanidine group, or an acylguanidine group, or a charged guanidine or acylguanidine group (or, in the case of non-guanidine inhibitors, a heterocycle or other functional group that can replicate the molecular interactions of a guanidinyl functionality including, but not limited to, a protonated nitrogen atom in a piperidine ring) at physiological pH may mimic a sodium ion at the binding site of the exchanger or antiporter (See, e.g., Vigne, P. Frelin, C. Lazdunski, M. J. Biol. Chem. 1982, 257, 9394). Although the heteroatom-containing moiety may be capable of forming a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein, or even that the heteroatom-containing moiety therein be capable of forming a positive charge in all instances. Rather, in various alternative embodiments, the compound may have no charged moieties therein, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge, or a net negative charge. In this regard it is to be noted that the U.S. patents and U.S. Published Applications cited above, or elsewhere herein, are incorporated herein by reference in their entirety, for all relevant and consistent purposes. In addition to the structures illustrated above, and elsewhere herein, it is to be noted that bioisosteric replacements for guanidine or acylguanidine may also be used. Potentially viable bioisosteric “guanidine replacements” identified to-date have a five- or six-membered heterocyclic ring with donor/acceptor and pKa patterns similar to that of guanidine or acylguanidine (see for example Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes), and include those illustrated below: The above bioisosteric embodiments (i.e., the group of structures above) correspond to “B” in the structure of Formula (II), the broken bond therein being attached to “X” (e.g., the acyl moiety, or alternatively a bond linking the bioisostere to the scaffold), with bonds to Z in Formula (III) not shown here. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-inhibiting small molecule and the modifying or functionalizing moiety Z is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-inhibiting small molecule is bound or connected in some way (e.g., by a bond or linker of some kind) to Z, such that the resulting NHE-Z molecule is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). Alternatively, Z may be incorporated into the NHE-inhibiting small molecule, such as for example by positioning it between the guanidine moiety and scaffold. It is to be further noted that a number of structures are provided herein for substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, and/or for NHE-inhibiting small molecules suitable for modification or functionalization in accordance with the present disclosure so as to render them substantially impermeable or substantially systemically non-bioavailable. Due to the large number of structures, various identifiers (e.g., atom identifiers in a chain or ring, identifiers for substituents on a ring or chain, etc.) may be used more than once. An identifier in one structure should therefore not be assumed to have the same meaning in a different structure, unless specifically stated (e.g., “R1” in one structure may or may not be the same as “R1” in another structure). Additionally, it is to be noted that, in one or more of the structures further illustrated herein below, specific details of the structures, including one or more of the identifiers therein, may be provided in a cited reference, the contents of which are specifically incorporated herein by reference for all relevant and consistent purposes. B. Illustrative Small Molecule Embodiments The substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may in general be derived or prepared from essentially any small molecule possessing the ability to inhibit NHE activity, including small molecules that have already been reported or identified as inhibiting NHE activity but lack impermeability (i.e., are not substantially impermeable). In one particularly preferred embodiment, the compounds utilized in the various methods of the present disclosure are derived or prepared from small molecules that inhibit the NHE-3, -2, and/or -8 isoforms. To-date, a considerable amount of work has been devoted to the study of small molecules exhibiting NHE-1 inhibition, while less has been devoted for example to the study of small molecules exhibiting NHE-3 inhibition. Although the present disclosure is directed generally to substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, the substantially impermeable or substantially systemically non-bioavailable compounds exhibiting NHE-3, -2, and/or -8 inhibition are of particular interest. However, while it is envisioned that appropriate starting points may be the modification of known NHE-3, -2, and/or -8 inhibiting small molecules, small molecules identified for the inhibition of other NHE subtypes, including NHE-1, may also be of interest, and may be optimized for selectivity and potency for the NHE-3, -2, and/or -8 subtype antiporter. Small molecules suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) to prepare the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure include those illustrated below. In this regard it is to be noted a bond or link to Z (i.e., the modification or functionalization that renders the small molecules substantially impermeable or substantially systemically non-bioavailable) is not specifically shown. As previously noted, the Z moiety may be attached to, or included within, the small molecule at essentially any site or position that does not interfere (e.g., stericly interfere) with the ability of the resulting compound to effectively inhibit the NHE antiport of interest. More particularly, Z may be attached to essentially any site on the NHE-inhibiting small molecule, Z for example displacing all or a portion of a substituent initially or originally present thereon and as illustrated below, provided that the site of installation of the Z moiety does not have a substantially adversely impact on the NHE-inhibiting activity thereof. In one particular embodiment, however, a bond or link extends from Z to a site on the small molecule that effectively positions the point of attachment as far away (based, for example, on the number of intervening atoms or bonds) from the atom or atoms present in the resulting compound that effectively act as the sodium ion mimic (for example, the atom or atoms capable of forming a positive ion under physiological pH conditions). In a preferred embodiment, the bond or link will extend from Z to a site in a ring, and more preferably an aromatic ring, within the small molecule, which serves as the scaffold. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound I1 on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H —NH2 The variables (“R1”, “R2 and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In these structures, a bond or link (not shown) may extend, for example, between the Core and amine-substituted aromatic ring (first structure), the heterocyclic ring or the aromatic ring to which it is bound, or alternatively the chloro-substituted aromatic ring (second structure), or the difluoro-substituted aromatic ring or the sulfonamide-substituted aromatic ring (third structure). C. Exemplary Small Molecule Selectivity Shown below are examples of various NHE inhibiting small molecules and their selectivity across the NHE-1, -2 and -3 isoforms. (See, e.g., B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Most of these small molecules were optimized as NHE-1 inhibitors, and this is reflected in their selectivity with respect thereto (IC50's for subtype-1 are significantly more potent (numerically lower) than for subtype-3). However, the data in Table 1 indicates that NHE-3 activity may be engineered into an inhibitor series originally optimized against a different isoform. For example, amiloride is a poor NHE-3 inhibitor and was inactive against this antiporter at the highest concentration tested (IC50>100 μM); however, analogs of this compound, such as DMA and EIPA, have NHE-3 IC50's of 14 and 2.4 uM, respectively. The cinnamoylguanidine S-2120 is over 500-fold more active against NHE-1 than NHE-3; however, this selectivity is reversed in regioisomer S-3226. It is thus possible to engineer NHE-3 selectivity into a chemical series optimized for potency against another antiporter isoform; that is, the inhibitor classes exemplified in the art may be suitably modified for activity and selectivity against NHE-3 (or alternatively NHE-2 and/or NHE-8), as well as being modified to be rendered substantially impermeable or substantially systemically non-bioavailable. TABLE 1 IC50 or Ki (μM)b Drug a NHE-1 NHE-2 NHE-3 NHE-5 Amiloride    1-1.6*   1.0** >100*   21 EIPA 0.01*-0.02** 0.08*-0.5**    2.4*    0.42 HMA  0.013*    2.4*    0.37 DMA  0.023*   0.25*    14* Cariporide  0.03-3.4  4.3-62  1->100 >30 Eniporide 0.005-0.38    2-17 100-460 >30 Zoniporide  0.059  12 >500* BMS-284640  0.009 1800  >30    3.36 T-162559 (S)  0.001   0.43    11 T-162559 (R) 35   0.31  >30 S-3226  3.6  80**    0.02 S-2120  0.002   0.07    1.32 *= from rat, **= from rabbit. NA = not active a Table adapted from Masereel, B. et al., European Journal of Medicinal Chemistry, 2003, 38, 547-54. bKi values are in italic As previously noted above, the NHE inhibitor small molecules disclosed herein, including those noted above, may advantageously be modified to render them substantially impermeable or substantially systemically non-bioavailable. The compounds as described herein are, accordingly, effectively localized in the gastrointestinal tract or lumen, and in one particular embodiment the colon. Since the various NHE isoforms may be found in many different internal organs (e.g., brain, heart, liver, etc.), localization of the NHE inhibitors in the intestinal lumen is desirable in order to minimize or eliminate systemic effects (i.e., prevent or significantly limit exposure of such organs to these compounds). Accordingly, the present disclosure provides NHE inhibitors, and in particular NHE-3, -2 and/or -8 inhibitors, that are substantially systemically non-bioavailable in the GI tract, and more specifically substantially systemically impermeable to the gut epithelium, as further described below. D. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is monovalent; that is, the molecule contains one moiety that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following structures of Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen (e.g., Cl), —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R4 is selected from H, C1-C7 alkyl or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines, optionally linked to the ring Ar1 by a heterocyclic linker; R4 and R12 are independently selected from H and R7, where R7 is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; or, wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR75—SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R3 is selected from H or R7, where R7 is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or R7, wherein R7 is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In another particular embodiment, the NHE-Z molecule of the present disclosure may have the structure of Formula (IV): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted hydrocarbyl, heterohydrocarbyl, or polyols and/or substituted or unsubstituted polyalkylene glycol, wherein substituents thereon are selected from the group consisting of phosphinates, phosphonates, phosphonamidates, phosphates, phosphonthioates and phosphonodithioates; R4 is selected from H or Z, where Z is substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and a polyol, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is selected from —H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. Additionally, or alternatively, in one or more embodiments of the compounds illustrated above, the compound may optionally have a tPSA of at least about 100 Å2, about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, or more and/or a molecular weight of at least about 710 Da. II. Polyvalent Structures: Macromolecules and Oligomers A. General Structure As noted above, the compounds of the present disclosure comprise a NHE-inhibiting small molecule that has been modified or functionalized structurally to alter its physicochemical properties (by the attachment or inclusion of moiety Z), and more specifically the physicochemical properties of the NHE-Z molecule, thus rendering it substantially impermeable or substantially systemically non-bioavailable. In one particular embodiment, and as further detailed elsewhere herein, the NHE-Z compound may be polyvalent (i.e., an oligomer, dendrimer or polymer moiety), wherein Z may be referred to in this embodiment generally as a “Core” moiety, and the NHE-inhibiting small molecule may be bound, directly or indirectly (by means of a linking moiety) thereto, the polyvalent compounds having for example one of the following general structures of Formula (VIII), (IX) and (X): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and E and n are both an integer of 2 or more. In various alternative embodiments, however, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-inhibiting small molecules, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (XI): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-inhibiting small molecule is modified (e.g., increased) by having a series of NHE-inhibiting small molecules linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In these or yet additional alternative embodiments, the polyvalent compound may be in dimeric, oligomeric or polymeric form, wherein for example Z or the Core is a backbone to which is bound (by means of a linker, for example) multiple NHE-inhibiting small molecules. Such compounds may have, for example, the structures of Formulas (XIIA) or (XIIB): wherein: L is a linking moiety; NHE is a NHE-inhibiting small molecule, each NHE as described above and in further detail hereinafter; and n is a non-zero integer (i.e., an integer of 1 or more). The Core moiety has one or more attachment sites to which NHE-inhibiting small molecules are bound, and preferably covalently bound, via a bond or linker, L. The Core moiety may, in general, be anything that serves to enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable (e.g., an atom, a small molecule, etc.), but in one or more preferred embodiments is an oligomer, a dendrimer or a polymer moiety, in each case having more than one site of attachment for L (and thus for the NHE-inhibiting small molecule). The combination of the Core and NHE-inhibiting small molecule (i.e., the “NHE-Z” molecule) may have physicochemical properties that enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable. In this regard it is to be noted that the repeat unit in Formulas (XIIA) and (XIIB) generally encompasses repeating units of various polymeric embodiments, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-inhibiting small molecule by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-inhibiting moieties therein. In this regard it is to be still further noted that, as further illustrated elsewhere herein, certain polyvalent NHE-inhibiting compounds of the present disclosure show unexpectedly higher potency, as measured by inhibition assays (as further detailed elsewhere herein) and characterized by the concentration of said NHE inhibitor resulting in 50% inhibition (i.e., the IC50 values). It has been observed that certain multivalent structures, represented generally by Formula (X), above, have an IC50 value several fold lower in magnitude than the individual NHE, or L-NHE, structure (which may be referred to as the “monomer” or monovalent form). For example, in one embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 5 time lower (i.e. potency about 5 time higher) than the monomer (or monovalent) form (e.g. Examples 46 and 49). In another embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 10 time lower (i.e. potency about 10 time higher) than the monomer form (e.g. Examples 87 and 88). The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound corresponding to the structure of Formula (X) are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each “NHE” moiety (i.e., the NHE small molecule) in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A. Rich, D. H. Medical Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the Core-(L-NHE)n molecule, allowing an increase in distance between the NHE inhibitors while minimally increasing rotational degrees of freedom. In an alternative embodiment (e.g., Formula (XI), wherein m=0), the structure may be for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, n and m may both be within the range of from about 1 to about 50, or from about 1 to about 20. The structures provided above are illustrations of one embodiment of compounds utilized for administration wherein absorption is limited (i.e., the compound is rendered substantially impermeable or substantially systemically non-bioavailable) by means of increasing the molecular weight of the NHE-inhibiting small molecule. In an alternative approach, as noted elsewhere herein, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by means of altering, and more specifically increasing, the topological polar surface area, as further illustrated by the following structures, wherein a substituted aromatic ring is bound to the “scaffold” of the NHE-inhibition small molecule. The selection of ionizable groups such as phosphonates, sulfonates, guanidines and the like may be particularly advantageous at preventing paracellular permeability. Carbohydrates are also advantageous, and though uncharged, significantly increase tPSA while minimally increasing molecular weight. It is to be noted, within one or more of the various embodiments illustrated herein, NHE-inhibiting small molecules suitable for use (i.e., suitable for modification or functionalization, in order to render them substantially impermeable or substantially systemically non-bioavailable) may, in particular, be selected independently from one or more of the small molecules described as benzoylguandines, heteroaroylguandines, “spacer-stretched” aroylguandines, non-acyl guanidines and acylguanidine isosteres, above, and as discussed in further detail hereinafter and/or to the small molecules detailed in, for example: U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Again, it is to be noted that when it is said that NHE-inhibiting small molecule is selected independently, it is intended that, for example, the oligomeric structures represented in Formulas (X) and (XI) above can include different structures of the NHE small molecules, within the same oligomer or polymer. In other words, each “NHE” within a given polyvalent embodiment may independently be the same or different than other “NHE” moieties within the same polyvalent embodiment. In designing and making the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a small molecule NHE inhibitor, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE inhibitor small molecule and then testing these adducts to determine whether the modified inhibitor still retains desired biological properties (e.g., NHE inhibition). An understanding of the SAR of the inhibitor also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. For example, the SAR of an NHE inhibitor series may show that installation of an N-alkylated piperazine contributes positively to biochemical activity (increased potency) or pharmaceutical properties (increased solubility); the piperazine moiety may then be utilized as the point of attachment for the desired core or linker via N-alkylation. In this fashion, the resulting compound thereby retains the favorable biochemical or pharmaceutical properties of the parent small molecule. In another example, the SAR of an NHE inhibitor series might indicate that a hydrogen bond donor is important for activity or selectivity. Core or linker moieties may then be designed to ensure this H-bond donor is retained. These cores and/or linkers may be further designed to attenuate or potentiate the pKa of the H-bond donor, potentially allowing improvements in potency and selectivity. In another scenario, an aromatic ring in an inhibitor could be an important pharmacophore, interacting with the biological target via a pi-stacking effect or pi-cation interaction. Linker and core motifs may be similarly designed to be isosteric or otherwise synergize with the aromatic features of the small molecule. Accordingly, once the structure-activity relationships within a molecular series are understood, the molecules of interest can be broken down into key pharmacophores which act as essential molecular recognition elements. When considering the installation of a core or linker motif, said motifs can be designed to exploit this SAR and may be installed to be isosteric and isoelectronic with these motifs, resulting in compounds that retain biological activity but have significantly reduced permeability. Another way the SAR of an inhibitor series can be exploited in the installation of core or linker groups is to understand which regions of the molecule are insensitive to structural changes. For example, X-ray co-crystal structures of protein-bound inhibitors can reveal those portions of the inhibitor that are solvent exposed and not involved in productive interactions with the target. Such regions can also be identified empirically when chemical modifications in these regions result in a “flat SAR” (i.e., modifications appear to have minimal contribution to biochemical activity). Those skilled in the art have frequently exploited such regions to engineer in pharmaceutical properties into a compound, for example, by installing motifs that may improve solubility or potentiate ADME properties. In the same fashion, such regions are expected to be advantageous places to install core or linker groups to create compounds as described in the instant disclosure. These regions are also expected to be sites for adding, for example, highly polar functionality such as carboxylic acids, phosphonic acids, sulfonic acids, and the like in order to greatly increase tPSA. Another aspect to be considered in the design of cores and linkers displaying an NHE inhibitor is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-inhibiting compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. Specific examples of NHE-inhibiting small molecules modified consistent with the principles detailed above are illustrated below. These moieties display functional groups that facilitate their appendage to “Z” (e.g., a core group, Core, or linking group, L). These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. Small molecule NHE inhibitors may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE inhibitor may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3] cycloaddition. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of an NHE inhibiting small molecule to a desired core or linker. Exemplary functionalized derivatives of NHEs include but are not limited to the following: wherein the variables in the above-noted structures (e.g., R, etc.) are as defined in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Patent Application No. 2005/0020612 and U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the Examples and the following: The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-inhibiting small molecule is linked to a core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the inhibitors), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either an NHE inhibitor or a linker moiety displaying an NHE inhibitor, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety is a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001) and schematically represented below: In this approach, the NHE inhibiting small molecule is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE inhibitor group is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y. (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as comonomers. For example, specific monomers or comonomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethyl amino ethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE inhibitor small molecule, NHE, is attached or otherwise a part of is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE inhibiting small molecule, NHE, is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures may be designed and constructed as described herein: It is to be further noted that the repeat moiety in Formulas (XIIA) or (XIIB) generally encompasses repeating units of polymers and copolymers produced by methods referred to herein above. It is to be noted that the various properties of the oligomers and polymers that form the core moiety as disclosed herein above may be optimized for a given use or application using experimental means and principles generally known in the art. For example, the overall molecular weight of the compounds or structures presented herein above may be selected so as to achieve non-absorbability, inhibition persistence and/or potency. Additionally, with respect to those polymeric embodiments that encompass or include the compounds generally represented by the structure of Formula (I) herein, and/or those disclosed for example in the many patents and patent applications cited herein (see, e.g., U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes), such as those wherein these compounds or structures are pendants off of a polymeric backbone or chain, the composition of the polymeric backbone or chain, as well as the overall size or molecular weight of the polymer, and/or the number of pendant molecules present thereon, may be selected according to various principles known in the art in view of the intended application or use. With respect to the polymer composition of the NHE inhibiting compound, it is to be noted that a number of polymers can be used including, for example, synthetic and/or naturally occurring aliphatic, alicyclic, and/or aromatic polymers. In preferred embodiments, the polymer moiety is stable under physiological conditions of the GI tract. By “stable” it is meant that the polymer moiety does not degrade or does not degrade significantly or essentially does not degrade under the physiological conditions of the GI tract. For instance, at least about 90%, preferably at least about 95%, and more preferably at least about 98%, and even more preferably at least about 99% of the polymer moiety remains un-degraded or intact after at least about 5 hours, at least about 12 hours, at least about 18 hours, at least about 24 hours, or at least about 48 hours of residence in a gastrointestinal tract. Stability in a gastrointestinal tract can be evaluated using gastrointestinal mimics, e.g., gastric mimics or intestinal mimics of the small intestine, which approximately model the physiological conditions at one or more locations therein. Polymer moieties detailed herein for use as the core moiety can be hydrophobic, hydrophilic, amphiphilic, uncharged or non-ionic, negatively or positively charged, or a combination thereof. Additionally, the polymer architecture of the polymer moiety can be linear, grafted, comb, block, star and/or dendritic, preferably selected to produce desired solubility and/or stability characteristics as described above. Additionally or alternatively, modifications may be made to NHE-inhibiting small molecules that increase tPSA, thus contributing to the impermeability of the resulting compounds. Such modifications preferably include addition of di-anions, such as phosphonates, malonates, sulfonates and the like, and polyols such as carbohydrates and the like. Exemplary derivatives of NHEs with increased tPSA include but are not limited to the following: B. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is polyvalent; that is, the molecule contains two or more moieties that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 is selected from H, C1-C7 alkyl or L, where L is as described above; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are optionally linked to the ring Ar1 by a heterocyclic linker, and further are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 and R12 are independently selected from H or L, where L is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R3 is selected from H or L, where L is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or L, wherein L is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In one particular embodiment, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further particular embodiments of the above embodiment, L is a polyalkylene glycol linker, such as a polyethylene glycol linker. In further particular embodiments of the above embodiment, n is 2. In further particular embodiments of the above embodiment, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further particular embodiments of the above embodiment, the Core is selected from the group consisting of: III. Terminology, Physical and Performance Properties A. Terminology Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-C12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butyryl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each R1 is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Re where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure (which includes the NHE-inhibitor small molecule), remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc. stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelium layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). B. Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacodynamics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable NHE inhibitor compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable NHE inhibitor compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; and/or (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0). In view of the foregoing, and as previously noted herein, essentially any known NHE inhibitor small molecule (described herein and/or in the art) can be used in designing a substantially systemically non-bioavailable NHE inhibitor molecular structure, in accordance with the present disclosure. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in {acute over (Å)}2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is now available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 2, below): TABLE 2 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some preferred embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. (As previously noted above, see for example U.S. Pat. No. 6,737,423, Example 31 for a description of the Caco-2 Model, which is incorporated herein by reference). A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa, may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, no AN1725EN00, and no AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, NHE inhibitor small molecules are modified as described above to hinder the net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise an NHE-inhibiting small molecule linked, coupled or otherwise attached to a moiety Z, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the NHE-inhibiting small molecule is coupled to a multimer or polymer portion or moiety, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. For example, an NHE-inhibiting small molecule may be linked to at least one repeat unit of a polymer portion or moiety according, for example, to the structure of Formula (XIIA) or Formula (XIIB), as illustrated herein. In these or other particular embodiments, the NHE-inhibiting small molecule is modified as described herein to substantially hinder its net absorption through a layer of gut epithelial cells and may comprise, for example, a NHE-inhibiting compound linked, coupled or otherwise attached to a substantially impermeable or substantially systemically non-bioavailable “Core” moiety, as described above. C. Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with the epithelial cell (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., sodium transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the NHE-inhibiting compounds to the NHE protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of sodium transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing NHE transporters are split in different vials and treated with a NHE-inhibiting compound and sodium solution to measure the rate of sodium uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and sodium uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of Na is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for sodium balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical NHE transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing NHE antiport inhibitors with several NHE inhibiting moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, Oct. 5(4), pp. 312-8.) D. GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds sustain the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to enzymatic metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. E. Sodium and/or Fluid Output It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may act to increase the patient's daily fecal output of sodium by at least about 20, about 30 mmol, about 40 mmol, about 50 mmol, about 60 mmol, about 70 mmol, about 80 mmol, about 90 mmol, about 100 mmol, about 125 mmol, about 150 mmol or more, the increase being for example within the range of from about 20 to about 150 mmol/day, or from about 25 to about 100 mmol/day, or from about 30 to about 60 mmol/day Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patent in need thereof, may act to increase the patient's daily fluid output by at least about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml or more, the increase being for example within the range of from about 100 to about 1000 ml/day, or from about 150 to about 750 ml/day, or from about 200 to about 500 ml/day (assuming isotonic fluid). F. Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 1 μM to about 10 μM, or about 2.5 μM to about 7.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the NHE-Z inhibiting compounds (monovalent or divalent) as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as C., is lower than the NHE inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NHE-mediated Na/H antiport activity in a cell based assay. IV. Pharmaceutical Compositions and Methods of Treatment A. Compositions and Methods 1. Fluid Retention and/or Salt Overload Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various disorders associated with fluid retention and/or salt overload in the gastrointestinal tract (e.g., hypertension, heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention) comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” or “mammal” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment may be suffering from hypertension; from salt-sensitive hypertension which may result from dietary salt intake; from a risk of a cardiovascular disorder (e.g., myocardial infarction, congestive heart failure and the like) resulting from hypertension; from heart failure (e.g., congestive heart failure) resulting in fluid or salt overload; from chronic kidney disease resulting in fluid or salt overload, from end stage renal disease resulting in fluid or salt overload; from liver disease resulting in fluid or salt overload; from peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention; or from edema resulting from congestive heart failure or end stage renal disease. In various embodiments, a subject in need of treatment typically shows signs of hypervolemia resulting from salt and fluid retention that are common features of congestive heart failure, renal failure or liver cirrhosis. Fluid retention and salt retention manifest themselves by the occurrence of shortness of breath, edema, ascites or interdialytic weight gain. Other examples of subjects that would benefit from the treatment are those suffering from congestive heart failure and hypertensive patients and, particularly, those who are resistant to treatment with diuretics, i.e., patients for whom very few therapeutic options are available. A subject “in need of treatment” also includes a subject with hypertension, salt-sensitive blood pressure and subjects with systolic/diastolic blood pressure greater than about 130-139/85-89 mm Hg. Administration of NHE inhibitors, with or without administration of fluid-absorbing polymers, may be beneficial for patients put on “non-added salt” dietary regimen (i.e., 60-100 mmol of Na per day), to liberalize their diet while keeping a neutral or slightly negative sodium balance (i.e., the overall uptake of salt would be equal of less than the secreted salt). In that context, “liberalize their diet” means that patients treated may add salt to their meals to make the meals more palatable, or/and diversify their diet with salt-containing foods, thus maintaining a good nutritional status while improving their quality of life. The treatment methods described herein may also help patients with edema associated with chemotherapy, pre-menstrual fluid overload and preeclampsia (pregnancy-induced hypertension). Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for treating hypertension, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. The method may be for reducing fluid overload associated with heart failure (in particular, congestive heart failure), the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with end stage renal disease, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. The method may be for reducing fluid overload associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. 2. Gastrointestinal Tract Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, comprises, in general, any small molecule, which may be monovalent or polyvalent, that is effective or active as an NHE-inhibitor and that is substantially active in the GI tract, in particular, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment is suffering from a gastrointestinal tract disorder; the patient is suffering from a disorder selected from the group consisting of: a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, and the like. In various preferred embodiments, the constipation to be treated is: associated with the use of a therapeutic agent; associated with a neuropathic disorder; post-surgical constipation (postoperative ileus); associated with a gastrointestinal tract disorder; idiopathic (functional constipation or slow transit constipation); associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). Constipation may also be the result of surgery (postoperative ileus) or due the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for increasing gastrointestinal motility in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for treating a gastrointestinal tract disorder, a gastrointestinal motility disorder, irritable bowel syndrome, chronic calcium-induced constipation in osteoporotic patients, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, Crohn's disease, ulcerative colitis, inflammatory bowel disease, the method comprising administering an antagonist of the intestinal NHE, and more specifically a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition, either orally or by rectal suppository. Additionally, or alternatively, the method may be for treating or reducing pain, including visceral pain, pain associated with a gastrointestinal tract disorder or pain associated with some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. Additionally, or alternatively, the method may be for treating inflammation, including inflammation of the gastrointestinal tract, e.g., inflammation associated with a gastrointestinal tract disorder or infection or some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. B. Combination Therapies 1. Fluid Retention and/or Salt Overload Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with a diuretic (i.e., High Ceiling Loop Diuretics, Benzothiadiazide Diuretics, Potassium Sparing Diuretics, Osmotic Diuretics), cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, peroxisome proliferator-activated receptor (PPAR) gamma agonist agent or compound or with a fluid-absorbing polymer as more fully described below. The agent can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially systemically non-bioavailable NHE-inhibiting compound described herein and a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X—Y—X, X—X—Y, Y—X—Y, Y—Y—X, X—X—Y—Y, etc. The compounds described herein can be used in combination therapy with a diuretic. Among the useful analgesic agents are, for example: High Ceiling Loop Diuretics [Furosemide (Lasix), Ethacrynic Acid (Edecrin), Bumetanide (Bumex)], Benzothiadiazide Diuretics [Hydrochlorothiazide (Hydrodiuril), Chlorothiazide (Diuril), Clorthalidone (Hygroton), Benzthiazide (Aguapres), Bendroflumethiazide (Naturetin), Methyclothiazide (Aguatensen), Polythiazide (Renese), Indapamide (Lozol), Cyclothiazide (Anhydron), Hydroflumethiazide (Diucardin), Metolazone (Diulo), Quinethazone (Hydromox), Trichlormethiazide (Naqua)], Potassium Sparing Diuretics [Spironolactone (Aldactone), Triamterene (Dyrenium), Amiloride (Midamor)], and Osmotic Diuretics [Mannitol (Osmitrol)]. Diuretic agents in the various classes are known and described in the literature. Cardiac glycosides (cardenolides) or other digitalis preparations can be administered with the compounds of the disclosure in co-therapy. Among the useful cardiac glycosides are, for example: Digitoxin (Crystodigin), Digoxin (Lanoxin) or Deslanoside (Cedilanid-D). Cardiac glycosides in the various classes are described in the literature. Angiotensin Converting Enzyme Inhibitors (ACE Inhibitors) can be administered with the compounds of the disclosure in co-therapy. Among the useful ACE inhibitors are, for example: Captopril (Capoten), Enalapril (Vasotec), Lisinopril (Prinivil). ACE inhibitors in the various classes are described in the literature. Angiotensin-2 Receptor Antagonists (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's) can be administered with the compounds of the disclosure in co-therapy. Among the useful Angiotensin-2 Receptor Antagonists are, for example: Candesartan (Atacand), Eprosartan (Teveten), Irbesartan (Avapro), Losartan (Cozaar), Telmisartan (Micardis), Valsartan (Diovan). Angiotensin-2 Receptor Antagonists in the various classes are described in the literature. Calcium channel blockers such as Amlodipine (Norvasc, Lotrel), Bepridil (Vascor), Diltiazem (Cardizem, Tiazac), Felodipine (Plendil), Nifedipine (Adalat, Procardia), Nimodipine (Nimotop), Nisoldipine (Sular), Verapamil (Calan, Isoptin, Verelan) and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with the compounds of the disclosure. Beta blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful beta blockers are, for example: Acebutolol (Sectral), Atenolol (Tenormin), Betaxolol (Kerlone), Bisoprolol/hydrochlorothiazide (Ziac), Bisoprolol (Zebeta), Carteolol (Cartrol), Metoprolol (Lopressor, Toprol XL), Nadolol (Corgard), Propranolol (Inderal), Sotalol (Betapace), Timolol (Blocadren). Beta blockers in the various classes are described in the literature. PPAR gamma agonists such as thiazolidinediones (also called glitazones) can be administered with the compounds of the disclosure in co-therapy. Among the useful PPAR agonists are, for example: rosiglitazone (Avandia), pioglitazone (Actos) and rivoglitazone. Aldosterone antagonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Aldosterone antagonists are, for example: eplerenone, spironolactone, and canrenone. Alpha blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful Alpha blockers are, for example: Doxazosin mesylate (Cardura), Prazosin hydrochloride (Minipress). Prazosin and polythiazide (Minizide), Terazosin hydrochloride (Hytrin). Alpha blockers in the various classes are described in the literature. Central alpha agonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Central alpha agonists are, for example: Clonidine hydrochloride (Catapres), Clonidine hydrochloride and chlorthalidone (Clorpres, Combipres), Guanabenz Acetate (Wytensin), Guanfacine hydrochloride (Tenex), Methyldopa (Aldomet), Methyldopa and chlorothiazide (Aldochlor), Methyldopa and hydrochlorothiazide (Aldoril). Central alpha agonists in the various classes are described in the literature. Vasodilators can be administered with the compounds of the disclosure in co-therapy. Among the useful vasodilators are, for example: Isosorbide dinitrate (Isordil), Nesiritide (Natrecor), Hydralazine (Apresoline), Nitrates/nitroglycerin, Minoxidil (Loniten). Vasodilators in the various classes are described in the literature. Blood thinners can be administered with the compounds of the disclosure in co-therapy. Among the useful blood thinners are, for example: Warfarin (Coumadin) and Heparin. Blood thinners in the various classes are described in the literature. Anti-platelet agents can be administered with the compounds of the disclosure in co-therapy. Among the useful anti-platelet agents are, for example: Cyclooxygenase inhibitors (Aspirin), Adenosine diphosphate (ADP) receptor inhibitors [Clopidogrel (Plavix), Ticlopidine (Ticlid)], Phosphodiesterase inhibitors [Cilostazol (Pletal)], Glycoprotein IIB/IIIA inhibitors [Abciximab (ReoPro), Eptifibatide (Integrilin), Tirofiban (Aggrastat), Defibrotide], Adenosine reuptake inhibitors [Dipyridamole (Persantine)]. Anti-platelet agents in the various classes are described in the literature. Lipid-lowering agents can be administered with the compounds of the disclosure in co-therapy. Among the useful lipid-lowering agents are, for example: Statins (HMG CoA reductase inhibitors), [Atorvastatin (Lipitor), Fluvastatin (Lescol), Lovastatin (Mevacor, Altoprev), Pravastatin (Pravachol), Rosuvastatin Calcium (Crestor), Simvastatin (Zocor)], Selective cholesterol absorption inhibitors [ezetimibe (Zetia)], Resins (bile acid sequestrant or bile acid-binding drugs) [Cholestyramine (Questran, Questran Light, Prevalite, Locholest, Locholest Light), Colestipol (Colestid), Colesevelam Hcl (WelChol)], Fibrates (Fibric acid derivatives) [Gemfibrozil (Lopid), Fenofibrate (Antara, Lofibra, Tricor, and Triglide), Clofibrate (Atromid-S)], Niacin (Nicotinic acid). Lipid-lowering agents in the various classes are described in the literature. The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Other agents include natriuretic peptides such as nesiritide, a recombinant form of brain-natriuretic peptide (BNP) and an atrial-natriuretic peptide (ANP). Vasopressin receptor antagonists such as tolvaptan and conivaptan may be co-administered as well as phosphate binders such as renagel, renleva, phoslo and fosrenol. Other agents include phosphate transport inhibitors (as described in U.S. Pat. Nos. 4,806,532; 6,355,823; 6,787,528; 7,119,120; 7,109,184; U.S. Pat. Pub. No. 2007/021509; 2006/0280719; 2006/0217426; International Pat. Pubs. WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, WO2003/080630, WO 2004/085448, WO 2004/085382; European Pat. Nos. 1465638 and 1485391; and JP Patent No. 2007131532, or phosphate transport antagonists such as Nicotinamide. 2. Gastrointestinal Tract Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with an analgesic peptide or compound. The analgesic peptide or compound can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound described herein and an analgesic peptide or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X—Y—X, X—X—Y, Y—X—Y, Y—Y—X, X—X—Y—Y, etc. The compounds described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic peptide. The analgesic agent can optionally be covalently attached to a compound described herein. Among the useful analgesic agents are, for example: Ca channel blockers, 5HT3 agonists (e.g., MCK-733), 5HT4 agonists (e.g., tegaserod, prucalopride), and 5HT1 receptor antagonists, opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSR1), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Opioid receptor antagonists and agonists can be administered with the compounds of the disclosure in co-therapy or linked to the compound of the disclosure, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of opioid-induced constipaption (OIC). It can be useful to formulate opioid antagonists of this type in a delayed or sustained release formulation, such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in U.S. Pat. No. 6,734,188 (WO 01/32180 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine) is an agonist of the μ- and γ-opioid receptors and is thought to be useful for increasing intestinal motility (Eur. J. Pharm., 219:445, 1992), and this peptide can be used in conjunction with the compounds of the disclosure. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal peptide, gastrin and glucagons. K-opioid receptor agonists such as fedotozine, ketocyclazocine, and compounds described in US 2005/0176746 (WO 03/097051 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. In addition, g-opioid receptor agonists, such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH2; disclosed in WO 01/019849 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of met-enkephalins to elicit an analgesic effect (J. Biol. Chem. 262:8165, 1987). Kyotorphin can be used with or linked to the compounds of the disclosure. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the compounds of the disclosure. Conotoxin peptides represent a large class of analgesic peptides that act at voltage gated Ca channels, NMDA receptors or nicotinic receptors. These peptides can be used with or linked to the compounds of the disclosure. Peptide analogs of thymulin (U.S. Pat. No. 7,309,690 or FR 2830451, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (U.S. Pat. No. 5,130,474 or WO 88/05774, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. Other useful analgesic agents include 5-HT4 agonists such as tegaserod/zelnorm and lirexapride. Such agonists are described in: EP1321142 A1, WO 03/053432A1, EP 505322 A1, EP 505322 B1, EP 507672 A1, EP 507672 B1, U.S. Pat. No. 5,510,353 and U.S. Pat. No. 5,273,983, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Calcium channel blockers such as ziconotide and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Various antagonists of the NK-1, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003 Drugs 6:758) can be can be used with or linked to the compounds of the disclosure. NK1 receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-14033 and related compounds described in, for example, EP 873753 A1, U.S. 20010006972 A1, U.S. 20030109417 A1, WO 01/52844 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the compounds of the disclosure. NK3 receptor antagonists such as osanetant (Sanofi-Synthelabo), talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 A1, WO 97/21680 A1, U.S. Pat. No. 6,277,862, WO 98/11090, WO 95/28418, WO 97/19927, and Boden et al. (J. Med. Chem. 39:1664-75, 1996), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Norepinephrine-serotonin reuptake inhibitors such as milnacipran and related compounds described in WO 03/077897 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. The compounds can be used in combination therapy with a phosphodiesterase inhibitor (examples of such inhibitors can be found in U.S. Pat. No. 6,333,354, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes). The compounds can be used alone or in combination therapy to treat disorders associated with chloride or bicarbonate secretion that may lead to constipation, e.g., Cystic Fibrosis. The compounds can also or alternatively be used alone or in combination therapy to treat calcium-induced constipation effects. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of constipation effects associated therewith. The compounds of the current disclosure have can be used in combination with an opioid. Opioid use is mainly directed to pain relief, with a notable side-effect being GI disorder, e.g. constipation. These agents work by binding to opioid receptors, which are found principally in the central nervous system and the gastrointestinal tract. The receptors in these two organ systems mediate both the beneficial effects, and the undesirable side effects (e.g. decrease of gut motility and ensuing constipation). Opioids suitable for use typically belong to one of the following exemplary classes: natural opiates, alkaloids contained in the resin of the opium poppy including morphine, codeine and thebaine; semi-synthetic opiates, created from the natural opioids, such as hydromorphone, hydrocodone, oxycodone, oxymorphone, desomorphine, diacetylmorphine (Heroin), nicomorphine, dipropanoylmorphine, benzylmorphine and ethylmorphine; fully synthetic opioids, such as fentanyl, pethidine, methadone, tramadol and propoxyphene; endogenous opioid peptides, produced naturally in the body, such as endorphins, enkephalins, dynorphins, and endomorphins The compound of the disclosure can be used alone or in combination therapy to alleviate GI disorders encountered with patients with renal failure (stage 3-5). Constipation is the second most reported symptom in that category of patients (Murtagh et al., 2006; Murtagh et al., 2007a; Murtagh et al., 2007b). Without being held by theory, it is believed that kidney failure is accompanied by a stimulation of intestinal Na re-absorption (Hatch and Freel, 2008). A total or partial inhibition of such transport by administration of the compounds of the disclosure can have a therapeutic benefit to improve GI transit and relieve abdominal pain. In that context, the compounds of the disclosure can be used in combination with Angiotensin-modulating agents: Angiotensin Converting Enzyme (ACE) inhibitors (e.g. captopril, enalopril, lisinopril, ramipril) and Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's); diuretics such as loop diuretics (e.g. furosemide, bumetanide), Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) and potassium-sparing diuretics: amiloride; beta blockers: bisoprolol, carvedilol, nebivolol and extended-release metoprolol; positive inotropes: Digoxin, dobutamine; phosphodiesterase inhibitors such as milrinone; alternative vasodilators: combination of isosorbide dinitrate/hydralazine; aldosterone receptor antagonists: spironolactone, eplerenone; natriuretic peptides: Nesiritide, a recombinant form of brain-natriuretic peptide (BNP), atrial-natriuretic peptide (ANP); vasopressin receptor antagonists: Tolvaptan and conivaptan; phosphate binder (Renagel, Renleva, Phoslo, Fosrenol); phosphate transport inhibitor such as those described in U.S. Pat. No. 4,806,532, U.S. Pat. No. 6,355,823, U.S. Pat. No. 6,787,528, WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, U.S. Pat. No. 7,119,120, EP 1465638, US Appl. 2007/021509, WO 2003/080630, U.S. Pat. No. 7,109,184, US Appl. 2006/0280719, EP 1485391, WO 2004/085448, WO 2004/085382, US Appl. 2006/0217426, JP 2007/131532, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, or phosphate transport antagonist (Nicotinamide). The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with laxative agents such as bulk-producing agents, e.g. psyllium husk (Metamucil), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant such as docusate (Colace, Diocto); hydrating agents (osmotics), such as dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate; hyperosmotic agents: glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG). The compounds of the disclosure can be also be used in combination with agents that stimulate gut peristalsis, such as Bisacodyl tablets (Dulcolax), Casanthranol, Senna and Aloin, from Aloe Vera. In one embodiment, the compounds of the disclosure accelerate gastrointestinal transit, and more specifically in the colon, without substantially affecting the residence time in the stomach, i.e. with no significant effect on the gastric emptying time. Even more specifically the compounds of the invention restore colonic transit without the side-effects associated with delayed gastric emptying time, such as nausea. The GI and colonic transit are measured in patients using methods reported in, for example: Burton D D, Camilleri M, Mullan B P, et al., J. Nucl. Med., 1997; 38:1807-1810; Cremonini F, Mullan B P, Camilleri M, et al., Aliment. Pharmacol. Ther., 2002; 16:1781-1790; Camilleri M, Zinsmeister A R, Gastroenterology, 1992; 103:36-42; Bouras E P, Camilleri M, Burton D D, et al., Gastroenterology, 2001; 120:354-360; Coulie B, Szarka L A, Camilleri M, et al., Gastroenterology, 2000; 119:41-50; Prather C M, Camilleri M, Zinsmeister A R, et al., Gastroenterology, 2000; 118:463-468; and, Camilleri M, McKinzie S, Fox J, et al., Clin. Gastroenterol. Hepatol., 2004; 2:895-904. C. Polymer Combination Therapy The NHE-inhibiting compounds described therein may be administered to patients in need thereof in combination with a fluid-absorbing polymer (“FAP”). The intestinal fluid-absorbing polymers useful for administration in accordance with embodiments of the present disclosure may be administered orally in combination with non-absorbable NHE-inhibitors (e.g., a NHE-3 inhibitor) to absorb the intestinal fluid resulting from the action of the sodium transport inhibitors. Such polymers swell in the colon and bind fluid to impart a consistency to stools that is acceptable for patients. The fluid-absorbing polymers described herein may be selected from polymers with laxative properties, also referred to as bulking agents (i.e., polymers that retain some of the intestinal fluid in the stools and impart a higher degree of hydration in the stools and facilitate transit). The fluid-absorbing polymers may also be optionally selected from pharmaceutical polymers with anti-diarrhea function, i.e., agents that maintain some consistency to the stools to avoid watery stools and potential incontinence. The ability of the polymer to maintain a certain consistency in stools with a high content of fluid can be characterized by its “water holding power.” Wenzl et al. (in Determinants of decreased fecal consistency in patients with diarrhea; Gastroenterology, v. 108, no. 6, p. 1729-1738 (1995)) studied the determinants that control the consistency of stools of patients with diarrhea and found that they were narrowly correlated with the water holding power of the feces. The water holding power is determined as the water content of given stools to achieve a certain level of consistency (corresponding to “formed stool” consistency) after the reconstituted fecal matter has been centrifuged at a certain g number. Without being held to any particular theory, has been found that the water holding power of the feces is increased by ingestion of certain polymers with a given fluid absorbing profile. More specifically, it has been found that the water-holding power of said polymers is correlated with their fluid absorbancy under load (AUL); even more specifically the AUL of said polymers is greater than 15 g of isotonic fluid/g of polymer under a static pressure of 5 kPa, even more preferably under a static pressure of 10 kPa. The FAP utilized in the treatment method of the present disclosure preferably has a AUL of at least about 10 g, about 15 g, about 20 g, about 25 g or more of isotonic fluid/g of polymer under a static pressure of about 5 kPa, and preferably about 10 kPA, and may have a fluid absorbency of about 20 g, about 25 g or more, as determined using means generally known in the art. Additionally or alternatively, the FAP may impart a minimum consistency to fecal matter and, in some embodiments, a consistency graded as “soft” in the scale described in the test method below, when fecal non water-soluble solid fraction is from 10% to 20%, and the polymer concentration is from 1% to 5% of the weight of stool. The determination of the fecal non water-soluble solid fraction of stools is described in Wenz et al. The polymer may be uncharged or may have a low charge density (e.g., 1-2 meq/gr). Alternatively or in addition, the polymer may be delivered directly to the colon using known delivery methods to avoid premature swelling in the esophagus. In one embodiment of the present disclosure, the FAP is a “superabsorbent” polymer (i.e., a lightly crosslinked, partially neutralized polyelectrolyte hydrogel similar to those used in baby diapers, feminine hygiene products, agriculture additives, etc.). Superabsorbent polymers may be made of a lightly crosslinked polyacrylate hydrogel. The swelling of the polymer is driven essentially by two effects: (i) the hydration of the polymer backbone and entropy of mixing and (ii) the osmotic pressure arising from the counter-ions (e.g., Na ions) within the gel. The gel swelling ratio at equilibrium is controlled by the elastic resistance inherent to the polymer network and by the chemical potential of the bathing fluid, i.e., the gel will de-swell at higher salt concentration because the background electrolyte will reduce the apparent charge density on the polymer and will reduce the difference of free ion concentrations inside and outside the gel that drives osmotic pressure. The swelling ratio SR (g of fluid per g of dry polymer and synonymously “fluid absorbency”) may vary from 1000 in pure water down to 30 in 0.9% NaCl solution representative of physiological saline (i.e., isotonic). SR may increase with the degree of neutralization and may decrease with the crosslinking density. SR generally decreases with an applied load with the extent of reduction dependent on the strength of the gel, i.e., the crosslinking density. The salt concentration within the gel, as compared with the external solution, may be lower as a result of the Donnan effect due to the internal electrical potential. The fluid-absorbing polymer may include crosslinked polyacrylates which are fluid absorbent such as those prepared from α,β-ethylenically unsaturated monomers, such as monocarboxylic acids, polycarboxylic acids, acrylamide and their derivatives. These polymers may have repeating units of acrylic acid, methacrylic acid, metal salts of acrylic acid, acrylamide, and acrylamide derivatives (such as 2-acrylamido-2-methylpropanesulfonic acid) along with various combinations of such repeating units as copolymers. Such derivatives include acrylic polymers which include hydrophilic grafts of polymers such as polyvinyl alcohol. Examples of suitable polymers and processes, including gel polymerization processes, for preparing such polymers are disclosed in U.S. Pat. Nos. 3,997,484; 3,926,891; 3,935,099; 4,090,013; 4,093,776; 4,340,706; 4,446,261; 4,683,274; 4,459,396; 4,708,997; 4,076,663; 4,190,562; 4,286,082; 4,857,610; 4,985,518; 5,145,906; 5,629,377 and 6,908,609 which are incorporated herein by reference for all relevant and consistent purposes (in addition, see Buchholz, F. L. and Graham, A. T., “Modern Superabsorbent Polymer Technology,” John Wiley & Sons (1998), which is also incorporated herein by reference for all relevant and consistent purposes). A class of preferred polymers for treatment in combination with NHE-inhibitors is polyelectrolytes. The degree of crosslinking can vary greatly depending upon the specific polymer material; however, in most applications the subject superabsorbent polymers are only lightly crosslinked, that is, the degree of crosslinking is such that the polymer can still absorb over 10 times its weight in physiological saline (i.e., 0.9% saline). For example, such polymers typically include less than about 0.2 mole % crosslinking agent. In some embodiments, the FAP's utilized for treatment are Calcium Carbophil (Registry Number: 9003-97-8, also referred as Carbopol EX-83), and Carpopol 934P. In some embodiments, the fluid-absorbing polymer is prepared by high internal phase emulsion (“HIPE”) processes. The HIPE process leads to polymeric foam slabs with a very large porous fraction of interconnected large voids (about 100 microns) (i.e., open-cell structures). This technique produces flexible and collapsible foam materials with exceptional suction pressure and fluid absorbency (see U.S. Pat. Nos. 5,650,222; 5,763,499 and 6,107,356, which are incorporated herein for all relevant and consistent purposes). The polymer is hydrophobic and, therefore, the surface should be modified so as to be wetted by the aqueous fluid. This is accomplished by post-treating the foam material by a surfactant in order to reduce the interfacial tension. These materials are claimed to be less compliant to loads, i.e., less prone to de-swelling under static pressure. In some embodiments, fluid-absorbing gels are prepared by aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker (e.g., methylene-bis-acrylamide) and a free radical initiator redox system in water. The material is obtained as a slab. Typically the swelling ratio of crosslinked polyacrylamide at low crosslinking density (e.g., 2%-4% expressed as weight % of methylene-bis-acrylamide) is between 25 and 40 (F. Horkay, Macromolecules, 22, pp. 2007-09 (1989)). The swelling properties of these polymers have been extensively studied and are essentially the same of those of crosslinked polyacrylic acids at high salt concentration. Under those conditions, the osmotic pressure is null due to the presence of counter-ions and the swelling is controlled by the free energy of mixing and the network elastic energy. Stated differently, a crosslinked polyacrylamide gel of same crosslink density as a neutralized polyacrylic acid will exhibit the same swelling ratio (i.e., fluid absorbing properties) and it is believed the same degree of deswelling under pressure, as the crosslinked polyelectrolyte at high salt content (e.g., 1 M). The properties (e.g., swelling) of neutral hydrogels will not be sensitive to the salt environment as long as the polymer remains in good solvent conditions. Without being held to any particular theory, it is believed that the fluid contained within the gel has the same salt composition than the surrounding fluid (i.e., there is no salt partitioning due to Donnan effect). Another subclass of fluid-absorbing polymers that may be utilized is hydrogel materials that include N-alkyl acrylamide polymers (e.g., N-isopropylacrylamide (NIPAM)). The corresponding aqueous polyNIPAM hydrogel shows a temperature transition at about 35° C. Above this temperature the hydrogel may collapse. The mechanism is generally reversible and the gel re-swells to its original swelling ratio when the temperature reverts to room temperature. This allows production of nanoparticles by emulsion polymerization (R. Pelton, Advances in Colloid and Interface Science, 85, pp. 1-33, (2000)). The swelling characteristics of poly-NIPAM nanoparticles below the transition temperature have been reported and are similar to those reported for bulk gel of polyNIPAM and equivalent to those found for polyacrylamide (i.e. 30-50 g/g) (W. McPhee, Journal of Colloid and Interface Science, 156, pp. 24-30 (1993); and, K. Oh, Journal of Applied Polymer Science, 69, pp. 109-114 (1997)). In some embodiments, the FAP utilized for treatment in combination with a NHE-inhibitor is a superporous gel that may delay the emptying of the stomach for the treatment of obesity (J. Chen, Journal of Controlled Release, 65, pp. 73-82 (2000), or to deliver proteins. Polyacrylate-based SAP's with a macroporous structure may also be used. Macroporous SAP and superporous gels differ in that the porous structure remains almost intact in the dry state for superporous gels, but disappears upon drying for macroporous SAP's. The method of preparation is different although both methods use a foaming agent (e.g., carbonate salt that generates CO2 bubbles during polymerization). Typical swelling ratios, SR, of superporous materials are around 10. Superporous gels keep a large internal pore volume in the dry state. Macroporous hydrogels may also be formed using a method whereby polymer phase separation in induced by a non-solvent. The polymer may be poly-NIPAM and the non-solvent utilized may be glucose (see, e.g., Z. Zhang, J. Org. Chem., 69, 23 (2004)) or NaCl (see, e.g., Cheng et al., Journal of Biomedical Materials Research—Part A, Vol. 67, Issue 1, 1 Oct. 2003, Pages 96-103). The phase separation induced by the presence of NaCl leads to an increase in swelling ratio. These materials are preferred if the swelling ratio of the material, SR, is maintained in salt isotonic solution and if the gels do not collapse under load. The temperature of “service” should be shifted beyond body temperature, e.g. by diluting NIPAM in the polymer with monomer devoid of transition temperature phenomenon. In some embodiments, the fluid-absorbing polymer may be selected from certain naturally-occurring polymers such as those containing carbohydrate moieties. In a preferred embodiment, such carbohydrate-containing hydrogels are non-digestible, have a low fraction of soluble material and a high fraction of gel-forming materials. In some embodiments, the fluid-absorbing polymer is selected from xanthan, guar, wellan, hemicelluloses, alkyl-cellulose, hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In a preferred embodiment, the gel forming polymer is psyllium. Psyllium (or “ispaghula”) is the common name used for several members of the plant genus Plantago whose seeds are used commercially for the production of mucilage. Most preferably, the fluid-absorbing polymer is in the gel-forming fraction of psyllium, i.e., a neutral saccharide copolymer of arabinose (25%) and xylose (75%) as characterized in (J. Marlett, Proceedings of the Nutrition Society, 62, pp. 2-7-209 (2003); and, M. Fischer, Carbohydrate Research, 339, 2009-2012 (2004)), and further described in U.S. Pat. Nos. 6,287,609; 7,026,303; 5,126,150; 5,445,831; 7,014,862; 4,766,004; 4,999,200, each of which is incorporated herein for all relevant and consistent purposes, and over-the-counter psillium-containing agents such as those marketed under the name Metamucil (The Procter and Gamble company). Preferably the a psyllium-containing dosage form is suitable for chewing, where the chewing action disintegrates the tablet into smaller, discrete particles prior to swallowing but which undergoes minimal gelling in the mouth, and has acceptable mouthfeel and good aesthetics as perceived by the patient. The psyllium-containing dosage form includes physically discrete unit suitable as a unitary dosage for human subjects and other mammals, each containing a predetermined quantity of active material (e.g. the gel-forming polysaccharide) calculated to produce the desired therapeutic effect. Solid oral dosage forms that are suitable for the present compositions include tablets, pills, capsules, lozenges, chewable tablets, troches, cachets, pellets, wafer and the like. In some embodiments, the FAP is a polysaccharide particle wherein the polysaccharide component includes xylose and arabinose. The ratio of the xylose to the arabinose may be at least about 3:1 by weight, as described in U.S. Pat. Nos. 6,287,609; 7,026,303 and 7,014,862, each of which is incorporated herein for all relevant and consistent purposes. The fluid-absorbing polymers described herein may be used in combination with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. The NHE inhibitor and the FAP may also be administered with other agents including those described under the heading “Combination Therapies” without departing from the scope of the present disclosure. As described above, the NHE inhibitor may be administered alone without use of a fluid-absorbing polymer to resolve symptoms without eliciting significant diarrhea or fecal fluid secretion that would require the co-administration of a fluid-absorbing polymer. The fluid-absorbing polymers described herein may be selected so as to not induce any substantial interaction with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. As used herein, “no substantial interaction” generally means that the co-administration of the FAP polymer would not substantially alter (i.e., neither substantially decrease nor substantially increase) the pharmacological property of the NHE-inhibiting compounds administered alone. For example, FAPs containing negatively charged functionality, such as carboxylates, sulfonates, and the like, may potentially interact ionically with positively charged NHE inhibitors, preventing the inhibitor from reaching its pharmacological target. In addition, it may be possible that the shape and arrangement of functionality in a FAP could act as a molecular recognition element, and sequestor NHE inhibitors via “host-guest” interactions via the recognition of specific hydrogen bonds and/or hydrophobic regions of a given inhibitor. Accordingly, in various embodiments of the present disclosure, the FAP polymer may be selected, for co-administration or use with a compound of the present disclosure, to ensure that (i) it does not ionically interact with or bind with the compound of the present disclosure (by means of, for example, a moiety present therein possessing a charge opposite that of a moiety in the compound itself), and/or (ii) it does not possess a charge and/or structural conformation (or shape or arrangement) that enables it to establish a “host-guest” interaction with the compound of the present disclosure (by means of, for example, a moiety present therein that may act as a molecular recognition element and sequester the NHE inhibitor or inhibiting moiety of the compound). D. Dosage It is to be noted that, as used herein, an “effective amount” (or “pharmaceutically effective amount”) of a compound disclosed herein, is a quantity that results in a beneficial clinical outcome of the condition being treated with the compound compared with the absence of treatment. The amount of the compound or compounds administered will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical formulation. It will also depend on the subject's health, size, weight, age, sex and tolerance to drugs. Typically, the compound is administered for a sufficient period of time to achieve the desired therapeutic effect. In embodiments wherein both an NHE-inhibitor compound and a fluid-absorbing polymer are used in the treatment protocol, the NHE-inhibitor and FAP may be administered together or in a “dual-regimen” wherein the two therapeutics are dosed and administered separately. When the NHE inhibitor and the fluid-absorbing polymer are dosed separately, the typical dosage administered to the subject in need of the NHE inhibitor is typically from about 5 mg per day and about 5000 mg per day and, in other embodiments, from about 50 mg per day and about 1000 mg per day. Such dosages may induce fecal excretion of sodium (and its accompanying anions), from about 10 mmol up to about 250 mmol per day, from about 20 mmol to about 70 mmol per day or even from about 30 mmol to about 60 mmol per day. The typical dose of the fluid-absorbing polymer is a function of the extent of fecal secretion induced by the non-absorbable NHE inhibitor. Typically the dose is adjusted according to the frequency of bowel movements and consistency of the stools. More specifically the dose is adjusted so as to avoid liquid stools and maintain stool consistency as “soft” or semi-formed, or formed. To achieve the desired stool consistency and provide abdominal relief to patients, typical dosage ranges of the fluid-absorbing polymer to be administered in combination with the NHE inhibitor, are from about 2 g to about 50 g per day, from about 5 g to about 25 g per day or even from about 10 g to about 20 g per day. When the NHE-inhibitor and the FAP are administered as a single dosage regimen, the daily uptake may be from about 2 g to about 50 g per day, from about 5 g to about 25 g per day, or from about 10 g to about 20 g per day, with a weight ratio of NHE inhibitor to fluid-absorbing polymer being from about 1:1000 to 1:10 or even from about 1:500 to 1:5 or about 1:100 to 1:5. A typical dosage of the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound when used alone without a FAP may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of therapeutics described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. For example, in the case of a dual-regimen, the NHE-inhibitor could be taken once-a-day while the fluid-absorbing polymer could be taken at each meal (TID). E. Modes of Administration The substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds of the present disclosure with or without the fluid-absorbing polymers described herein may be administered by any suitable route. The compound is preferably administrated orally (e.g., dietary) in capsules, suspensions, tablets, pills, dragees, liquids, gels, syrups, slurries, and the like. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986). The compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. The formulation of the pharmaceutical composition will vary according to the route of administration selected. Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. The carriers are biocompatible, i.e., non-toxic, non-inflammatory, non-immunogenic and devoid of other undesired reactions at the administration site. Examples of pharmaceutically acceptable carriers include, for example, saline, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or a collagen matrix. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. Pharmaceutical preparations for oral use can be obtained by combining a compound of the present disclosure with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical preparations which can be used orally include push-fit capsules made of a suitable material, such as gelatin, as well as soft, sealed capsules made of a suitable material, for example, gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. It will be understood that, certain compounds of the disclosure may be obtained as different stereoisomers (e.g., diastereomers and enantiomers) or as isotopes and that the disclosure includes all isomeric forms, racemic mixtures and isotopes of the disclosed compounds and a method of treating a subject with both pure isomers and mixtures thereof, including racemic mixtures, as well as isotopes. Stereoisomers can be separated and isolated using any suitable method, such as chromatography. F. Delayed Release NHE proteins show considerable diversity in their patterns of tissue expression, membrane localization and functional roles. (See, e.g., The sodium-hydrogen exchanger—From molecule To Its Role In Disease, Karmazyn, M., Avkiran, M., and Fliegel, L., eds., Kluwer Academics (2003).) In mammals, nine distinct NHE genes (NHE-1 through -9) have been described. Of these nine, five (NHE-1 through -5) are principally active at the plasma membrane, whereas NHE-6, -7 and -9 reside predominantly within intracellular compartments. NHE-1 is ubiquitously expressed and is chiefly responsible for restoration of steady state intracellular pH following cytosolic acidification and for maintenance of cell volume. Recent findings show that NHE-1 is crucial for organ function and survival (e.g. NHE-1-null mice exhibit locomotor abnormalities, epileptic-like seizures and considerable mortality before weaning) In contrast with NHE-1 expressed at the basolateral side of the nephrons and gut epithelial cells, NHE-2 through -4 are predominantly expressed on the apical side of epithelia of the kidney and the gastrointestinal tract. Several lines of evidence show that NHE-3 is the major contributor of renal bulk Na+ and fluid re-absorption by the proximal tubule. The associated secretion of H+ by NHE-3 into the lumen of renal tubules is also essential for about ⅔ of renal HCO3− re-absorption. Complete disruption of NHE-3 function in mice causes a sharp reduction in HCO3−, Na+ and fluid re-absorption in the kidney, which is consistently associated with hypovolemia and acidosis. In one embodiment, the novel compounds of the invention are intended to target the apical NHE antiporters (e.g. NHE-3, NHE-2 and NHE-8) without substantial permeability across the layer of gut epithelial cells, and/or without substantial activity towards NHEs that do not reside predominantly in the GI tract. This invention provides a method to selectively inhibit GI apical NHE antiporters and provide the desired effect of salt and fluid absorption inhibition to correct abnormal fluid homeostasis leading to constipations states. Because of their absence of systemic exposure, said compounds do not interfere with other key physiological roles of NHEs highlighted above. For instance, the compounds of the invention are expected to treat constipation in patients in need thereof, without eliciting undesired systemic effects, such as for example salt wasting or bicarbonate loss leading to hyponatriemia and acidosis among other disorders. In another embodiment, the compounds of the invention are delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The applicant found that an early release of the compounds in the stomach or the duodenum can have an untoward effect on gastric secretion or bicarbonate secretion (also referred to as “bicarbonate dump”). In this embodiment the compounds are designed so as to be released in an active form past the duodenum. This can be accomplished by either a prodrug approach or by specific drug delivery systems. As used herein, “prodrug” is to be understood to refer to a modified form of the compounds detailed herein that is inactive (or significantly less active) in the upper GI, but once administered is metabolised in vivo into an active metabolite after getting past, for example, the duodenum. Thus, in a prodrug approach, the activity of the NHE inhibitor can be masked with a transient protecting group that is liberated after compound passage through the desired gastric compartment. For example, acylation or alkylation of the essential guanidinyl functionality of the NHE inhibitor would render it biochemically inactive; however, cleavage of these functional groups by intestinal amidases, esterases, phosphatases, and the like, as well enzymes present in the colonic flora, would liberate the active parent compound. Prodrugs can be designed to exploit the relative expression and localization of such phase I metabolic enzymes by carefully optimizing the structure of the prodrug for recognition by specific enzymes. As an example, the anti-inflammatory agent sulfasalazine is converted to 5-aminosalicylate in the colon by reduction of the diazo bond by intestinal bacteria. In a drug delivery approach the NHE-inhibitor compounds of the invention are formulated in certain pharmaceutical compositions for oral administration that release the active in the targeted areas of the GI, i.e., jejunum, ileum or colon, or preferably the distal ileum and colon, or even more preferably the colon. Methods known from the skilled-in-the-art are applicable. (See, e.g., Kumar, P. and Mishra, B., Colon Targeted Drug Delivery Systems—An Overview, Curr. Drug Deliv., 2008, 5 (3), 186-198; Jain, S. K. and Jain, A., Target-specific Drug Release to the Colon., Expert Opin. Drug Deliv., 2008, 5 (5), 483-498; Yang, L., Biorelevant Dissolution Testing of Colon-Specific Delivery Systems Activated by Colonic Microflora, J. Control Release, 2008, 125 (2), 77-86; Siepmann, F. Siepmann, J. Walther, M. MacRae, R. J. and Bodmeier, R., Polymer Blends for Controlled Release Coatings, J. Control Release 2008, 125 (1), 1-15; Patel, M. Shah, T. and Amin, A., Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems, Crit. Rev. Ther. Drug Carrier Syst., 2007, 24 (2), 147-202; Jain, A. Gupta, Y. Jain, S. K., Perspectives of Biodegradable Natural Polysaccharides for Site-specific Drug Delivery to the Colon., J. Pharm. Sci., 2007, 10 (1), 86-128; Van den, M. G., Colon Drug Delivery, Expert Opin. Drug Deliv., 2006, 3 (1), 111-125; Basit, A. W., Advances in Colonic Drug Delivery, Drugs 2005, 65 (14), 1991-2007; Chourasia, M. K. Jain, S. K., Polysaccharides for Colon-Targeted Drug Delivery, Drug Deliv. 2004, 11 (2), 129-148; Shareef, M. A. Khar, R. K. Ahuja, A. Ahmad, F. J. and Raghava, S., Colonic Drug Delivery: An Updated Review, AAPS Pharm. Sci. 2003, 5 (2), E17; Chourasia, M. K. Jain, S. K., Pharmaceutical Approaches to Colon Targeted Drug Delivery Systems, J. Pharm. Sci. 2003, 6 (1), 33-66; and, Sinha, V. R. Kumria, R., Colonic Drug Delivery: Prodrug Approach, Pharm. Res. 2001, 18 (5), 557-564. Typically the active pharmaceutical ingredient (API) is contained in a tablet/capsule designed to release said API as a function of the environment (e.g., pH, enzymatic activity, temperature, etc.), or as a function of time. One example of this approach is Eudracol™ (Pharma Polymers Business Line of Degussa's Specialty Acrylics Business Unit), where the API-containing core tablet is layered with various polymeric coatings with specific dissolution profiles. The first layer ensures that the tablet passes through the stomach intact so it can continue through the small intestine. The change from an acidic environment in the stomach to an alkaline environment in the small intestine initiates the release of the protective outer layer. As it travels through the colon, the next layer is made permeable by the alkalinity and intestinal fluid. This allows fluid to penetrate to the interior layer and release the active ingredient, which diffuses from the core to the outside, where it can be absorbed by the intestinal wall. Other methods are contemplated without departing from the scope of the present disclosure. In another example, the pharmaceutical compositions of the invention can be used with drug carriers including pectin and galactomannan, polysaccharides that are both degradable by colonic bacterial enzymes. (See, e.g., U.S. Pat. No. 6,413,494, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes.) While pectin or galactomannan, if used alone as a drug carrier, are easily dissolved in simulated gastric fluid and simulated intestinal fluid, a mixture of these two polysaccharides prepared at a pH of about 7 or above produces a strong, elastic, and insoluble gel that is not dissolved or disintegrated in the simulated gastric and intestinal fluids, thus protecting drugs coated with the mixture from being released in the upper GI tract. When the mixture of pectin and galactomannan arrives in the colon, it is rapidly degraded by the synergic action of colonic bacterial enzymes. In yet another aspect, the compositions of the invention may be used with the pharmaceutical matrix of a complex of gelatin and an anionic polysaccharide (e.g., pectinate, pectate, alginate, chondroitin sulfate, polygalacturonic acid, tragacanth gum, arabic gum, and a mixture thereof), which is degradable by colonic enzymes (U.S. Pat. No. 6,319,518). In yet other embodiments, fluid-absorbing polymers that are administered in accordance with treatment methods of the present disclosure are formulated to provide acceptable/pleasant organoleptic properties such as mouthfeel, taste, and/or to avoid premature swelling/gelation in the mouth and in the esophagus and provoke choking or obstruction. The formulation may be designed in such a way so as to ensure the full hydration and swelling of the FAP in the GI tract and avoid the formation of lumps. The oral dosages for the FAP may take various forms including, for example, powder, granulates, tablets, wafer, cookie and the like, and are most preferably delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The above-described approaches or methods are only some of the many methods reported to selectively deliver an active in the lower part of the intestine, and therefore should not be viewed to restrain or limit the scope of the disclosure. The following non-limiting examples are provided to further illustrate the present disclosure. EXAMPLES Exemplary Compound Synthesis Example 1 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Intermediate 1.1: 2-bromo-1-(3-bromophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-bromophenyl)ethanone (40 g, 202.02 mmol, 1.00 equiv) in acetic acid (200 mL). This was followed by the addition of a solution of Br2 (32 g, 200.00 mmol) in acetic acid (50 mL) dropwise with stirring at 60° C. The resulting solution was stirred for 3 h at 60° C. in an oil bath. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 24 g (43%) of 2-bromo-1-(3-bromophenyl)ethanone as a yellow solid. Intermediate 1.2: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-bromophenyl)ethanone (55 g, 199.28 mmol, 1.00 equiv) in 1,4-dioxane (300 mL), TEA (40 g, 396.04 mmol, 1.99 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (38 g, 201.06 mmol, 1.01 equiv). The resulting solution was stirred for 2 h at 25° C. in an oil bath. The solids were filtered out and the filtrate was used without any further purification. Intermediate 1.3: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanol Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanone (77 g, 198.97 mmol, 1.00 equiv, theoretical yield) in methanol (300 mL). This was followed by the addition of NaBH4 (15 g, 394.74 mmol, 1.98 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 100 mL of acetone. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100). This resulted in 50 g (65%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol as a yellow oil. Intermediate 1.4: 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol (25 g, 64.27 mmol, 1.00 equiv) in dichloromethane (100 mL). This was followed by the addition of sulfuric acid (100 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 4 h at room temperature. The resulting solution was diluted with of ice water. The pH value of the solution was adjusted to 8 with sodium hydroxide. The resulting solution was extracted with 3×300 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 15 g (63%) of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a white solid. Intermediate 1.5: 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of potassium carbonate (930 mg, 0.50 equiv) in xylene (50 mL). This was followed by the addition of phenylmethanethiol (2.5 g, 1.50 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at 25° C. Into another 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was added a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (5.0 g, 1 equiv) in xylene (50 mL), Pd2(dba)3 (300 mg), Xantphos (300 mg). The resulting solution was stirred for 30 min at 25° C. and then added to the above reaction solution. The mixture was stirred overnight at 140° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 2.5 g (45%) of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a yellow oil. Intermediate 1.6: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 250-mL 3-necked round-bottom flask, was placed a solution of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (8 g, 13.53 mmol, 1.00 equiv, 70%) in acetic acid/water (80/8 mL). Cl2(g) was introduced and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 5.0 g (90%) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride as a yellowish solid. Intermediate 1.7: 2-(2-bromoethyl)isoindoline-1,3-dione Into a 500-mL round-bottom flask, was placed a solution of 1,2-dibromoethane (30 g, 159.57 mmol, 2.95 equiv) in N,N-dimethylformamide (200 mL). This was followed by the addition of potassium phthalimide (10 g, 54.05 mmol, 1.00 equiv) in several batches. The resulting solution was stirred for 24 h at 60° C. The reaction was then quenched by the addition of 500 mL of water. The resulting solution was extracted with 2×200 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10). This resulted in 8 g (57%) of 2-(2-bromoethyl)isoindoline-1,3-dione as a white solid. Intermediate 1.8: diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 2-(2-bromoethyl)isoindoline-1,3-dione (8 g, 31.50 mmol, 1.00 equiv) and triethyl phosphite (6.2 g, 37.35 mmol, 1.19 equiv). The resulting solution was stirred for 18 h at 130° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ether:n-hexane (1:2). This resulted in 5 g (48%) of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate as a white solid. Intermediate 1.9: diethyl 2-aminoethylphosphonate Into a 500-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate (5 g, 16.08 mmol, 1.00 equiv) in ethanol (200 mL) and hydrazine hydrate (8 g, 160.00 mmol, 9.95 equiv). The resulting solution was stirred for 12 h at room temperature. The solids were filtered and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (9:1). This resulted in 1.5 g (51%) of diethyl 2-aminoethylphosphonate as colorless oil. Intermediate 1.10: Diethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 2-aminoethylphosphonate (100 mg, 0.55 mmol, 1.00 equiv) in dichloromethane (10 mL) with TEA (220 mg, 2.18 mmol, 3.94 equiv). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.60 mmol, 1.08 equiv, 78%) in several batches. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 0.07 g (24%) of the title compound as a colorless oil. Compound 1: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid To a solution of Intermediate 1.10 (70 mg, 0.13 mmol, 1.00 equiv) in dichloromethane (10 mL) was added bromotrimethylsilane (200 mg, 1.32 mmol, 10.04 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. To the above was added methanol. The resulting mixture was concentrated under vacuum. This was followed by the addition of a solution of sodium hydroxide (11 mg, 0.28 mmol, 2.10 equiv) in methanol (2 mL). The resulting solution was stirred for an additional 1 h at room temperature. The resulting mixture was concentrated under vacuum. The solid was dried in an oven under reduced pressure. This resulted in 52.3 mg (73%) of the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.82 (d, J=7.5 Hz, 1H), 7.73 (s, 1H), 7.56 (m, 1H), 7.48 (d, J=8.1 Hz, 1H), 7.41 (s, 1H), 6.88 (s, 1H), 4.54 (s, 1H), 3.97 (m, 2H), 3.17 (m, 3H), 2.97 (m, 1H), 2.67 (s, 3H), 1.68 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 2 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic Acid Intermediate 2.1: diethyl 4-nitrophenylphosphonate Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl phosphonate (3.02 g, 21.88 mmol, 1.10 equiv) in toluene (10 mL), Pd(PPh3)4 (1.15 g, 1.00 mmol, 0.05 equiv), TEA (2.21 g, 21.88 mmol, 1.10 equiv), 1-bromo-4-nitrobenzene (4 g, 19.90 mmol, 1.00 equiv). The resulting solution was stirred for 15 h at 90° C. The solids were filtered out and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2). This resulted in 3.53 g (68%) of diethyl 4-nitrophenylphosphonate as a yellow liquid. Intermediate 2.2: diethyl 4-aminophenylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 4-nitrophenylphosphonate (1.07 g, 4.13 mmol, 1.00 equiv), TEA (3 mL), Palladium carbon (0.025 g). This was followed by the addition of formic acid (2 mL) dropwise with stirring at room temperature. The resulting solution was heated to reflux for 3 hr. The reaction was then quenched by the addition of 5 mL of water and the solids were filtered out. The resulting filtrate was extracted with 5×10 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate. This resulted in 800 mg (85%) of diethyl 4-aminophenylphosphonate as a white solid. Compound 2: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl-sulfonamido)phenylphosphonic Acid Compound 2 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminophenylphosphonate (Intermediate 2.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.86 (d, 1H), 7.69 (m, 3H), 7.55 (m, 3H), 7.21 (m, 2H), 6.73 (s, 1H), 4.70 (m, 2H), 4.48 (d, 1H), 3.79 (m, 1H), 3.46 (m, 1H), 3.09 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 3 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic Acid Intermediate 3.1: diethyl 4-nitrobenzylphosphonate Into a 250-mL round-bottom flask, was placed 1-(bromomethyl)-4-nitrobenzene (15 g, 69.77 mmol, 1.00 equiv), triethyl phosphite (70 mL). The resulting solution was stirred for 2 h at 110° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:1). This resulted in 17 g (89%) of the title compound as a yellow oil. Intermediate 3.2: diethyl 4-aminobenzylphosphonate Into a 100-mL 3-necked round-bottom flask, was placed a solution of diethyl 4-nitrobenzylphosphonate (5 g, 18.32 mmol, 1.00 equiv) in ethanol (50 mL) and a solution of NH4Cl (2.9 g, 54.72 mmol, 2.99 equiv) in water (50 mL) was added. This was followed by the addition of Fe (4.1 g, 73.21 mmol, 4.00 equiv), while the temperature was maintained at reflux. The resulting solution was heated to reflux for 1 hr. The solids were filtered out. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:3). This resulted in 2.5 g (56%) of the title compound as a yellow solid. Compound 3: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic Acid Compound 3 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminobenzylphosphonate (Intermediate 3.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.61˜7.66 (m, 1H), 7.52˜7.54 (m, 2H), 7.21˜7.20 (m, 2H), 7.11 (s, 1H), 6.95 (d, J=8.1 Hz, 2H), 6.73 (s, 1H), 4.51˜4.59 (m, 3H), 3.33 (s, 1H), 3.03˜2.89 (m, 6H). MS (ES, m/z): 541 [M+H]+. Example 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Intermediate 4.1: 3-diethyl 3-aminopropylphosphonate Following the procedures outlined in Example 1, substituting dibromopropane for dibromoethane gave the title compound. Compound 43-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Compound 4 was prepared in an analogous manner to that of Compound 1 using 3-diethyl 3-aminopropylphosphonate (Intermediate 4.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.87 (d, J=8.1 Hz, 1H), 7.77 (s, 1H), 7.61˜7.66 (m, 1H), 7.51˜7.54 (m, 2H), 6.88 (s, 1H), 4.77˜4.83 (m, 1H), 4.65 (d, J=16.2 Hz, 1H), 4.44 (d, J=15.6 Hz, 1H), 3.78˜3.84 (m, 1H), 3.50˜3.57 (m, 1H), 3.08 (s, 3H), 2.93˜2.97 (m, 2H), 1.61˜1.72 (m, 2H), 1.48˜1.59 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 5 (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Intermediate 5.1: 1,3,5-tribenzyl-1,3,5-triazinane Into a 100-mL 3-necked round-bottom flask was placed benzylamine (10 g, 93.46 mmol, 1.00 equiv), followed by the addition of formaldehyde (9.0 g, 1.20 equiv, 37%) dropwise with stirring at 0-10° C. To the precipitated gum was added 3M aqueous sodium hydroxide (20 mL), and the mixture was stirred. After standing in ice for 0.3 h, ether (30 mL) was added, and the mixture stirred until all precipitate dissolved. The aqueous phase was separated and extracted with ether. The solvents were removed under vacuum to afford 12 g (36%) of 1,3,5-tribenzyl-1,3,5-triazinane as colorless oil. Intermediate 5.2: diethyl (benzylamino)methylphosphonate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 1,3,5-tribenzyl-1,3,5-triazinane (3.0 g, 8.40 mmol, 1.00 equiv) and diethyl phosphite (3.5 g, 25.36 mmol, 3.00 equiv). The resulting solution was stirred for 3 h at 100° C. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:1). This resulted in 2.0 g (90%) of diethyl (benzylamino)methylphosphonate as a colorless oil. Intermediate 5.3: Diethyl aminomethylphosphonate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of diethyl (benzylamino)methylphosphonate (3.5 g, 13.62 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL) and Palladium carbon (0.2 g, 0.10 equiv). The resulting solution was stirred for 24 h at 50° C. under 20 atm pressure. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 2.0 g (crude) of the title compound as brown oil which was used without further purification. Compound 5: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Compound 5 was prepared in an analogous manner to that of Compound 1 using diethyl aminomethylphosphonate (Intermediate 5.3) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.74 (s, 1H), 7.63˜7.66 (m, 1H), 7.57˜7.61 (m, 2H), 6.97 (s, 1H), 4.80˜4.89 (m, 1H), 4.55˜4.67 (m, 2H), 3.83˜3.89 (m, 1H), 3.55˜3.66 (m, 1H), 3.02˜3.11 (m, 5H). MS (ES, m/z): 465 [M+H]+. Example 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic Acid Intermediate 6.1: 4-diethyl 4-(aminomethyl)benzylphosphonate Following the procedures outlined in Example 1, substituting 1,4-bis(bromomethyl)benzene for dibromoethane gave the title compound. Compound 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic Acid Compound 6 was prepared in an analogous manner to that of Compound 1 using 4-diethyl 4-(aminomethyl)benzylphosphonate (Intermediate 6.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.85˜7.88 (m, 1H), 7.54˜7.59 (m, 2H), 7.37˜7.42 (m, 2H), 7.198˜7.22 (m, 2H), 7.06˜7.09 (m, 1H), 6.77 (s, 1H), 4.64 (m, J=16.2 Hz, 1H), 4.49˜4.53 (m, 1H), 4.37 (m, J=16.5, 1H), 4.17 (s, 2H), 3.45˜3.56 (m, 1H), 3.11˜3.27 (m, 1H), 3.09˜3.10 (m, 4H), 2.96˜2.97 (m, 1H). MS (ES, m/z): 555 [M+H]+. Example 7 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Compound 7: 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Into a 50-mL round-bottom flask, was placed a solution of 3-aminopropane-1-sulfonic acid (180 mg, 1.29 mmol, 1.00 equiv) in tetrahydrofuran/water (10/10 mL) with sodium bicarbonate (430 mg, 5.12 mmol). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.29 mmol, 0.99 equiv) in several batches. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (500 mg) was purified by preparative HPLC to give 26.7 mg of the title compound (4%) as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): 10.28 (s, 1H), 7.53˜7.79 (m, 6H), 6.83 (s, 1H), 4.74 (s, 2H), 4.51 (s, 1H), 3.90 (s, 1H), 3.06 (s, 3H), 2.86˜2.93 (m, 2H), 2.33˜2.44 (m, 2H), 1.58˜1.63 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 8 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Intermediate 8.1: ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate Into a 500-mL 3-necked round-bottom flask, was placed a solution of diethyl (benzylamino)methylphosphonate (intermediate 5.2) (12 g, 46.69 mmol, 1.00 equiv) in acetonitrile (150 mL), DIEA (12 g, 2.00 equiv). This was followed by the addition of ethyl 2-bromoacetate (8.4 g, 50.30 mmol, 1.10 equiv) dropwise with stirring. The mixture was stirred for 30 min at room temperature. The resulting solution was heated to reflux for 6 hr. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:5). This resulted in 8.0 g (50%) of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate as yellow oil. Intermediate 8.2: ethyl 2-((diethoxyphosphoryl)methylamino)acetate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate (8.0 g, 23.32 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL), Pd/C (0.9 g). The resulting solution was stirred at 20 atm for 32 h at 50° C. The solids were filtered out, and the resulting mixture was concentrated under vacuum. This resulted in 6.0 g (82%) of the acetic acid salt of ethyl 2-((diethoxyphosphoryl)methylamino)acetate as a brown oil. Intermediate 8.3: ethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-((diethoxyphosphoryl)methyl)phenylsulfonamido)acetate Into a 50-mL round-bottom flask, was placed a solution of ethyl 2-((diethoxyphosphoryl)methylamino)acetate (320 mg, 1.26 mmol, 1.00 equiv) in pyridine (10 mL). 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.28 mmol, 1.01 equiv) was added and the resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product (400 mg) was purified by preparative HPLC to give 200 mg (24%) of the title compound as a TFA salt. Intermediate 8.4: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic Acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 8.3 (200 mg, 0.33 mmol, 1.00 equiv) in dichloromethane (6 mL). Bromotrimethylsilane (502 mg, 3.30 mmol, 10.01 equiv) was added and the resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was dissolved in 10 mL of methanol. The resulting mixture was concentrated under vacuum. This resulted in 180 mg (99%) of the title compound as a yellow solid. Compound 8: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Into a 50-mL round-bottom flask, was placed a solution of (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic Acid (Intermediate 8.4) (180 mg, 0.33 mmol, 1.00 equiv) in tetrahydrofuran/water (5/5 mL). This was followed by the addition of lithium hydroxide (39 mg, 1.62 mmol, 4.97 equiv) in several batches at room temperature. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC giving 59.2 mg (35%) of the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.73˜7.74 (m, 1H), 7.67˜7.68 (m, 1H), 7.58˜7.62 (m, 2H), 7.49 (s, 1H), 7.00 (s, 1H), 4.71˜4.75 (m, 1H), 4.49 (d, J=16.2 Hz, 1H), 4.33 (d, J=15.9 Hz, 1H), 4.07 (s, 2H), 3.62˜3.64 (m, 1H), 3.45˜3.54 (m, 2H), 3.31˜3.40 (m, 1H), 2.88 (s, 3H). MS (ES, m/z): 523 [M+H]+. Example 9 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic Acid Intermediate 9.1: Dimethyl 2-aminosuccinate hydrochloride Into a 100-mL round-bottom flask, was placed a solution of 2-aminosuccinic acid (3 g, 22.56 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of thionyl chloride (10 g, 84.75 mmol, 3.76 equiv) dropwise with stirring at 0-5° C. The resulting solution was heated to reflux for 2 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 4.2 g (95%) of the title compound as a white solid. Intermediate 9.2: Dimethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinate Into a 50-mL round-bottom flask, was placed a solution of dimethyl 2-aminosuccinate hydrochloride (107 mg, 0.54 mmol, 1.00 equiv) in pyridine (5 mL). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.69 mmol, 1.27 equiv, 90%) in several batches. The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 200 mg (72%) of the title compound as a colorless oil Compound 9: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 9.2 (100 mg, 0.19 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) and water (5 mL). This was followed by the addition of LiOH (23 mg, 0.96 mmol, 4.93 equiv) in several batches at room temperature. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with hydrogen chloride (1 mol/L). The solids were collected by filtration. The crude product (200 mg) was purified by preparative HPLC to give 12.1 mg (10%) the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.2 Hz, 1H), 7.80 (d, J=6.3 Hz, 1H), 7.64˜7.52 (m, 3H), 6.95 (s, 1H), 4.78˜4.70 (m, 2H), 4.55˜4.50 (m, 1H), 4.23˜4.17 (m, 1H), 3.87˜3.82 (m, 1H), 3.63˜3.57 (m, 1H), 3.12 (s, 3H), 2.79˜2.65 (m, 2H). MS (ES, m/z): 487 [M-CF3COOH+H]+. Example 10 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid Intermediate 10.1: 2-bromo-1-(4-bromophenyl)ethanone Into a 250-mL 3-necked round-bottom flask, was placed a solution of 1-(4-bromophenyl)ethanone (10.0 g, 50.25 mmol, 1.00 equiv) in acetic acid (50 mL). This was followed by the addition of a solution of bromine (8.2 g, 1.05 equiv) in acetic acid (50 mL) dropwise with stirring at 60° C. over 90 min. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate in the ratio of 7:1. This resulted in 9.3 g (67%) of the title compound as a yellow solid. Intermediate 10.2: 1-(4-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(4-bromophenyl)ethanone (9.3 g, 33.45 mmol, 1.00 equiv) in dioxane (100 mL), triethylamine (5.0 g, 1.50 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (6.4 g, 33.68 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was used for next step directly. Intermediate 10.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of the crude Intermediate 10.2 in fresh methanol (100 mL). This was followed by the addition of sodium borohydride (2.5 g, 65.79 mmol, 2.00 equiv) in several batches at 0-5° C. The resulting solution was stirred for 1 h at 25° C. The reaction was then quenched by the addition of sat. NH4Cl. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with EtOAc (2×100 mL) and the organic layers combined and concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate (60 mL) in the ratio of 7:1. This resulted in 6.5 g (50%) of the title compound as a white solid. MS (ES, m/z): 390 [M+H]+. Intermediate 10.4: 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 50-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol (1.0 g, 2.57 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of conc.H2SO4 (2 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 3 h at 20° C. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 9 with sodium hydroxide. The resulting solution was extracted with dichloromethane (2×30 mL) and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.9 g of the title compound which was used without further purification. MS (ES, m/z): 372 [M+H]+. Intermediate 10.5: 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed K2CO3 (800 mg, 0.50 equiv) and xylene (50 mL). This was followed by the addition of phenylmethanethiol (1.75 g, 1.00 equiv) dropwise with stirring at 0° C. The resulting mixture was then allowed to warm to room temperature and stirred for 1 h. Into another 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (4.8 g, 0.80 equiv), Xantphos (200 mg, 0.08 equiv) and Pd2(dba)3 (200 mg, 0.08 equiv) in xylene (30 mL). The mixture was stirred at room temperature for 20 min and transferred to the previously formed potassium thiolate. The dark solution was then purged with nitrogen and heated to 130° C. for 15 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The crude product was then purified by silica gel chromatography with ethyl acetate/petroleum ether (1:80˜1:50) to afford 1.8 g (30%) of the title compound as yellow oil. MS (ES, m/z): 414 [M+H]+. Compound 10.6: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 50-mL 3-necked round-bottom flask, was placed a solution of 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (250 mg, 0.60 mmol, 1.00 equiv) in acetic acid (8 mL), water (1 mL). To the above Cl2(g) was introduced and the resulting solution was stirred for 30 min at 25° C. The resulting mixture was concentrated under vacuum. This resulted in 200 mg (85%) of the title compound as a yellow solid. MS (ES, m/z): 390 [M−HCl+H]+. Compound 10: 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid Following the procedures outlined in Example 1,4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) was converted to compound 10. Purification by preparative HPLC gave a TFA salt of the title compound as a white solid. 1H-NMR (CD3OD, 300 MHz, ppm): 7.93 (d, J=8.4 Hz, 2H), 7.58˜7.51 (m, 3H), 6.89 (s, 1H), 4.89˜4.80 (m, 2H), 4.56˜4.51 (m, 1H), 3.95˜3.90 (m, 1H), 3.69˜3.65 (m, 1H), 3.21˜3.10 (m, 5H), 2.01˜1.89 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 11 (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Compound 11: (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Following the procedures outlined in Example 1, compound 11 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and diethyl aminomethylphosphonate (intermediate 5.3). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.87 (d, J=8.4 Hz, 2H), 7.68 (d, J=1.5 Hz, 1H), 7.48 (d, J=9.4 Hz, 2H), 6.80 (s, 1H), 4.74˜4.66 (m, 1H), 4.46˜4.40 (m, 1H), 3.82˜3.77 (m, 1H), 3.69˜3.39 (m, 1H), 3.01 (s, 3H), 2.91˜2.74 (m, 2H). MS 465 [M+H]+. Example 12 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Compound 12: 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Following the procedures outlined in Example 1, compound 12 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 3-diethyl 3-aminopropylphosphonate (intermediate 4.1). Purification by preparative HPLC gave a TFA salt of the title compound 1H-NMR (300 MHz, CD3OD, ppm): 7.90 (d, J=8.4, 2H), 7.55 (s, 1H), 7.46 (d, J=8.1 Hz, 2H), 6.88 (s, 1H), 4.77˜4.82 (m, 1H), 4.71 (d, J=16.2 Hz, 1H), 4.47 (d, J=15.9 Hz, 1H), 3.80˜3.86 (m, 1H), 3.54˜3.61 (m, 1H), 3.11 (s, 3H), 2.95˜2.99 (m, 2H), 1.53˜1.71 (m, 4H). MS 493 [M+H]+. Example 13 (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic Acid Compound 13: (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic Acid Following the procedures outlined in Example 1, compound 13 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-aminobenzylphosphonate (intermediate 3.2). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.69 (d, J=8.4 Hz, 2H), 7.46˜7.46 (m, 1H), 7.34 (d, J=8.4 Hz, 2H), 7.07 (d, J=7.8 Hz, 2H), 6.94 (d, J=8.1 Hz, 2H), 6.71˜6.71 (m, 1H), 4.36˜4.40 (m, 1H), 3.65˜3.80 (m, 2H), 2.95˜3.01 (m, 1H), 2.72˜2.79 (m, 3H), 2.41 (s, 3H). MS (ES, m/z): 541 [M+H]+. Example 14 (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic Acid Compound 14: (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic Acid Following the procedures outlined in Example 1, compound 14 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-(aminomethyl)benzylphosphonate (intermediate 6.1). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.71 (d, J=8.4 Hz, 2H), 7.50 (m, 1H), 7.40 (d, J=8.4 Hz, 2H), 7.06˜7.15 (m, 4H), 6.86˜6.87 (m, 1H), 4.38˜4.40 (m, 1H), 3.95 (s, 2H), 3.75 (d, J=16.2 Hz, 1H), 3.53 (m, 1H), 2.85˜2.92 (m, 3H), 2.69˜2.75 (m, 1H), 2.41 (s, 3H). MS (ES, m/z): 555 [M+H]+. Example 15 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic Acid Intermediate 15.1: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-phenylethanone (1 g, 5.05 mmol, 1.00 equiv) in 1,4-dioxane (20 mL) and (2,4-dichlorophenyl)-N-methylmethanamine (1.1 g, 5.82 mmol, 1.15 equiv). Triethylamine (2 g, 19.80 mmol, 3.92 equiv) was added dropwise with stirring at 20° C. The resulting solution was stirred for 1 h at 20° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.4 g (90%) of the title compound as a yellow oil. Intermediate 15.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol Into a 250 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone (4.3 g, 14.01 mmol, 1.00 equiv) in methanol (50 mL). This was followed by the addition of NaBH4 (1.5 g, 39.47 mmol, 2.82 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 20 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:80˜1:20). This resulted in 3.4 g (79%) of the title compound as a white solid. Intermediate 15.3: 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline Into a 100-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol (3.4 g, 11.00 mmol, 1.00 equiv) in dichloromethane (15 mL). This was followed by the addition of sulfuric acid (15 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. in a water/ice bath. The pH value of the solution was adjusted to 7 with 1M sodium hydroxide. The resulting solution was extracted with ethyl acetate (3×60 mL) and the combined organic layers dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether:ethyl acetate (80:1). This resulted in 1.6 g (50%) of the title compound as a colorless oil. Intermediate 15.4: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed chlorosulfonic acid (4 mL). This was followed by the dropwise addition of a solution of 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (1.6 g, 5.5 mmol, 1.00 equiv) in dichloromethane (30 mL) at 0° C. The resulting solution was stirred for 1 h at 0° C. in a water/ice bath and for an additional 1 h at 25° C. in an oil bath. To this was added chlorosulfonic acid (16 mL) dropwise at 25° C. The resulting solution was stirred for an additional 1 h at 25° C. To the resulting mixture was cooled to 0° C. and aqueous ammonia (120 mL) was added dropwise. The resulting solution was stirred for an additional 3 h 90° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was dissolved in 20 mL of water. The resulting solution was extracted with dichloromethane (3×30 mL) and the combined organic layers concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1). The crude product (0.5 g) was purified by preparative HPLC to give 53 mg (3%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CDCl3, ppm): 7.89 (1H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 7.30 (1H, m), 6.77 (1H, s), 4.87 (1H, s), 4.39 (1H, s), 3.69 (2H, m), 2.98 (1H, t), 2.67 (1H, dd), 2.55 (3H, s). MS (ES, m/z): 371 [M+H]+. Intermediate 15.5: dimethyl 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 15.4, 100 mg, 0.27 mmol, 1.00 equiv) in acetonitrile (5 mL). Methyl but-3-enoate (40 mg, 0.40 mmol, 1.48 equiv) was added, along with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 20 mg, 0.13 mmol, 0.49 equiv). The resulting solution was stirred overnight at 25° C. in an oil bath. Removing the solvent under vacuum gave the title compound which was used without further purification. Compound 15: 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic Acid Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of Intermediate 15.5 (140 mg, 0.26 mmol, 1.00 equiv, theoretical yield) in tetrahydrofuran (5 mL) and water (5 mL). LiOH (20 mg, 0.83 mmol, 3.23 equiv) was added and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1˜20:1). This resulted in 0.015 g (11%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.84 (d, J=8.1 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.35 (s, 1H), 6.84 (s, 1H), 4.39 (t, 1H), 3.77 (d, 1H), 3.67 (d, 1H), 3.45 (m, 1H), 3.33 (m, 4H), 2.69 (d, 1H), 3.0 (m, 1H), 2.47 (m, 6H). MS (ES, m/z): 515 [M+H]+. Example 16 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 16: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.235 mmol) in DMF (1.5 mL) was added TEA (94.94 mg, 0.94 mmol) and a solution of N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (11.45 mg, 0.0783 mmol) in 0.1 mL DMF. The reaction was stirred for 40 minutes at which point LCMS indicated no starting material remained. The solvent was removed and the residue dissolved in 50% acetic acid in water and purified by preparative HPLC to yield the title compound (25.4 mg) as a TFA salt. 1H-NMR (400 MHz, d6-DMSO): δ7.77 (s, 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.59 (m, 3H), 6.76 (s, 1H), 4.70 (m, 1H), 4.38 (m, 1H), 3.90 (br m, 8H), 3.26 (m, 1H), 3.95 (s, 3H), 2.65 (m, 2H). MS (m/z): 1210.01 (M+H). Example 17 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 17: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (26.17 mg, 0.176 mmol) in chloroform (0.223 mL) at 0° C. was added diisopropylethylamine (DIEA, 182 mg, 1.412 mmol) and a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL). The resulting solution was stirred for 10 minutes at which point the solvent was removed and the residue taken up in 50% isopropanol/water mixture and purified by preparative HPLC. The title compound was obtained (44.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.87 (d, 1H), 7.78 (d, 1H), 7.64 (t, 1H), 7.55 (d, 1H), 7.51 (d, 1H), 6.81 (s, 1H), 4.47 (d, 1H), 3.83 (dd, 1H), 3.59 (t, 1H), 3.43 (m, 2H), 3.12 (s, 4H), 3.01 (q, 2H). MS (m/z): 857.17 (M+H). Example 18 N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 18: N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 18 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.67 (s, 2H), 7.52 (m, 4H), 7.49 (d, 2H), 7.09 (s, 4H), 6.82 (s, 2H), 4.78 (m, 7H), 4.43 (d, 2H), 4.00 (s, 4H), 3.82 (dd, 2H), 3.51 (t, 2H), 3.11 (s, 6H). MS (m/z): 845.03 (M+H). Example 19 N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 19: N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 19 was made using butane-1,4-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 2H), 7.80 (s, 2H), 7.63 (t, 2H), 7.54 (t, 4H), 6.82 (s, 2H), 4.49 (d, 1H), 3.88 (dd, 2H), 3.58 (t, 2H), 3.14 (s, 6H), 2.81 (m, 4H), 1.42 (m, 4H). MS (m/z): 797.19 (M+H). Example 20 N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 20: N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 20 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.71 (s, 2H), 7.63 (t, 2H), 7.54 (m, 4H), 6.81 (s, 2H), 4.74 (m, 2H), 4.51 (d, 2H), 3.86 (dd, 2H), 3.29 (t, 2H), 3.13 (s, 7H), 2.79 (t, 4H), 1.39 (m, 4H), 1.22 (m, 20H). MS (m/z): 909.28 (M+H). Example 21 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 21: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.352 mmol) in THF/H2O (0.704 mL, 50% v/v) was added DIEA (181.6 mg, 1.41 mmol) and finally N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) (27.94 mg, 0.08825 mmol). The reaction mixture was stirred vigorously for 1 hour at which point the solvent was removed. The resulting residue was brought up in 50% acetonitrile/water and purified by preparative HPLC to give the title compound (117 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.78 (s, 2H), 7.62 (t, 2H), 7.36 (m, 4H), 6.79 (s, 2H), 4.78 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.55 (t, 2H), 3.12 (s, 6H), 2.94 (m, 4H), 1.90 (m, 4H), 1.85 (m, 2H). MS (m/z): 1732.90 (M+H). Example 22 N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 22: N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL) was added DIEA (182 mg, 1.412 mmol) and a solution of butane-1,4-diamine (15.5 mg, 0.176 mmol) in chloroform (0.176 mL). The reaction was stirred overnight at which point the solvent was removed and the resulting residue brought up in 50% IPA/H2O. Purification by preparative HPLC gave the title compound (18.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.86 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.73 (m, 3H), 4.46 (d, 2H), 3.86 (dd, 2H), 3.57 (t, 2H), 3.12 (s, 6H), 2.84 (m, 4H), 1.41 (m, 4H). MS (m/z): 797.15 (M+H). Example 23 N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 23: N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 22, compound 23 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 4H), 7.54 (m, 2H), 7.42 (m, 4H), 6.82 (s, 2H), 4.85 (m, 3H), 4.72 (d, 2H), 3.85 (dd, 2H), 3.59 (t, 2H), 3.13 (m, 8H), 2.85 (m, 4H), 1.89 (m, 5H), 1.33 (m, 23H). MS (m/z): 909.21 (M+H). Example 24 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 24: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in THF/H2O solution (50% v/v, 0.704 mL) was added DIEA (182.2 mg, 1.412 mmol) and N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (17.0 mg, 0.116 mmol). The reaction was stirred vigorously at room temperature for 40 minutes at which point the solvent was removed. The resulting residue was dissolved in acetonitrile/water (50% v/v) and purified by preparative HPLC to give the title compound (57.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.94 (d, 6H), 7.51 (t, 9H), 6.83 (s, 3H), 4.78 (m, 6H), 4.45 (d, 3H), 3.83 (dd, 3H), 3.49 (t, 3H), 3.30 (m, 6H), 3.29 (m, 21H), 3.12 (s, 9H). MS (m/z): 1208.09 (M+H). Example 25 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 25: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, Compound 25 was made using N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.88 (d, 8H), 7.51 (s, 4H), 7.48 (d, 8H), 6.81 (s, 4H), 4.75 (m, 8H), 4.47 (d, 4H), 3.85 (dd, 4H), 3.58 (t, 4H), 3.13 (s, 12H), 2.98 (t, 8H), 1.97 (m, 8H), 1.88 (m, 4H). MS (m/z): 1733.02 (M+H). Example 26 N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 26: N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 26 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.76 (d, 4H), 7.54 (s, 2H), 7.39 (d, 4H), 7.08 (s, 4H), 6.82 (s, 2H), 4.72 (m, 3H), 4.47 (d, 2H), 4.07 (s, 4H), 3.88 (dd, 2H), 3.61 (t, 2H), 3.16 (s, 6H). MS (m/z): 845.07 (M+H). Example 27 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 27: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 27 was made using 2,2′-(ethane-1,2-diylbis(oxy))diethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d. 4H), 7.52 (s, 2H), 7.47 (d, 4H), 6.82 (s, 2H), 4.77 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.59 (t, 2H), 3.43 (t, 8H), 3.13 (s, 6H), 3.06 (t, 4H). MS (m/z): 857.15 (M+H). Example 28 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 28.1 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (600 mg, 1.41 mmol) in chloroform (2.82 mL) was added DIEA (545.7 mg, 4.24 mmol) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (616.3 mg, 2.82 mmol). The reaction was stirred overnight at which point the mixture was diluted with 50 mL DCM and washed with NaHCO3 (50 mL). The aqueous layer was extracted with DCM (2×50 mL) and the combined organic fractions washed with water (200 mL), brine (200 mL), and dried over Na2SO4. Removing the solvent gave the title compound as an oil which was used without further purification. Compound 28: N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1) (1.035 g, assume 1.41 mmol) was dissolved in a 10:1 THF:water solution (26.5 mL) and placed under N2. PMe3 (165 mg, 2.18 mmol) was added and the reaction stirred overnight. The solvent was removed and the resulting residue brought up in EtOAc (100 mL) and washed with NaHCO3 (100 mL) and brine (100 mL). After drying the organic layer over Na2SO4, the solvent was removed to give 446 mg of the title compound (58% over two steps) as an oil. A portion of the crude product was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (m, 1H), 7.73 (m, 1H), 7.67 (t, j=7.7 Hz, 1H), 7.54 (m, 2H), 6.82 (s, 1H), 4.8-4.6 (m, 4H), 4.46 (m, 1H), 3.86 (m, 1H), 3.69 (m, 2H), 3.66 (s, 3H), 3.61 (m, 2H), 3.55 (m, 2H), 3.12 (m, 4H), 3.03 (t, j=5.4 Hz, 1H). MS (m/z): 546.18 (M+H). Example 29 N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide Compound 29: N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (54.5 mg, 0.1 mmol) in DMF (0.20 mL) was added DIEA (15.5 mg, 0.12 mmol) and bis(2,5-dioxopyrrolidin-1-yl)octanedioate (18.4 mg, 0.05 mmol). The reaction was stirred at room temperature for 3 hours at which point an additional 0.03 mmol of compound 28 was added. After a further hour the solvent was removed and the resulting residue dissolved in acetonitrile/water (1:1) and purified by preparative HPLC to give the title compound (17.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 2H), 7.78 (s, 2H), 7.64 (t, 2H), 7.52 (m, 4H), 6.83 (s, 2H), 4.81 (m, 4H), 4.45 (d, 2H), 3.89 (dd, 2H), 3.61 (m, 18H), 3.55 (m, 10H), 3.47 (m, 5H), 3.33 (m, 5H), 3.14 (s, 7H), 3.04 (t, 4H), 2.16 (t, 4H), 1.55 (m, 4H), 1.29 (m, 4H). MS (m/z): 1231.87 (M+H). Example 30 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Intermediate 30.1: 1-(4-aminophenyl)ethanone Into a 100-mL 3-necked round-bottom flask, was placed a solution of 1-(4-nitrophenyl)ethanone (6 g, 36.36 mmol, 1.00 equiv) in ethanol (100 mL), water (15 mL). This was followed by the addition of NH4Cl (3.85 g, 72.64 mmol, 2.00 equiv) in several batches. To this was added Fe (10.18 g, 181.79 mmol, 5.00 equiv) in several batches, while the temperature was maintained at reflux. The resulting mixture was heated to reflux for 2 h. The solids were filtered out and the resulting filtrate was concentrated under vacuum. The residue was diluted with 50 mL of water. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.1 g (60%) of 1-(4-aminophenyl)ethanone as a yellow solid. Intermediate 30.2: N-(4-acetylphenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-aminophenyl)ethanone (3.1 g, 22.96 mmol, 1.00 equiv) in dichloromethane (30 mL), triethylamine (4.64 g, 45.94 mmol, 2.00 equiv). This was followed by the addition of acetyl chloride (1.79 g, 22.95 mmol, 1.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 30 min at 0° C. The reaction was then quenched by the addition of 2 mL of water. The resulting mixture was washed with 3×50 mL of saturated aqueous sodium chloride. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.0 g (74%) of N-(4-acetylphenyl)acetamide as a white solid. Intermediate 30.3: N-(4-(2-bromoacetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-acetylphenyl)acetamide (1 g, 5.65 mmol, 1.00 equiv) in acetic acid (10 mL). This was followed by the addition of a solution of bromine (910 mg, 5.69 mmol, 1.01 equiv) in acetic acid (2 mL) dropwise with stirring at 50° C. The resulting solution was stirred for 1.5 h at 50° C. The reaction was then quenched by the addition of 100 mL of water/ice. The solids were collected by filtration and dried under vacuum. This resulted in 0.5 g (33%) of N-(4-(2-bromoacetyl)phenyl)acetamide as a white solid. Intermediate 30.4: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-bromoacetyl)phenyl)acetamide (1 g, 3.91 mmol, 1.00 equiv) in 1,4-dioxane (40 mL). This was followed by the addition of triethylamine (1.58 g, 15.64 mmol, 4.00 equiv) dropwise with stirring at 20° C. To this was added (2,4-dichlorophenyl)-N-methylmethanamine (880 mg, 4.63 mmol, 1.19 equiv) dropwise with stirring at 20° C. The resulting solution was stirred for 4 h at 20° C. The solids were filtered out. The resulting mixture was concentrated under vacuum to give 1.5 g (84%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide as a white solid. Intermediate 30.5: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide (1.5 g, 4.11 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of NaBH4 (300 mg, 7.89 mmol, 2.06 equiv) in several batches at 0-5° C. The resulting solution was stirred for 2 h at 0-5° C. The reaction was then quenched by the addition of 5 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 1.2 g (76%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide as yellow oil. Intermediate 30.6: N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide (500 mg, 1.36 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of sulfuric acid (3 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 5 h at 0-5° C. The reaction was then quenched by the addition of 20 mL of water/ice. The pH value of the solution was adjusted to 7-8 with sodium hydroxide. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 25 mg (5%) of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide as a white solid. 1H-NMR (300 HMz, CDCl3, ppm): δ 7.46-7.49 (2H, d, J=8.4 Hz), 7.23-7.29 (1H, m), 7.12-7.15 (2H, d, J=8.4 Hz), 6.80 (1H, s), 4.314 (1H, s), 3.92 (1H, d), 3.58-3.63 (1H, d), 3.06 (1H, s), 2.61-2.68 (1H, m), 2.57 (3H, s), 2.20 (3H, s). MS (ES, m/z): 349 [M+H]+. Intermediate 30.7: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide (2 g, 5.73 mmol, 1.00 equiv) in ethanol (20 mL). This was followed by the addition of sodium methanolate (5 g, 92.59 mmol, 16.16 equiv) in several batches, while the temperature was maintained at reflux. The resulting solution was heated to reflux overnight. The reaction was then quenched by the addition of 50 mL of water/ice. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. This resulted in 1.5 g (85%) of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.42-7.42 (1H, d, J=1.5 Hz), 6.83-6.86 (2H, d, J=8.1 Hz), 6.78-6.78 (1H, d, J=1.2 Hz), 6.48-6.51 (2H, d, J=8.4 Hz), 4.98 (2H, s), 4.02-4.06 (1H, m), 3.62-3.67 (1H, d, J=16.2 Hz), 3.43-3.48 (1H, d, J=15.9 Hz), 2.80-2.86 (1H, m), 2.37 (3H, s). MS (ES, m/z): 307 [M+H]+. Intermediate 30.8: diethyl 2-(chlorosulfonylamino)ethylphosphonate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of sulfuryl dichloride (1.1 g, 8.15 mmol, 1.47 equiv) in dichloromethane (10 mL). This was followed by the addition of a solution of diethyl 2-aminoethylphosphonate (intermediate 1.9) (1.0 g, 5.52 mmol, 1.00 equiv) and triethylamine (800 mg, 7.92 mmol, 1.43 equiv) in dichloromethane (20 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. The reaction was then quenched by the addition of ice water. The organic layer was washed with saturated sodium chloride (20 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.5 g (crude) of the title compound as a colorless oil. Intermediate 30.9: diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed diethyl 2-(chlorosulfonylamino)ethylphosphonate (intermediate 30.8) (670 mg, 2.40 mmol, 1.47 equiv), 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (500 mg, 1.63 mmol, 1.00 equiv), N-ethyl-N-isopropylpropan-2-amine (400 mg, 3.10 mmol, 1.91 equiv) in acetonitrile (20 mL). The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum and the residue was applied to a silica gel column and eluted with dichloromethane/methanol (20:1). This resulted in 150 mg (16%) of the title compound as a light yellow solid. Compound 30: 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate (100 mg, 0.18 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (275 mg, 1.80 mmol, 9.89 equiv). The resulting solution was stirred overnight at 39° C. The resulting mixture was concentrated under vacuum and the residue was dissolved in dichloromethane (5 mL). This was followed by the addition of a solution of sodium hydroxide (14.5 mg, 0.36 mmol, 2.00 equiv) in methanol (0.2 mL) dropwise with stirring. The solids were collected by filtration and dried under reduced pressure. This gave 40 mg (40%) of a sodium salt of the title compound as a white solid. 1H-NMR (300 MHz, d6-DMSO, ppm): δ 9.78 (1H, brs), 7.54 (1H, s), 7.47 (1H, brs), 7.09-7.17 (4H, m), 6.82 (1H, s), 4.31 (1H, brs), 3.88 (2H, brs), 3.13 (1H, brs), 3.04 (2H, brs), 2.90 (1H, brs), 2.58 (3H, s), 1.65-1.77 (2H, m). MS (m/z): 494 [M+H]+. Example 31 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Intermediate 31.1: 2-bromo-1-(3-nitrophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-nitrophenyl)ethanone (50 g, 303.03 mmol, 1.00 equiv) in acetic acid (300 mL), Br2 (53.5 g, 331.6 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 60° C. in an oil bath. The reaction was then quenched by the addition of ice and the solids were collected by filtration. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. This resulted in 25 g (34%) of 2-bromo-1-(3-nitrophenyl)ethanone as a white solid. Intermediate 31.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (2 g, 8.23 mmol, 1.00 equiv), triethylamine (3.4 g, 4.00 equiv), (2,4-dichlorophenyl)-N-methylmethanamine (1.9 g, 10.05 mmol, 1.20 equiv), 1,4-dioxane (50 mL). The resulting solution was stirred for 2 h at room temperature at which time it was judged to be complete by LCMS. The mixture was concentrated under vacuum and the residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 1.5 g (50%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone as a yellow solid. Intermediate 31.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone (28 g, 1.00 equiv, Crude) in methanol (280 mL), NaBH4 (6.38 mg, 0.17 mmol, 2.00 equiv). The resulting solution was stirred for 0.5 h at 0° C. The reaction progress was monitored by LCMS. The reaction was then quenched by the addition of 10 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 14 g of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol as a yellow solid. Intermediate 31.4: 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol (14 g, 39.55 mmol, 1.00 equiv) in dichloromethane (140 mL), sulfuric acid (140 mL). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting solution was diluted with 100 mL of ice. The pH value of the solution was adjusted to 8-9 with sat. sodium hydroxide (100 mL). The resulting solution was extracted with 2×500 mL of ethyl acetate and the organic layers combined and dried over sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 7 g (51%) of 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as a yellow solid. Intermediate 31.5: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (200 mg, 0.59 mmol, 1.00 equiv), Fe (360 mg, 6.43 mmol, 8.60 equiv), hydrogen chloride (0.02 mL), ethanol (0.6 mL), water (0.2 mL). The resulting solution was stirred for 0.5 h at 80° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 0.2 g (crude) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Compound 31: 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Following the procedures outlined in Example 30, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, D2O+DMSO-d6, ppm): δ 7.67 (s, 1H), 7.33 (t, J=8.1 Hz, 1H), 7.07-7.15 (m, 2H), 6.81-6.86 (m, 2H), 4.39-4.66 (m, 3H), 3.75-3.81 (m, 1H), 3.45-3.50 (m, 1H), 3.02-3.08 (m, 5H), 1.67-1.78 (m, 2H). MS (ES, m/z): 494.0 [M+H]+. Example 32 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Compound 32: 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.28 (s, 4H), 6.81 (s, 1H), 4.73-4.77 (m, 2H), 4.57 (m, 1H), 3.81 (s, 1H), 3.66 (s, 1H), 3.18 (s, 3H), 3.06 (s, 2H), 1.74 (m, 4H), 1.20-1.35 (m, 1H). MS (ES, m/z): 508 [M+H]+ Example 33 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Compound 33: 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.54 (s, 1H), 7.38 (s, 1H), 7.25 (s, 1H), 7.11 (s, 1H), 6.94 (m, 2H), 4.66 (s, 1H), 4.55-4.51 (m, 1H), 3.89 (s, 1H), 3.65 (m, 2H), 3.18 (s, 3H), 3.05 (s, 2H), 1.71 (m, 4H). MS (ES, m/z): 508 [M+H]+. Example 34 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Intermediate 34.1: (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (200 mg, 0.65 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (1.2 mL). This was followed by the addition of bis(trichloromethyl) carbonate (200 mg, 0.67 mmol, 1.03 equiv) slowly with stirring at 0-5° C. The resulting solution was stirred for 1 h at room temperature. To this was added triethylamine (1 mL) followed by (S)-dimethyl 2-aminosuccinate (200 mg, 1.24 mmol, 1.91 equiv) in several batches. The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum and the residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 50 mg (15%) of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate as yellow oil. Compound 34: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate (100 mg, 0.20 mmol, 1.00 equiv) in methanol (5 mL), water (1 mL), sodium hydroxide (30 mg, 0.75 mmol, 3.71 equiv). The resulting solution was stirred for 3 h at room temperature and then concentrated under vacuum. The pH of the solution was adjusted to 3-4 with 1N hydrochloric acid. The solids were collected by filtration and the residue was lyophilized. This resulted in 16 mg (16%) of (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.98 (s, 1H), 7.66 (s, 1H), 7.38-7.44 (d, J=17.1 Hz, 2H), 7.12-7.15 (d, J=8.4 Hz, 2H), 6.78 (s, 1H), 6.60-6.63 (s, 1H), 4.48-4.54 (m, 4H), 3.63-3.66 (s, 2H), 3.01 (s, 1H), 2.51-2.84 (m, 2H). MS (ES, m/z): 466 [M+H]+. Example 35 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Compound 35: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): δ 8.88 (s, 1H), 7.54 (s, 1H), 7.31-7.18 (m, 3H), 6.83-6.78 (m, 2H), 6.53-6.51 (m, 1H), 4.49-4.47 (m, 1H), 4.29 (m, 1H), 3.87 (m, 2H), 3.32 (m, 2H), 2.76-2.59 (m, 2H), 2.50 (s, 3H). MS 466 [M+H]+. Example 36 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Compound 36: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Following the procedures outlined in Example 34, substituting (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave the title compound. 1H-NMR (300 MHz, DMSO, ppm) δ 12.32 (s, 2H), 8.63 (s, 1H), 7.47 (s, 1H), 7.30-7.33 (d, J=8.1 Hz, 2H), 7.06-7.09 (d, J=5.4 Hz, 2H), 6.79 (s, 1H), 6.45-6.48 (d, J=8.1 Hz, 1H), 4.19-4.20 (s, 2H), 3.68 (s, 2H), 2.95 (s, 1H), 2.68 (s, 1H), 2.45 (s, 3H), 2.27-2.30 (s, 2H), 1.99-2.02 (s, 1H), 1.76-7.78 (s, 1H). MS (ES, m/z): 480 [M+H]+. Example 37 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Compound 37: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline and (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 8.74 (s, 1H), 7.67 (s, 1H), 7.42 (m, 1H), 7.27-7.25 (m, 2H), 6.79 (m, 2H), 6.52-6.49 (m, 1H), 4.63-4.58 (m, 1H), 4.44 (m, 2H), 4.20-4.16 (m, 1H), 3.72-3.64 (m, 2H), 2.99 (s, 3H), 2.34-2.27 (m, 2H), 2.01-1.97 (m, 2H), 1.82-1.77 (m, 2H). MS 480 [M+H]+. Example 38 (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Intermediate 38.1: 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (300 mg, 0.98 mmol, 1.00 equiv) in dichloromethane (10 mL). This was followed by the addition of 4-nitrophenyl chloroformate (230 mg, 1.14 mmol, 1.20 equiv) in several batches at room temperature. The resulting solution was stirred for 3 h at room temperature. The solids were collected by filtration. This resulted in 0.3 g (65%) of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate as a yellow solid. Intermediate 38.2: diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (200 mg, 0.42 mmol, 1.00 equiv) in N,N-dimethylformamide (6 mL), a solution of diethyl aminomethylphosphonate (144 mg, 0.63 mmol, 1.50 equiv) in N,N-dimethylformamide (1 mL) and triethylamine (64 mg). The resulting solution was stirred overnight at room temperature. The reaction was then quenched by the addition of 10 mL of water. The resulting solution was extracted with 3×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 40 mg (17%) of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate as a solid. Compound 38: (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate (40 mg, 0.08 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (0.15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. To the above was added methanol (5 mL) and sodium hydroxide (5 mg). The resulting mixture was stirred 0.5 h at room temperature. The solids were collected by filtration and the residue was lyophilized. This resulted in 17.4 mg (42%) a sodium salt of the title compound as a yellow solid. 1H-NMR (300 MHz, CD3OD+DCl, ppm): δ 7.46-7.49 (m, 3H), 7.20-7.23 (d, J=8.7 Hz, 2H), 6.80 (s, 1H), 4.77-4.83 (d, J=15.9 Hz, 1H), 4.65-4.71 (m, 1H), 4.50-4.55 (d, J=16.2 Hz, 1H), 3.79-3.85 (m, 1H), 3.56-3.69 (m, 3H), 3.32 (s, 3H). MS (ES, m/z): 444 [M+H]+. Example 39 (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Compound 39: (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Following the procedures outlined in Example 38, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.37 (m, 3H), 6.96 (m, 1H), 6.82 (s, 1H), 4.81 (m, 1H), 4.70 (m, 1H), 4.54 (m, 1H), 3.83 (m, 1H), 3.65 (m, 3H), 3.19 (s, 3H). Example 40 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic Acid Intermediate 40.1: ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate Following the procedures outlined in Example 34, substituting ethyl 3-aminopropanoate for (S)-dimethyl 2-aminosuccinate gave the title compound as a yellow oil. Intermediate 40.2: 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic Acid Into a 50-mL round-bottom flask, was placed a solution of ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate (150 mg, 0.33 mmol, 1.00 equiv) in methanol (10 mL), water (2 mL) and sodium hydroxide (80 mg, 2.00 mmol). The resulting solution was stirred for 2 h at 25° C. and the resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7-8 with hydrogen chloride. The resulting solution was extracted with chloroform (3×10 ml) and the organic layers combined and dried over sodium sulfate. This resulted in 31.5 mg (22%) of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.56 (1H, s), 7.45 (1H, s), 7.29-7.32 (2H, d, J=8.1 Hz), 7.04-7.07 (2H, d, J=8.4 Hz), 6.79 (1H, s), 6.21 (1H, s), 4.16 (1H, m), 3.56-3.58 (2H, d, J=5.4 Hz), 3.27-3.29 (2H, d, J=6 Hz), 2.82-2.87 (1H, m), 2.59 (2H, s), 2.38-2.40 (4H, m). MS (ES, m/z): 422 [M+H]+. Intermediate 40.3: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid (200 mg, 0.47 mmol, 1.00 equiv) in dichloromethane (20 mL), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (136 mg, 0.71 mmol, 1.50 equiv) and 4-dimethylaminopyridine (115 mg, 0.94 mmol, 1.99 equiv). This was followed by the addition of a solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (102 mg, 0.71 mmol, 1.49 equiv) in dichloromethane (2 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was washed with KHSO4 (2×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 240 mg (92%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea as a yellow solid. Intermediate 40.4: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea (150 mg, 0.27 mmol, 1.00 equiv) in dichloromethane (10 mL) and acetic acid (1 mL) Sodium borohydride (42 mg, 1.11 mmol, 4.04 equiv) was added and the resulting solution was stirred overnight at room temperature. The resulting mixture was washed with saturated aqueous sodium chloride (3×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 30 mg (21%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea as a yellow solid. Compound 40: 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic Acid Into a 50-mL round-bottom flask, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea (100 mg, 0.19 mmol, 1.00 equiv) in 2,2,2-trifluoroacetic acid (10 mL), and water (2 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with methanol:water (60%). The residue was lyophilized. This resulted in 36.3 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.55 (s, 1H), 7.64 (s, 1H), 7.39-7.42 (d, J=8.7 Hz, 2H), 7.09-7.12 (d, J=8.4 Hz, 2H), 6.79 (s, 1H), 6.23-6.27 (m, 1H), 4.33-4.50 (m, 3H), 3.62 (s, 1H), 3.19 (m, 1H), 3.08-3.10 (d, J=5.7 Hz, 2H), 2.94 (s, 3H), 1.70-1.77 (d, J=23.1 Hz, 2H), 1.41-1.46 (d, J=12 Hz, 2H). MS (ES, m/z): 494 [M+H]+. Example 41 N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 41.1 (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate To a solution of dry DMF (50 mL) under N2 was added 3,4,5-trifluorobenzaldehyde (4.26 g, 26.6 mmol) followed by ethyl 2-(triphenylphosphoranylidene)propionate (10.6 g, 29.3 mmol) in portions, keeping the solution at room temperature. After 1 hour, TLC (10% EtOAC in Hexanes) showed complete conversion, and the solvent was removed by rotary evaporation. The resulting material was brought up in 50 mL methyl t-butyl ether (MBTE) and the precipitate removed by filtration and washed with additional MBTE (3×50 mL). After concentration, the resulting filtrate was applied onto a silica gel column (25% EtOAc in hexanes) resulting in 6.0 g of the title compound (93%) as a white powder. Intermediate 41.2 (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate To a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (Intermediate 41.1, 6.0 g, 24.56 mmol) in dry DMF (25 mL) under N2 was added phenol (2.774 g, 29.5 mmol) and K2CO3 (10.2 g, 73.68 mmol). The resulting solution was brought to 120° C. and stirred for 3 hours at which point TLC indicated complete conversion. The solvent was removed by rotary evaporation and the resulting residue brought up in EtOAc (200 mL) and washed with water (2×200 mL), 1N NaOH (2×200 mL) and brine (200 mL). The organic layer was dried over Na2SO4 and concentrated to yield 6.94 g (89%) of the title compound as tan crystals. Intermediate 41.3 (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (1 g, 3.14 mmol) in DCM (3.14 mL) under N2 was added chlorosulfonic acid (0.419 mL, 6.28 mmol) dropwise. After 1 hour an additional 0.209 mL chlorosulfonic acid was added. After an additional hour the reaction mixture was quenched with ice-water and extracted into EtOAc (2×200 mL). The combined organic layers were dried briefly (<10 min) over Na2SO4 and concentrated to recover 1.283 g of the title compound (98%) as a yellow oil. Intermediate 41.4 N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 41.3) (104.3 mg, 0.25 mmol) in chloroform (0.5 mL) was added DIEA (0.0869 mL, 0.5 mmol) and a solution of butane-1,4-diamine (12.6 uL, 0.125 mmol) and DIEA (0.087 mL, 0.5 mmol) in chloroform (0.125 mL). After one hour the solvent was removed and the resulting residue brought up in EtOAc (40 mL), washed with water (2×40 mL), brine (40 mL) and dried over Na2SO4. Removing the solvent gave 118 mg of the title compound which was used without further purification. Intermediate 41.5: N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide] To a solution of Intermediate 41.4 (118 mg, 0.139 mmol) in MeOH (1.39 mL) was added a NaOH (0.3M in water, 0.278 mL, 0.835 mmol). The reaction was placed under N2 and heated at 60° C. for 30 minutes. After cooling the reaction mixture was diluted with water (20 mL), partitioned with EtOAc (20 mL) and acidified with HCl. After extracting with EtOAc (2×20 mL) the combined organic phases were dried over Na2SO4 and the solvent removed to give 40.7 mg of the title compound. Compound 41: N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (2 mL) was added to intermediate 41.5 (40.7 mg, 0.051 mmol) and was heated at 80c under N2. After 70 minutes, the solvent was removed in vacuo. The residue was brought up in toluene (2 mL) and the toluene was also removed in vacuo. The bis-acid chloride was dissolved in DME (0.5 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (7.8 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.80 (d, 4H), 7.44 (s, 2H), 7.30 (d, 4H), 7.11 (d, 4H), 2.80 (m, 4H), 2.18 (s, 6H), 1.44 (m, 4H). MS (m/z): 875.16 (M+H). Example 42 N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 42: N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures outlined in Example 41, compound 42 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.06 (d, 6H), 7.04 (s, 2H), 4.02 (s, 4H), 2.19 (s, 6H). MS (m/z): 924.21 (M+H) Example 43 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 43.1 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide) To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (225 mg, 0.54 mmol) in DCM (3 mL) was added a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (38 mg, 0.26 mmol) and triethylamine (101 mg, 1.0 mmol) in DCM (2 mL) dropwise. After 30 minutes, 1N HCl was added (10 mL) and the reaction mixture was extracted with DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (262 mg). Intermediate 43.2 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide) A solution of the intermediate 43.1 (262 mg, 0.29 mmol) and 3N NaOH (0.6 mL, 1.8 mmol) in methanol (3 mL) was heated at 65° C. for 1 hour. The reaction mixture was cooled to RT and the methanol removed at reduced pressure and 1N HCl (3 mL, 3 mmol) was added to the residue. The product was extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (173 mg). Compound 43: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (1 mL) was added to intermediate 43.2 (63 mg, 0.074 mmol) and was heated at 80c. After 2 hours, the solvent was removed in vacuo. The bis-acid chloride was dissolved in DME (1 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (20 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.83 (d, j=8.8 Hz, 4H), 7.43 (s, 2H), 7.30 (d, j=8.9 Hz, 4H), 7.11 (d, j=8.6 Hz, 4H), 3.42 (t, j=5.5 Hz, 8H), 3.03 (t, j=5.4 Hz, 4H), 2.17 (s, 6H). MS (m/z): 935.08 (M+H). Example 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 44.1: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (250 mg, 0.60 mmol) in DCM (3 mL) was added a solution of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (157 mg, 0.72 mmol) and triethylamine (72 mg, 0.72 mmol) in DCM (2 mL). After 15 minutes, water (10 mL) was added and the reaction mixture was extracted with DCM (2×25 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried (Na2SO4) and concentrated. The crude material was purified by flash chromatography on silica gel eluting with 50% EtOAc in DCM to give the title compound (169 mg). Intermediate 44.2: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (169 mg, 0.28 mmol) in THF (6 ml) and water (0.6 mL) under nitrogen was added trimethylphosphine (26 mg, 0.34 mmol). After stirring for 3 hours, the solvents were removed at reduced pressure and. The residue was dissolved in water (5 mL) and extracted with EtOAc (3×25 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (162 mg). Intermediate 44.3: N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] A solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (71 mg, 0.17 mmol) in EtOAc (1 mL) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (84 mg, 0.15 mmol) and triethylamine (22 mg, 0.22 mmol) in DCM (1 mL) with stirring. After 30 minutes, water (10 mL) was added and the product extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (177 mg). Compound 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures outlined in Example 43, intermediate 44.3 was converted to the bis-guanidine and gave, after purification by preparative HPLC, the title compound (21 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.8 Hz, 4H), 7.44 (s, 2H), 7.30 (d, j=8.8 Hz, 4H), 7.10 (d, j=8.8 Hz, 4H), 3.54 (m, 4H), 3.48 (m, 4H), 3.43 (t, j=5.5 Hz, 4H), 3.04 (t, j=5.5 Hz, 4H), 2.17 (d, j=1.2 Hz, 6H). MS (m/z): 979.05 (M+H). Example 45 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 45: (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide A 4.3 M solution of guanidine free base in methanol was prepared. A 25% solution of NaOMe in MeOH (1.03 mL, 4.5 mmol) was added to guanidine hydrochloride (480 mg, 5.0 mmol), and the mixture was stirred for 30 minutes. The mixture was filtered (0.2μ, PTFE) to give the guanidine free base solution. A portion (0.3 mL, 1.3 mmol) was added to (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (74 mg, 0.13 mmol) with stirring. After 15 minutes, water (10 mL) was added and the product extracted with DCM (4×20 mL). The combined organic layers were dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (34 mg) as a TFA salt. 1H-NMR (400 mHz, d6-DMSO) δ 11.14 (s, 1H), 8.38 (br s, 4H), 7.78 (d, j=9.0 Hz, 2H), 7.5 (m, 3H), 7.45 (d, j=9.1, 2H), 7.42 (s, 1H), 7.19 (d, j=8.8 Hz, 2H), 3.55 (m, 6H), 3.44 (m, 4H), 3.36 (m, 2H), 2.95 (m, 2H), 2.87 (m, 2H), 2.11 (s, 3H). MS (m/z): 586.11 (M+H). Example 46 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 46.1 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] Carbonyldiimidisole (16.2 mg, 0.10 mmol) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 44.2) (125 mg, 0.22 mmol) in DMF (2 mL) and stirred for 23 hours at which time the solvent was removed under vacuum. The residue was dissolved in EtOAc, washed with water (4×10 mL), dried (Na2SO4) and concentrated to give the title compound (132 mg). Compound 46: N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] A solution of 4.4 M guanidine in methanol (Example 45) (0.5 mL, 2.2 mmol) was added to a solution of intermediate 46.1 (65 mg, 0.055 mmol) in DMF, and stirred for 4 hours. The reaction was quenched with 50% aqueous AcOH, and then concentrated to dryness. The residue was purified by preparative HPLC to give the title compound (35 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.2 Hz, 4H), 7.43 (d, j=1.4 Hz, 2H), 7.30 (d, j=9.0 Hz, 4H), 7.11 (d, j=9.0 Hz, 4H), 3.57 (m, 12H), 3.46 (m, 12H), 3.26 (t, J=5.4 Hz, 4H), 3.04 (t, j=5.4 Hz, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1197.07 (M+H). Example 47 N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12,21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 47: N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12, 21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in Example 46, substituting subaric acid bis(N-hydroxysuccinimide ester) for carbonyldiimidazole gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (m, 4H), 7.43 (m, 2H), 7.30 (m, 4H), 7.11 (m, 4H), 3.58 (m, 12H), 3.50 (m, 8H), 3.32 (m, 4H), 3.05 (t, j=5.4 Hz, 4H), 2.18 (d, j=1.6 Hz, 6H), 2.15 (m, 4H), 1.56 (m, 4H), 1.29 (m, 4H). MS (m/z): 1309.12 (M+H). Example 48 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 48.1: (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide To (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (250 mg, 0.42 mmol) was added 4.4 M guanidine in methanol (as prepared in example 45) (1.0 mL, 4.4 mmol) and the reaction was stirred at RT. After 30 minutes, water (10 mL) was added, and the mixture was extracted with DCM (4×25 mL). The aqueous phase was adjusted to pH 7, and extracted with DCM (2×25 mL). The combined organic extracts were dried (Na2SO4) and concentrated to give the title compound (245 mg). Compound 48: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide To a mixture of (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide (70 mg, 0.11 mmol) and propargyl alcohol (6.4 mg, 0.11 mmol) in t-butanol (0.22 mL) and water (0.22 mL) was added 1 M sodium ascorbate (11 μL, 0.011 mmol) and 0.3 M copper sulfate (3.6 μA, 0.0011 mmol) and the reaction was stirred at RT. After 14 hours, the product was purified by preparative HPLC to give the title compound (22 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.93 (s, 1H), 7.84 (m, 2H), 7.44 (s, 1H), 7.30 (m, 2H), 7.11 (m, 2H), 4.64 (d, j=0.6 Hz, 2H), 4.55 (t, j=5.0 Hz, 2H), 3.86 (t, j=5.0 Hz, 2H), 3.57 (m, 4H), 3.52-3.42 (m, 6H), 3.03 (t, j=5.4 Hz, 2H), 2.18 (d, j=1.3 Hz, 3H). MS (m/z): 668.14 (M+H). Example 49 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 49: N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in example 48, substituting propargyl ether for propargyl alcohol gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 8.00 (s, 2H), 7.83 (m, 4H), 7.43 (s, 2H), 7.30 (m, 4H), 7.10 (m, 4H), 4.61 (s, 4H), 4.55 (m, 4H), 3.86 (m, 4H), 3.58-3.50 (m, 8H), 3.50-3.40 (m, 12H), 3.01 (m, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1317.09 (M+H). Example 50 N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) Intermediate 50.1: 2,2′-(piperazine-1,4-diyl)diacetonitrile To a solution of piperazine (6 g, 69.77 mmol, 1.00 equiv) in acetonitrile (150 mL) was added potassium carbonate (19.2 g, 139.13 mmol, 2.00 equiv) and the mixture was stirred. To this was added dropwise a solution of 2-bromoacetonitrile (16.7 g, 140.34 mmol, 2.00 equiv) in acetonitrile (100 mL) and the suspension was stirred for 4 h at room temperature. The solids were filtered out and the resulting solution was concentrated under vacuum. The crude product was purified by re-crystallization from methanol resulting in 7.75 g (68%) of Intermediate 50.1 as a white solid. Intermediate 50.2: 2,2′-(piperazine-1,4-diyl)diethanamine To a suspension of lithium aluminum hydride (LiAlH4; 700 mg, 18.42 mmol, 4.30 equiv) in tetrahydrofuran (40 mL) cooled to 0° C. was added dropwise a solution of Intermediate 50.1 (700 mg, 4.27 mmol, 1.00 equiv) in tetrahydrofuran (10 mL). The mixture was stirred for 15 minutes at 0° C. and heated to reflux for 3 h. The reaction was cooled, the pH adjusted to 8-9 with potassium hydroxide (50%), and the solids filtered out. The resulting mixture was concentrated under vacuum and the resulting solids washed with hexane to afford 0.3 g (41%) of Intermediate 50.2 as a yellow solid. Intermediate 50.3: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-(benzyloxy)benzenesulfonamide) To Intermediate 50.2 (500 mg, 2.91 mmol, 1.00 equiv) in dichloromethane (10 mL) was added triethylamine (1.46 g, 0.01 mmol, 2.00 equiv) and 4-(benzyloxy)benzene-1-sulfonyl chloride (2.0 g, 0.01 mmol, 2.40 equiv) and the resulting solution was stirred for 2 h at room temperature. The reaction was diluted with dichloromethane, washed with 3×10 mL of water, dried over sodium sulfate then filtered and concentrated under vacuum to afford 0.9 g (47%) of Intermediate 50.3 as a yellow solid. Intermediate 50.4: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-hydroxybenzenesulfonamide) To intermediate 50.3 (3 g, 4.52 mmol, 1.00 equiv) in N,N-dimethylformamide (500 mL) and methanol (100 mL) was added Palladium on carbon (1 g) and the suspension stirred under hydrogen gas for 4 h at room temperature. The solids were filtered out and the resulting mixture was concentrated under vacuum to afford 1.5 g (69%) of Intermediate 50.4 as a gray solid. Intermediate 50.5: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis((E)-ethyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate) To Intermediate 50.4 (1 g, 2.06 mmol, 1.00 equiv) in N,N-dimethylformamide (30 mL) was added Cs2CO3 (1.45 g, 4.45 mmol, 2.16 equiv) and the resulting suspension stirred for 2 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (1.1 g, 4.51 mmol, 2.19 equiv) in N,N-dimethylformamide (10 mL) dropwise with stirring. The reaction was stirred for 0.5 h at room temperature and then overnight at 90° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and then eluted with dichloromethane:methanol (100:1) to afford 390 mg (20%) of Intermediate 50.5 as a yellow solid. Intermediate 50.6: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic acid) To Intermediate 50.5 (170 mg, 0.16 mmol, 1.00 equiv, 90%) in 1:1 methanol/tetrahydrofuran (20 mL) was added lithium hydroxide (4 equiv, 30 mg) and the reaction was stirred for 2 h at 27° C. The pH value of the solution was adjusted to 1˜2 with aqueous hydrochloric acid (6 mol/L) and the solids were collected by filtration. The residue was washed with ethyl acetate (2×5 mL) and then dried under vacuum to afford 150 mg (94%) of Intermediate 50.6 as a white solid. Compound 50: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) To a solution of Intermediate 50.6 (100 mg, 0.09 mmol, 1.00 equiv, 80%) in tetrahydrofuran (30 mL) was added carbonyl diimidazole (CDI; 58 mg, 0.36 mmol, 4.00 equiv) and the resulting solution was stirred for 1 h at 25° C. To this was added guanidine (2M in methanol, 10 ml) and the resulting solution was stirred for an additional 14 h at 30° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and eluted with dichloromethane:methanol (10:1). The crude product (230 mg) was then purified by reverse-phase (C18) preparative-HPLC to afford 16 mg (17%) of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.89-7.92 (4H, d, J=8.7 Hz), 7.50 (2H,$), 7.34-7.36 (4H, d, J=8.7 Hz), 7.16-7.19 (4H, d, J=8.7 Hz), 2.88-3.16 (16H, m), 2.20 (6H,$); MS (ES, m/z): 959 [M+H]+ Example 51 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic Acid Intermediate 51.1: (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylic Acid To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (900 mg, 2.83 mmol, 1.00 equiv) in methanol (20 mL) was added methanolic 2M LiOH (50 mL) and the resulting solution stirred for 2 h. The resulting mixture was concentrated under vacuum, the pH value of the solution was adjusted to 5-6 with aqueous HCl (6 mol/L) and the mixture was extracted with 3×20 mL of ethyl acetate. The organic layers were combined, washed with 2×10 mL of sodium chloride (sat.) and then dried over anhydrous sodium sulfate. The solids were filtered out and the solution was concentrated to afford 0.7 g (85%) of Intermediate 51.1 as a white solid. Intermediate 51.2: (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To Intermediate 51.1 (1 g, 3.14 mmol, 1.00 equiv) in dichloromethane (15 mL) at 0-5° C. was added dropwise a solution of sulfurochloridic acid (8.5 g, 73.28 mmol, 23.00 equiv) in dichloromethane (5 mL). The reaction was stirred overnight at 25° C. in an oil bath, and then quenched by the addition of 200 mL of water/ice. The mixture was extracted with 4×50 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate to afford 1.1 g (90%) of Intermediate 51.2 as a yellow solid. Intermediate 51.3: (E)-3-(4-(4-(N-(4-(diethoxyphosphoryl)phenyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To diethyl 4-aminophenylphosphonate (intermediate 2.2) (150 mg, 0.66 mmol, 1.00 equiv) in pyridine (3 mL) was added Intermediate 51.2 (300 mg, 0.77 mmol, 1.22 equiv) in several portions. The mixture was stirred for 3 h at 30° C. and then concentrated, the pH value of the solution adjusted to 3 with aqueous HCl (1 mol/L) and the resulting mixture extracted with 3×30 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and eluted with dichloromethane:methanol (50:1) to afford 100 mg (26%) of Intermediate 51.3 as a yellowish solid. Intermediate 51.4: (E)-diethyl 4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonate To Intermediate 51.3 (150 mg, 0.26 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added CDI (120 mg, 0.74 mmol, 1.40 equiv) and the reaction stirred for 2 h at RT. To this was added guanidine (1M in DMF; 0.8 ml) and the reaction was stirred overnight at 30° C. The resulting mixture was concentrated under vacuum and the crude product was purified by reverse phase (C18) Prep-HPLC to afford 40 mg (25%) of Intermediate 51.4 as a White solid. Compound 51: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic Acid To Intermediate 51.4 (40 mg, 0.06 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added bromotrimethylsilane (15 mg, 0.09 mmol, 1.37 equiv) dropwise with stirring and the resulting solution was stirred at 40° C. overnight. The resulting mixture was concentrated, diluted with methanol (2 mL) and then concentrated under vacuum. This operation was repeated four times. The crude product (75 mg) was purified by reverse phase (C18) Prep-HPLC to afford 12.5 mg of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): 10.54 (s, 1H), 7.82-7.79 (d, J=8.4 Hz, 2H), 7.52-7.40 (m, 5H), 7.18-7.10 (m, 4H), 2.08 (s, 3H); 31P-NMR (400 MHz, DMSO, ppm): 11.29; MS (ES, m/z): 567 [M+H]+ Example 52 (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic Acid Intermediate 52.1: diethyl 4-((4-(benzyloxy)phenylsulfonamido)methyl)benzylphosphonate To 4-diethyl 4-(aminomethyl)benzylphosphonate (intermediate 6.1) (60 mg, 0.23 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (47 mg, 0.47 mmol, 2.00 equiv) was added dropwise a solution of 4-(benzyloxy)benzene-1-sulfonyl chloride (72 mg, 0.26 mmol, 1.10 equiv) in dichloromethane (5 mL) and the resulting solution was stirred for 1 h at 25° C. The reaction mixture was concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1). The isolated product was washed with 2×50 mL of n-hexane resulting in 50 mg (43%) of Intermediate 52.1 as a white solid. Intermediate 52.2: diethyl 4-((4-hydroxyphenylsulfonamido)methyl)benzylphosphonate To Intermediate 52.1 (1.2 g, 2.39 mmol, 1.00 equiv) in methanol (20 mL) in N,N-dimethylformamide (5 mL) was added Palladium on carbon (0.9 g) and the suspension stirred overnight at 30° C. under a hydrogen atmosphere. The reaction was filtered and concentrated under vacuum to afford 1 g (91%) of Intermediate 52.2 as brown oil. Intermediate 52.3: (E)-ethyl 3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To Intermediate 52.2 (100 mg, 0.24 mmol, 1.00 equiv) in N,N-dimethylformamide (10 mL) was added Cs2CO3 (160 mg, 0.49 mmol, 2.10 equiv) and the mixture was stirred for 1.5 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (60 mg, 0.25 mmol, 1.10 equiv) in N,N-dimethylformamide (5 mL) and the reaction was stirred overnight at 90° C. The solids were filtered out and the filtrate was concentrated under vacuum, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (200:1) to afford 50 mg (23%) of Intermediate 52.3 as yellow oil. Intermediate 52.4: (E)-3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)sulfamoyl)-phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To Intermediate 52.3 (700 mg, 1.10 mmol, 1.00 equiv) in tetrahydrofuran (20 mL) and water (20 mL) was added LiOH (700 mg, 29.17 mmol, 30.00 equiv) and the resulting solution was stirred for 1 h at 25° C. The reaction was concentrated, the pH value of the solution was adjusted to 4-5 with aqueous HCl (2 mol/L) and the mixture was extracted with 2×150 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1-2:1) to afford 250 mg (35%) of Intermediate 52.4 as a white solid. Compound 52: (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic Acid Compound 52 was prepared from Intermediate 52.4 using the procedures described under Example 51, except preparative HPLC was not required, affording 84 mg (89%) of a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.83-7.80 (d, J=8.7 Hz, 2H), 7.52 (s, 1H), 7.38-7.36 (d, J=8.7 Hz, 2H), 7.23-7.20 (m, 2H), 7.17-7.09 (m, 4H), 4.06 (s, 2H), 3.11 (s, 1H), 3.04 (s, 1H), 2.23-2.23 (s, 3H). MS (ES, m/z): 595 [M+H]+. Example 53 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic Acid Compound 53: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic Acid Compound 53 was prepared from diethyl 4-aminobenzylphosphonate (intermediate 3.2) using the procedures described in Example 52 except the final product was purified by preparative HPLC. 1H-NMR (300 MHz, CD3OD, ppm): 7.77-7.74 (d, J=8.7 Hz, 2H), 7.46 (s, 1H), 7.33-7.31 (d, J=8.7 Hz, 2H), 7.21-7.19 (m, 2H), 7.06-7.11 (m, 4H), 3.04-2.97 (d, J=21.6 Hz, 2H), 2.19 (s, 3H); 31P-NMR (400 MHz, CD3OD, ppm): 22.49. MS (ES, m/z): 581 [M+H]+. Example 54 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic Acid Compound 54: (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic Acid Compound 54 was prepared from diethyl 3-aminopropylphosphonate (intermediate 4.1) using the procedures described under Example 51. 1H-NMR (400 MHz, DMSO, ppm): 7.81-7.78 (d, J=8.4 Hz, 2H), 7.57 (s, 1H), 7.42-7.39 (d, J=9.3 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 2.75-2.77 (q, 2H), 2.10 (s, 3H), 1.59-1.42 (m, 4H). MS (ES, m/z): 533 [M+H]+ Example 55 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic Acid Compound 55: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic Acid Compound 55 was prepared from diethyl 2-aminoethylphosphonate (intermediate 1.9) using the procedures described under Example 51, except purification of the final product by preparative HPLC was not required. 1H-NMR (400 MHz, DMSO, ppm): 11.02 (s, 1H), 8.28 (s, 4H), 7.79-7.82 (d, J=9.2 Hz, 2H), 7.62-7.65 (t, 1H), 7.54-7.49 (m, 3H), 7.26-7.24 (d, J=8.8 Hz, 2H), 3.42-3.58 (m, 2H), 2.15 (s, 3H), 1.73-1.65 (m, 2H); 31P-NMR (400 MHz, DMSO, ppm): 21.36. MS (ES, m/z): 519 [M+H]+ Example 56 (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic Acid Compound 56: (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic Acid Compound 56 was prepared from diethyl aminomethylphosphonate (intermediate 5.3) using the procedures described under Example 51, except purification of the final product by Flash-Prep-HPLC with CH3CN:water (10:100). 1H-NMR (300 MHz, DMSO, ppm): δ 7.84-7.81 (d, J=8.1 Hz, 2H), 7.57 (s, 1H), 7.45-7.42 (d, J=9.3 Hz, 3H), 7.18-7.15 (d, J=8.4 Hz, 2H), 3.04-3.01 (m, 2H), 2.08 (s, 3H). MS (ES, m/z): 505 [M+H]+. Example 57 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Compound 57: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenyl-sulfonamido)acetic Acid Compound 57 was prepared from ethyl 2-((diethoxyphosphoryl)methylamino)acetate (intermediate 8.2) using the procedures described under Example 51. 1H-NMR (300 MHz, DMSO, ppm): δ 8.33 (s, 4H), 7.84-7.81 (d, J=8.1 Hz, 2H), 7.52-7.50 (d, J=7.8 Hz, 2H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.11 (s, 2H), 2.14 (s, 3H); MS (ES, m/z): 563 [M+H]+. Example 58 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.1: (E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic Acid (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid (Intermediate 51.2) was converted to intermediate 58.1 using procedures outlined in Example 58, with aqueous ammonia as the amine. The title compound was obtained as a yellow solid. Intermediate 58.2: (E)-methyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.1 (2 g, 5.42 mmol, 1.00 equiv) in methanol (60 mL). This was followed by the addition of thionyl chloride (2.5 g, 21.19 mmol, 4.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at 50° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7 with ammonia (2 mol/L). The resulting solution was extracted with 10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (30:1-1:1). This resulted in 2.1 g (97%) of the title compound as a white solid. Intermediate 58.3: (E)-methyl 3-(4-(4-(N-(ethoxycarbonyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.2 (280 mg, 0.73 mmol, 1.00 equiv) in acetone (20 mL). This was followed by the addition of potassium carbonate (200 mg, 1.45 mmol, 2.00 equiv). The mixture was stirred for 3 h at room temperature. To this was added ethyl chloroformate (90 mg, 0.83 mmol, 1.20 equiv). The resulting solution was stirred for 6 h at 65° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 2-3 with hydrogen chloride (1 mol/L). The resulting solution was extracted with 2×50 ml of ethyl acetate and the organic layers combined. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (72%) of the title compound as yellow oil. Intermediate 58.4: (E)-methyl 3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylate Into a 100-mL round-bottom flask, was placed a solution of intermediate 58.3 (300 mg, 0.66 mmol, 1.00 equiv) in toluene (20 mL), 2-methoxyethanamine (100 mg, 1.33 mmol, 1.10 equiv). The resulting solution was stirred for 1 h at 110° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (1:1). This resulted in 0.3 g (92%) of the title compound as a yellow solid. Compound 58: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.4 was converted to compound 58 using the procedures described under Example 52. Purification by preparative HPLC gave a TFA salt of the title compound 1H-NMR (300 MHz, DMSO, ppm): δ10.62 (s, 1H), 8.33 (s, 3H), 7.94-7.91 (d, J=8.7 Hz, 2H), 7.55-7.52 (d, J=9 Hz, 2H), 7.45 (s, 1H), 7.26-7.22 (d, J=9 Hz, 2H), 6.55 (s, 1H), 3.37-3.27 (m, 2H), 3.21 (s, 3H), 3.15-3.12 (m, 2H), 2.16 (s, 3H). MS (ES, m/z): 512 [M+H]+. Example 59 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic Acid Intermediate 59.1: (E)-di-tert-butyl 2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinate Intermediate 59.1 was prepared from di-tert-butyl 2-aminosuccinate using the procedures described under Example 51. Compound 59: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of intermediate 59.1 (100 mg, 0.16 mmol, 1.00 equiv) in tetrahydrofuran (5 mL). This was followed by the addition of 2,2,2-trifluoroacetic acid (10 mL) dropwise with stirring. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 63.6 mg (64%) of a TFA salt of the title compound as a light yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.26 (s, 4H), 7.82-7.79 (d, J=8.7 Hz, 2H), 7.49-7.45 (m, 3H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.00-3.96 (m, 1H), 2.65-2.60 (m, 1H), 2.48-2.41 (m, 1H), 2.13 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 60 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Intermediate 60.1: tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed copper(I) iodide (1.0 g, 5.26 mmol, 0.20 equiv), L-proline (930 mg, 8.09 mmol, 0.30 equiv) in DMSO (50 mL). The resulting solution was stirred for 15 min at room temperature. Then, tert-butyl piperazine-1-carboxylate (5 g, 26.88 mmol, 1.00 equiv), 1,3-dibromobenzene (9.5 g, 40.25 mmol, 1.50 equiv), potassium carbonate (7.4 g, 53.62 mmol, 1.99 equiv) was added. The resulting solution was stirred overnight at 90° C. The reaction was then quenched by the addition of 100 mL of water. The resulting solution was extracted with 2×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 2.9 g of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate as a white solid. Intermediate 60.2: 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic Acid Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate (3.8 g, 11.14 mmol, 1.00 equiv) in toluene/tetrahydrofuran=1:1 (40 mL). This was followed by the addition of n-BuLi (4.9 mL, 2.5M/L) dropwise with stirring at −70° C. The resulting solution was stirred for 30 min at −70° C. To this was added triisopropyl borate (2.5 g, 13.30 mmol, 1.19 equiv)dropwise with stirring at −70° C. The mixture was warmed to 0° C., the reaction was then quenched by the addition of 13 mL of saturated ammonium chloride and 3.4 mL of water. Phosphoric acid (85 wt %, 1.5 g, 1.2 equiv) was added and the mixture was stirred for 30 min. The organic layer was separated and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was dissolved in 20 mL of toluene. The product was precipitated by the addition of 80 mL of heptane. The solids were washed with 20 mL of heptane and collected by filtration. This resulted in 2.9 g (85%) of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid as a white solid. Intermediate 60.3: 6-chloroquinazoline-2,4(1H,3H)-dione Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-amino-5-chlorobenzoic acid (10 g, 58.48 mmol, 1.00 equiv) in water (100 mL), acetic acid (8 g, 133.33 mmol, 2.24 equiv). This was followed by the addition of NaOCN (8.2 g, 126.15 mmol, 2.13 equiv). The mixture was stirred for 30 mins at 30° C. To this was added sodium hydroxide (86 g, 2.15 mol, 37.00 equiv). The resulting solution was stirred overnight at 30° C. The solids were collected by filtration. The residue was dissolved in water. The pH value of the solution was adjusted to 7 with hydrogen chloride (12 mol/L). The solids were collected by filtration. This resulted in 5 g (44%) of 6-chloroquinazoline-2,4(1H,3H)-dione as a white solid. Intermediate 60.4: 2,4,6-trichloroquinazoline Into a 50-mL round-bottom flask, was placed a solution of 6-chloroquinazoline-2,4(1H,3H)-dione (2.2 g, 11.22 mmol, 1.00 equiv) in 1,4-dioxane (20 mL), phosphoryl trichloride (17 g, 111.84 mmol, 10.00 equiv). The resulting solution was stirred overnight at 120° C. in an oil bath. The resulting mixture was concentrated under vacuum. The reaction was then quenched by the addition of 200 mL of water. The resulting solution was extracted with 3×200 mL of ethyl acetate and the organic layers combined. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.8 g (69%) of 2,4,6-trichloroquinazoline as a white solid. Intermediate 60.5: tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid (intermediate 60.2) (960 mg, 3.14 mmol, 1.00 equiv), 2,4,6-trichloroquinazoline (800 mg, 3.43 mmol, 1.09 equiv), PdCl2(dppf).CH2Cl2 (130 mg, 0.16 mmol, 0.05 equiv), Potassium Carbonate (860 mg, 6.23 mmol, 1.99 equiv) in N,N-dimethylformamide (30 mL). The resulting solution was stirred for 3 h at 85° C. The reaction was then quenched by the addition of 50 mL of saturated brine. The resulting solution was extracted with 2×30 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 0.45 g (31%) of tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate as a yellow solid. Intermediate 60.6: 2,6-dichloro-4-(3-(piperazin-1-yl)phenyl)quinazoline 2,2,2-trifluoroacetate To intermediate 60.5 (100 mg, 0.22 mmol, 1.00 equiv) was added dichloromethane (10 mL) and 2,2,2-trifluoroacetic acid (124 mg, 1.09 mmol, 5.00 equiv) and the resulting solution was stirred for 3 h at 40° C. The reaction was then concentrated under vacuum to afford 70 mg of Intermediate 60.6 as yellow solid. Intermediate 60.7: tert-butyl (4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.6 (70 mg, 0.15 mmol, 1.00 equiv) in dichloromethane (10 mL) was added N-tert-butoxycarbonyl-N′-tert-butoxycarbonyl-N″-trifluoromethanesulfonylguanidine (91 mg, 0.23 mmol, 1.57 equiv) and triethylamine (38 mg, 0.38 mmol, 2.54 equiv) and the resulting solution was stirred for 3 h at 40° C. The mixture was then concentrated under vacuum, the residue applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:8) to afford 70 mg (77%) of Intermediate 60.7 as a yellow solid. Intermediate 60.8: tert-butyl (4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.7 (70 mg, 0.12 mmol, 1.00 equiv) in NMP (1.5 mL) was added guanidine (0.24 mL, 2.00 equiv, 1 mol/L) and 1,4-diaza-bicyclo[2.2.2]octane (26 mg, 0.23 mmol, 1.99 equiv) and the resulting solution stirred for 1.5 h at 25° C. The reaction was quenched by the addition of 20 mL of water and the resulting solution was extracted with 2×20 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (5:1) to afford 30 mg (41%) of Intermediate 60.8 as a yellow solid. Compound 60: 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide To Intermediate 60.8 (30 mg, 0.05 mmol, 1.00 equiv) in dichloromethane (5 mL) was added 2,2,2-trifluoroacetic acid (0.2 mL) and the resulting solution stirred for 6 h at 30° C. The mixture was then concentrated under vacuum and the residue lyophilized to afford 20 mg (75%) of a TFA salt of the title compound as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.97-8.08 (m, 3H), 7.54-7.59 (m, 1H), 7.28-7.39 (m, 3H), 3.71 (d, J=4.8 Hz, 4H), 3.44 (d, J=4.8 Hz, 4H). MS (ES, m/z): 424.0 [M+H]+. Example 61 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Intermediate 61.1: 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride Following the procedures outlined in example 60, substituting 1,4-dibromobenzene for 1,3-dibromobenzene, 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride was obtained as a red solid. Intermediate 61.2: methyl 2-(4-(4-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)acetate To methyl 2-bromoacetate (116 mg, 0.76 mmol, 3.00 equiv) in N,N-dimethylformamide (10 mL) was added potassium carbonate (140 mg, 1.01 mmol, 4.00 equiv) followed by the portion-wise addition of Intermediate 61.1 (100 mg, 0.25 mmol, 1.00 equiv) and the reaction was stirred for 4 h at 30° C. The mixture was concentrated under vacuum and the residue applied onto a silica gel column, eluting with ethyl acetate/petroleum ether (1:5) to afford 60 mg (55%) of Intermediate 61.2 as a yellow solid. Intermediate 61.3: methyl 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetate To Intermediate 61.2 (60 mg, 0.14 mmol, 1.00 equiv) in NMP (5 mL) was added 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 15 mg, 0.13 mmol, 1.00 equiv), guanidine (0.3 mL of a 1M solution in NMP, 2.00 equiv) and the resulting solution was stirred for 2 h at 30° C. The reaction was diluted with 10 mL of water, extracted with 4×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (50:1-20:1) to afford 30 mg (47%) of Intermediate 61.3 as a yellow solid. Compound 61: 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid To Intermediate 61.3 (20 mg, 0.04 mmol, 1.00 equiv) in methanol (5 mL) was added a solution of LiOH (32 mg, 1.33 mmol, 30.00 equiv) in water (1 mL) and the reaction was stirred for 3 h at 25° C. The solution was concentrated under vacuum, the pH value adjusted to 6 with aqueous HCl (1 mol/L) and the resulting solids were collected by filtration to afford 15.6 mg (80%) of compound 61 as a yellow solid. 1H-NMR (300 MHz, DMSO ppm): 8.07-8.06 (t, 1H), 7.96-7.93 (t, 2H), 7.72-7.69 (d, J=8.7 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 3.58-3.54 (m, 4H), 3.43-3.36 (m, 6H). MS (ES, m/z): 440 [M+H]+. Example 62 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Compound 62: 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Compound 62 was prepared from intermediate 60.6, using the procedures described for Example 61. 1H-NMR (300 HHz, DMSO-d6, ppm): 7.80-7.86 (m, 3H), 7.41-7.46 (m, 1H), 7.16-7.22 (m, 2H), 7.08-7.10 (m, 1H), 3.13 (brs, 4H), 2.71 (brs, 4H). MS (ES, m/z): 440 [M+H]+; Example 63 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Intermediate 63.1: (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic Acid Into a 50-mL 3-necked round-bottom flask, was placed ZnCl2 (0.5 g, 0.50 equiv), acetic anhydride (5 mL). To the above was added sodium (2S,3R,4S,5R)-2,3,4,5,6-pentahydroxyhexanoate (1.6 g, 6.97 mmol, 1.00 equiv, 95%) at −5° C. Anhydrous HCl was introduced in for 0.5 h at 0° C. The resulting solution was stirred overnight at room temperature. The reaction mixture was cooled to 0° C. The reaction was then quenched by the addition of 8 g of ice. The mixture was stirred for 1 h at room temperature. The resulting solution was diluted with 20 mL of water. The resulting solution was extracted with 3×20 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.0 g (35%) of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid as a yellow liquid. Intermediate 63.2: (2R,3R,4S,5R)-6-chloro-6-oxohexane-1,2,3,4,5-pentayl pentaacetate Into a 50-mL 3-necked round-bottom flask, was placed a solution of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid (intermediate 63.1) (610 mg, 1.35 mmol, 1.00 equiv, 90%) in CCl4 (30 mL). This was followed by the addition of oxalyl dichloride (3 mL) dropwise with stirring. The resulting solution was heated to reflux for 3 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 0.62 g (crude) of intermediate 63.2 as yellow oil. Intermediate 63.3: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine 2,2,2-trifluoroacetate To Intermediate 60.6 (150 mg, 0.32 mmol, 1.00 equiv) in dichloromethane (5 mL) was added triethylamine (96 mg, 0.95 mmol, 2.99 equiv) and the solution cooled to 0° C. Intermediate 63.2 (407 mg, 0.96 mmol, 3.02 equiv) in dichloromethane (5 mL) was then added dropwise and the reaction was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:2) to afford 150 mg (62%) of Intermediate 63.3 as a yellow solid. Intermediate 63.4: (2R,3R,4S,5R)-6-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)-6-oxohexane-1,2,3,4,5-pentayl pentaacetate To Intermediate 63.3 (150 mg, 0.20 mmol, 1.00 equiv) in NMP (5 mL) was added guanidine (0.8 mL of a 1 mol/L solution in NMP; 4.0 equiv) and 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 44.8 mg, 0.40 mmol, 2.00 equiv) and the resulting solution was stirred for 1.5 h at 30° C. The reaction was quenched by the addition of 10 mL of water and then extracted with 2×10 mL of ethyl acetate. The organic layers combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and then eluted with dichloromethane/methanol (10:1) to afford 30 mg (19%) of Intermediate 63.4 as a yellow solid. Compound 63: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine To Intermediate 63.4 (25 mg, 0.03 mmol, 1.00 equiv) in methanol (5 mL), was added a solution of LiOH (3.9 mg, 0.16 mmol, 5.03 equiv) in water (0.2 mL) and the resulting solution was stirred for 0.5 h at 0° C. The pH value of the solution was adjusted to 7 with aqueous HCl (5%), the resulting mixture was concentrated under vacuum and then purified by Prep-HPLC to afford 10 mg (45%) a TFA salt of compound 63 as a yellow solid. LCMS (ES, m/z): 560.0 [M+H]+; 1H-NMR (300 MHz, CD3OD, ppm): 7.96-8.09 (m, 3H), 7.52-7.57 (m, 1H), 7.25-7.39 (m, 3H), 4.73 (d, J=5.1 Hz, 1H), 4.07-4.09 (m, 1H), 3.62-3.89 (m, 8H). MS (ES, m/z): 560.0 [M+H]+ Example 64 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic Acid Intermediate 64.1: methyl 3-(4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)propanoate To Intermediate 60.6 (200 mg, 0.51 mmol, 1.00 equiv) in tetrahydrofuran (10 mL) was added methyl acrylate (253 mg, 2.94 mmol, 5.81 equiv) and triethylamine (253 mg, 2.50 mmol, 4.95 equiv) and the resulting mixture was stirred for 3 h at room temperature. The reaction was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:3) to afford 100 mg (44%) of Intermediate 64.1 as a yellow solid. Compound 64: 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic Acid Compound 64 was prepared from Intermediate 64.1 using the procedures described in Example 61, affording 25 mg of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 7.89-7.92 (m, 3H), 7.42-7.47 (m, 1H), 7.35 (brs, 1H), 7.15-7.24 (m, 2H), 3.25 (brs, 4H), 2.63-2.74 (m, 6H), 2.31-2.35 (m, 2H). LCMS (ES, m/z): 454.0 [M+H]+ Example 65 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 65: 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of the title compound was prepared using procedures similar to those outlined in Example 61, starting with intermediate 60.6 and tert-butyl 3-bromopropylcarbamate. MS (ES, m/z): 439 [M+H]+ Example 66 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Compound 66: 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide A TFA salt of Compound 66 was prepared from Intermediate 61.1, using the procedures described in Example 60. MS (ES, m/z): 424 [M+H]+ Example 67 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 67: 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of Compound 67 was prepared from Compound 65 using the procedures outlined in Example 60. MS (ES, m/z): 481 [M+H]+ Example 68 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 68: 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine A TFA salt of Compound 68 was prepared from Compound 60.6 and ethylene oxide using the procedures outlined in Example 61. MS (ES, m/z): 426 [M+H]+ Example 69 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 69: 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine a TFA salt of Compound 69 was prepared from Intermediate 61.1 using the procedures described in Example 68. MS (ES, m/z): 426 [M+H]+ Example 70 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid 2,2,2-trifluoroacetic Acid Salt Compound 70: 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic Acid Compound 70 was prepared from Intermediate 60.6 and methyl 4-bromobutanoate using the procedures described in Example 61. Purification by silica gel column with methanol:water (0˜0.04)gave a TFA salt of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 11.33 (s, 1H), 8.09-8.19 (m, 2H), 7.96-7.96 (s, 1H), 7.53-7.58 (m, 1H), 7.25-7.37 (m, 3H), 4.0 (s, 4H), 3.16 (s, 6H), 2.34-2.39 (m, 2H), 1.92 (s, 2H); MS (ES, m/z): 468 [M+H] Examples 71-104 Examples 71-104 were prepared using methods described in Examples 1-70. Characterization data (mass spectra) for compounds 71-104 are provided in Table 3. Example 71 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propane-1-sulfonic Acid Example 72 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Example 73 4-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic Acid Example 74 (E)-N-(diaminomethylene)-3-(4-(4-(N-(ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 75 (E)-N-(diaminomethylene)-3-(4-(4-(N-(2-(dimethylamino)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 76 4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic Acid Example 77 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-methyl-N-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 78 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Example 79 2-(4-(4-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 80 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)benzenesulfonamide Example 81 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 82 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 83 1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazole-4,5-dicarboxylic Acid Example 84 (E)-3-(4-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 85 2-(4-(4-(4-(2-aminoethyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 86 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 87 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 88 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 89 1-(4-(4-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 90 (E)-2-(4-(2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethyl)piperazin-1-yl)acetic Acid Example 91 N-(1-amino-1-imino-5,8,11-trioxa-2-azamidecan-13-yl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 92 N-(1-amino-1-imino-5,8,11-trioxa-2-azamidecan-13-yl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 93 (E)-1-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)guanidine Intermediate 93.1 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (Intermediate 41.2) (800 mg, 2.51 mmol) in dry DCM (25 mL) under N2 at −78° C. was added a solution of DIBAL-H (8.79 mL, 1M in DCM) dropwise over several minutes. The reaction was allowed to warm to room temperature over 2 hours. The reaction mixture was cooled to 0° C., quenched with 25 mL of Rochelle's Salt solution (10% w/v in water), and stirred vigorously for 1 hour. The resulting suspension was diluted with water (20 mL) and extracted with DCM (3×30 mL). The combined organic layers were dried over Na2SO4 and concentrated. The resulting oil was applied onto a silica gel column (50% EtOAc in hexanes) to yield 566 mg of the title compound (82%) as a yellow oil. Intermediate 93.2 (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol (Intermediate 93.1) (410 mg, 1.49 mmol) in dry toluene (7.45 mL) under N2 was added PPh3 and phthalimide. The resulting solution was cooled to 0° C. and diethyl azodicarboxylate (DEAD, 0.748 mL) was added dropwise over several minutes. The reaction was allowed to warm to room temperature and stirred overnight. After diluting with EtOAc (20 mL), the organic layer was washed with water (2×30 mL), brine (30 mL) and dried over Na2SO4. After removal of solvent, the resulting residue was applied to a silica gel column (15% EtOAc in hexanes) to yield 385 mg of the title compound (63%) as an oil. Intermediate 93.3 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine To a solution of (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione (Intermediate 93.2, 100 mg, 0.25 mmol) in methanol (1 mL) was added hydrazine hydrate (25 mg, 0.5 mmol) and the reaction stirred at 50° C. overnight. The white solid was filtered with DCM, and the solvent removed from the filtrate. The residue was brought up in DCM and filtered. This was repeated until no further precipitate formed to give 49.5 mg of the title compound (71%) as a yellow oil, a 10 mg portion of which was diluted with 1N HCl and freeze dried to give 7.8 mg of the title compound as an HCl salt. 1H-NMR (400 MHz, d6-DMSO): δ 8.25 (s, 2H), 7.37 (t, 2H), 7.20 (d, 2H), 7.12 (t, 1H), 6.97 (s, 1H), 3.57 (s, 2H), 1.96 (s, 3H). MS (m/z): 258.96 (M−NH2). Intermediate 93.4: (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine (intermediate 93.3, 100 mg, 0.364 mmol) in DCM (0.364 mL, 1M) was added chlorosulfonic acid (2.91 mmol, 194.3 uL) in 4 portions dropwise every 20 minutes. The reaction was stirred an additional 20 minutes and then quenched into a solution of N1,N1-dimethylethane-1,2-diamine (3.78 mL) in DCM (12 mL) at 0° C. The resulting solution was warmed to room temperature and stirred for 30 minutes. Upon completion the solvent was removed and the residue brought up in 1:1 Acetonitrile:water solution and purified by preparative HPLC to give 74.5 mg of the title compound (31%) as a TFA salt. Compound 93: (E)-4-(2,6-difluoro-4-(3-guanidino-2-methylprop-1-enyl)phenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide (Intermediate 93.4, 39.3 mg, 0.092 mmol) in dry THF (460 uL, 0.2M) under N2 was added TEA (0.276 mmol, 27.9 mg) and (1H-pyrazol-1-yl)methanediamine hydrochloride (0.102 mmol, 14.9 mg). The resulting solution was stirred for 1 hour, at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 1:1 ACN:water and purified by preparative HPLC to give 16.9 mg of the title compound (26%) as a TFA salt. 1H-NMR (400 MHz, CD4OD): δ 7.87 (d, 2H), 7.12 (d, 2H), 7.08 (d, 2H), 3.92 (s, 2H), 3.62 (m, 2H), 3.29 (m, 2H), 3.17 (t, 2H), 2.01 (s, 6H), 1.91 (s, 3H). MS (m/z): 468.12 (M+H)+. Example 94 N-(2-(2-(2-(2-(4,5-bis(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 95 N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 96 N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 97 N1,N31-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 98 N1,N31-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 99 (E)-3-(4-(4-(N-(1-amino-1-imino-5,8,11-trioxa-2-azamidecan-13-yl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 100 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 101 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 102 N1,N31-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 103 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 104 N1,N4-bis(20-(4-(((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide TABLE 3 Analytical Data for Example Compounds 71-104 Example [M + H]+ 71 533 72 523 73 468 74 482 75 525 76 527 77 589 78 493 79 439 80 628 81 1239.1 82 546.3 83 686 84 542 85 425 86 629 87 604 [M + 2]/2 88 604 [M + 2]/2 89 481 90 581 91 588 92 588 94 658 95 588 96 588 97 1571 98 1571 99 628 100 1117 101 628 102 1649 103 1117 104 1549 Example 105 4-/3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-polyethylimino-sulfonamide Example 105 is prepared from polyethylamine according to the procedures in described in Examples 1-70, where “x,” “y,” “n” and “m” are determined by the stoichiometry of the sulfonylchloride and polyethylamine. Example 106 As illustrated below, other polymeric nucleophiles are employed using the procedures described in Examples 1-70 to prepare polyvalent compounds: Example 107 As illustrated below, polymeric electrophiles are used with nucleophilic Intermediates to prepare polyvalent compounds using, for example, the procedures outlined in Example 68. Example 108-147 General Procedure for copolymerization of Intermediate 108.1 and Intermediate 108.2 with other monomers Intermediate 108.1: N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acrylamide Intermediate 108.1 (Int 108.1) was prepared from intermediate 30.7 and acrylic acid using procedures described in Examples 1-70. MS (m/z): 361.1 (M+H) Intermediate 108.2: N-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethyl)acrylamide Intermediate 108.2 (Int 108.2) was prepared from intermediate 30.7 using procedures described in Examples 1-70. MS (m/z): 404.1 (M+H) A 20-mL vial is charged with a total of 1 g of Intermediate 108.1 or Intermediate 108.2 and other monomers, a total of 9 g of isopropanol/dimethylformamide solvent mixture, and 20 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and is sealed under a nitrogen atmosphere. The stoichiometry for each example is shown in Table 1. The reaction mixture is heated in an oil bath to 70° C. under stirring. After 8 h at 70° C. the reaction mixture is cooled down to ambient temperature and then 10 mL of water is added. The solution is then transferred to a dialysis bag (MWCO 1000) for dialysis against DI water for 2 days. The resulting solution is freeze-dried to afford copolymers. TABLE 4 Examples of conditions that can be used to create copolymers from acrylamide-functionalized NHE inhibitors and substituted acrylamides and methacrylates Monomer (mg) Int 108.1 Poly(ethylene Or glycol) methyl Solvent Exam- Int acryl ether butyl acrylic (g) ple 108.2 amide methacrylate acrylate acid IPA/DMF 108 10 990 0 0 0 0/9 109 50 950 0 0 0 0/9 110 100 900 0 0 0 0/9 111 250 750 0 0 0 0/9 112 500 500 0 0 0 0/9 113 10 990 0 0 0 2.25/6.75 114 50 950 0 0 0 2.25/6.75 115 100 900 0 0 0 2.25/6.75 116 250 750 0 0 0 2.25/6.75 117 500 500 0 0 0 2.25/6.75 118 10 990 0 0 0 4.5/4.5 119 50 950 0 0 0 4.5/4.5 120 100 900 0 0 0 4.5/4.5 121 250 750 0 0 0 4.5/4.5 122 500 500 0 0 0 4.5/4.5 123 10 990 0 0 0 6.75/2.25 124 50 950 0 0 0 6.75/2.25 125 100 900 0 0 0 6.75/2.25 126 250 750 0 0 0 6.75/2.25 127 500 500 0 0 0 6.75/2.25 128 10 990 0 0 0 9/0 129 50 950 0 0 0 9/0 130 100 900 0 0 0 9/0 131 250 750 0 0 0 9/0 132 500 500 0 0 0 9/0 133 10 0 990 0 0 6.75/2.25 134 50 0 950 0 0 6.75/2.25 135 100 0 900 0 0 6.75/2.25 136 250 0 750 0 0 6.75/2.25 137 500 0 500 0 0 6.75/2.25 138 100 775 0 25 0 6.75/2.25 139 100 750 0 50 0 6.75/2.25 140 100 700 0 100 0 6.75/2.25 141 100 650 0 150 0 6.75/2.25 142 100 600 0 200 0 6.75/2.25 143 100 800 0 0 10 6.75/2.25 144 100 800 0 0 25 6.75/2.25 145 100 800 0 0 50 6.75/2.25 146 100 800 0 0 100 6.75/2.25 147 100 800 0 0 150 6.75/2.25 Example 148 Synthesis of 2-Methyl-acrylic acid 3-trimethylsilanyl-prop-2-ynyl ester A solution of trimethylsilyl propyn-1-ol (1 g, 7.8 mmol) and Et3N (1.4 mL, 10 mmol) in Et2O (10 mL) is cooled to −20° C. and a solution of methacryloyl chloride (0.9 mL, 9.3 mmol) in Et2O (5 mL) is added dropwise over 1 h. The mixture is stirred at this temperature for 30 min, and then allowed to warm to ambient temperature overnight. Any precipitated ammonium salts can be removed by filtration, and volatile components can be removed under reduced pressure. The crude product is then purified by flash chromatography. Examples 149-154 General Procedure for synthesis of poly N-(2-hydroxypropyl)methacrylamide-co-prop-2-ynyl methacrylate General procedure for copolymerization of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate A 100-mL round bottom flask equipped with a reflux condenser is charged with a total 5 g of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate, 45 g of isopropanol/dimethylformamide solvent mixture, and 100 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and maintained under nitrogen atmosphere during the reaction. Stoichiometry for each example is shown in Table 5. The reaction mixture is heated in an oil bath to 70° C. under stirring, and after 8 h the reaction mixture is cooled to ambient temperature and then 30 mL of solvent is evaporated under vacuum. The resulting solution is then precipitated into 250 mL of Et2O. The precipitate is collected, redissolved in 10 mL of DMF, and precipitated again into 250 mL of Et2O. The resulting precipitate is dried under vacuum to afford copolymers. General Procedure for Removal of Trimethyl Silyl Group The trimethyl silyl protected polymer (4 g), acetic acid (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups), and 200 mL of THF is mixed in a 500 mL flask. The mixture is cooled to −20° C. under nitrogen atmosphere and followed by addition of 0.20 M solution of tetra-n-butylammonium fluoride trihydrate (TBAF.3H2O) in THF (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups) over a course of 5 min. The solution is stirred at this temperature for 30 min and then warmed to ambient temperature for an additional 8 hours. The resulting mixture is passed through a short silica pad and then precipitated in Et2O. The resulting precipitate is dried under vacuum to afford copolymers. TABLE 5 Examples of copolymerization conditions that can be used to prepared polymethacrylates Monomer (g) N-(2-hydroxypropyl) 3-(trimethylsilyl)prop- Solvent (g) Example methacrylamide 2-ynyl methacrylate IPA/DMF 149 2.5 2.5 0/45 150 2.5 2.5 11.25/33.75 151 2.5 2.5 22.5/22.5 152 2.5 2.5 33.75/11.25 153 2.5 2.5 45/0 Examples 154-167 General procedure for post-modification of Examples 149-153 by [2+3] cycloaddition Polymer 154 (54 mg) containing 0.1 mmol of alkyne moiety, a total of 0.1 mmol of azido-compounds (Intermediate 28.1, 13-azido-2,5,8,11-tetraoxamidecane, N-(2-azidoethyl)-3-(dimethylamino)propanamide and 1-azidodecane, corresponding ratios shown in Table 6), 0.05 mmol of diisopropylethylamine, and 1 mL of DMF is mixed at ambient temperature and degassed for 1 min. While maintaining a nitrogen atmosphere, copper iodide (10 mg, 0.01 mmol) is then added to the mixture. The solution is stirred at ambient temperature for 3 days and then passed through a short neutral alumina pad. The resulting solution is diluted with 10 mL of DI water, dialyzed against DI water for 2 days, and lyophilized to afford copolymers. TABLE 6 Examples of compounds that can be prepared from polymeric alkynes and varying ratios of substituted azides via [3 + 2] cycloaddition Azido compounds (mmol) 13-azido- N-(2-azidoethyl)- 2,5,8,11- 3- Intermediate tetraoxatri- (dimethylamino) 1- Example 28.1 decane propanamide azidodecane 155 0.002 0.098 0 0 156 0.005 0.095 0 0 157 0.01 0.09 0 0 158 0.025 0.075 0 0 159 0.05 0.05 0 0 160 0.01 0.088 0.002 0 161 0.01 0.085 0.005 0 162 0.01 0.08 0.01 0 163 0.01 0.07 0.02 0 164 0.01 0.088 0 0.002 165 0.01 0.085 0 0.005 166 0.01 0.08 0 0.01 167 0.01 0.07 0 0.02 Example 168 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 168.1, bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate To a 500 ml 3-necked roundbottom flask was added 2,3-dihydroxysuccinic acid (10.0 g, 66.62 mmol, 1.00 equiv), N,N′-Dicyclohexyl carbodiimide (DCC; 30.0 g, 145.42 mmol, 2.18 equiv) and tetrahydrofuran (THF; 100 mL). This was followed by the addition of a solution of N-hydroxysuccinimide (NHS; 16.5 g, 143.35 mmol, 2.15 equiv) in THF (100 mL) at 0-10° C. The resulting solution was warmed to room temperature and stirred for 16 h. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from N,N-dimethylformamide (DMF)/ethanol in the ratio of 1:10. This resulted in 5.2 g (22%) of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 6.70 (d, J=7.8 Hz, 2H), 4.89 (d, J=7.2 Hz, 2H), 2.89 (s, 8H). MS (m/z): 367 [M+Na]+. Intermediate 168.2 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a 50-mL 3-necked round-bottom flask was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3.2 g, 21.59 mmol, 21.09 equiv) and dichloromethane (DCM; 20 mL). This was followed by the addition of a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (Intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv) in DMF (5 mL) dropwise with stirring. The resulting solution was stirred for 5 h at which time it was diluted with 100 mL of ethyl acetate. The resulting mixture was washed successively with 2×10 mL of water and 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (58%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 168, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (300 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (92.5 mg, 0.27 mmol, 0.45 equiv) and triethylamine (TEA; 1.0 g, 9.88 mmol, 16.55 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (300 mg) was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (20% CH3CN up to 40% in 5 min, up to 100% in 2 min); Detector, uv 220&254 nm. This resulted in 192.4 mg (28%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 7.92 (d, J=7.8 Hz, 2H, 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119 [M+H]+. Example 169 N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Intermediate 169.1, N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.26 mmol, 1.00 equiv) in DCM (5 mL). This was followed by the addition of a solution of ethane-1,2-diamine (307 mg, 5.11 mmol, 19.96 equiv) in DCM/DMF (10/1 mL). The resulting solution was stirred for 5 h at room temperature. The mixture was concentrated under vacuum. The resulting solution was diluted with 50 mL of ethyl acetate and washed with 2×10 mL of water and then 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to afford 90 mg (76%) of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 169, N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (250 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (92 mg, 0.27 mmol, 0.44 equiv) and triethylamine (280 mg, 2.77 mmol, 4.55 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum, the residue diluted with 100 mL of ethyl acetate and then washed with 2×10 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (25% CH3CN up to 35% in 5 min, up to 100% in 2.5 min); Detector, uv 220&254 nm. This resulted in 88.4 mg (15%) of a TFA salt of N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, CD3OD, ppm) δ 7.67 (d, J=7.6 Hz, 2H), 7.61 (s, 2H), 7.44 (t, J=7.6 Hz, 2H), 7.37 (d, J=7.6 Hz, 2H), 7.25 (d, J=2 Hz, 2H), 6.72 (s, 2H), 4.33 (t, J=6.4 Hz, 2H), 4.30 (s, 2H), 3.64 (m, 4H), 3.21 (s, 4H), 2.98 (m, 2H), 2.90 (m, 4H), 2.65 (m, 2H), 2.42 (s, 6H). MS (m/z): 943 [M+H]+. Example 170 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 170.1, 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Using procedures outlined in Example 1 to prepare intermediate 1.6, substituting N-(2,4-dichlorobenzyl)ethanamine for 1-(2,4-dichlorophenyl)-N-methylmethanamine, the title compound was prepared as a hydrochloride salt. Intermediate 170.2 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (300 mg, 1.51 mmol, 1.00 equiv) in DCM (10 mL) was added TEA (375 mg, 3.00 equiv) followed by the portionwise addition of 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.23 mmol, 1.00 equiv). The resulting solution was stirred for 1 h at room temperature and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 0.4 g (41%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Intermediate 170.3, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL round-bottom flask, was placed N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (400 mg, 0.68 mmol, 1.00 equiv), triphenylphosphine (400 mg, 2.20 equiv), THF (10 mL) and water (1 mL) and the reaction was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and applied onto a preparative thin-layer chromatography (TLC) plate, eluting with DCM:methanol (5:1). This resulted in 350 mg (73%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 170, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.18 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (25 mg, 0.07 mmol, 0.45 equiv) and triethylamine (75 mg, 4.50 equiv). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC with water:methanol (1:10-1:100). This resulted in 12.1 mg (5%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.70-7.60 (m, 8H), 7.53-7.49 (m, 6H), 6.88 (s, 2H), 5.61-5.59 (m, 2H), 4.38 (m, 2H), 4.24-4.22 (m, 2H), 3.78-3.72 (m, 2H), 3.58-3.48 (m, 2H), 3.43 (m, 7H), 3.43-3.40 (m, 11H), 3.27-3.20 (m, 5H), 2.91-2.87 (m, 6H), 2.76-2.70 (m, 2H), 2.61-2.55 (m, 3H), 1.04-0.99 (m, 6H). MS (m/z): 1235 [M+H]+. Example 171 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline Intermediate 171.1, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (10.0 g, 41.15 mmol, 1.00 equiv) in THF (150 mL), (2,4-dichlorophenyl)methanamine (7.16 g, 40.91 mmol, 1.00 equiv) and triethylamine (5.96 g, 59.01 mmol, 1.50 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was concentrated to dryness and used for next step, assuming theoretical yield. Intermediate 171.2, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of intermediate 171.1 (40.91 mmol, 1.00 equiv) in methanol (150 mL). This was followed by the addition of NaBH4 (2.5 g, 65.79 mmol, 1.50 equiv) in several batches at 0° C. The resulting solution was stirred for 2 h at 25° C. The reaction was then quenched by the addition of aqueous NH4Cl. The resulting mixture was concentrated under vacuum, and the solids were collected by filtration. The crude product was purified by re-crystallization from ethyl acetate. This resulted in 3.5 g (23%) of 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol as a yellowish solid. Intermediate 171.3, 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol (intermediate 171.2) (500 mg, 1.47 mmol, 1.00 equiv) in DCM (10 mL) was added conc. sulfuric acid (4 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 12 h at room temperature. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 10 with sodium hydroxide. The resulting solution was extracted with 2×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (63%) of 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as yellow oil. Intermediate 171.4, 2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl)bis(4-methylbenzenesulfonate) Into a 250-mL 3-necked round-bottom flask, was placed a solution of tetraethylene glycol (10 g, 51.55 mmol, 1.00 equiv) in DCM (100 mL). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (21.4 g, 112.63 mmol, 2.20 equiv) in DCM (50 mL) dropwise with stirring at 5° C. To this was added N,N-dimethylpyridin-4-amine (15.7 g, 128.69 mmol, 2.50 equiv). The resulting solution was stirred for 2 h at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×100 mL of DCM and the organic layers combined. The resulting mixture was washed with 1×100 mL of brine and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 11 g (43%) of the title compound as white oil. Intermediate 171.5, 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (intermediate 171.3) (171 mg, 0.53 mmol, 2.50 equiv) in DMF (2 mL) was added potassium carbonate (87 mg, 0.63 mmol, 3.00 equiv) and intermediate 171.4 (106 mg, 0.21 mmol, 1.00 equiv) and the resulting solution was stirred at 50° C. After stirring overnight, the resulting solution was diluted with 20 ml of water. The resulting mixture was extracted with 3×20 ml of ethyl acetate and the organic layers combined and concentrated under vacuum. The crude product was purified by Prep-HPLC with methanol:water (1:1). This resulted in 10 mg (2%) of 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline) as a light yellow solid. Compound 171, 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline To intermediate 171.5 (50 mg, 0.06 mmol, 1.00 equiv) in ethanol (5 mL) was added iron (34 mg, 0.61 mmol, 9.76 equiv) followed by the addition of hydrogen chloride (5 mL) dropwise with stirring. The resulting solution was stirred for 2 h at room temperature and then for an additional 4 h at 55° C. The reaction progress was monitored by LCMS. The solids were filtered out and the resulting solution was diluted with 10 mL of water. The resulting mixture was concentrated under vacuum and the pH of the solution was adjusted to 9-10 with sodium carbonate. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined, washed with 50 mL of brine and then concentrated under vacuum. The crude product was purified by Prep-HPLC with H2O:CH3CN (10:1). This resulted in 5 mg (11%) of 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline as a yellow solid.). 1H-NMR (400 MHz, CD3OD, ppm) δ 7.27 (m, 2H), 7.06 (m, 2H), 6.80 (s, 2H), 6.63 (d, 2H), 6.54 (m, 4H), 4.14 (m, 2H), 4.02 (d, 2H), 3.65 (m, 12H), 3.19 (m, 3H), 2.81 (s, 4H), 2.71 (m, 2H). MS (m/z): 745 [M+H]+. Example 172 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 28.1: N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (1.5 g, 6.87 mmol, 1.79 equiv) in DCM (20 mL) was added triethylamine (1.5 g, 14.82 mmol, 3.86 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (1.5 g, 3.84 mmol, 1.00 equiv). The reaction was stirred overnight at room temperature at which time the resulting mixture was concentrated under vacuum. The residue was dissolved in 100 mL of ethyl acetate and then was washed with 2×20 mL of water, dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.8 g (85%) of N-(2-(2-(2-(2-azido ethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 28, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (1.8 g, 3.26 mmol, 1.00 equiv) in THF (30 mL) was added triphenylphosphine (2.6 g, 9.91 mmol, 3.04 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (5.0 g) was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. 1.2 g product was obtained. This resulted in 1.2 g (64%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 172, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (1.2 g, 2.28 mmol, 1.00 equiv) in DMF (8 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (intermediate 168.1) (393 mg, 1.14 mmol, 0.50 equiv) and triethylamine (1.5 g, 14.82 mmol, 6.50 equiv) and the resulting solution was stirred overnight at room temperature. The mixture was concentrated under vacuum and the crude product was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. This resulted in 591 mg (43%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H, 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 30H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 603 [½M+H]+. Example 173 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 173.1, N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4) (400 mg, 1.08 mmol, 1.00 equiv) in DMSO (6 mL), 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (236.11 mg, 1.08 mmol, 1.00 equiv), (S)-pyrrolidine-2-carboxylic acid (24.79 mg, 0.21 mmol, 0.20 equiv), copper(I) iodide (20.48 mg, 0.11 mmol, 0.10 equiv) and potassium carbonate (223.18 mg, 1.62 mmol, 1.50 equiv). The resulting solution was stirred at 90° C. in an oil bath and the reaction progress was monitored by LCMS. After stirring overnight the reaction mixture was cooled with a water/ice bath and then diluted with ice water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic extracts were combined and washed with 2×20 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (2:1). This resulted in 130 mg (24%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Intermediate 173.2, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 50-mL round-bottom flask, was placed a solution of intermediate 173.1 (350 mg, 0.69 mmol, 1.00 equiv) in THF/water (4/0.4 mL) and triphenylphosphine (205 mg, 0.78 mmol, 1.20 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The resulting mixture was then concentrated under vacuum. The pH of the solution was adjusted to 2-3 with 1N hydrogen chloride (10 ml). The resulting solution was extracted with 2×10 mL of ethyl acetate and the aqueous layers combined. The pH value of the solution was adjusted to 11 with NH3.H2O. The resulting solution was extracted with 3×30 mL of DCM and the organic layers combined. The resulting mixture was washed with 30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 250 mg (75%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline as yellow oil. Compound 173, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To intermediate 173.2 (240 mg, 0.50 mmol, 1.00 equiv) in DMF (5 mL) was added TEA (233 mg, 2.31 mmol, 4.50 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (62 mg, 0.18 mmol, 0.35 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with methanol:water (1:10). This resulted in 140 mg (26%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 7.65 (m, 4H), 7.11 (m, 2H), 6.83 (m, 2H), 6.58 (m, 2H), 6.41 (m, 4H), 4.09 (m, 32H), 3.45 (m, 17H), 3.43 (m, 5H), 3.31 (m, 9H), 2.51 (m, 6H). MS (m/z): 1079 [M+H]+. Example 174 N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azamidecan-13-yl)-2,3-dihydroxysuccinamide Intermediate 174.1, 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea To 4-nitrophenyl 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (prepared by the procedure described in example 38) (200 mg, 0.40 mmol, 1.00 equiv, 95%) in DMF (5 mL) was added TEA (170 mg, 1.60 mmol, 4.00 equiv, 95%) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (90 mg, 0.39 mmol, 1.00 equiv, 95%) and the resulting solution was stirred for 2 h. The mixture was then concentrated under vacuum, diluted with 10 mL of water and then extracted with 3×30 mL of ethyl acetate. The organic layers were combined, washed with 3×30 mL of brine, dried over anhydrous sodium sulfate and then evaporated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:51:1). This resulted in 160 mg (72%) of 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Intermediate 174.2 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea Intermediate 174.2 was prepared from 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.1) using the procedure described to prepare intermediate 173.2. The crude product was purified by silica gel chromatography, eluting with DCM/methanol (50:1). This resulted in 230 mg of 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Compound 174, N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azamidecan-13-yl)-2,3-dihydroxysuccinamide Compound 174 was prepared from 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.2) using the procedures described in example 172. The crude product (400 mg) was purified by Prep-HPLC with methanol: acetonitrile=60:40. This resulted in 113 mg (23%) of N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azamidecan-13-yl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, DMSO, ppm): δ 8.68 (s, 2H), 7.68 (s, 2H), 7.64 (t, 2H), 7.39 (s, 2H), 7.24-7.28 (m, 6H), 6.77-6.78 (m, 4H), 6.23 (s, 2H), 4.47 (s, 4H), 4.23 (s, 2H), 3.76 (s, 4H), 3.42-3.69 (m, 24H), 3.28-3.36 (m, 4H), 3.20-3.24 (m, 6H), 3.02 (s, 6H). MS (m/z): 583 [½M+1]+. Example 175 N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Intermediate 175.1, N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (intermediate 10.6) (9 g, 20.02 mmol, 1.00 equiv, 95%) in DCM (200 mL) was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (15.6 g, 105.41 mmol, 5.00 equiv) and triethylamine (4.26 g, 42.18 mmol, 2.00 equiv) and the resulting solution was stirred for 3 h at room temperature. The reaction mixture was diluted with 100 mL of DCM and then washed with 2×50 mL of Brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (10:1). This resulted in 3 g (28%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. Compound 175, N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (150 mg, 0.28 mmol, 2.50 equiv, 92%) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl)oxalate (34 mg, 0.12 mmol, 1.00 equiv) and triethylamine (49 mg, 0.49 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 97 mg (68%) of a TFA salt of N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90 (m, 4H), 7.56 (s, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.77 (m, 4H), 4.53 (d, 2H), 3.90 (m, 2H), 3.88 (m, 10H), 3.58 (m, 12H), 3.31 (s, 6H), 3.12 (m, 4H). MS (m/z): 530 [½M+1]+. Example 176 N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 176.1, N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-(2-aminoethoxy)ethanamine dihydrochloride (1.0 g, 5.65 mmol, 5.52 equiv) in DMF (20 mL), potassium carbonate (2.0 g, 14.39 mmol, 14.05 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv). The resulting solution was stirred overnight at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic layers were combined and dried over sodium sulfate and concentrated under vacuum. This resulted in 60 mg (13%) of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow solid. Compound 176, N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 176.1) (60 mg, 0.13 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (21 mg, 0.06 mmol, 0.47 equiv) and triethylamine (50 mg, 0.49 mmol, 3.77 equiv). The resulting solution was stirred overnight at room temperature at which time the mixture was concentrated under vacuum. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 21 mg (13%) of a TFA salt of N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 10H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 517 [½M+1]+. Example 177 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Intermediate 177.1, bis(2,5-dioxopyrrolidin-1-yl)succinate To succinic acid (3.0 g, 25.42 mmol, 1.00 equiv) in THF (50 mL) was added a solution of 1-hydroxypyrrolidine-2,5-dione (6.4 g, 55.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (11.5 g, 55.83 mmol, 2.20 equiv) in THF (50 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The solids were collected by filtration and the filtrate was concentrated to give the crude product. The resulting solids were washed with THF and ethanol. This resulted in 2.4 g (27%) of bis(2,5-dioxopyrrolidin-1-yl)succinate as a white solid. Compound 177, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 177 was prepared using the procedure described in example 175, substituting (2,5-dioxopyrrolidin-1-yl)succinate (intermediate 177.1) for bis(2,5-dioxopyrrolidin-1-yl)oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 32.8 mg (8%) of N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.93-7.91 (d, J=8.1 Hz, 4H), 7.57-7.56 (d, J=1.8 Hz, 2H), 7.50-7.47 (d, J=8.4 Hz, 4H), 6.86 (s, 2H), 4.78-4.73 (d, J=13.5 Hz, 4H), 4.52 (m, 2H), 3.85 (m, 2H), 3.59-3.47 (m, 18H), 3.15-3.09 (m, 10H), 2.49 (s, 4H). MS (m/z): 544 [½M+1]+. Example 178 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Intermediate 178.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate Intermediate 178.1 was prepared using the procedure outlined in example 177, substituting 2,2′-oxydiacetic acid for succinic acid. The crude product was washed with ethyl acetate. This resulted in 1.5 g (19%) of Intermediate 178.1 as a white solid. Compound 178, 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 178 was prepared using the procedure described in example 175, substituting bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) for bis(2,5-dioxopyrrolidin-1-yl)oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 39.1 mg (7%) of a TFA salt of 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 552 [½M+1]+. Example 179 (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 179.1, tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate To triethyleneglycol (17.6 g, 117.20 mmol, 3.00 equiv) in anhydrous THF (70 mL), was added sodium (30 mg, 1.25 mmol, 0.03 equiv). Tert-butyl acrylate (5.0 g, 39.01 mmol, 1.00 equiv) was added after the sodium had dissolved. The resulting solution was stirred overnight at room temperature and then neutralized with 1.0 N hydrogen chloride. After removal of the solvent, the residue was suspended in 50 mL of brine and extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of the solvent, the tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (9.6 g) was isolated as a colorless oil, which was used directly for the next reaction step without further purification. Intermediate 179.2, tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (intermediate 179.1) (9.6 g, 34.49 mmol, 1.00 equiv) in anhydrous pyridine (12 mL). The mixture was cooled to 0° C. and 4-methylbenzene-1-sulfonyl chloride (7.9 g, 41.44 mmol, 1.20 equiv) was added slowly in several portions. The resulting solution was stirred at 0° C. for 1-2 h and then the flask containing the reaction mixture was sealed and placed in a refrigerator at 0° C. overnight. The mixture was poured into 120 mL of water/ice, and the aqueous layer was extracted with 3×50 mL of DCM. The combined organic layers were washed with 2×50 mL of cold 1.0 N hydrogen chloride and saturated brine and dried over anhydrous sodium sulfate. The solvent was removed under vacuum to yield 13.4 g (90%) of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.3, tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate (13.4 g, 30.98 mmol, 1.00 equiv) in anhydrous DMF (100 mL) followed by potassium phthalimide (7.5 g, 40.49 mmol, 1.31 equiv). The resulting solution was heated to 100° C. and stirred for 3 h. The reaction progress was monitored by LCMS. The DMF was removed under vacuum to afford a brown oil residue. To the residue was added 200 mL water and the mixture was extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of solvent, The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (0˜1:3). The solvent was removed from fractions containing phthalimide and the residue was washed with 20% ethyl acetate/petroleum ether to yield 10.1 g (78%) of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.4, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic Acid Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate (intermediate 179.3) (1.5 g, 3.68 mmol, 1.00 equiv) in neat 2,2,2-trifluoroacetic acid (TFA; 2.0 mL). The resulting solution was stirred for 40 min at ambient temperature. Excess TFA was removed under vacuum to afford a pale-yellow oil residue which was purified on a silica gel column eluting with ethyl acetate/petroleum ether (1:5˜1:2˜2:1) to yield 1.1 g (84%) of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid as a white solid. Intermediate 179.5, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid (700 mg, 1.99 mmol, 1.00 equiv) in anhydrous DCM (30.0 mL), then oxalyl dichloride (0.7 mL) was added dropwise at room temperature. Two drops of anhydrous DMF were then added. The resulting solution was heated to reflux for 40 min. The solvent was removed under vacuum to yield 750 mg of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride as pale yellow oil, which was used directly for the next reaction step without further purification. Intermediate 179.6, N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide To 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 31.5) (600.0 mg, 1.95 mmol, 1.00 equiv) in anhydrous DCM (5.0 mL) was added N-ethyl-N,N-diisopropylamine (DIEA; 0.5 mL). Then a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride (intermediate 179.5) (794 mg, 2.15 mmol, 1.10 equiv) was added dropwise with stirring at room temperature. The resulting solution was stirred for 2 h at ambient temperature and then concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1). This resulted in 870 mg (66%) of N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide as a pale yellow syrup. The other fractions was collected and evaporated to get an additional 200 mg of impure product. Intermediate 179.7, 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide Into a 100-mL round-bottom flask, was placed N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide (870.0 mg, 1.36 mmol, 1.00 equiv) and 1M hydrazine monohydrate in ethanol (30.0 mL, 30.0 mmol). The resulting solution was heated at reflux for 1 hour. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residual solution was diluted with 30 mL of water and then extracted with 3×50 mL of DCM. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1˜10:1˜1:1). This resulted in 600 mg (85%) of 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide as a pale yellow syrup. Compound 179, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide (intermediate 179.7) (270 mg, 0.53 mmol, 2.00 equiv) in anhydrous DMF (5.0 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91.0 mg, 0.26 mmol, 1.00 equiv) and triethylamine (0.3 mL) and the resulting solution was stirred for 2 h at 35° C. The resulting mixture was then concentrated under vacuum. The residue was purified by Prep-HPLC, to give 170 mg (56%) of a TFA salt of (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (s, 1H), 7.65 (s, 2H), 7.54 (d, J=1.5 Hz, 2H), 7.36-7.46 (m, 4H), 7.02 (dd, J=7.5, 1.2 Hz, 2H), 6.90 (s, 2H), 4.83-4.75 (m, 2H), 4.65-4.60 (m, 2H), 4.53 (s, 1H), 4.46 (m, 3H), 3.88-3.80 (m, 6H), 3.64-3.51 (m, 22H), 3.41-3.35 (m, 4H), 3.16 (s, 6H), 2.64 (t, J=6.0 Hz, 4H). MS (m/z): 1136 [M+H]+. Example 180 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 180, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide Compound 180 was prepared from compound 28 following the procedure outlined in example 175. The crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=39/100/0.05 increasing to CH3CN/H2O/CF3COOH=39/100/0.05 within min; Detector, UV 254 nm. This resulted in 113.4 mg (11%) of a TFA salt of N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.766 (d, J=7.5 Hz, 2H), 7.683 (s, 2H), 7.586-7.637 (m, 4H), 7.537 (d, J=7.8 Hz, 2H), 6.644 (s, 2H), 4.834˜4.889 (m, 2H), 4.598 (d, J=16.2 Hz, 2H), 4.446 (d, J=15.0 Hz, 2H), 3.602˜3.763 (m, 4H), 3.299˜3.436 (m, 24H), 3.224˜3.263 (m, 4H), 2.975 (s, 6H), 2.825˜2.863 (m, 4H). MS (m/z): 574 [M/2+H]+. Example 181 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181 was prepared from compound 28 and (2,5-dioxopyrrolidin-1-yl)succinate following the procedure outlined in example 175. The crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=0.05/100/0.05 increasing to CH3CN/H2O/CF3COOH=90/100/0.05 within 19 min; Detector, UV 254 nm. This resulted in 201 mg (78%) of a TFA salt of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.76 (d, J=7.5 Hz, 2H), 7.68 (s, 2H), 7.63˜7.52 (m, 6H), 6.64 (s, 1H), 4.88˜4.82 (m, 2H), 4.62˜4.42 (m, 4H), 3.76˜3.60 (m, 4H), 3.43˜3.30 (m, 25H), 3.14˜3.10 (m, 4H), 2.97 (s, 6H), 2.86˜2.82 (m, 4H), 2.27 (s, 4H). MS (m/z): 589 [M/2+1]+. Example 182 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182 was prepared from compound 28 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product (250 mg) was purified by Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, MeCN/H2O/CF3COOH=39/100/0.05; Detector, UV 254 nm. This resulted in 152.3 mg (47%) of a TFA salt of N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CDCl3, ppm): δ 7.92˜7.89 (d, J=8.1 Hz, 2H), 7.79 (s, 2H), 7.69˜7.64 (m, 2H), 7.57˜7.55 (d, J=7.5 Hz, 4H), 3.68 (s, 2H), 4.87˜4.75 (m, 4H), 4.54˜4.49 (m, 2H), 3.90˜3.88 (m, 2H), 3.67˜3.45 (m, 20H), 3.39˜3.32 (m, 4H), 3.31 (s, 6H), 3.17˜3.05 (m, 4H), 1.41 (s, 1H). MS (m/z): 1189 [M+H]+. Example 183 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Example 183 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 183 was prepared from intermediate 175.1 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 29.5 mg (5%) of a TFA salt of N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.92 (m, 4H), 7.57 (m, 2H), 7.51-7.49 (m, 4H), 6.87 (m, 2H), 4.83-4.74 (m, 4H), 4.55-4.50 (m, 2H), 3.92-3.87 (m, 2H), 3.67-3.48 (m, 8H), 3.40-3.38 (m, 4H), 3.18 (s, 6H), 3.14-3.00 (m, 4H), 1.41 (s, 6H). MS (m/z): 551 [½M+H]+. Example 184 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 184.1, 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate Into a 250-mL round-bottom flask was placed a solution of tetraethylene glycol (50 g, 257.47 mmol, 9.81 equiv) in DCM (150 mL) and triethylamine (8 g, 79.05 mmol, 3.01 equiv). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (5.0 g, 26.23 mmol, 1.00 equiv) in DCM (10 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at room temperature, at which time it was diluted with 200 ml of hydrogen chloride (3N aq.). The resulting solution was extracted with 2×150 mL of DCM and the combined organic layers were washed with 3×150 mL of saturated sodium bicarbonate. The mixture was dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜ethyl acetate). This resulted in 7.0 g (77%) of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate as colorless oil. Intermediate 184.2, 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol To intermediate 184.1 (2.0 g, 5.74 mmol, 1.00 equiv) in DMF (40 mL) was added sodium azide (700 mg, 10.77 mmol, 1.88 equiv) and sodium bicarbonate (800 mg, 9.52 mmol, 1.66 equiv). The resulting solution was stirred for 2 h at 80° C. at which time the mixture was concentrated under vacuum. The residue was diluted with 100 mL of water and then extracted with 3×100 mL of DCM. The organic layers were combined and concentrated under vacuum to afford 1.3 g of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol as light yellow oil. Intermediate 184.3, 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine Into a 50-mL round-bottom flask, was placed a solution of intermediate 184.2 (220 mg, 1.00 mmol, 2.38 equiv) in DMF (10 mL) and sodium hydride (40 mg, 1.00 mmol, 2.37 equiv, 60%). The resulting solution was stirred for 30 min at room temperature, at which time 2,6-dibromopyridine (100 mg, 0.42 mmol, 1.00 equiv) was added. The resulting solution was stirred for an additional 2 h at 80° C., and then was concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (50:1-30:1). This resulted in 180 mg (83%) of 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine as light yellow oil. Intermediate 184.4, 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine To intermediate 184.3 (180 mg, 0.35 mmol, 1.00 equiv) in THF/water (30/3 mL) was added triphenylphosphine (400 mg, 1.52 mmol, 4.35 equiv) and the resulting solution was stirred overnight at 40° C. After cooling to room temperature, the reaction mixture was extracted with 4×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (80:1˜20:1). This resulted in 100 mg (62%) of 242424246424242-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine as light yellow oil. Compound 184, N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To intermediate 184.4 (100 mg, 0.22 mmol, 1.00 equiv) in DCM (50 mL) was added triethylamine (70 mg, 0.69 mmol, 3.20 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (350 mg, 0.90 mmol, 4.13 equiv). The resulting solution was stirred overnight at room temperature, and then concentrated under vacuum. The residue was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)=35%-40%. This resulted in 88.4 mg (29%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (d, 2H), 7.78 (s, 2H), 7.67-7.50 (m, 7H), 6.86 (s, 2H), 6.34-6.31 (d, 2H), 4.90-4.75 (m, 4H), 4.52-4.46 (m, 2H), 4.42-4.39 (t, 4H), 3.90-3.81 (m, 6H), 3.71-3.43 (m, 22H), 3.16 (s, 6H), 3.07-3.03 (t, 4H). MS (m/z): 1170 [M+H]+ Example 185 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)tris(2,2,2-trifluoroacetate) Intermediate 185.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-(methylazanediyl)diacetate To 2-[(carboxymethyl)(methyl)amino]acetic acid (2.0 g, 13.60 mmol, 1.00 equiv) in THF (30 mL) was added DCC (6.2 g, 30.05 mmol, 2.21 equiv) and a solution of NHS (3.5 g, 30.41 mmol, 2.24 equiv) in THF (30 mL) and the reaction stirred at 0-10° C. for 2 h. The resulting solution was allowed to warm to room temperature and stirred for 16 h. The solids were then filtered out, and the resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. to afford 2.0 g (21%) of the title compound as a white solid. Compound 185, 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-acetamide)tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 185.1 (106 mg, 0.15 mmol, 0.50 equiv, 48%) and triethylamine (150 mg, 1.48 mmol, 4.97 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 26.4 mg (12%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (m, 4H), 7.5 (m, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.81 (m, 4H), 4.50 (m, 2H), 4.06 (s, 4H), 3.89 (m, 2H), 3.66-3.44 (m, 22H), 3.32 (s, 6H), 3.15 (m, 4H), 3.01 (s, 3H). MS (m/z): 559 [(M+2H)/2]+ Example 186 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) Intermediate 186.1, bis(2,5-dioxopyrrolidin-1-yl) 5-aminoisophthalate Into a 50-mL 3-necked round-bottom flask, was placed a solution of 5-aminoisophthalic acid (300 mg, 1.66 mmol, 1.00 equiv) in THF (5 mL) and 1-hydroxypyrrolidine-2,5-dione (420 mg, 3.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (750 mg, 3.64 mmol, 2.20 equiv) in THF (5 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The solids were removed by filtration and the filtrate was concentrated under vacuum. The crude product was purified by re-crystallization from ethanol. This resulted in 70 mg (11%) of the title compound as a light yellow solid. Compound 186, 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.20 mmol, 1.00 equiv) in DMF (5 mL) was added intermediate 186.1 (44.8 mg, 0.12 mmol, 0.60 equiv) and triethylamine (60.4 mg, 0.60 mmol, 3.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 32.4 mg (19%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90-7.87 (d, J=8.4 Hz, 4H), 7.60-7.54 (3H, m), 7.46-7.44 (d, J=8.4 Hz, 4H), 7.34 (d, J=1.2 Hz, 2H), 6.82 (s, 2H), 4.89-4.71 (m, 4H), 4.53-4.48 (d, J=16.2 Hz, 2H), 3.91-3.85 (m, 2H), 3.67-3.45 (m, 22H), 3.33-3.32 (m, 6H), 3.18-3.01 (m, 4H). MS (m/z): 575 [(M+2H)/2]+ Example 187 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 187, 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (150 mg, 0.28 mmol, 1.00 equiv) in DMF (5 mL), triethylamine (56 mg, 0.55 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (44 mg, 0.14 mmol, 0.49 equiv). The resulting solution was stirred overnight at room temperature, at which time the mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 19 min; Detector, UV 254 nm. This resulted in 72.4 mg (44%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.2 Hz, 2H), 7.71 (s, 2H), 7.49˜7.58 (m, 4H), 7.36˜7.37 (m, 2H), 6.82 (s, 2H), 4.39˜4.44 (m, 2H), 4.06 (s, 4H), 3.80 (d, J=16.2 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55˜3.61 (m, 16H), 3.43˜3.52 (m, 12H), 3.02˜3.08 (m, 6H), 2.65˜2.70 (m, 2H), 2.49 (s, 6H). MS (m/z): 1190 [M+H]+ Example 188 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate) Intermediate 188.1, 5-bromoisophthalic Acid Into a 100-mL round-bottom flask, was placed a solution of isophthalic acid (10 g, 60.24 mmol, 1.00 equiv) in 98% H2SO4 (60 mL). This was followed by the addition of N-bromosuccinimide (12.80 g, 72.32 mmol, 1.20 equiv), in portions at 60° C. in 10 min. The resulting solution was stirred overnight at 60° C. in an oil bath. The reaction was cooled to room temperature and then quenched by the addition of water/ice. The solids were collected by filtration, and washed with 2×60 mL of hexane. The solid was dried in an oven under reduced pressure. The crude product was purified by re-crystallization from ethyl acetate to give 3 g (20%) of 5-bromoisophthalic acid as a white solid. Intermediate 188.2, bis(2,5-dioxopyrrolidin-1-yl) 5-bromoisophthalate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-bromoisophthalic acid (3 g, 11.76 mmol, 1.00 equiv, 96%) in THF (20 mL) followed by NHS (3 g, 26.09 mmol, 2.20 equiv) at 0-5° C. To this was added a solution of DCC (5.6 g, 27.18 mmol, 2.20 equiv) in THF (20 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred overnight at room temperature. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from DCM/ethanol in the ratio of 1:10. This resulted in 4 g (75%) of the title compound as a white solid. Compound 188, 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.19 mmol, 2.50 equiv, 95%) in DMF (8 mL), intermediate 188.1 (35 mg, 0.08 mmol, 1.00 equiv, 98%) and triethylamine (32 mg, 0.32 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature and then concentrated to dryness. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)=30%˜42%. This resulted in 86 mg (75%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.26 (s, 1H), 8.13 (s, 2H), 7.90 (d, J=9 Hz, 4H), 7.55 (s, 2H), 7.48 (d, J=9 Hz, 4H), 6.84 (s, 2H), 4.76 (m, 4H), 4.54 (m, 2H), 3.89 (m, 2H), 3.68 (m, 18H), 3.53 (m, 4H), 3.33 (s, 6H), 3.18 (m, 4H). MS (m/z): 609 [(M+2H)/2]+ Example 189 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) Intermediate 189.1, bis(2,5-dioxopyrrolidin-1-yl) 2-hydroxymalonate Into a 100 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-hydroxymalonic acid (1.6 g, 13.32 mmol, 1.00 equiv) in THF (30 mL) and DCC (6.2 g, 30.05 mmol, 2.26 equiv). This was followed by the addition of a solution of NHS (3.5 g, 30.41 mmol, 2.28 equiv) in THF (30 mL) at 0-10° C. in 2 h. The resulting solution was stirred for 16 h at room temperature. The solids were then filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from ethanol to give 0.5 g (12%) of the title compound as a white solid. Compound 189, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL), was added Intermediate 189.1 (29 mg, 0.10 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred for 3 h at 30° C. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 36.5 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 546 [(M+2H)/2]+ Example 190 N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Compound 190, N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 168.2) (200 mg, 0.40 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (81 mg, 0.80 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl)oxalate (57 mg, 0.20 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 72.3 mg (34%) of N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.81 (m, 2H), 7.72 (s, 2H), 7.48-7.57 (m, 4H), 7.35-7.36 (m, 2H), 6.81-6.82 (m, 2H), 4.39-4.43 (m, 2H), 3.79 (d, J=16.5 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55-3.60 (m, 8H), 3.43-3.50 (m, 12H), 3.02-3.09 (m, 6H), 2.64-2.71 (m, 2H), 2.49 (s, 6H). MS (m/z): 1059 [M+H]+ Example 191 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 191, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 168.2) (150 mg, 0.30 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol, 1.98 equiv) and intermediate 177.1 (47 mg, 0.15 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was then concentrated under vacuum and the crude product (150 mg) was purified by Flash-Prep-HPLC with the following conditions: column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 53.1 mg (33%) of N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.80 (m, 2H), 7.71 (s, 2H), 7.48-7.57 (m, 4H), 7.36-7.37 (m, 2H), 6.82 (s, 2H), 4.39-4.44 (m, 2H), 3.79 (d, J=15.9 Hz, 2H), 3.66 (d, J=16.2 Hz, 2H), 3.45-3.57 (m, 16H), 3.35-3.37 (m, 4H), 3.03-3.08 (m, 6H), 2.65-2.71 (m, 2H), 2.49-2.50 (m, 10H). MS (m/z): 1089 [M+H]+ Example 192 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamoyl)benzenesulfonic Acid Intermediate 192.1, sodium 3,5-bis((2,5-dioxopyrrolidin-1-yloxy)carbonyl)benzenesulfonate To sodium 3,5-dicarboxybenzenesulfonate (1 g, 3.73 mmol, 1.00 equiv) and NHS (940 mg, 8.17 mmol, 2.20 equiv) in DMF (10 mL) at 0° C. was added dropwise a solution of DCC (1.69 g, 8.20 mmol, 2.20 equiv) in THF (10 mL) and the reaction stirred overnight. The solids were removed by filtration and the filtrate was concentrated under vacuum to afford 500 mg (29%) of the title compound as a white solid. Compound 192, 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl-carbamoyl)benzenesulfonic Acid To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added intermediate 192.1 (45 mg, 0.10 mmol, 0.50 equiv) and triethylamine (90 mg, 4.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 30.6 mg (22%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.35-8.34 (m, 3H), 7.84-7.81 (m, 4H), 7.48 (m, 2H), 7.41-7.38 (m, 4H), 6.75 (m, 2H), 4.87-4.70 (m, 4H), 4.56-4.50 (m, 2H), 3.92-3.85 (m, 2H), 3.70-3.42 (m, 22H), 3.37-3.32 (m, 6H), 3.20-3.06 (m, 4H). MS (m/z): 608 [[(M+2H)/2]+ Example 193 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide Intermediate 193.1, 5-hydroxyisophthalic Acid To dimethyl 5-hydroxyisophthalate (4.0 g, 19.03 mmol, 1.00 equiv) in THF (10 mL) was added lithium hydroxide (20 mL, 2M in water) and the resulting solution was stirred overnight at 40° C. The mixture concentrated under vacuum to remove the organic solvents and then the pH of the solution was adjusted to ˜2 with 6N hydrochloric acid. The resulting solids were collected by filtration and dried in a vacuum oven to afford 2.0 g (58%) of 5-hydroxyisophthalic acid as a white solid. Intermediate 193.2, bis(2,5-dioxopyrrolidin-1-yl) 5-hydroxyisophthalate To 5-hydroxyisophthalic acid (Intermediate 193.1; 1 g, 5.49 mmol, 1.00 equiv) and NHS (1.39 g, 2.20 equiv), in THF (5 mL) at 0° C. was added dropwise a solution of DCC (2.4 g, 2.20 equiv) in THF (5 mL). The resulting solution was stirred overnight at room temperature, then filtered and concentrated under vacuum to give 0.5 g (22%) of the title compound as a white solid. Compound 193, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added Intermediate 193.2 (34 mg, 0.09 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 30 mg (24%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (m, 4H), 7.71-7.70 (m, 1H), 7.56-7.55 (m, 2H), 7.47-7.44 (m, 4H), 7.37-7.36 (m, 2H), 6.84 (m, 2H), 4.87-4.70 (m, 4H), 4.53-4.48 (m, 2H), 3.92-3.85 (m, 2H), 3.67-3.46 (m, 22H), 3.37-3.32 (m, 6H), 3.17-3.07 (m, 4H). MS (m/z): 576 [[(M+2H)/2]+ Example 194 (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide Intermediate 194.1, N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N1-(3-aminopropyl)-N1-methylpropane-1,3-diamine (560 mg, 3.85 mmol) dissolved in DCM (20 mL), was added triethylamine (300 mg, 2.96 mmol) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.77 mmol). The resulting solution was stirred for 3 h at room temperature. After removing the solvent, the resulting residue was diluted with EtOAc (50 mL), washed with water (2×10 mL) and dried over anhydrous sodium sulfate. The crude product was purified by Flash-Prep-HPLC with H2O:MeOH (1:4) to afford 300 mg (74%) of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 194, (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide To a solution of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 194.1, 300 mg, 0.60 mmol) in DMF (2 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91 mg, 0.27 mmol) and triethylamine (270 mg, 2.67 mmol) and the resulting solution was stirred for 2 h at room temperature and the reaction progress was monitored by LCMS. Upon completion, the mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (20%-29%) to afford 30.9 mg (8%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.90-7.88 (m, 2H), 7.80 (m, 2H), 7.69-7.65 (m, 2H), 7.58-7.56 (m, 4H), 6.85 (m, 2H), 4.87-4.71 (m, 4H), 4.54-4.44 (m, 4H), 3.88-3.82 (m, 2H), 3.62-3.53 (m, 4H), 3.22 (m, 6H), 3.13-3.09 (m, 6H), 3.01-2.97 (m, 4H), 2.88 (m, 6H), 2.00-1.96 (m, 8H). LCMS (ES, m/z): 1114 [M+H]+. Example 195 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 195, 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. After removal of the solvent, the crude product (150 mg) was purified by Flash-Prep-HPLC (C18 silica gel; methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 44.4 mg (27%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3CD, ppm): 7.79˜7.76 (m, 2H), 7.70 (s, 2H), 7.57-7.50 (m, 4H), 7.36 (d, J=Hz, 2H), 4.89-4.41 (m, 2H), 4.06 (m, 4H), 3.81-3.62 (m, 5H), 3.59-3.42 (m, 11H), 3.33-3.31 (m, 8H), 3.07-3.01 (m, 6H), 2.71-2.64 (m, 2H), 2.48 (s, 6H). LCMS (ES, m/z): 1103[M+H]+. Example 196 N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 196, N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared from 2,2-dimethylmalonic acid as described in Example 168) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. The mixture was concentrated and then purified by Flash-Prep-HPLC (C18 silica gel, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 75.1 mg of the title compound (46%) as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.80˜7.77 (m, 2H), 7.71 (s, 2H), 7.57-7.48 (m, 4H), 7.36-7.35 (d, J=2.1 Hz, 2H), 6.81 (d, J=1.2 Hz, 2H), 4.43-4.38 (m, 2H), 3.82-3.62 (m, 4H), 3.57-3.31 (m, 18H), 3.07-3.02 (m, 6H), 2.71-2.64 (m, 2H), 2.49 (s, 6H), 1.41 (s, 6H). LC-MS (ES, m/z): 1101 [M+H]+. Example 197 N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 197, N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (148 mg, 0.26 mmol) in DMF (5 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl)oxalate (prepared from oxalic acid as described in Example 168) (31 mg, 0.11 mmol) and triethylamine (44 mg, 0.44 mmol) and the resulting solution was stirred overnight. The crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) (28%-35%) to afford 101.8 mg (68%) of the title compound as a TFA salt. 1H-NMR (300 Hz, CD3OD, ppm): 7.94 (d, J=9 Hz, 4H), 7.58 (s, 2H), 7.50 (d, J=9 Hz, 4H), 6.88 (s, 2H), 4.80 (m, 4H), 4.53 (m, 2H), 3.90 (m, 2H), 3.59 (m, 16H), 3.52 (m, 2H), 3.49 (m, 12H), 3.13 (s, 6H), 3.09 (m, 4H). LC-MS (ES, m/z): 574 [(M+2H)/2]+. Example 198 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 198, 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82) (200 mg, 0.37 mmol) in DMF (2 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (60 mg) and triethylamine (184 mg). The resulting solution was stirred for 2 h at room temperature at which point LCMS indicated complete conversion. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (25%-35%). This resulted in 79.6 mg (31%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.94-7.91 (m, 4H), 7.58-7.57 (m, 2H), 7.51-7.48 (m, 4H), 6.88 (m, 2H), 4.82-4.74 (m, 4H), 4.52-4.47 (m, 2H), 4.06 (m, 4H), 3.90 (m, 2H), 3.64-3.42 (m, 34H), 3.15-3.13 (s, 6H), 3.11-3.09 (m, 4H). LC-MS (ES, m/z): 596 [(M+2H)/2]+. Example 199 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 199, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (200 mg, 0.37 mmol) in dry DMF (10 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl)succinate (intermediate 177.1) (57.1 mg, 0.18 mmol) and triethylamine (111 mg, 1.10 mmol). The resulting solution was stirred for 4 h at 25° C. in an oil bath and monitored by LCMS. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (28%-35%). This resulted in 113.8 mg (45%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.93-7.91 (d, J=8.1 Hz, 4H), 7.58-7.57 (m, 2H), 7.50-7.48 (m, 4H), 6.87 (s, 2H), 4.88-4.74 (m, 4H), 4.55-4.49 (d, J=16.2 Hz, 2H), 3.94-3.88 (m, 2H), 3.67-3.59 (m, 14H), 3.55-3.45 (m, 12H), 3.35-3.09 (m, 10H), 2.48 (s, 4H). LC-MS (ES, m/z): 588 [(M+2H)/2]+. Example 200 N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride Salt Intermediate 200.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 175.1 (3 g) was purified by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (50%), iso-propanol (50%); Detector, UV 254 nm This resulted in 1 g of (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 200.1) as a yellow solid. Compound 200, N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride Salt To Intermediate 200.1 (280 mg, 0.56 mmol, 2.00 equiv) in DMF (10 mL) was added intermediate 177.1 (87 mg, 0.28 mmol, 1.00 equiv) and triethylamine (94.3 mg, 0.93 mmol, 4.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product (300 mg) was purified by Prep-HPLC with CH3CN:H2O (35-55%). The product was then dissolved in 15 mL of dichloromethane and gaseous hydrochloric acid was introduced for 20 minutes, then the mixture was concentrated under vacuum. The crude product was washed with 3×10 mL of ether to afford 222.4 mg of Compound 200 as a light yellow solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (d, J=8 Hz, 4H), 7.56-7.52 (m, 6H), 6.82 (s, 2H), 4.89-4.84 (m, 4H), 4.52-4.48 (d, J=16.4 Hz, 2H), 3.91-3.90 (d, J=4 Hz, 2H), 3.62-3.48 (m, 18H), 3.39-3.32 (m, 4H), 3.19-3.10 (m, 10H), 2.57-2.55 (d, J=5.2 Hz, 4H). LCMS (ES, m/z): 544 [M−2HCl]/2+H+. Example 201 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride Salt Compound 201, 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride Salt To intermediate 200.1 (500 mg, 1.00 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 178.1 (150 mg, 0.46 mmol, 0.45 equiv) and triethylamine (0.4 g, 4.50 equiv) and the resulting solution was stirred for 2 h. The crude product was purified by Prep-HPLC with CH3CN/H2O (0.05% TFA) (28%-34%). The product was dissolved in 15 mL of dichloromethane and then gaseous hydrochloric acid was introduced for 20 mins. The mixture was concentrated under vacuum and the crude product was washed with 3×10 mL of ether to afford 101.1 mg (18%) of Compound 201 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (m, 4H), 7.57-7.51 (m, 6H), 6.84 (s, 2H), 4.88-4.70 (m, 4H), 4.50 (s, 2H), 4.08 (s, 4H), 3.92-3.91 (m, 2H), 3.90-3.54 (m, 9H), 3.50-3.49 (m, 5H), 3.47-3.44 (m, 8H), 3.18 (s, 6H), 3.12-3.10 (m, 4H). LCMS (ES, m/z): 552 [M−2HCl]/2+H+. Example 202 (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride Salt Intermediate 202.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide bis(2,2,2-trifluoroacetate) To 2-(2-(2-aminoethoxy)ethoxy)ethanamine (30.4 g, 205.41 mmol, 8.01 equiv) in dichloromethane (1000 mL) was added triethylamine (5.2 g, 51.49 mmol, 2.01 equiv). This was followed by the addition of (S)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (10 g, 23.42 mmol, 1.00 equiv; prepared from intermediate 244.1 and the procedures described in Example 1) in portions at 10° C. in 1 h. The resulting solution was stirred for 15 min at room temperature. The resulting mixture was washed with 3×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water/TFA (4/100/0.0005) increasing to 8/10/0.0005 within 30 min; Detector, UV 254 nm. This resulted in 7.2 g (42%) of intermediate 202.1 as a white solid Compound 202, (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride Salt To intermediate 202.1 (500 mg, 0.69 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (138 mg, 1.37 mmol, 1.99 equiv) followed by the addition of 1,4-diisocyanatobutane (48 mg, 0.34 mmol, 0.50 equiv) in portions. The resulting solution was stirred for 10 min at room temperature then the crude product (500 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 246.7 mg (59%) of Compound 202 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.92 (d, J=7.2 Hz, 2H), 7.83 (s, 2H), 7.69-7.65 (m, 2H), 7.60-7.55 (m, 4H), 6.81 (s, 2H), 4.87-4.83 (m, 4H), 4.54-4.50 (m, 2H), 3.94-3.91 (m, 2H), 3.69-3.49 (m, 18H), 3.39-3.32 (m, 4H), 3.21-3.15 (m, 10H), 3.08-3.05 (m, 4H), 1.57 (s, 4H). LCMS (ES, m/z): 1145 [M−2HCl+1]+. Example 203 (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride Salt Compound 203, (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis-(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride Salt To intermediate 202.1 (400 mg, 0.55 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (111 mg, 1.10 mmol, 2.00 equiv) followed by the portionwise addition of 1,4-diisocyanatobenzene (44 mg, 0.28 mmol, 0.50 equiv). The resulting solution was stirred for 10 min and the crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water (0.05/100) increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 201.7 mg (59%) of Compound 203 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.84 (d, J=7.6 Hz, 2H), 7.71 (s, 2H), 7.60-7.56 (m, 2H), 7.48-7.45 (m, 4H), 7.16 (s, 4H), 6.76 (s, 2H), 4.70-4.66 (m, 4H), 4.42-4.38 (m, 2H), 3.78-3.74 (m, 2H), 3.53-3.48 (m, 18H), 3.44-3.26 (m, 4H), 3.06-2.99 (m, 10H). LCMS (ES, m/z): 1163[M−2HCl+1]+. Example 204 N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1, 2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetic Acid To a slurry of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (Intermediate 1.6) (283 mg, 0.66 mmol) and triglycine (152 mg, 0.80 mmol) in THF (1.5 mL) at 0° C. was added water (1.0 mL) followed by triethylamine (202 mg, 2.0 mmol). The reaction was allowed to warm to room temperature and stirred for 15 hours. The solvents were removed at reduced pressure and the residue was purified by preparative HPLC to give Intermediate 204.1 (122 mg) as a TFA salt. Compound 204, N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1 (60 mg, 0.091 mmol) was dissolved in DMF (0.90 mL) followed by N-hydroxysuccinimide (12.6 mg, 0.11 mmol) and 1,4-diaminobutane (4.0 mg, 0.045 mmol). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (21 mg, 0.11 mmol) was added and the reaction was stirred at room temperature for 16 hours, at which time additional 1,4-diaminobutane (1 uL) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (5 mg) were added. Two hours after the addition, solvent was removed at reduced pressure and the residue was purified by preparative HPLC. The title compound was obtained as a TFA salt (26 mg). 1H-NMR (400 mHz, CD3OD) δ 7.90 (d, j=8.6 Hz, 4H), 7.52 (d, j=1.8 Hz, 2H), 7.47 (d, j=8.6 Hz, 4H), 6.84 (s, 2H), 7.75 (m, 6H), 4.44 (d, J=15.6 Hz, 2H), 3.86 (s, 4H), 3.81 (s, 4H), 3.61 (s, 4H), 3.54 (m, 2H), 3.16 (m, 4H), 3.16 (s, 6H), 1.49 (m, 4H). MS (m/z): 1636.98 [M+H]+. Example 205 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 205, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (110 mg, 0.22 mmol) in DMF (2.0 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (34 mg, 0.10 mmol) and the reaction was stirred for 10 minutes. The solvent was removed under vacuum and the residue was purified by preparative HPLC to give the title compound (23 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.81 (m, 4H), 7.44 (s, 1H), 7.37 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.72 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.02 [M+H]+. Example 206 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 206.1, N,N′-(1,4-phenylenebis(methylene))bis(2-(2-(2-aminoethoxy)ethoxy)ethanamine) A solution of terephthalaldehyde (134 mg, 1.0 mmol) and 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (1.48 g, 10.0 mmol) in DCM (10 mL) was stirred at room temperature. After 15 minutes sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added and the reaction was stirred for 1.5 hours. Acetic acid (600 mg, 10 mmol) was then added. After stirring for an additional 1.5 hours, acetic acid (600 mg, 10 mmol) and sodium triacetoxyborohydride (636 mg, 3.0 mmol) were added, and stirring was continued at room temperature. One hour later an additional portion of sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added. Twenty hours later the reaction was quenched with 1N HCl (5 mL) and concentrated to dryness. Methanol (10 mL) and 12N HCl (3 drops) were added and the mixture was concentrated to dryness. The residue was dissolved in water (10 mL) and a portion (1.0 mL) was purified by preparative HPLC to give a TFA salt of the title compound (25 mg) as a TFA salt. Compound 206, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of intermediate 206.1 (25 mg, 0.029 mmol) in DCM (0.5 mL) was added of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (25 mg, 0.06 mmol) followed by triethylamine (24.2 mg, 0.24 mmol) and the reaction was allowed to stir at room temperature for 18 hours. The reaction was concentrated to dryness, and then purified by preparative HPLC to give the title compound (8 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.85 (m, 2H), 7.74 (m, 2H), 7.62 (m, 6H), 7.53 (m, 4H), 6.80 (s, 1H), 4.74 (m, 6H), 4.44 (m, 2H), 4.30 (s, 4H), 3.83 (m, 2H), 3.76 (m, 4H), 3.62 (m, 8H), 3.50 (m, 4H), 3.23 (m, 4H), 3.10 (s, 6H), 3.02 (m, 4H). MS (m/z): 1105.05 [M+H]+. Example 207 (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 207, (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Following the procedures outlined in example 205, compound 207 was prepared using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.82 (m, 4H), 7.45 (m, 1H), 7.38 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.74 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.07 [M+H]+. Example 208 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 208, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (47 mg, 0.061 mmol) in DMF (0.20 mL) was added 1,4-diisocyanatobutane (4.0 mg, 0.03 mmol) followed by diisopropylethylamine (15 mg, 0.12 mmol). After stirring at room temperature for 30 minutes, the reaction was purified by preparative HPLC to give the title compound (31 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.88 (m, 2H), 7.75 (m, 2H), 7.63 (m, 2H), 7.54 (m, 4H), 6.83 (m, 2H), 4.74 (m, 4H), 4.48 (m, 2H), 3.87 (m, 2H), 3.62-3.55 (m, 14H), 3.51-3.43 (m, 12H), 3.24 (m, 4H), 3.14 (s, 6H), 3.05 (m, 8H), 1.43 (m, 4H). MS (m/z): 1230.99 [M+H]+. Example 209 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 209, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in example 208, compound 209 was prepared using 1,4-diisocyanatobenzene. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.78 (m, 2H), 7.64 (m, 2H), 7.53 (m, 2H), 7.43 (m, 2H), 7.39 (m, 2H), 7.10 (s, 4H), 6.71 (s, 2H), 4.58 (m, 4H), 4.39 (m, 2H), 3.68 (m, 2H), 3.54 (s, 8H), 3.50-3.44 (m, 8H), 3.42 (m, 6H), 3.35 (m, 4H), 2.99 (s, 6H), 2.95 (m, 4H). MS (m/z): 1250.98 [M+H]+. Example 210 (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.1, (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Intermediate 210.1 was prepared following the procedure outlined in Example 44.2 using 20-azido-3,6,9,12,15,18-hexaoxaicosan-1-amine. The title compound was recovered in 64% yield as a yellow oil. Intermediate 210.2, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-4-(2-carboxyprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.2 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (22.4 mg, 0.065 mmol) and (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (91.5 mg, 0.13 mmol). The title compound was recovered in 60% yield as a clear semi-solid. Compound 210, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Compound 210 was prepared following the procedure outlined in Example 45 using Intermediate 210.2 (59.6 mg). Purification by preparative HPLC gave the title compound (10 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.64 (d, 4H), 7.48 (s, 1H), 7.32 (d, 4H), 7.12 (d, 4H), 3.62-3.58 (m, 17H), 3.55-3.52 (m, 9H), 3.48-3.41 (m, 13H), 3.06 (s, 3H), 2.72 (s, 6H). MS (m/z): 1549.23 [M+H]+. Compound 211 (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211, (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211 was prepared following the procedure outlined in Example 45 using (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 210.2, 13.2 mg). Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.84 (d, 2H), 7.52 (s, 1H), 7.35 (d, 2H), 7.12 (d, 2H), 3.74-3.70 (m, 2H), 3.69-3.58 (m, 24H), 3.55-3.51 (m, 2H), 3.49-3.46 (m, 2H), 3.15-3.12 (m, 2H), 3.07-3.04 (m, 2H). MS (m/z): 718.28 [M+H]+. Example 212 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 212.1, (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Compound 44.2 (100 mg, 0.175 mmol) and (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (30.1 mg, 0.087 mmol) were dissolved in DMF (0.35 mL) with DIEA (67.7 mg, 0.525 mmol) and stirred for 2 hours at room temperature. The solvent was removed and the resulting material partitioned between EtOAc (20 mL) and water (20 mL). The organic layer was washed with saturated NaHCO3 (20 mL), brine (20 mL) and dried over Na2SO4 to give the product (87.7 mg) as a yellow oil that was used without further purification. Compound 212, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 212 was prepared following the procedures outlined in Example 45. Purification by preparative HPLC gave 9.6 mg of the title compound as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.11 (d, 4H), 4.44 (s, 2H), 3.61-3.53 (m, 21H), 3.50-3.41 (m, 15H), 3.05 (t, 4H), 2.17 (s, 6H). MS (m/z): 1286.11 [M+H]+. Example 213 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 213, 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 213 was prepared following the procedure outlined in Example 168 using tris(2,5-dioxopyrrolidin-1-yl) 2,2′,2″-nitrilotriacetate (75 mg, 0.156 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 254 mg, 0.467 mmol). Purification by preparative HPLC gave the title compound (32.0 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 3H), 7.75 (s, 3H), 7.63 (t, 3H), 7.54 (t, 6H), 6.82 (s, 3H), 4.84-4.75 (m, 6H), 4.48 (d, 3H), 3.86 (m, 3H), 3.85-3.37 (m, 54H), 3.14 (s, 9H), 3.02 (t, 6H). MS (m/z): 1777.07 [M+H]+. Example 214 N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 214.1, N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide A solution of 32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontan-1-amine (436.9 mg, 0.777 mmol) in dry DMF (3.5 mL) under N2 was cooled to 0° C. A solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.706 mmol) and DIEA (273.2 mg, 2.118 mmol) in DMF (3 mL) was added dropwise. After 60 minutes LCMS indicated complete conversion and the solvent was removed to give N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (620 mg) as a yellow oil which was used without further purification. Compound 214, N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 214.1, 620 mg, 0.706 mmol) in THF/H2O (10:1 v/v, 14.3 mL) under N2 was added trimethylphosphine (214.8 mg, 2.82 mmol). The resulting solution was stirred overnight at which point LCMS indicated complete conversion. The solvent was removed to give 819 mg of an orange oil, a portion of which was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 1H), 7.68 (s, 1H), 7.62 (t, 1H), 7.55 (m, 2H), 6.82 (s, 1H), 3.85 (m, 1H), 3.78 (q, 3H), 3.70-3.58 (m, 55H), 3.52 (m, 2H), 3.46 (t, 3H), 3.18 (t, 3H), 3.11 (s, 3H), 3.03 (t, 2H). MS (m/z): 855.24 [M+H]+. Example 215 N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide Compound 215, N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968) in DMF (0.5 mL) was added benzene-1,3,5-tricarboxylic acid (6.7 mg, 0.0319 mmol), DIEA (37.5 mg, 0.291 mmol), and finally HATU (40.4 mg, 0.107 mmol). The reaction was stirred for 60 minutes at room temperature at which point LCMS indicated complete conversion. The resulting solution was diluted with acetonitrile/water solution (1:1 v/v) and filtered. Purification by preparative HPLC gave the title compound (37.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.37 (s, 3H), 7.84 (d, 2H (7.83 (s, 2H), 7.62 (t, 2H), 7.51-7.50 (m, 4H), 6.79 (s, 2H), 4.83-4.70 (m, 5H), 4.46 (d, 2H), 3.86 (q, 2H), 3.67-3.53 (m, 27H), 3.45 (t, 5H), 3.39 (t, 5H), 3.14 (s, 7H), 2.98 (t, 4H). MS (m/z): 1797.15 [M+H]+. Example 216 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 216, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 216 was prepared following the procedure outlined in Example 215 using terephthalic acid (10.7 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 100 mg, 0.129 mmol). Purification by preparative HPLC gave the title compound (46.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (m, 6H), 7.73 (s, 2H), 7.59 (t, 2H), 7.52-7.49 (m, 4H) m, 6.80 (s, 2H), 4.77-4.69 (m, 4H), 4.49 (d, 2H), 3.587 (qs, 2H), 3.67-3.54 (m, 27H), 3.45 (t, 5H), 3.40 (t, 5H), 3.13 (s, 7H), 2.99 (t, 4H). MS (m/z): 1224.34 [M+H]+. Example 217 N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217, N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-dioate (69.1 mg, 0.0975 mmol) and N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 214, 166.2 mg, 0.195 mmol). Purification by preparative HPLC gave the title compound (106.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.76 (s, 2H), 7.66 (t, 2H), 7.56 (m, 4H), 6.86 (s, 2H), 3.90 (m, 2H), 3.82 (t, 2H), 3.76 (m, 6H), 3.62-3.41 (m, 28H), 3.38 (m, 6H), 3.35-3.28 (m, 56H), 3.15 (s, 6H), 3.05 (t, 4H), 2.43 (t, 4H). MS (m/z): 1094.37 [(M+2H)/2]+. Example 218 2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (10.2 mg, 0.0298 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 30 mg, 0.0597 mmol). Purification by preparative HPLC gave the title compound (5.1 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.92 (d, J=7.8 Hz, 2H), 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H0, 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119.04 [M+H]+. Example 219 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide Compound 219, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol) and DIEA (35.5 mg, 0.275 mmol) in dry DCM (0.183 mL) under N2 was added benzene-1,3-disulfonyl dichloride (12.7 mg, 0.0459 mmol) in DCM (0.183 mL). The reaction mixture was stirred at room temperature for 60 minutes at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 4 mL ACN/H2O solution (1:1). Filtration and purification by preparative HPLC gave the title compound (16.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.28 (s, 1H), 8.06 (d, 1H), 7.85 (d, 2H), 7.75 (d, 2H), 7.70 (s, 1H), 7.63 (t, 2H), 7.53 (m, 3H), 6.82 (s, 1H), 4.52 (d, 1H), 3.85 (d, 1H), 3.61-3.46 (m, 28H), 3.13 (s, 6H), 3.09-3.03 (m, 7H). MS (m/z): 1294.99 [M+H]+. Example 220 N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)biphenyl-4,4′-disulfonamide Compound 220, N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)biphenyl-4,4′-disulfonamide Compound 220 was prepared following the procedure outlined in Example 219 using biphenyl-4,4′-disulfonyl dichloride (16.1 mg, 0.0459 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol). Purification by preparative HPLC gave the title compound (16.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.96 (d, 4H), 7.88-7.85 (m, 5H), 7.78 (s, 2H), 7.61 (t, 2H), 7.47 (d, 2H), 6.78 (s, 2H), 4.74-4.69 (m, 3H), 4.45 (d, 2H), 3.88-3.83 (m, 2H), 3.62-3.59 (m, 2H), 3.55-3.53 (m, 9H), 3.52-3.43 (m, 17H), 3.13 (s, 6H), 3.11-3.03 (m, 8H). MS (m/z): 1371.02 [M+H]+. Example 221 (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic Acid Compound 221, (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic Acid Compound 221 was prepared by isolating the mono-addition byproduct from the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (70.4 mg, 0.205 mmol) and Compound 28 (223 mg, 0.409 mmol). Purification by preparative HPLC gave the title compound (44.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 1H), 7.81 (d, 1H), 7.63 (t, 1H), 7.55 (s, 1H), 7.50 (t, 1H), 6.84 (s, 0.5H), 3.88-3.84 (m, 1H), 3.64-3.34 (m, 22H), 3.14 (s, 4H), 3.07 (m, 2H). MS (m/z): 677.36 [M+H]+. Example 222 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222 was prepared following the procedure outlined in Example 215 using (2S,3S)-2,3-dihydroxysuccinic acid (15.5 mg, 0.103 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 112 mg, 0.206 mmol). Purification by preparative HPLC gave the title compound (39.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.54-7.50 (m, 4H), 6.82 (s, 2H), 4.34 (s, 2H), 3.90-3.85 (m, 1H), 3.62-3.30 (m, 47H), 3.14 (m, 8H), 3.05 (t, 4H). MS (m/z): 1206.95 [M+H]+. Example 223 N1,N4-bis(2-(2-(2-(2-(3-((R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 223.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and 223.1b (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1, 4.5 g, 7.88 mmol, 1.00 equiv) was separated into its enantiomers by chiral phase preparative Supercritical Fluid Chromatography (Prep-SFC) with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), methanol (20%); Detector, UV 254 nm. This resulted in 1.61 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.5 Hz, 1H), 7.711 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=16.2 Hz, 1H), 3.58-3.69 (m, 9H), 3.40-3.52 (m, 4H), 3.33-3.38 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. This also gave 1.81 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.78-7.81 (m, 1H), 7.71 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=15.9 Hz, 1H), 3.57-3.70 (m, 9H), 3.44-3.53 (m, 4H), 3.37-3.40 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 223.2, (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1 a was converted to Intermediate 223.2. Compound 223, N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 223 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 223.2, 239 mg, 0.439 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (75.5 mg, 0.219 mmol). Purification by preparative HPLC gave the title compound (135.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.68 (s, 2H), 7.63 (t, 2H), 7.54-7.52 (m, 4H), 6.83 (s, 2H), 4.83-4.75 (m, 5H), 4.50-4.48 (m, 2H), 4.43 (d, 2H), 3.89-3.82 (m, 2H), 3.63-3.35 (m, 34H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.11 [M+H]+. Example 224 N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 224.1, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1b was converted to Intermediate 224.1. Compound 224, N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 224 was prepared following the procedures outlined in Example 223 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 274 mg, 0.502 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (86.4 mg, 0.25 μmol). Purification by preparative HPLC gave the title compound (159 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 6.54-6.51 (m, 4H), 6.83 (s, 2H), 4.84-4.75 (m, 4H), 4.50-4.43 (m, 4H), 3.90-3.85 (m, 4H), 3.62-3.28 (m, 35H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1207.11 [M+H]+. Example 225 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 225.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and intermediate 225.1b, (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (5 g, 8.76 mmol, 1.00 equiv) was separated into its enantiomers by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), ethanol (20%); Detector, UV 254 nm. This resulted in 1.69 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.85 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.43 (t, 1H), 3.81 (m, 1H), 3.67 (m, 9H), 3.48 (m, 4H), 3.33 (m, 2H), 3.01 (m, 1H), 2.71 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Also isolated was 1.65 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.84 (d, J=8.4 Hz, 2H), 7.43 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.42 (t, 1H), 3.81 (m, 1H), 3.67 (m, 10H), 3.59 (m, 4H), 3.49 (m, 2H), 3.11 (m, 2H), 2.72 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 225.2, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1b was converted to Intermediate 225.2. Compound 225, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 225 was prepared following the procedures outlined in Example 168 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 302.4 mg, 0.555 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (95.5 mg, 0.277 mmol). Purification by preparative HPLC gave the title compound (97.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.46 (d, 4H), 6.84 (s, 2H), 4.88-4.72 (m, 3H), 4.43-4.42 (m, 2H), 3.85-3.80 (m, 1H), 3.63-3.35 (m, 24H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.05 [M+H]+. Example 226 N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 226.1, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1 a was converted to intermediate 226.1. Compound 226, N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 226 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 226.1, 267.5 mg, 0.491 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (84.5 mg, 0.245 mmol). Purification by preparative HPLC gave the title compound (145.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 5H), 7.54 (s, 2H), 7.48 (d, 4H), 6.84 (s, 2H), 4.84-4.73 (m, 4H), 4.50-4.43 (d, 2H), 4.18 (d, 2H), 3.85-3.80 (m, 2H), 3.64-3.40 (m, 32H), 3.13 (s, 6H), 3.08 (t, 3H). MS (m/z): 1207.10 [M+H]+. Example 227 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (49.6 mg, 0.144 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 157 mg, 0.288 mmol). Purification by preparative HPLC gave the title compound (34.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.77-4.74 (m, 6H), 4.46 (d, 2H), 4.43 (t, 2H), 3.89-3.84 (m, 2H), 3.62-3.53 (m, 19H), 3.49-3.41 (m, 13H), 3.14 (s, 6H), 3.08 (t, 4H). MS (m/z): 1206.94 [M+H]+. Example 228 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)isophthalamide Compound 228, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)isophthalamide Compound 228 was prepared following the procedure outlined in Example 215 using isophthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (45.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.25 (s, 1H), 7.92 (d, 2H), 7.85 (d, 2H), 7.73 (s, 2H), 7.58 (t, 2H), 7.49 (m, 5H), 6.81 (s, 2H), 4.83-4.71 (m, 4H), 4.49 (d, 2H), 3.87 (m, 2H), 3.67-3.54 (m, 28H), 3.45 (t, 5H), 3.44 (q, 5H), 3.14 (s, 7H), 2.99 (t, 4H). MS (m/z): 1223.19 [M+H]+. Example 229 (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 229, (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 25 mg, 0.0322 mmol) was dissolved in DMF (0.161 mL) with DIEA (12.4 mg, 0.0966 mmol) and (2R,3S)-2,3-dihydroxysuccinic acid (2.7 mg, 0.0161 mmol). Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (18.4 mg, 0.0354 mmol) was added and the resulting solution stirred for 60 minutes, at which point LCMS indicated complete conversion. The reaction mixture was diluted to 2 mL with acetonitrile/water (1:1) and filtered. Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.80 (d, 2H), 7.69 (s, 2H), 7.55 (t, 2H), 7.43 (m, 4H), 6.75 (s, 2H), 4.80-4.75 (m, 3H), 4.39 (d, 2H), 4.24 (d, 2H), 3.76 (m, 2H), 3.64-3.25 (m, 33H), 3.04 (s, 7H), 2.95 (t, 4H). MS (m/z): 1207.10 [M+H]+. Example 230 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)phthalamide Compound 230, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)phthalamide Compound 230 was prepared by following the procedure outlined in Example 215 using phthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (35.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.76 (s, 2H), 7.63 (t, 2H), 7.50 (m, 8H), 6.79 (s, 2H), 4.83-4.73 (m, 4H), 4.65 (d, 2H( ), 3.85 (q, 2H), 3.62-3.39 (m, 36H), 3.10 (s, 6H), 3.02 (t, 4H). MS (m/z): 1223.00 [M+H]+. Example 231 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 231, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 231 was prepared following the procedure outlined in Example 215 using terephthalic acid (11.4 mg, 0.0684 mmol) and 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)benzenesulfonamide (Compound 175.1, 100 mg, 0.136 mmol). Purification by preparative HPLC gave the title compound (9.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86-7.85 (m, 9H), 7.83 (s, 2H), 7.50 (s, 1H), 7.41 (d, 4H), 6.80 (s, 1H), 3.68-3.42 (m, 26H), 3.34 (m, 2H), 3.09-3.01 (m, 12H). MS (m/z): 1135.07 [M+H]+. Example 232 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 232, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 80 mg, 0.110 mmol) and DIEA (42.1 mg, 0.330 mmol) were dissolved in dry DCM (0.5 mL) under N2 and cooled to 0° C. A solution of triphosgene (4.9 mg, 0.0165 mmol) in DCM (0.2 mL) was added dropwise and the resulting solution was warmed to room temperature over 30 minutes. The solvent was removed; the resulting residue was brought up in 4 mL of acetonitrile/water (1:1) solution and filtered. Purification by preparative HPLC gave the title compound (8.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 4H), 7.60 (s, 2H), 7.47 (d, 4H), 6.84 (s, 2H), 3.58-3.42 (m, 24H), 3.12-3.05 (m, 17H). MS (m/z): 1031.96 [M+H]+. Example 233 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 233, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 233 was prepared following the procedures outlined in Example 215 using terephthalic acid (10.4 mg, 0.0628 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 97.2 mg, 0.1255 mmol). Purification by preparative HPLC gave the title compound (38.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.83 (m, 10H), 7.85 (s, 2H), 7.42 (d, 4H), 6.83 (s, 1H), 3.66-3.55 (m, 28H), 3.46-3.39 (m, 11H), 3.12 (s, 7H), 3.04 (t, 4H). MS (m/z): 1223.14 [M+H]+. Example 234 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 234, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 234 was prepared following the procedures outlined in Example 215 using terephthalic acid (13.8 mg, 0.0833 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 121.7 mg, 0.167 mmol). Purification by preparative HPLC gave the title compound (60.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (m, 6H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51 (m, 4H), 6.80 (s, 2H), 4.88-4.75 (m, 4H), 4.75 (d, 2H), 4.74 (m, 2H), 3.85-3.42 (m, 25H), 3.12 (s, 6H), 2.99 (t, 4H). MS (m/z): 1135.11 [M+H]+. Example 235 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235 was prepared following the procedures outlined in Example 232 using N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 56.6 mg, 0.0775 mmol). Purification by preparative HPLC gave the title compound (25.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.75 (s, 2H, 7.65 (t, 2H), 7.53 (m, 4H), 6.83 (s, 2H), 4.89-4.68 (m, 2H), 3.88 (m, 2H), 3.62-3.43 (m, 21H), 3.30-3.27 (m, 6H), 3.11 (s, 7H), 3.03 (t, 4H). MS (m/z): 1031.07 [M+H]+. Example 236 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (5.24 mg, 0.0374 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 54.7 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (27.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88-7.86 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 4.48 (m, 2H), 3.38-3.31 (m, 1H), 3.61-3.42 (m, 17H), 3.35-3.30 (m, 4H), 3.13 (s, 6H), 3.08-3.02 (m, 7H), 1.45 (m, 2H). MS (m/z): 1145.04 [M+H]+. Example 237 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (8.79 mg, 0.0549 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 80.2 mg, 0.110 mmol). Purification by preparative HPLC gave the title compound (37.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.73 (s, 2H), 7.61 (t, 2H), 7.52 (d, 2H), 7.48 (d, 2H), 7.18 (s, 5H), 6.78 (s, 2H), 4.71-4.63 (m, 6H), 4.45-4.40 (m, 2H), 3.81-3.77 (m, 2H), 3.58-3.55 (m, 6H), 3.53-3.50 (m, 14H), 3.47-3.44 (m, 6H), 3.35-3.33 (m, 6H), 3.09 (s, 8H), 3.03 (t, 5H). MS (m/z): 1165.06 [M+H]+. Example 238 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (5.64 mg, 0.402 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 58.8 mg, 0.805 mmol). Purification by preparative HPLC gave the title compound (13.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, J=8 Hz, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.52 (s, 2H), 7.47 (d, J=7 Hz, 2H), 7.18 (s, 5H), 7.78 (s, 2H), 4.77-4.68 (m, 5H), 4.48-4.40 (m, 2H), 3.35-3.28 (m, 2H), 3.56-3.51 (m, 16H), 3.45 (t, J=5 Hz, 5H), 3.35-3.32 (m, 10H), 3.09 (s, 6H), 3.03 (t, J=5 Hz, 3H). MS (m/z): 1145.01 [M+H]+. Example 239 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (12.5 mg, 0.078 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 113.9 mg, 0.156 mmol). Purification by preparative HPLC gave the title compound (48.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, J=8 Hz, 4H), 7.52 (s, 2H), 7.40 (d, J=8 Hz, 4H), 7.18 (s, 4H), 7.69 (s, 2H), 4.70-4.62 (m, 3H), 4.48-4.40) (m, 2H), 3.82-3.76 (m, 2H), 3.58-3.43 (m, 21H), 3.35-3.30 (m, 4H), 3.11-3.06 (m, 11H). MS (m/z): 1165.12[M+H]+. Example 240 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (9.6 mg, 0.057 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 88.6 mg, 0.114 mmol). Purification by preparative HPLC gave the title compound (24.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.94 (t, 1H), 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.53-7.50 (m, 4H), 6.82 (s, 2H), 4.479-4.45 (m, 2H), 4.44 (s, 2H), 3.88-3.84 (m, 2H), 3.62-3.53 (m, 22H), 3.50-3.48 (m, 5H), 3.45-3.40 (m, 9H), 3.13 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.02 [M+H]+. Example 241 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.7 mg, 0.0519 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 80.5 mg, 0.104 mmol). Purification by preparative HPLC gave the title compound (25.7) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 3H), 7.76 (s, 2H), 7.63 (t, 2H), 7.54-7.51 (m, 4H), 6.83 (s, 2H), 4.78-4.73 (m, 4H), 4.49-4.42 (m, 4H), 3.89-3.85 (m, 2H), 3.62-3.53 (m, 22H), 3.51-48 (m, 5H), 3.46-3.38 (m, 9H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.21 [M+H]+. Example 242 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (6.3 mg, 0.0374 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 58.0 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (21.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 3H), 6.84 (s, 1H), 4.772-4.69 (m, 3H), 4.43 (s, 2H), 3.86-3.81 (m, 1H), 3.59-3.53 (m, 16H), 3.49-3.39 (m, 11H), 3.12 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.14 [M+H]+. Example 243 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.4 mg, 0.0.0499 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 77.3 mg, 0.0999 mmol). Purification by preparative HPLC gave the title compound (23.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.81-4.71 (m, 4H), 4.49-4.41 (m, 4H), 3.89-3.83 (m, 2H), 3.60-3.53 (m, 17H), 3.49-3.38 (m, 12H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.09 [M+H]+. Example 244 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 244.1, (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 2000-mL round-bottom flask, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4; 20 g, 54.20 mmol, 1.00 equiv) in ethanol (500 mL). This was followed by the addition of D-(+)-dibenzoyl tartaric acid (19 g, 53.07 mmol, 0.98 equiv), water (160 mL) and ethanol (1440 mL) at 45° C. The resulting solution was stirred for 30 min at 45° C. in an oil bath. After cooling to room temperature over 24 hours, the solids were collected by filtration. The filter cake was dissolved in potassium carbonate (saturated.) and was extracted with 2×500 mL of ethyl acetate. The combined organic layers were washed with 2×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. This gave (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a colorless oil. Intermediate 224.1 (alternate synthesis), (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 244.1) was converted to (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1) following the procedures outlined for the racemic substrates in Example 1 and the reduction described in Example 170. Compound 244, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 244 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (6.5 mg, 0.0471 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 72.9 mg, 0.0941 mmol). Purification by preparative HPLC gave the title compound (34.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 6.83 (s, 2H), 4.48 (d, 2H), 3.90-3.85 (m, 2H), 3.59-3.55 (m, 17H), 3.51-3.43 (m, 14H), 3.31-3.23 (m, 6H), 3.14 (s, 7H), 3.04 (m, 9H), 1.43 (m, 4H). MS (m/z): 1232.99 [M+H]+. Example 245 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 79.1 mg, 0.102 mmol) and 1,4-diisocyanatobenzene (8.2 mg, 0.0511 mmol). Purification by preparative HPLC gave the title compound (43.2 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51-7.46 (m, 4H), 7.17 (s, 4H), 6.78 (s, 2H), 4.44-4.39 (m, 2H), 3.82-3.77 (m, 2H), 3.61 (s, 11H), 3.57-3.53 (m, 13H), 3.49-3.48 (m, 6H), 3.44 (t, 5H), 3.35-3.29 (m, 6H), 3.09 (s, 7H), 3.03 (t, 4H). MS (m/z): 1253.01 [M+H]+. Compound 246 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 246, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 246 was prepared following the procedures outlined in Example 215 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 65.1 mg, 0.0841 mmol) and terephthalic acid (6.98 mg, 0.042 mmol). Purification by preparative HPLC gave the title compound (19.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89-7.85 (m, 6H), 7.52 (s, 2H), 7.43 (d, 4H), 6.81 (s, 2H), 4.73-4.66 (m, 3H), 4.47-4.42 (m, 1H), 3.84-3.79 (m, 2H), 3.64-3.59 (m, 14H), 3.57-3.54 (m, 11H), 3.46-3.39 (m, 8H), 3.12 (s, 6H), 3.03 (t, 4H). MS (m/z): 1233.04 [M+H]+. Example 247 N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247, N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247 was prepared following the procedure outlined in Example 215 using 4-amino-4-oxobutanoic acid (7.6 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0646 mmol). Purification by preparative HPLC gave the title compound (27.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 1H), 7.75 (s, 1H), 7.64 (t, 1H), 7.55 (s, 1H), 7.51 (d, 1H), 6.84 (s, 1H), 4.78-4.71 (m, 2H), 4.55-4.48 (m, 1H), 3.81-3.75 (m, 1H), 3.63-3.55 (m, 10H), 3.51-4.45 (m, 5H), 3.44-3.41 (m, 3H), 3.38-3.31 (m, 3H), 3.13 (s, 3H), 3.07-3.02 (t, 2H), 2.48-2.43 (m, 4H). MS (m/z): 645.32 [M+H]+. Example 248 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (7.64 mg, 0.545 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 84.4 mg, 0.109 mmol). Purification by preparative HPLC gave the title compound (43.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.71 (m, 4H), 3.89-3.85 (dd, 2H), 3.59-3.56 (m, 17H), 3.49-3.43 (m, 14H), 3.28-3.23 (m, 5H), 3.14 (s, 7H), 3.09-3.04 (m, 9H), 1.42 (s, 4H). MS (m/z): 1233.03 [M+H]+. Example 249 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (7.95 mg, 0.0495 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 76.7 mg, 0.099 mmol). Purification by preparative HPLC gave the title compound (39.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.40 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.88-4.83 (m, 4H), 4.65-4.50 (m, 2H), 3.81-3.77 (m, 2H), 3.61-3.59 (m, 9H), 3.58-3.54 (m, 11H), 3.53-3.48 (m, 5H), 3.47-3.42 (m, 5H), 3.35-3.30 (m, 4H), 3.11 (s, 6H), 3.07 (t, 4H). MS (m/z): 1253.04 [M+H]+. Example 250 (S or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250, (S- or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250 was prepared following the procedures outlined in Example 232 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 225.2, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (26.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.72 (m, 5H), 4.48-4.42 (m, 2H), 3.87-3.83 (m, 2H), 3.58-3.54 (m, 17H), 3.49-3.43 (m, 15H), 3.24-3.22 (m, 6H), 3.12 (s. 6H), 3.08 (t, 4H). MS (m/z): 1118.96 [M+H]+. Example 251 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 88.1 mg, 0.114 mmol) and 1,4-diisocyanatobutane (7.9 mg, 0.0569 mmol). Purification by preparative HPLC gave the title compound (56.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.77-4.74 (m, 4H), 4.50-4.46 (m, 2H), 3.89-3.84 (m, 2H), 3.61-3.56 (m, 17H), 3.50-3.43 (m, 14H), 3.26-3.23 (m, 6H), 3.14 (s, 7H), 3.09-3.04 (m, 10H), 1.48 (s, 4H). MS (m/z): 1233.01 [M+H]+. Example 252 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252 was prepared following the procedures outlined in Example 208 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 45.2 mg, 0.0584 mmol) and 1,4-diisocyanatobenzene (4.7 mg, 0.0292 mmol). Purification by preparative HPLC gave the title compound (20.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.39 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.72-4.61 (m, 4H), 4.46-3.99 (m, 1H), 3.81-3.73 (m, 1H), 3.62-3.42 (m, 33H), 3.35-3.33 (m, 5H), 3.09-3.06 (m, 13H). MS (m/z): 1252.95 [M+H]+. Topological Polar Surface Area Data Topological Polar Surface Area (tPSA) values for representative compounds in the disclosure are shown in Table 7, below. The tPSA values were calculated using the method of Ertl et al., Journal of Medicinal Chemistry, 43:3714-3717 (2000). TABLE 7 tPSA Values of Compounds Topological polar Example # surface area ({acute over (Å)}2) Example 01 125 Example 02 125 Example 03 125 Example 04 125 Example 05 125 Example 06 125 Example 07 121 Example 08 154 Example 09 132 Example 10 125 Example 11 125 Example 12 125 Example 13 125 Example 14 125 Example 15 124 Example 16 177 Example 17 134 Example 18 116 Example 19 116 Example 20 116 Example 21 238 Example 22 116 Example 23 116 Example 24 177 Example 25 238 Example 26 116 Example 27 134 Example 28 112 Example 29 229 Example 30 137 Example 31 137 Example 32 137 Example 33 137 Example 34 119 Example 35 119 Example 36 119 Example 37 119 Example 38 112 Example 39 112 Example 40 119 Example 41 291 Example 42 291 Example 43 309 Example 44 318 Example 45 199 Example 46 387 Example 47 404 Example 48 224 Example 49 417 Example 50 297 Example 51 213 Example 52 213 Example 53 213 Example 54 213 Example 55 213 Example 56 213 Example 57 241 Example 58 184 Example 59 220 Example 60 147 Example 61 134 Example 62 134 Example 63 215 Example 64 134 Example 65 123 Example 66 147 Example 67 161 Example 68 117 Example 69 117 Example 70 134 Example 71 208 Example 72 154 Example 73 134 Example 74 174 Example 75 178 Example 76 125 Example 77 238 Example 78 121 Example 79 123 Example 80 136 Example 81 242 Example 82 112 Example 83 191 Example 84 190 Example 85 123 Example 86 228 Example 87 270 Example 88 270 Example 89 159 Example 90 189 Example 91 147 Example 92 147 Example 93 74 Example 94 157 Example 95 115 Example 96 115 Example 97 312 Example 98 312 Example 99 235 Example 100 212 Example 101 202 Example 102 487 Example 103 212 Example 104 500 Example 168 251 Example 169 214 Example 170 270 Example 171 86 Example 172 270 Example 173 185 Example 174 243 Example 175 211 Example 176 233 Example 177 211 Example 178 220 Example 179 219 Example 180 229 Example 181 229 Example 182 229 Example 183 211 Example 184 202 Example 185 214 Example 186 237 Example 187 238 Example 188 211 Example 189 231 Example 190 211 Example 191 211 Example 192 273 Example 193 231 Example 194 221 Example 195 220 Example 196 211 Example 197 229 Example 198 238 Example 199 229 Example 200 211 Example 201 220 Example 202 235 Example 203 235 Example 204 290 Example 205 251 Example 206 177 Example 207 251 Example 208 253 Example 209 253 Example 210 500 Example 211 227 Example 212 445 Example 213 347 Example 214 176 Example 215 344 Example 216 229 Example 217 441 Example 218 251 Example 219 280 Example 220 280 Example 221 192 Example 222 270 Example 223 270 Example 224 270 Example 225 270 Example 226 270 Example 227 270 Example 228 229 Example 229 270 Example 230 229 Example 231 211 Example 232 194 Example 233 229 Example 234 211 Example 235 194 Example 236 235 Example 237 235 Example 238 235 Example 239 235 Example 240 270 Example 241 270 Example 242 270 Example 243 270 Example 244 253 Example 245 253 Example 246 229 Example 247 158 Example 248 253 Example 249 253 Example 250 212 Example 251 253 Example 252 253 Pharmacological Data 1. Pharmacological Test Example 1 Cell-Based Assay of NHE-3 Activity. Rat NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Tsien (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 uM BCECF-AM (Invitrogen). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 5 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3) and 0-30 uM test compound, and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem 538 nm). Initial rates were plotted as the average 3-6 replicates, and pIC50 values were estimated using GraphPad Prism. The inhibitory data of many of the example compounds illustrated above are shown in Table 8, below. TABLE 8 Inhibitory data of compounds against rat NHE-3 rat NHE-3 Example # Average pIC501 Example 171 <5.0 Example 174 <5.0 Example 175 <5.0 Example 223 <5.0 Example 231 <5.0 Example 232 <5.0 Example 233 <5.0 Example 235 <5.0 Example 30 5 to 6 Example 31 5 to 6 Example 52 5 to 6 Example 54 5 to 6 Example 63 5 to 6 Example 64 5 to 6 Example 176 5 to 6 Example 196 5 to 6 Example 209 5 to 6 Example 219 5 to 6 Example 234 5 to 6 Example 28 6 to 7 Example 29 6 to 7 Example 45 6 to 7 Example 46 6 to 7 Example 60 6 to 7 Example 65 6 to 7 Example 66 6 to 7 Example 67 6 to 7 Example 68 6 to 7 Example 69 6 to 7 Example 97 6 to 7 Example 100 6 to 7 Example 102 6 to 7 Example 104 6 to 7 Example 169 6 to 7 Example 170 6 to 7 Example 178 6 to 7 Example 207 6 to 7 Example 210 6 to 7 Example 211 6 to 7 Example 213 6 to 7 Example 217 6 to 7 Example 218 6 to 7 Example 225 6 to 7 Example 228 6 to 7 Example 47 >7 Example 81 >7 Example 87 >7 Example 88 >7 Example 98 >7 Example 103 >7 Example 172 >7 Example 177 >7 Example 191 >7 Example 195 >7 Example 200 >7 Example 201 >7 Example 202 >7 Example 203 >7 Example 204 >7 Example 205 >7 Example 206 >7 Example 208 >7 Example 212 >7 Example 215 >7 Example 216 >7 Example 222 >7 Example 224 >7 Example 229 >7 Example 230 >7 Example 236 >7 Example 237 >7 Example 244 >7 Example 250 >7 Example 251 >7 1pIC50 is the negative log the IC50 value (an IC50 value of 1 micromolar corresponds to a pIC50 value of 6.0) 2. Pharmacological Test Example 2 Parallel Artificial Membrane Permeability Assay (PAMPA). The model consists of a hydrophobic filter material coated with a mixture of lecithin/phospholipids creating an artificial lipid membrane. BD Gentest PAMPA 96-well plates (cat #353015) are warmed for 1 hr at room temperature. 1 mL of 20 uM control compounds (pooled mix of 10 mM atenolol, ranitidine, labetalol, and propranolol) in transport buffer (10 mM HEPES in HBSS pH 7.4) are prepared along with 1 mL of 20 uM test compounds in transport buffer. The PAMPA plates are separated, and 0.3 mL of compound are added in duplicate to apical side (bottom/donor plate=“AP”), and 2 mL buffer are placed in the basolateral chamber (top/receiver plate=“BL”). The BL plate is placed on the AP plate and incubated for 3 hrs in 37° C. incubator. At that time, samples are removed from both plates, and analyzed for compound concentration using LC/MS. A “Pe” (effective permeability) value is calculated using the following formula. Pe=(−ln [1−CA(t)/Ceq])/[A*(1/VD+1/VA)*t where CA=concentration in acceptor well, CD=concentration in donor well VD=donor well volume (mL), VA=acceptor well volume (mL) A=filter area=0.3 cm2, t=transport time (seconds) Ceq=equilibrium concentration=[CD(t)*VD+CA(t)*VA]/(VD+VA) Pe is reported in units of cm/sec×10−6. Results from PAMPA testing are shown in Table 9. TABLE 9 Papp values as determined using the PAMPA assay Avg Papp, A→ B, Example # cm/sec × 10−6 Example 01 0.53 Example 03 0.8 Example 07 0.5 Example 08 0.2 Example 13 0.3 Example 14 0.4 Example 15 0.05 Example 16 <0.02 Example 23 <0.04 Example 24 0.03 Example 26 <0.02 Example 27 <0.02 Example 30 0.56 Example 31 0.61 Example 34 0.2 Example 35 0.17 Example 36 0.2 Example 37 0.1 Example 38 0.1 Example 44 0.1 Example 47 <0.01 Example 48 0.9 Example 51 0.2 Example 52 1.61 Example 53 1.6 Example 54 1.3 Example 56 0.5 Example 57 1.65 Example 58 0.2 Example 59 0.1 Example 60 0.99 Example 61 0.1 Example 63 0.43 Example 68 0.35 Example 69 0.3 Example 70 0.4 Example 71 0.45 Example 72 0.2 Example 73 0.27 Example 74 0.45 Example 75 0.4 Example 76 0.2 Increasing values of tPSA are typically associated with lower permeability. FIG. 1 illustrates the Relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of Example compounds. Compounds with higher tPSA values trend toward lower permeability. 3. Pharmacological Test Example 3 Pharmacodynamic Model: Effect of Test Compounds on Fluid Content of Intestinal Compartments. Normal female Sprague Dawley rats, 7 weeks old, were acclimated for at least 2 days. The animals were fed ad lib through the experiment. Groups of 5 rats were orally gavaged with 1.5 mL of water containing a negative control compound or test compounds, adjusted to a concentration that results in a dose of 10 mg/kg. Six hours after dosing, rats were euthanized with isofluorane. The cecum and colon were ligated and then removed. After a brief rinse in saline and pat-drying, the segments were weighed. The segments were then opened, and the contents collected and weighed. The collected contents were then dried, and weighed again. The % water content was reported as 100×((Ww−Wd)/Ww) where Ww is the weight of the wet contents, and Wd is the weight of the contents after drying. The differences between groups are evaluated by one way ANOVA with Bonferroni post tests. Examples are shown in FIGS. 2A and 2B (wherein rats were dosed orally with 10 mg/kg of compound (Example or Control), and then after 6 hours, cecum and colon contents were removed, weighed and dried, and the % water in the contents was determined: *, P<0.05 and ***, P<0.01 compared to control in ANOVA analysis). 4. Pharmacological Test Example 4 Determination of Compound Cmax and AUC. Sprague-Dawley rats were orally gavaged with test article (2.5 mg/kg) and serum was collected at 0.5, 1, 2 and 4 h. Serum samples were treated with acetonitrile, precipitated proteins removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. Table 10 illustrates data from the pharmacokinetic profiling of selected example compounds. All compounds were orally dosed at the dosage shown, and pharmacokinetic parameters determined as described in the text. TABLE 10 Pharmacokinetic Profiling of Selected Example Compounds Actual Oral Dose Cmax AUC Example (mg/kg) (ng/mL) (ng × hr/mL) Example 01 2.1 21 53 Example 16 1.6 71 159 Example 31 1.3 11 56 Example 35 2.2 2.4 5 Example 50 2.3 93 242 Example 52 4.6 14 9 Example 55 2.2 9 23 Example 60 2.4 2 0 Example 63 2.4 0 0 Example 211 0.7 <2.3 <3.0 Example 212 1.5 <2.7 <4.4 Example 213 9.5 <5.0 <5.0 Example 214 2.6 <5.0 <5.0 Example 215 7.7 <2.0 <2.0 Example 216 1.9 <4.0 <8.3 Example 217 9.1 <10.0 <10.0 Example 204 10.9 <2.0 <2.0 Example 218 9 <1.0 <1.0 Example 169 11 <3.5 <4.0 Example 205 10.7 <2.0 <2.0 Example 225 27 <3.5 <5.3 Example 226 31 <3.0 <5.0 Example 172 26 <2.0 <2.0 Example 228 23 <5.0 <5.0 Example 230 17 <5.0 <5.0 Example 173 28 23 19 Example 174 27 <5.4 <5.0 Example 208 12 <5.0 <5.0 Example 231 23 <2.5 <3.0 Example 232 17 <2.0 <2.0 Example 233 19 <2.6 <6.8 Example 234 22 <2.0 <2.0 Example 235 11 <5.0 <5.0 Example 175 28 8 6 Example 177 14 <3.2 <4.0 Example 178 18 <2.0 <2.0 Example 179 27 <16.0 <35.0 Example 180 25 <10.0 <19.0 Example 181 28 <2.0 <2.0 Example 185 17 <2.0 <2.0 Example 186 15 <3.4 <5.0 Example 244 16 <7.0 <15.0 Example 245 21 <2.0 <2.0 5. Pharmacological Test Example 5 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: CRF/ESRD Model. Male Sprague-Dawley rats with subtotal (⅚t1) nephrectomy, 7 weeks old and weighing 175-200 g at surgery time, are purchased from Charles River Laboratories. The animals are subjected to acclimation for 7 days, and randomly grouped (using random number table) before proceeding to experiments. During acclimation, all animals are fed with base diet HD8728CM. The rats are housed in holding cages (2/cage) during the acclimation period and the time between sample collections. The rats are transferred to metabolic cages on the days of sample collections. Food and water is provided ad libitum. Chronic renal failure is induced in the rats by subtotal (⅚th) nephrectomy (Nx) followed by intravenous (IV) injection of adriamycin (ADR) at 2 weeks post-nephrectomy, at a dose of 3.5 mg/kg body weight. Animals are then randomized into control and treatment groups with 10 rats per group. Rats in untreated group are fed with base diet and rats in the treatment groups are fed the same chow supplemented with NHE-3 inhibitor/fluid holding polymer at various doses. All the groups are maintained for 28 days. Serum samples are collected at day (−1) (1 days before ADR injection), days 14 and 28 post ADR treatment. Twenty four hour urine and fecal samples are collected at day (−1), days 14 and 28 post ADR treatment and stored at −20° C. for later analysis. Body weight, food and water consumption are measured at the same time points as urine collections. Serum and urine chemistry (Na, K, Ca, Cl) are determined using an ACE Clinical Chemistry System (ALFA WASSER MANN Diagnostic Technologies, LLC). Fecal electrolyte (Na, K, Ca, Cl) excretions are determined by IC. Fluid balance are also determined via amount of fluid intake (in drinking water) subtracted by combined fecal water amount and urine volume. Tissues (heart, kidney and small intestine) are harvested at the end of experiments for later histopathological analysis. The third space (pleural fluids and ascites) body fluid accumulation are scored semi-quantitatively as follows: grade 0, no fluid accumulation; grade 1, trace amount of fluids; grade 2, obvious amount of fluids; grade 3, both cavities full of fluids; grade 4, fluids overflowed once the cavities are opened. Each score of body fluid accumulation is confirmed and agreed on by 2 investigators. Animals treated with NHE-3 inhibitor/fluid holding polymer show decreased serum aldosterone, decreased 24 hr urine volume and decreased urine K excretion, and increased urine Na excretion compared to no treatment group. Treated animals also have increased fecal Na and fluid excretion, compared to control group. Compared to untreated rats which show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 5 g per day. Treatment of NHE-3 inhibitor/fluid holding polymer in CRF rats is associated with less edema in heart, kidney and small intestine tissues, less hypertrophy in heart, less third space fluid accumulation, and lower body weight at the end of experiment compared to untreated group. 6. Pharmacological Test Example 6 Evaluation of NHE-3-inhibitory Compounds in Disease Models with Na/H2O Retention: Congestive Heart Failure Model. CHFs are introduced to male Sprague Dawley rats, 7-8 weeks old fed ad lib regular diet and ad lib 10% ethanol in drinking water, and gavaged with a daily dose of 6.3 mg cobalt acetate for 7 days. Then CHF rats are gavaged with a daily dose of 4 mg of furosemide for 5 days, inducing resistance to furosemide diuretic effects. The rats are then randomly divided into 2 groups, control and treatment, and the treatment group administered NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer have decreased serum aldosterone levels, decreased 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to control group. Animals treated with NHE-3 inhibitor/fluid holding polymer have, for example, increased fecal Na and fluid excretion. Compared to untreated rats, which show a positive fluid balance of, for example, 4 g per day, treated animals demonstrate a fluid loss of 5 g per day. 7. Pharmacological Test Example 7 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Hypertension Model. Male Dahl salt-sensitive rats are obtained from Harlan Teklad. After acclimation, animals are randomly grouped and fed diet containing 8% NaCl±NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment systolic BP, serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer would show decreased systolic BP, serum aldosterone levels, 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to no treatment group. Animals treated with NHE-3 inhibitor/fluid holding polymer would also show increased fecal fluid excretion. Compared to untreated rats which would show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 2 g per day. 8. Pharmacological Test Example 8 Na Transport Inhibition Study on Colonic Tissues. Immediately following euthanasia and exsanguinations of the rats, the entire distal colon is removed, cleansed in ice-cold isotonic saline, and partially stripped of the serosal muscularis using blunt dissection. Flat sheets of tissue are mounted in modified Ussing chambers with an exposed tissue area of 0.64 cm2. Transepithelial fluxes of 22Na+ (Perkin Elmer Life Sciences, Boston, Mass.) are measured across colonic tissues bathed on both sides by 10 ml of buffered saline (pH 7.4) at 37° C. and circulated by bubbling with 95% O2—5% CO2. The standard saline contains the following solutes (in mmol/l): 139.4 Na+, 5.4 K, 1.2 Mg2+, 123.2 Cl−, 21.0 HCO3−, 1.2 Ca2+, 0.6 H2PO4−, 2.4 HPO2−, and 10 glucose. The magnitude and direction of the net flux (Jnet Na) is calculated as the difference between the two unidirectional fluxes (mucosal to serosal, Jms Na and serosal to mucosal, Jsm Na) measured at 15-min intervals for a control period of 45 min (Per I), under short-circuit conditions. In some series, Per I is followed by a second 45-min flux period (Per II) to determine the acute effects of NHE inhibitors. 9. Pharmacological Test Example 9 Pharmacodynamic Model: Effect of Test Compounds and FAP on Consistency and Form of Rat Stools. Normal rats are given a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer mixed in their diet at escalated doses. Distilled water is available at libitum. Clinical data monitored are body weight, food intake, water intake, fecal and urinary output. Urinary Na, K and creatinine are measured by a Clinical Analyzer (VetAce; Alfa Wassermann Diagnostic Technologies, LLC, West Caldwell, N.J.). The consistency of the stools expelled within 24 h after the administration of each drug or vehicle is reported as follows: when the feces are unformed, i.e., muddy or watery, this is judged to be diarrhea and the percentage diarrhea is reported as the ratio of the number of animals producing unformed stools to the number tested. All of the feces is collected just after each evacuation and put into a covered vessel prepared for each animal in order to prevent the feces from drying. To investigate the duration of activity of each drug, the feces collected over each 8-h period is dried for more than 8 h at 70° C. in a ventilated oven after the wet weight is measured. The fecal fluid content is calculated from the difference between the fecal wet weight and the dry weight. Fecal Na and K is analyzed by ion Chromatography (Dionex) after acid digestion of the feces specimen. 10. Pharmacological Test Example 10 Effect of Test Compounds and FAP on CKD Rats. Male Sprague-Dawley rats (275-300 g; Harlan, Indianapolis, Ind.) are used and have free access to water and Purina rat chow 5001 at all times. A 5/6 nephrectomy is performed to produce a surgical resection CRF model and the treatment study is performed 6 wk after this procedure. In one control group, CRF rats are given access to Purina rat chow; in treated groups, CRF rats are given access to Purina rat chow mixed with the article, i.e. a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer. The treatment period is 30 days. Systolic blood pressure is monitored in all animals with the use of a tail sphygmomanometer (Harvard Apparatus, South Natick, Mass.). All rats are euthanatized by an intraperitoneal injection of pentobarbital (150 mg/kg body wt), and blood is collected by cardiac puncture for serum Na+ (Roche Hitachi Modular P800 chemistry analyzer; Roche Diagnostics, Indianapolis, Ind.) and creatinine determination (kit 555A; Sigma Chemical, St. Louis, Mo.). Sodium and creatinine is also determined in a urine specimen collected over 24 h immediately before euthanasia. 11. Pharmacological Test Example 11 Effect of Test Compounds on Intestinal Fluid Accumulation in Suckling Mice. Institute of Cancer Research/Harlan Sprague-Dawley (ICR-HSD) suckling mice, 2 to 4 days old (2.1±1.0 g), are dosed orally with 0.1 mL of test solution (vehicle (1 mmol/L HEPES) or NHE inhibitor dissolved in vehicle). After dosing, the mice are kept at room temperature for 3 hours, then killed, the intestinal and body weights measured, and a ratio of the intestinal weight to remaining body weight is calculated. A ratio of 0.0875 represents one mouse unit of activity, indicating significant fluid accumulation in the intestine. 12. Pharmacological Test Example 12 Determination of Water-absorbing Capacity. This test is designed to measure the ability of a polymer to absorb 0.9% saline solution against a pressure of 50 g/cm2 or 5 kPa. The superabsorbent is put into a plastic cylinder that has a screen fabric as bottom. A weight giving the desired pressure is put on top. The cylinder arrangement is then placed on a liquid source. The superabsorbent soaks for one hour, and the absorption capacity is determined in g/g. This test principle is described in the European Disposables And Nonwovens Association (EDANA) standard EDANA ERT 442—Gravimetric Determination of Absorption under Pressure or Absorbency Under Load (AUL), or in the AUL-test found in column 12 in U.S. Pat. No. 5,601,542, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Any of these two methods can be used, or the simplified method described below. Equipment: A plastic cylinder having a screen fabric made of steel or nylon glued to the bottom. The fabric can have mesh openings of 36 μm (designated “400 mesh”), or in any case smaller than the smallest tested particles. The cylinder can have an internal diameter of 25.4 mm, and a height of 40 mm. A larger cylinder can also be used, such as the apparatus in the EDANA standard ERT 442—Gravimetric Determination of Absorption under Pressure. A plastic piston or spacer disc with a diameter slightly smaller than the cylinder's inner diameter. For a cup with a 25.4 mm inner diameter the disc can be 25.2 mm wide, 8 mm high, and weigh about 4.4 g. A weight that exerts a 50 g/cm2 pressure on the superabsorbent (in combination with the piston). For a 25.4 mm inner diameter cylinder (=5.067 cm2) and a 4.4 g piston, the weight should have a mass of 249 g. Glass or ceramic filter plate (porosity=0). The plate is at least 5 mm high, and it has a larger diameter than the cylinder. Filter paper with a larger diameter than the cylinder. Pore size<25 μm. Petri dish or tray 0.9% NaCl solution Procedure: Put the glass filter plate in a Petri dish, and place a filter paper on top. Fill the Petri dish with 0.9% NaCl solution—up to the edge of the filter plate. Weigh a superabsorbent sample that corresponds to a 0.032 g/cm2 coverage on the cylinder's screen fabric (=0.16 g for a cylinder with a 25.4 mm inner diameter). Record the exact weight of the sample (A). Carefully distribute the sample on the screen fabric. Place the plastic piston on top of the distributed sample, and weigh the cylinder assembly (B). Then mount the weight onto the piston. Place the assembly on the filter paper, and let the superabsorbent soak for 60 minutes. Remove the weight, and weigh the assembly with the swollen superabsorbent (C). Calculate the AUL in g/g according to this formula: C−B. 13. Pharmacological Test Example 13 Pharmacodynamic Model: Effect of Test Compounds on Fecal Water Content. Normal female Sprague Dawley rats (Charles-River laboratories international, Hollister, Calif.), 7-8 weeks old with body weight 175-200 g were acclimated for at least 3 days before proceeding to experiments. The animals were provided food (Harlan Teklad 2018c) and water ad lib. through the experiment. Animals were randomly grouped with 6 rats per group. The experiments were initiated by orally dosing test compounds at 3 mg/kg in volume of 10 ml/kg. Rats from control group were gavaged with the same volume of vehicle (water). After dosing, rats were placed in metabolic cages for 16 hrs (overnight). Food and water consumption were monitored. After sixteen hours, feces and urine were collected. The percent of fecal water was measured by weighing fecal samples before and after drying. Representative data of % fecal water content are shown in Table 11 (data are expressed as means, with 6 animals per data point). The differences between control and treated groups were evaluated by one way ANOVA with Dunnett post tests. Results are significant if p<0.05. TABLE 11 % Fecal % Fecal water (% of Example water control) Significant? 224 65% 125% Y 234 58% 117% Y 239 58% 114% Y 178 59% 118% Y 237 60% 120% Y 238 60% 121% Y 177 60% 121% Y 244 61% 118% Y 236 64% 128% Y 250 60% 120% Y 200 62% 124% Y 201 63% 127% Y 202 63% 134% Y 203 61% 130% Y 14. Pharmacological Test Example 14 Pharmacodynamic Model: Effect of Test Compounds on Urinary Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in reduced levels of sodium in the urine. To test this, the protocols in Example 13 were repeated, but urine was collected in addition to feces. Urine sodium levels were analyzed by ion chromatography (IC), and the around of sodium excreted in the urine was corrected for variations in sodium intake by measuring food consumption. In addition, test compounds were administered at several dose levels to demonstrate a dose-response relationship. As shown in FIGS. 3A and 3B for Examples 201, 244, and 260, where as rats excrete about half the sodium they consume in urine, in rats treated with increasing doses of NHE-3 inhibitor, the amount of sodium excreted in the urine diminishes significantly and dose dependently. 15. Pharmacological Test Example 15 Pharmacodynamic Model: Dose Dependent Effect of Test Compound on Fecal Water Content Rats were monitored for fecal water content as in Example 13, and the test compound was administered at several dose levels to demonstrate a dose-response relationship. As shown in FIG. 4, in rats treated with increasing doses of the NHE-3 inhibitor tested (i.e., Example 87), the fecal water content increased significantly and dose dependently. 16. Pharmacological Test Example 16 Pharmacodynamic Model: Addition of a Fluid Absorbing Polymer to Chow. Rats were monitored for fecal water content as in Example 13, with the addition of a second group that were fed chow with the addition of 1% Psyllium to their diet. In addition to fecal water and urinary sodium, fecal form was monitored on a scale of 1-5, where 1 is a normal pellet, 3 indicates soft and unformed pellets, and 5 indicates watery feces. As shown in FIGS. 5A, 5B and 5C, supplementing the diet with Psyllium resulted in a slight reduction of fecal stool form, but without impacting the ability of the test compound (i.e., Example 224) to increase fecal water content or decrease urinary sodium. 17. Pharmacological Test Example 17 Pharmacodynamic Model: Effect of Test Compounds on Acute Stress-Induced Visceral Hypersensitivity in Female Wistar Rats. Female Wistar rats weighing 220-250 g were prepared for electromyography. The animals were anaesthetized, and three pairs of nichrome wire electrodes were implanted bilaterally in the striated muscles at 3 cm laterally from the midline. The free ends of electrodes were exteriorised on the back of the neck and protected by a glass tube attached to the skin. Electromyographic recordings (EMG) were begun 5 days after surgery. The electrical activity of the abdominal striated muscles were recorded with an electromyograph machine (Mini VIII; Alvar, Paris, France) using a short time constant (0.03 sec.) to remove low-frequency signals (<3 Hz). Partial restraint stress (PRS), a relatively mild stress, was performed as follows. Briefly, animals were lightly anaesthetized with ethyl-ether, and their freeholders, upper forelimbs and thoracic trunk were wrapped in a confining harness of paper tape to restrict, but not prevent their body movements and placed in their home cage for 2 hours. Control sham-stress animals were anaesthetized but not wrapped. PRS was performed between 10:00 and 12:00 AM. Colorectal distension (CRD) was accomplished as follows: rats were placed in a plastic tunnel, where they were not allowed to move or escape daily during 3 consecutive days (3 h/day) before any CRD. The balloon used for distension was 4 cm in long and made from a latex condom inserted in the rectum at 1 cm of the anus and fixed at the tail. The balloon, connected to a barostat was inflated progressively by steps of 15 mmHg, from 0, 15, 45 and 60 mmHg, each step of inflation lasting 5 min. CRD was performed at T+2 h15 as a measure of PRS induced visceral hyperalgesia±test compound or vehicle. To determine the antinociceptive effect of test compounds on stress-induced visceral hypersensitivity, test compounds were administered 1 h before CRD in 6 groups of 8 female rats. For each parameter studied (the number of abdominal contractions for each 5-min period during rectal distension) data is expressed as mean±SEM. Comparisons between the different treatments were performed using an analysis of variance (ANOVA) followed by a Dunnett post test. The criterion for statistical significance is p<0.05. FIG. 6 shows the results of this test using the compound illustrated in Example 224 dosed orally at 10 mg/kg, and shows that at 45 and 60 mm Hg, inhibition of NHE-3 in rats surprisingly reduces visceral hypersensitivity to distension (p<0.05). 18. Pharmacological Test Example 18 Pharmacodynamic Model: Effect of Test Compounds on Fecal Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in increase levels of sodium in the feces. To test this, the protocols in Example 13 were repeated. After drying of feces to determine water content, 1M HCl was added to dried ground feces to a concentration of 50 mg/mL and extracted at room temperature on rotator for 5 days. Sodium content was analyzed by ion chromatography (IC). As shown in FIGS. 7A and 7B for Example 224, in rats treated with an NHE-3 inhibitor, the amount of sodium excreted in the feces significantly (p<0.05 by t-test). 19. Pharmacological Test Example 19 Determination of Compound Remaining in Feces. Sprague-Dawley rats were orally gavaged with test article. A low dose of compound (0.1 mg/kg) was selected so that feces would remain solid and practical to collect. For both Examples 202 and 203, three rats were dosed, and following dosage of compounds, the rats were placed in metabolic cages for 72 hours. After 72 hours, fecal samples were recovered and dried for 48 hours. Dried fecal samples were ground to a powdered from, and for each rat, 10 replicates of 50 mg samples were extracted with acetonitrile. Insoluble materials were removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. The amount of compound actually dosed was determined by LC/MS/MS analysis of the dosing solutions. The total amount of compound present in the 72-hour fecal samples was compared to the total amount of compound dosed, and reported as percentage of total dose recovered. The results, shown in Table 12, demonstrate near quantitative recovery of Examples 202 and 203 in 72-hour fecal samples. TABLE 12 Recovery of dosed compounds from 72-hour fecal samples % Recovery ± SD Example 202 Example 203 Rat 1 93.8 ± 11.8 100.3 ± 6.7 Rat 2 90.5 ± 5.5   75.8 ± 8.2 Rat 3 92.4 ± 10.6 104.4 ± 7.1 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 13804752 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open 514/307 Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Sep 6th, 2016 12:00AM Feb 24th, 2016 12:00AM https://www.uspto.gov?id=US09433640-20160906 Compositions and methods for treating hyperkalemia The present invention is directed to compositions and methods of removing potassium or treating hyperkalemia by administering pharmaceutical compositions of cation exchange polymers with low crosslinking for improved potassium excretion and for beneficial physical properties to increase patient compliance. 9433640 1. A calcium salt of a crosslinked potassium binding polymer having the following structure: wherein the ratio of “m” and “n” provides a polymer having 1.6% to 1.9% cross-linking. 2. The crosslinked potassium binding polymer of claim 1, wherein the ratio of m to n is 68:1. 3. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. 4. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. 5. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. 6. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. 7. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer further comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm. 8. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.9) between about 80 μm to about 130 μm. 9. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.9) between about 90 μm to about 120 μm. 10. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.9) between about 40 μm to about 70 μm. 11. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.9) between about 50 μm to about 60 μm. 12. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.5) between about 60 μm to about 90 μm. 13. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.5) between about 70 μm to about 80 μm. 14. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.5) between about 20 μm to about 50 μm. 15. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.5) between about 30 μm to about 40 μm. 16. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.1) between about 20 μm to about 70 μm. 17. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.1) between about 30 μm to about 60 μm. 18. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.1) between about 5 μm to about 30 μm. 19. The crosslinked potassium binding polymer of claim 7, wherein the particles have an average particle size Dv(0.1) between about 6 μm to about 23 μm. 20. The crosslinked potassium binding polymer of claim 1, wherein ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. 21. The crosslinked potassium binding polymer of claim 1, wherein the ratio of Dv(0.9):Dv(0.5) and the ratio of Dv(0.5):Dv(0.1) are each independently about two or less. 22. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer. 23. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5. 24. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 4.5. 25. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 5.0. 26. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±5%. 27. The crosslinked potassium binding polymer of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of 1.8%. 28. A pharmaceutical composition comprising a crosslinked potassium binding polymer of claim 1 and a pharmaceutically acceptable carrier, diluent, or excipient. 29. A calcium salt of a crosslinked potassium binding polystyrene sulfonate divinylbenzene polymer characterized by a crosslinking of 1.6% to 1.9%. 29 RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 14/912,682, filed Feb. 18, 2016, which is a National Phase application of International Application No. PCT/US2015/067460, filed Dec. 22, 2015, which claims the benefit of and priority to U.S. provisional application No. 62/096,447, filed Dec. 23, 2014, the entire contents of each of which are incorporated herein by reference in their entireties. FIELD OF INVENTION The present invention relates to compositions and methods of removing potassium from the gastrointestinal track, including methods of treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking for improved potassium excretion and for improved patient tolerance and compliance. BACKGROUND OF THE INVENTION Potassium is the most abundant cation in the intracellular fluid and plays an important role in normal human physiology, especially with regard to the firing of action potential in nerve and muscle cells (Giebisch G. Am J Physiol. 1998, 274(5), F817-33). Total body potassium content is about 50 mmol/kg of body weight, which translates to approximately 3500 mmols of potassium in a 70 kg adult (Ahmed, J. and Weisberg, L. S. Seminars in Dialysis 2001, 14(5), 348-356). The bulk of total body potassium is intracellular (˜98%), with only approximately 70 mmol (˜2%) in the extracellular space (Giebisch, G. H., Kidney Int. 2002 62(5), 1498-512). This large differential between intracellular potassium (˜120-140 mmol/L) and extracellular potassium (˜4 mmol/L) largely determines the resting membrane potential of cells. As a consequence, very small absolute changes in the extracellular potassium concentration will have a major effect on this ratio and consequently on the function of excitable tissues (muscle and nerve) (Weiner, I. D. and Wingo, C. S., J Am. Soc. Nephrol. 1998, 9, 1535-1543). Extracellular potassium levels are therefore tightly regulated. Two separate and cooperative systems participate in potassium homeostasis, one regulating external potassium balance (the body parity of potassium intake vs. potassium elimination) while the other regulates internal potassium balance (distribution between intracellular and extracellular fluid compartments) (Giebisch, Kidney Int. 2002). Intracellular/extracellular balance provides short-term management of changes in serum potassium, and is primarily driven physiologically by the action of Na+, K+-ATPase “pumps,” which use the energy of ATP hydrolysis to pump Na and K against their concentration gradients (Giebisch, Kidney Int. 2002). Almost all cells possess an Na+, K+-ATPase (Palmer, B. F., Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). Body parity is managed by elimination mechanisms via the kidney and gastrointestinal tract: in healthy kidneys, 90-95% of the daily potassium load is excreted through the kidneys with the balance eliminated in the feces (Ahmed, Seminars in Dialysis 2001). Due to the fact that intracellular/extracellular potassium ratio (Ki:Ke ratio) is the major determinant of the resting membrane potential of cells, small changes in Ke (i.e., serum [K]) have profound effects on the function of electrically active tissues, such as muscle and nerve. Potassium and sodium ions drive action potentials in nerve and muscle cells by actively crossing the cell membrane and shifting the membrane potential, which is the difference in electrical potential between the exterior and interior of the cell. In addition to active transport, K+ can also move passively between the extracellular and intracellular compartments. An overload of passive K+ transport, caused by higher levels of blood potassium, depolarizes the membrane in the absence of a stimulus. Excess serum potassium, known as hyperkalemia, can disrupt the membrane potential in cardiac cells that regulate ventricular conduction and contraction. Clinically, the effects of hyperkalemia on cardiac electrophysiology are of greatest concern because they can cause arrhythmias and death (Kovesdy, C. P., Nat. Rev. Nephrol. 2014, 10(11), 653-62). Since the bulk of body parity is maintained by renal excretion, it is therefore to be expected that as kidney function declines, the ability to manage total body potassium becomes impaired. The balance and regulation of potassium in the blood requires an appropriate level of intake through food and the effective elimination via the kidneys and digestive tract. Under non-disease conditions, the amount of potassium intake equals the amount of elimination, and hormones such as aldosterone act in the kidneys to stimulate the removal of excess potassium (Palmer, B. F. Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). The principal mechanism through which the kidneys maintain potassium homeostasis is the secretion of potassium into the distal convoluted tubule and the proximal collecting duct. In healthy humans, serum potassium levels are tightly controlled within the narrow range of 3.5 to 5.0 mEq/L (Macdonald, J. E. and Struthers, A. D. J. Am. Coll. of Cardiol. 2004, 43(2), 155-61). As glomerular filtration rate (GFR) decreases, the ability of the kidneys to maintain serum potassium levels in a physiologically normal range is increasingly jeopardized. Studies suggest that the kidneys can adjust to a decrease in the number of nephrons by increasing potassium secretion by the surviving nephrons, and remain able to maintain normokalemia. However, as kidney function continues to decline these compensatory mechanisms cannot respond to potassium load and serum K increases (Kovesdy, Nat. Rev. Nephrol. 2014). Potassium homeostasis is generally maintained in patients with advanced CKD until the glomerular filtration rate (GFR; a measure of kidney function) falls below 10-15 mL/min. At this point, compensatory increases in the secretory rate of K+ in remaining nephrons cannot keep up with potassium load (Palmer, J. Am. Soc. Nephrol. 2015). Excessive levels of potassium build up in the extracellular fluid, hence leading to hyperkalemia. Hyperkalemia is a clinically significant electrolyte abnormality that can cause severe electrophysiological disturbances, including cardiac arrhythmias and death. Hyperkalemia is defined as a serum potassium level above the normal range, typically >5.0 mmol/L (Kovesdy, Nat. Rev. Nephrol. 2014). Moderate hyperkalemia (serum potassium above 6.0 mEq/L) has been reported to have a 1-day mortality rate up to 30 times higher than that of patients with serum potassium less than 5.5 mEq/L (Einhorn, L. M., et als. Arch Intern Med. 2009, 169(12), 1156-1162). Severe hyperkalemia (serum K+ of at least 6.5 mmol/L) is a potentially life-threatening electrolyte disorder that has been reported to occur in 1% to 10% of all hospitalized patients and constitutes a medical emergency requiring immediate treatment (An, J. N. et al., Critical Care 2012, 16, R225). Hyperkalemia is caused by deficiencies in potassium excretion, and since the kidney is the primary mechanism of potassium removal, hyperkalemia commonly affects patients with kidney diseases such as chronic kidney disease (CKD; Einhorn, Arch Intern Med. 2009) or end-stage renal disease (ESRD; Ahmed, Seminars in Dialysis 2001). However, episodes of hyperkalemia can occur in patients with normal kidney function, where it is still a life-threatening condition. For example, in hospitalized patients, hyperkalemia has been associated with increased mortality in patients both with and without CKD (Fordjour, K. N., et al Am. J. Med. Sci. 2014, 347(2), 93-100). While CKD is the most common predisposing condition for hyperkalemia, the mechanisms driving hyperkalemia typically involve a combination of factors, such as increased dietary potassium intake, disordered distribution of potassium between intracellular and extracellular compartments and abnormalities in potassium excretion. These mechanisms can be modulated by a variety of factors with causality outside of CKD. These include the presence of other comorbidities, such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) or the use of co-medications that can disrupt potassium homeostasis as side effects, such as blockade of the renin-angiotensin-aldosterone system (RAAS). These contributing factors to hyperkalemia are described below. In clinical practice, CKD is the most common predisposing condition for hyperkalemia (Kovesdy, Nat. Rev. Nephrol. 2014). Other common predisposing conditions, often comorbidities with CKD, include both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), both of which are linked to the development of hyperkalemia through different mechanisms. Insulin deficiency and hypertonicity caused by hyperglycemia in patients with diabetes contributes to an inability to disperse high acute potassium loads into the intracellular space. Furthermore, diabetes mellitus is associated with hyporeninemic hypoaldosteronism and the resultant inability to upregulate tubular potassium secretion (Kovesdy, Nat. Rev. Nephrol. 2014). Cardiovascular disease (CVD) and other associated conditions, such as acute myocardial ischaemia, left ventricular hypertrophy and congestive heart failure (CHF), require various medical treatments that have been linked to hyperkalaemia. For example, β2-adrenergic-receptor blockers, which have beneficial antihypertensive effects via modulation of heart rate and cardiac contractility, contribute to hyperkalemia through inhibition of cellular adrenergic receptor-dependent potassium translocation, causing a decreased ability to redistribute potassium to the intracellular space (Weir, M. A., et al., Clin. J. Am. Soc. Nephrol. 2010, 5, 1544-15515). Heparin treatment, used to manage or prevent blood clots in CVD, has also been linked to hyperkalemia through decreased production of aldosterone (Edes, T. E., et al., Arch. Intern. Med. 1985, 145, 1070-72)). Cardiac glycosides such as digoxin—used to help control atrial fibrillation and atrial flutter-inhibit cardiac Na+/K+-ATPase, but also modulate the related Na+/K+-APTases in the nephrons. This can inhibit the ability of the kidney to secrete potassium into the collecting duct and can also cause hyperkalemia. Hyperkalemia occurs especially frequently in patients with CKD who are treated with certain classes of medications, such as angiotensin-converting-enzyme (ACE) inhibitors, angiotensin-receptor blockers (ARBs) or other inhibitors of the renin-angiotensin-aldosterone system (RAAS) (Kovesdy, Nat. Rev. Nephrol. 2014). The RAAS is important for the regulation of blood pressure, and the maximum doses of RAAS inhibitors are widely recommended for patients with hypertension, heart failure (HF), chronic kidney disease (CKD), and diabetes. Large outcome studies have shown that RAAS inhibitors can significantly decrease hospitalization, morbidity, and mortality in these patients. In patients with CKD, RAAS inhibition is beneficial for some of the common comorbidities, such as congestive heart failure (CHF). However, inhibition of the RAAS pathway also promotes potassium retention and is a major cause of hyperkalemia. Even in populations without CKD, RAAS inhibitor monotherapy (treatment with a single agent) has an incidence of hyperkalemia of <2%, but this increased to ˜5% in patients receiving dual-agent RAAS inhibitor therapy. This is further exacerbated in CKD patients, where the incidence of hyperkalemia rises to 5-10% when dual therapy is administered (Bakris, G. L., et al., Kid. Int. 2000, 58, 2084-92, Weir, Clin. J. Am. Soc. Nephrol. 2010). It is therefore often difficult or impossible to continue RAAS inhibitor therapy over extended periods of time. Hyperkalemia is perhaps the most important cause of the intolerance to RAAS inhibitors observed in patients with CKD. As a consequence, hyperkalemia has led to the suboptimal use of RAAS inhibitors in the treatment of serious diseases such as CKD and heart failure (Kovesdy, Nat. Rev. Nephrol. 2014). Congestive heart failure patients, especially those taking RAAS inhibitors, are another large group that is at risk of developing life-threatening levels of serum potassium. The decreased heart output and corresponding low blood flow through the kidneys, coupled with inhibition of aldosterone, can lead to chronic hyperkalemia. Approximately 5.7 million individuals in the US have congestive heart failure (Roger, V. L., et al., Circulation. 2012, 125, 188-197). Most of these are taking at least one RAAS inhibitor, and studies show that many are taking a suboptimal dose, often due to hyperkalemia (Choudhry, N. K. et al, Pharmacoepidem. Dr. S. 2008, 17, 1189-1196). In summary, hyperkalemia is a proven risk factor for adverse cardiac events, including arrhythmias and death. Hyperkalemia has multiple causalities, the most common of which is chronic or end-stage kidney disease (CKD; ESRD); however, patients with T2DM and CVD are also at risk for hyperkalemia, especially if CKD is present as a comorbidity. Treatment of these conditions with commonly prescribed agents, including RAAS inhibitors, can exacerbate hyperkalemia, which often leads to dosing limitations of these otherwise proven beneficial agents. There is therefore a clear need for a potassium control regimen to not only control serum K in the CKD/ESRD population, but also permit the administration of therapeutic doses of cardio-protective RAAS inhibitor therapy. Dietary intervention is one possible point of control for managing potassium burden, but is difficult to manage. Furthermore, in the patient population susceptible to hyperkalemia, dietary modifications often involve an emphasis on sodium restriction, and some patients switch to salt substitutes, not realizing that these can contain potassium salts (Kovesdy, Nat. Rev. Nephrol. 2014). Finally, “heart-healthy” diets are inherently rich in potassium. Ingested potassium is also readily bioavailable, and rapidly partitions into extracellular fluid. For example, the typical daily potassium intake in healthy individuals in the United States is approximately 70 mmol/d, or ˜1 mmol/kg of body weight for a 70 kg individual (Holbrook, J. T., et al., Am. J of Clin. Nutrition. 1984, 40, 786-793). Since absorption of ingested potassium from the gut into the extracellular fluid is nearly complete, and assuming ˜17 l of extracellular fluid in a 70 kg adult, this potassium burden would essentially double serum K (70 mmol/17 L=˜4 mmol/L increase). Such an increase would be lethal in the absence of compensatory mechanisms, and the fact that ESRD patients on dialysis do not die during the interdialytic interval is a testament to the integrity of the extrarenal potassium disposal mechanisms that get upregulated in ESRD (Ahmed, Seminars in Dialysis 2001). Patients with normal renal function eliminate ˜5-10% of their daily potassium load through the gut (feces). In patients with chronic renal failure, fecal excretion can account for as much as 25% of daily potassium elimination. This adaptation is mediated by increased colonic secretion, which is 2- to 3-fold higher in dialysis patients than in normal volunteers (Sandle, G. I. and McGlone, F., Pflugers Arch 1987, 410, 173-180). This increase in fecal excretion appears due to the upregulation of the amount and location of so-called “big potassium” channels (BK channels; KCNMA1) present in the colonic epithelia cells, as well as an alteration in the regulatory signals that promote potassium secretion through these channels (Sandle, G. I. and Hunter, M. Q., J Med 2010, 103, 85-89; Sorensen, M. V. Pflugers Arch—Eur J. Physiol 2011, 462, 745-752). Additional compensation is also provided by cellular uptake of potassium (Tzamaloukas, A. H. and Avasthi, P. S., Am. J Nephrol. 1987, 7, 101-109). Despite these compensatory mechanisms, ˜15-20% of the ingested potassium accumulates in the extracellular space and must be removed by dialysis. Interdialytic increases that occur over the weekend can lead to serious cardiovascular events, including sudden death. In summary, dietary intervention is both impractical and insufficient. Serum potassium can be lowered by two general mechanisms: the first is by shifting potassium intracellularly using agents such as insulin, albuterol or sodium bicarbonate (Fordjour, Am. J. Med. Sci. 2014). The second is by excreting it from the body using 1 of 4 routes: the stool with K binding resins such as sodium polystyrene sulfonate (Na-PSS), the urine with diuretics, the blood with hemodialysis or the peritoneal fluid with peritoneal dialysis (Fordjour, Am. J. Med. Sci. 2014). Other than Na-PSS, the medications that treat hyperkalemia, such as insulin, diuretics, beta agonists and sodium bicarbonate, simply cause hypokalemia as a side effect and are not suitable as chronic treatments. Definitive therapy necessitates the removal of potassium from the body. Studies have confirmed that reducing serum potassium levels in hyperkalemia patients actually reduces the mortality risk, further solidifying the role of excess potassium in the risk of death. One study found that treatment of hyperkalemia with common therapies both improved serum potassium levels and resulted in a statistically significant increase in survival (An, Critical Care 2012). Another study, in hospitalized patients receiving critical care, showed that the reduction of serum potassium by ≧1 mEq/L 48 hours after hospitalization also decreased the mortality risk (McMahon, G. M., et al., Intensive Care Med, 2012, 38, 1834-1842). These studies suggest that treating hyperkalemia in the acute and chronic settings can have a real impact on patient outcomes by reducing the risk of death The potassium binder sodium polystyrene sulfonate (Na-PSS; Kayexalate) is the most common agent used in the management of hyperkalemia in hospitalized patients (Fordjour, Am. J. Med. Sci. 2014). Polystyrene sulfonate (PSS) is typically provided as a sodium salt (Na-PSS), and in the lumen of the intestine it exchanges sodium for secreted potassium. Most of this takes place in the colon, the site of most potassium secretion in the gut (and the region where K secretion appears to be upregulated in CKD). Each gram of Na-PSS can theoretically bind ˜4 mEq of cation; however, approximately 0.65 mmol of potassium is sequestered in vivo due to competing cations (e.g., hydrogen ion, sodium, calcium and magnesium). Sodium is concomitantly released. This may lead to sodium retention, which can lead to hypernatremia, edema, and possible worsening of hypertension or acute HF (Chernin, G. et al., Clin. Cardiol. 2012, 35(1), 32-36). Na-PSS was approved in 1958 by the US FDA, as a potassium-binding resin in the colon for the management of hyperkalemia. This approval was based on a clinical trial performed in 32 hyperkalemic patients, who showed a decrease in serum potassium of 0.9 mmol/1 in the first 24 h following treatment with Na-PSS (Scherr, L. et al., NEJM 1961, 264(3), 115-119). Such acute use of Na-PSS has become common. For example, the use of potassium-binding resins has proven to be of value in the pre-dialysis CKD setting and in the management of emergency hyperkalemia, and is reportedly used in >95% of hyperkalemic episodes in the hospital setting (Fordjour, Am. J. Med. Sci. 2014). Na-PSS can be given orally or rectally. When given orally, it is commonly administered with sorbitol to promote diarrhea/prevent constipation. The onset of action is within 1-2 h and lasts approximately 4-6 hours. The recommended average daily dose is 15-60 g given singly or in divided doses (Kessler, C. et al., J. Hosp. Med. 2011, 6(3), 136-140). Kayexalate has been shown to be active in broad populations of hyperkalemic patients, including subjects both with and without chronic kidney disease (Fordjour, Am. J. Med. Sci. 2014). There are fewer reports of the use of Na-PSS in chronic hyperkalemia, but chronic treatment is not uncommon. Chernin et al. report a retrospective study of patients on RAAS inhibition therapy that were treated chronically with Na-PSS as a secondary prevention of hyperkalemia (Chernin, Clin. Cardiol. 2012). Each patient began chronic treatment after being first treated for an acute episode of hyperkalemia (K+ levels ≧6.0 mmol/L). Fourteen patients were treated with low-dose Na-PSS (15 g once-daily) for a total of 289 months, and this regimen was found to be safe and effective. No episodes of hyperkalemia were recorded while patients were on therapy, but two subjects experienced hypokalemia which resolved when the dose of Na-PSS was reduced. Last, none of the patients developed colonic necrosis or any other life-threatening event that could be attributed to Na-PSS use (Chernin, Clin. Cardiol. 2012). Chronic treatment with once-daily Na-PSS was found safe and effective in this study. While Na-PSS is the current standard of care treatment for potassium reduction in the U.S., the calcium salt of PSS (Ca-PSS) is also commonly used in other parts of the world, including Europe (e.g., Resonium) and Japan. All salt forms of these polymers are poorly tolerated by patients due to a number of compliance-limiting properties, including both GI side effects such as constipation, as well as dosing complexities due to dosing size and frequency, taste and/or texture which contribute to an overall low palatability. The safety and efficacy of PSS has been underexplored (by modern standards) in randomized and controlled clinical trials. Kayexalate/Na-PSS is also poorly tolerated causing a high incidence of GI side effects including nausea, vomiting, constipation and diarrhea. In addition, Kayexalate is a milled product and consists of irregularly shaped particles ranging in size from about 1-150 μm in size, and has sand-like properties in the human mouth: on ingestion, it gives a strong sensation of foreign matter on the palate and this sensation contributes negatively to patient compliance (Schroder, C. H. Eur. J. Pediatr. 1993, 152, 263-264). In total, the physical properties and associated side-effects of Kayexalate lead to poor compliance and render the drug suboptimal for chronic use. Due to these properties, there has been a long felt need to provide an optimal drug for chronic use. In summary, hyperkalemia is a serious medical condition that can lead to life-threatening arrhythmias and sudden death. Individuals with CKD are at particular risk; however, hyperkalemia can be a comorbidity for individuals with T2DM and CVD, and can also be exacerbated by common medications, especially RAAS inhibitors. The management of hyperkalemia involves the treatment of both acute and chronic increases in serum K+. For example, in an emergency medicine environment, patients can present with significant increases in serum K+ due to comorbidities that cause an acute impairment in the renal excretion of potassium. Examples of chronic hyperkalemia include the recurrent elevations in serum K+ that can occur during the interdialytic interval for patients with ESRD, or the persistent elevations in serum K+ that can occur in CKD patients taking dual RAAS blockade. There is thus a clear need for agents that can be used to treat hyperkalemia. Such agents, suitable for treatment of both acute and chronic hyperkalemia, while being palatable and well-tolerated by the patient, would be advantageous. SUMMARY OF THE INVENTION The present invention solves these problems by providing a polymeric binder or a composition containing a polymeric binder than can be given once, twice or three times a day, possesses equivalent or significantly better efficacy, and has physical properties that include a spherical morphology, smaller and more uniform particle size distribution and significantly improved texture—factors that contribute dramatically to improved palatability. These improvements in efficacy (potentially lower doses and/or less frequent dosing) and palatability (better mouth feel, taste, etc.) should increase tolerance, which will improve patient compliance, and hence potassium binding effectiveness. The cation exchange polymers with low levels of crosslinking described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. Surprisingly, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium, with a high level of crosslinking, is similarly dosed (same dosing and fecal collection conditions). The higher potassium capacity of the polymers of this invention may enable the administration of a lower dose of the polymer and meet the long felt need to provide an optimal drug for chronic use in treating hyperkalemia. In brief, the present invention is directed to compositions and methods for removing potassium from the gastrointestinal track, including methods for treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking, and a spherical and better controlled particle size distribution, for improved patient tolerance and compliance. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 25 μm to about 125 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±10%. Another aspect of the invention relates to a pharmaceutical composition comprising a crosslinked potassium binding polymer of Formula (I) and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 mole % to about 3 mole % of the potassium binding polymer and wherein the potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 25 μm, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering of a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 wt. % to about 3 wt. % of the potassium binding polymer. In some embodiments, the crosslinker comprises from about 1 mole % to about 4 mole % of the potassium binding polymer. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 200 μm. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1 wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1.0% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: shows the swelling ratio of calcium polystyrene sulfonate resins in water as well as the observed fecal potassium excretion from rodents orally dosed with selected resins. FIG. 2: shows the fecal K+ excretion of rats dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 4% or 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. FIG. 3: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer. FIG. 4: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (1.6%, 1.8%, 2%, and 8% DVB crosslinking) blended into chow at 8% wt/wt. The level of K+ in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to the vehicle or 8% DVB (Example 6). FIG. 5: shows the fecal K+ excretion of mice dosed with Na-PSS, USP, Ca-PSS, BP and Example 10, all blended into chow at 8% wt/wt compared to a vehicle control. Only Ca-PSS, BP and Example 10 afforded significant levels of fecal K+ excretion, and the highest fecal K+ was seen in the group that was fed Example 10. FIG. 6: shows the fecal K+ excretion of mice dosed with Na-PSS, USP and Example 10, both blended into chow at 4% and 8% wt/wt, and compared to a vehicle control. The level of K+ in the feces was significantly higher with Example 10, when present in chow at either 4% or 8% wt/wt, compared to vehicle. Na-PSS, USP afforded significant fecal K+ excretion only when present in chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed Example 10. FIG. 7: shows dose-response data for mice fed Example 10 blended into chow at 2%, 4%, 6% and 8%, wt/wt, compared to a vehicle control. The level of K+ in the feces was significantly higher for Example 10 when present in chow at 4%, 6% and 8%, wt/wt, while 2% in chow afforded a trend but was not significant. Increasing amounts of Example 10 blended in chow afford increasing amounts of K+ in the feces. FIG. 8: shows fecal K+ excretion of mice dosed with several Examples from the invention, blended in chow at 8%, wt/wt, and compared to Example 6 as a control. Examples 10, 13 and 18 afforded significant amounts of K+ in the feces. FIG. 9: shows fecal K+ secretion of mice dosed with two Examples from the invention, blended in chow at 8%, wt/wt, and compared to Ca-PSS, BP as a control. Example 20 afforded the highest level of fecal potassium in this experiment. FIG. 10: shows scanning electron micrograph (SEM) images for Na-PSS, USP, Ca-PSS, USP, Example 13 and Example 10. FIG. 11: shows particle size analysis data (laser diffraction) for samples of Na-PSS, USP and Ca-PSS, BP obtained from several different manufacturers compared to Example 10 of the present invention. FIG. 12: shows the relationship between DVB weight percent, DVB mole percent, and styrene:DVB ratio for crosslinked polystyrene. FIG. 13: shows the fecal and urinary excretion of phosphate in mice treated with Example 10 compared to Na-PSS, USP as a control. FIG. 14: shows the fecal K+ excretion in mice treated with Examples 30 and 31 compared to Na-PSS, USP and Ca-PSS, BP as controls. FIG. 15: shows the fecal and urinary K+ excretion in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 16: shows the fecal excretion of phosphate and urinary excretion of sodium in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 17: shows the fecal K+ excretion of mice dosed with Examples 36, 37, 38 and 34 compared to Na-PSS, USP as a control. DETAILED DESCRIPTION OF THE INVENTION The details of the invention are set forth in the accompanying description below. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Throughout this disclosure, various patents, patent applications and publications are referenced. The disclosures of these patents, patent applications and publications in their entireties are incorporated into this disclosure by reference in order to more fully describe the state of the art as known to those skilled therein as of the date of this disclosure. This disclosure will govern in the instance that there is any inconsistency between the patents, patent applications and publications and this disclosure. For convenience, certain terms employed in the specification, examples and claims are collected here. Unless defined otherwise, all technical and scientific terms used in this disclosure have the same meanings as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The initial definition provided for a group or term provided in this disclosure applies to that group or term throughout the present disclosure individually or as part of another group, unless otherwise indicated. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: R1, R2, R3, X, Y, m, and n are as defined above; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. In some embodiments, R1 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R1 is H and —S(O)2OH. In some embodiments, R2 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R2 is H or —S(O)2OH. In some embodiments, R3 is selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, and —S(O)2OH. In another embodiment, R3 is H or phenyl. In yet another embodiment, R3 is H. In some embodiments, X is either absent. In another embodiment, X is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or unsubstituted (C6-C18)aryl. In another embodiment, X is absent or phenyl. In yet another embodiment, X is absent and R1 is H when XR1 is attached to the carbon atom substituted with Y. In some embodiments, Y is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is unsubstituted (C6-C18)aryl. In yet another embodiment, Y is phenyl. In some embodiments, the mole ratio of m to n is from about 120:1 to about 40:1. In another embodiment, the ratio of m to n is from about 70:1 to about 50:1. In yet another embodiment, the ratio of m to n is from about 70:1 to about 60:1. In another embodiment, the ratio of m to n is about 68:1. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a composition for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia, comprising a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising: a i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) artificial orange flavored powder; and vi) methyl cellulose. In some embodiments, the pharmaceutical composition comprises about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 87% to about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88% to about 89% of the calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 86%, about 87%, about 88%, about 89%, or about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88.6% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.8%, about 2.9%, or about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.64% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.66% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.53% of sucralose. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.66% of artificial orange flavored powder. In one embodiment, the artificial orange flavored powder is artificial orange flavored powder FV633. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.0% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.92% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) vanillin powder; vi) methyl cellulose; and vii) titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 90% to about 93.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91% to about 92.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 89%, about 89.5%, about 90%, about 90.5%, about 91%, about 91.5%, about 92%, about 92.5%, about 93%, about 93.5%, about 94%, about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91.7% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.2% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 1.21% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.02% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.4% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.2% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.1% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.3% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.24% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.55% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.3% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 1.0% to about 1.2% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of vanillin powder. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.3% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 3.0% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 3.03% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. In some embodiments, the pharmaceutical composition comprises about 1.6% to about 2.6% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.7% to about 2.5% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 1.8% to about 2.4% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.9% to about 2.3% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 2.0% to about 2.3% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, or about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) benzoic acid; iv) anhydrous citric acid; v) sucralose; vi) of natural orange WONF FV7466; vii) xanthan gum; and viii) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.28% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.090% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.015%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14%, or about 0.15% of benzoic acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.10% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.015%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, about 0.14%, or about 0.15% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of natural orange WONF FV7466. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.68% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 73.7% to about 85.6% of water. In another embodiment, the pharmaceutical composition comprises about 74% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 81% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.7%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.4% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) sorbic acid; iv) anhydrous citric acid; v) sucralose; vi) SuperVan art vanilla VM36; vii) xanthan gum cp; viii) titanium dioxide; and ix) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.36% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.4% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.2% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.01% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.22% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.1% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.09% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.08% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.07% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.06% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of sorbic acid. In some embodiments, the pharmaceutical composition comprises about 0.001% to about 0.1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.002% to about 0.09% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.003% to about 0.08% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.004% to about 0.07% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.005% to about 0.06% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.006% to about 0.05% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.007% to about 0.04% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.008% to about 0.03% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.009% to about 0.02% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of anhydrous citric acid In some embodiments, the pharmaceutical composition comprises about 0.05% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.12% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, or about 0.14% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of SuperVan art vanilla VM36. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.59% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.6% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.5% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.39% of titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 73.2% to about 86.65% water. In another embodiment, the pharmaceutical composition comprises about 74% to about 86% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 85% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.2%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.8% of water. Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Among the various aspects of the invention are crosslinked cation exchange polymers having desirable particle size, particle shape, particle size distribution, swelling ratio, potassium binding capacity, and methods of removing potassium by administering the polymer—or a pharmaceutical composition including the polymer—to an animal subject in need thereof. Another aspect of the invention is a method for removing potassium and/or treating hyperkalemia from an animal subject in need thereof comprising administering a potassium binding polymer to the animal subject. The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a more controlled particle size distribution than Kayexylate, Kalimate and the like. Unless particles are perfectly monodisperse, i.e., all the particles have the same dimensions, polymer resins will typically consist of a statistical distribution of particles of different sizes. This distribution of particles can be represented in several ways. Without being bound to a particular theory, it is often convenient to assess particle size using both number weighted distributions and volume weighted distributions. Image analysis is a counting technique and can provide a number weighted distribution: each particle is given equal weighting irrespective of its size. Light scattering techniques such as laser diffraction give a volume weighted distribution: the contribution of each particle in the distribution relates to the volume of that particle, i.e. the relative contribution will be proportional to (size)3. When comparing particle size data for the same sample measured by different techniques, it is important to realize that the types of distribution being measured and reported can produce very different particle size results. For example, for a sample consisting of equal numbers of particles with diameters of 5 μm and 50 μm, an analytical method that provides a weighted distribution would give equal weighting to both types of particles and said sample would consist of 50% 5 μm particles and 50% 50 μm particles, by number. The same sample, analyzed using an analytical method that provides a volume weighted distribution, would represent the 50 μm samples as present at 1000× the intensity of the 5 μm particles (since volume is a (radius)3 function if assuming the particles are spheres). For volume weighted particle size distributions, such as those measured by laser diffraction, it is often convenient to report parameters based upon the maximum particle size for a given percentage volume of the sample. Percentiles are defined here using the nomenclature “Dv(B)” where “D”=diameter, “v”=volume, and “B”= is percentage written as a decimal fraction. For example, when expressing particle size for a given sample as “Dv(0.5)=50 μm,” 50% of the sample is below this particle size. Thus, the Dv(0.5) would be the maximum particle diameter below which 50% of the sample volume exists—also known as the median particle size by volume. For the scenario described earlier wherein a sample consists of equal numbers of particles with diameters of 5 μm and 50 μm, a volume analysis of this sample performed via laser diffraction could theoretically afford: Dv(0.999)=50 μm and Dv(0.001)=5 μm. In practice, samples are typically characterized by reporting a range of percentiles, typically the median, Dv(0.5), and values above and below the median (e.g., typically Dv(0.1) and Dv(0.9)). The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a median diameter, when in their calcium salt form and swollen in water, of from about 1 μm to about 200 μm. In other embodiments, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 130 μm. In another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 60 μm. In yet another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 60 μm to about 120 μm. In some embodiments, the Dv50—the median particle size by volume and defined as the maximum particle diameter below which 50% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In other embodiments, the Dv50 is between about 20 μm and about 50 μm. In another embodiment, Dv(0.5) is between about 40 μm and about 50 μm. In yet another embodiment, Dv(0.5) is between about 20 μm and about 30 μm. In another embodiment, Dv(0.5) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.5) is between about 35 μm and about 45 μm. In another embodiment, Dv(0.5) is between about 30 μm and about 40 μm. In yet another embodiment, Dv(0.5) is about 35 μm. In yet another embodiment, Dv(0.5) is about 30 μm. In another embodiment, Dv(0.5) is about 40 μm. In yet another embodiment, Dv(0.5) is about 45 μm. In another embodiment, Dv(0.5) is about 25 μm. In some embodiments, the Dv90—the median particle size by volume and defined as the maximum particle diameter below which 90% of the sample volume exists—is between about 40 μm and about 140 μm. In yet another embodiment, Dv(0.9) is between about 80 μm and about 130 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 120 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 100 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In other embodiments, the Dv(0.9) is between about 85 μm and about 115 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In yet another embodiment, Dv(0.9) is about 100 μm. In another embodiment, Dv(0.9) is about 105 μm. In yet another embodiment, Dv(0.9) is about 110 μm. In another embodiment, Dv(0.9) is about 90 μm. In yet another embodiment, Dv(0.9) is about 95 μm. In yet another embodiment, Dv(0.9) is about 85 μm. In other embodiments, the Dv90 is between about 20 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 20 μm and about 60 μm. In yet another embodiment, Dv(0.9) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.9) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.9) is between about 40 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 40 and about 70 μm. In yet another embodiment, Dv(0.9) is between about 50 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 50 μm and about 60 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 50 μm. In yet another embodiment, Dv(0.9) is about 30 μm. In another embodiment, Dv(0.9) is about 35 μm. In yet another embodiment, Dv(0.9) is about 40 μm. In another embodiment, Dv(0.9) is about 45 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 60 μm. In yet another embodiment, Dv(0.9) is about 25 μm. In some embodiments, the Dv10—the median particle size by volume and defined as the maximum particle diameter below which 10% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 70 μm. In another embodiment, Dv(0.1) is between about 30 μm and about 60 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In yet another embodiment, Dv(0.1) is between about 40 μm and about 60 μm. In another embodiment, Dv(0.1) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.1) is between about 45 μm and about 55 μm. In other embodiments, the Dv10 is between about 1 μm and about 60 μm. In another embodiment, Dv(0.1) is between about 5 μm and about 30 μm. In yet another embodiment, Dv(0.1) is between about 6 μm and about 23 μm. In another embodiment, Dv(0.1) is between about 15 μm and about 25 μm. In another embodiment, Dv(0.1) is between about 1 μm and about 15 μm. In another embodiment, Dv(0.1) is between about 1 μm and about 10 μm. In another embodiment, Dv(0.1) is between about 10 μm and about 20 μm. In another embodiment, Dv(0.1) is about 15 μm. In another embodiment, Dv(0.1) is about 20 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In some embodiments, the Dv(0.5) is between 60 μm and about 90 μm and Dv(0.9) is between 80 μm and about 130 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 80 μm and about 130 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 90 μm and about 120 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 110 μm and about 120 μm, Dv(0.1) is between 50 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 50 μm and about 60 μm, Dv(0.9) is between 85 μm and about 95 μm, Dv(0.1) is between 25 μm and about 35 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 100 μm and about 110 μm, Dv(0.1) is between 50 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 25 μm and about 35 μm, Dv(0.9) is between 45 μm and about 55 μm, Dv(0.1) is between 10 μm and about 20 μm. In yet another embodiment, the Dv(0.5) is between 10 μm and about 20 μm, Dv(0.9) is between 25 μm and about 35 μm, Dv(0.1) is between 1 μm and about 10 μm. In another embodiment, the Dv(0.5) is <35 μm, Dv(0.9) is <55 μm, Dv(0.1) is >5 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In some embodiments, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently <2. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 2.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is <2.0. In yet another embodiment, Dv(0.5):Dv(0.1) is <1.9. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 2.0. In yet another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <5.0 and the ratio of Dv(0.5):Dv(0.1) is <5.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <2.0 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8 and the ratio of Dv(0.5):Dv(0.1) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.6 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In some embodiments, the Dv50 is about 75 μm. In some embodiments, Dv(0.5) is between about 30 and 100 μm. More preferably, Dv(0.5) is between about 60 and 90 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In other embodiments, Dv(0.5) is between about 1 and 25 μm, more preferably between about 5 and 20 μm. In these embodiments, Dv(0.1) is between about 1 and 10 μm, more preferably between about 2 and 6 μm, and Dv(0.9) is between about 5 and 50 μm, more preferably between about 20 and 35 μm. In another embodiment, Dv(0.5) is between about 5 and 20 μm. In another embodiment, Dv(0.5) is between about 10 and 20 μm. In another embodiment, Dv(0.5) is about 15 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In some embodiments, the particle size distribution is relatively narrow. For example, 90% of the particles are within the range of 10 μm to 25 μm. In some embodiments, particles are essentially monodisperse with controlled sized from about 5-10 μm. It has been theorized that small particles, less than 3 μm in diameter, could potentially be absorbed into a patient's bloodstream resulting in undesirable effects such as the accumulation of particles in the urinary tract of the patient, and particularly in the patient's kidneys. Following ingestion, translocation of particles into and across the gastrointestinal mucosa can occur via four different pathways: 1) endocytosis through epithelial cells; 2) transcytosis at the M-cells located in the Peyer's Patches (small intestinal lymphoid aggregates), persorption (passage through “gaps” at the villous tip) and 4) putative paracellular uptake (Powell, J. J. et al Journal of Autoimmunity 2010, 34, J226-J233). The most documented and common route of uptake for micro particles is via the M-cell rich layer of Peyer's Patches, especially for small microparticles on the order of 0.1 to 0.5 μm in size (Powell, Journal of Autoimmunity 2010). Thus, excessively small particles, often called the “fines,” should be controlled during the polymer manufacturing process. The presence of such fine particulate matter could present a safety challenge, and at minimum would impact the non-absorbed nature of the polymeric drug and associated safety advantages. In another aspect of the invention, the swelling ratios of the polymer particles have been optimized. In some embodiments, polymers have a swelling ratio of less than about 10 grams of water per gram of polymer and more than about 2 grams of water per gram of polymer. In another embodiment, the polymer particles have a swelling ratio of less than about 7 grams of water per gram of polymer, but greater than about 2 grams of water per gram of polymer. In yet another embodiment, the swelling ratio is less than about 4.5 grams of water per gram of polymer, and more than about 3 grams of water per gram of polymer. In some embodiments, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the polymers have a swelling ratio in water of about 4.3 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3.5 to about 6.5 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 6.0 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 5.8 grams of water per gram of polymer. In some embodiments, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. The present invention provides a method of removing potassium and/or treating hyperkalemia in an animal subject in need thereof, comprising administering an effective amount once, twice or three times per day to the subject of a crosslinked cation exchange polymer in the form of substantially spherical particles having a well-defined particle size distribution and a preferred swelling ratio in water. The particle shape, size distribution and swelling ratio of the polymer is chosen to not only increase the amount of potassium that can be diverted into the feces in an animal subject consuming said polymer, but these physical properties also improve the palatability (mouth feel, taste, etc.) of the polymer when it is ingested by a subject in need thereof. Preferred physical properties include a generally spherical shape of the particles, a well-defined particle size distribution with the smallest particles typically no smaller than 1-2 μm and the largest particles typically no larger than 100-120 μm, and a swelling ratio between about 2 grams of water per gram of polymer to 6 grams of water per gram of polymer when measured in water with the polymer in the calcium salt form. Generally, the potassium binding polymers described herein are not absorbed from the gastrointestinal tract. The term “non-absorbed” and its grammatical equivalents (such as “non-systemic,” “non-bioavailable,” etc.) is not intended to mean that the polymer cannot be detected outside of the gastrointestinal tract. It is anticipated that certain amounts of the polymer may be absorbed. For example, about 90% or more of the polymer is not absorbed, more particularly, about 95% of the polymer is not absorbed, and more particularly still about 98% or more of the polymer is not absorbed. In some embodiments, the potassium-binding polymers described herein are crosslinked cation exchange polymers (or “resins”) derived from at least one crosslinker and at least one monomer. The monomer (or crosslinker) can contain an acid group in several forms, including protonated or ionized forms, or in a chemically protected form that can be liberated (“deprotected”) later in the synthesis of the polymer. Alternatively, the acid group can be chemically installed after first polymerizing the crosslinker and monomer groups. Acid groups can include sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof. In general, the acidity of the group should be such that, at physiological pH in the gastrointestinal tract of the subject in need, the conjugate base is available to interact favorably with potassium ions. The polymer of the present invention can be characterized by a crosslinking of between about 0.5% to about 6%. In some embodiments, the polymer is characterized by a crosslinking of less than 6%. In another embodiment, the polymer is characterized by a crosslinking of less than 5%. In yet another embodiment, the polymer is characterized by a crosslinking of less than 3%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means ±20%. In yet another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means ±10%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means ±5%. In other embodiments, the polymer is characterized by a crosslinking of 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, or 5.0%. The ratio of monomer(s) to crosslinker(s) can be chosen to affect the physical properties of the polymer. Additional factors include the time of addition of the crosslinker, the time and temperature of the polymerization reaction, the nature of the polymerization initiator, the use of different additives to help modulate agglomeration of the growing polymer or otherwise stabilize reactants prior to, or during, the polymerization process. The ratio of the monomer(s) and crosslinker(s), or the “repeat units,” can be chosen by those of skill in the art based on the desired physical properties of the polymer particles. For example, the swelling ratio can be used to determine the amount of crosslinking based on general principles that indicate that as crosslinking increases, the selling ratio in water generally decreases. In one specific embodiment, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 wt. % to 10 wt. %, more specifically in the range of 1 wt. % to 8 wt. %, and even more specifically in the range of 1.8 wt. % to 2.5 wt. %. To one skilled in the art, these weight ratios can be converted to mole ratios—based on the molecular weights of said monomers—and these mole-based calculations can be used to assign numerical values to “m” and “n” in (Formula I). It is also noted that to one skilled in the art that in practice, individual monomers can react at different rates and hence their incorporation into the polymer is not necessarily quantitative. With this in mind, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 mole % to 8 mole %, more specifically in the range of 1 mole % to 7 mole %, and even more specifically in the range of 1.5 mole % to 2 mole %. In another aspect of the invention, the polymers of the invention have a mouth feel score greater than 3. In some embodiments, the polymers have a mouth feel score greater than 3.5. In another embodiment, the polymers have a mouth feel score greater than 4.0. In yet another embodiment, the polymers have a mouth feel score greater than 5.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 3.0 to about 6.0. In yet another embodiment, the polymers of the invention have a mouth feel score of between about 4.0 to about 6.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 5.0 to about 6.0. The polymers of the invention can also have a grittiness score that is greater than 3. In some embodiments, the polymers have a grittiness score greater than 3. In another embodiment, the polymers have a grittiness score greater than 4. In yet another embodiment, the polymers have a grittiness score greater than 4.5. In another embodiment, the polymers have a grittiness score greater than 5. In another embodiment, the polymers have a grittiness score greater than 5.5. In yet another embodiment, the polymers have a grittiness score of between about 3.0 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 3.5 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 4.5 to about 6.0 DEFINITIONS “Amino” refers to the —NH2 radical. “Aminocarbonyl” refers to the —C(═O)NH2 radical. “Carboxy” refers to the —CO2H radical. “Carboxylate” refers to a salt or ester thereof. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH radical. “Nitro” refers to the —NO2 radical. “Oxo” or “carbonyl” refers to the ═O radical. “Thioxo” refers to the ═S radical. “Guanidinyl” (or “guanidine”) refers to the —NHC(═NH)NH2 radical. “Amidinyl” (or “amidine”) refers to the —C(═NH)NH2 radical. “Phosphate” refers to the —OP(═O)(OH)2 radical. “Phosphonate” refers to the —P(═O)(OH)2 radical. “Phosphinate” refers to the —PH(═O)OH radical, wherein each Ra is independently an alkyl group as defined herein. “Sulfate” refers to the —OS(═O)2OH radical. “Sulfonate” or “hydroxysulfonyl” refers to the —S(═O)2OH radical. “Sulfinate” refers to the —S(═O)OH radical. “Sulfonyl” refers to a moiety comprising a —SO2— group. For example, “alkysulfonyl” or “alkylsulfone” refers to the —SO2—Ra group, wherein Ra is an alkyl group as defined herein. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above that is substituted by one or more halo radicals, as defined above. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, carboxyl groups, phosphate groups, sulfate groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfinate groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a phosphorus atom in groups such as phosphinate groups and phosphonate groups; a nitrogen atom in groups such as guanidine groups, amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORB, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)1-10Rg, —(CH2CH2O)1-10Rg, —(OCH2CH2)1-10Rg and —(OCH2CH2)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. The above non-hydrogen groups are generally referred to herein as “substituents” or “non-hydrogen substituents”. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. By “crosslink” and “crosslinking” is meant a bond or chain of atoms attached between and linking two different polymer chains. The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. Unless specifically stated, as used herein, the term “about” refers to a range of values ±10% of a specified value. For example, the phrase “about 200” includes ±10% of 200, or from 180 to 220. When stated otherwise the term about will refer to a range of values that include ±20%, ±10%, or ±5%, etc. The term “activate” refers to the application of physical, chemical, or biochemical conditions, substances or processes that a receptor (e.g., pore receptor) to structurally change in a way that allows passage of ions, molecules, or other substances. The term “active state” refers to the state or condition of a receptor in its non-resting condition. “Efflux” refers to the movement or flux of ions, molecules, or other substances from an intracellular space to an extracellular space. “Enteral” or “enteric” administration refers to administration via the gastrointestinal tract, including oral, sublingual, sublabial, buccal, and rectal administration, and including administration via a gastric or duodenal feeding tube. The term “inactive state” refers to the state of a receptor in its original endogenous state, that is, its resting state. The term “modulating” includes “increasing” or “enhancing,” as well as “decreasing” or “reducing,” typically in a statistically significant or a physiologically significant amount as compared to a control. An “increased” or “enhanced” amount is typically a “statistically significant” amount, and may include an increase that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.3, 4.4, 4.6, 4.8, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or more times (e.g., 100, 200, 500, 1000 times) (including all integers and decimal points and ranges in between and above 1, e.g., 5.5, 5.6, 5.7. 5.8, etc.) the amount produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). A “decreased” or “reduced” amount is typically a “statistically significant” amount, and may include a 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% decrease (including all integers and decimal points and ranges in between) in the amount or activity produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like. The term “mouthfeel” of a substance according to the present invention is the tactile sensations perceived at the lining of the mouth, including the tongue, gums and teeth. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. By “statistically significant,” it is meant that the result was unlikely to have occurred by chance. Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which is the frequency or probability with which the observed event would occur, if the null hypothesis were true. If the obtained p-value is smaller than the significance level, then the null hypothesis is rejected. In simple cases, the significance level is defined at a p-value of 0.05 or less. “Substantially” or “essentially” includes nearly totally or completely, for instance, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater of some given quantity. The term “secondary” refers to a condition or state that can occur with another disease state, condition, or treatment, can follow on from another disease state, condition, or treatment, or can result from another disease state, condition or treatment. The term also refers to situations where a disease state, condition, or treatment can play only a minor role in creating symptoms or a response in a patient's final diseased state, symptoms or condition. “Subjects” or “patients” (the terms are used interchangeably herein) in need of treatment with a compound of the present disclosure include, for instance, subjects “in need of potassium lowering.” Included are mammals with diseases and/or conditions described herein, particularly diseases and/or conditions that can be treated with the compounds of the invention, with or without other active agents, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, modulation of one or more indications described herein (e.g., reduced potassium ion levels in serum or blood of patients with or at risk for hyperkalemia, increased fecal output of potassium ions in patients with or at risk for hyperkalemia), increased longevity, and/or more rapid or more complete resolution of the disease or condition. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. A “therapeutically effective amount” or “effective amount” includes an amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to increase fecal output of potassium ions, reduce serum levels of potassium ions, treat hyperkalemia in the mammal, preferably a human, and/or treat any one or more other conditions described herein. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure. “Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes: (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it; (ii) inhibiting the disease or condition, i.e., arresting its development; (iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or (iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians. Methods of Making the Potassium Binding Crosslinked Polymers Copolymerization of an Organic Monomer “R1—X” Displaying a Single Olefin with a “Crosslinker” Organic Monomer “R2—Y” that Displays Two Olefins. Scheme 1 illustrates the copolymerization of an organic monomer displaying a single olefin (R1—X—CH═CH—R3) with a second organic monomer displaying two olefin groups (R2—Y—(CH═CH—R3)2; a crosslinker). R1 and R2 can be —H, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. R3 can be —H, halogen, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. X and Y can be the same or different, and can be substituted or unsubstituted alkyl or aryl radicals. More preferably, R1—X represents an aromatic group, and R2—Y represents an aromatic group. Most preferably, R1—X is phenyl and R2—Y is phenyl and R3 is —H——hence R1—X—CH═CH—R3 is styrene and R2—Y—(CH═CH—R3)2 is divinylbenzene. Divinylbenzene can be ortho-, meta- or para-divinylbenzene, and is most commonly a mixture of two or three of these isomers. When R1—X is phenyl, R2—Y is phenyl and R3 is —H, the resulting polymer is further modified to display acidic functionality capable of binding to potassium ions. In a preferred embodiment, the polymer is sulfonated by treatment with concentrated sulfuric acid, optionally using a catalyst such as silver sulfate. The resulting sulfonylated material can be retained in its acid form, or alternatively treated with base and converted to a salt form. This salt form can include metal salts such as sodium, calcium, magnesium or iron salts. These can also be organic salts, including salts of amines or amino acids and the like. In a preferred embodiment, the calcium salt is formed. In this preferred embodiment, (I) in Scheme 1 consists of X═Y=phenyl (Ph), R1═R2═—SO3−[0.5 Ca2+], and R3 is —H. In this preferred embodiment, the ratio of m to n (m:n) is about: 11:1 to about 120:1, more preferably about 14:1, more preferably still about 40:1, and most preferably about 50:1, about 60:1, and about 70:1. In one embodiment, the polymer is prepared from structural units of Formula 1 (e.g. styrene) and Formula 2 (e.g., divinylbenzene), which afford a polystyrene divinylbenzene copolymer intermediate. The weight ratio of the structural units of Formula 1 to Formula 2 is such that the polymer consists of about 90% Formula 1 and 10% of Formula 2. It should be noted, that in most cases, Formula 2 can be a mixture. In the case of divinylbenzene, the ortho, meta, and para positional isomers can be present Most preferable compositions include about 97.5% Formula 1 and 2.5% Formula 2, 98% Formula 1 and 2% Formula 2, and 98.2% Formula 1 and 1.8% Formula 2, by weight. Scheme 2 illustrates a copolymerization of this description, where “m” and “n” in the product reflect the varying amounts of styrene (m) and divinylbenzene (n). In one embodiment, the polymerization initiator used in the suspension polymerization plays a role in the quality of the polymer particles, including yield, shape and other physical attributes. Without being bound to a particular theory, the use of water-insoluble free radical initiators, such as benzoyl peroxide, initiates polymerization primarily within the phase containing the monomers. Such a reaction strategy provides polymer particles rather than a bulk polymer gel. Other suitable free radical initiators include other peroxides such as lauroyl peroxide (LPO), tert-butyl hydro peroxide, and the like. Azo type initiators commonly include azobisisobutyronitrile (AIBN), but also used are dimethyl-2,2′-azobis(2-methyl-proprionate), 2,2″-azo bis(2,4-dimethylvaleronitrile) and the like. These agents initiate the polymerization process. Additional polymerization components that are not intended to be incorporated into the polymer include additives such as surfactants, solvents, salts, buffers, aqueous phase polymerization inhibitors and/or other components known to those of skill in the art. When the polymerization is carried out in a suspension mode, the additional components may be contained in an aqueous phase while the monomers and initiator may be contained in an organic phase. A surfactant may be selected from the group consisting of anionic, cationic, nonionic, amphoteric or zwitterionic, or a combination thereof. Anionic sufactants are typically based on sulfate, sulfonate or carboxylate anions and include sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, other alkyl sulfate salts, sodium laureth sulfate (or sodium lauryl ether sulfate (SLES)), N-lauroylsarcosine sodium salt, lauryldimethylamine-oxide (LDAO), ethyltrimethylammoniumbromide (CTAB), bis(2-ethylhexyl)sulfosuccinate sodium salt, alkyl benzene sulfonate, soaps, fatty acid salts, or a combination thereof. Cationic surfactants, for example, contain quaternary ammonium cations. These surfactants are cetyl trimethylammonium bromide (CTAB or hexadecyl trimethyl ammonium bromide), cetylpyridinium chloride (CPC), polyethoxylated tallow amine (POEA), benzalkonium chloride (BAC), benzethonium chloride (BZT), or a combination thereof. Zwitterionic or amphoteric surfactants include dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, or a combination thereof. Nonionic surfactants include alkyl poly(ethylene oxide), copolymers of poly(ethylene oxide) and poly(propylene oxide) (commercially called Poloxamers or Poloxamines), alkyl polyglucosides (including octyl glucoside, decyl maltoside), fatty alcohols, cetyl alcohol, oleyl alcohol, cocamide MEA, cocamide DEA, or a combination thereof. Other pharmaceutically acceptable surfactants are well known in the art and are described in McCutcheon's Emulsifiers and Detergents, N. American Edition (2007). Polymerization reaction stabilizers may be selected from the group consisting of organic polymers and inorganic particulate stabilizers. Examples include polyvinyl alcohol-co-vinyl acetate and its range of hydrolyzed products, polyvinylacetate, polyvinylpyrrolidinone, salts of polyacrylic acid, cellulose ethers, natural gums, or a combination thereof. Buffers may be selected from the group consisting of 4-2-hydroxyethyl-1-piperazineethanesulfonic acid, 2-{[tris(hydroxymethyl)methyl]amino}ethanesulfonic acid, 3-(N-morpholino)propanesulfonic acid, piperazine-N,N′-bis(2-ethanesulfonic acid), sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate or a combination thereof Generally, the mixture of monomers and additives are subjected to polymerization conditions. These can include suspension polymerization conditions as well as bulk, solution or emulsion polymerization processes. The polymerization conditions typically include polymerization reaction temperatures, pressures, mixing and reactor geometry, sequence and rate of addition of polymerization mixtures and the like. Polymerization temperatures are typically in the range of about 50° C. to 100° C. Polymerizations are typically performed at atmospheric pressures, but can be run at higher pressures (for example 130 PSI of nitrogen). Mixing depends upon the scale of the polymerization and the equipment used, but can include agitation with the impeller of a reactor to the use of immersion or in-line homogenizers capable of creating smaller droplets under certain conditions. In one embodiment, polymerization can be achieved using a suspension polymerization approach. Suspension polymerization is a heterogeneous radical polymerization process. In this approach, mechanical agitation is used to mix a monomer or mixture of monomers in an immiscible liquid phase, such as water. While the monomers polymerize, they retain their nearly spherical suspension shape, forming spheres of polymer. Polymerization suspension stabilizers, such as polyvinyl alcohol, can be used to prevent coalescence of particles during the polymerization process. Factors such as the ratio of monomers to cross linker, agitation speed, ionic strength of the liquid phase, the nature of the suspension stabilizer, etc., contribute to the yield, shape, size and other physical properties of the polymer. In one embodiment, highly uniform sized particles can be produced via a multi-step approach inspired by Ugelstad (Ugelstad 1979). In this approach, “seeds” are first prepared by dispersion polymerization of styrene in the presence of a steric stabilizer such as polyvinylpyrrolidone, using an initiator such as AIBN, and using a water/alcohol polymerization medium. The seeds are isolated, and then swollen with a monomer-initiator solution containing additional styrene as well as divinylbenzene and BPO, and then polymerized to give highly uniform styrene-divinylbenzene beads. Alternatively, a jetting process using vibrating nozzles can also be used to create microdispersed droplets of monomers, and in this fashion permit the synthesis of highly uniform crosslinked polymer beads (Dow Chemical, U.S. Pat. No. 4,444,961.) In another embodiment, the crosslinked styrene-sulfonate particles of the invention can be produced by an inverse suspension process, wherein a solution of styrene-sulfonate, a water soluble crosslinker and a free-radical initiator are dispersed in an organic solvent and converted to crosslinked beads. The polymers illustrated in Scheme 1 and Scheme 2 are most preferably sulfonylated, and the resulting sulfonic acid converted to a pharmaceutically acceptable salt. Scheme 3 illustrates the sulfonation of a preferred embodiment. The resulting sulfonic acid can be further treated with calcium acetate to afford the calcium salt. At the physiological pH within the gastrointestinal tract of a subject in need, the conjugate base of the sulfonic acid is available to interact favorably with potassium ions. By interacting favorably, this means binding to or otherwise sequestering potassium cations for subsequent fecal elimination. Polymer Sulfonylation Resins comprising the general structure of polystyrene sulfonate cross linked with divinylbenzene are available and used clinically, e.g., Kayexalate®, Argamate®, Kionex® and Resonium®. However, these resins do not possess the optimized cross-linking, particle shape, particle size distribution, and swelling properties as do the novel polymers described herein. For example, the crosslinked cation exchange polymers described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. When healthy rodents are administered the polymers of the present invention, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium is similarly dosed (same dosing and fecal collection conditions). In some embodiments, approximately 2.0-fold more potassium is excreted fecally than is achieved when, for example, Na-PSS, USP (e.g. Kayexylate) is similarly dosed (same dosing and fecal collection conditions). The higher capacity of the polymers of this invention may enable the administration of a lower dose of the polymer. Typically, the dose of Na-PSS or Ca-PSS used clinically to obtain the desired therapeutic and/or prophylactic benefits is about 10 to 60 grams/day and can be as high as 120 g/day. A typical dose range is 10-20 g, 30-40 g and 45-120 g, which can be divided into one, two or three doses/day (Fordjour, Am. J. Med. Sci. 2014). The polymers of the current invention could permit a significant reduction in drug load for the patient. Methods of Using Potassium Binding Crosslinked Polymers Patients suffering from CKD and/or CHF can be particularly in need of potassium removal because agents used to treat these conditions may cause potassium retention. Many of these subjects are also taking medications that interfere with potassium excretion, e.g., potassium-sparing diuretics, RAAS inhibitors, beta blockers, aldosterone synthase inhibitors, non-steroidal anti-inflammatory drugs, heparin, or trimethoprim. In certain particular embodiments, the polymers of the present invention can be administered on a periodic basis to treat chronic hyperkalemia. Such a treatment would enable patients to continue using drugs that may cause hyperkalemia. Also, use of the polymer compositions described herein will enable patient populations, who were previously unable to use the above-listed medications, to being treatable with these beneficial therapeutics. The cation exchange polymers described herein can be delivered to the patient using a wide variety of routes or modes of administration. The most preferred routes are oral, intestinal (e.g., via gastrointestinal tube) or rectal. Rectal routes of administration are known to those of skill in the art. The most preferred route for administration is oral. The polymers described herein can be administered as neat, dry powders or in the form of a pharmaceutical composition wherein the polymer is in admixture with one or more pharmaceutically acceptable excipients. These can include carriers, diluents, binder, disintegrants and other such generally-recognized-as-safe (GRAS) excipients designed to present the active ingredient in a form convenient for consumption by the patient. The nature and composition of these excipients are dependent upon the chosen route of administration. For oral administration, the polymer can be formulated by combining the polymer particles with pharmaceutically acceptable excipients well known in the art. These excipients can enable the polymer to be formulated as a suspension (including thixotropic suspensions), tablets, capsules, dragees, gels (including gummies or candies), syrups, slurries, wafers, liquids, and the like, for oral ingestion by a patient. In one embodiment, the oral composition does not have an enteric coating. Pharmaceutical preparations for oral use can be obtained as a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose or sucrose; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone (PVP); and various flavoring agents known in the art. If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. In various embodiments, the active ingredient (e.g., the polymer) constitutes over about 10%, more particularly over about 30%, even more particularly over about 60%, and most particularly more than about 80% by weight of the oral dosage form, the remainder comprising suitable excipient(s). In a certain formulation, the excipients would be chosen such that the polymers of the herein invention are well dispersed and suspended, such that any sensation of particulate matter on the palate is significantly blunted or eliminated. Such formulations could include, for example, suspension as a gel or paste in an aqueous matrix of agar, or gelatin, or pectin, or carrageenan, or a mixture of such agents. Such a formulation would be of a sufficient density to suspend the polymer particles in a non-settling matrix. Flavorings, such as sweeteners can be added, and these sweeteners can include both nutritive (malt extract, high-fructose corn syrup, and the like) and non-nutritive (e.g., aspartame, nutrasweet, and the like) agents, which can create a pleasant taste. Lipids such as tripalmitin, castor oil, sterotex, and the like, can be used to suspend particles in a way that avoids a foreign sensation on the palate, and can also lead to favorable flavor properties. Milk solids, cocoa butter and chocolate products can be combined to create a pudding or custard type mixture that both suspend the polymers of the invention, and also mask their contact on the palate. Formulations of the type described herein should be readily ingested presentations for the patient. EXAMPLES The disclosure is further illustrated by the following examples, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims. Example 1 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Crosslinked (8%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Adrich (Catalog #217514). The beads (100 g, wet weight) were suspended in aqueous NaOH (1M, 300 mL) and shaken for 20 hours at 27° C., then the mixture was filtered, and the wet beads washed with water (2×300 mL). The beads were suspended in aqueous CaCl2 (0.5M, 700 mL) and shaken for 2 days at 37° C. The beads were then filtered, and suspended in fresh CaCl2 (0.5M, 700 mL), and shaken for 2 days at 37° C. The beads were then filtered, washed successively with water (3×400 mL), and dried under reduced pressure to give 56.9 g of Example 1 as a fine light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 2 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 2 was prepared from 100 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Adrich (Catalog #217484) using the procedures described in Example 1 to give 37.1 g of Example 2 as a fine light brown powder. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 3 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Example 3 was prepared from 100 g crosslinked (2%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217476) using the procedures described in Example 1 to give 21.8 g of Example 3 as a light brown sand: Particle size: dv(0.1)=90 μm; dv(0.5)=120 μm; dv(0.9)=170 μm. Example 4 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Crosslinked (2%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Aldrich (Catalog #217476). The beads (400 g, wet weight) were suspended in aqueous CaCl2 (200 g CaCl2, 1.8 L water) and shaken for 24 hours at 38° C., then the mixture was filtered. The beads were suspended in aqueous Ca(OAc)2 (166 g, 2 L water) and shaken for 2 days at 37° C. The beads were then filtered, washed with water (1 L), and dried under reduced pressure to give Example 4 as a light brown sand. Approximate particle size range of 40-160 μm determined by digital visual microscopy. Example 5 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 5 was prepared from 400 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217484) using the procedures described in Example 4 to give Example 5 as a light brown sand. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 6 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Example 6 was prepared from 400 g crosslinked (8%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217514) using the procedures described in Example 4 to give Example 6 as a light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 7 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 0.96% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 0.96% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (0.94 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 mL), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (700 mL), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size estimated by visual microscopy d(50)=40 μm. Example 7 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), and dried under reduced pressure at 50° C. to give 27.4 g of Example 7 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 9.1 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm). Example 8 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.12% Divinylbenzene (DVB) Example 8 was prepared from styrene (75 mL), and divinylbenzene (1.1 mL, 80% Technical Grade) using the procedure described in Example 7 to give approximately 25 g of Example 8 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 7.9 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm) Example 9 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 1.6% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.5 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size: d(0.1)=27 μm; d(0.5)=40 μm; d(0.9)=60 μm. Example 9 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. A sample of wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 31 g of Example 9 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=51 μm; d(0.5)=75 μm; d(0.9)=105 μm. Ca-salt (8.53 wt % by titration); Residual Styrene: Not Detected (<0.1 ppm). Example 10 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 1.8% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in isopropanol (“IPA”) (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 10 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.44 g) and sulfuric acid (98%, 330 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (22 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 2 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (2×1 L), 50% ethanol-water (“EtOH-water”) (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.5 g of Example 10 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=78 μm; d(0.9)=114 μm. Ca-salt (7.80 wt % by titration); K+ exchange capacity 1.6 mEq/g (per BP); Residual Styrene (2.1 ppm). Example 11 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.9 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 24 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 ml), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (700 ml), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 41.9 g of polystyrene beads as a white powder. Example 11 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 h, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous calcium acetate (“Ca(OAc)2”) (20% wt, 2 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), and 100% MeOH (2×1500 mL), and dried under reduced pressure at 50° C. to give 29.8 g of Example 11 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=32 μm; dv(0.5)=49 μm; dv(0.9)=69 μm (visual microscopy). Ca-salt (8.6% wt/wt by titration); K+ exchange capacity (1.4 mE/g, per BP). Example 12 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.2% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.2% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 h to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 h, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 h. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=45 μm; dv(0.9)=70 μm. Example 12 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 90° C. for 1.5 h, then 100° C. for 1 h, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 h at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 h at 37° C. The beads were then washed successively with water (2×1 L), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH 2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 12 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=76 μm; d(0.9)=108 μm; Ca-salt (8.3% wt/wt by titration); K+ exchange capacity (1.3 meq/g per BP); Residual Styrene (6 ppm). Example 13 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.08% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 2.08% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (147 g), divinylbenzene (3.9 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 135 g of polystyrene beads as a white powder. Particle size: d(0.1)=6.17 μm; d(0.5)=10.1 μm; d(0.9)=17.1 μm. Example 13 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (700 mL). The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 28.6 g of Example 13 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm sieve to give a powder with Particle Size: dv(0.1)=2 μm; dv(0.5)=15 μm; dv(0.9)=30 μm. Ca-salt (9.1 wt % by titration); K+ exchange capacity (1.46 mE/g, per BP); Residual Styrene: Not Detected (<0.1 ppm). Example 14 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.5% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene, DVB and (147 g), divinylbenzene (4.7 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 133 g of polystyrene beads as a white powder. Particle size: d(0.1)=4 μm; d(0.5)=8 μm; d(0.9)=15 μm. Example 14 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (800 mL) The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 30 g of Example 14 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm) sieve to give a powder with Particle Size: d(0.1)=3 μm; d(0.5)=15 μm; d(0.9)=27 μm; Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.41 mE/g, per BP); Residual Styrene: Not Detected. Example 15 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 4% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (143.4 g), divinylbenzene (7.5 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 132 g of polystyrene beads as a white powder. Particle size: dv(0.1)=2 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 15 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 34 g of Example 15 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=3 μm; d(0.5)=12 μm; d(0.9)=21 μm. Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.32 mE/g, per BP); Residual Styrene (0.1 ppm). Example 16 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 8% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (98 g), divinylbenzene (10.7 g, 80% Technical Grade), and benzoyl peroxide (4.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 4 hours, then 85° C. overnight. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 91 g of polystyrene beads as a white powder. Particle size: dv(0.1)=3 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 16 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 32.4 g of Example 16 Ca-PSS resin as a light brown powder. Particle Size: dv(0.1)=2 μm; dv(0.5)=11 μm; dv(0.9)=17 μm. Ca-salt (8.58 wt % by titration); K+ exchange capacity (1.43 mE/g, per BP). Example 17 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate Polystyrene Seed Particles (2 μm) by Dispersion Polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (136 mL, used as is), polyvinylpyrrolidone (“PVP”) (12 g, MW 40,000), and anhydrous EtOH (784 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 min, AIBN (1.2 g) dissolved in anhydrous EtOH (224 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (2×150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 73.9 g of seed particles as a white powder. dv(0.1)=0.6 μm; dv(0.5)=2 μm; dv(0.9)=3 μm. Intermediate PS Beads from Seeded Polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g) and sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL) and the mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (3.62 g, 6.4% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (VWR homogenizer, model VDI 25) at 17500 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again (VWR homogenizer, model VDI 25). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 min. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes. the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 32.1 g of bead particles as a white powder. Example 17 To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 17 Ca-PSS resin. A portion of the beads (19 g) was further washed by successive suspension and centrifugation at 3400×g with water (700 mL), 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL). The isolated solid was then dried under reduced pressure at 50° C. to give 18.8 g of Example 17 as a light brown powder. Particle Size: dv(0.1)=1 μm; dv(0.5)=6 μm; dv(0.9)=10 μm. Ca-salt (7.55 wt % by titration); K+ exchange capacity 1.0 mEq/g (per BP); Residual Styrene 0.4 ppm. Example 18 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.8 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 136 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 18 To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.7 g of Example 18 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=57 μm; dv(0.5)=80 μm; dv(0.9)=110 Example 19 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 19 was prepared from 40 g crosslinked (1.8%) polystyrene sulfonate beads using the procedures described in Example 10 to give 69.4 g of Example 19 as a light brown powder: particle size 30-130 μm (visual microscopy). Residual Styrene: Not Detected. Example 20 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate Polystyrene Seed Particles (2 μm) by Dispersion Polymerization: Seeds were prepared following the procedures described in Example 17. Intermediate PS Beads from Seeded Polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (0.91 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again at 2000 rpm for 30 minutes (IKA homogenizer, model T50 Digital). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in MeOH (200 mL) for 15 min by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 27.74 g of bead particles as a white powder. Approximate particle size range 6-8 μm by visual microscopy. Example 20 To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with water (200 mL) and 70% MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 33.2 g of Example 20 Ca-PSS resin as a dark brown chunks. The beads were suspended and centrifuged successively with water (700 mL), 70% EtOH (500 mL), and 100% IPA (200 mL) and dried under reduced pressure at 50° C. to give 27.8 g of Example 20 Ca-PSS resin as a dark brown chunks. A portion of the beads were suspended and centrifuged successively with water (2×2 L), followed by 70% EtOH (500 mL) and 100% EtOH (500 mL). The material was dried under reduced pressure (50° C.) to give 16.3 g of Example 20 Ca-PSS resin as a light brown powder: particle size dv(0.1)=4 μm; dv(0.5)=7 μm; dv(0.9)=12 μm; Ca-salt (7.53 wt % by titration); K+ exchange capacity 1.4 mEq/g (per BP); Residual Styrene 0.09 ppm. Example 21 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate Polystyrene Seed Particles (4 μm) by Dispersion Polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (68 mL, used as is), Polyvinylpyrrolidone, PVP, (6 g, MW 40,000), and IPA (392 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 minutes, Azobisisobutyronitrile (“AIBN”) (0.6 g) dissolved in IPA (112 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 55.28 g of seed particles as a white powder. Particle size dv(0.1)=2 μm; dv(0.5)=4 μm; dv(0.9)=6 μm. Intermediate PS Beads from Seeded Polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (3 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 300 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (30 mL), divinylbenzene (0.54 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. Separately, PVP (1.5 g, MW 350,000) was dissolved in deionized water (150 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes. Then the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 16 g of bead particles as a white powder. Example 21 To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.32 g) and sulfuric acid (98%, 240 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (16 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400×g for 10 min. The beads were suspended and centrifuged successively with water (200 mL), 70% EtOH (350 mL), 100% EtOH (350 mL), and dried under reduced pressure. A portion of material (19.5 g) was suspended in water (2000 mL) by shaking at 150 rpm overnight, and isolated by centrifugation at 3400 G for 10 min. The beads were washed again with water (2000 mL) and centrifuged successively with 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL), dried under reduced pressure at 50° C. to give Example 21 as a light brown powder. Ca-salt (8.56 wt % by titration); Residual Styrene 0.21 ppm. Example 22 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS), <43 μm Particle Size, 8% Divinylbenzene (DVB) Approximately 15 g of Ionex Ca-PSS (Phaex Polymers, India), British Pharmacopeia (BP) grade, was deposited onto a 320 mesh sieve (43 μm pore size) and mechanically agitated on an orbital shaker for approximately 30 minutes, and the sieved fraction (solids ≦43 μm) was collected (approximately 3 g). Particle size dv(0.1)=9 μm; dv(0.5)=30 μm; dv(0.9)=60 μm; Ca-salt (8.69 wt % by titration); K+ exchange capacity 1.35 mEq/g (per BP); Residual Styrene 0.2 ppm. Example 23 Preparation of Sodium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Approximately 20 g of an aqueous suspension of Na SPS (8% DVB) in a water/sorbitol suspension (Carolina Medical Products) was deposited onto a sintered glass funnel and washed several times with DI water to remove sorbitol, and then dried to afford a tan-colored solid. Example 24 Preparation of Insoluble Cross-Linked (Calcium 2-Fluoroacrylate)-Divinylbenzene-1,7-Octadiene Copolymer In an appropriately sized reactor with appropriate stirring and other equipment, a mixture of organic phase of monomers is prepared by mixing methyl 2-fluoracrylate, 1,7-octadiene, and divinylbenzene in a mole ratio of about 120:1:1, respectively. Approximately one part of lauroyl peroxide is added as an initiator of the polymerization reaction. A stabilizing aqueous phase is prepared from water, polyvinyl alcohol, phosphates, sodium chloride, and sodium nitrite. The aqueous and monomer phases are mixed together under nitrogen at atmospheric pressure, while maintaining the temperature below 30° C. The reaction mixture is gradually heated while stirring continuously. Once the polymerization reaction starts, the temperature of the reaction mixture is allowed to rise to a maximum of 95° C. After completion of the polymerization reaction, the reaction mixture is cooled and the aqueous phase is removed. Water is added, the mixture is stirred, and the solid material is isolated by filtration. The solid is then washed with water to yield a crosslinked (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. The (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is hydrolyzed with an excess of aqueous sodium hydroxide solution at 90° C. for 24 hours to yield (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After hydrolysis, the solid is filtered and washed with water. The (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is exposed at room temperature to an excess of aqueous calcium chloride solution to yield insoluble cross-linked (calcium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After the calcium ion exchange, the product is washed with water and dried. Example 25 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) from 30 Micron Monodisperse Polystyrene Beads Example 25 was prepared from 20 g polystyrene beads (Amberchrom™ XT30; obtained from Octochemstore.com), using the procedures described in Example 7 to give Example 25 (29.6 g) as a brown powder. Particle size: dv(0.1)=25 μm; dv(0.5)=34 μm; dv(0.9)=48 μm. Example 26 Procedure for Tactile Testing Tactile Testing Experiment #1. Tactile testing samples were prepared by suspending 2.1 g of dry polystyrene sulfonate resin powder (calcium and or sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 min by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 1), and tackiness (Table 2). Sensations were rated from 1-5 with 1=no sensation and 5=strong sensation. After each sample, test subjects washed their hands with soap and water. TABLE 1 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A 1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A   76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) morphology Shard Shard Sphere Sphere Sphere Sphere Sphere Shard Subject ID Grittiness Subject 1 4 5 4 2 1 3 5 5 Subject 2 3 2 2 1 1 2 3 3 Subject 3 5 4 2 1 2 2 4 5 Subject 4 3 3 3 1 2 2 4 4 Subject 5 4 4 1 1 2 1 2 4 Subject 6 4 3 3 1 2 2 4 4 Subject 7 3 3 1 1 1 1 3 2 Subject 8 2 3 2 1 1 2 2 3 Subject 9 4 4 4 1 1 1 3 4 Subject 10 3 3 2 1 1 2 4 5 Subject 11 5 2 1 1 2 2 3 3 Subject 12 4 2 1 1 1 2 3 3 Subject 13 5 4 3 2 1 1 1 5 Subject 14 5 4 2 2 1 1 3 4 Subject 15 5 4 2 2 1 1 4 5 Subject 16 3 3 2 1 2 1 3 4 Subject 17 5 2 2 1 1 2 3 5 Subject 18 5 4 3 2 1 2 4 5 Average   4.0   3.3   2.2   1.3   1.3   1.7   3.2   4.1 Std Dev   1.0   0.9   0.9   0.5   0.5   0.6   0.9   0.9 total 72  59  40  23  24  30  58  73  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 2 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A 1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A   76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) Morphology Shard Shard Sphere Sphere Sphere Sphere Sphere shard Subject ID Tackiness Subject 1 1 1 1 1 1 1 1 1 Subject 2 1 1 1 1 1 2 3 1 Subject 3 1 2 1 1 2 2 1 1 Subject 4 1 1 1 2 1 1 1 1 Subject 5 1 1 1 1 1 2 1 1 Subject 6 1 1 1 1 1 2 1 1 Subject 7 2 1 2 2 3 3 2 2 Subject 8 1 1 2 3 4 3 2 1 Subject 9 1 1 1 2 3 4 3 1 Subject 10 1 2 1 3 2 3 1 2 Subject 11 1 1 1 1 1 1 1 1 Subject 12 1 1 2 2 1 3 1 2 Subject 13 1 1 1 2 3 3 3 1 Subject 14 3 2 2 3 2 1 2 3 Subject 15 1 1 1 1 5 5 1 1 Subject 16 1 1 1 1 1 2 1 1 Subject 17 3 2 2 1 2 3 3 3 Subject 18 1 1 1 1 3 3 2 2 Average   1.3   1.2   1.3   1.6   2.1   2.4   1.7   1.4 Std Dev   0.7   0.4   0.4   0.8   1.2   1.1   0.8   0.7 total 23  22  23  29  37  44  30  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Tactile Testing Experiment #2. Tactile testing samples were prepared by suspending 3 g of dry polystyrene sulfonate resin powder (Calcium and or Sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 minute by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub the test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 3) and tackiness (Table 4). Sensations were rated from 1-5 with 1=low sensation and 5=high sensation. After each sample, test subjects washed their hands with soap and water. TABLE 3 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example #   N/A 1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 5 5 2 3 3 2 1 4 3 4 4 4 Subject 2 2 3 1 1 1 2 1 2 3 1 2 1 Subject 3 2 1 1 1 2 1 2 1 1 3 2 1 Subject 4 4 3 2 3 2 1 2 1 3 1 2 1 Subject 5 4 3 1 1 2 2 2 1 3 1 2 2 Subject 6 5 3 1 2 2 2 1 1 1 3 1 3 Subject 7 4 5 1 1 2 3 1 1 2 3 2 1 Subject 8 4 5 1 2 5 3 3 4 2 2 2 2 Subject 9 4 2 2 2 1 1 1 1 1 3 3 2 Subject 10 4 3 1 3 2 2 3 1 4 1 1 3 Subject 11 3 2 1 2 1 1 1 1 1 1 1 2 Subject 12 4 3 1 1 2 2 3 1 3 3 3 2 Subject 13 5 4 2 2 1 2 3 3 3 4 4 2 Average   3.8   3.2   1.3   1.8   2.0   1.8   1.8   1.7   2.3   2.3   2.2   2.0 Std Dev   1.0   1.2   0.5   0.8   1.1   0.7   0.9   1.2   1.0   1.2   1.0   0.9 total 50  42  17  24  26  24  24  22  30  30  29  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 4 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example #   N/A 1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 1 1 1 1 1 1 1 1 1 1 1 1 Subject 2 1 1 2 1 1 1 2 2 1 1 1 2 Subject 3 1 3 3 3 2 1 1 5 2 1 1 2 Subject 4 1 4 2 1 1 1 1 2 4 1 2 1 Subject 5 1 1 2 2 2 1 2 2 2 1 2 2 Subject 6 1 1 4 3 3 2 4 4 5 1 4 3 Subject 7 1 1 2 1 1 1 1 2 2 1 1 1 Subject 8 1 1 3 3 1 2 2 2 2 1 3 3 Subject 9 1 2 3 2 2 1 2 3 4 1 2 3 Subject 10 1 2 3 4 1 1 2 3 4 1 1 2 Subject 11 1 1 1 1 1 1 1 2 3 1 1 1 Subject 12 2 1 2 3 3 2 2 3 2 1 4 3 Subject 13 1 2 2 2 1 1 2 3 3 2 1 2 Average   1.1   1.6   2.3   2.1   1.5   1.2   1.8   2.6   2.7   1.1   1.8   2.0 Std Dev   0.3   0.9   0.8   1.0   0.7   0.4   0.8   1.0   1.2   0.3   1.1   0.8 total 14  21  30  27  20  16  23  34  35  14  24  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Example 27 Measurements of Swelling Ratio of the Calcium Polystyrene Sulfonate Resin The swelling ratio was measured by centrifugation method using the following procedure: accurately weigh approximately 1 g of calcium polystyrene sulfonate (Ca-PSS) resin into a 50 mL pre-weighed centrifuge tube. Add approximately 10-15 mL of deionized water (or 0.9% saline solution) to immerse the resin, and shake for a minimum of 30 minutes. Centrifuge at relative centrifuge force (RCF) of 2000×g or 2500×g for 30 minutes and carefully remove the supernatant. Determine the wet sample weight and calculate the ratio between the wet sample weight versus the dry sample weight. The swelling ratio of Ca-PSS is correlated to the percentage of DVB cross-linking. There was no significant difference between swelling ratios measured in water versus those determined in 0.9% saline when the % DVB cross-linking was above 1.0% (FIG. 1 and Table 1). Example 28 Particle Size Analysis of Calcium and Sodium Polystyrene Sulfonate Resin Particle size was measured by laser diffraction using a Malvern Mastersizer 2000. Samples were introduced as suspensions in DI water into a hydro2000S sampler, sonicated if necessary to break down agglomeration, and allowed 5-10 minutes circulation for equilibration prior to measurements. Results are presented in FIG. 11 (FIG. 11). TABLE 5 SWELLING RATIO COMPARISON IN WATER AND 0.9% SALINE Swelling ratio Swelling ratio in Water in 0.9% Saline (RCF = (RCF = CA-PSS resin 2000 × g) 2000 × g) Phaex SC40, BP grade; 2.18 2.26 8% DVB cross-linking 1 Phaex SC47, JP grade; 2.25 2.27 8% cross-linking 2 SKK Argamate 89.29% powder; 2.11 2.11 8% cross-linking 3 Example 1; 8% DVB cross-linking 2.10 2.08 Example 2; 4% DVB cross-linking 2.92 2.82 Example 3; 2% DVB cross-linking 4.03 3.72 Example 8; 1.12% DVB cross-linking 7.87 7.80 Example 7; 0.96% DVB cross-linking 9.08 8.11 1 Ca-PSS, British Pharmacopeia (BP) grade, manufactured by Phaex Polymers PVT LTD, Maharashtra, India; 2 Ca-PSS, Japanese Pharmacopeia (JP) grade, Phaex Polymers PVT LTD, Maharashtra, India; 3 Ca-PSS, JP grade, manufactured by Sanwa Kagaku Kenkyusho Co., Ltd., Japan. Example 29 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.1 kg), NaCl (1.0 kg), NaNO2 (0.02 kg) and water (100 kg). The mixture was stirred and heated to 85° C. to dissolve solids, then cooled to 25° C. To a separate vessel equipped with an overhead stirrer and N2 inlet was added styrene (14.7 kg), divinylbenzene (0.34 kg, 80% Technical Grade), and benzoyl peroxide (0.85 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The aqueous and monomer liquids were then mixed in 4 portions (˜25-30 L aqueous, ˜5 L monomer) and homogenized using both a steel pitched blade agitator (600-800 RPM), and by a high mixer (IKA T-50 Ultra Turrax, 3000 RPM). The resulting mixtures were transferred to a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, and heated to 92° C. for 16 hours, and then cooled to 45° C. for isolation. The suspension of polystyrene beads was filtered, and the beads were re-suspended in water (70 kg), agitated and heated to 80° C. for 20 minutes, then filtered. The beads were re-suspended in 2-propanol (55 kg), agitated and heated to 75° C. for 20 minutes, then filtered, and dried under vacuum to give 11 kg of polystyrene beads as a white powder which was used in the next step without further purification. Example 29 To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple and N2 inlet, was added Polystyrene beads (7 kg) and sulfuric acid (98%, 156 kg). The mixture was agitated to form a suspension and warmed to 100-105° C. for 16 hours. The dark mixture was cooled to 45° C., and transferred slowly into cold water (90 kg). The mixture was filtered, and the sulfonated beads were repeatedly washed as a slurry with water at ˜50° C., and filtered until the effluent contained <0.05 M sulfuric acid. The beads were washed with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, then filtered. The beads were washed again with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, and filtered. The beads were washed with water until the calcium content in the effluent was <1000 ppm. The filter cake was then dried under vacuum to give 12.76 kg of Example 29 as a brown solid. Particle Size: d(0.1)=13 μm; d(0.5)=29 μm; d(0.9)=52 μm. Ca-salt 8.8 wt % (dry basis, by titration); K+ exchange capacity 1.3 mEq/g (per BP, dry basis); residual styrene <1 ppm; water content 5.6% (Karl Fisher); swelling ratio 5.7 (dry basis). Example 30 Preparation of Sodium Polystyrene Sulfonate (Na-PSS) with 1.8% Divinylbenzene (DVB) To a jacketed vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Ag2SO4 (2 g) and conc. H2SO4 (1050 mL). The mixture was warmed to 80° C. to dissolve. Intermediate polystyrene beads, prepared according to Example 29 (100 g), were added and the suspension warmed to 100° C. for 4 hours. The mixture was cooled to 60° C., and an equal volume of 30% aqueous H2SO4 (1050 mL) was slowly added to the mixture keeping the temperature below 85° C. The mixture was then filtered. A portion (approximately ⅓) of this filter cake was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH>4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were suspended in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then suspended again in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then washed successively with hot water (3×250 mL), IPA (2×75 mL), and Ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 17.2 g Example 30 as a brown solid. Na-salt 8.9% by weight; particle size in water 20-135 μm (visual microscopy). Example 31 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) A portion (approximately ⅓) of sulfonated resin from Example 30, was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH>4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were then suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were again suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were washed repeatedly with water to remove soluble calcium. The beads were then washed with IPA (2×75 mL), and ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 16.7 g of Example 31 as a brown solid. Ca-salt 7.45% by weight; particle size in water 12-94 μm (visual microscopy). Example 32 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.51 kg), NaCl (5.1 kg), NaNO2 (0.10 kg) and water (470 kg). The mixture was stirred and heated to 75° C. to form a slightly turbid solution, then cooled to 25° C. To a separate jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added styrene (75 kg), divinylbenzene (1.8 kg, 80% Technical Grade), and benzoyl peroxide (4.3 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The monomer-initiator mixture was added to the vessel containing the aqueous solution and agitated for 0.5 hours to form a coarse suspension. This coarse suspension was then homogenized by pumping the liquid twice through a high shear mixer. The resulting homogenized mixture was heated to 92° C. for 5 hours, and then cooled to 20-30° C. for isolation. The suspension of polystyrene beads was partitioned by centrifugation-decantation to remove small particles, and to wash the beads. The final slurry was isolated by filtration, or centrifugation, and dried under vacuum to give 55 kg of polystyrene beads as a white powder. Particle size: d(0.1)>5 μm; d (0.9)=<40 μm. Example 32 To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Polystyrene beads (15 kg), and sulfuric acid (98%, 345 kg). The mixture was stirred to form a suspension then warmed to 100-105° C. for 3.5-4 hours. The dark mixture was cooled to 35° C., and diluted slowly with cold water (150 kg). The mixture was filtered on an agitated Neutsche type filter, and the sulfonated beads were washed with water. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. The beads were washed with water. The filter cake was washed with acetone and then dried under vacuum to give 25 kg of Example 32 as a light brown powder. Particle Size: d(0.1)=19 μm; d(0.5)=35 μm; d(0.9)=54 μm. Ca-salt 9.5 wt % (dry basis, by titration); K+ exchange capacity 1.5 mEq/g (per BP, dry basis); residual styrene <1 ppm; swelling ratio 5.6 (as is). Example 33 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 33 was prepared on 10 kg scale using methods analogous to those described for Example 32 with the following modifications: polymerization initiator was tert-butyl-peroxy-ethyl-hexanoate; a particle size control (Dv0.5) of 50 microns was achieved via a jetting process (See e.g., Dow Chemical, U.S. Pat. No. 4,444,961). After sulfonation and calcium exchange; drying of the Ca-PSS was achieved via a fluidized bed dryer. Particle Size (dry): d(0.1)=38; d(0.5)=51; d(0.9)=62. Ca-salt 9.7 wt % (by titration); K+ exchange capacity 1.5 mEq/g (per BP). Example 34 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Example 34 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 2.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=75 μm; d(0.9)=104 μm. K+ exchange capacity 1.7 mEq/g (per BP); swelling ratio 3.7. Example 35 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.5% Divinylbenzene (DVB) Example 35 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=78 μm; d(0.9)=114 μm. K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 4.5. Example 36 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Example 36 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.6% divinylbenzene. Particle Size: d(0.1)=53 d(0.5)=75 μm; d(0.9)=106 K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.5. Example 37 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.7% Divinylbenzene (DVB) Example 37 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.7% divinylbenzene. Particle Size: d(0.1)=53 μm; d(0.5)=74 μm; d(0.9)=105 K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.3. Example 38 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 38 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.8% divinylbenzene. Particle Size: d(0.1)=51 μm; d(0.5)=77 μm; d(0.9)=114 K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.1. Example 39 Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 39 was prepared on 5.6 kg scale using methods analogous to those described for Example 29. Particle Size: d(0.1)=30 μm; d(0.5)=56 μm; d(0.9)=91 K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 5.1. Example 40 Powder for Oral Suspension (POS), “Strawberry Smoothie” Flavor and Consistency, Sodium Free Without a suspending agent, some Examples of the instant disclosure settle out from water in a few minutes, highlighting the need for a viscosifying system. Hydrocolloids retard particle sedimentation by increasing viscosity; however, at too high a viscosity, the formulation becomes un-drinkable. To determine a maximum viscosity for a drinkable liquid, the viscosity of commercial liquid products were measured (Table 6, below). Data were generated using a Brookfield EV-I viscometer using a small sample size adapter with spindle 18, starting at 60 RPM and decreasing speed as necessary to obtain an in-range reading. A target viscosity of less than 400 cps was selected for a drinkable product, similar to a fruit-based blended smoothie. TABLE 6 Viscosity of commercial liquid products Product Viscosity (cps)* Product Viscosity (cps)* Hershey's Chocolate Syrup 7528 Vermont Maid Syrup 635 Odwalla Strawberry Banana Smoothie 302 Pepto Bismol 195 Syrpalta (Oral Dosing Vehicle) 86 Heavy Cream 18 Light Cream 7 *Note: it is understood to one skilled in the art that viscosity measurement is a complicated field of science, and a single number may be an oversimplification of the system. Additional criteria included a formulation that could readily disperse ˜5 g of polymer in less than 35 mL water, and creation of a stable suspension for the anticipated duration of consumption (approximately 5 minutes). Last, it was desired to eliminate sodium from the formulation since excess consumption of this electrolyte is contraindicated in kidney failure patients. In addition, a pH of ˜3-3.5 was chosen to be compatible with the stability and flavor properties of a fruit-themed formulation. The composition in Table 7, prepared from Example 39, achieves the above design considerations, and when added to ˜28-30 mL of water readily wets and suspends after brief and gentle mixing (inverting 4-5 times in a closed container). TABLE 7 Composition of Example 40 “strawberry smoothie” powder-for-oral-suspension g/30 mL Ingredient Suspension Calcium citrate tetrahydrate 0.049 Citric acid, anhydrous 0.150 Sucralose 0.030 Michaelock N&A Strawberry Flavor #2342 0.075 Methylcellulose A4C 0.150 FD&C Red 3 (0.1% solution) 0.430 Titanium Dioxide 0.060 Example 39 5.00 Water Qs to 30 mL (Resulting pH: 3.41 Example 41 Ready-to-Use (RTU) “Strawberry Smoothie” Drinkable Suspension Example 41, a ready-to-use variant of Example 40, was prepared from Example 39 by including a preservative system in the reconstituted formulation, replacing anhydrous citric acid with benzoic acid (0.030 g). This formulation is also sodium-free. Example 42 Ready-to-Use (RTU) Spoonable Formulation, Chocolate Flavored, Sodium Free Higher viscosity formulations were found to attenuate the sensation of grittiness and improve the mouth feel characteristics of some Examples disclosed herein (see Biological Example 14). Example 42 is a “spoonable” yoghurt/gel based formulation that was developed with a chocolate “indulgent” flavor theme (Table 8). This formulation also avoids sodium-containing excipients and has a near neutral pH (5.0), consistent with the flavor and stability requirements of the flavoring agent. TABLE 8 Composition of Example 42, a “spoonable” chocolate-themed formulation g/30 mL Ingredient Suspension Calcium citrate tetrahydrate 0.003 Citric acid, anhydrous 0.004 Sucralose 0.030 Xanthan gum 0.165 Natural Chocolate Flavor #37620 0.120 Sorbic acid 0.015 Example 39 5.00 Water 25 g (Resulting pH: 5.0 Example 43 Ready-to-Use (RTU) “Spoonable” Formulation, Strawberry Flavored, Sodium Free) Example 43 was prepared applying the principles described in Examples 40-42 and Biological Example 14 to afford a fruit-themed, lower pH spoonable formulation (Table 9). TABLE 9 Composition of Example 43, a “spoonable,” strawberry flavored sodium free formulation g/30 mL Ingredient Suspension Calcium citrate tetrahydrate 0.042 Citric acid, anhydrous 0.130 Sucralose 0.030 Xanthan gum 0.135 Michaelock N&A strawberry flavor #2342 0.075 FD&C Red 3 (0.1% solution) 0.430 Titanium dioxide 0.060 Benzoic acid 0.025 Example 39 5.00 Water 25 g (Resulting pH: 3.3) Example 44 Chewable Tablet Formulation, Citrus Flavored A chewable tablet was designed by first determining an appropriate tablet hardness for a chewable dosage form: the tablets must be hard enough to hold together through processing and shipping, while still maintaining a chewable texture. Accordingly, the hardness of several commercially available chewable OTC products were measured (Table 10), after which a tablet hardness target of approximately 9-15 kp was set. TABLE 10 Hardness of OTC chewable tablets Product Hardness (kp) Turns Kids Antacid 7.4 Turns Smoothies 10.4 Spectravite Senior Chewable 11.9 Tums Regular 12.4 Centrum Children's Chewable Vitamins 12.9 CVS Children's Complete Chewable Vitamins 15.7 Flintstones Chewable Vitamins with Iron 16.4 Apart from the active ingredient, a chewable tablet is composed primarily (but not exclusively) of a tablet binder, hence multiple tablet binders were explored in pilot tableting exercises. These included direct compression Lactose (Supertab 11SD—DSM), direct compression Mannitol (Pearlitol 100SD—Roquette), sucrose (Di-Pac—Domino),—sodium starch glycolate All-in-One (ProSolv Easytab SP—JRS) and a mannitol based All-in-One (ProSolv ODT G2—JRS). Drug load was explored with the goal of achieving a high percentage. Example 39 was subjected to iterative screening in a number of the binder systems listed above, and an approximately 30% loading was achieved in a chewable tablet format. Tablets were created based on a 3 g gross tablet weight, with 900 mg Example 39 per tablet. Blends were loaded into a 25 mm diameter tablet die and a Carver hydraulic hand press (Model 3912) was used to compress the blends to a maximum force of 15,000 lbs to afford tablets. ProSolv Easytab SP had an extremely chalky mouth feel and was dropped from consideration, whereas both ProSolv ODT G2 and Pearlitol 100SD had similar, smooth mouth feels and were advanced. Active ingredient loading was re-explored, and while a 41.66% drug load could not afford sufficiently hard tablets, a load of 33.3% was acceptable. Next, the sweet/sour properties of the tablets were determined. As sucralose and citric acid had proven to be an effective pairing in the suspension formulations, varying levels of these were evaluated in both binder systems (Pearlitol 100SD w/ additives and ProSolv ODT G2). A final sucralose level of 0.15% and citric acid of 1.5% provided the desired sweet/sour balance. Finally, flavor candidates were screened in both leading base binder systems, and included fruit flavored themes such as citrus, orange, mixed berry, strawberry and punch. These were incorporated into the mimetic (excipient) base starting at 0.25%, and adjusting up or down as appropriate. When the final mimetic (excipient) flavor systems (Pearlitol 100 SD with additives and ProSolv) were compared side-by-side, it was apparent that the Pearlitol (mannitol-based) system had a better mouth feel overall, and was selected as a preferred system. This formulation, Example 44, is shown below in Table 11. TABLE 11 Composition of Example 44, a chewable tablet formulation Mannitol based Ingredient formulation g/100 g Example 39 33.33 Colloidal Silicon Dioxide, NF-M-5P 0.85 Sucralose, NF 0.15 Magnesium Stearate, NF 1.35 Croscarmellose Sodium, NF Ac-DI-Sol SD-711 NF 2.80 Avicel CE-15 5.30 Citric Acid, Anhydrous 1.50 Natural Orange Flavor #SC356177 0.45 Mannitol, USP Pearlitol 100 SD 54.27 Example 45 Ready-to-Use (RTU) “Smoothie” Drinkable Suspension, Orange and Vanilla Flavors Example 37 was formulated into both an orange- and vanilla-flavored ready-to-use drinkable “smoothie” using the procedures and concepts described in Example 40 and Example 41. Both formulations are sodium-free. TABLE 12 Compositions of Example 45, drinkable “smoothie” in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 5.624 5.624 Water 25.72  25.68  Example 46 Powder for Oral Suspension (POS), “Smoothie” Consistency, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into both an orange- and vanilla-flavored powder-for-oral-suspension using the procedures and concepts described in Example 40. Both formulations are sodium-free, and reconstitute to a drinkable suspension with the consistency of a fruit-based “smoothie” upon addition to one ounce of water and brief agitation. TABLE 13 Compositions of Example 46, powders for oral suspension in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Citric Acid Anhydrous 0.150 0.013 Sucralose 0.030 0.030 Artificial orange flavored powder FV653 0.150 — Vanillin powder — 0.060 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Example 47 “Spoonable” Formulation, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into ready-to-use “spoonable” orange- and vanilla-flavored formulations using the procedures and concepts described in Example 42 and Example 43. Both formulations are sodium-free, and their composition is illustrated in Table 14. TABLE 14 Compositions of Example 47, RTU orange- and vanilla- flavored “spoonable” suspensions Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Xanthan Gum CP 0.210 0.180 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Water 25.0   25.0   Biological Example 1 Preparation of Mice for In Vivo Animal Studies Study Preparation: Male CD-1 mice ˜25-35 grams (Charles River) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow before study initiation. The day of diet acclimation initiation, body weights were obtained and mice were placed in metabolic cages. The animals were fed ad libitum during the study. Mice were provided normal powdered chow or study compound mixed in powdered chow at the designated percentage for a period of 48 hours (to ensure the study diet has passed the length of the GI and animals achieve “steady state.”). Food and water measurements were recorded upon placement of animals in metabolic cages, and every 24 hours until study completion. After 48 hours of acclimation, the 24 hour collection period began. Clean collection tubes were placed on the cage. Mice were provided their designated study diet during the collection period. Urine and feces were collected at the end of this 24 hour period. Food and water was weighed again to determine the amount consumed over the study period. Sample Processing and Analysis: Urine and feces were collected directly into pre-weighed tubes placed on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96 well-plates with 0.2 ml of each urine sample added to each plate. One plate was acidified (20 μl of 6 N HCl per sample). Plates were stored frozen until analysis. The feces were removed from the metabolic cages, the jars were capped, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were then dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content was calculated. Feces and urine were analyzed by microwave plasma-atomic emission spectroscopy (MP-AES) or ion chromatography (IC) for ion content. Biological Example 2 Preparation of Rats for In Vivo Animal Studies Study Preparation: Male Sprague Dawley (Charles River) rats (˜200-250 gm) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow, for at least 2 days prior to study initiation. The day prior to being placed in metabolic cages, body weights were obtained and rats were provided normal powdered chow or study compound in powder chow, via a J-Feeder, beginning at ˜1:00 μm (to ensure the study diet has passed the length of the GI). The day of the study, rats were transferred to metabolic cages at ˜3:30 μm, where they were provided their designated study diet for 16 hours. Tare weights of food and water were obtained prior to animals being placed in the cages. Urine and feces were collected ˜16 hours later. Food and water was weighed again to determine the amount consumed over the study period. Chow Formulation: Chow meal (Standard rodent chow, 2018C) was weighed out into a mixing bowl and placed on a stand mixer (KitchenAid). PSS was weighed out and added to the chow to achieve the desired final concentration (2-8% polymer in chow by weight). The mixer was set to stir on low for at least 10 minutes to evenly distribute the polymer in the chow. The chow was then transferred to a labeled zip-lock storage bag. Sample Processing and Analysis: Urine was collected directly into pre-weighed 50 ml conical tubes placed inside the urine collectors on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96-well plates with 0.5 ml of each urine sample added to each plate. One plate was acidified (50 μl of 6 N HCl per sample). Both plates were submitted on the same day for bioanalytical analysis (or were placed in a −20 freezer). The feces were transferred from the metabolic collectors to pre-weighed capped jars, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content calculated. The feces were then placed on a homogenizer and ground to a fine powder. For each sample, two aliquots were weighed out. 500 mg was weighed into a 50 ml conical tube, and 50 mg into an eppindorf tube. Feces and urine were analyzed by MP-AES or IC for ion content. Biological Example 3 Effects on Fecal Potassium Levels in Rats Upon Dosing with Ca-PSS Using the methods described in Biological Example 2, rats were dosed Ca-PSS blended into chow at 4% or 8% wt/wt. These polymers had differing levels of crosslinking (2%, 4% and 8% DVB crosslinking). In this experiment, all rats dosed with Ca-PSS blended into the diet at 8% wt/wt had significant increases in K excretion. The highest fecal K was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. This increase was significantly higher than that observed for the other polymers that were similarly dosed as 8% wt/wt blends in chow (FIG. 2). Biological Example 4 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 5, 6, Ca-PSS and BP Using the methods described in Biological Example 1, mice were dose Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow (Standard 2018 chow) at 8% wt/wt. The polymers had differing levels of crosslinking: 2% DVB, (Example 4); 4% DVB, (Example 5); 8% DVB (Example 6); and Ca-PSS, BP (Ca-PSS, BP with 8% DVB crosslinking) was used as a control. All mice dosed with Ca-PSS blended in the diet at 8% wt/wt had significant increases in K excretion. The highest level of K secretion was seen with the 2% DVB material (Example 4, FIG. 3). Biological Example 5 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 6, 9 and 10 Using the methods in Biological Example 1, mice were dosed Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow at 8% wt/wt. The test articles included the following: Vehicle (2018 chow); 200-400 mesh Ca-PSS with 2% DVB crosslinking (Example 4); 200-400 mesh Ca-PSS with 8% DVB crosslinking (Example 6), Ca-PSS polymer with 1.6% DVB cross-linking (Example 9), and Ca-PSS material with 1.8% DVB cross-linking (Example 10). All mice dosed with 8% wt/wt Ca-PSS in their diet had significant increases in K excretion. The highest levels of K secretion were seen with polymers possessing DVB levels of 2% or less (FIG. 4). The level of K in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to vehicle or 8% DVB (Example 6). Biological Example 6 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10, Na-PSS, USP, CA-PSS, and/or BP Using the methods in Biological Example 1, mice were dosed Na-PSS, USP, Ca-PSS, BP and Example 10 blended into chow at 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Ca-PSS, BP or Example 10, with the highest fecal potassium seen in Example 10 (FIG. 5). Biological Example 7 Effects on Fecal and Urinary Phosphate Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were dosed with Na-PSS, USP and Example 10, blended into chow at 4% and 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Na-PSS, USP or Example 10 when present at 8% w/w in chow, but only Example 10 showed a significant increase in fecal potassium at 4% wt/wt in chow. In addition there was significantly more K in the feces of mice fed Example 10 versus Na-PSS, USP when these test articles were present at 8% wt/wt in chow (FIG. 6). In addition, the group treated with Example 10 blended into chow at 8% wt/wt had higher levels of fecal phosphate compared to those mice identically dosed with Na-PSS, and lower levels of urinary phosphate compared to groups treated with both Na-PSS or vehicle (FIG. 13). Biological Example 8 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were fed increasing amounts of Example 10 blended in chow a 2, 4, 6 and 8% wt/wt. The control group was fed standard rodent chow (Harlan Teklad 2018). There was a dose dependent increase in fecal potassium content with the addition of Example 10 to the chow, with the highest fecal potassium seen in the 8% wt/wt group (FIG. 7). Biological Example 9 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 10, 13, and 18 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt/wt. The test articles included Example 10, Example 13 and Example 18; Example 6 served as a control. The level of K+ in the feces was significantly higher for Examples 32, 35, and 41 compared to Example 6. (FIG. 8). Biological Example 10 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 20 and 21 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt/wt. The test articles included Ca-PSS, BP as a control as well as Example 20 and Example 21, all of which were blended into chow at 8% wt/wt (FIG. 9). The highest level of fecal potassium was seen with Example 21. Biological Example 11 Effects on Potassium Output in Mice Upon Dosing with Examples 30 and 31 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP (US Pharmacopeia grade; Purolite, Inc.), Ca-PSS, BP (British Pharmacopeia grade; Purolite, Inc.), Example 30, and Example 31. Groups dosed with Na-PSS, USP and Example 30 had significantly lower fecal ion output, and had a mean K+ output of ˜8 mg/24 h. Ca-PSS, BP showed a mean K+ output of 15 mg/24 h. Example 31 had the highest K+ output in this example at 23 mg/24 h. Examples 30 and 31 were prepared from the same batch of sulfonated resin, and differ only in salt form. (FIG. Biological Example 12 Effects on Fecal Potassium and Phosphorus Levels and Urinary Sodium and Potassium Levels in Mice Upon Dosing with Examples 32 and 33 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included vehicle (normal chow without any drug), Na-PSS, USP, Example 32 and Example 33. Compared to Na-PSS, USP, both Example 32 and Example 33 resulted in 1) significantly higher amounts of fecal potassium, 2) significantly higher amounts of fecal phosphorus, and 3) significantly lower amounts of urine sodium and potassium. (FIG. 15 and FIG. 16) Biological Example 13 Effects on Fecal Output in Mice Upon Dosing with Examples 34, 36, 37 and 37 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP, Example 34, Example 36, Example 37 and Example 38. Fecal outputs of potassium are significantly elevated for all Examples relative to Na-PSS, USP, while Examples 36, 37, and 38 cause higher fecal potassium than Example 34. (FIG. 13) Biological Example 14 A Phase I Randomized Study to Evaluate the Overall Consumer Acceptability of Taste and Mouth Feel of Example 29 and Formulations Thereof in Healthy Subjects The primary objective of the study was to evaluate the overall acceptability, as well as the acceptability of specific attributes, of taste and mouth feel of different oral formulations of Example 29 in comparison to a reference formulation (Resonium A; sodium polystyrene sulfonate [Na PSS], Sanofi-Aventis). This was a single center, randomized, crossover study to evaluate the taste of different oral formulations of Example 29 in healthy subjects. Visit 1 was open-label and Visit 2 was single-blind for Regimens E to I and open-label for Regimen J which was tested last. Formulation regimens are shown in Table 15, and include a systematic exploration of viscosity (by varying the amount of xanthan gum) and flavor (vanilla, citrus and mint). Subjects were screened for inclusion in the study up to 28 days before dosing. Eligible subjects were admitted to the unit at approximately 21:00 on the evening before administration of the first regimen (Day −1) and were either discharged following the last taste test or remained on site until approximately 24 hours post-initial tasting, depending on whichever was most convenient for the subject. TABLE 15 Formulations for Biological Example 14 Regimen Description Formulation A Resonium A reconstituted Resonium A contains in water per patient saccharine (sweetener) instructions (3 mL-4 mL and vanillin of water/g) (flavouring agent) B Example 29 reconstituted Identical excipients and (in water) with saccharine equivalent formulation and vanillin as Regimen A C Example 29 suspension Water-based suspension formulation in vanilla containing Example 29 flavour (16.5%), vanillin (0.17%), methylparaben (0.18%) propylparaben (0.02%), sucralose powder (0.02%) and xanthan gum (0.67%) D Example 29 jelly Same as Regimen C except formulations in xanthan gum was present vanilla flavour at 1.00% E Example 29 jelly Identical to Regimen D formulation in vanilla flavour F Example 29 jelly Same as Regiment D except formulation in vanillin was replaced with citrus flavour N&A Orange Flavor Powder, Flavor Producers item No. M680957M G Example 29 jelly Equivalent to Regimen D formulation in except vanillin was wintergreen garden replaced with Wintergreen mint flavour Garden Mint (FL Emul. N&A WS), Sensient item No. SN2000016303 H Example 29 suspension Same as Regimen F except low viscosity formulation xanthan gum was present in citrus yoghurt flavour at 0.37% I Example 29 intermediate Same as Regimen F except viscosity formulation in xanthan gum was present citrus flavour at 0.67% J Example 29 reconstituted Same as Regimen B except formulation in citrus vanillin was replaced with flavour N&A Orange Flavor Powder, Flavor Producers item No. M680957M Taste testing occurred over two visits. During Visit 1, each subject received 1 g each of regimen A, B, C and D in a randomized order using a Latin square design. Each regimen was administered as 4 to 6 mL of formulation, and each subject tasted all 4 regimens. During Visit 2, each subject received approximately 5 mL each of regimen E, F, G, H, I and J. All formulations were administered orally. Taste was assessed using a questionnaire designed by Sensory Research Ltd (Cork, Ireland). The questionnaire asked subjects to rate the acceptability of several parameters (including smell, sweetness, flavor, mouth feel/texture and grittiness), as well as overall acceptability, on a 9 point scale (from 1—dislike everything to 9—like extremely). No formal statistical testing was performed on screening or baseline data. The data from the results of the taste test were summarized (mean, median, SD, CV (%), minimum, maximum and N) by regimen for Visit 1 and Visit 2 separately. The number and percentage of subjects assigned to each grade of the acceptability categories on the taste questionnaire were also summarized by regimen for Visit 1 and Visit 2 separately. The formulation with the highest median score on overall acceptability was considered the formulation with the most acceptable taste profile and mouth feel. Visit 1. Regimen A (Resonium A) was consistently the poorest performing formulation throughout the taste assessment illustrating that Example 29, and formulations of Example 29, provide superior acceptability to Resonium A (Table 16). For Visit 1, although Regimen D (“jelly formulation” flavored by vanillin) had the highest overall median score, Regimen C (suspension formulation flavored by vanillin) produced similar results (Table 16). It was concluded that Regimen D would be reassessed at Visit 2, including favor variants. TABLE 16 Taste Testing Results from Visit 1 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen A 5.0 (5.5) 5.0 (5.9) 5.0 (5.4) 3.0 (3.4) 3.0 (2.8) 4.0 (4.3) Regimen B 5.5 (6.1) 6.0 (6.1) 5.5 (5.6) 4.5 (4.9) 3.5 (4.3) 5.0 (5.1) Regimen C 7.0 (7.0) 7.0 (7.0) 7.0 (6.6) 6.0 (5.4) 5.5 (5.9) 6.0 (6.2) Regimen D 7.5 (7.2) 7.0 (6.5) 7.0 (6.1) 6.0 (5.3) 6.0 (6.3) 7.0 (6.2) Highest scores per assessment are shown in bold Visit 2. Regimen E (jelly formulation in vanilla flavor, identical to Regimen D) had the joint highest median and highest mean scores for overall taste assessment, as well as scoring highest in most of the other taste assessments (Table 17). Regimen F afforded responses similar to Regimen E but scored higher for grittiness. Regimens E, F and G were all jelly formulations investigating different flavor options: vanilla, citrus and wintergreen garden mint, respectively. The vanilla and citrus scored the same median score for flavor, with vanilla scoring more consistently across subjects, suggesting this is the preferred flavor. Wintergreen mint had the lowest median scores for flavor. Regimens F, H, I and J were formulations of differing viscosity with the same citrus flavor. Regimen F (jelly formulation; 1% xanthan gum) had the highest median score compared to the other citrus formulations, confirming the results from the Visit 1 assessments (i.e. a “jelly” formulation is the preferred viscosity) (Table 17). Example 29 consistently outperformed Resonium A in all aspects of the taste assessments. The jelly formulation was the preferred viscosity and vanilla (flavored by vanillin) and citrus were comparable for flavor; however, vanilla (flavored by vanillin) scored more consistently than citrus, suggesting it was the preferred flavor. TABLE 17 Taste Testing Results from Visit 2 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen E 7.0 (6.9) 7.0 (7.0) 7.0 (6.9) 7.0 (6.5) 6.0 (6.2) 7.0 (6.8) Regimen F 6.5 (6.4) 7.0 (6.8) 7.0 (6.5) 6.5 (6.4) 6.5 (6.3) 7.0 (6.4) Regimen G 5.0 (5.5) 6.0 (5.5) 6.0 (5.4) 5.0 (5.3) 5.5 (5.7) 5.0 (5.3) Regimen H 6.0 (5.7) 6.5 (6.1) 6.0 (5.9) 6.0 (5.8) 5.5 (5.7) 6.0 (5.7) Regimen I 6.0 (5.9   6.0 (6.2) 6.0 (6.1) 6.0 (5.8) 5.0 (5.7) 6.0 (6.0) Regimen J 5.0 (4.9) 5.5 (5.2) 4.5 (4.6) 4.0 (4.1) 4.0 (4.0) 4.0 (4.1) Highest scores per assessment are shown in bold and lowest scores in italics EQUIVALENTS Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims. 15052186 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Apr 30th, 2019 12:00AM Apr 10th, 2014 12:00AM https://www.uspto.gov?id=US10272079-20190430 NHE3-binding compounds and methods for inhibiting phosphate transport Provided are NHE3-binding and/or NHE3-modulating agents having activity as phosphate transport inhibitors, including inhibitors of phosphate transport in the gastrointestinal tract and the kidneys, and methods for their use as therapeutic or prophylactic agent. 10272079 1. A method for inhibiting phosphate uptake in the gastrointestinal tract of a patient in need of phosphate lowering, comprising enterally administering to the patient an effective amount of the compound 2. The method of claim 1, wherein the pharmaceutically acceptable salt is 3. A method for treating hyperphosphatemia in a subject in need thereof comprising administering to the subject an effective amount of the compound or a pharmaceutically acceptable salt thereof. 4. The method of claim 3, wherein the pharmaceutically acceptable salt is 5. The method of claim 1, further comprising administering an additional biologically active agent. 6. The method of claim 5, wherein the additional biologically active agent is a phosphate binder. 7. The method of claim 6, wherein the phosphate binder is selected from the group consisting of sevelamer, sevelamer carbonate, sevelamer hydrochloride, lanthanum carbonate, calcium carbonate, calcium acetate, magnesium carbonate, MCI-196, ferric citrate, magnesium iron hydroxycarbonate, aluminum hydroxide, APS1585, SBR-759, and PA-21. 8. The method of claim 6, wherein the phosphate binder is selected from the group consisting of sevelamer carbonate, lanthanum carbonate, calcium carbonate, calcium acetate, calcium acetate/magnesium carbonate, ferric citrate, magnesium iron hydroxycarbonate, and aluminum hydroxide. 9. The method of claim 6, wherein the phosphate binder is sevelamer, sevelamer carbonate, or sevelamer hydrochloride. 10. The method of claim 3, further comprising administering an additional biologically active agent. 11. The method of claim 10, wherein the additional biologically active agent is a phosphate binder. 12. The method of claim 11, wherein the phosphate binder is selected from the group consisting of sevelamer, sevelamer carbonate, sevelamer hydrochloride, lanthanum carbonate, calcium carbonate, calcium acetate, magnesium carbonate, MCI-196, ferric citrate, magnesium iron hydroxycarbonate, aluminum hydroxide, APS1585, SBR-759, and PA-21. 13. The method of claim 11, wherein the phosphate binder is selected from the group consisting of sevelamer carbonate, lanthanum carbonate, calcium carbonate, calcium acetate, calcium acetate/magnesium carbonate, ferric citrate, magnesium iron hydroxycarbonate, and aluminum hydroxide. 14. The method of claim 11, wherein the phosphate binder is sevelamer, sevelamer carbonate, or sevelamer hydrochloride. 15. The method of claim 3, wherein the hyperphosphatemia is postprandial hyperphosphatemia. 15 RELATED APPLICATIONS This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/888,879, filed Oct. 9, 2013 and U.S. Provisional Patent Application No. 81/811,613, filed Apr. 12, 2013. The entire contents of the foregoing applications are hereby incorporated expressly by reference. BACKGROUND Technical Field The present invention relates to NHE3-binding and/or NHE3-modulating agents having activity as phosphate transport inhibitors, including inhibitors of phosphate transport in the gastrointestinal tract and the kidneys, and methods for their use as therapeutic or prophylactic agents. Description of the Related Art Patients with inadequate renal function, hypoparathyroidism, or certain other medical conditions (such as hereditary hyperphosphatemia, Albright hereditary osteodystrophy, amyloidosis, etc.) often have hyperphosphatemia, or elevated serum phosphate levels (wherein the level, for example, is more than about 6 mg/dL). Hyperphosphatemia, especially if present over extended periods of time, leads to severe abnormalities in calcium and phosphorus metabolism, often manifested by secondary hyperparathyroidism, bone disease and ectopic calcification in the cardiovascular system, joints, lungs, eyes and other soft tissues. Higher serum phosphorus levels are strongly associated with the progression of renal failure, cardiovascular calcification and mortality in end-stage renal disease (ESRD) patients. High-normal serum phosphorus levels have been associated with cardiovascular events and mortality among individuals who have chronic kidney disease (CKD) and among those who have normal kidney function (see, e.g., Joy et al., J. Manag. Care Pharm., 13(5):397-411 (2007)) The progression of kidney disease can be slowed by reducing phosphate retention. Thus, for renal failure patients who are hyperphosphatemic and for chronic kidney disease patients who have serum phosphate levels within the normal range or only slightly elevated, therapy to reduce phosphate retention is beneficial. For patients who experience hyperphosphatemia, calcium salts have been widely used to bind intestinal phosphate and prevent its absorption. Different types of calcium salts, including calcium carbonate, acetate, citrate, alginate, and ketoacid salts have been utilized for phosphate binding. However, these therapies often cause hypercalcemia, a condition which results from absorption of high amounts of ingested calcium. Hypercalcemia causes serious side effects such as cardiac arrhythmias, renal failure, and skin and vascular calcification. Frequent monitoring of serum calcium levels is required during therapy with calcium-based phosphate binders. Other calcium and aluminum-free phosphate binders, such as sevelamer, a crosslinked polyamine polymer, have drawbacks that include the amount and frequency of dosing required to be therapeutically active. The relatively modest phosphate binding capacity of those drugs in vivo obliges patients to escalate the dose (up to 7 grs per day or more). Such quantities have been shown to produce gastrointestinal discomfort, such as dyspepsia, abdominal pain and, in some extreme cases, bowel perforation. An alternative approach to the prevention of phosphate absorption from the intestine in patients with elevated phosphate serum levels is through inhibition of the intestinal transport system which mediates phosphate uptake in the intestine. It is understood that phosphate absorption in the upper intestine is mediated at least in part by a carrier-mediated mechanism which couples the absorption of phosphate to that of sodium Inhibition of intestinal phosphate transport will reduce body phosphorus overload. In patients with advanced kidney disease (e.g. stage 4 and 5), the body phosphorus overload manifests itself by serum phosphate concentration above normal levels, i.e. hyperphosphatemia. Hyperphosphatemia is directly related to mortality and morbidity Inhibition of intestinal phosphate transport will reduce serum phosphate concentration and therefore improve outcome in those patients. In chronic kidney disease patients at stage 2 or 3, the body phosphorus overload does not necessarily lead to hyperphosphatemia, i.e., some patients remain normophosphatemic, but there is a need to reduce or prevent body phosphorus overload even at those early stages to avoid associated bone and vascular disorders, and ultimately improve mortality rate. Similarly, inhibition of intestinal phosphate transport would be particularly advantageous in patients that have a disease that is treatable by inhibiting the uptake of phosphate from the intestines. Inhibition of phosphate absorption from the glomerular filtrate within the kidneys would also be advantageous for treating chronic renal failure. Furthermore, inhibition of phosphate transport may slow the progression of renal failure and reduce risk of cardiovascular events. While progress has been made in this field, there remains a need in the art for improved phosphate transport inhibitors. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY The present invention relates generally to NHE3-binding and/or NHE-modulating compounds having activity as phosphate transport inhibitors, including, for example, inhibitors of phosphate transport in the gastrointestinal tract and the kidneys, including stereoisomers, pharmaceutically acceptable salts and prodrugs thereof, and the use of such compounds to inhibit phosphate uptake and to thereby treat any of a variety of conditions or diseases in which modulation of phosphate uptake provides a therapeutic benefit. Embodiments of the present invention include methods for inhibiting phosphate uptake in the gastrointestinal tract or kidneys of a patient in need of phosphate lowering, comprising administering to the patient a compound that binds to NHE3 and is substantially active in the gastrointestinal tract or kidneys to inhibit transport of phosphate ions (Pi) therein upon administration to the patient in need thereof. Certain embodiments include methods for inhibiting phosphate uptake in the gastrointestinal tract of a patient in need of phosphate lowering, comprising enterally administering to the patient a substantially systemically non-bioavailable compound that binds to NHE3 and is substantially active in the gastrointestinal tract to inhibit transport of phosphate ions (Pi) therein upon administration to the patient in need thereof. In some embodiments, the method is selected from one or more of: (a) a method for treating hyperphosphatemia, optionally postprandial hyperphosphatemia; (b) a method for treating a renal disease, optionally chronic kidney disease (CKD) or end-stage renal disease (ESRD); (c) a method for reducing serum creatinine levels; (d) a method for treating proteinuria; (e) a method for delaying time to renal replacement therapy (RRT), optionally dialysis; (f) a method for reducing FGF23 levels; (g) a method for reducing the hyperphosphatemic effect of active vitamin D; (h) a method for attenuating hyperparathyroidism, optionally secondary hyperparathyroidism; (i) a method for reducing serum parathyroid hormone (PTH); (j) a method for reducing inderdialytic weight gain (IDWG); (k) a method for improving endothelial dysfunction, optionally induced by postprandial serum phosphate; (l) a method for reducing vascular calcification, optionally intima-localized vascular calcification; (m) a method for reducing urinary phosphorous; (n) a method for normalizing serum phosphorus levels; (o) a method for reducing phosphate burden in an elderly patient; (p) a method for decreasing dietary phosphate uptake; (q) a method for reducing renal hypertrophy; (r) a method for reducing heart hypertrophy; and (s) a method for treating obstructive sleep apnea. In some embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit transport of Pi therein. In certain embodiments, the compound is substantially impermeable to the epithelium of the gastrointestinal tract. In certain embodiments, upon administration of the compound to the patient in need thereof, the compound exhibits a maximum concentration detected in the serum, defined as Cmax, that is less than the Pi transport inhibitory concentration IC50 of the compound. In some embodiments, systemic exposure to the compound is less than 10% pIC50 at PD dose, with fecal recovery of greater than about 80%, greater than about 90%, or greater than about 95%. In certain embodiments, the compound is substantially active in the small intestine to inhibit transport of Pi therein. In certain embodiments, administration to the patient in need thereof (a) reduces serum phosphate concentrations or levels to about 150% or less of normal serum phosphate levels, and/or (b) reduces uptake of dietary phosphorous by at least about 10% relative to an untreated state. In some embodiments, administration to the patient in need thereof reduces urinary phosphate concentrations or levels by at least about 10% relative to an untreated state. In certain embodiments, administration to the patient in need thereof increases phosphate levels in fecal excretion by at least about 10% relative to an untreated state. In some embodiments, the compound is a persistent inhibitor of NHE3-mediated antiport of sodium and hydrogen ions. In certain embodiments, the compound is substantially active in the gastrointestinal tract to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to the patient in need thereof. In some embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit NHE3-mediated antiport of sodium ions and hydrogen ions. In certain embodiments, the compound is substantially active in the large intestine to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to the patient in need thereof. In certain embodiments, persistent inhibition is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) is substantially comparable to the pIC50 of the compound under persistent conditions (pIC50pers). In some embodiments, persistent inhibition is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) and under persistent conditions (pIC50pers) is about or greater than about 7.0. In some embodiments, the compound has an EC50 for increasing fecal output of phosphate ions (EC50Pf) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pf=(r)EC50Na, wherein r is about 0.7 to about 1.3. In some embodiments, the compound has an EC50 for reducing urinary output of phosphate ions (EC50Pu) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.7 to about 1.3. In certain embodiments, the compound has an EC50 for inhibiting transport of phosphate ions (EC50P) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50P=(r)EC50Na, wherein r is about 0.7 to about 1.3. In some embodiments, administration to the patient in need thereof increases the patient's daily fecal output of sodium and/or fluid. In certain embodiments, the compound, upon administration at a dose resulting in at least about a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE3, less than about 10× the IC50, or less than about 100× the IC50. In certain embodiments, the patient in need thereof has ESRD, and administration to the patient (a) reduces serum phosphate concentrations or levels to about 150% or less of normal serum phosphate levels, and (b) reduces inderdialytic weight gain (IDWG) by at least about 10% relative to an untreated state. In some embodiments, the patient in need thereof has CKD, and administration to the patient (a) reduces FGF23 levels and serum intact parathyroid hormone (iPTH) levels by at least about 10% relative to an untreated state, and (b) reduces blood pressure and proteinuria by at least about 10% relative to an untreated state. In some embodiments, the compound is a non-persistent ligand of NHE3. In certain embodiments, the compound has a maximum inhibition of NHE3-mediated antiport of sodium and hydrogen ions of less than about 50%, less than about 20%, or less than about 10%, wherein maximum inhibition is characterized by the inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions and is relative to sodium-free conditions. In some embodiments, the compound is substantially inactive in the gastrointestinal tract to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to the patient in need thereof. In certain embodiments, the compound is substantially inactive in the large intestine to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein. In certain embodiments, non-persistence is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) is (substantially) greater than the pIC50 of the compound under persistent conditions (pIC50pers). In some embodiments, non-persistence is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) is about or greater than about 7.0, and wherein the pIC50 of the compound under persistent conditions (pIC50pers) is about or less than about 6.0. In certain embodiments, the compound has an EC50 for increasing fecal output of phosphate ions (EC50Pf) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pf=(r)EC50Na, wherein r is about 0.1 to about 0.5. In some embodiments, the compound has an EC50 for reducing urinary output of phosphate ions (EC50Pu) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.1 to about 0.5. In some embodiments, the compound has an EC50 for inhibiting transport of phosphate ions (EC50P) and an EC50 for inhibiting NHE-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50P=(r)EC50Na, wherein r is about 0.1 to about 0.5. In certain embodiments, administration to the patient in need thereof increases the ratio of phosphate/sodium in fecal excretion by at least about 10% relative to an untreated state. In some embodiments, administration to the patient in need thereof increases the daily fecal output of phosphate without substantially modulating the stool form or water content of the feces. In certain embodiments, administration to a rodent increases the ratio of sodium in the small intestine (NaSI)/cecum (NaC) by at least about 10% relative to an untreated state. Also included are methods for increasing phosphaturia in a patient in need of phosphate lowering, comprising administering to the patient (a) a substantially systemically bioavailable compound, or (b) a substantially systemically non-bioavailable compound via a route excluding enteral administration; wherein the compound binds to NHE3 and is substantially active in the kidneys to inhibit transport of phosphate ions (Pi) therein upon administration to the patient in need thereof. In some embodiments, the method is selected from one or more of: (a) a method for treating hyperphosphatemia, optionally postprandial hyperphosphatemia; (b) a method for treating a renal disease, optionally chronic kidney disease (CKD) or end-stage renal disease (ESRD); (c) a method for reducing serum creatinine levels; (d) a method for treating proteinuria; (e) a method for delaying time to renal replacement therapy (RRT), optionally dialysis; (f) a method for reducing FGF23 levels; (g) a method for reducing the hyperphosphatemic effect of active vitamin D; (h) a method for attenuating hyperparathyroidism, optionally secondary hyperparathyroidism; (i) a method for reducing serum parathyroid hormone (PTH); (j) a method for reducing inderdialytic weight gain (IDWG); (k) a method for improving endothelial dysfunction, optionally induced by postprandial serum phosphate; (l) a method for reducing vascular calcification, optionally intima-localized vascular calcification; (m) a method for increasing urinary phosphorous; (n) a method for normalizing serum phosphorus levels; (o) a method for reducing phosphate burden in an elderly patient; (p) a method for decreasing dietary phosphate uptake; (q) a method for reducing renal hypertrophy; (r) a method for reducing heart hypertrophy; and (s) a method for treating obstructive sleep apnea. In some embodiments, the compound is substantially permeable to the epithelium of the gastrointestinal tract. In certain embodiments, administration to the patient in need thereof reduces serum phosphate concentrations or levels to about 150% or less of normal serum phosphate levels. In some embodiments, administration to the patient in need thereof increases urinary phosphate concentrations or levels by at least about 10% relative to an untreated state. In certain embodiments, the compound has (i) a tPSA of at least about 200 Å2 and a molecular weight of at least about 710 Daltons in the non-salt form, or (ii) a tPSA of at least about 270 Å2. In certain embodiments, the compound has a tPSA of at least about 250 Å2, or a tPSA of at least about 270 Å2, or a tPSA of at least about 300 Å2, or a tPSA of at least about 350 Å2, or a tPSA of at least about 400 Å2, or a tPSA of at least about 500 Å2. In certain embodiments, the compound has a molecular weight of at least about 500 Da, or a molecular weight of at least about 1000 Da, or a molecular weight of at least about 2500 Da, or a molecular weight of at least about 5000 Da. In some embodiments, the compound has (i) a total number of NH and/or OH and/or other potential hydrogen bond donor moieties greater than about 5; (ii) a total number of 0 atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 10; and/or (iii) a Moriguchi partition coefficient greater than about 105 or less than about 10. In certain embodiments, the compound has a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s. In some embodiments, the compound has a structure of Formula (I) or (IX): wherein: NHE is a NHE-binding small molecule that comprises (i) a hetero-atom containing moiety, and (ii) a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto, the heteroatom-containing moiety being selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the scaffold or support moiety to form a fused bicyclic structure; and, Z is a moiety having at least one site thereon for attachment to the NHE-binding small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; and, E is an integer having a value of 1 or more. In some embodiments, the compound is an oligomer, dendrimer or polymer, and further wherein Z is a Core moiety having two or more sites thereon for attachment to multiple NHE-binding small molecules, either directly or indirectly through a linking moiety, L, the compound having the structure of Formula (X): CoreL-NHE)n  (X) wherein L is a bond or linker connecting the Core to the NHE-binding small molecule, and n is an integer of 2 or more, and further wherein each NHE-binding small molecule may be the same or differ from the others, or a pharmaceutically acceptable salt thereof. In certain embodiments, the total number of freely rotatable bonds in the NHE-Z molecule is at least about 10. In certain embodiments, the total number hydrogen bond donors in the NHE-Z molecule is at least about 5. In some embodiments, the total number of hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In certain embodiments, the total number of hydrogen bond donors and hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In some embodiments, the Log P of the NHE-Z binding compound is at least about 5. In certain embodiments, the log P of the NHE-Z binding compound is less than about 1, or less than about 0. In certain embodiments, the scaffold is a 5-member or 6-member cyclic or heterocyclic moiety. In certain embodiments, the scaffold is aromatic. In some embodiments, the scaffold of the NHE-binding small molecule is bound to the moiety, Z, the compound having the structure of Formula (II): wherein: Z is a Core having one or more sites thereon for attachment to one or more NHE-binding small molecules, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; B is the heteroatom-containing moiety of the NHE-binding small molecule, and is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; Scaffold is the cyclic or heterocyclic scaffold or support moiety of the NHE-binding small molecule, which is bound directly or indirectly to heteroatom-containing moiety, B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl, and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties, which links B and the Scaffold; and D and E are integers, each independently having a value of 1 or more. In some embodiments, the NHE-binding small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In certain embodiments, the NHE-binding small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L. In some embodiments, the NHE-binding small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In certain embodiments, L is a polyalkylene glycol linker. In certain embodiments, L is a polyethylene glycol linker. In some embodiments, n is 2. In certain embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl, or a pharmaceutically acceptable salt thereof. In some embodiments, the Core is selected from the group consisting of: In some embodiments, the compound has the following structure of Formula (I-H): CoreL-NHE)n  (I-H) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) n is an integer of 2 or more; (b) Core is a Core moiety having two or more sites thereon for attachment to two or more NHE-binding small molecule moieties; (c) L is a bond or linker connecting the Core moiety to the two or more NHE-binding small molecule moieties; and (d) NHE is a NHE-binding small molecule moiety having the following structure of Formula (XI-H): wherein: B is selected from the group consisting of aryl and heterocyclyl; each R5 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-4alkyl, optionally substituted C1-4alkoxy, optionally substituted C1-4thioalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxyl, oxo, cyano, nitro, —NR7R8, —NR7C(═O)R8, —NR7C(═O)OR8, —NR7C(═O)NR8R9, —NR7SO2R8, —NR7S(O)2NR8R9, —C(═O)OR7, —C(═O)R7, —C(═O)NR7R8, —S(O)1-2R7, and —SO2NR7R8, wherein R7, R8, and R9 are independently selected from the group consisting of hydrogen, C1-4alkyl, or a bond linking the NHE-binding small molecule moiety to L, provided at least one is a bond linking the NHE-binding small molecule moiety to L; R3 and R4 are independently selected from the group consisting of hydrogen, optionally substituted C1-4alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl and optionally substituted heteroaryl; or R3 and R4 form together with the nitrogen to which they are bonded an optionally substituted 4-8 membered heterocyclyl; and each R1 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-6alkyl and optionally substituted C1-6alkoxy. In some embodiments, n is 2. In certain embodiments, L is a polyalkylene glycol linker. In certain embodiments, L is a polyethylene glycol linker. In certain embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl, or a pharmaceutically acceptable salt thereof. In some embodiments, the Core is selected from the group consisting of In certain embodiments, the NHE-binding small molecule moiety has the following structure of Formula (XII-H): wherein: each R3 and R4 are independently selected from the group consisting of hydrogen and optionally substituted C1-4alkyl, or R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 4-8 membered heterocyclyl; each R1 is independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, and C1-6haloalkyl; and R5 is selected from the group consisting of —SO2—NR7— and —NHC(═O)NH—, wherein R7 is hydrogen or C1-4alkyl. In some embodiments, R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 5 or 6 membered heterocyclyl. In certain embodiments, the optionally substituted 5 or 6 membered heterocyclyl is pyrrolidinyl or piperidinyl. In certain embodiments, the optionally substituted 5 or 6 membered heterocyclyl is pyrrolidinyl or piperidinyl, each substituted with at least one amino or hydroxyl. In some embodiments, R3 and R4 are independently C1-4alkyl. In certain embodiments, R3 and R4 are methyl. In some embodiments, each R1 is independently selected from the group consisting of hydrogen or halogen. In certain embodiments, each R1 is independently selected from the group consisting of hydrogen, F and Cl. In certain embodiments, the compound has the following structure of Formula (I-I): CoreL-NHE)3  (I-I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) NHE is a NHE-binding small molecule moiety having the following structure of Formula (A-I): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring; (b) Core is a Core moiety having the following structure of Formula (B-I): wherein: X is selected from C(X1), N and N(C1-6alkyl); X1 is selected from hydrogen, optionally substituted alkyl, —NXaXb, —NO2, —NXc—C(═O)—NXc—Xa, —C(═O)NXc—Xa, —NXc—C(═O)—Xa, —NXc—SO2—Xa, —C(═O)—Xa and —OXa, each Xa and Xb are independently selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl; Y is C1-6alkylene; Z is selected from —NZa—C(═O)—NZa—, —C(═O)NZa—, —NZa—C(═O)— and heteroaryl when X is CX1; Z is selected from —NZa—C(═O)—NZa—, —NZa—C(═O)— and heteroaryl when X is N or N(C1-6alkyl); and each Xc and Za is independently selected from hydrogen and C1-6alkyl; and (c) L is a bond or linker connecting the Core moiety to the NHE-binding small molecule moieties. In some embodiments, the NHE-binding small molecule moiety has the following structure: wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L. In some embodiments, the NHE-binding small molecule moiety has one of the following structures: In some embodiments, L is a polyalkylene glycol linker. In certain embodiments, L is a polyethylene glycol linker. In some embodiments, X is C(X1). In some embodiments, each Xc is hydrogen. In certain embodiments, X is N. In certain embodiments, each Za is hydrogen. In some embodiments, the compound has the structure of Formula (II-I): CoreL-NHE)4  (II-I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) NHE is a NHE-binding small molecule moiety having the structure of Formula (A-I): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring; (b) Core is a Core moiety having the following structure of Formula (C-I): wherein: W is selected from alkylene, polyalkylene glycol, —C(═O)—NH-(alkylene)-NH—C(═O)—, —C(═O)—NH-(polyalkylene glycol)-NH—C(═O)—, —C(═O)-(alkylene)-C(═O)—, —C(═O)-(polyalkylene glycol)-C(═O)— and cycloalkyl; X is N; Y is C1-6alkylene; Z is selected from —NZa—C(═O)—NZa—, —C(═O)NZa—, —NZa—C(═O)— and heteroaryl; each Za is independently selected from hydrogen and C1-6alkyl; and (c) L is a bond or linker connecting the Core moiety to the NHE-binding small molecules. In certain embodiments, the NHE-binding small molecule moiety has the following structure: wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L. In certain embodiments, the NHE-binding small molecule moiety has one of the following structures: In specific embodiments, the compound is selected from a compound of Table E3 or Table E4, or a pharmaceutically acceptable salt thereof. In particular embodiments, the compound is: or a pharmaceutically acceptable salt thereof. In particular embodiments, the compound is: Certain methods further comprise administering one or more additional biologically active agents. In certain embodiments, the compound and the one or more additional biologically active agents are administered as part of a single pharmaceutical composition. In some embodiments, the compound and the one or more additional biologically active agents are administered as individual pharmaceutical compositions. In some embodiments, the individual pharmaceutical compositions are administered sequentially. In some embodiments, the individual pharmaceutical compositions are administered simultaneously. In certain embodiments, the additional biologically active agent is selected from vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), active vitamin D (calcitriol) and active vitamin D analogs (e.g. doxercalciferol, paricalcitol). In some embodiments, the additional biologically active agent is a phosphate binder. In certain embodiments, the phosphate binder is selected from the group consisting of sevelamer (e.g., Renvela® (sevelamer carbonate), Renagel® (sevelamer hydrochloride)), lanthanum carbonate (e.g., Fosrenol®), calcium carbonate (e.g., Calcichew®, Titralac®), calcium acetate (e.g. PhosLo®, Phosex®), calcium acetate/magnesium carbonate (e.g., Renepho®, OsvaRen®), MCI-196, ferric citrate (e.g., Zerenex™), magnesium iron hydroxycarbonate (e.g., Fermagate™), aluminum hydroxide (e.g., Alucaps®, Basaljel®), APS1585, SBR-759, and PA-21. In some embodiments, the additional biologically active agent is a NaPi2b inhibitor. In certain embodiments, the additional biologically active agent is niacin or nicotinamide. In some embodiments, the compound or composition is administered orally. In certain embodiments, the compound or composition is administered orally once-a-day. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-B shows the effects of test compounds on reducing phosphate uptake in normal-function rats (see Example 3). FIG. 1A shows that Cpd 004, a non-persistent NHE3 inhibitor, was as potent at reducing Pi uptake as a persistent inhibitor such as Cpd 003. FIGS. 1B-C show that Cpd 003 significantly reduced Pi uptake in the presence of glucose/Ca (1B) and Ca (1C). FIG. 2 shows the study design for testing the activity of compounds in a rat model of uremia-associated vascular calcification. FIGS. 3A-F show the base-line body weight (3A) and serum parameters (serum phosphorus (3B); serum calcium (3C); serum creatinine (3D); blood urea nitrogen (3E-F)) in the rat model of uremia-associated vascular calcification. FIGS. 4A-F show the effects of test compound on serum parameters (plasma creatinine (4A); blood urea nitrogen (4B); plasma albumin (4C); plasma phosphorus (4D); plasma calcium (4E); and plasma FGF23 (4F)) in the rat model of uremia-associated vascular calcification. These results show that test compound significant reduced plasma creatinine, plasma phosphorus, and plasma FGF23. Test compound also significantly increased plasma albumin, and a slightly increased plasma calcium. FIG. 5 shows the effects of test compound on the endpoint heart and kidney remnant weights in the rat model of uremia-associated vascular calcification. Administration of test compound significantly reduced the organ weight/body weight values for heart and kidney. FIGS. 6A-B show the effects of test compound on endpoint creatinine clearance (CCr) and plasma aldosterone levels in the rat model of uremia-associated vascular calcification. Administration of test compound maintained creatinine clearance relative to vehicle-only and also significantly increased plasma aldosterone. FIGS. 7A-B show the effects of test compound on endpoint vascular and soft tissue calcification in the rat model of uremia-associated vascular calcification. Administration of test compound significantly reduced the stomach and aortic mineral content of phosphorus and calcium. FIG. 8A shows the study design for testing the activity of compounds in an adenine-induced uremic rat model. FIGS. 8B-C show that test compound significantly reduced serum phosphorus and serum creatinine at early time points in this model of acute renal injury. FIGS. 9A-B show the organ weight collection data from week three of the adenine-induced uremic rat model. Administration of test compound showed a tendency to reduce heart and kidney remodeling. FIGS. 10A-B show the tissue mineralization data from week three of the adenine-induced uremic rat model. Administration of test compound reduced heart and kidney calcification at the highest dose (5 mpk). FIG. 11A shows the study design for testing the activity of compounds in dietary salt-induced, partial renal ablation model of chronic kidney disease (CKD). FIG. 11B shows the effects of test compound on urinary excretion of phosphorus. FIG. 12 shows the study design for testing the activity of test compound on urinary excretion of phosphate and calcium in rats. FIGS. 13A-D show that administration of test compound reduced both urine phosphorus mass and urine calcium mass relative to the vehicle-only control. Increasing dosages of test compound also significantly reduced urine phosphorus mass relative to 48 mg/kg Renvela®. FIGS. 14A-B show the mean average daily fecal excretion of Na (14A; +/−SE) and phosphorus (14B; +/−). Excretion data were averaged over the 7-day treatment period (Day 1 to Day 7) and reported as mEq/day (see Example 8). Statistical analysis was performed by one-way ANOVA; (*); p<0.05, (**); p<0.01, (***); p<0.001. FIGS. 15A-C show the mean average daily fecal excretion of phosphorus (15A; +/−SE) and the mean average daily urinary excretion of sodium (15B; +/−SE) and phosphorus (15C; +/−) (see Example 9). Statistical analysis performed by one-way ANOVA; (*); p<0.05, (**); p<0.01, (***); p<0.001. FIGS. 16A-B shown the mean average daily fecal excretion of sodium (16A; +/−SE) and the mean average daily fecal excretion of phoshorus (16B; +/−SE) (see Example 10). Statistical analysis performed by one-way ANOVA followed by Tukey's multiple comparison's test; (*); p<0.05, (**); p<0.01, (***); p<0.001. vs. pre-Dose. DETAILED DESCRIPTION In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Certain embodiments relate to the unexpected discovery that phosphate absorption from the intestine in subjects with elevated phosphate serum levels may be limited, and preferably substantially prevented, through the use of NHE3-binding and/or NHE3-modulating agents to inhibit the intestinal transport system which mediates phosphate uptake in the intestine. It has also been unexpectedly discovered that such NHE3-binding and/or NHE3-modulating agents can inhibit the renal transport system which mediates phosphate uptake in the kidneys. In some aspects, inhibition of phosphate uptake in the gastrointestinal tract may be achieved by the administration of certain compounds, and/or pharmaceutical compositions comprising them, which may advantageously be designed such that little, or substantially none, of the compound is absorbed into the blood stream (that is, it is designed to be non-systemic or substantially non-systemic). In this regard, the compounds have features that give rise to little or substantially no systemic availability upon enteral administration, including oral administration. In other words, the compounds are not absorbed into the bloodstream at meaningful levels and therefore have no activity there, but instead have their activity localized substantially within the GI tract. Therefore, in certain illustrative embodiments as further described herein, the compounds of the invention generally require a combination of structural and/or functional features relating or contributing to their activity in the GI tract and/or their substantial non-systemic bioavailability. Such features may include, for example, one or more of (i) specific tPSA and/or MW values (e.g., at least about 190 Å2 and/or at least about 736 Daltons, respectively), (ii) specific levels of fecal recovery of the compound and/or its metabolites after administration (e.g., greater than 50% at 72 hours); (iii) specific numbers of NH and/or OH and/or potentially hydrogen bond donor moieties (e.g., greater than about five); (iv) specific numbers of rotatable bonds (e.g., greater than about five); (iv) specific permeability features (e.g., Papp less than about 100×10−6 cm/s); and/or any of a number of other features and characteristics as described herein. The substantially non-systemic compounds described herein offer numerous advantages in the treatment of GI tract and other disorders. For instance, the compounds are active on the phosphate transporter apically located in the intestine and essentially do not reach other phosphate transporters expressed in other tissues and organs. Because NHE3 is expressed on cells many systemic tissues or organs, the use of NHE3-binding or modulating agents can raise concerns about systemic effects, whether on-target or off-target. These particular compounds do not give rise to such concerns because of their limited systemic availability. As noted above, certain embodiments relate to the discovery that phosphate absorption from the glomerular filtrate within the kidneys of patients with elevated phosphate serum levels may be limited, and preferably substantially prevented, through inhibition of the renal tubule transport system which mediates phosphate uptake in the kidneys. In some aspects, inhibition of phosphate uptake in the kidneys may be achieved by the administration of an otherwise substantially systemically non-bioavailable compound described herein, by a route that optionally excludes enteral or enteric administration, that is, by a route that optionally excludes administration via the gastrointestinal tract. Non-limiting examples include parenteral administration such as intravenous, intra-arterial, intramuscular, and subcutaneous administration, among others described herein and known in the art. In some aspects, inhibition of phosphate uptake in the kidneys may be achieved by the administration of certain compounds, and/or pharmaceutical compositions comprising them, which may advantageously be designed such that most of the compound is absorbed into the blood stream (that is, it is designed to be systemic or substantially systemic). In this regard, the compounds have features that give rise to systemic availability, including oral availability. In other words, the compounds are absorbed into the bloodstream at meaningful levels and therefore have most if not all of their activity systemically, for example, within organs such as the kidney, relative to having their activity localized substantially within the GI tract. Therefore, in certain embodiments, particularly for targeting systemic tissues via oral or other form of enteral administration, the compounds described herein may have a combination of structural and/or functional features relating or contributing to their substantial systemic bioavailability. Functional features include, for example, wherein the compound is substantially permeable to the epithelium of the gastrointestinal tract, including the mouth, esophagus, stomach, upper intestine, lower intestine, etc. As further detailed below, phosphate absorption in the upper intestine is mediated, at least in part, by a carrier-mediated mechanism which couples the absorption of phosphate to that of sodium. Renal phosphate transport is mediated, at least in part, by the activity of the sodium-dependent phosphate transporters, Npt2a, Npt2c, and PiT-2, present within the apical brush border membrane of the proximal tubule. Accordingly, inhibition of intestinal or renal phosphate transport will reduce body phosphorus overload. In patients with advanced kidney disease (e.g. stage 4 and 5), the body phosphorus overload manifests itself by serum phosphate concentration above normal levels, i.e., hyperphosphatemia. Hyperphosphatemia is directly related to mortality and morbidity Inhibition of intestinal or renal phosphate transport will reduce serum phosphate concentration and therefore improve outcome in those patients. In stage 2 and 3 chronic kidney disease patients, the body phosphorus overload does not necessarily lead to hyperphosphatemia, i.e., patients remain normophosphatemic, but there is a need to reduce body phosphorus overload even at those early stages to avoid associated bone and vascular disorders, and ultimately improve mortality rate. Inhibition of intestinal phosphate transport will be particularly advantageous in patients that have a disease that is treatable by inhibiting the uptake of phosphate from the intestines. Likewise, inhibition of phosphate absorption from the glomerular filtrate within the kidneys would also be advantageous for treating or preventing chronic renal failure and other renal disease conditions. Furthermore, inhibition of phosphate transport may slow the progression of renal failure and reduce the risk of cardiovascular events, among other diseases or conditions associated with the need for phosphate lowering. I. Compounds that Inhibit Phosphate Transport Embodiments of the present invention relate generally to the discovery that NHE3-binding and/or NHE3-modulating compounds inhibit transport or uptake of phosphate ions (Pi) in tissues such as the gastrointestinal tract and/or the kidneys. A compound's Pi transport inhibitory activity in a given tissue will depend generally, for example, on the systemic bioavailability or systemic non-bioavailability of the compound, the route of administration, or any combination thereof. Accordingly, embodiments of the present invention include compounds that bind to and/or modulate NHE3 (e.g., NHE inhibitors) and are substantially active to inhibit transport or uptake of Pi, for instance, in a human subject, an animal model, and/or a cell-based or biochemical assay. In some embodiments, a compound binds to NHE3. In these and related embodiments, a compound is said to “bind” or “specifically bind” to an NHE3 protein if it reacts at a detectable level with the protein, and optionally does not react detectably in a statistically significant manner with unrelated proteins under similar conditions. In certain illustrative embodiments, a compound may have a binding “affinity” (e.g., as measured by the dissociation constant, or Kd) for an NHE3 protein of about or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 nM. In some embodiments, one or more of the compounds described herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, or measured in an animal model or cell-based assay, may have an IC50 for inhibiting Pi transport or uptake of about or less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 nM. In certain embodiments, one or more of the compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, or measured in an animal model or cell-based assay, may have a pIC50 for inhibiting Pi transport or uptake of about or greater than about 6.0, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7.0, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65. 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8.0, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, or 9.0. As used herein, the IC50 is defined as the quantitative measure indicating the concentration of a compound where 50% of its maximal inhibitory effect is observed, for example, in a human subject, an animal model, and/or a cell-based or biochemical assay. The pIC50 refers to the inverse logarithm of the IC50 (or pIC50=−log (IC50) (see Selvaraj et al., Current Trends in Biotechnology and Pharmacy. 5:1104-1109, 2011). Assays for measuring the activity of inhibitors of phosphate transport or uptake are described in the accompanying Examples. For inhibiting transport or uptake of Pi in the gastrointestinal tract, and treatment of related conditions in a subject in need of phosphate lowering, embodiments of the present invention will generally employ substantially systemically non-bioavailable compounds. Such compounds are preferably formulated or suitable for enteral administration, including oral administration. Examples of substantially systemically non-bioavailable compounds and their related features are provided elsewhere herein. In these and related embodiments, administration of the compound to a subject in need thereof reduces any one or more of serum phosphate concentrations or levels, dietary phosphorus, and/or urinary phosphate concentrations or levels. In some embodiments, serum phosphate concentrations or levels in a hyperphosphatemic subject are reduced to about or less than about 150%, 145%, 140%, 135%, 130%, 125%, 120%, 115%, 110%, 105%, or 100% (normalized) of the normal serum phosphate levels (of a healthy subject, e.g., 2.5-4.5 mg/dL or 0.81-1.45 mmol/L for a human adult). In some embodiments, uptake of dietary phosphorous is reduced by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or more relative to an untreated state. In some embodiments, urinary phosphate concentrations or levels are reduced by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more, preferably about 20%, 30%, 40%, 50%, or 60%, relative to an untreated state. In some embodiments, administration of the compound to a subject in need thereof increases phosphate levels in fecal excretion by at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more relative to an untreated state. For inhibiting transport or uptake of Pi in the kidneys, and treatment of related conditions in a subject in need of phosphate lowering, embodiments of the present invention will generally employ substantially systemically bioavailable compounds, optionally by any route of administration, or the substantially systemically non-bioavailable compounds described herein, preferably by a route of administration that excludes enteral administration. In these and related embodiments, administration of a compound reduces serum phosphate concentrations or levels in a hyperphosphatemic subject to about or less than about 150%, 145%, 140%, 135%, 130%, 125%, 120%, 115%, 110%, 105%, or 100% (normalized) of the normal serum phosphate levels (of a healthy subject, e.g., 2.5-4.5 mg/dL or 0.81-1.45 mmol/L for a human adult). In some embodiments, administration of a compound to a subject in need thereof increases urinary phosphate concentrations or levels by at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more relative to an untreated state. In certain embodiments, the NHE3-binding compounds of the present invention are further characterized by their activity towards NHE3-mediated antiport of sodium and hydrogen ions. For instance, certain compounds are substantially active to inhibit NHE3-mediated antiport of sodium ions and hydrogen ions. Such “dual-active” compounds can thus be used to inhibit both phosphate and sodium transport or uptake in the gastrointestinal tract and/or in the kidneys. In other embodiments, the compounds are substantially inactive to inhibit NHE3-mediated antiport of sodium ions and hydrogen ions. Such “mono-active” compounds can be used to inhibit phosphate uptake in the gastrointestinal tract and/or in the kidneys without significantly modulating sodium transport or uptake in those or other tissues. Without wishing to be bound by any one theory, it is believed that “persistent” NHE3 inhibitor compounds (e.g., compounds that bind to NHE3 and inhibit NHE3-mediated antiport of sodium and hydrogen ions under both “prompt” conditions and “persistent” conditions) are substantially active in tissues to inhibit both transport of Pi and NHE3-mediated antiport of sodium and hydrogen ions. In contrast, it is believed that non-persistent NHE3 ligands (e.g., compounds that bind to or otherwise interact with NHE3 and might inhibit NHE3-mediated antiport of sodium and hydrogen ions under “prompt” conditions but do not substantially inhibit the same under “persistent” conditions) are active in tissues to inhibit transport of Pi but are not substantially active in tissues to inhibit NHE3-mediated antiport of sodium and hydrogen ions. Certain characteristics of these compounds are described below. A. Dual-Active Compounds Certain embodiments relate to NHE3-binding and/or NHE3-modulating compounds that inhibit both the transport of phosphate ions (Pi) and the NHE3-mediated antiport of sodium and hydrogen ions. These and related embodiments include, for example, compounds that are substantially active in the gastrointestinal tract and/or kidneys to inhibit Pi transport and NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to a subject in need thereof. In particular embodiments, the compounds are substantially active on the apical side of the epithelium of the gastrointestinal tract (e.g., upon enteral administration) to inhibit NHE3-mediated antiport of sodium ions and hydrogen ions. Also included are compounds that are substantially active in the large intestine (e.g., cecum, ascending colon, transverse colon, descending colon, sigmoid colon) to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to the subject in need thereof. In some aspects, the dual-active compounds are characterized by their “persistence” towards binding to NHE3 and inhibiting NHE3-mediated antiport of sodium and hydrogen ions, i.e., their “persistent inhibition” of NHE-mediated antiport of sodium and hydrogen ions. In particular aspects, persistent inhibition is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, for instance, as measured under “persistent” conditions optionally relative to “prompt” conditions (see, e.g., PNAS USA. (1984) 81(23): 7436-7440; and Examples 1-2). Persistent conditions include, for instance, where a test compound is pre-incubated with cells, e.g., for about 10, 20, 30, 40, 50, 60, 80, 100, 120 minutes or more, and washed-out prior to lowering intracellular pH and testing for NHE3-mediated recovery of neutral intracellular pH. Post-incubation washout can be performed, for example, about 10, 20, 30, 40, 50, 60, 80, 100, 120 minutes or more before lowering intracellular pH and testing for NHE3-mediated recovery of neutral intracellular pH. In some persistent conditions, a test compound is pre-incubated with cells for a desired time and then washed-out of the cell medium, a buffer is added to lower intracellular pH (e.g., incubated for about 10, 20, 30, 40, 50, or 60 minutes or more), and NHE3-mediated recovery of neutral intracellular pH is initiated by addition of an appropriate buffer without any test compound. Prompt conditions include, for example, where a test compound is incubated with cells during testing for NHE3-mediated recovery of neutral intracellular pH, i.e., the compound is not washed-out before or during initiating recovery of intracellular pH. Under certain prompt conditions, a buffer is added to lower intracellular pH (e.g., incubated for about 10, 20, 30, 40, 50, or 60 minutes or more), and NHE3-mediated recovery of neutral intracellular pH is initiated by addition of an appropriate buffer that contains the test compound. In one exemplary cell-based assay, recovery of intracellular pH can be measured, for instance, by monitoring the pH sensitive changes in fluorescence of a marker normalized to the pH insensitive fluorescence of the marker. Exemplary markers include bis(acetoxymethyl) 3,3′-(3′,6′-bis(acetoxymethoxy)-5-((acetoxymethoxy)carbonyl)-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)dipropanoate (BCECF). In certain aspects, a dual-active compound is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) is substantially comparable to the pIC50 of the compound under persistent conditions (pIC50pers). Substantially comparable includes, for example, where the pIC50promp and pIC50pers values are within about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%. In particular aspects, the pIC50promp and the pIC50pers are about or at least about 7.0, including about or at least about 6.5, 6.55. 6.6, 6.65, 6.7. 6.75, 6.8, 6.85, 6.9, 6.95, 7.0, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65. 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8.0, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, or 9.0. In some aspects, the IC50 of the compound under prompt conditions (IC50promp) is substantially comparable to the IC50 of the compound under persistent conditions (IC50pers). Substantially comparable includes, for example, where the IC50promp and IC50pers values are within about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%. In particular aspects, the IC50promp and the IC50pers are about or less than about 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, or 0.001 μM, or range from about 0.001-0.3, 0.001-0.2, 0.001-0.1, 0.001-0.05, 0.001-0.01, 0.001-0.005 μM, or range from about 0.005-0.3, 0.005-0.2, 0.005-0.1, 0.005-0.05, 0.005-0.01, or range from about 0.01-0.3, 0.01-0.2, 0.01-0.1, or 0.01-0.05 μM, or range from about 0.1-0.3 or 0.1-0.2 μM. In some aspects, the dual-active compounds are characterized by their relative activity towards inhibiting phosphate transport and inhibiting NHE3-mediated antiport of sodium and hydrogen ions. For instance, upon enteral administration to a subject in need of phosphate lowering, certain compounds may have an EC50 for increasing fecal output of phosphate ions (EC50Pf) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pf=(r)EC50Na, wherein r is about 0.6 to about 1.5, preferably about 0.7 to about 1.3, or about 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5, including all ranges in between. In some embodiments, for example, upon enteral administration to a subject in need of phosphate lowering, certain compounds may have an EC50 for reducing urinary output of phosphate ions (EC50Pu) and a EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.6 to about 1.5, preferably about 0.7 to about 1.3, or about 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5, including all ranges in between. In some embodiments, for instance, upon administration that achieves systemic availability (e.g., leads to activity in the kidneys), certain compounds may have an EC50 for increasing urinary output of phosphate ions (EC50Pu) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.6 to about 1.5, preferably about 0.7 to about 1.3, or about 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5, including all ranges in between. In particular embodiments, for example, upon administration to a subject in need of phosphate lowering or in a cell-based assay, certain compounds may have an EC50 for inhibiting transport of phosphate ions (EC50P) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50P=(r)EC50Na, wherein r is about 0.6 to about 1.5, preferably about 0.7 to about 1.3, or about 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5, including all ranges in between. In some embodiments, and further to its effects on Pi levels, administration of a dual-active compound (or at a dosage that allows dual-activity) to a subject in need thereof (e.g., via enteral administration) increases the subject's daily fecal daily output of sodium and/or fluid. In certain instances, the fecal output of sodium is increased by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, 1500%, 1600%, 1700%, 1800%, 1900%, or 2000% or more relative to an untreated state. In some instances, the output of fluid or the fecal water content is increased by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, 1500%, 1600%, 1700%, 1800%, 1900%, or 2000% or more relative to an untreated state. B. Mono-Active Compounds Certain embodiments relate to NHE3-binding compounds that inhibit transport of phosphate ions (Pi) and but do not substantially inhibit NHE3-mediated antiport of sodium and hydrogen ions, for instance, at a given dosage. These and related embodiments include, for example, non-persistent ligands of NHE3 that are substantially active to inhibit Pi transport but are substantially inactive in the gastrointestinal tract and/or kidneys to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein upon administration to a subject in need thereof. In some embodiments, the non-persistent ligands of NHE3 are substantially inactive in the large intestine (e.g., upon enteral administration) to inhibit NHE3-mediated antiport of sodium and hydrogen ions therein. In some aspects, a non-persistent NHE3 ligand is characterized by its maximum inhibitory activity towards NHE3-mediated antiport of sodium and hydrogen ions, for instance, in a cell-based assay or other in vitro assay. In one example, a non-persistent NHE3 ligand has a maximum inhibition of NHE3-mediated antiport of sodium and hydrogen ions of about or less than about 50%, 40%, 30%, 35%, 20%, 15%, 10%, or 5%, wherein maximum inhibition is characterized by the inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions and is relative to sodium-free conditions. In these and related embodiments, sodium-free conditions essentially represent zero activity for NHE3-mediated antiport of sodium and hydrogen ions, and can thus be used to set the value for 100% or maximum inhibition. In some aspects, the non-persistent NHE3 ligands are characterized by their “non-persistence” towards binding to NHE3 and inhibiting NHE3-mediated antiport of sodium and hydrogen ions, i.e., their relative lack of or reduced “persistent inhibition” of NHE-mediated antiport of sodium and hydrogen ions. In particular aspects, persistent inhibition is characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, for instance, as measured under “persistent” conditions optionally relative to “prompt” conditions (see, e.g., PNAS USA. (1984) 81(23): 7436-7440; and Examples 1-2). Examples of persistent and prompt conditions are described supra. In certain aspects, the non-persistent NHE3 ligands are characterized by the time-dependent inhibitory activity of the compound in an in vitro inhibition assay of NHE3-mediated antiport of sodium and hydrogen ions, wherein the pIC50 of the compound under prompt conditions (pIC50promp) is greater than or substantially greater than the pIC50 of the compound under persistent conditions (pIC50pers). Substantially greater includes, for example, where the pIC50promp is greater than the pIC50pers by about or at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more. In particular aspects, the pIC50promp is about or at least about 7.0, including about or at least about 6.5, 6.55. 6.6, 6.65, 6.7. 6.75, 6.8, 6.85, 6.9, 6.95, 7.0, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 7.6, 7.65. 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8.0, 8.05, 8.1, 8.15, 8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 8.8, 8.85, 8.9, 8.95, or 9.0, and the pIC50pers is about or less than about 6.0, including about or less than about 6.4, 6.35, 6.3, 6.25, 6.2, 6.15, 6.1, 6.05, 6.0, 5.95, 5.9, 5.85, 5.7, 5.75, 5.6, 5.65, 5.5, 5.45, 5.4, 5.35, 5.3, 5.25, 5.2, 5.15, 5.1, 5.05, 5.0, 4.95, 4.9, 4.85, 4.8, 4.75, 4.7, 4.65, 4.6, 4.55, 4.5, 4.45, 4.4, 4.35, 4.3, 4.25, 4.2, 4.15, 4.1, 4.05, 4.0, 3.9, 3.8, 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, or 3.0. In some aspects, the IC50 of the non-persistent NHE3 ligand under prompt conditions (IC50promp) is substantially less than the IC50 of the compound under persistent conditions (IC50pers). Substantially less includes, for example, where the IC50promp is less than the IC50pers by about or at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, or 1000%. For instance, in some aspects, the IC50promp is about or less than about 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, or 0.001 μM, or ranges from about 0.001-0.3, 0.001-0.2, 0.001-0.1, 0.001-0.05, 0.001-0.01, 0.001-0.005 μM, or ranges from about 0.005-0.3, 0.005-0.2, 0.005-0.1, 0.005-0.05, 0.005-0.01, or ranges from about 0.01-0.3, 0.01-0.2, 0.01-0.1, or 0.01-0.05 μM, or ranges from about 0.1-0.3 or 0.1-0.2 μM, and the IC50pers is about or greater than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 μM or more, or ranges from about 1-10, 1-20, 1-30, 1-40, 1-50, 1-100, 1-500, 1-1000 μM, or ranges from about 2-10, 2-20, 2-30, 2-40, 2-50, 2-100, 2-500, 2-1000 μM, or ranges from about 5-10, 5-20, 5-30, 5-40, 5-50, 5-100, 5-500, 5-1000 μM, or ranges from about 10-20, 10-30, 10-40, 10-50, 10-100, 10-500, 10-1000 μM, or ranges from about 20-30, 20-40, 20-50, 20-100, 20-500, 20-1000 μM, or ranges from about 50-100, 50-500, 50-1000 μM, or ranges from about 100-500 or 100-1000 μM. In some aspects, the non-persistent NHE3 ligands are characterized by their relative activity towards inhibiting phosphate transport and inhibiting NHE3-mediated antiport of sodium and hydrogen ions. For instance, upon enteral administration to a subject in need of phosphate lowering, certain compounds may have an EC50 for increasing fecal output of phosphate ions (EC50Pf) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pf=(r)EC50Na, wherein r is about 0.1 to about 0.5, or about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, or 0.55, including all ranges in between. In some embodiments, for example, upon enteral administration to a subject in need of phosphate lowering, certain compounds may have an EC50 for reducing urinary output of phosphate ions (EC50Pu) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.1 to about 0.5, or about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, or 0.55, including all ranges in between. In particular embodiments, for example, upon enteral administration to a subject in need of phosphate lowering or in a cell-based assay, certain compounds may have an EC50 for inhibiting transport of phosphate ions (EC50P) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50P=(r)EC50Na, wherein r is about 0.05 or 0.1 to about 0.5 or 0.55 or so, or about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, or 0.55, including all ranges in between. In some embodiments, for instance, upon administration that achieves systemic availability (e.g., leads to significant activity in the kidneys), certain non-persistent NHE3 ligand compounds may have an EC50 for increasing urinary output of phosphate ions (EC50Pu) and an EC50 for inhibiting NHE3-mediated antiport of sodium and hydrogen ions (EC50Na) that is defined by the formula EC50Pu=(r)EC50Na, wherein r is about 0.1 to about 0.5, or about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, or 0.55, including all ranges in between. In certain embodiments, administration a non-persistent NHE3 ligand to a subject in need thereof (e.g., via enteral administration) increases the ratio of phosphate/sodium in fecal excretion by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more relative to an untreated state. In some embodiments, administration to a subject in need thereof (e.g., via enteral administration) increases the daily fecal output of phosphate without substantially modulating the stool form or water content of the feces. For instance, in these and related embodiments, the stool form of the feces can be about or within about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, or 20% of the stool form of the feces relative to an untreated state. In some aspects, the fecal form under the Bristol stool scale (Types 1, 2, 3, 4, 5, 6, and 7; Type 1 being hard and Type 7 being watery) can be the same or within about 1-2 units relative to an untreated state (see, e.g., Rao et al., Neurogastroenterol Motil. 23:8-23, 2011; and Lewis and Heaton, Scand. J. Gastroenterol. 32:920-4, 1997). In specific aspects, the fecal form under the Bristol scale is Type 3 or Type 4. In some embodiments, administration to a rodent (e.g., rat, mouse) increases the ratio of sodium in the small intestine (NaSI)/cecum (NO by at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more relative to an untreated state. II. Substantially Systemically Non-Bioavailable Compounds A. Physical and Performance Properties of Compounds Localizable to the GI Tract Certain of the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement of a compound across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” includes embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.); stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” may refer to compounds that exhibit some detectable permeability to an epithelial layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, 4%, 3%, or 2%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). In this regard it is to be further noted, that in certain embodiments, due to the substantial impermeability and/or substantial systemic non-bioavailability of the compounds of the present invention, greater than about 50%, 60%, 70%, 80%, 90%, or 95% of a compound of the invention is recoverable from the feces over, for example, a 24, 36, 48, 60, 72, 84, or 96 hour period following administration to a subject in need thereof. In this respect, it is understood that a recovered compound can include the sum of the parent compound and its metabolites derived from the parent compound, e.g., by means of hydrolysis, conjugation, reduction, oxidation, N-alkylation, glucuronidation, acetylation, methylation, sulfation, phosphorylation, or any other modification that adds atoms to or removes atoms from the parent compound, wherein the metabolites are generated via the action of any enzyme or exposure to any physiological environment including, pH, temperature, pressure, or interactions with foodstuffs as they exist in the digestive milieu. Measurement of fecal recovery of compound and metabolites can be carried out using standard methodology. For example, a compound can be administered orally at a suitable dose (e.g., 10 mg/kg) and feces are then collected at predetermined times after dosing (e.g., 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, 96 hours). Parent compound and metabolites can be extracted with organic solvent and analyzed quantitatively using mass spectrometry. A mass balance analysis of the parent compound and metabolites (including, parent=M, metabolite 1 [M+16], and metabolite 2 [M+32]) can be used to determine the percent recovery in the feces. (i) Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacokinetics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46:3-26, 2001 incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.). In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 600 Da, about 700 Da, about 800 Da, about 900 Da, about 1000 Da, about 1200 Da, about 1300 Da, about 1400 Da, about 1500 Da, about 1600 Da, about 1800 Da, about 2000 Da, about 2500 Da, about 3000 Da, about 4000 Da, about 5000 Da, about 7500 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 20 or more; (iii) a total number of 0 atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 20 or more; (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, about 8, about 9, about 10 etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0); and/or (v) a total number of rotatable bonds greater than about 5, about 10 or about 15, or more. In specific embodiments, the compound has a Log P that is not 14 or is less than about 14, for instance, a Log P that is in the range of about 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13, 7-8, 7-9, 7-10, 7-11, 7-12, 7-13, 8-9, 8-10, 8-11, 8-12, 8-13, 9-10, 9-11, 9-12, 9-13, 10-11, 10-12, 10-13, 11-12, 11-13, or 12-13. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. For exemplary Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in U.S. Pat. No. 6,737,423, incorporated by reference, particularly the text describing the Caco2 Model, which may be applied for example to the evaluation or testing of the compounds of the present invention. PSA is expressed in {acute over (Å)}2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is also available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see Table 1, from Ertl et al., J. Med. Chem., 2000, 43:3714-3717): TABLE 1 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 Accordingly, in some embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 116 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 160 Å2, about 170 Å2, about 180 Å2, about 190 Å2, about 200 Å2, about 225 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 350 Å2, about 400 Å2, about 450 Å2, about 500 Å2, about 750 Å2, or even about 1000 Å2, or in the range of about 100-120 Å2, 100-130 Å2, 100-140 Å2, 100-150 Å2, 100-160 Å2, 100-170 Å2, 100-170 Å2, 100-190 Å2, 100-200 Å2, 100-225 Å2, 100-250 Å2, 100-300 Å2, 100-400 Å2, 100-500 Å2, 100-750 Å2, 100-1000 Å2, 116-120 Å2, 116-130 Å2, 116-140 Å2, 116-150 Å2, 116-160 Å2, 116-170 Å2, 116-170 Å2, 116-190 Å2, 116-200 Å2, 116-225 Å2, 116-250 Å2, 116-300 Å2, 116-400 Å2, 116-500 Å2, 116-750 Å2, 116-1000 Å2, 120-130 Å2, 120-140 Å2, 120-150 Å2, 120-160 Å2, 120-170 Å2, 120-170 Å2, 120-190 Å2, 120-200 Å2, 120-225 Å2, 120-250 Å2, 120-300 Å2, 120-400 Å2, 120-500 Å2, 120-750 Å2, 120-1000 Å2, 130-140 Å2, 130-150 Å2, 130-160 Å2, 130-170 Å2, 130-170 Å2, 130-190 Å2, 130-200 Å2, 130-225 Å2, 130-250 Å2, 130-300 Å2, 130-400 Å2, 130-500 Å2, 130-750 Å2, 130-1000 Å2, 140-150 Å2, 140-160 Å2, 140-170 Å2, 140-170 Å2, 140-190 Å2, 140-200 Å2, 140-225 Å2, 140-250 Å2, 140-300 Å2, 140-400 Å2, 140-500 Å2, 140-750 Å2, 140-1000 Å2, 150-160 Å2, 150-170 Å2, 150-170 Å2, 150-190 Å2, 150-200 Å2, 150-225 Å2, or 150-250 Å2, 150-300 Å2, 150-400 Å2, 150-500 Å2, 150-750 Å2, 150-1000 Å2, 200-250 Å2, 200-300 Å2, 200-400 Å2, 200-500 Å2, 200-750 Å2, 200-1000 Å2, 250-250 Å2, 250-300 Å2, 250-400 Å2, 20-500 Å2, 250-750 Å2, or 250-1000 Å2, such that the compounds are substantially impermeable (e.g., cell impermeable) or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo (see Wohnsland et al., J. Med. Chem. 44:923-930, 2001; Schmidt et al., Millipore Corp. Application Note, 2002, n AN1725EN00, and n AN1728EN00, incorporated herein by reference). Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., 2001, supra). As previously noted, in accordance with the present disclosure, compounds may be modified to hinder their net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise a compound that is linked, coupled or otherwise attached to a non-absorbable moiety, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the compound is coupled to a multimer or polymer portion or moiety, such that the resulting molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. In these or other particular embodiments, the compound is modified to substantially hinder its net absorption through a layer of gut epithelial cells. (ii) Cmax and IC50 or EC50 In some embodiments, the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, exhibit a maximum concentration detected in the serum, defined as Cmax, that is about the same as or less than the phosphate ion (Pi) transport or uptake inhibitory concentration IC50 of the compound. In some embodiments, for instance, the Cmax is about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% less than the IC50 for inhibiting Pi transport or uptake. In some embodiments, the Cmax is about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9× (0.9 times) the IC50 for inhibiting Pi transport or uptake. In certain embodiments, one or more of the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) to a subject in need thereof, may have a ratio of Cmax:IC50 (for inhibiting Pi transport or update), wherein Cmax and IC50 are expressed in terms of the same units, of at about or less than about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0, or a range in between about 0.01-1.0, 0.01-0.9, 0.01-0.8, 0.01-0.7, 0.01-0.6, 0.01-0.5, 0.01-0.4, 0.01-0.3, 0.01-0.2, or 0.01-0.1, or a range in between about 0.1-1.0, 0.1-0.9, 0.1-0.8, 0.1-0.7, 0.1-0.6, 0.1-0.5, 0.1-0.4, 0.1-0.3, or 0.1-0.2. In some embodiments, the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, exhibit a maximum concentration detected in the serum, defined as Cmax, that is about the same as or less than EC50 of the compound for increasing fecal output of phosphate, where fecal output is increased by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%. In some embodiments, for instance, the Cmax is about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% less than the EC50 for increasing fecal output of phosphate. In some embodiments, the Cmax is about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9× (0.9 times) the EC50 for increasing fecal output of phosphate. In some embodiments, one or more of the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, or measured in an animal model or cell-based assay, may have an EC50 for increasing fecal output of phosphate of about or less than about 10 μM, 9 μM, 8 μM, 7 μM, 7.5 μM, 6 μM, 5 μM, 4 μM, 3 μM, 2.5 μM, 2 μM, 1 μM, 0.5 μM, 0.1 μM, 0.05 μM, or 0.01 μM, or less, the IC50 being, for example, within the range of about 0.01 μM to about 10 μM, or about 0.01 μM to about 7.5 μM, or about 0.01 μM to about 5 μM, or about 0.01 μM to about 2.5 μM, or about 0.01 μM to about 1.0, or about 0.1 μM to about 10 μM, or about 0.1 μM to about 7.5 μM, or about 0.1 μM to about 5 μM, or about 0.1 μM to about 2.5 μM, or about 0.1 μM to about 1.0, or about μM 0.5 μM to about 10 μM, or about 0.5 μM to about 7.5 μM, or about 0.5 μM to about 5 μM, or about 0.5 μM to about 2.5 μM, or about 0.5 μM to about 1.0 μM. In particular embodiments, the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, exhibit a maximum concentration detected in the serum, defined as Cmax, that is about the same as or less than EC50 of the compound for reducing urinary output of phosphate, where urinary output is reduced by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%. In some embodiments, for instance, the Cmax is about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% less than the EC50 for reducing urinary output of phosphate. In some embodiments, the Cmax is about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9× (0.9 times) the EC50 for reducing urinary output of phosphate. In some embodiments, one or more of the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, or measured in an animal model or cell-based assay, may have an EC50 for reducing urinary output of phosphate of about or less than about 10 μM, 9 μM, 8 μM, 7 μM, 7.5 μM, 6 μM, 5 μM, 4 μM, 3 μM, 2.5 μM, 2 μM, 1 μM, 0.5 μM, 0.1 μM, 0.05 μM, or 0.01 μM, or less, the IC50 being, for example, within the range of about 0.01 μM to about 10 μM, or about 0.01 μM to about 7.5 μM, or about 0.01 μM to about 5 μM, or about 0.01 μM to about 2.5 μM, or about 0.01 μM to about 1.0, or about 0.1 μM to about 10 μM, or about 0.1 μM to about 7.5 μM, or about 0.1 μM to about 5 μM, or about 0.1 μM to about 2.5 μM, or about 0.1 μM to about 1.0, or about μM 0.5 μM to about 10 μM, or about 0.5 μM to about 7.5 μM, or about 0.5 μM to about 5 μM, or about 0.5 μM to about 2.5 μM, or about 0.5 μM to about 1.0 μM. In certain embodiments, one or more of the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) to a subject in need thereof, may have a ratio of Cmax:EC50 (e.g., for increasing fecal output of phosphate, for decreasing urinary output of phosphate), wherein Cmax and EC50 are expressed in terms of the same units, of at about or less than about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0, or a range in between about 0.01-1.0, 0.01-0.9, 0.01-0.8, 0.01-0.7, 0.01-0.6, 0.01-0.5, 0.01-0.4, 0.01-0.3, 0.01-0.2, or 0.01-0.1, or a range in between about 0.1-1.0, 0.1-0.9, 0.1-0.8, 0.1-0.7, 0.1-0.6, 0.1-0.5, 0.1-0.4, 0.1-0.3, or 0.1-0.2. Additionally, or alternatively, one or more of the substantially systemically non-bioavailable compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, may have a Cmax of about or less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. B. Exemplary Structures Generally speaking, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that binds to and/or modulates NHE3 and has activity as a phosphate transport inhibitor, including small molecules that are substantially impermeable or substantially systemically non-bioavailable in the gastrointestinal tract, including known NHE-binding compounds that may be modified or functionalized in accordance with the present disclosure to alter the physicochemical properties thereof so as to render the overall compound substantially active in the GI tract. Accordingly, the compounds of the present disclosure may be generally represented by Formula (I): NHE-Z  (I) wherein: (i) NHE represents a NHE-binding small molecule, and (ii) Z represents a moiety having at least one site thereon for attachment to an NHE-binding small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The NHE-binding small molecule generally comprises a heteroatom-containing moiety and a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto. In particular, examination of the structures of small molecules reported to-date to be NHE-binders or inhibitors suggest, as further illustrated herein below, that most comprise a cyclic or heterocyclic support or scaffold bound directly or indirectly (by, for example, an acyl moiety or a hydrocarbyl or heterohydrocarbyl moiety, such as an alkyl, an alkenyl, a heteroalkyl or a heteroalkenyl moiety) to a heteroatom-containing moiety that is capable of acting as a sodium atom or sodium ion mimic, which is typically selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety (e.g., a nitrogen-containing heterocyclic moiety). Optionally, the heteroatom-containing moiety may be fused with the scaffold or support moiety to form a fused, bicyclic structure, and/or it may be capable of forming a positive charge at a physiological pH. In this regard it is to be noted that, while the heteroatom-containing moiety that is capable of acting as a sodium atom or ion mimic may optionally form a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein. Rather, in various embodiments, the compound may have no charged moieties, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof, the compound for example being a zwitterion). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge (e.g., +1, +2, +3, etc.), or a net negative charge (e.g., −1, −2, −3, etc.). The Z moiety may be bound to essentially any position on, or within, the NHE small molecule, and in particular may be: (i) bound to the scaffold or support moiety, (ii) bound to a position on, or within, the heteroatom-containing moiety, and/or (iii) bound to a position on, or within, a spacer moiety that links the scaffold to the heteroatom-containing moiety, provided that the installation of the Z moiety does not significantly adversely impact NHE-binding activity. In one particular embodiment, Z may be in the form of an oligomer, dendrimer or polymer bound to the NHE small molecule (e.g., bound for example to the scaffold or the spacer moiety), or alternatively Z may be in the form of a linker that links multiple NHE small molecules together, and therefore that acts to increase: (i) the overall molecular weight and/or polar surface area of the NHE-Z molecule; and/or, (ii) the number of freely rotatable bonds in the NHE-Z molecule; and/or, (iii) the number of hydrogen-bond donors and/or acceptors in the NHE-Z molecule; and/or, (iv) the Log P value of the NHE-Z molecule to a value of at least about 5 (or alternatively less than 1, or even about 0), all as set forth herein; such that the overall NHE-binding compound (i.e., the NHE-Z compound) is substantially impermeable or substantially systemically non-bioavailable. The present disclosure is more particularly directed to such a substantially impermeable or substantially systemically non-bioavailable, NHE-binding compound, or a pharmaceutical salt thereof, wherein the compound has the structure of Formula (II): wherein: (i) Z, as previously defined above, is a moiety bound to or incorporated in the NHE-binding small molecule, such that the resulting NHE-Z molecule possesses overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; (ii) B is the heteroatom-containing moiety of the NHE-binding small molecule, and in one particular embodiment is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; (iii) Scaffold is the cyclic or heterocyclic moiety to which is bound directly or indirectly the hetero-atom containing moiety (e.g., the substituted guanidinyl moiety or a substituted heterocyclic moiety), B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; (iv) X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-C7 hydrocarbyl or heterohydrocarbyl (e.g., C1-C7 alkyl, alkenyl, heteroalkyl or heteroalkenyl), and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties (e.g., C4-C7 cyclic or heterocyclic moieties), which links B and the Scaffold; and, (v) D and E are integers, each independently having a value of 1, 2 or more. In one or more particular embodiments, as further illustrated herein below, B may be selected from a guanidinyl moiety or a moiety that is a guanidinyl bioisostere selected from the group consisting of substituted cyclobutenedione, substituted imidazole, substituted thiazole, substituted oxadiazole, substituted pyrazole, or a substituted amine More particularly, B may be selected from guanidinyl, acylguanidinyl, sulfonylguanidinyl, or a guanidine bioisostere such as a cyclobutenedione, a substituted or unsubstituted 5- or 6-member heterocycle such as substituted or unsubstituted imidazole, aminoimidazole, alkylimidizole, thiazole, oxadiazole, pyrazole, alkylthioimidazole, or other functionality that may optionally become positively charged or function as a sodium mimetic, including amines (e.g., tertiary amines), alkylamines, and the like, at a physiological pH. In one particularly preferred embodiment, B is a substituted guanidinyl moiety or a substituted heterocyclic moiety that may optionally become positively charged at a physiological pH to function as a sodium mimetic. In one exemplary embodiment, the compound of the present disclosure (or more particularly the pharmaceutically acceptable HCl salt thereof, as illustrated) may have the structure of Formula (III): wherein Z may be optionally attached to any one of a number of sites on the NHE-binding small molecule, and further wherein the R1, R2 and R3 substituents on the aromatic rings are as detailed elsewhere herein, and/or in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. In this regard it is to be noted, however, that the substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds of the present disclosure may have a structure other than illustrated above, without departing from the scope of the present disclosure. For example, in various alternative embodiments, one or both of the terminal nitrogen atoms in the guanidine moiety may be substituted with one or more substituents, and/or the modifying or functionalizing moiety Z may be attached to the NHE-binding compound by means of (i) the Scaffold, (ii) the spacer X, or (iii) the heteroatom-containing moiety, B, as further illustrated generally in the structures provided below: In this regard it is to be further noted that, as used herein, “bioisostere” generally refers to a moiety with similar physical and chemical properties to a guanidine moiety, which in turn imparts biological properties to that given moiety similar to, again, a guanidine moiety, in this instance. (See, for example, Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes.) As further detailed below, known NHE-binding small molecules or chemotypes that may serve as suitable starting materials (for modification or functionalization, in order to render the small molecules substantially impermeable or substantially systemically non-bioavailable, and/or used in pharmaceutical preparations) may generally be organized into a number of subsets, such as for example: wherein: the terminal ring (or, in the case of the non-acyl guanidines, “R”), represent the scaffold or support moiety; the guanidine moiety (or the substituted heterocycle, and more specifically the piperidine ring, in the case of the non-guanidine inhibitors) represents B; and, X is the acyl moiety, or the -A-B-acyl- moiety (or a bond in the case of the non-acyl guanidines and the non-guanidine inhibitors). (See, e.g., Lang, H. J., “Chemistry of NHE Inhibitors” in The Sodium-Hydrogen Exchanger, Harmazyn, M., Avkiran, M. and Fliegel, L., Eds., Kluwer Academic Publishers 2003. See also B. Masereel et al., An Overview of Inhibitors of Na+/H+Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Without being held to any particular theory, it has been proposed that a guanidine group, or an acylguanidine group, or a charged guanidine or acylguanidine group (or, in the case of non-guanidine inhibitors, a heterocycle or other functional group that can replicate the molecular interactions of a guanidinyl functionality including, but not limited to, a protonated nitrogen atom in a piperidine ring) at physiological pH may mimic a sodium ion at the binding site of the exchanger or antiporter (See, e.g., Vigne et al., J. Biol. Chem. 1982, 257, 9394). Although the heteroatom-containing moiety may be capable of forming a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein, or even that the heteroatom-containing moiety therein be capable of forming a positive charge in all instances. Rather, in various alternative embodiments, the compound may have no charged moieties therein, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge, or a net negative charge. In this regard it is to be noted that the U.S. patents and U.S. Published applications cited above, or elsewhere herein, are incorporated herein by reference in their entirety, for all relevant and consistent purposes. In addition to the structures illustrated above, and elsewhere herein, it is to be noted that bioisosteric replacements for guanidine or acylguanidine may also be used. Potentially viable bioisosteric “guanidine replacements” identified to-date have a five- or six-membered heterocyclic ring with donor/acceptor and pKa patterns similar to that of guanidine or acylguanidine (see for example Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes), and include those illustrated below: The above bioisosteric embodiments (i.e., the group of structures above) correspond to “B” in the structure of Formula (II), the broken bond therein being attached to “X” (e.g., the acyl moiety, or alternatively a bond linking the bioisostere to the scaffold), with bonds to Z in Formula (III) not shown here. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-binding small molecule and the modifying or functionalizing moiety Z is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-binding small molecule is bound or connected in some way (e.g., by a bond or linker of some kind) to Z, such that the resulting NHE-Z molecule is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). Alternatively, Z may be incorporated into the NHE-binding small molecule, such as for example by positioning it between the guanidine moiety and scaffold. It is to be further noted that a number of structures are provided herein for substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds, and/or for NHE-binding small molecules suitable for modification or functionalization in accordance with the present disclosure so as to render them substantially impermeable or substantially systemically non-bioavailable. Due to the large number of structures, various identifiers (e.g., atom identifiers in a chain or ring, identifiers for substituents on a ring or chain, etc.) may be used more than once. An identifier in one structure should therefore not be assumed to have the same meaning in a different structure, unless specifically stated (e.g., “R1” in one structure may or may not be the same as “R1” in another structure). Additionally, it is to be noted that, in one or more of the structures further illustrated herein below, specific details of the structures, including one or more of the identifiers therein, may be provided in a cited reference, the contents of which are specifically incorporated herein by reference for all relevant and consistent purposes. C. Illustrative Small Molecule Embodiments The substantially impermeable or substantially systemically non-bioavailable NHE3-binding compounds of the present disclosure may in general be derived or prepared from essentially any small molecule possessing the ability to bind to and/or modulate NHE3, including small molecules that have already been reported or identified as binding to and/or modulating NHE3 activity but lack impermeability (i.e., are not substantially impermeable). In one particularly preferred embodiment, the compounds utilized in the various methods of the present disclosure are derived or prepared from small molecules that bind to the NHE3, -2, and/or -8 isoforms. Although the present disclosure relates generally to NHE3-binding compounds, compounds exhibiting NHE-2 and/or -8 binding or inhibition are also of interest. However, while it is envisioned that appropriate starting points may be the modification of known NHE3, -2, and/or -8 binding or inhibiting small molecules, small molecules identified for the binding or inhibition of other NHE subtypes, including NHE-1, may also be of interest, and may be optimized for selectivity and binding to the NHE3 subtype antiporter. Small molecules suitable for use (i.e., suitable for use as substantially bioavailable compounds, suitable for modification or functionalization to generate substantially systemically non-bioavailable compounds) include those illustrated below. In this regard it is to be noted a bond or link to Z (i.e., the modification or functionalization that renders the small molecules substantially impermeable or substantially systemically non-bioavailable) is not specifically shown. As noted, the Z moiety may be attached to, or included within, the small molecule at essentially any site or position that does not interfere (e.g., sterically interfere) with the ability of the resulting compound to effectively bind the NHE antiport of interest. More particularly, Z may be attached to essentially any site on the NHE-binding small molecule, Z for example displacing all or a portion of a substituent initially or originally present thereon and as illustrated below, provided that the site of installation of the Z moiety does not have a substantially adversely impact on the NHE-binding activity thereof. In one particular embodiment, however, a bond or link extends from Z to a site on the small molecule that effectively positions the point of attachment as far away (based, for example, on the number of intervening atoms or bonds) from the atom or atoms present in the resulting compound that effectively act as the sodium ion mimic (for example, the atom or atoms capable of forming a positive ion under physiological pH conditions). In a preferred embodiment, the bond or link will extend from Z to a site in a ring, and more preferably an aromatic ring, within the small molecule, which serves as the scaffold. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453 patent, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound I1 on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H —NH2 The variables (“R1”, “R2 and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In these structures, a bond or link (not shown) may extend, for example, between the Core and amine-substituted aromatic ring (first structure), the heterocyclic ring or the aromatic ring to which it is bound, or alternatively the chloro-substituted aromatic ring (second structure), or the difluoro-substituted aromatic ring or the sulfonamide-substituted aromatic ring (third structure). D. Exemplary Small Molecule Selectivity Shown below are examples of various NHE binding small molecules and their selectivity across the NHE-1, -2 and -3 isoforms. (See, e.g., B. Masereel et al., An Overview of Inhibitors of Na+/H+Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Most of these small molecules were optimized as NHE-1 inhibitors, and this is reflected in their selectivity with respect thereto (IC50's for subtype-1 are significantly more potent (numerically lower) than for subtype-3). However, the data in Table 2 indicates that NHE3 binding activity may be engineered into a compound series originally optimized against a different isoform. For example, amiloride is a poor NHE3 binder/inhibitor and was inactive against this antiporter at the highest concentration tested (IC50>100 μM); however, analogs of this compound, such as DMA and EIPA, have NHE3 IC50's of 14 and 2.4 μM, respectively. The cinnamoylguanidine S-2120 is over 500-fold more active against NHE-1 than NHE3; however, this selectivity is reversed in regioisomer S-3226. It is thus possible to engineer NHE3 binding selectivity into a chemical series optimized for potency against another antiporter isoform; that is, the inhibitor classes exemplified in the art may be suitably modified for activity and selectivity against NHE3 (or alternatively NHE-2 and/or NHE-8), as well as being optionally modified to be rendered substantially impermeable or substantially systemically non-bioavailable. TABLE 2 IC50 or Ki (μM) b Drug a NHE-1 NHE-2 NHE-3 NHE-5 Amiloride   1-1.6* 1.0** >100* 21 EIPA 0.01*-0.02** 0.08*-0.5** 2.4* 0.42 HMA 0.013* — 2.4* 0.37 DMA 0.023* 0.25* 14*  — Cariporide 0.03-3.4  4.3-62     1->100 >30 Eniporide 0.005-0.38   2-17 100-460 >30 Zoniporide 0.059 12 >500* — BMS-284640 0.009 1800 >30  3.36 T-162559 (S) 0.001 0.43 11 — T-162559 (R) 35 0.31 >30  — S-3226 3.6  80** 0.02 S-2120 0.002 0.07 1.32 *from rat, **from rabbit. NA = not active a Table adapted from Masereel, B. et al., European Journal of Medicinal Chemistry, 2003, 38, 547-54. b Ki values are in italic As previously noted above, the NHE-binding small molecules disclosed herein, including those noted above, may advantageously be modified to render them substantially impermeable or substantially systemically non-bioavailable. The compounds as described herein are, accordingly, effectively localized in the gastrointestinal tract or lumen, and in one particular embodiment the colon. Since the various NHE isoforms may be found in many different internal organs (e.g., brain, heart, liver, etc.), localization of the NHE binding compounds in the intestinal lumen can be desirable in order to minimize or eliminate systemic effects (i.e., prevent or significantly limit exposure of such organs to these compounds). Accordingly, the present disclosure provides NHE binding compounds, and in particular NHE3, -2 and/or -8 inhibitors, which are substantially systemically non-bioavailable in the GI tract, and more specifically substantially systemically impermeable to the gut epithelium, as further described herein. E. Exemplary Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is monovalent; that is, the molecule contains one moiety that effectively binds to and/or modulates NHE3 and also inhibits phosphate transport in the GI tract or kidneys. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following structures of Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen (e.g., Cl), —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R4 is selected from H, C1-C7 alkyl or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines, optionally linked to the ring Ar1 by a heterocyclic linker; R4 and R12 are independently selected from H and R7, where R7 is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R3 is selected from H or R7, where R7 is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or R7, wherein R7 is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In another particular embodiment, the NHE-Z molecule of the present disclosure may have the structure of Formula (IV): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted hydrocarbyl, heterohydrocarbyl, or polyols and/or substituted or unsubstituted polyalkylene glycol, wherein substituents thereon are selected from the group consisting of phosphinates, phosphonates, phosphonamidates, phosphates, phosphonthioates and phosphonodithioates; R4 is selected from H or Z, where Z is substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and a polyol, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is selected from —H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. Additionally, or alternatively, in one or more embodiments of the compounds illustrated above, the compound may optionally have a tPSA of at least about 100 Å2, about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, or more and/or a molecular weight of at least about 710 Da. F. Polyvalent Structures: Macromolecules and Oligomers (i). General Structure As noted above, certain embodiments relate to NHE-binding small molecules that have been modified or functionalized structurally to alter its physicochemical properties (by the attachment or inclusion of moiety Z), and more specifically the physicochemical properties of the NHE-Z molecule, thus rendering it substantially impermeable or substantially systemically non-bioavailable. In one particular embodiment, and as further detailed elsewhere herein, the NHE-Z compound may be polyvalent (i.e., an oligomer, dendrimer or polymer moiety), wherein Z may be referred to in this embodiment generally as a “Core” moiety, and the NHE-binding small molecule may be bound, directly or indirectly (by means of a linking moiety) thereto, the polyvalent compounds having for example one of the following general structures of Formula (VIII), (IX) and (X): NHE-Core  (VIII) [NHEE-Z  (IX) CoreL-NHE)n  (X) wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and E and n are both an integer of 2 or more. In various alternative embodiments, however, the NHE-binding small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-binding small molecules, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (XI): NHEL-NHEm-L-NHE  (XI) wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-binding small molecule is modified (e.g., increased) by having a series of NHE-binding small molecules linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In these or yet additional alternative embodiments, the polyvalent compound may be in dimeric, oligomeric or polymeric form, wherein for example Z or the Core is a backbone to which is bound (by means of a linker, for example) multiple NHE-binding small molecules. Such compounds may have, for example, the structures of Formulas (XIIA) or (XIIB): wherein: L is a linking moiety; NHE is a NHE-binding small molecule, each NHE as described above and in further detail hereinafter; and n is a non-zero integer (i.e., an integer of 1 or more). The Core moiety has one or more attachment sites to which NHE-binding small molecules are bound, and preferably covalently bound, via a bond or linker, L. The Core moiety may, in general, be anything that serves to enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable (e.g., an atom, a small molecule, etc.), but in one or more preferred embodiments is an oligomer, a dendrimer or a polymer moiety, in each case having more than one site of attachment for L (and thus for the NHE-binding small molecule). The combination of the Core and NHE-binding small molecule (i.e., the “NHE-Z” molecule) may have physicochemical properties that enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable. In this regard it is to be noted that the repeat unit in Formulas (XIIA) and (XIIB) generally encompasses repeating units of various polymeric embodiments, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-binding small molecule by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-binding moieties therein. The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound corresponding to the structure of Formula (X) are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each “NHE” moiety (i.e., the NHE small molecule) in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medical Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the Core-(L-NHE)n molecule, allowing an increase in distance between the NHE-binding compounds while minimally increasing rotational degrees of freedom. In an alternative embodiment (e.g., Formula (XI), wherein m=0), the structure may be for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, n and m may both be within the range of from about 1 to about 50, or from about 1 to about 20. The structures provided above are illustrations of one embodiment of compounds utilized for administration wherein absorption is limited (i.e., the compound is rendered substantially impermeable or substantially systemically non-bioavailable) by means of increasing the molecular weight of the NHE-binding small molecule. In an alternative approach, as noted elsewhere herein, the NHE-binding small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by means of altering, and more specifically increasing, the topological polar surface area, as further illustrated by the following structures, wherein a substituted aromatic ring is bound to the “scaffold” of the NHE-binding small molecule. The selection of ionizable groups such as phosphonates, sulfonates, guanidines and the like may be particularly advantageous at preventing paracellular permeability. Carbohydrates are also advantageous, and though uncharged, significantly increase tPSA while minimally increasing molecular weight. It is to be noted, within one or more of the various embodiments illustrated herein, NHE-binding small molecules suitable for use (i.e., suitable for use as substantially bioavailable compounds, suitable for modification or functionalization, in order to render them substantially impermeable or substantially systemically non-bioavailable) may, in particular, be selected independently from one or more of the small molecules described as benzoylguandines, heteroaroylguandines, “spacer-stretched” aroylguandines, non-acyl guanidines and acylguanidine isosteres, above, and as discussed in further detail hereinafter and/or to the small molecules detailed in, for example: U.S. Pat. No. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,887,870; 6,737,423; 7,326,705; 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Again, it is to be noted that when it is said that NHE-binding small molecule is selected independently, it is intended that, for example, the oligomeric structures represented in Formulas (X) and (XI) above can include different structures of the NHE small molecules, within the same oligomer or polymer. In other words, each “NHE” within a given polyvalent embodiment may independently be the same or different than other “NHE” moieties within the same polyvalent embodiment. In designing and making the substantially impermeable or substantially systemically non-bioavailable, NHE-binding compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a small molecule NHE-binding compound, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE-binding small molecule and then testing these adducts to determine whether the modified compound still retains desired biological properties (e.g., NHE3 binding and/or modulation, inhibition of phosphate transport). An understanding of the SAR of the compound also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. For example, the SAR of an NHE-binding compound series may show that installation of an N-alkylated piperazine contributes positively to biochemical activity (increased potency) or pharmaceutical properties (increased solubility); the piperazine moiety may then be utilized as the point of attachment for the desired core or linker via N-alkylation. In this fashion, the resulting compound thereby retains the favorable biochemical or pharmaceutical properties of the parent small molecule. In another example, the SAR of an NHE-binding compound series might indicate that a hydrogen bond donor is important for activity or selectivity. Core or linker moieties may then be designed to ensure this H-bond donor is retained. These cores and/or linkers may be further designed to attenuate or potentiate the pKa of the H-bond donor, potentially allowing improvements in potency and selectivity. In another scenario, an aromatic ring in a compound could be an important pharmacophore, interacting with the biological target via a pi-stacking effect or pi-cation interaction. Linker and core motifs may be similarly designed to be isosteric or otherwise synergize with the aromatic features of the small molecule. Accordingly, once the structure-activity relationships within a molecular series are understood, the molecules of interest can be broken down into key pharmacophores which act as essential molecular recognition elements. When considering the installation of a core or linker motif, said motifs can be designed to exploit this SAR and may be installed to be isosteric and isoelectronic with these motifs, resulting in compounds that retain biological activity but have significantly reduced permeability. Another way the SAR of a compound series can be exploited in the installation of core or linker groups is to understand which regions of the molecule are insensitive to structural changes. For example, X-ray co-crystal structures of protein-bound compounds can reveal those portions of the compound that are solvent exposed and not involved in productive interactions with the target. Such regions can also be identified empirically when chemical modifications in these regions result in a “flat SAR” (i.e., modifications appear to have minimal contribution to biochemical activity). Those skilled in the art have frequently exploited such regions to engineer in pharmaceutical properties into a compound, for example, by installing motifs that may improve solubility or potentiate ADME properties. In the same fashion, such regions are expected to be advantageous places to install core or linker groups to create compounds as described in the instant disclosure. These regions are also expected to be sites for adding, for example, highly polar functionality such as carboxylic acids, phosphonic acids, sulfonic acids, and the like in order to greatly increase tPSA. Another aspect to be considered in the design of cores and linkers displaying an NHE-binding activity is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-binding compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. Specific examples of NHE-binding small molecules modified consistent with the principles detailed above are illustrated below. These moieties display functional groups that facilitate their appendage to “Z” (e.g., a core group, Core, or linking group, L). These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. Small molecule NHE binding compounds may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE binding compound may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3]cycloaddition. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of an NHE-binding small molecule to a desired core or linker. Exemplary functionalized derivatives of NHEs include but are not limited to the following: wherein the variables in the above-noted structures (e.g., R, etc.) are as defined in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. See also Linz et al., Hypertension. 60:1560-7, 2012. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Patent Application No. 2005/0020612 and U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated by the following: Nucleophilic Linkers (for Use with Electrophilic NHE-Inhibitory Derivatives) Electrophilic Linkers (for Use with Nucleophilic NHE-Inhibitory Derivatives) The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-binding small molecule is linked to a core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the compounds), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either an NHE binding compound or a linker moiety displaying an NHE binding compound, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety is a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001) and represented in FIG. 17. In this approach, the NHE-binding small molecule is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE binding group is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as co-monomers. For example, specific monomers or co-monomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobomyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobomyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE-binding small molecule, NHE, is attached or otherwise a part of is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE-binding small molecule, NHE, is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures may be designed and constructed as described herein: It is to be further noted that the repeat moiety in Formulas (XIIA) or (XIIB) generally encompasses repeating units of polymers and copolymers produced by methods referred to herein above. It is to be noted that the various properties of the oligomers and polymers that form the core moiety as disclosed herein above may be optimized for a given use or application using experimental means and principles generally known in the art. For example, the overall molecular weight of the compounds or structures presented herein above may be selected so as to achieve non-absorbability, inhibition persistence and/or potency. Additionally, with respect to those polymeric embodiments that encompass or include the compounds generally represented by the structure of Formula (I) herein, and/or those disclosed for example in the many patents and patent applications cited herein (see, e.g., U.S. Pat. No. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,887,870; 6,737,423; 7,326,705; 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes), such as those wherein these compounds or structures are pendants off of a polymeric backbone or chain, the composition of the polymeric backbone or chain, as well as the overall size or molecular weight of the polymer, and/or the number of pendant molecules present thereon, may be selected according to various principles known in the art in view of the intended application or use. With respect to the polymer composition of the NHE-binding compound, it is to be noted that a number of polymers can be used including, for example, synthetic and/or naturally occurring aliphatic, alicyclic, and/or aromatic polymers. In preferred embodiments, the polymer moiety is stable under physiological conditions of the GI tract. By “stable” it is meant that the polymer moiety does not degrade or does not degrade significantly or essentially does not degrade under the physiological conditions of the GI tract. For instance, at least about 90%, preferably at least about 95%, and more preferably at least about 98%, and even more preferably at least about 99% of the polymer moiety remains un-degraded or intact after at least about 5 hours, at least about 12 hours, at least about 18 hours, at least about 24 hours, or at least about 48 hours of residence in a gastrointestinal tract. Stability in a gastrointestinal tract can be evaluated using gastrointestinal mimics, e.g., gastric mimics or intestinal mimics of the small intestine, which approximately model the physiological conditions at one or more locations therein. Polymer moieties detailed herein for use as the core moiety can be hydrophobic, hydrophilic, amphiphilic, uncharged or non-ionic, negatively or positively charged, or a combination thereof. Additionally, the polymer architecture of the polymer moiety can be linear, grafted, comb, block, star and/or dendritic, preferably selected to produce desired solubility and/or stability characteristics as described above. Additionally or alternatively, modifications may be made to NHE-binding small molecules that increase tPSA, thus contributing to the impermeability of the resulting compounds. Such modifications preferably include addition of di-anions, such as phosphonates, malonates, sulfonates and the like, and polyols such as carbohydrates and the like. Exemplary derivatives of NHEs with increased tPSA include but are not limited to the following: (ii). Exemplary Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is polyvalent; that is, the molecule contains two or more moieties that effectively acts to bind to and/or modulate NHE3 and also inhibit phosphate transport in the GI tract or kidneys. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 is selected from H, C1-C7 alkyl or L, where L is as described above; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are optionally linked to the ring Ar1 by a heterocyclic linker, and further are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 and R12 are independently selected from H or L, where L is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R3 is selected from H or L, where L is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or L, wherein L is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In one particular embodiment, the NHE-binding small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further particular embodiments of the above embodiment, the NHE-binding small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L. In one embodiment, the compound has the structure of Formula (X): CoreL-NHE)n  (X). In further particular embodiments of the above embodiment, the NHE-binding small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further particular embodiments of the above embodiment, L is a polyalkylene glycol linker, such as a polyethylene glycol linker. In further particular embodiments of the above embodiment, n is 2. In further particular embodiments of the above embodiment, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further particular embodiments of the above embodiment, the Core is selected from the group consisting of: H. General Structure of Additional Exemplary Compounds In one embodiment, the compounds of the present disclosure may be generally represented by Formula (I-H): CoreL-NHE)  (I-H) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (i) NHE represents a NHE-binding and/or modulating small molecule moiety as set forth below, (ii) n is an integer of 2 or more, (iii) Core is a Core moiety having two or more sites thereon for attachment to two or more NHE-binding small molecule moieties, and (iv) L is a bond or linker connecting the Core moiety to the two or more NHE-binding small molecule moieties, the resulting NHE-binding compound (i.e., a compound of Formula (I)) possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The Core moiety may be bound to essentially any position on, or within, the NHE-binding small molecule moiety, provided that the installation thereof does not significantly adversely impact NHE-binding activity. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-binding small molecule moiety and the Core moiety is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-binding small molecule moiety is bound or connected in some way (e.g., by a bond or linker of some kind) to the Core moiety, such that the resulting NHE-binding compound is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). NHE-binding small molecule moieties suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) in the preparation of the substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds of the present disclosure are disclosed in WO 2010/025856, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and have the following structure of Formula (X-H): The variables in the structure are defined in WO 2010/025856, the details of which are incorporated herein by reference. In more specific embodiments, the NHE-binding small molecule moiety has the following structure of Formula (XI-H): wherein: B is selected from the group consisting of aryl and heterocyclyl; each R5 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-4alkyl, optionally substituted C1-4alkoxy, optionally substituted C1-4thioalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxyl, oxo, cyano, nitro, —NR7R8, —NR7C(═O)R8, —NR7C(═O)OR8, —NR7C(═O)NR8R9, —NR7SO2R8, —NR7S(O)2NR8R9, —C(═O)OR7, —C(═O)R7, —C(═O)NR7R8, —S(O)1-2R7, and —SO2NR7R8, wherein R7, R8, and R9 are independently selected from the group consisting of hydrogen, C1-4alkyl, or a bond linking the NHE-binding small molecule moiety to L, provided at least one is a bond linking the NHE-binding small molecule moiety to L; R3 and R4 are independently selected from the group consisting of hydrogen, optionally substituted C1-4alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl and optionally substituted heteroaryl; or R3 and R4 form together with the nitrogen to which they are bonded an optionally substituted 4-8 membered heterocyclyl; and each R1 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-6alkyl and optionally substituted C1-6alkoxy. In yet further more specific embodiments, the NHE-binding small molecule moiety has the following structure of Formula (XII-H): wherein: each R3 and R4 are independently selected from the group consisting of hydrogen and optionally substituted C1-4alkyl, or R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 4-8 membered heterocyclyl; each R1 is independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, and C1-6haloalkyl; and R5 is selected from the group consisting of —SO2—NR7— and —NHC(═O)NH—, wherein R7 is hydrogen or C1-4alkyl. In various alternative embodiments, the NHE-binding small molecule moiety may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-binding small molecule moieties, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (II-H): NHEL-NHEm-L-NHE  (II-H) wherein: NHE is as defined above; L is a bond or linker, as further defined elsewhere herein; and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-binding small molecule moiety is modified (e.g., increased) by having a series of NHE-binding small molecule moieties linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In yet additional alternative embodiments, the polyvalent NHE-binding compound may be in oligomeric or polymeric form, wherein a backbone is bound (by means of a linker, for example) to multiple NHE-binding small molecule moieties. Such compounds may have, for example, the structures of Formulas (IIIA-H) or (IIIB-H): wherein: NHE is as defined above; L is a bond or linker, as further defined elsewhere herein; and n is a non-zero integer (i.e., an integer of 1 or more). It is to be noted that the repeat unit in Formulas (IIIA-H) and (IIIB-H) generally encompasses repeating units of various polymeric embodiments, including linear, branched and dendritic structures, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-binding small molecule moiety by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-binding small molecule moieties therein. In the foregoing polyvalent embodiments, L may be a polyalkylene glycol linker, such as a polyethylene glycol linker; and/or the Core may have the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. For example, in more specific embodiments, the Core may be selected, for example, from the group consisting of: In other more specific embodiments, the Core may be selected, for example, from the group consisting of: The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each NHE-binding small molecule moiety in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medical Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the molecule, allowing an increase in distance between the NHE-binding small molecule moieties while minimally increasing rotational degrees of freedom. In an alternative embodiment, wherein m=0, the structure may be, for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, E, n and m may be within the range of from about 1 to about 50, or from about 1 to about 20. In designing and making the substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a NHE-binding small molecule moiety, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE-binding small molecule moiety and then testing these adducts to determine whether the modified compound still retains desired biological properties (e.g., NHE-binding activity). An understanding of the SAR of the compound also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. Another aspect to be considered in the design of cores and linkers is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-binding compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of a NHE-binding small molecule moiety to a core or linker. These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. NHE-binding small molecule moieties may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE-binding small molecule moiety may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3]cycloaddition. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the following: Nucleophilic Linkers (for Use with Electrophilic NHEs) Electrophilic Linkers (for Use with Nucleophilic NHEs) The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-binding small molecule moiety is linked to a Core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the NHE-binding small molecule moieties), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either a NHE-binding small molecule moiety or a linker moiety displaying a NHE-binding small molecule moiety, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety may be a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001) and schematically represented In FIG. 17. In this approach, the NHE-binding small molecule moiety is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE-binding small molecule moiety is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as co-monomers. For example, specific monomers or co-monomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobomyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobomyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N-n-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE-binding small molecule moiety is attached, or otherwise a part of, is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE-binding small molecule moiety is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures (wherein is a NHE-binding small molecule moiety) may be designed and constructed as described herein: I. General Structure of Additional Exemplary Compounds In one embodiment, a compound is provided having the structure of Formula (I-I): CoreL-NHE)3  (I-I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) NHE is a NHE-binding small molecule moiety having the following structure of Formula (A-I): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring; (b) Core is a Core moiety having the following structure of Formula (B-I): wherein: X is selected from C(X1), N and N(C1-6alkyl); X1 is selected from hydrogen, optionally substituted alkyl, —NXaXb, —NO2, —NXc—C(═O)—NXc—Xa, —C(═O)NXc—Xa, —NXc—C(═O)—Xa, —NXc—SO2—Xa, —C(═O)—Xa and —OXa; each Xa and Xb are independently selected from hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl; Y is C1-6alkylene; Z is selected from —NZa—C(═O)—NZa—, —C(═O)NZa—, —NZa—C(═O)— and heteroaryl when X is CX1; Z is selected from —NZa—C(═O)—NZa—, —NZa—C(═O)— and heteroaryl when X is N or N(C1-6alkyl); and each Xc and Za is independently selected from hydrogen and C1-6alkyl; and (c) L is a bond or linker connecting the Core moiety to the NHE-binding small molecule moieties, the resulting NHE-binding compound (i.e., a compound of Formula (I)) possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The Core moiety may be bound to essentially any position on, or within, the NHE-binding small molecule moiety, provided that the installation thereof does not significantly adversely impact activity. In another embodiment, a compound is provided having the structure of Formula (II-I): CoreL-NHE)4  (II-I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) NHE is a NHE-binding small molecule moiety having the structure of Formula (A-I): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H, C1-6alkyl, —C1-6alkyl-OH or a bond linking the NHE-binding small molecule to L, provided at least one is a bond linking the NHE-binding small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-binding small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring; (b) Core is a Core moiety having the following structure of Formula (C-I): wherein: W is selected from alkylene, polyalkylene glycol, —C(═O)—NH-(alkylene)-NH—C(═O)—, —C(═O)—NH-(polyalkylene glycol)-NH—C(═O)—, —C(═O)-(alkylene)-C(═O)—, —C(═O)-(polyalkylene glycol)-C(═O)— and cycloalkyl; X is N; Y is C1-6alkylene; Z is selected from —NZa—C(═O)—NZa—, —C(═O)NZa—, —NZa—C(═O)— and heteroaryl; each Za is independently selected from hydrogen and C1-6alkyl; and (c) L is a bond or linker connecting the Core moiety to the NHE-binding small molecules, the resulting NHE-binding compound (i.e., a compound of Formula (II-I)) possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The Core moiety may be bound to essentially any position on, or within, the NHE-binding small molecule moiety, provided that the installation thereof does not significantly adversely impact activity. It is to be noted that, in the structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-binding small molecule moiety and the Core moiety is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-binding small molecule moiety is bound or connected in some way (e.g., by a bond or linker of some kind) to the Core moiety, such that the resulting NHE-binding compound is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each NHE-binding small molecule moiety in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medical Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the molecule, allowing an increase in distance between the NHE-binding small molecule moieties while minimally increasing rotational degrees of freedom. In designing and making the substantially impermeable or substantially systemically non-bioavailable NHE-binding compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a NHE-binding small molecule moiety, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE-binding small molecule moiety and then testing these adducts to determine whether the modified compound still retains desired biological properties (e.g., inhibition of phosphate transport). An understanding of the SAR of the compound also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. Another aspect to be considered in the design of cores and linkers is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-binding compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. It is understood that any embodiment of the compounds of the present invention, as set forth above, and any specific substituent set forth herein in such compounds, as set forth above, may be independently combined with other embodiments and/or substituents of such compounds to form embodiments of the inventions not specifically set forth above. In addition, in the event that a list of substituents is listed for any particular substituent in a particular embodiment and/or claim, it is understood that each individual substituent may be deleted from the particular embodiment and/or claim and that the remaining list of substituents will be considered to be within the scope of the invention. Furthermore, it is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds. III. Substantially Systemically Bioavailable Compounds A. Physical and Performance Properties of Compounds Certain of the compounds described herein are designed to be substantially active in systemic tissues, including the tissues of the kidney, upon administration via any route including enteral administration. For enteral administration, including oral delivery, certain of these compounds are substantially permeable to the epithelium of the gastrointestinal tract, including the epithelium of the oral cavity, esophagus, stomach, small intestine, and/or large intestine. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are substantially absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically bioavailable” and/or “substantially permeable” as used herein (as well as variations thereof) generally include situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure, enters the bloodstream or systemic tissues via the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or even about 99.5%, of the compound enters the bloodstream or systemic tissues via the gastrointestinal lumen. In such cases, localization to the bloodstream or systemic tissues refers to increasing the net movement of a compound across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments permeates a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments may also permeate through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be further noted, however, that in alternative embodiments “substantially permeable” or “substantially systemically bioavailable” provides or allows for some limited retention in the GI tract to occur (e.g., some detectable amount of absorption, such as for example less than about 0.1%, 0.5%, 1% or less than about 30%, 20%, 10%, 5%, etc., the range of retention being for example between about 1% and 30%, or 5% and 20%, etc.). In this regard it is to be further noted, that in certain embodiments, due to the substantial permeability and/or substantial systemic bioavailability of the compounds of the present invention, no greater than about 50%, 60%, 70%, 80%, 90%, or 95% of a compound of the invention is recoverable from the feces over, for example, a 24, 36, 48, 60, 72, 84, or 96 hour period following (e.g., enteral) administration to a subject in need thereof. In some embodiments, less than about 40%, 30%, 20%, or less than about 10%, or less than about 5%, of the amount of compound administered is present or recoverable in the subject's feces. In this respect, it is understood that a recovered compound can include the sum of the parent compound and its metabolites derived from the parent compound, e.g., by means of hydrolysis, conjugation, reduction, oxidation, N-alkylation, glucuronidation, acetylation, methylation, sulfation, phosphorylation, or any other modification that adds atoms to or removes atoms from the parent compound, wherein the metabolites are generated via the action of any enzyme or exposure to any physiological environment including, pH, temperature, pressure, or interactions with foodstuffs as they exist in the digestive milieu. Measurement of fecal recovery of compound and metabolites can be carried out using standard methodology. For example, a compound can be administered enterally (e.g., orally) at a suitable dose (e.g., 10 mg/kg) and feces are then collected at predetermined times after dosing (e.g., 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, 96 hours). Parent compound and metabolites can be extracted with organic solvent and analyzed quantitatively using mass spectrometry. A mass balance analysis of the parent compound and metabolites (including, parent=M, metabolite 1 [M+16], and metabolite 2 [M+32]) can be used to determine the percent recovery in the feces. (i) Cmax and IC50 In some embodiments, the substantially systemically bioavailable compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, exhibit a maximum concentration detected in the serum, defined as Cmax, that is about the same as or greater than the phosphate ion (Pi) transport or uptake inhibitory concentration IC50 of the compound. In some embodiments, for instance, the Cmax is about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500% or greater than the IC50 for inhibiting Pi transport or uptake. In some embodiments, the Cmax is about 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100× (100 times) the IC50 for inhibiting Pi transport or uptake. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of compounds detailed herein, when administered to a subject in need thereof, may have a ratio of Cmax:IC50 (for inhibiting Pi transport or uptake), wherein Cmax and IC50 are expressed in terms of the same units, of at about or at least about 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, or a range in between about 1-100, 1-50, or 1-10. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the compounds detailed herein, when administered (e.g., enterally) either alone or in combination with one or more additional pharmaceutically active compounds or agents to a subject in need thereof, may have a Cmax of about or greater than about 10 ng/ml, about 12.5 ng/ml, about 15 ng/ml, about 17.5 ng/ml, about 20 ng/ml, about 30 ng/ml, about 40 ng/ml, about 50 ng/ml, about 60 ng/ml, about 70 ng/ml, about 80 ng/ml, about 90 ng/ml, about 100 ng/ml, or about 200 ng/ml, the Cmax being for example within the range of about 10 ng/ml to about 200 ng/ml, 10 ng/ml to about 100 ng/ml, or about 10 ng/ml to about 50 ng/ml. B. Exemplary Substantially Systemically Bioavailable Compounds Generally, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that binds to, interacts with, and/or modulates NHE3, and has activity as a phosphate transport inhibitor, including small molecules that are substantially permeable or substantially systemically bioavailable upon administration via the gastrointestinal tract or other route, and including known NHE-binding and NHE-inhibitor compounds. Certain embodiments thus include compounds that are generally represented by the “NHE” moiety, as described elsewhere herein (e.g., supra), wherein NHE is a NHE-binding small molecule. Small molecules suitable for use (i.e., suitable for use as substantially bioavailable compounds) include those illustrated below. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, can be attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, can be attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, can be attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, can be attached to the NHE-binding small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453 patent, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound I1 on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In another embodiment, the NHE-binding small molecules suitable for use as substantially systemically bioavailable compounds are disclosed in WO 2010/025856, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and have the following structure. The variables in the structure are defined in WO 2010/025856, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H —NH2 The variables (“R1”, “R2 and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use as a substantially systemically bioavailable NHE-binding compound. In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In some embodiments, the substantially systemically bioavailable NHE-binding and/or modulating compound is selected from one or more of the following: IV. Pharmaceutical Compositions and Methods of Treatment For the purposes of administration, the compounds of the present invention may be administered to a patient or subject as a raw chemical or may be formulated as pharmaceutical compositions. Pharmaceutical compositions of the present invention generally comprise a compound of the invention and a pharmaceutically acceptable carrier, diluent, or excipient. The compound is present in the composition in an amount which is effective to treat a particular disease or condition of interest, as described herein, and preferably with acceptable toxicity to the subject. The activity of compound(s) can be determined by one skilled in the art, for example, as described in the Examples below. Appropriate concentrations and dosages can be readily determined by one skilled in the art. A compound or composition of the invention may be used in a method for treating essentially any disease or other condition in a subject which would benefit from phosphate uptake inhibition in the gastrointestinal tract and/or kidneys. For example, by way of explanation, but not limitation, kidney damage reduces the production and activity of renal 1-alpha hydroxylase, leading to lower 1,25-dihydroxy vitamin D. Decreased vitamin D levels limit gastrointestinal calcium absorption, leading to a decline in serum calcium levels. The combination of lower 1,25-dihydroxy vitamin D and lower serum calcium levels synergistically stimulate parathyroid tissue to produce and secrete PTH. A loss of nephrons also impairs Pi excretion, but serum P levels are actively defended by the actions of PTH and FGF-23, and by higher serum P levels, which considerably enhance urinary PO4 excretion. However, tubular actions of PTH and FGF-23 cannot maintain serum P levels in the face of continual nephron loss. Once renal insufficiency progresses to the loss of about 40-50% of renal function, the decrease in the amount of functioning renal tissue does not allow excretion of the full amount of ingested phosphate required to maintain homeostasis. As a result, hyperphosphatemia develops. In addition, a rise in serum P levels impedes renal 1-alpha hydroxylase activity, further suppressing activated vitamin D levels, and further stimulating PTH, leading to secondary hyperparathyroidism (sHPTH). Phosphorus imbalance, however, does not necessarily equate with hyperphosphatemia. Rather, the vast majority of CKD patients not yet on dialysis are normophosphatemic but their phosphorus balance is positive with the excess phosphorus being disposed in the vasculature in the form of ectopic calcification, e.g. intima-localized vascular calcification. Clinically, patients with CKD have elevated levels of FGF-23 that are significantly associated with deteriorating renal function and with decreased calcitriol levels, and it has been hypothesized that the synthesis of FGF-23 is induced by the presence of excess P in the body consecutive to renal failure. Furthermore, an unrecognized effect on cardiovascular disease is post-prandial phosphatemia, i.e. serum P excursion secondary to meal intake. Further still, studies have investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species and decreased nitric oxide, a known vasodilator agent. In the acute P loading study in healthy volunteers described above, it was found that the flow mediated dilation correlated inversely with postprandial serum P (Shuto et al., 2009b, J. Am. Soc. Nephrol., v. 20, no. 7, p. 1504-1512). Accordingly, in certain embodiments, a compound or composition of the invention can be used in a method selected from one or more of the following: a method for treating hyperphosphatemia, optionally postprandial hyperphosphatemia; a method for treating a renal disease (e.g., chronic kidney disease (CKD), end stage renal disease (ESRD)); a method for reducing serum creatinine levels; a method for treating proteinuria; a method for delaying time to renal replacement therapy (RRT) such as dialysis; a method for reducing FGF23 levels; a method for reducing the hyperphosphatemic effect of active vitamin D; a method for attenuating hyperparathyroidism such as secondary hyperparathyroidism; a method for reducing serum parathyroid hormone (PTH or iPTH); a method for reducing inderdialytic weight gain (IDWG); a method for improving endothelial dysfunction optionally induced by postprandial serum phosphate; a method for reducing vascular calcification or attenuating intima-localized vascular calcification; a method for reducing urinary phosphorus (e.g., enterally administering a GI-acting, substantially systemically non-bioavailable compound); a method for increasing urinary phosphorus (e.g., administering a substantially systemically bioavailable compound, administering a substantially systemically non-bioavailable compound via a route other than enteral administration); a method for normalizing serum phosphorus levels; a method for reducing phosphate burden in an elderly patient; a method for decreasing dietary phosphate uptake; a method for reducing postprandial calcium absorption; a method for reducing renal hypertrophy; a method for reducing heart hypertrophy; and a method for treating obstructive sleep apnea. In some embodiments, the invention provides the use of a compound or composition for treating hyperphosphatemia, optionally postprandial hyperphosphatemia; treating a renal disease (e.g., chronic kidney disease (CKD), end stage renal disease (ESRD)); reducing serum creatinine levels; treating proteinuria; delaying time to renal replacement therapy (RRT) such as dialysis; reducing FGF23 levels; for reducing the hyperphosphatemic effect of active vitamin D; attenuating hyperparathyroidism such as secondary hyperparathyroidism; reducing serum parathyroid hormone (PTH or iPTH); reducing inderdialytic weight gain (IDWG); improving endothelial dysfunction optionally induced by postprandial serum phosphate; reducing vascular calcification or attenuating intima-localized vascular calcification; reducing urinary phosphorus (e.g., enterally administering a GI-acting, substantially systemically non-bioavailable compound); increasing urinary phosphorus (e.g., administering a substantially systemically bioavailable compound, administering a substantially systemically non-bioavailable compound via a route other than enteral administration); normalizing serum phosphorus levels; reducing phosphate burden in an elderly patient; decreasing dietary phosphate uptake; reducing postprandial calcium absorption; reducing renal hypertrophy; reducing heart hypertrophy; and treating obstructive sleep apnea. In some embodiments, the invention provides the use of a compound or composition in the manufacture of a medicament for: treating hyperphosphatemia, optionally postprandial hyperphosphatemia; treating a renal disease (e.g., chronic kidney disease (CKD), end stage renal disease (ESRD)); reducing serum creatinine levels; treating proteinuria; delaying time to renal replacement therapy (RRT) such as dialysis; reducing FGF23 levels; for reducing the hyperphosphatemic effect of active vitamin D; attenuating hyperparathyroidism such as secondary hyperparathyroidism; reducing serum parathyroid hormone (PTH or iPTH); reducing inderdialytic weight gain (IDWG); improving endothelial dysfunction optionally induced by postprandial serum phosphate; reducing vascular calcification or attenuating intima-localized vascular calcification; reducing urinary phosphorus (e.g., enterally administering a GI-acting, substantially systemically non-bioavailable compound); increasing urinary phosphorus (e.g., administering a substantially systemically bioavailable compound, administering a substantially systemically non-bioavailable compound via a route other than enteral administration); normalizing serum phosphorus levels; reducing phosphate burden in an elderly patient; decreasing dietary phosphate uptake; reducing postprandial calcium absorption; reducing renal hypertrophy; reducing heart hypertrophy; and treating obstructive sleep apnea. In some embodiments, the invention provides a pharmaceutical composition comprising a compound or composition for: treating hyperphosphatemia, optionally postprandial hyperphosphatemia; treating a renal disease (e.g., chronic kidney disease (CKD), end stage renal disease (ESRD)); reducing serum creatinine levels; treating proteinuria; delaying time to renal replacement therapy (RRT) such as dialysis; reducing FGF23 levels; for reducing the hyperphosphatemic effect of active vitamin D; attenuating hyperparathyroidism such as secondary hyperparathyroidism; reducing serum parathyroid hormone (PTH or iPTH); reducing inderdialytic weight gain (IDWG); improving endothelial dysfunction optionally induced by postprandial serum phosphate; reducing vascular calcification or attenuating intima-localized vascular calcification; reducing urinary phosphorus (e.g., enterally administering a GI-acting, substantially systemically non-bioavailable compound); increasing urinary phosphorus (e.g., administering a substantially systemically bioavailable compound, administering a substantially systemically non-bioavailable compound via a route other than enteral administration); normalizing serum phosphorus levels; reducing phosphate burden in an elderly patient; decreasing dietary phosphate uptake; reducing postprandial calcium absorption; reducing renal hypertrophy; reducing heart hypertrophy; and treating obstructive sleep apnea. Hyperphosphatemia refers to a condition in which there is an elevated level of phosphate in the blood. Average serum phosphorus mass in a human adult typically range from about 2.5-4.5 mg/dL (about 0.81-1.45 mmol/L). Levels are often about 50% higher in infants and about 30% higher in children because of growth hormone effects. Hence, certain methods include treating an adult human patient having hyperphosphatemia, where the patient has serum phosphorus mass of about or at least about 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, or 5.5 mg/dL. In some aspects, the treatment reduces serum phosphate concentrations or levels in a hyperphosphatemic subject to about 150%, 145%, 140%, 135%, 130%, 125%, 120%, 115%, 110%, 105%, or 100% (normalized) of the normal serum phosphate levels (e.g., 2.5-4.5 mg/dL or 0.81-1.45 mmol/L for an adult). In some aspects, the treatment regimen results in and/or includes monitoring phosphate levels so that they remain within the range of about 2.5-4.5 mg/dL (about 0.81-1.45 mmol/L). Also included are methods of treating a child or adolescent human patient, where the patient has serum phosphorus mass of about or at least about 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.0 mg/dL. As noted herein, in these and related embodiments, administration of a compound or composition described herein may reduce serum phosphorus mass in the subject by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more. Certain embodiments relate to methods of treating chronic kidney disease (CKD), a condition characterized by the progressive loss of renal function. Common causes of CKD include diabetes mellitus, hypertension, and glomerulonephritis. Hence, certain methods include treating a subject with CKD, where the subject optionally also has one or more of the foregoing conditions. In some aspects, a subject is classified as having CKD if they have a glomerular filtration rate (GFR) of less than 60 mL/min/1.73 m2 for about 3 months, whether or not they also present with kidney damage. Certain methods thus include treating a subject with a GFR (e.g., an initial GFR, prior to treatment) of about or less than about 60, 55, 50, 45, 40, 30, 35, 20, 25, 20, 15, or 10 mL/min/1.73 m2 or so. In certain embodiments, administration of a compound or composition described herein may result in an increase in GFR of about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more. CKD is most often characterized according to the stage of disease: Stage 1, Stage 2, Stage, 3, Stage 4, and Stage 5. Stage 1 CKD includes subjects with kidney damage and a normal or relatively high GFR of about or greater than about 90 mL/min/1.73 m2. Stage 2 CKD includes subjects with kidney damage and a GFR of about 60-89 mL/min/1.73 m2. Stage 3 CKD includes subjects with kidney damage and a GFR of about 30-59 mL/min/1.73 m2. Stage 4 CKD includes subjects with kidney damage and a GFR of about 15-29 mL/min/1.73 m2. Stage 5 CKD includes subjects with established kidney failure and a GFR of less than about 15 mL/min/1.73 m2. Stage 5 CKD is also referred to as end-stage renal disease (ESRD). Accordingly, in certain methods, a subject has Stage 1, 2, 3, 4, or 5, CKD and one or more of its associated clinical characteristics (e.g., defined GFR, kidney damage). In some embodiments, the subject has ESRD and any one or more of its associated clinical characteristics, as described herein and known in the art. CKD can be characterized according to the affected parts of the kidney. For instance, in certain aspects, CKD includes vascular-associated CKD, including large vessel disease such as bilateral renal artery stenosis, and small vessel disease such as ischemic nephropathy, hemolytic-uremic syndrome and vasculitis. In certain aspects, CKD includes glomerular-associated CKD, including primary glomerular disease such as focal segmental glomerulosclerosis and IgA nephritis, and secondary Glomerular diseases such as diabetic nephropathy and lupus nephritis. Also included is tubulointerstitial-associated CKD, including polycystic kidney disease, drug and toxin-induced chronic tubulointerstitial nephritis, and reflux nephropathy. Certain subjects being treated for CKD may thus have one or more foregoing CKD-associated characteristics. Certain aspects relate to methods of treating a subject with kidney damage or one or more symptoms/clinical signs of kidney damage. Examples of kidney damage (e.g., CKD-associated kidney damage) and its related symptoms include pathological abnormalities and markers of damage, including abnormalities identified in blood testing (e.g., high blood or serum levels of creatinine, creatinine clearance), urine testing (e.g., proteinuria), and/or imaging studies. Creatinine is a break-down product of creatine phosphate in muscle, and provides an easily-measured and useful indicator of renal health. Normal human reference ranges for blood or serum creatinine range from about 0.5 to 1.0 mg/dL (about 45-90 μmol/l) for women and about 0.7 to 1.2 mg/dL (about 60-110 μmol/L) for men. Hence, certain subjects for treatment according to the methods described herein (e.g., initially, prior to treatment) may have blood or serum creatine levels that are about or greater than about 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 mg/dL. In these and related embodiments, administration of a compound or composition described herein may reduce overall blood or serum creatinine levels in a subject by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more. Creatinine clearance rate (CCr or CrCl) refers to the volume of blood plasma that is cleared of creatinine per unit time; it is measured by comparing the levels of creatinine in blood relative to urine over a period of time (e.g., 24 hours). Creatine clearance is often measured as milliliters/minute (ml/min) or as a function of body mass (ml/min/kg). Depending on the test performed, normal values range from about 97-137 ml/min for males and about 88-128 ml/min for females. Reduced creatinine clearance provides a useful sign of kidney damage. Hence, certain male subjects for treatment according to the methods described herein (e.g., initially, prior to treatment) may have a CCr of about or less than about 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50 or less. Certain female subjects for treatment according to the methods described herein (e.g., initially, prior to treatment) may have a CCr of about or less than about 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 47, 46, 45, 44, 43, 42, 41, 40 or less. In some embodiments, administration of a compound or composition described herein may maintain or increase the CCr in a subject by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more. Proteinuria refers to a condition of excess protein in the urine. It is associated with variety of disease conditions including kidney damage. Proteinuria is often characterized as a urine protein/creatinine ratio of greater than about 45 mg/mmol, or in specific tests an albumin/creatine ratio of greater than about 30 mg/mmol Certain subjects for treatment according to the methods provided herein (e.g., prior to treatment) have proteinuria, alone or in combination with CKD or other kidney damage, including subjects with a urine protein/creatinine ratio of about or greater than about 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, or 120 mg/mmol and/or a urine albumin/creatinine ratio of about or greater than about 30, 35, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, or 120 mg/mmol. In these and related embodiments, administration of a compound or composition described herein may treat proteinuria, for instance, by reducing the urine protein/creatinine ratio and/or the urine albumin/creatinine ratio by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more. CKD is associated with a variety of clinical symptoms. Examples include high blood pressure (hypertension), urea accumulation, hyperkalemia, anemia, hyperphosphatemia, hypocalcemia, metabolic acidosis, and atherosclerosis. Thus, in certain methods, a subject with CKD may also have or be at risk for having one or more of the foregoing clinical symptoms. In specific aspects, the subject with CKD has or is at risk for having hyperphosphatemia, as described herein. Renal replacement therapy (RRT) relates to the various life-supporting treatments for renal failure, including those initiated in the later stages of CKD and ESRD. Examples of RRT include dialysis, hemodialysis, hemofiltration, and renal transplantation. In certain embodiments, a subject for treatment according to the methods provided herein is about to undergo, is undergoing, or has undergone one or more types of RRT. In some embodiments, the subject is not yet undergoing RRT, and administration of a compound described herein delays the time to initiating RRT (e.g., relative to an untreated state) by about or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 weeks, or by about or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months, or by about or at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 years or more. Fibroblast growth factor 23 (FGF23) regulates phosphorus and vitamin D metabolism. It also promotes phosphaturia and decreases production of calcitriol. Increased FGF23 levels associate with mortality, left ventricular hypertrophy (or left ventricular mass index), myocardial performance, endothelial dysfunction, and progression of CKD. Indeed, FGF23 levels increase progressively in early CKD, presumably as a physiological adaptation to maintain normal serum phosphate levels or normal phosphorus balance. FGF23 levels might also contribute directly to tissue injury in the heart, vessels, and kidneys. Certain embodiments thus relate to the treatment of subjects having increased FGF23 levels in blood or serum (see, e.g., Kirkpantur et al., Nephrol Dial Transplant. 26:1346-54, 2011), including subjects with CKD and subjects undergoing dialysis/hemodialysis. In some aspects, administration of a compound or composition described herein reduces the logarithm of FGF23 levels in blood or serum by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more. Vitamin D stimulates, inter alia, the absorption of phosphate ions in the small intestine. Hence, excess levels or activity of Vitamin D can lead to increased phosphate levels and hyperphosphatemia. Certain embodiments thus relate to methods for reducing the hyperphosphatemic effect of active vitamin D, for instance, in a subject having elevated levels or activity of Vitamin D. In some aspects, the subject has Vitamin D toxicity due to over-ingestion of Vitamin D. Hyperparathyroidism is a disorder in which the parathyroid glands produce too much parathyroid hormone (PTH). Secondary hyperparathyroidism is characterized by the excessive secretion of PTH in response to hypocalcemia and associated hypertrophy of the parathyroid glands. CKD is the most common cause of secondary hyperparathyroidism, generally because the kidneys fail to convert sufficient vitamin D into its active form and to excrete sufficient phosphate. Insoluble calcium phosphate forms in the body and thus removes calcium from the circulation, leading to hypocalcemia. The parathyroid glands then further increase the secretion of PTH in an attempt to increase serum calcium levels. Certain subjects for treatment according to the methods provided herein may thus present (e.g., initially, prior to treatment) with hyperparathyroidism and/or increased PTH levels, optionally in combination with CKD, hyperphosphatemia, hypocalcemia, or other condition or symptom described herein. In some aspects, administration of a compound or composition described herein may reduce hyperparathyroidism including secondary hyperparathyroidism in a subject in need thereof. In some aspects, administration of a compound or composition described herein may reduce PTH levels by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more, for instance, by reducing serum phosphate levels and the associated formation of insoluble calcium phosphate, increasing available calcium, and thereby reducing the hypocalcemia-induced production of PTH. In certain embodiments, the administration of a compound described herein, for instance, a dual-active compound that inhibits both transport of Pi and NHE3-mediated antiport of sodium and hydrogen ions, can provide multiple therapeutic effects to a subject with CKD. In some instances, the administration of a dual-active compound reduces the logarithm of FGF23 levels and serum parathyroid hormone (PTH) levels by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more relative to an untreated state, reduces blood pressure, and reduces proteinuria by at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more relative to an untreated state. In particular embodiments, the administration of a compound described herein, for instance, a dual-active compound that inhibits both transport of Pi and NHE3-mediated antiport of sodium and hydrogen ions, can provide multiple therapeutic effects to a subject with ESRD (or Stage 5 CKD). In specific instances, the administration of a dual-active compound reduces serum phosphate concentrations or levels by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more relative to an untreated state, and reduces inderdialytic weight gain (IDWG) by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more relative to an untreated state. IDWG is an easily measurable parameter that is routinely assessed before, during, or after dialysis (see Sarkar et al., Semin Dial. 19:429-33, 2006). Hyperphosphatemia can lead to endothelial dysfunction in both healthy subjects and those with kidney disease, independently of vascular calcification (see, e.g., Di Marco et al., Kidney International. 83:213-222, 2013). Management of serum phosphate level by dietary phosphate restriction or phosphate binders can prevent such subjects from developing cardiovascular disease. Studies have also shown that dietary phosphate restriction can improve aortic endothelial dysfunction (e.g., in CKD with hyperphosphatemia) by increasing the activatory phosphorylation of endothelial nitric oxide synthase and Akt (see, e.g., Van et al., J Clin Biochem Nutr. 51:27-32, 2012). Certain subjects for treatment according to the methods provided herein may have or be at risk for having endothelial dysfunction, optionally combined with hyperphosphatemia, kidney disease, or any other condition described herein. By reducing postprandial or dietary phosphate uptake, alone or in combination with dietary phosphate restriction, administration of a compound or composition described herein may reduce the risk of developing endothelial dysfunction, or may improve already-existing endothelial dysfunction, including endothelial dysfunction induced by postprandial serum phosphate. Hyperphosphatemia is a primary inducer of vascular calcification (see Giachelli, Kidney Int. 75:890-897, 2009). Calcium phosphate deposition, mostly in the form of apatite, is the hallmark of vascular calcification and can occur in the blood vessels, myocardium, and cardiac valves. Together with passive deposition of calcium-phosphate in extra-skeletal tissues, inorganic phosphate can also induce arterial calcification directly through “ossification” of the tunica media in the vasculature. Moreover, vascular smooth muscle cells respond to elevated phosphate levels by undergoing an osteochondrogenic phenotype change and mineralizing their extracellular matrix through a mechanism requiring sodium-dependent phosphate cotransporters. Intimal calcification is usually found in atherosclerotic lesions. Medial calcification is commonly observed in age-associated arteriosclerosis and diabetes, and is the major form of calcification observed in ESRD. Indeed, extensive calcification of the arterial wall and soft tissues is a frequent feature of patients with CKD, including those with ESRD. In valves, calcification is a defining feature of aortic valve stenosis, and occurs in both the leaflets and ring, predominantly at sites of inflammation and mechanical stress. These mechanical changes are associated with increased arterial pulse wave velocity and pulse pressure, and lead to impaired arterial distensibility, increased afterload favoring left ventricular hypertrophy, and compromised coronary perfusion (see Guerin et al., Circulation. 103:987-992, 2001). Both intimal and medial calcifications may thus contribute to the morbidity and mortality associated with cardiovascular disease, and are likely to be major contributors to the significant increase in cardiovascular mortality risk observed in CKD and ESRD patients. Control of serum phosphate may thus reduce the formation of calcium/phosphate products and thereby reduce vascular calcification. Accordingly, certain of the subjects for treatment according to the methods provided herein may have or be at risk for developing vascular calcification, including intimal and/or medial calcification, optionally combined with any of hyperphosphatemia, CKD, and ESRD. In some embodiments, administration of a compound or composition described herein reduces the risk of developing or reduces the formation or levels of vascular calcification in a subject in need thereof. In particular embodiments, administration of a compound or composition described herein may reduce vascular calcification by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200% or more, for example, relative to an untreated state. Elderly patients can be especially susceptible to increased phosphate. For instance, dietary and genetic manipulation studies provide in vivo evidence that phosphate toxicity accelerates the aging process and suggest a novel role for phosphate in mammalian aging (see, e.g., Ohnishi and Razzaque, FASEB J. 24:3562-71, 2010). These studies show that excess phosphate associates with many signs of premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Certain embodiments thus relate to reducing phosphate burden in an elderly patient, for instance, to reduce any one or more signs of premature aging, comprising administering to the elderly patient a compound described herein. In some instances, an elderly patient is about or at least about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more years of age. Hypertrophy refers to the increase in the volume of an organ or tissue due to the enlargement of its component cells. Hyperphosphatemia associates with myocardial hypertrophy including left ventricular hypertrophy (see Neves et al., Kidney Int. 66:2237-44, 2004; and Achinger and Ayus, Am Soc Nephrol. 17(12 Suppl 3):S255-61, 2006) and compensatory renal hypertrophy including glomerular hypertrophy, the latter being often-observed in CKD. Certain subjects for treatment according to the methods provided herein may have (e.g., initially, prior to treatment) myocardial hypertrophy, renal hypertrophy, or both, alone or in combination with CKD or kidney damage. In some embodiments, administration of a compound described herein may reduce myocardial hypertrophy and/or renal hypertrophy by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200% or more relative to an untreated state. Sleep apnea is a sleep disorder characterized by abnormal pauses in breathing or abnormally low breathing during sleep. Pauses in breathing are referred to as apneas, and low-breathing events are referred to as hypopneas. These events can last from seconds to minutes, and may occur numerous times in an hour (e.g., >30 times an hour). The apnea-hypoapnea index (AHI) is calculated as the total number of apneas or hypoapneas divided by the hours of sleep. Mild, moderate, and severe sleep apnea are defined respectively as AHI 5-14, 15-29 and ≥30 events/hour. Obstructive sleep apnea (OSA) is the most common type of sleep apnea. In OSA, breathing is obstructed upon collapse of the walls of soft tissue in the airway, which occurs as the muscle tone of the body ordinarily relaxes during sleep. Chronic severe OSA can lead to hypoxemia (low blood oxygen), sleep deprivation, and other complications, including cardiovascular complications. Moreover, a high prevalence of CKD is present in severe OSA patients, including those without hypertension or diabetes. Significantly positive correlations are also found between severity of OSA and renal function impairment (see Chou et al., Nephrol. Dial. Transplant. 0:1-6, 2011). Moreover, acute hypoxia is associated with proteinuria, a sign of kidney damage or dysfunction (see Luks et al., J Am Soc Nephrol. 19:2262-2271, 2008). OSA and hypoxia thus associate with kidney dysfunction and OSA is considered a stand-alone risk factor for CKD (Chou et al., supra). Accordingly, certain subjects for treatment according to the methods provided herein may have OSA, alone or in combination with CKD or other symptoms of kidney damage. Administration of a compound or composition described herein to a subject with OSA may reduce the AHI by about or at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or more. Administration of the compounds of the invention, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions of the invention can be prepared by combining a compound of the invention with an appropriate pharmaceutically acceptable carrier, diluent or excipient, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. Typical routes of administering such pharmaceutical compositions include, without limitation, oral, topical, transdermal, inhalation, parenteral, sublingual, buccal, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Pharmaceutical compositions of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient. Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of the invention in aerosol form may hold a plurality of dosage units. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 20th Edition (Philadelphia College of Pharmacy and Science, 2000). The composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, for treatment of a disease or condition of interest in accordance with the teachings of this invention. A pharmaceutical composition of the invention may be in the form of a solid or liquid. In one aspect, the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup, injectable liquid or an aerosol, which is useful in, for example, inhalatory administration. When intended for oral administration, the pharmaceutical composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid. As a solid composition for oral administration, the pharmaceutical composition may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent. When the pharmaceutical composition is in the form of a capsule, for example, a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil. The pharmaceutical composition may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred composition contain, in addition to the present compounds, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer. In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included. The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile. A liquid pharmaceutical composition of the invention intended for either parenteral or oral administration should contain an amount of a compound of the invention such that a suitable dosage will be obtained. The pharmaceutical composition of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base. The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. The pharmaceutical composition of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol. The pharmaceutical composition of the invention may include various materials, which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients may be encased in a gelatin capsule. The pharmaceutical composition of the invention in solid or liquid form may include an agent that binds to the compound of the invention and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a monoclonal or polyclonal antibody, a protein or a liposome. The pharmaceutical composition of the invention may consist of dosage units that can be administered as an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients. Aerosols of compounds of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. One skilled in the art, without undue experimentation may determine preferred aerosols. The pharmaceutical compositions of the invention may be prepared by methodology well known in the pharmaceutical art. For example, a pharmaceutical composition intended to be administered by injection can be prepared by combining a compound of the invention with sterile, distilled water so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the compound of the invention so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system. The compounds of the invention, or their pharmaceutically acceptable salts, are administered in a therapeutically effective amount, which will vary depending upon a variety of factors including the activity of the specific compound employed; the metabolic stability and length of action of the compound; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy. In certain embodiments, a typical dosage of the substantially impermeable or substantially systemically non-bioavailable, compound may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of the compounds and compositions described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. Compounds of the invention, or pharmaceutically acceptable derivatives thereof, may also be administered simultaneously with, prior to, or after administration of one or more other therapeutic or biologically active agents, dietary supplements, or any combination thereof. Such combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound of the invention and one or more additional active agents, as well as administration of the compound of the invention and each active agent in its own separate pharmaceutical dosage formulation. For example, a compound of the invention and the other active agent can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations. Where separate dosage formulations are used, the compounds of the invention and one or more additional active agents can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e., sequentially; combination therapy is understood to include all these regimens. For example, in certain embodiments, the additional biologically active agent included in a pharmaceutical composition (or method) of the invention is selected, for example, from vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), active vitamin D (calcitriol) and active vitamin D analogs (e.g. doxercalciferol, paricalcitol). In other specific embodiments, the additional biologically active agent included in a pharmaceutical composition (or method) of the invention is a phosphate binder, such as sevelamer (e.g., Renvela® (sevelamer carbonate), Renagel® (sevelamer hydrochloride)), lanthanum carbonate (e.g., Fosrenol®), calcium carbonate (e.g., Calcichew®, Titralac®), calcium acetate (e.g. PhosLo®, Phosex®), calcium acetate/magnesium carbonate (e.g., Renepho®, OsvaRen®), MCI-196, ferric citrate (e.g., Zerenex™), magnesium iron hydroxycarbonate (e.g., Fermagate™), aluminum hydroxide (e.g., Alucaps®, Basaljel®), APS1585, SBR-759, PA-21, and the like. In some aspects, the compounds may act synergistically with phosphate binders by providing a higher efficacy than the sum of the efficacy of the transport inhibitor and that of a phosphate binder administered alone. Without wishing to be bound by theory, it is believed that the synergy results from the distinct mechanisms of action of a phosphate transport inhibitor and a phosphate binder. More specifically, a phosphate transport inhibitor blocks the epithelial inward transport of phosphate ions whereas phosphate binders sequester free phosphate ions in the lumen of the intestine. The efficacy of a phosphate binder, as measured by its in vivo binding capacity (mole of phosphate ions bound per gram of binder) is essentially dictated by: i) the density of binding sites (i.e., amine groups in Renvela® (sevelamer), a polymeric amine material; or multivalent cations such calcium or lanthanum in PhosLo® (Calcium acetate) or Fosrenol (lanthanum carbonate)); and ii) the affinity of said binding sites for phosphate ions. Notably only a fraction of the binding sites are available for phosphate binding in vivo as other anions, such as bile acids and fatty acids, compete for the binding sites and therefore lower efficacy. Bound phosphate ions are in equilibrium with free phosphate in the intestinal lumen and are themselves subject to intense pumping from phosphate transport proteins lining up the epithelia. Experiments have shown that the efficacy of phosphate intestinal uptake is remarkably high, exceeding 95% of the phosphate presented to the epithelia. It is believed that the active transport of phosphate contributes to lower the luminal free phosphate concentration and therefore to drive the binding equilibrium of a phosphate binder to lower binding capacity. It is also believed that by reducing the phosphate intestinal transport using a phosphate transport inhibitor, one restores a higher in vivo binding capacity of phosphate sequestering agents. The synergistic effect is thought to be even more pronounced when the contribution of active phosphate transport is increased as a result of, e.g. vitamin D treatment, an agent promoting NaPi2b expression. In some embodiments, the additional biologically active agent is an inhibitor of the intestinal sodium-dependent phosphate transporter (NaPi2b inhibitor). Examples of NaPi2b inhibitors can be found, for instance, in International Application Nos. PCT/US2011/043267; PCT/US2011/043261; PCT/US2011/043232; PCT/US2011/043266; and PCT/US2011/043263; and U.S. Pat. No. 8,134,015, each of which is incorporated by reference in its entirety. In certain embodiments, the additionally biologically active agent is niacin or nicotinamide. It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable or reasonably stable compounds. It will also be appreciated by those skilled in the art that in the process described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto, and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include —C(O)—R″ (where R″ is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T. W. and P. G. M. Wutz, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotrityl-chloride resin. It will also be appreciated by those skilled in the art, although such protected derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as “prodrugs”. All prodrugs of compounds of this invention are included within the scope of the invention. Furthermore, all compounds of the invention which exist in free base or acid form can be converted to their pharmaceutically acceptable salts by treatment with the appropriate inorganic or organic base or acid by methods known to one skilled in the art. Salts of the compounds of the invention can be converted to their free base or acid form by standard techniques. DEFINITIONS AND TERMINOLOGY “Amino” refers to the —NH2 radical. “Aminocarbonyl” refers to the —C(═O)NH2 radical. “Carboxy” refers to the —CO2H radical. “Carboxylate” refers to a salt or ester thereof. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH radical. “Nitro” refers to the —NO2 radical. “Oxo” or “carbonyl” refers to the ═O radical. “Thioxo” refers to the ═S radical. “Guanidinyl” (or “guanidine”) refers to the —NHC(═NH)NH2 radical. “Amidinyl” (or “amidine”) refers to the —C(═NH)NH2 radical. “Phosphate” refers to the —OP(═O)(OH)2 radical. “Phosphonate” refers to the —P(═O)(OH)2 radical. “Phosphinate” refers to the —PH(═O)OH radical, wherein each Ra is independently an alkyl group as defined herein. “Sulfate” refers to the —OS(═O)2OH radical. “Sulfonate” or “hydroxysulfonyl” refers to the —S(═O)2OH radical. “Sulfinate” refers to the —S(═O)OH radical. “Sulfonyl” refers to a moiety comprising a —SO2— group. For example, “alkysulfonyl” or “alkylsulfone” refers to the —SO2—Ra group, wherein Ra is an alkyl group as defined herein. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butyryl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, carboxyl groups, phosphate groups, sulfate groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfinate groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a phosphorus atom in groups such as phosphinate groups and phosphonate groups; a nitrogen atom in groups such as guanidine groups, amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)1-10Rg, —(CH2CH2O)2-10Rg, —(OCH2CH2)1-10Rg and —(OCH2CH2)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. The above non-hydrogen groups are generally referred to herein as “substituents” or “non-hydrogen substituents”. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. By “about” is meant a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1% to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, length, or other unit described herein. The term “activate” refers to the application of physical, chemical, or biochemical conditions, substances or processes that a receptor (e.g., pore receptor) to structurally change in a way that allows passage of ions, molecules, or other substances. The term “active state” refers to the state or condition of a receptor in its non-resting condition. “Efflux” refers to the movement or flux of ions, molecules, or other substances from an intracellular space to an extracellular space. “Enteral” or “enteric” administration refers to administration via the gastrointestinal tract, including oral, sublingual, sublabial, buccal, and rectal administration, and including administration via a gastric or duodenal feeding tube. The term “inactive state” refers to the state of a receptor in its original endogenous state, that is, its resting state. The term “modulating” includes “increasing” or “enhancing,” as well as “decreasing” or “reducing,” typically in a statistically significant or a physiologically significant amount as compared to a control. An “increased” or “enhanced” amount is typically a “statistically significant” amount, and may include an increase that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.3, 4.4, 4.6, 4.8, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or more times (e.g., 100, 200, 500, 1000 times) (including all integers and decimal points and ranges in between and above 1, e.g., 5.5, 5.6, 5.7. 5.8, etc.) the amount produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). A “decreased” or “reduced” amount is typically a “statistically significant” amount, and may include a 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% decrease (including all integers and decimal points and ranges in between) in the amount or activity produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. By “statistically significant,” it is meant that the result was unlikely to have occurred by chance. Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which is the frequency or probability with which the observed event would occur, if the null hypothesis were true. If the obtained p-value is smaller than the significance level, then the null hypothesis is rejected. In simple cases, the significance level is defined at a p-value of 0.05 or less. “Substantially” or “essentially” includes nearly totally or completely, for instance, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater of some given quantity. The term “secondary” refers to a condition or state that can occur with another disease state, condition, or treatment, can follow on from another disease state, condition, or treatment, or can result from another disease state, condition or treatment. The term also refers to situations where a disease state, condition, or treatment can play only a minor role in creating symptoms or a response in a patient's final diseased state, symptoms or condition. “Subjects” or “patients” (the terms are used interchangeably herein) in need of treatment with a compound of the present disclosure include, for instance, subjects “in need of phosphate lowering.” Included are mammals with diseases and/or conditions described herein, particularly diseases and/or conditions that can be treated with the compounds of the invention, with or without other active agents, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, modulation of one or more indications described herein (e.g., reduced phosphate ion levels in serum or blood of patients with or at risk for hyperphosphatemia, increased fecal output of phosphate ions in patients with or at risk for hyperphosphatemia), increased longevity, and/or more rapid or more complete resolution of the disease or condition. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. A “therapeutically effective amount” or “effective amount” includes an amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to inhibit or otherwise reduce the transport of phosphate ions from the gastrointestinal lumen, increase fecal output of phosphate ions, reduce serum levels of phosphate ions, treat hyperphosphatemia in the mammal, preferably a human, and/or treat any one or more other conditions described herein. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure. “Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes: (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it; (ii) inhibiting the disease or condition, i.e., arresting its development; (iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or (iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians. EXAMPLES The following Examples, provided for purposes of illustration, not limitation, illustrate various methods of making compounds of this invention. It is understood that one skilled in the art may be able to make these compounds by similar methods or by combining other methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make, in a similar manner as described below, other compounds of the invention not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, e.g., Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described herein. It will also be appreciated by those skilled in the art that in the process described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include —C(O)—R″ (where R″ is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T. W. and P. G. M. Wutz, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotrityl-chloride resin. Furthermore, all compounds of the invention which exist in free base or acid form can be converted to their pharmaceutically acceptable salts by treatment with the appropriate inorganic or organic base or acid by methods known to one skilled in the art. Salts of the compounds of the invention can be converted to their free base or acid form by standard techniques. Example 1 Cell-Based Activity of NHE3 Inhibition and Inhibition of Intestinal of Sodium and Phosphate Absorption The compounds in Table E1, or pharmaceutically acceptable salts thereof, below were tested in a cell-based assay of NHE3 inhibition under prompt conditions (prompt inhibition). These compounds were also tested for the ability to inhibit sodium and phosphate absorption in the intestinal lumen of rats. TABLE E1 Cmpd. # Structure  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Cell-based activity under Prompt Conditions. Rat or human NHE3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Paradiso (PNAS USA. 81:7436-7440, 1984). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE3 gene (GenBank M85300) or the human NHE3 gene (GenBank NM_004174.1) was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM bis(acetoxymethyl) 3,3′-(3′,6′-bis(acetoxymethoxy)-5-((acetoxymethoxy)carbonyl)-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)dipropanoate (BCECF-AM). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 0.4 μM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE3) and 0-30 μM test compound, or a pharmaceutically acceptable salt thereof, and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem, 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem, 538 nm). Initial rates were plotted as the average 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. The results are summarized in Table E3 below. Inhibition of intestinal sodium and phosphate absorption. Urinary sodium concentration and fecal form were measured to assess the ability of selected example compounds to inhibit the absorption of sodium from the intestinal lumen. Eight-week old Sprague-Dawley rats were purchased from Charles River Laboratories (Hollister, Calif.), were housed 2 per cage, and acclimated for at least 3 days before study initiation. Animals were fed Harlan Teklad Global 2018 rodent chow (Indianapolis, Ind.) and water ad libitum throughout the study and maintained in a standard light/dark cycle of 6 AM to 6 PM. On the day of the study, between 4 PM and 5 PM, a group of rats (n=6) were dosed via oral gavage with test compound, or a pharmaceutically acceptable salt thereof, or vehicle (water) at a volume of 10 mL/kg. After dose administration animals were placed in individual metabolic cages where they were also fed the same chow in meal form and watered ad libitum. At 16 h post-dose, the urine samples were collected and fecal form was assessed by two independent observations. Fecal forms were scored according to a common scale associated with increasing fecal water to the wettest observation in the cage's collection funnel (1, normal pellet; 2, pellet adhering to sides of collection funnel due to moisture; 3, loss of normal pellet shape; 4, complete loss of shape with a blotting pattern; 5, liquid fecal streams evident). A rat's fecal form score (FFS) was determined by averaging both observational scores for all rats within a group (n=6). The vehicle group average was 1. For urine samples, the volumes were determined gravimetrically and centrifuged at 3,600×g. The supernatants were diluted 100-fold in deionized Milli-Q water then filtered through a 0.2 μm GHP Pall AcroPrep filter plate (Pall Life Sciences, Ann Arbor, Mich.) prior to analysis by ion chromatography. Ten microliters of each filtered extract was injected onto a Dionex ICS-3000 ion chromatograph system (Dionex, Sunnyvale, Calif.). Cations were separated by an isocratic method using 25 mM methanesulfonic acid as the eluent on an IonPac CS12A 2 mm i.d.×250 mm, 8 μm particle size cation exchange column (Dionex). Sodium was quantified using standards prepared from a cation standard mix containing Li+, Na+, NH4+, K+, Mg2+, and Ca2+ (Dionex). The mean mass of sodium urinated for every group in the 16 h period was determined with the vehicle group usually urinating approximately 21 mg sodium. The urine Na (uNa) for rats in the test groups were expressed as a percentage of the vehicle mean and the means were compared to that of the vehicle group by utilizing a one-way analysis of variance coupled with a Dunnett's post hoc test. The results are shown in Table E3 below. Prompt Prompt Fecal No. of Rat Human Dose Urine Urine Form trials Cmpd NHE3 NHE3 mg/ Na % of P % of Score aver- # pIC50 pIC50 kg control control average aged 1 6.60 10 87% 52% 1 2 6.70 6.50 10 115%  80% 1 3 7.40 7.60 1 41% 57% 1 4 6.90 6.80 10 84% 106%  1 5 6.90 7.85 10 51% 65% 1 30 23% 105%  2 6 8.35 8.30 1 21% 46% 2 7 6.30 7.20 10 76% 90% 1 8 6.90 6.40 10 73% 101%  1 30 31% 114%  2 9 6.50 7.10 10 56% 77% 1 10 6.65 7.50 10 76% 80% 1 11 6.95 6.80 10 60% 64% 1 30 29% 96% 2 12 6.10 7.00 10 82% 94% 1 13 6.70 7.40 10 74% 56% 1 14 7.00 7.60 10 51% 59% 1 15 7.30 7.90 10 77% 65% 1 16 6.70 7.80 30 87% 123%  1 17 7.10 6.60 30 86% 120%  1 18 7.25 7.35 10 74% 142%  1 18 6.90 6.90 30 41% 109%  1 19 7.00 7.40 10 72% 119%  1 20 7.30 7.20 10 86% 81% 1 21 6.10 7.00 10 66% 101%  1 22 7.34 6.95 1 91% 64% 1 10 19% 40% 2 2 23 6.87 8.55 10 73% 95% 1 2 24 7.68 8.58 10 100%  80% 1 30 27% 70% 3 25 6.85 6.60 10 87% 150%  1 26 7.50 7.70 10 78% 77% 1 27 7.50 8.40 10 51% 91% 1 2 28 7.60 8.10 10 83% 129%  1 29 7.50 8.10 10 92% 102%  1 30 7.80 8.40 10 100%  104%  1 31 7.70 7.70 10 96% 81% 1 32 7.30 8.40 10 128%  122%  1 33 7.40 7.90 10 98% 117%  1 34 7.90 8.20 10 76% 72% 1 35 8.00 8.30 10 65% 57% 1 36 7.60 8.00 10 85% 86% 1 37 7.50 7.50 10 63% 101%  1 38 5.50 5.60 10 101%  120%  1 39 7.30 1 71% 166%  1 10 68% 130%  1 40 <5.00 <5.00 1 80% 149%  1 10 90% 128%  1 41 7.90 8.20 10 104%  133%  1 42 7.70 8.20 10 94% 94% 1 43 7.50 7.70 10 70% 101%  1 44 7.70 7.90 10 88% 102%  1 45 7.50 7.90 10 97% 109%  1 46 7.80 7.90 10 58% 112%  1 47 7.30 7.80 10 73% 51% 1 48 7.55 7.10 10 68% 55% 1 49 7.65 7.40 10 38% 77% 1 50 7.45 7.60 10 82% 50% 1 51 7.40 7.90 10 79% 52% 1 52 7.35 7.40 10 68% 71% 1 53 7.45 7.40 10 100%  59% 1 54 7.30 7.50 10 75% 72% 1 55 7.70 7.90 10 85% 45% 1 56 6.90 7.00 10 15% 50% 2 57 7.10 7.50 10 25% 75% 3 58 6.30 7.30 10 82% 68% 1 59 6.90 7.30 10 18% 45% 2 60 6.35 7.10 10 67% 92% 1 61 7.00 7.80 1 93% 96% 1 3 50% 70% 1 10 21% 67% 3 62 <5.00 7.25 10 121%  77% 1 63 7.20 8.00 10 51% 95% 1 64 7.40 8.20 10 34% 66% 1 65 8.85 8.00 10 93% 85% 1 66 8.35 8.35 10 35% 30% 1 67 8.00 8.70 10  4% 67% 2 68 <5.00 <5.00 10 70% 97% 1 69 6.60 6.70 10 82% 78% 1 70 6.70 7.20 10 96% 83% 1 71 6.50 7.00 10 80% 40% 1 72 8.30 8.25 1 82% 99% 1 3 74% 115%  2 10 33% 43% 1 73 5.30 6.30 10 74% 49% 2 74 6.30 6.80 10 30% 44% 3 75 6.30 6.90 10 81% 55% 1 76 5.60 6.40 1 58% 96% 1 3 40% 89% 2 10 12% 61% 3 77 6.25 7.35 1 80% 82% 2 3 36% 79% 2 2 10 17% 41% 4 78 6.00 6.50 10 53% 39% 2 79 6.50 7.20 1 65% 109%  1 3 44% 81% 2 10 17% 33% 3 80 5.50 6.93 1 66% 70% 1 3 55% 39% 2 2 10  9% 21% 3 81 7.90 7.90 10 11% 42% 2 82 6.80 7.10 10 47% 69% 1 83 <5.00 <5.00 10 82% 59% 1 84 7.50 7.70 8  7% 47% 3 85 5.80 6.10 10 92% 85% 1 86 5.80 5.90 10 87% 89% 1 87 <5.00 8.20 3 54% 29% 1 88 7.07 7.93 1 84% 77% 1 2 3 22% 75% 3 3 10 21% 69% 5 89 7.10 7.90 2.5 55% 50% 2 10 49% 117%  3 90 7.20 7.85 1 76% 65% 1 3 30% 58% 1 10 38% 20% 5 91 5.30 <5.00 10 77% 56% 1 92 <5.00 10 62% 70% 1 93 <5.00 10 78% 75% 1 94 <5.00 5.60 10 67% 66% 1 95 6.60 7.00 10 38% 111%  2 96 7.50 8.30 10 33% 94% 1 97 7.60 8.50 10 64% 78% 1 98 8.40 8.10 10 83% 88% 1 99 8.60 5.00 10 41% 52% 1 100 8.10 8.30 10 57% 68% 1 101 <5.00 8.10 10 64% 81% 1 102 6.60 10 86% 92% 1 103 6.70 10 40% 71% 1 104 6.70 10 56% 62% 2 105 5.90 3 119%  154%  1 106 7.00 7.90 1 98% 124%  1 3 76% 39% 2 10 20% 64% 4 107 6.90 8.10 1 88% 106%  1 3 55% 66% 1 10 28% 59% 4 108 8.40 3 13% 51% 4 109 7.40 8.10 1 64% 65% 1 3 52% 51% 2 10 28% 52% 4 110 5.80 3 63% 68% 1 111 <5.00 10 60% 69% 2 112 <5.00 10 73% 67% 1 113 <5.00 <5.00 10 64% 61% 1 114 <5.00 <5.00 10 45% 100%  3 115 <5.00 8.55 10 69% 60% 1 116 <5.00 8.30 10 84% 130%  1 117 7.50 8.20 10 77% 98% 1 118 7.40 8.10 10 83% 131%  1 119 8.70 7.80 10 43% 52% 1 120 7.80 3 71% 71% 1 121 <5.00 3 92% 151%  1 122 6.20 6.80 3 30% 87% 2 123 7.50 7.80 1 49% 124%  1 2 3 12% 88% 3 3 124 7.17 7.50 1 69% 154%  1 3 22% 61% 2 2 125 <5.00 10 81% 278%  1 126 <5.00 6.55 10 93% 94% 1 127 8.20 8.30 1 55% 159%  1 2 3 39% 62% 1 4 10  9% 53% 1 128 7.10 8.00 1 46% 90% 1 2 3 35% 58% 2 4 129 5.60 6.90 3 16% 48% 2 130 6.10 7.20 3 18% 70% 2 131 6.10 7.20 3 38% 68% 2 132 6.00 7.70 3 65% 88% 1 133 6.50 7.30 3 23% 67% 2 134 6.50 6.50 3 64% 72% 1 135 7.40 8.45 1 100%  92% 1 3 94% 44% 1 10 58% 85% 2 136 <5.00 7.70 10 104%  93% 1 137 7.30 7.30 1 39% 137%  1 3 28% 139%  3 2 138 7.30 7.30 3 37% 78% 2 139 7.60 7.80 1 80% 63% 1 3 27% 45% 3 2 140 8.90 7.70 10 110%  121%  1 141 6.90 7.40 3 63% 24% 2 142 8.10 7.10 3 45% 38% 2 143 7.25 7.27 1 68% 73% 1 3 34% 93% 3 3 144 7.20 7.77 3 32% 47% 2 2 145 7.60 7.70 3 41% 51% 3 146 7.80 8.35 3 70% 58% 2 147 7.00 7.67 3 40% 32% 2 3 148 8.40 7.80 3 49% 146%  1 149 8.10 8.00 1 54% 122%  1 2 53% 69% 2 3 46% 115%  1 2 150 8.60 8.00 3 73% 74% 1 10 12% 159%  1 151 8.30 7.50 3 78% 52% 1 10 42% 121%  2 152 <5.00 8.70 10 26% 74% 1 153 6.90 7.50 3 28% 84% 3 154 6.80 6.80 3 112%  65% 1 155 7.70 7.90 3 40% 44% 2 156 6.70 7.20 3 13% 67% 3 157 7.70 7.77 3 26% 50% 3 3 158 <5.00 6.90 3 32% 64% 2 159 7.20 7.30 3 27% 55% 2 160 7.70 10 108%  77% 1 161 9.20 7.60 3 82% 60% 2 162 7.30 6.60 2 130%  50% 2 163 7.90 7.60 3 27% 48% 2 164 7.53 8.13 3 18% 63% 3 2 165 <5.00 8.20 10 104%  68% 1 166 <5.00 8.40 10 111%  43% 1 167 5.80 8.37 3 36% 99% 2 168 7.35 8.13 3 56% 50% 1 169 6.50 6.20 3 42% 64% 2 170 7.10 7.20 3 31% 34% 2 171 8.20 10 49% 49% 1 172 8.20 7.10 3 26% 42% 2 173 7.60 8.10 2.5 64% 69% 2 174 8.60 8.53 3 37% 55% 1 10 49% 61% 1 175 7.80 7.40 3 102%  48% 1 176 7.50 7.40 3 73% 92% 1 177 7.70 7.80 3 52% 45% 2 178 7.10 7.33 3 18% 46% 3 179 8.00 7.77 3 40% 66% 1 180 8.03 8.30 0.03 67% 80% 1 0.1 45% 82% 1 0.3 33% 75% 3 1 15% 69% 3 38 3 53% 38% 4 Example 2 Cell-Based Assay of NHE3 Activity Under Prompt and Persistent Conditions The compounds in Table E4 below, or a pharmaceutically acceptable salt thereof, were tested in a cell-based assay of NHE3 inhibition under prompt conditions (prompt inhibition) and persistent conditions (persistent inhibition). These compounds were also tested in a cell-based assay of NaP2b activity. TABLE E4 Cmpd. Structure Cpd 001 (same as #3 in Table E3) Cpd 002 (same as #180 in Table E3) Cpd 003 Cpd 004 (same as #40 in Table E3) Cpd 005 (same as #39 in Table E3) Cell-based activity of NHE3 Activity under ‘Prompt’ Conditions. This assay was performed as described in Example 1 (supra). Cell-based activity of NHE3 Activity under ‘Persistent’ Conditions. The ability of compounds to inhibit Rat NHE3-mediated Na+-dependent H+ antiport after application and washout was measured using a modification of the pH sensitive dye method described above. Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE3 gene was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then overlayed with NaCl-HEPES buffer containing 0-30 μM test compound. After a 60 min incubation, the test drug containing buffer was aspirated from the cells, cells were washed twice with NaCl-HEPES buffer without drug, then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 uM BCECF-AM. Cells were washed twice with Ammonium free, Natfree HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE3-mediated recovery of neutral intracellular pH was initiated (40 min after compound washout) by addition of Na-HEPES buffer containing 0.4 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE3), and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem, 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem, 538 nm). Initial rates were plotted as the average 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. Cell-based assay of NaP2b activity. The rate of phosphate (Pi) uptake into cells was measured using a modification of a literature method (see Mohrmann et al. Am. J. Phys. 250(3 pt 1):G323-30, 1986). Briefly, HEK293 cells were transiently transfected with an expression clone encoding either rat or human NaP2b. The next day, transfected cells were treated with a pharmacological agent to minimize endogenous PiT-mediated phosphate transport activity, such that the only remaining sodium-dependent phosphate transport activity is that which was bestowed by introduction of the NaP2b gene. Cells were incubated with radioactive inorganic phosphate in the presence or absence of varying concentrations of test compound. After a short time, cells were washed, harvested, and the amount of hot phosphate taken up in the cells determined by liquid scintillation counting. HEK293 cells were obtained from the American Type Culture collection and propagated per their instructions. Expression clones for rat and human NaP2b (SLC34A2) were obtained from Open Biosystems (Catalog numbers MRN1768-9510282, and MHS1010-99823026, respectively). There are two putative splice variants of human NaP2b, designated as isoform a and isoform b (NCBI Reference Sequences: NP_006415.2 and NP— 001171470.1, respectively). The sequence of the open reading from in MHS1010-99823026 corresponds to isoform b; transfection with this construct was found to confer only very low levels of nonendogenous Pi transport activity. The cDNA was therefore mutated to correspond with isoform a; transfection with this sequence conferred Pi transport significantly over background. Thus, studies of the inhibition of human NaP2b used isoform a exclusively. Cells were seeded into 96-well plates at 25,000 cells/well and cultured overnight. Lipofectamine 2000 (Invitrogen) was used to introduce the NaP2b cDNA, and the cells were allowed to approach confluence during a second overnight incubation. Medium was aspirated from the cultures, and the cells were washed once with choline uptake buffer (14 mM Tris, 137 mM choline chloride, 5.4 mM KCl, 2.8 mM CaCl2, 1.2 mM MgSO4, 100 uM KH2PO4, 1 mg/mL Bovine Serum Albumin, pH 7.4). Cells were then overlayed with either choline uptake buffer or sodium uptake buffer (14 mM Tris, 137 mM sodium chloride, 5.4 mM KCl, 2.8 mM CaCl2, 1.2 mM MgSO4, 100 uM KH2PO4, PiT-silencing agent, 1 mg/mL Bovine Serum Albumin, pH 7.4) containing 6-9 uCi/mL 33P orthophosphoric acid (Perkin Elmer) and test compound. Each compound was tested at twelve concentrations ranging from 0.1 nM to 30 uM. Assays were run in duplicate and compounds of interest were tested multiple times. After incubation for 23 minutes at room temperature, assay mixtures were removed, and the cells were washed twice with ice cold stop solution (137 mM sodium chloride, 14 mM Tris, pH 7.4). Cells were lysed by addition of 20 μL 0.1% Tween 80 followed by 100 μL scintillation fluid, and counted using a TopCount (Perkin Elmer). The pIC50 (the negative log of the IC50) values of the test compounds were calculated using GraphPad Prism. Preliminary studies showed that under these conditions, sodium-dependent Pi uptake was linear for at least 30 minutes and tolerated 0.6% (v/v) DMSO without deleterious effects. The results are summarized in Table E5 below. TABLE E5 Human NHE3 Rat NHE3 pIC50 pIC50 pIC50 pIC50 pIC50 Human Compound Prompt Persistent Prompt Persistent Nap2B 001a 7.6 nd 7.4 nd nd 002b 8 8.4 8 8.2 <4.5 003b 8.6 nd 8 8.1 nd 004b 7.3 5.6 7.3 5.6 nd 005b <5.0 nd <5.0 nd nd aCompound 001 tested as free base. bCompounds 002, 003, 004 and 005 were tested as the dihydrochloride salt Further experiments were performed to test the compounds under the persistent and prompt conditions described above, and to test their effects on urinary excretion of sodium in rats. The latter was performed by orally dosing the compounds in rats (single dose) and measuring urinary Na excretion (as a % of vehicle). The results are indicated as percentage of urinary sodium (UNa %); low values indicate relatively active compounds. The results are shown in Table E6 below. TABLE E6 pIC50 pIC50 Compound Prompt Persistent UNa (%) 001a 7.4 nd 41 @ 1 mg/kg 002b 8 8.2 11 @ 1 mg/kg 003b 8 8.1 22 @ 1 mg/kg 004b 7.3 5.6 68 @ 10 mg/kg 005b <5.0 nd 90 @ 10 mg/kg aCompound 001 tested as free base. bCompounds 002, 003, 004 and 005 were tested as the dihydrochloride salt These results identified compounds 002 and 003 as persistent inhibitors of NHE3-mediated Na+-dependent H+ antiport, and compound 004 as a non-persistent inhibitor of NHE3-mediated Na+-dependent H+ antiport. Compound 005 was considered inactive. Example 3 Pharmacodynamic Studies with 33P Oral Challenge in Normal Function Rats The compounds identified as Cpds 003, 004, and 005 (from Table E4, as their dihydrochloride salts) were tested for the ability to block intestinal phosphate uptake in rats. Rats were orally challenged with dosing solutions composed of 5 ml/kg (˜1.3 ml) of 8 mM Pi with 33P and +/−10 mg/kg of test compound. Also included were dosing solutions further composed of either (i) 75 mM glucose+4 mM Ca or (ii) 4 mM Ca. The results are shown in FIGS. 1A-1C. FIG. 1A shows that Cpd 004, a non-persistent NHE3 inhibitor (i.e., with no significant effect on urinary Na and fecal form), was as potent at reducing Pi uptake as a persistent inhibitor such as Cpd 003 (i.e., inducing a significant reduction in UNa, and change in fecal form). Cpd 005 was inactive in this assay. FIGS. 1B-C show that Cpd 003 significantly reduced Pi uptake in the presence of glucose/Ca (1B) and Ca (1C). Example 4 Effects in a Rat Model of Uremia-Associated Vascular Calcification Chronic kidney disease (CKD) has multiple pathogenic mechanisms, and advanced CKD is often characterized by disordered mineral metabolism (e.g., hyperphosphatemia, hypercalcemia) and vascular calcification. Studies were thus performed to test the effectiveness of the dihydrochloride salt of Cpd 002 (from Table E4, as the dihydrochloride salt) in a uremic rat model of CKD featuring vascular calcification. This model is characterized by renal insufficiency and regular active Vitamin D3 administration to promote hyperphosphatemia and vascular calcification (see Lopez et al., J. Am. Soc. Nephrol. 17:795-804, 2006). The study utilized Spraque-Dawley rats treated as follows: ⅚th nephrectomy by excision; regular calcitriol administration (active vitamin D3) 80 ng/kg i.p. 3/week; and fed a purified 0.9% P diet (inorganic phosphorus). Rats were stratified into two experimental groups by serum creatinine levels of 0.8 to 1.5 mg/dl and body weight, fed drug-in-chow with powdered vehicle diet or the same diet with Cpd 002 (0.065 mg/g chow) mixed-in, and monitored for weekly body weight and selected serum parameters, daily clinical observations, and endpoint calcification. The study design is illustrated in FIG. 2. Selected experimental groups were fed vehicle (n=12) or Cpd 002 (n=12) at enrollment (day 0). As shown in FIGS. 3A-F, initial body weights and selected serum parameters such as serum phosphorus, serum calcium, serum creatinine, and blood urea nitrogen were comparable for both groups. Selected endpoint plasma parameters from day 27 are shown in FIGS. 4A-F. These data show reduced plasma creatinine, reduced plasma phosphorus, and reduced plasma FGF-23. Endpoint heart and kidney remnant weights are shown in FIG. 5. These data show that hypertrophy of the heart and kidney remnants was lessened in Cpd 002 treated rats. Given reduced plasma creatinine, these results suggest that the kidney remnant in Cpd 002 treated rats has more functionality with less mass. Endpoint creatinine clearance (CCr) and plasma aldosterone levels are shown in FIGS. 6A-B. These results suggest that treatment with Cpd 002 protected against loss of kidney function, and aldosterone increase suggests some volume depletion, which is consistent with lower Na intake. Endpoint vascular and soft tissue calcification is shown in FIGS. 7A-B. These data shown that treatment with Cpd 002 reduced calcium and phosphorus in the stomach, which is particularly sensitive to calcification, and also reduced vascular calcification as measured by aortic mineral content. Overall, Cpd 002 was shown to improve kidney function, reduce both heart hypertrophy and renal hypertrophy, exhibit anti-hyperphosphatemic effects, and reduce associated vascular calcification. These effects and decreased moribundity were observed in the treatment group with a trend toward improved mortality outcome. While the benefits from treatment with Cpd 002 can partly result from its effect on fluid overload and hemodynamics, because vascular calcification in this model is highly sensitive to dietary phosphate, the reduction in ectopic calcification points to a reduction in phosphate absorption. Example 5 Effects in an Adenine-Induced Uremic Rat Model The effects of Cpd 002 (from Table E4, as the dihydrochloride salt) were tested in an adenine-induced uremic rat model. Rats were fed a diet including 0.75% adenine and 1.2% phosphorus during the nephritis induction phase. The basal diet during the treatment phase was normal chow including 0.3% adenine and 0.6% phosphorus for 2 weeks. The rats were pair-fed the first 5 days (groups 1 and 2 to group 3, 4 days apart), and fed ad libitum afterwards. The treatment groups were as follows: vehicle, n=10; Cpd 002, 2 mg/kg/day drug-in-chow, n=10; and Cpd 002, 5 mg/kg/day drug-in-chow, n=12. Weekly measurements were taken for serum markers and kidney function. The study design is illustrated in FIG. 8A. As shown in FIGS. 8B-C, Cpd 002 reduced serum phosphorus and serum creatinine at early time points. Here, this adenine-induced model is considered an acute renal injury characterized by a progressive recovery of renal function. Hence, the effects at early time points are significant. Organ weight collection data from week three is shown in FIGS. 9A-B, and tissue mineralization data from week three is shown in FIGS. 10A-B. These data show that treatment with Cpd 002 in this model showed a trend towards lesser heart and kidney remodeling, and a trend towards reduced heart and kidney calcification at the highest dose. Example 6 Effect on Renal Insufficiency with High Salt Feed in Nephrectomized Rats The effects of Cpd 002 (from Table E4, as the dihydrochloride salt) were tested in a dietary salt-induced, partial renal ablation model of CKD. The study design is illustrated in FIG. 11A (12 rats per group). FIG. 11B shows the effects of Cpd 002 on urinary excretion of phosphorus. In this study, Cpd 002 improved blood pressure, fluid overload, albuminuria, and heart and kidney hypertrophy, and also significantly reduced phosphorus urinary excretion. These data suggest an additive contribution for the phosphorus lowering effect of Cpd 002 on improvements in the renal and vascular functions. Example 7 Effects on Urinary Excretion of Phosphate and Calcium in Rats The activity of Cpd 002 (from Table E4, as the dihydrochloride salt) was tested for its effects on phosphorus and calcium levels in the urine of rats. Rats were dosed according to the schedule in Table E7. TABLE E7 929uP Dose #2 groups Dose #1 10 min later 1 Water Water 2 Renvela ® (sevelamer), 48 mg/kg Water 3 Water Cpd 002, 0.1 mg/kg 4 Water Cpd 002, 0.3 mg/kg 5 Water Cpd 002, 1.0 mg/kg 6 Water Cpd 002, 3.0 mg/kg The rats were kept for 16 hours overnight (in the dark, the typical feeding period) in individual metabolic cages, and urine was collected the following morning for analysis of phosphate and calcium levels. The study design is shown in FIG. 12. The results are shown in FIGS. 13A-D. These results show that Cpd 002 reduced both urine phosphorus mass and urine calcium mass relative to the vehicle-only control. Increasing dosages of Cpd 002 also significantly reduced urine phosphorus mass relative to 48 mg/kg Renvela®. Example 8 Evaluation of Activity in the Reduction of Dietary Phosphorus at Dose 15, 30 and 60 Mg Bid in a 7-Day Repeat Dose Study in Healthy Volunteers A Phase 1, single-center, randomized, double-blind, placebo-controlled study was designed to evaluate the safety, tolerability, and pharmacodynamic activity (PD) on sodium and phosphorus excretion of different dosing regimens of Cpd 002, as the dihydrochloride salt, (see Table E4) in healthy male and female subjects. Subjects were screened within 3 weeks prior to enrollment and were allocated sequentially to cohorts in their order of completing screening assessments. Each cohort of 15 subjects checked into the clinical pharmacology unit (CPU) on Day-5 before dinner. Subjects were confined to the CPU, Na+-standardized meals (˜1500 mg/meal) provided. In each cohort, 12 subjects were randomized to receive Cpd 002 and 3 subjects to placebo. Subjects received doses of Cpd 002 with approximately 240 mL of non-carbonated water on Days 1 to 7 (just prior to the appropriate meals, depending on twice daily [bid, breakfast, dinner]. Subjects were provided standardized meals within 10 minutes after dosing. Selection of Study Population—Inclusion Criteria. Subjects were eligible for inclusion in the study if they met all of the following criteria: 1. Healthy man or woman aged 19 to 65 years, inclusive. 2. Body mass index (BMI) between 18 and 29.9 kg/m2, inclusive. 3. No clinically significant abnormalities in medical history, physical examination, or clinical laboratory evaluations at screening. 4. Able to understand and comply with the protocol. 5. Willing and able to sign informed consent. 6. Females were non-pregnant, non-lactating, and either postmenopausal for at least 12 months, as confirmed by follicle-stimulating hormone (FSH) test, surgically sterile (e.g., tubal ligation, hysterectomy, bilateral oophorectomy with appropriate documentation) for at least 90 days, or agreed to use from the time of signing the informed consent until 45 days after end of study 1 of the following forms of contraception: intrauterine device with spermicide, female condom with spermicide, contraceptive sponge with spermicide, diaphragm with spermicide, cervical cap with spermicide, male sexual partner who agrees to use a male condom with spermicide, sterile sexual partner, abstinence, an intravaginal system (e.g., NuvaRing®) with spermicide, or oral, implantable, transdermal, or injectable contraceptives with spermicide. 7. Males were either sterile, abstinent, or agreed to use, from check-in until 45 days from final study visit, 1 of the following approved methods of contraception: a male condom with spermicide; a sterile sexual partner; use by female sexual partner of an intrauterine device with spermicide, a female condom with spermicide, contraceptive sponge with spermicide, an intravaginal system (e.g., NuvaRing), a diaphragm with spermicide, a cervical cap with spermicide, or oral, implantable, transdermal, or injectable contraceptives). Selection of Study Population—Exclusion Criteria. Subjects were excluded from the study if they met any of the following criteria: 1. Diagnosis or treatment of any clinically symptomatic biochemical or structural abnormality of the gastrointestinal system. 2. Any surgery on the small intestine or colon, excluding appendectomy or cholecystectomy. 3. Clinical evidence of significant cardiovascular, respiratory, renal, hepatic, gastrointestinal, hematologic, metabolic, endocrine, neurologic, psychiatric disease, or any condition that may interfere with the subject successfully completing the trial. 4. Loose stools (BSFS of 6 or 7)≥2 days in the past 7 days. 5. Hepatic dysfunction (alanine aminotransaminase[ALT] or aspartate aminotransaminase [AST])>1.5 times the upper limit of normal [ULN]) or renal impairment (serum creatinine>ULN). 6. Clinically significant laboratory results at screening as determined by the Investigator. 7. Any evidence of or treatment of malignancy, excluding non-melanomatous malignancies of the skin. 8. If, in the opinion of the Investigator, the subject was unable or unwilling to fulfill the requirements of the protocol or had a condition that rendered the results uninterpretable. 9. A diet, which in the opinion of the Investigator, could have impacted the results of the study. 10. Use of diuretic medications; medications that were known to affect stool consistency and/or gastrointestinal motility, including fiber supplements (unless required by study), anti-diarrheals, cathartics, antacids, opiates, narcotics, prokinetic drugs, enemas, antibiotics, probiotic medications or supplements; or salt or electrolyte supplements containing Na+, potassium, chloride, or bicarbonate formulations from CPU check in (Day-5) to CPU check out (Day 9). 11. Use of an investigational agent within 30 days prior to Day-5. 12. Positive virology (active hepatitis B infection [HBsAg], hepatitis C infection [HCV], or human immunodeficiency virus [HIV]), alcohol, or drugs of abuse test during screening, 13. Use of any prescription medication within 7 days before admission to the CPU, or required chronic use of any prescription or non-prescription medication, with the exception of hormonal replacement therapy (HRT) for postmenopausal women and hormonal contraceptives. 14. History of tobacco use, alcohol abuse, illicit drug use, significant mental illness, physical dependence to any opioid, or any history of drug abuse or addiction within 12 months of study enrollment. 15. Had significant blood loss (>450 mL) or had donated 1 or more units of blood or plasma within 8 weeks prior to study entry. Removal of Subjects from Therapy or Assessment. Subjects were free to discontinue the study at any time, for any reason, and without prejudice to further treatment. The Investigator could have removed a subject if, in the Investigator's judgment, continued participation posed unacceptable risk to the subject or to the integrity of the study data. Subjects who withdrew early could have been replaced, pending discussion with the Sponsor. Efficacy Evaluation—demographic and other baseline characteristics. All subjects enrolled in the study received study treatment and all had at least 1 post-baseline PD assessment. An overview of the demographic characteristics of the subjects enrolled in the study overall and by cohort is provided in Table E8 below. Some variability was observed across cohorts (especially in terms of gender and race); however, the baseline characteristics of most cohorts mirrored that of the total population. No clinically significant abnormal findings were noted for any subject during the physical examination performed at screening. TABLE E8 Demographic and Baseline Characteristics Cohort 1 Cohort 3 Cohort 4 30 mg bid 60 mg bid 15 mg bid Parameter (n = 12) (n = 12) (n = 12) Mean (SD)  38.8 (16.49)  37.8 (11.78)  38.7 (12.91) Median 31.0 33.5 36.5 Min, Max 20, 63 22, 61  20, 60  Female   3 (25.0)   3 (25.0)   2 (16.7) Male   9 (75.0)   9 (75.0)   10 (83.3) Mean (SD)  73.7 (11.39) 79.3 (9.98)  78.7 (12.99) Median 71.7 75.7 79.7 Min, Max 58, 91 67, 103 60, 101 Mean (SD) 24.6 (2.69) 26.1 (2.46) 25.7 (2.87) Median 24.3 26.2 25.9 Min, Max 19, 29 22, 29  20, 30  Asian   1 (8.3)   1 (8.3) 0 Black   2 (16.7)   6 (50.0)   4 (33.3) White   7 (58.3)   5 (41.7)   6 (50.0) Other   2 (16.7) 0   1 (8.3) Missing 0 0   1 (8.3) The schedule of events for screening and treatment period is provided in Table E9 below. TABLE E9 Screening and Baseline Day Double-blind Treatment Period Day Follow-up Procedure −26 to −5 −5a −4 −3 −2 −1 1 2 3 4 5 6 7 8 9a 23 ± 2 Informed X consent Inclusion/ X  Xb exclusion Medical X  Xb history Physical X X examination Vital signs X X X X X X X X X X X X X X X ECG X X evaluation Safety X X X laboratory evaluations Alcohol/ X X drug screen FSH test X Pregnancy X X X test Random- X ization Dose X X X X X X X administration 24-hr X X X X X X X X X X X X X urine/stool collection Stool X X X X X X X X X X X X X form/timing Pharmaco- X X X X X dynamic laboratory evaluations AE X X X X X X X X X X assessment Study drug. Cpd 002 capsules or corresponding placebo capsules were administered with approximately 240 mL of non-carbonated water at multiples of 15 mg or placebo. Cpd 002 is an amorphous, off-white powder and was supplied as a white, size 0, hydroxypropylmethylcellulose (HPMC) capsule. Each capsule contained 15 mg of Cpd 002. Capsules were packaged in an opaque white high density polyethylene (HDPE) bottle (10/bottle). The drug product was formulated with no excipients. Placebo was supplied as a white, size 0, HPMC capsule filled with methyl cellulose. Capsules were packaged in an opaque white HDPE bottle (10/bottle). Method of Assigning Subjects to Treatment Groups. The clinical research organization statistician prepared the randomization scheme in accordance with its standard operating procedures (SOPs) and the randomization plan, which reflected GCP standards. After obtaining informed consent, subjects were allocated sequentially to cohorts in their order of completing screening assessments. Within each cohort, a computer generated randomization schedule was used to randomly assign subjects to active Cpd 002 or placebo in a 4:1 ratio. Once a subject was deemed eligible for randomization, the next available randomization number was assigned sequentially and the subject received the treatment indicated on the randomization schedule. Subjects who withdrew early could be replaced, pending discussion with the Sponsor. Replacement subjects received the same blinded treatment as the original subject. Selection and Timing of Dose for Each Subject. Subjects were allocated sequentially to cohorts consisting of 15 subjects each in their order of completing screening assessments and received either 002 or placebo based on random assignment. Table E10 provides the actual dosing regimen for each cohort. Because this was an adaptive design protocol, the dosing regimen of each cohort was based on blinded results from previous cohorts. TABLE E10 Dosing Regimen for Each Cohort Cohort No. Subjectsa Dose/Administration Regimen Total Dose/Day 1 15 30 mg bid  60 mg 3 15 60 mg bid 120 mg 4 15 15 mg bid  30 mg aEach cohort consisted of 12 subjects administered CPD002 and 3 subjects administered placebo. Dosing was administered immediately prior to breakfast and dinner. Subjects were not permitted to eat or drink anything from 8 hours before dosing at breakfast, with the exception of water up to 2 hours prior. Subjects were fed a standardized meal approximately 10 minutes after dosing. The standardized diet included a Na+ content of approximately 1500 mg for each meal. Dietary phosphorus was not measured nor was it set to a predetermined value. It was expected to range within the typical value, i.e. 750 mg-1250 mg per day. Subjects did not have salt available to add to meals. Fluid intake was ad libitum (and recorded) except as specified before drug administration. Subjects were to refrain from strenuous physical activity (e.g., contact sports) during study participation. Blinding. The treatment was administered in a double-blind fashion. Only the site pharmacist responsible for dispensing the product and the bioanalytical laboratory technician responsible for performing the bioanalysis of plasma Cpd 002 had knowledge of the treatments assigned. The study was not unblinded for the safety reviews between cohorts. A third party maintained the randomization schedule in a secure location with adequate controls to prevent unauthorized access. One set of unblinding envelopes (sealed envelopes containing individual subject treatment assignment) was stored at the CPU. The study was only unblinded once all data from the final cohort was collected and the database was locked. Prior and Concomitant Therapy. This was a study in healthy subjects. Subjects with prior therapy specified in the exclusion criteria were not eligible for entry into the study. With the exception of HRT for postmenopausal women and hormonal contraceptives, the use of concomitant medications was prohibited during the study unless needed to treat an AE. All previous medication (prescription and over-the-counter), vitamin and mineral supplements, and herbs taken by the participant in the past 30 days were recorded in the CRF, including start and stop date, dose and route of administration, frequency and indication. Medications taken for a procedure were also included. Treatment Compliance. All doses of study drug were given under the supervision of clinic staff, with time and dose administered recorded in the CRF. Clinical staff examined the subject's oral cavity and hands after drug administration to ensure that the capsule(s) was/were swallowed. Efficacy Variables. The study consisted of a 3-week screening period followed by a 5-day baseline assessment, a 7-day double-blind treatment period with 2 days of follow-up for safety and PD assessments. Fourteen days after the treatment period subjects were contacted by telephone for a safety follow-up. Subjects were admitted to the CPU 5 days prior to administration of the first dosing of study drug and were confined to the unit for the duration of the treatment period, being released on Day 9. Safety assessments were performed starting with Day-5 and included physical examination; vital signs; 12-lead ECGs; routine serum chemistry, hematology, and urinalysis; and AE reporting. Pharmacodynamic assessments were performed daily from Day-4 through Day 9 and included urine and stool Na+ excretion, time to first bowel movement, and stool parameters (consistency, weight, and frequency). Pharmacodynamic laboratory assessments (plasma renin, aldosterone, and NT-pro BNP) were collected on Days-4, -1, 3, 6, and 9. Laboratory Assessments. Blood and urine samples for clinical laboratory tests (hematology, chemistry, urinalysis) were collected during screening (to meet inclusion/exclusion criteria) and at Day-4, and Day 9 after waking and prior to breakfast. In addition, blood was collected at screening and Day-5 for alcohol/drug screening, FSH test (postmenopausal females only), and pregnancy testing (all females). Virology screening for HBsAg, HCV, and HIV were performed at screening. Pharmacodynamic Variables. The following PD parameters were monitored as a signal of potential drug activity: Stool Na+ excretion Stool Phosphorus excretion Bowel Movements. Study participants were instructed to notify study personnel immediately before they had a bowel movement. Study personnel recorded the time of every bowel movement and assessed the stool parameters (e.g., consistency, weight). Bowel movements that occurred prior to leaving the bathroom were considered 1 bowel movement. All bowel movements were collected, weighed, and stored by the CPU for total Na+ and P analysis; collections were in 24-hour intervals. Pharmacodynamic Analyses—Stool Sodium and Phosphorus Analytical methods. The human fecal samples were processed with nitric acid to give pre-digested sample (“Pre-digests”) prior to laboratory determination of sodium and phosphorus contents. Pre-digest were digested further in nitric acid at 100° C. followed by hydrochloric acid at 100° C. and diluted with deionized water. Yttrium was added to the digestion as internal standard. Calibration standards and quality control samples were digested with the same procedure. Sodium and phosphorus concentrations were determined by an inductively coupled plasma optical emission spectrometric (ICP-OES) method. The light intensity of analyte and yttrium were measured at the SCD (array) detectors. The analyte-to-yttrium intensity ratios were converted to solution concentrations via the instrument software. Total sodium and phosphorus content in each sample was calculated using the sample volumes obtained during the pre-digestion process and the concentrations measured. Results. Upon unblinding of the data, pharmacodynamic measurement of fecal and urine P and Na were assigned to the placebo group (3 subjects embedded in each cohort×3 cohorts=9 subjects) and to the 3 treated groups respectively. The data are shown in FIGS. 14A-B. FIG. 14A shows the mean average daily fecal excretion of Na (+/−SE), averaged over the 7-day treatment period (Day 1 to Day 7) and reported as mEq/day. FIG. 14B shows the mean average daily fecal excretion of phosphorus (+/−), averaged over the 7-day treatment period (Day 1 to Day 7) and reported as mEq/day. Statistical analysis was performed by one-way ANOVA; (*); p<0.05, (**); p<0.01, (***); p<0.001. Example 9 Evaluation of Activity in the Reduction of Dietary Phosphorus at Dose 15 Mg Bid in a 7-Day Repeat Dose Crossover Study in Healthy Volunteers A Phase 1, single-center, randomized, 3-way cross-over, open label study was designed to evaluate the pharmacodynamics of Cpd 002 for three different formulations of Cpd 002 administered twice daily PO for 4 days in healthy male and female subjects taking a proton pump inhibitor (omeprazole), utilizing a three-way crossover design. Many potential patients take either PPIs or H2 antagonists for the treatment of gastroesophageal reflux disease (GERD). However, the in vitro dissolution profiles of Cpd 002 formulations can be affected by a high pH, where slower and/or incomplete dissolution is sometimes observed. In order to evaluate the pharmacodynamic activity of the drug in the context of elevated gastric pH, subjects in this study were required to be on omeprazole starting on Day-5 throughout the treatment period. Subjects were screened within 3 weeks of enrollment. Each subject took Omeprazole 20 mg twice daily beginning on Day-5. Subjects checked in a Clinical Pharmacology Unit (CPU) on Day-2 before dinner. Each subject received a diet standardized for Na+ content while in the CPU. Subjects received one of three formulations of Cpd 002 BID with approximately 240 mL of non-carbonated water on Days 1 to 4, 7 to 10, and 13 to 16 (a different formulation each time). Subjects were fed breakfast and/or dinner within approximately 5 minutes after dosing. There was a two day wash out period between each treatment period. While confined to the CPU, Na+-standardized meals were provided per CPU procedures. Pharmacodynamic assessment included 24-hour urinary sodium and phosphorus and fecal sodium and phosphorus measurements. At least 18 healthy male and female subjects were randomized in this study. Subject Selection Criteria—Inclusion Criteria. 1. Healthy man or woman aged 19 to 65 years, inclusive. 2. Body mass index between 18 and 29.9 kg/m2, inclusive. 3. No clinically significant abnormalities in the medical history, physical examinations, or clinical laboratory evaluations at screening. 4. Able to understand and comply with the protocol. 5. Willing and able to sign informed consent; signed and dated, written informed consent prior to any study specific procedures. 6. Females of child-bearing potential must have a negative pregnancy test at screening and on admission to the unit and must not be lactating. 7. Females of childbearing potential included in the study must use two effective methods of avoiding pregnancy (including oral, transdermal or implanted contraceptives, intrauterine device, female condom with spermicide, diaphragm with spermicide, cervical cap, or use of a condom with spermicide by sexual partner from screening to the follow-up visit. 8. Females of non-child bearing potential, confirmed at screening, must fulfill one of the following criteria: a. Post-menopausal defined as amenorrhea for at least 12 months or more; following cessation of all exogenous hormonal treatments and LH and FSH levels in the post-menopausal range; or b. Documentation of irreversible surgical sterilization by hysterectomy, bilateral oophorectomy or bilateral salpingectomy but not tubal ligation. 9. Males must be either be sterile, abstinent or agree to use, from check-in until 45 days from final study visit, one of the following approved methods of contraception: a male condom with spermicide; a sterile sexual partner; use by female sexual partner of an IUD with spermicide, a female condom with spermicide, contraceptive sponge with spermicide, an intravaginal system (eg, NuvaRing®), a diaphragm with spermicide, a cervical cap with spermicide, or oral, implantable, transdermal, or injectable contraceptives. 10. For inclusion in the optional genetic research, patients must fulfill all of the inclusion criteria described above and provide informed consent for the genetic sampling and analyses. Exclusion Criteria. Subjects were excluded from the study if they met any of the following criteria: 1. Diagnosis or treatment of any clinically symptomatic biochemical or structural abnormality of the gastrointestinal (GI) tract. 2. Any surgery on the small intestine or colon, excluding appendectomy or cholecystectomy or any other condition known to interfere with absorption, distribution, metabolism or excretion of drugs. 3. Clinical evidence of significant cardiovascular, respiratory, renal, hepatic, gastrointestinal, hematologic, metabolic, endocrine, neurologic, psychiatric disease, or any condition that may interfere with the subject successfully completing the trial or that would present a safety risk to the subject. 4. History of severe allergy/hypersensitivity or ongoing allergy/hypersensitivity, as judged by the investigator or history of hypersensitivity to drugs with a similar chemical structure or class to CPD002. 5. Loose stools (Bristol Stool Form Score of 6 or 7)>2 days in the past 7 days. 6. Hepatic dysfunction (alanine aminotransaminase [ALT] or aspartate aminotransaminase [AST])>1.5 times the upper limit of normal [ULN]) or renal impairment (serum creatinine>ULN). 7. Clinically significant laboratory results at screening as determined by the investigator. 8. Any evidence of or treatment of malignancy, excluding non-melanomatous malignancies of the skin. 9. If, in the opinion of the investigator the subject is unable or unwilling to fulfill the requirements of the protocol or has a condition, which would render the results uninterpretable. 10. Use of diuretic medications; medications that are known to affect stool consistency and/or GI motility, including fiber supplements (unless required by study), anti-diarrheals, cathartics, antacids, opiates, narcotics, prokinetic drugs, enemas, antibiotics, probiotic medications or supplements; or salt or electrolyte supplements containing sodium, potassium, chloride, or bicarbonate formulations from CPU check in (Day-2) to CPU check out (Day 17). 11. Use of an investigational agent within 30 days prior to Day-2. 12. Positive virology (active hepatitis B infection, hepatitis C infection, or human immunodeficiency virus), alcohol, or drugs of abuse test during screening. 13. Use of any prescription medication within 7 days before admission to the CPU, or required chronic use of any prescription or non-prescription medication, with the exception of hormonal replacement therapy for postmenopausal women and hormonal contraceptives. 14. History of tobacco use, alcohol abuse, illicit drug use, significant mental illness, physical dependence to any opioid, or any history of drug abuse or addiction within 12 months of study enrollment. 15. Have had significant blood loss (>450 mL) or have donated 1 or more units of blood or plasma within 8 weeks prior to study entry. Study drug. Cpd 002 bis-HCl (e.g., the dihydrochloride salt of Cpd 002) capsules, Cpd 002 bis-HCl tablets and Cpd 002 free base tablets. The Cpd 002 bis-HCl salt is an amorphous, off-white powder. The Cpd 002 free base is a white, crystalline solid. Cpd 002 is presented as either a white size 0 HPMC (hydroxypropylmethylcellulose) capsule or a round, white tablet. The capsules were manufactured at a dosage strength of 15 mg on the basis of the Cpd 002 dihydrochloride formula weight, which is equivalent to 14 mg of the Cpd 002 free base. To ensure comparable dosage strengths across this study, tablets of both the dihydrochloride salt and free base were manufactured at a dosage strength reflecting 14 mg on the basis of the free base. Capsules and tablets were packaged in a white HDPE (high-density polyethylene) bottle. Capsules and tablets of Cpd 002 were stored refrigerated (2 to 8° C.) in the original packaging until use. The components of the tablets are described in Table E11 below. TABLE E11 Free Base Dihydrochloride Salt Wt/Tablet Wt/Tablet Component % Form (mg) % Form (mg) Cpd 002 5.9 14.7a 6.4 15.9a Prosolv HD90 86.1 215.3 85.6 214.1 Polyplasdone XL 5.00 12.5 5.00 12.5 Mg Stearate 2.00 5.0 2.00 5.0 Cabosil 1.00 2.5 1.00 2.5 Totals 100.00 250.0 100.00 250.0 aCorrected for purity, residual solvents, water content, and inorganic content. Dose and Route of Administration. Cpd 002 capsules or tablets, 15 mg (14 mg free base equivalents) were administered with approximately 240 mL of non-carbonated water twice daily PO prior to breakfast and dinner for 4 consecutive days per treatment period, with 2 day wash out periods between treatments. Omeprazole 20 mg BID was administered to screened subjects beginning on day-5. All subjects took omeprazole 20 mg twice daily one hour before intake of Cpd 002 each day until their last dose of study drug on Day 16. See Table E12 below. TABLE E12 Treatments Subjectsa Dose/Administrationb Regimen Formulation 1 18 15 mg BID Cpd 002 bis-HCl capsule 2 18 15 mg BID Cpd 002 bis-HCl capsule 3 18 15 mg BID Cpd 002 tablet aAll subjects received all three treatments; 6 subjects/treatment period. There was a 2 day wash out between each treatment period. bDoses are in equivalents of CPD002 free base (MW 1145.049). Once a subject was deemed eligible for randomization, the next available randomization number was assigned sequentially and the subject received the sequence of treatment indicated on the randomization schedule. All doses of study drug were given under the supervision of clinic staff, with time, and dose administered recorded in the case report form (CRF). Clinical staff examined the subject's oral cavity and hands after drug administration to ensure that capsule was swallowed. Fluid and Food Intake. Subjects participating in the study were given a standardized diet with an approximate sodium content (approximately 1500 mg for each meal). Dietary phosphorus was not measured nor was it set to a predetermined value. It was expected to range within the typical value, i.e. 750 mg-1250 mg per day. Subjects did not have salt or any other sodium containing spices or sauces available to add to meals. Fluid intake were ad libitum except as specified before drug administration. Daily menus (food and fluid) were similar during each treatment period. Pharmacodynamic variables. The following parameters were monitored as signal of potential drug activity. Urine sodium excretion (daily) Fecal sodium excretion (daily) Bowel movement and urine collection were performed as described earlier (Example 8); the pharmacodynamics activity of the three dosage forms was assessed as follows. A baseline fecal excretion of phosphorus or sodium was established as the average daily fecal excretion of phosphorus or sodium during Day-1 to Day 0, with the exception of one subject for whom the baseline was established during the first washout period, i.e., from Day 6 and Day 7. The daily fecal excretion of phosphorus or sodium upon treatment was measured by averaging fecal phosphorus or sodium excretion over the 4-day treatment period. The same method was used for urine. Results. The results are shown in FIGS. 15A-C. Statistical analysis was performed by one-way ANOVA; (*); p<0.05, (**); p<0.01, (***); p<0.001. FIG. 15A shows the mean average daily excretion of phosphorus (+/−SE). A baseline fecal excretion of phosphorus or sodium was established as the average daily fecal excretion of phosphorus or sodium during Day-1 to Day 0, with the exception of one subject for whom the baseline was established during the first washout period, i.e. from Day 6 and Day 7 (referred to as “Predose”). The daily fecal excretion of phosphorus upon treatment with 15 mg BID HCl tablets was measured by averaging fecal phosphorus or sodium excretion over the 4-day treatment period. FIG. 15B shows the average daily urinary excretion of sodium (+/−SE). A baseline fecal excretion of sodium was established as the average daily urinary excretion of sodium during Day-1 to Day 0, with the exception of one subject for whom the baseline was established during the first washout period, i.e. from Day 6 and Day 7 (referred to as “Predose”). The daily urinary excretion of sodium upon treatment with the three forms of drug products was measured by averaging urinary sodium excretion over the 4-day treatment period. FIG. 15C shows the average daily urinary excretion of phosphorus (+/−). A baseline fecal excretion of phosphorus was established as the average daily urinary excretion of phosphorus during Day-1 to Day 0, with the exception of one subject for whom the baseline was established during the first washout period, i.e. from Day 6 and Day 7 (referred to as “Predose”). The daily urinary excretion of phosphorus upon treatment with the three forms of drug products was measured by averaging urinary sodium excretion over the 4-day treatment period. Example 10 The Effect of Renvela® on the Pharmacodynamics of CP002 A Phase 1, single-center, randomized, open label study was designed to evaluate the effect of Renvela® on the pharmacodynamic activity of CP002, as the dihydrochloride salt (see Table E4) administered twice daily PO for 4 days in healthy male and female subjects. Subjects were screened within 3 weeks of enrollment. Eighteen subjects checked in to the CPU on Day-2 before dinner. Each subject received a diet standardized for Na+ content while in the CPU. Subjects received 15 mg CP002 BID on Days 1 to 4, and Days 7 to 10. Subjects were fed breakfast and/or dinner within approximately 5 minutes after dosing. During one of the two treatment periods (randomly assigned), subjects received one Renvela® 800 mg tablet with breakfast, lunch and dinner (either Days 1 to 4 or Days 7 to 10). There was a two day wash out period between each treatment period. While confined to the CPU, Na+-standardized meals were provided per CPU procedures. Pharmacodynamic assessment included 24-hour fecal sodium and phosphorus measurements. The subject selection criteria and description of the study drug were the same as described for Example 9 (supra). The schedule of assessments and procedures is shown in Table E13 below. TABLE E13 Screening Run-in Treatment Period 1 Washout/Run-in Treatment Period 2 Study Day Procedure −21 to −3 −2 −1 1 2 3 4 5 6 7 8 9 10 Renvela ® X X X X X X X X administration CP002 X X X X X X X X administration 24 hour urine/ X X X X X X X X X X X stool collection Stool X X X X X X X X X X X X assessment PK blood X X sampling Pharmacodynamic variables. A baseline fecal excretion of phosphorus or sodium was established as the average daily fecal excretion of phosphorus or sodium during Day-1 to Day 0. The daily fecal excretion of phosphorus or sodium upon treatment was measured by averaging fecal phosphorus or sodium excretion over the 4-day treatment period. Sodium and phosphorus analytical methods were performed as described in Example 8 (supra). Results. The data are shown in FIGS. 16A-B. Statistical analysis performed by one-way ANOVA followed by Tukey's multiple comparison's test; (*); p<0.05, (**); p<0.01, (***); p<0.001. vs. pre-Dose. The mean average daily fecal excretion of sodium (+/−SE) is shown in FIG. 16A. Here, a baseline fecal excretion of sodium was established as the average daily fecal excretion of phosphorus or sodium during Day-1 to Day 0, (referred to as “Predose”). The daily fecal excretion of sodium upon treatment with 15 mg BID bis-HCl tablets was measured by averaging fecal sodium excretion over the 4-day treatment period. The mean average daily fecal excretion of phoshorus (+/−SE) is shown in FIG. 16B. A baseline fecal excretion of phosphorus was established as the average daily fecal excretion of phosphorus during Day-1 to Day 0, (referred to as “Predose”). The daily fecal excretion of phosphorus upon treatment with 15 mg BID bis-HCl tablets was measured by averaging fecal phosphorus excretion over the 4-day treatment period. 14783983 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Mar 8th, 2016 12:00AM Jul 21st, 2014 12:00AM https://www.uspto.gov?id=US09278102-20160308 Compounds and methods for inhibiting phosphate transport Compounds having activity as phosphate transport inhibitors, more specifically, inhibitors of intestinal apical membrane Na/phosphate co-transport, are disclosed. The compounds have the following structure (I): including stereoisomers, pharmaceutically acceptable salts and prodrugs thereof, wherein X, Y, R1 and R2 are as defined herein. Methods associated with preparation and use of such compounds, as well as pharmaceutical compositions comprising such compounds, are also disclosed. 9278102 1. A pharmaceutical composition comprising: a compound of structure (I): or a stereoisomer or pharmaceutically acceptable salt thereof, wherein: X is substituted aryl or substituted heteroaryl; Y is halogen, optionally substituted alkylamino, optionally substituted alkoxy, optionally substituted thioalkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, —O(optionally substituted cycloalkyl), —O(optionally substituted heterocyclyl) or —O(optionally substituted aryl); each R1 is, independently, hydrogen, halogen, C1-6alkyl or C1-6haloalkyl; and R2 is hydrogen or optionally substituted C1-6alkyl; and a pharmaceutically acceptable carrier, diluent, or excipient. 2. A pharmaceutical composition of claim 1 wherein Y is halogen. 3. A pharmaceutical composition of claim 2 wherein Y is chloro. 4. A pharmaceutical composition of claim 1 wherein Y is alkylamino. 5. A pharmaceutical composition of claim 4 wherein Y is diethylamino. 6. A pharmaceutical composition of claim 1 wherein Y is alkoxy. 7. A pharmaceutical composition of claim 1 wherein Y is heterocyclyl. 8. A pharmaceutical composition of claim 7 wherein Y is 1-piperidinyl and the compound has the structure: 9. A pharmaceutical composition of claim 1 wherein Y is —O(cycloalkyl). 10. A pharmaceutical composition of claim 1 wherein X is —ZR3, and wherein Z is aryl or heteroaryl and R3 is a non-hydrogen substituent. 11. A pharmaceutical composition of claim 10 wherein Z is aryl. 12. A pharmaceutical composition of claim 11 wherein Z is phenyl. 13. A pharmaceutical composition of claim 12 wherein the compound has the structure: 14. A pharmaceutical composition of claim 10 wherein Z is heteroaryl. 15. A pharmaceutical composition of claim 14 wherein Z is pyridinyl. 16. A pharmaceutical composition of claim 15 wherein the compound has the structure: 17. A pharmaceutical composition of claim 1 wherein R3 is: (a) —CH2S(O)0-2(optionally substituted C1-6alkyl)C(═O)NR7R4, (b) —CH2S(O)0-2(optionally substituted C1-6alkyl)NR7R4, (c) —CH2S(O)0-2(optionally substituted C1-6alkyl)C(═O)OR5, (d) —CH2S(O)0-2(optionally substituted C1-6alkyl)OR5, (e) —CH2S(O)0-2(optionally substituted C1-6alkyl)R6, (f) —CH2S(O)0-2R6, (g) —CH2S(O)0-2NR7R4, (h) —CH2S(O)0-2(CH2CH2O)xR5, (i) —CH2NR7(CH2CH2O)xR5, (j) —C(═O)NR7(optionally substituted C1-6 alkyl)C(═O)NR7R4, (k) —C(═O)NR7(optionally substituted C1-6alkyl)NR7R4, (l) —C(═O)NR7(optionally substituted C1-6 alkyl)C(═O)OR5, (m) —C(═O)NR7(optionally substituted C1-6 alkyl)OR5, (n) —C(═O)NR7(optionally substituted C1-6alkyl)R6, or (o) —C(═O)NR7(CH2CH2O)xR5, wherein R4 is hydrogen, hydroxyl, alkoxy, optionally substituted C1-6alkyl, optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R5 is hydrogen, optionally substituted C1-6alkyl, optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R6 is optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R7 is hydrogen or optionally substituted C1-6alkyl; and x is an integer from 2 to 10. 18. A pharmaceutical composition of claim 1 wherein each R1 is hydrogen. 19. A pharmaceutical composition of claim 1 wherein R2 is hydrogen. 20. A pharmaceutical composition of claim 1 wherein R2 is an optionally substituted C1-6alkyl. 21. A pharmaceutical composition of claim 20 wherein R2 is trifluoromethyl. 22. The pharmaceutical composition of claim 1, further comprising one or more additional biologically active agents. 23. The pharmaceutical composition of claim 22, wherein the additional biologically active agent is selected from vitamin D2, vitamin D3, active vitamin D and active vitamin D analogs. 24. The pharmaceutical composition of claim 22, wherein the additional biologically active agent is a phosphate binder, and the compound does not interfere with the phosphate binder. 25. The pharmaceutical composition of claim 24, wherein the phosphate binder is selected from the group consisting of sevelamer carbonate, sevelamer hydrochloride, lanthanum carbonate, calcium carbonate, calcium acetate, MCI-196, ferric citrate, iron magnesium hydroxy carbonate, APS1585, SBR-759 and PA-21. 26. The pharmaceutical composition of claim 1, wherein the compound is substantially active as an inhibitor of Na/phosphate co-transport and the Na/phosphate co-transport is mediated by NaPi2b. 27. A pharmaceutical composition of claim 1 wherein the compound is present in the composition in an amount from 0.2 mg to 2 g per daily dosage. 28. A pharmaceutical composition of claim 27 wherein the compound is present in an amount from 10 mg to 250 mg per daily dosage. 29. A pharmaceutical composition of claim 1 wherein the pharmaceutical composition is a powder, granule, pill, tablet, capsule, liquid, syrup, suspension, emulsion, or aqueous injection solution. 29 CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 13/734,701, filed Jan. 4, 2013, now pending, which is a continuation of International PCT Patent Application No. PCT/US2011/043266, filed Jul. 7, 2011, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/362,133 filed Jul. 7, 2010. The foregoing applications are incorporated herein by reference in their entireties. BACKGROUND 1. Field The present invention is directed to novel phosphate transport inhibitors, more specifically, inhibitors of intestinal apical membrane Na/phosphate co-transport, and methods for their preparation and use as therapeutic or prophylactic agents. 2. Description of the Related Art Patients with inadequate renal function, hypoparathyroidism, or certain other medical conditions (such as hereditary hyperphosphatemia, Albright hereditary osteodystrophy, amyloidosis, etc.) often have hyperphosphatemia, or elevated serum phosphate levels (wherein the level, for example, is more than about 6 mg/dL). Hyperphosphatemia, especially if present over extended periods of time, leads to severe abnormalities in calcium and phosphorus metabolism, often manifested by secondary hyperparathyroidism, bone disease and ectopic calcification in the cardiovascular system, joints, lungs, eyes and other soft tissues. Higher serum phosphorus levels are strongly associated with the progression of renal failure, cardiovascular calcification and mortality in end-stage renal disease (ESRD) patients. High-normal serum phosphorus levels have been associated with cardiovascular events and mortality among individuals who have chronic kidney disease (CKD) and among those who have normal kidney function (see, e.g., Joy, M. S., P. C. Karagiannis and F. W. Peyerl, Outcomes of Secondary Hyperparathyroidism in Chronic Kidney Disease and the Direct Costs of Treatment, J. Manag. Care Pharm., 13(5):397-411 (2007)) The progression of kidney disease can be slowed by reducing phosphate retention. Thus, for renal failure patients who are hyperphosphatemic and for chronic kidney disease patients who have serum phosphate levels within the normal range or only slightly elevated, therapy to reduce phosphate retention is beneficial. For patients who experience hyperphosphatemia, calcium salts have been widely used to bind intestinal phosphate and prevent its absorption. Different types of calcium salts, including calcium carbonate, acetate, citrate, alginate, and ketoacid salts have been utilized for phosphate binding. A problem with all of these therapeutics is the hypercalcemia, which often results from absorption of high amounts of ingested calcium. Hypercalcemia causes serious side effects such as cardiac arrhythmias, renal failure, and skin and vascular calcification. Frequent monitoring of serum calcium levels is required during therapy with calcium-based phosphate binders. Other calcium and aluminum-free phosphate binders, such as sevelamer, a crosslinked polyamine polymer, have drawbacks that include the amount and frequency of dosing required to be therapeutically active. The relatively modest phosphate binding capacity of those drugs in vivo obliges patients to escalate the dose (up to 7 grs per day or more). Such quantities have been shown to produce gastrointestinal discomfort, such as dyspepsia, abdominal pain and, in some extreme cases, bowel perforation. An alternative approach to the prevention of phosphate absorption from the intestine in patients with elevated phosphate serum levels is through inhibition of the intestinal transport system which mediates phosphate uptake in the intestine. It is understood that phosphate absorption in the upper intestine is mediated at least in part by a carrier-mediated mechanism which couples the absorption of phosphate to that of sodium. Inhibition of intestinal phosphate transport will reduce body phosphorus overload. In patients with advanced kidney disease (e.g. stage 4 and 5), the body phosphorus overload manifests itself by serum phosphate concentration above normal levels, i.e. hyperphosphatemia. Hyperphosphatemia is directly related to mortality and morbidity. Inhibition of intestinal phosphate transport will reduce serum phosphate concentration and therefore improve outcome in those patients. In chronic kidney disease patients stage 2 and 3, the body phosphorus overload does not necessarily lead to hyperphosphatemia, i.e. patients remain normophosphatemic, but there is a need to reduce body phosphorus overload even at those early stages to avoid associated bone and vascular disorders, and ultimately improve mortality rate. Similarly, inhibition of intestinal phosphate transport would be particularly advantageous in patients that have a disease that is treatable by inhibiting the uptake of phosphate from the intestines. Inhibition of phosphate absorption from the glomerular filtrate within the kidneys would also be advantageous for treating chronic renal failure. Furthermore, inhibition of phosphate transport may slow the progression of renal failure and reduce risk of cardiovascular events. While progress has been made in this field, there remains a need in the art for novel phosphate transport inhibitors. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY In brief, the present invention is directed to compounds having activity as phosphate transport inhibitors, more specifically, inhibitors of intestinal apical membrane Na/phosphate co-transport, including stereoisomers, pharmaceutically acceptable salts and prodrugs thereof, and the use of such compounds to inhibit sodium-mediated phosphate uptake and to thereby treat any of a variety of conditions or diseases in which modulation of sodium-mediated phosphate uptake provides a therapeutic benefit. In one embodiment, compounds having the following structure (I) are provided: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: X is substituted aryl or substituted heteroaryl; Y is halogen, optionally substituted alkylamino, optionally substituted alkoxy, optionally substituted thioalkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, —O(optionally substituted cycloalkyl), —O(optionally substituted heterocyclyl) or —O(optionally substituted aryl); each R1 is, independently, hydrogen, halogen, C1-6alkyl or C1-6haloalkyl; and R2 is hydrogen or optionally substituted C1-6alkyl. In another embodiment, a pharmaceutical composition is provided comprising a compound having structure (I), or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the pharmaceutical composition further comprises one or more additional biologically active agents. In more specific embodiments, the additional biologically active agent is selected from vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), active vitamin D (calcitriol) and active vitamin D analogs (e.g. doxercalciferol, paricalcitol). In other more specific embodiments, the additional biologically active agent is a phosphate binder, and the compound does not interfere with the phosphate binder. For example, in certain embodiments, the phosphate binder is selected from the group consisting of Renvela, Renagel, Fosrenol, calcium carbonate, calcium acetate (e.g. Phoslo), MCI-196, Zerenex™, Fermagate, APS1585, SBR-759 and PA-21. In other further embodiments, the compound is substantially active as an inhibitor of Na/phosphate co-transport and the Na/phosphate co-transport is mediated by NaPi2b. In another embodiment, a method of inhibiting phosphate transport in a mammal is provided, comprising administering to the mammal an effective amount of a compound having structure (I), or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, or a pharmaceutical composition comprising such compound. In further embodiments, the method inhibits sodium-mediated phosphate uptake. In other further embodiments, the method is selected from the group consisting of: (a) a method for treating hyperphosphatemia; (b) a method for treating a renal disease; (c) a method for delaying time to dialysis; (d) a method for attenuating intima localized vascular calcification; (e) a method for reducing the hyperphosphatemic effect of active vitamin D; (f) a method for reducing FGF23 levels; (g) a method for attenuating hyperparathyroidism; (h) a method for improving endothelial dysfunction induced by postprandial serum phosphate; (i) a method for reducing urinary phosphorous; (j) a method for normalizing serum phosphorus levels; (k) a method for treating proteinura; and (l) a method for reducing serum PTH and phosphate concentrations or levels. In certain embodiments, the renal disease is chronic kidney disease or end stage renal disease. In another embodiment, a method of treating hyperphosphatemia in a mammal in need thereof is provided, comprising administering to the mammal an effective amount of a compound having structure (I), or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, or a pharmaceutical composition comprising such compound. These and other aspects of the invention will be apparent upon reference to the following detailed description. DETAILED DESCRIPTION In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRc where Rb is an alkylene chain as defined above and Rc is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. The above non-hydrogen groups are generally referred to herein as “substituents”. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. “Effective amount” or “therapeutically effective amount” refers to that amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to inhibit phosphate transport, inhibit sodium-mediated phosphate uptake, reduce serum PTH, calcium, calcitriol, and phosphate concentrations or levels, treat renal disease or treat hyperphosphatemia in the mammal, preferably a human. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure. “Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes: (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it; (ii) inhibiting the disease or condition, i.e., arresting its development; (iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or (iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. As noted above, in one embodiment of the present invention, compounds having activity as phosphate transport inhibitors, more specifically, inhibitors of intestinal apical membrane Na/phosphate co-transport, are provided, the compounds having the following structure (I): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: X is substituted aryl or substituted heteroaryl; Y is halogen, optionally substituted alkylamino, optionally substituted alkoxy, optionally substituted thioalkyl, optionally substituted cycloalkyl, optionally substituted heterocyclyl, optionally substituted aryl, —O(optionally substituted cycloalkyl), —O(optionally substituted heterocyclyl) or —O(optionally substituted aryl); each R1 is, independently, hydrogen, halogen, C1-6alkyl or C1-6haloalkyl; and R2 is hydrogen or optionally substituted C1-6alkyl. In further embodiments, Y is halogen, such as chloro. In other further embodiments, Y is alkylamino, such as diethylamino. In other further embodiments, Y is alkoxy. In other further embodiments, Y is heterocyclyl, such as 1-piperidinyl and the compound has the structure: In other further embodiments, Y is —O(cycloalkyl). In other further embodiments, X is —ZR3, where Z is aryl or heteroaryl and R3 represents a non-hydrogen substituent as defined above, or as more specifically defined below. In more specific embodiments, Z is aryl, such as phenyl and the compound has the structure. In other more specific embodiments, Z is heteroaryl, such as pyridinyl and the compound has the structure: In more specific embodiments of the foregoing, R3 is: (a) —CH2S(O)0-2(optionally substituted C1-6alkyl)C(═O)NR7R4, (b) —CH2S(O)0-2(optionally substituted C1-6alkyl)NR7R4, (c) —CH2S(O)0-2(optionally substituted C1-6alkyl)C(═O)OR5, (d) —CH2S(O)0-2(optionally substituted C1-6alkyl)OR5, (e) —CH2S(O)0-2(optionally substituted C1-6alkyl)R6, (f) —CH2S(O)0-2R6, (g) —CH2S(O)0-2NR7R4, (h) —CH2S(O)0-2(CH2CH2O)xR5, (i) —CH2NR7(CH2CH2O)xR5, (j) —C(═O)NR7(optionally substituted C1-6alkyl)C(═O)NR7R4, (k) —C(═O)NR7(optionally substituted C1-6alkyl)NR7R4, (l) —C(═O)NR7(optionally substituted C1-6alkyl)C(═O)OR5, (m) —C(═O)NR7(optionally substituted C1-6alkyl)OR5, (n) —C(═O)NR7(optionally substituted C1-6alkyl)R6, or (o) —C(═O)NR7(CH2CH2O)xR5; wherein R4 is hydrogen, hydroxyl, alkoxy, optionally substituted C1-6 alkyl, optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R5 is hydrogen, optionally substituted C1-6alkyl, optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R6 is optionally substituted aryl, optionally substituted heterocyclyl or optionally substituted heteroaryl; R7 is hydrogen or optionally substituted C1-6alkyl; and x is an integer from 2 to 10. In other further embodiments, each R1 is hydrogen. In other further embodiments, R2 is hydrogen. In other further embodiments, R2 is an optionally substituted C1-6alkyl, such as trifluoromethyl. It is understood that any embodiment of the compounds of structure (I), as set forth above, and any specific substituent set forth herein for a X, Y, R1, R2, R3, R4, R5, R6 or R7 group in the compounds of structure (I), as set forth above, may be independently combined with other embodiments and/or substituents of compounds of structure (I) to form embodiments of the inventions not specifically set forth above. In addition, in the event that a list of substitutents is listed for any particular substituent in a particular embodiment and/or claim, it is understood that each individual substituent may be deleted from the particular embodiment and/or claim and that the remaining list of substituents will be considered to be within the scope of the invention. In accordance with the present disclosure, it has been discovered that phosphate absorption from the intestine in patients with elevated phosphate serum levels may be limited, and preferably substantially prevented, through inhibition of the intestinal transport system which mediates phosphate uptake in the intestine. This inhibition may be achieved by the administration of certain compounds, and/or pharmaceutical compositions comprising them, which may advantageously be designed such that little, or substantially none, of the compound is absorbed into the blood stream (that is, it is designed to be non-systemic or substantially non-systemic). Such compounds are described as generally abiding by “Ardelyx Rules.” In this regard, the compounds have features that give rise to little or substantially no systemic availability. In other words, the compounds are not absorbed into the bloodstream at meaningful levels and therefore have no activity there, but instead have their activity localized substantially within the GI tract. Therefore, in certain illustrative embodiments as further described herein, the compounds of the invention generally require a combination of structural and/or functional features relating or contributing to their activity in the GI tract and/or their substantial non-systemic bioavailability. Such features may include, for example, one or more of (i) specific tPSA and/or MW values (e.g., at least about 190 Å2 and/or at least about 736 Daltons, respectively), (ii) specific levels of fecal recovery of the compound and/or its metabolites after administration (e.g., greater than 50% at 72 hours); (iii) specific numbers of NH and/or OH and/or potentially hydrogen bond donor moieties (e.g., greater than about five); (iv) specific numbers of rotatable bonds (e.g., greater than about five); (iv) specific permeability features (e.g., Papp less than about 100×10−6 cm/s); and/or any of a number of other features and characteristics as described herein. The compounds of the present invention offer numerous advantages in the treatment of GI tract and other disorders. For example, the compounds are active on the phosphate transporter apically located in the intestine and essentially do not reach other phosphate transporters expressed in other tissues and organs. For instance the NaPi2b transporter is primarily expressed in the apical membrane of intestinal enterocytes, but is also found in salivary glands, mammary glands, lung, kidney, pancreas, ovary, prostate, testis and liver (Feild et al., 1999, Biochem Biophys Res Commun, v. 258, no. 3, p. 578-582; Bai et al., 2000, Am J Physiol Cell Physiol, v. 279, no. 4, p. C1135-C1143; Virkki et al., 2007, Am J Physiol Renal Physiol, v. 293, no. 3, p. F643-F654). Genome wide single-nucleotide polymorphism analysis in patients with pulmonary alveolar microlithiasis (PAM) has revealed a link between a mutated NaPi2b gene and disorder in which microliths are formed in the lung alveolar space. Homozygous inactivating mutations of pulmonary NaPi2b have also been implicated in the pathophysiology of PAM (Huqun et al., 2007, Am J Respir Crit Care Med, v. 175, no. 3, p. 263-268). Consistent with this human study, calcification nodules were evident in NaPi2b conditional knockout mice but not in wild type animals after NaPi2b deletion. In contrast, analysis of kidney and ileum samples revealed no pathologic abnormalities associated with Npt2b deletion (Sabbagh et al., 2009, J Am Soc. Nephrol., 20: 2348-2358). The essentially non-systemic NaPi2b inhibitors of the present invention do not interfere with the pulmonary function of NaPi2b and, therefore, potential pulmonary toxicity is minimized. In addition, certain patient populations to whom the compounds of the invention may be administered are expected to have limited kidney clearance rate secondary to a declining kidney function. Thus, systemic compounds with some kidney clearance contribution in their excretion pathway can accumulate in the plasma, potentially leading to undesired side-effects in those patients with chronic kidney disease (Sica, 2008, J Clin Hypertens. (Greenwich.), v. 10, no. 7, p. 541-548). The compounds of the invention do not give rise to these same concerns because of their limited systemic availability. As further detailed below, phosphate absorption in the upper intestine is mediated, at least in part, by a carrier-mediated mechanism which couples the absorption of phosphate to that of sodium. Accordingly, inhibition of intestinal phosphate transport will reduce body phosphorus overload. In patients with advanced kidney disease (e.g. stage 4 and 5), the body phosphorus overload manifests itself by serum phosphate concentration above normal levels, i.e. hyperphosphatemia. Hyperphosphatemia is directly related to mortality and morbidity. Inhibition of intestinal phosphate transport will reduce serum phosphate concentration and therefore improve outcome in those patients. In stage 2 and 3 chronic kidney disease patients, the body phosphorus overload does not necessarily lead to hyperphosphatemia, i.e. patients remain normophosphatemic, but there is a need to reduce body phosphorus overload even at those early stages to avoid associated bone and vascular disorders, and ultimately improve mortality rate. Similarly, inhibition of intestinal phosphate transport will be particularly advantageous in patients that have a disease that is treatable by inhibiting the uptake of phosphate from the intestines Inhibition of phosphate absorption from the glomerular filtrate within the kidneys would also be advantageous for treating chronic renal failure. Furthermore, inhibition of phosphate transport may slow the progression of renal failure and reduce risk of cardiovascular events. Without being held to any particular theory, it is generally believed that, in vertebrates, phosphate (Pi) transporters use the inwardly directed electrochemical gradient of Na+ ions, established by the Na/K ATPase transporter, to drive Pi influx. These transporters fall in three distinct and unrelated Pi transporters proteins named type I, II and III. NaPi type I transporters comprise NaPi-I, mainly expressed in the proximal and distal renal tubules. NaPi type II transporters comprise NaPi2a, NaPi2b, and NaPi2c. NaPi2a is localized in the apical membrane of proximal renal tubule, but is also detected in rat brain, osteoclasts and osteoblast-like cells. NaPi2b is expressed in the apical membrane of enterocytes, but also found in lung, colon, testis and liver (see, e.g., Virkki, L. V., et al., Phosphate Transporters: A Tale of Two Solute Carrier Families, Am. J. Physiol. Renal. Physiol., 293(3):F643-54 (2007)). Type III NaPi transporters comprise PiT-1 and PiT-2, which are now emerging as important players in bone Pi metabolism and vascular calcification. NaPi2a is believed to play a key role in phosphorus homeostasis by controlling the reabsorption of Pi in the renal proximal tubule. This is exemplified in NaPi2a KO mice, which develop hyperphosphaturia and hypophosphatemia. NaPi2b is believed responsible for transepithelial absorption in the small intestine and is regulated by dietary Pi and vitamin D (Calcitriol (1,25-Dihydroxycholecalciferol)). NaPi2c is expressed in renal tubule and other tissues (see, e.g., Virkki, L. V., et al., Id.). The basic transport mechanism of NaPi2a and NaPi2b is the same (see, e.g., Murer, H., et al., Proximal Tubular Phosphate Reabsorption: Molecular Mechanisms, Physiol. Rev., 80(4):1373-409 (2000)); both are electrogenic with a stoichiometry of about 3:1 Na+:HPO42−, meaning that 3 Na+ are co-transported with one phosphate anion. The additional Na cations translocated are excreted on the basolateral membrane via the K/Na ATPase active transporters to preserve cell polarization. Renal Pi transporter NaPi2a activity is increased in the kidney in response to low dietary Pi (see, e.g., Murer, et al., Id.). This results from an increase in transporter expression on the apical membrane of the kidney tubule. Histochemical analysis suggests a “recruitment” phenomenon. It is to be noted that, in contrast, the type I Na-Pi transporter does not respond to change in dietary P. The change in NaPi2a expression is paralleled by alteration in parathyroid hormone PTH plasma concentration and vice-versa (e.g., injection of PTH in rats leads within minutes to a reduction in brush border membrane transporter content). Acid-base change can also alter expression of NaPi2a. Chronic metabolic acidosis in rats significantly decreases NaPi2a protein and mRNA content. The same is observed in CKD rats induced by 5/6th nephrectomy. The regulation of apical NaPi2a transporters involves complex membrane retrieval and re-insertion mechanisms. Control in transport activity can also be controlled by changes in intra-tubular and intracellular pH, in transmembrane potential difference and posttranslational modification. Substantially Impermeable or Substantially Systemically Non-Bioavailable Phosphate Transport Inhibitor Compounds A. Physical and Performance Properties In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure, remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.); stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelial layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). In this regard it is to be further noted, that in certain embodiments, due to the substantial impermeability and/or substantial systemic non-bioavailability of the compounds of the present invention, greater than about 50%, 60%, 70%, 80% or 90% of a compound of the invention is recoverable from the feces over, for example, a 24, 48 or 72 hour period following administration to a patient in need thereof. In this respect, it is understood that a recovered compound can include the sum of the parent compound and its metabolites derived from the parent compound, e.g., by means of hydrolysis, conjugation, reduction, oxidation, N-alkylation, glucuronidation, acetylation, methylation, sulfation, phosphorylation, or any other modification that adds atoms to or removes atoms from the parent compound, wherein the metabolites are generated via the action of any enzyme or exposure to any physiological environment including, pH, temperature, pressure, or interactions with foodstuffs as they exist in the digestive milieu. Measurement of fecal recovery of compound and metabolites can be carried out using standard methodology. For example, compound can be administered orally at a suitable dose (e.g., 10 mg/kg) and feces are then collected at predetermined times after dosing (e.g., 24 hours, 48 hours, 72 hours). Parent compound and metabolites can be extracted with organic solvent and analyzed quantitatively using mass spectrometry. A mass balance analysis of the parent compound and metabolites (including, parent=M, metabolite 1 [M+16], and metabolite 2 [M+32]) can be used to determine the percent recovery in the feces. In certain preferred embodiments, the phosphate transport inhibitors of the present invention are not competitive inhibitors with respect to phosphate of Na/phosphate co-transport. In certain other preferred embodiments, the phosphate transport inhibitors of the invention are non-competitive inhibitors. Non-competitive inhibitors maintain their degree of inhibition irrespective of the local phosphate concentration. This feature is an important aspect in providing an efficient blockade of intestinal transport in postprandial state, where the local concentration of dietary phosphate can attain concentration as high as 10 mM. It is believed that competitive inhibitors are too sensitive to local phosphate concentration and unable to block phosphate uptake following a high phosphorus meal. Various methods are available for determining whether a phosphate transport inhibitor is non-competitive or competitive. For example, a phosphate uptake assay can be performed and the IC50 values for a compound at different phosphate concentrations can be determined (e.g., “Enzyme kinetics”, I. Segel, 1975, John-Wiley & Sons, p. 123). IC50 values for non-competitive inhibitors will remain the same or similar with respect to the phosphate concentration, whereas IC50 values for competitive inhibitors will increase (i.e lose potency) as phosphate concentration increases. (i) Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacokinetics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable phosphate transport inhibitor compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable phosphate transport inhibitor compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of 0 atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0); and/or (v) a total number of rotatable bonds greater than about 5, about 10 or about 15, or more. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in Å2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is also available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 1, below): TABLE 1 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41 .5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 160 Å2, about 170 Å2, about 180 Å2, about 190 Å2, about 200 Å2, about 225 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 350 Å2, about 400 Å2, about 450 Å2, about 500 Å2, about 750 Å2, or even about 1000 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, n° AN1725EN00, and n° AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, phosphate transport inhibitors may be modified to hinder their net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise a phosphate transport inhibitor linked, coupled or otherwise attached to a non-absorbable moiety, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the phosphate transport inhibitor is coupled to a multimer or polymer portion or moiety, such that the resulting molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. In these or other particular embodiments, the phosphate transport inhibitor is modified to substantially hinder its net absorption through a layer of gut epithelial cells. (ii) Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with epithelial cells (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., phosphate transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the compounds to the phosphate transport protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of phosphate transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing phosphate transporters are split in different vials and treated with a phosphate transport inhibiting compound and phosphate solution to measure the rate of phosphate uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and phosphate uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of phosphate is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for phosphate balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical phosphate transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing phosphate transport inhibitors with several phosphate transport inhibiting moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, Oct. 5(4), pp. 312-8.) (iii) GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds resist the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to phase 1 and phase 2 metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. (iv) Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a patient in need thereof has a Cmax that is less than the IC50 for NaPi2b, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 0.5 μM to about 10 μM, or about 0.5 μM to about 7.5 μM, or about 0.5 μM to about 5 μM, or about 0.5 μM to about 2.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of compounds detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the compounds as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as Cmax, is lower than the NaPi2b inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NaPi2b transport activity in a cell based assay. Pharmaceutical Compositions and Methods of Treatment For the purposes of administration, the compounds of the present invention may be administered to a patient or subject as a raw chemical or may be formulated as pharmaceutical compositions. Pharmaceutical compositions of the present invention generally comprise a compound of the invention and a pharmaceutically acceptable carrier, diluent or excipient. The compound is present in the composition in an amount which is effective to treat a particular disease or condition of interest, as described herein, and preferably with acceptable toxicity to the patient. The activity of compounds can be determined by one skilled in the art, for example, as described in the Example below. Appropriate concentrations and dosages can be readily determined by one skilled in the art. A compound or composition of the invention may be used in a method for treating essentially any disease or other condition in a patient which would benefit from phosphate uptake inhibition in the gastrointestinal tract. For example, by way of explanation, but not limitation, kidney damage reduces the production and activity of renal 1-alpha hydroxylase, leading to lower 1,25-dihydroxy vitamin D. Decreased vitamin D levels limit gastrointestinal calcium absorption, leading to a decline in serum calcium levels. The combination of lower 1,25-dihydroxy vitamin D and lower serum calcium levels synergistically stimulate parathyroid tissue to produce and secrete PTH. A loss of nephrons also impairs Pi excretion, but serum P levels are actively defended by the actions of PTH and FGF-23, and by higher serum P levels, which considerably enhance urinary PO4 excretion. However, tubular actions of PTH and FGF-23 cannot maintain serum P levels in the face of continual nephron loss. Once renal insufficiency progresses to the loss of about 40-50% of renal function, the decrease in the amount of functioning renal tissue does not allow excretion of the full amount of ingested phosphate required to maintain homeostasis. As a result, hyperphosphatemia develops. In addition, a rise in serum P levels impedes renal 1-alpha hydroxylase activity, further suppressing activated vitamin D levels, and further stimulating PTH, leading to secondary hyperparathyroidism (sHPTH). Phosphorus imbalance, however, does not necessarily equate with hyperphosphatemia. In fact, the vast majority of CKD patients not yet on dialysis are normophosphatemic but their phosphorus balance is positive with the excess phosphorus being disposed in the vasculature in the form of ectopic calcification, e.g. intima localized vascular calcification. Clinically, patients with CKD have elevated levels of FGF-23 that are significantly associated with deteriorating renal function and with decreased calcitriol levels, and it has been hypothesized that the synthesis of FGF-23 is induced by the presence of excess P in the body consecutive to renal failure. Furthermore, an unrecognized effect on cardiovascular disease is postprandial phosphatemia, i.e. serum P excursion secondary to meal intake. Further still, studies have investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine arotic endothelial cells to a phosphorus load increased production of reactive oxygen species and decreased nitric oxide, a known vasodilator agent. In the acute P loading study in healthy volunteers described above, it was found that the flow mediated dilation correlated inversely with postprandial serum P (Shuto et al., 2009b, J. Am. Soc. Nephrol., v. 20, no. 7, p. 1504-1512). Accordingly, in certain more specific embodiments, a compounds or composition of the invention can be used in a method selected from the group consisting of: (a) a method for treating hyperphosphatemia; (b) a method for treating a renal disease (e.g., chronic kidney disease or end stage renal disease); (c) a method for delaying time to dialysis; (d) a method for attenuating intima localized vascular calcification; (e) a method for reducing the hyperphosphatemic effect of active vitamin D; (f) a method for reducing FGF23 levels; (g) a method for attenuating hyperparathyroidism; (h) a method for improving endothelial dysfunction induced by postprandial serum phosphate; (i) a method for reducing urinary phosphorous; (j) a method for normalizing serum phosphorus levels; (k) a method for treating proteinura; and (l) a method for reducing serum PTH, calcium, calcitriol and/or phosphate concentrations or levels. Administration of the compounds of the invention, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions of the invention can be prepared by combining a compound of the invention with an appropriate pharmaceutically acceptable carrier, diluent or excipient, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. Typical routes of administering such pharmaceutical compositions include, without limitation, oral, topical, transdermal, inhalation, parenteral, sublingual, buccal, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Pharmaceutical compositions of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient. Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of the invention in aerosol form may hold a plurality of dosage units. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 20th Edition (Philadelphia College of Pharmacy and Science, 2000). The composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, for treatment of a disease or condition of interest in accordance with the teachings of this invention. A pharmaceutical composition of the invention may be in the form of a solid or liquid. In one aspect, the carriers) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup, injectable liquid or an aerosol, which is useful in, for example, inhalatory administration. When intended for oral administration, the pharmaceutical composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid. As a solid composition for oral administration, the pharmaceutical composition may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent. When the pharmaceutical composition is in the form of a capsule, for example, a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil. The pharmaceutical composition may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred composition contain, in addition to the present compounds, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer. In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included. The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile. A liquid pharmaceutical composition of the invention intended for either parenteral or oral administration should contain an amount of a compound of the invention such that a suitable dosage will be obtained. The pharmaceutical composition of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base. The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. The pharmaceutical composition of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol. The pharmaceutical composition of the invention may include various materials, which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients may be encased in a gelatin capsule. The pharmaceutical composition of the invention in solid or liquid form may include an agent that binds to the compound of the invention and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a monoclonal or polyclonal antibody, a protein or a liposome. The pharmaceutical composition of the invention may consist of dosage units that can be administered as an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients. Aerosols of compounds of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. One skilled in the art, without undue experimentation may determine preferred aerosols. The pharmaceutical compositions of the invention may be prepared by methodology well known in the pharmaceutical art. For example, a pharmaceutical composition intended to be administered by injection can be prepared by combining a compound of the invention with sterile, distilled water so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the compound of the invention so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system. The compounds of the invention, or their pharmaceutically acceptable salts, are administered in a therapeutically effective amount, which will vary depending upon a variety of factors including the activity of the specific compound employed; the metabolic stability and length of action of the compound; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy. In certain embodiments, a typical dosage of the substantially impermeable or substantially systemically non-bioavailable, compound may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of the compounds and compositions described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. Compounds of the invention, or pharmaceutically acceptable derivatives thereof, may also be administered simultaneously with, prior to, or after administration of one or more other therapeutic agents. Such combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound of the invention and one or more additional active agents, as well as administration of the compound of the invention and each active agent in its own separate pharmaceutical dosage formulation. For example, a compound of the invention and the other active agent can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations. Where separate dosage formulations are used, the compounds of the invention and one or more additional active agents can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e., sequentially; combination therapy is understood to include all these regimens. For example, in certain embodiments, the additional biologically active agent included in a pharmaceutical composition (or method) of the invention is selected, for example, from vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), active vitamin D (calcitriol) and active vitamin D analogs (e.g. doxercalciferol, paricalcitol). In other specific embodiments, the additional biologically active agent included in a pharmaceutical composition (or method) of the invention is a phosphate binder, such as Renvela, Renagel, Fosrenol, calcium carbonate, calcium acetate (e.g. Phoslo), MCI-196, Zerenex™, Fermagate, APS1585, SBR-759, PA-21, and the like. The compounds of the invention have been found to act synergistically with phosphate binders by providing a higher efficacy than the sum of the efficacy of a NaPi2b inhibitor and that of a phosphate binder administered alone. Without wishing to be bound by theory, it is believed that the synergy results from the distinct mechanisms of action of a phosphate transport inhibitor and a phosphate binder. More specifically, a phosphate transport inhibitor blocks the epithelial inward transport of phosphate ions whereas phosphate binders sequester free phosphate ions in the lumen of the intestine. The efficacy of a phosphate binder, as measured by its vivo binding capacity (mole of phosphate ions bound per gram of binder) is essentially dictated by: i) the density of binding sites (i.e. amine groups in Renvela/Sevelamer, a polymeric amine material; or multivalent cations such calcium or lanthanum in Phoslo (Calcium acetate) or Fosrenol (lanthanum carbonate)); and ii) the affinity of said binding sites for phosphate ions. Notably only a fraction of the binding sites is available for phosphate binding in vivo as other anions, such as bile acids and fatty acids compete for the binding sites and therefore lowers efficacy. Bound phosphate ions are in equilibrium with free phosphate in the intestinal lumen and are themselves subject to intense pumping from phosphate transport proteins lining up the epithelia. Experiments have shown that the efficacy of phosphate intestinal uptake is remarkably high, exceeding 95% of the phosphate presented to the epithelia. It is believed that the active transport of phosphate contributes to lower the luminal free phosphate concentration and therefore to drive the binding equilibrium of a phosphate binder to lower binding capacity. It is also believed that by reducing the phosphate intestinal transport using a phosphate transport inhibitor, one restores a higher in vivo binding capacity of phosphate sequestering agents. The synergistic effect is thought to be even more pronounced when the contribution of active phosphate transport is increased as a result of, e.g. vitamin D treatment, an agent promoting NaPi2b expression. It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds. It will also be appreciated by those skilled in the art that in the process described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include —C(O)—R″ (where R″ is alkyl, aryl or arylalkyl), p-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T. W. and P. G. M. Wutz, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotrityl-chloride resin. It will also be appreciated by those skilled in the art, although such protected derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as “prodrugs”. All prodrugs of compounds of this invention are included within the scope of the invention. Furthermore, all compounds of the invention which exist in free base or acid form can be converted to their pharmaceutically acceptable salts by treatment with the appropriate inorganic or organic base or acid by methods known to one skilled in the art. Salts of the compounds of the invention can be converted to their free base or acid form by standard techniques. The following Examples illustrate various representative methods of making compounds of this invention, i.e., compounds of structure (I), or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. It is understood that one skilled in the art may be able to make these compounds by similar methods or by combining other methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make, in a similar manner as described below, other compounds of structure (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, e.g., Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described in this invention. The following examples are provided for purposes of illustration, not limitation. EXAMPLES Example 1 3-(3-((4-(Piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)carbamoyl)benzylthio)propanoic acid Intermediate 1a 2-(5-Chloro-2-nitrophenyl)-1,3-dioxolane Into a 250 mL 3-neck round bottom flask was placed a solution of 5-chloro-2-nitrobenzaldehyde (7.6 g, 40.86 mmol, 1.00 equiv) in toluene (150 mL), ethane-1,2-diol (2.9 g, 46.77 mmol), and p-toluenesulfonic acid monohydrate (350 mg, 2.03 mmol, 0.05 equiv). The resulting solution was heated to reflux under a Dean-Stark trap overnight. The resulting mixture was diluted with 300 mL of water. The solution was extracted with 3×100 mL of ethyl acetate and the organic layers combined. The resulting mixture was washed with 1×300 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 9.3 g (99%) of intermediate 1a as a brown oil that was used without further characterization. Intermediate 1b 1-(3-(1,3-Dioxolan-2-yl)-4-nitrophenyl)piperidine Into a 500 mL round bottom flask, was placed 2-(5-chloro-2-nitrophenyl)-1,3-dioxolane (9.3 g, 40.43 mmol, 1.00 equiv) and piperidine (172 g, 2.02 mol, 50.04 equiv). The resulting solution was heated to reflux overnight. The mixture was concentrated under vacuum. The resulting solution was diluted with 100 mL of dichloromethane and 200 mL of water. The phases were separated and the resulting solution was extracted with 3×100 mL of dichloromethane. The organic layers were combined. The mixture was washed with 1×200 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 11 g (98%) of intermediate 1b as brown oil. Intermediate 1c 2-Nitro-5-(piperidin-1-yl)benzaldehyde Into a 500 mL round bottom flask, was placed a solution of 1-(3-(1,3-dioxolan-2-yl)-4-nitrophenyl) piperidine (11 g, 39.57 mmol, 1.00 equiv) in tetrahydrofuran (250 mL), water (100 mL), and 3N hydrochloric acid (50 mL). The resulting solution was heated to reflux for 2 h in an oil bath. The mixture was concentrated under vacuum. The solids were collected by filtration. The filter cake was washed with 2×40 mL of water and 2×40 mL of hexane. This resulted in 9 g (97%) of intermediate 1c as a yellow solid. Intermediate 1d 1-(Phenylsulfonyl)-6-(trifluoromethyl)-1H-indole Into a 100 mL 3-neck round bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 6-(trifluoromethyl)-1H-indole (3.7 g, 20.00 mmol, 1.00 equiv) in N,N-dimethylformamide (50 mL). This was followed by the addition of sodium hydride (750 mg, 21.88 mmol, 1.09 equiv, 70%) in several batches at 0° C. The resulting solution was stirred for 1 h at 0° C. in an ice/salt bath. To this was added benzenesulfonyl chloride (3.90 g, 22.03 mmol, 1.10 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at 0° C. The solution was diluted with 100 mL of water. The solids were collected by filtration. The residue was applied onto a silica gel column and eluted with ethyl acetate/PE (1:10). This resulted in 4 g (60%) of intermediate 1d as a yellow solid. Intermediate 1e (2-Nitro-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanol Into a 50 mL 3-neck round bottom flask purged and maintained with an inert atmosphere of nitrogen was placed a solution of diisopropylamine (888 mg, 8.79 mmol, 1.90 equiv) in tetrahydrofuran (5 mL). This was followed by the addition of n-BuLi (3.7 mL, 2.5M) dropwise with stirring at −20° C. The mixture was warmed to 0° C. slowly and stirred for 30 min. To this was added a solution of 1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole (1.5 g, 4.62 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) dropwise with stirring at −80° C. The mixture was warmed to 0° C. slowly and stirred for 1 h. To the mixture was added a solution of 2-nitro-5-(piperidin-1-yl)benzaldehyde (1.08 g, 4.62 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) dropwise with stirring at −80° C. The mixture was stirred for 30 min at 80° C. and then 4 h at room temperature. The reaction was then quenched by the addition of 5 mL of water. The resulting solution was extracted with 20 mL of ethyl acetate and the organic layers combined and dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/PE (1:10). This resulted in 1.2 g (46%) of intermediate 1e as a yellow solid. Intermediate 1f (2-Nitro-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanone Into a 50 mL 3-neck round bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of dimethlysulfoxide (156 mg, 2.00 mmol, 3.73 equiv) in dichloromethane (5 mL). This was followed by the addition of oxalyl dichloride (127 mg, 1.00 mmol, 1.87 equiv) dropwise with stirring at −80° C. The resulting solution was stirred for 10 min at −80° C. in a liquid nitrogen bath. To this was added a solution of (2-nitro-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanol (300 mg, 0.54 mmol, 1.00 equiv) in dichloromethane (5 mL) dropwise with stirring at −80° C. The resulting solution was stirred for an additional 60 min at −80° C. To the mixture was added triethylamine (400 mg, 3.96 mmol, 7.39 equiv) dropwise with stirring at −80° C. The resulting solution allowed to warm to −20° C. over 60 minutes. The solution was diluted with 50 mL of DCM. The mixture was washed with 1×30 mL of water and 1×30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg of intermediate if as orange oil. Intermediate 1g (2-Amino-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanone Into a 50 mL 3-neck round bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of (2-nitro-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanone (300 mg, 0.51 mmol, 1.00 equiv, 95%) in methanol (10 mL), and wet palladium on carbon (0.15 g). The resulting solution was stirred overnight at 10° C. under an atmosphere of hydrogen gas. The mixture was filtered. The filtrate was concentrated under vacuum. This resulted in 0.25 g (88%) of intermediate 1g as a red solid. Intermediate 1h (3-((3-Methoxy-3-oxopropylthio)methyl)benzoic acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was added a solution of 3-(mercaptomethyl)benzoic acid (500 mg, 2.97 mmol, 1.00 equiv) in acetonitrile (10.0 mL), followed by methyl acrylate (10.0 mL) and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU; 1.0 g, 6.57 mmol, 2.00 equiv). The resulting solution was heated to reflux overnight, then concentrated under vacuum and the residue was applied onto a silica gel column, eluting with ethyl acetate/petroleum ether (0˜1:6). This resulted in 220 mg (28%) of intermediate 1h as light-red oil. Intermediate 1i Methyl 3-(3-(chlorocarbonyl)benzylthio)propanoate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-((3-methoxy-3-oxopropylthio)methyl)benzoic acid (61.6 mg, 0.24 mmol, 1.00 equiv) in dichloromethane (5 mL). This was followed by the addition of oxaloyl dichloride (121.76 mg, 0.96 mmol, 4.00 equiv) dropwise with stirring at room temperature. Then a few drops of N,N-dimethylformamide was added as catalyst and the resulting solution was heated to reflux for 30 min. The reaction mixture was concentrated under vacuum to afford 60 mg (crude) of intermediate 1i as yellow oil. Intermediate 1j Methyl 3-(3-((2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)carbamoyl)benzylthio)propanoate Into a 50 mL 3-neck round bottom flask was placed a solution of (2-amino-5-(piperidin-1-yl) phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanone (300 mg, 0.57 mmol, 1.00 equiv) in tetrahydrofuran (10 mL) and a solution of methyl 3-(3-(chlorocarbonyl)benzylthio)propanoate (180 mg, 0.66 mmol, 1.16 equiv) in tetrahydrofuran (3 mL). This was followed by the addition of pyridine (80 mg, 1.01 mmol, 1.78 equiv) dropwise with stirring. The solution was stirred for 3 h at 10° C. The resulting solution was diluted with 50 mL of ethyl acetate. The mixture was washed with 1×30 mL of water and 1×30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.4 g intermediate 1j as red oil. Intermediate 1k Methyl 3-(3-((4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl) carbamoyl)benzylthio)propanoate Into a 50 mL 3-neck round bottom flask, was placed a solution of methyl 3-(3-((2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)carbamoyl) benzylthio)propanoate (300 mg, 0.33 mmol, 1.00 equiv, 85%) in methanol (5 mL), and 5 mL of a 1M solution of tetrabutylammonium fluoride in THF. The resulting solution was heated to reflux for 6 h in an oil bath. The solution was diluted with 30 mL of ethyl acetate. The resulting mixture was washed with 1×20 mL of water and 1×20 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:5). This resulted in 150 mg (72%) of intermediate 1k as a red solid. Example 1 3-(3-((4-(Piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)-phenyl)-carbamoyl)benzylthio)propanoic acid Into a 50 mL round bottom flask, was placed a solution of methyl 3-(3-((4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)carbamoyl)benzylthio)-propanoate (60 mg, 0.10 mmol, 1.00 equiv) in tetrahydrofuran (5 mL), and a solution of lithium hydroxide hydrate (100 mg, 2.50 mmol, 26.00 equiv) in water (2 mL). The solution was stirred overnight at 15° C. The solution was then diluted with 30 mL of water. The mixture was washed with 1×20 mL of ethyl acetate. The pH value of the solution was adjusted to 5 with 1N hydrochloric acid. The resulting solution was extracted with 2×30 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was dissolved in 2 mL of ether. The product was precipitated by the addition of hexane. The solids were collected by filtration. This resulted in 20 mg (34%) of 3-(3-((4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)-carbamoyl)-benzylthio)-propanoic acid as a orange solid. 1H-NMR (300 MHz, DMSO, ppm): δ 12.30 (1H, s), 10.36 (s, 1H), 7.94-7.91 (d, 1H), 7.76 (s, 1H), 7.68-7.58 (m, 2H), 7.65 (s, 1H), 7.47-7.44 (d, 1H), 7.40-7.32 (m, 2H), 7.25-7.24 (d, 2H), 7.12 (s, 1H), 3.74 (s, 2H), 3.19 (s, 4H), 2.5 (m, 4H), 1.56-1.64 (m, 6H), MS (ES, m/z): 610 [M+H]+. Example 2 N1-Methyl-N1-(2-morpholinoethyl)-N3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)isophthalamide 2,2,2-trifluoroacetate Intermediate 2a Methyl 3-(chlorocarbonyl)benzoate To a solution of 3-(methoxycarbonyl)benzoic acid (6.2 g, 34.44 mmol, 1.00 equiv) in dichloromethane (50 mL) was added oxalyl dichloride (8.74 g, 69.37 mmol, 2.00 equiv) and N,N-dimethylformamide (DMF; cat.) and the resulting solution was stirred for 1 h at 40° C. in an oil bath. The resulting mixture was concentrated under vacuum to afford 6.6 g (87%) of intermediate 2a as brown oil. Intermediate 2b Tert-butyl 2-morpholinoethylcarbamate To 2-morpholinoethanamine (10 g, 76.92 mmol, 1.00 equiv) in dichloromethane (50 mL) was added triethylamine (5.83 g, 57.72 mmol, 0.50 equiv). This was followed by the addition of Di-tert-butyl dicarbonate (18.44 g, 84.59 mmol, 1.10 equiv) at 0-5° C. and the resulting solution was stirred overnight at 25° C. The reaction mixture was diluted with 200 mL of dichloromethane and then washed with 1×30 mL of 10% sodium bicarbonate and 1×30 mL of brine. The organic layer was dried over sodium sulfate and concentrated under vacuum to afford 16 g (81%) of intermediate 2b as an off-white solid. Intermediate 2c N-Methyl-2-morpholinoethanamine To a solution of LiA1H4 (7.72 g, 208.65 mmol, 3.00 equiv) in tetrahydrofuran (THF; 60 mL) stirring at 0-5° C. was added dropwise a solution of tert-butyl 2-morpholinoethylcarbamate (16 g, 62.61 mmol, 1.00 equiv, 90%) in THF (40 mL). The resulting solution was stirred for 2 h at 70° C. in a oil bath bath, allowed to cool and then quenched by the addition of 7.7 mL of water, 7.7 mL of 15% sodium hydroxide and 23.1 mL of water. The solids were filtered out, then the mixture was dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column, eluting with dichloromethane:methanol (0.5% triethylamine) (20:1) to afford 4.2 g (42%) of intermediate 2c as brown oil. Intermediate 2d Methyl 3-(methyl(2-morpholinoethyl)carbamoyl)benzoate To a solution of N-methyl-2-morpholinoethanamine (2.1 g, 13.12 mmol, 1.00 equiv, 90%) in dichloromethane (20 mL) at 0-5° C. was added triethylamine (1.47 g, 14.55 mmol, 1.00 equiv) followed by the dropwise addition of a solution of methyl 3-(chlorocarbonyl)benzoate (3.3 g, 15.00 mmol, 1.20 equiv, 90%) in dichloromethane (10 mL). The resulting solution was stirred for 3 h at room temperature. The mixture was then diluted with 100 mL of dichloromethane and then washed with 1×30 mL of 10% sodium bicarbonate and 1×30 mL of brine. The organic layer was dried over sodium sulfate, concentrated under vacuum, and the residue was applied onto a silica gel column eluting with dichloromethane:methanol (20:1) to afford 4.4 g (99%) of intermediate 2d as a brown solid. Intermediate 2e 3-(Methyl(2-morpholinoethyl)carbamoyl)benzoic acid To a solution of methyl 3-(methyl(2-morpholinoethyl)carbamoyl)benzoate (4.4 g, 13.66 mmol, 1.00 equiv, 95%) in tetrahydrofuran/water (15/10 mL) was added lithium hydroxide hydrate (1.77 g, 43.17 mmol, 3.00 equiv) and the resulting solution was stirred for 1 h at 25° C. The resulting mixture was concentrated under vacuum, diluted with 10 mL of water, and the pH value of the solution was adjusted to 2-3 with hydrogen chloride. The resulting mixture was washed with 2×30 mL of ethyl acetate, and then the aqueous layer was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate:methanol (4:1) to afford 2.7 g (65%) of intermediate 2e as a white solid. Intermediate 2f 3-(Methyl(2-morpholinoethyl)carbamoyl)benzoyl chloride Into a 50 mL round bottom flask was placed 3-(methyl(2-morpholinoethyl)carbamoyl)benzoic acid (300 mg, 1.03 mmol, 1.00 equiv), oxalyl dichloride (6 mL), and N,N-dimethylformamide (1 drop). The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 300 mg (94%) intermediate 2f as a white solid. Intermediate 2g N1-Methyl-N1-(2-morpholinoethyl)-N3-(2-(1-(phenylsulfonyl)-6-trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)isophthalamide Into a 50 mL round bottom flask was placed a solution of (2-amino-5-(piperidin-1-yl)phenyl)(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indol-2-yl)methanone (20 mg, 0.04 mmol, 1.00 equiv) in dichloromethane (5 mL), pyridine (30 mg, 0.38 mmol, 10.00 equiv), and 3-(methyl(2-morpholinoethyl)carbamoyl)benzoyl chloride (18 mg, 0.06 mmol, 1.50 equiv). The resulting solution was stirred for 2 h at room temperature. The mixture was washed with 1×50 mL of water. The mixture was concentrated under vacuum. The crude product was washed with water. This resulted in 20 mg (66%) of intermediate 2g as red oil. Example 2 N1-Methyl-N1-(2-morpholinoethyl)-N3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)isophthalamide 2,2,2-trifluoroacetate Into a 50 mL round bottom flask was placed a solution of N1-methyl-N1-(2-morpholinoethyl)-N3-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)-isophthalamide (300 mg, 0.37 mmol, 1.00 equiv) in methanol (7 mL), and 7 mL of a 1N solution of tetrabutylammonium fluoride in THF. The resulting solution was stirred overnight at 85° C. The mixture was concentrated under vacuum. The residue was dissolved in 50 mL of ethyl acetate. The resulting mixture was washed with 4×50 mL of water. The mixture was dried over sodium sulfate and concentrated under vacuum. The crude product (300 mg) was purified by reverse phase (C18) HPLC, eluting with water (0.05% TFA) and CH3CN (0.05% TFA) gradient (25%-44% CH3CN over 6 min) to afford 202 mg (68%) of N1-methyl-N1-(2-morpholinoethyl)-N3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenyl)isophthalamide 2,2,2-trifluoroacetate as a yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.28 (d, J=9.0 Hz, 1H), 8.02 (m, 2H), 7.94 (m, 2H), 7.84 (s, 1H), 7.71 (m, 2H), 7.62 (m, 1H), 7.35 (m, 1H), 7.26 (s, 1H), 4.11 (m, 2H), 3.93 (m, 3H), 3.77 (m, 3H), 3.53 (m, 6H), 3.32 (m, 2H), 3.06 (s, 3H), 1.94 (m, 4H), 1.77 (m, 2H). MS (ES, m/z): 662 [M+H]+. Example 3 N-(2-Methoxyethyl)-3-(3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenylcarbamoyl)benzylthio)benzamide Intermediate 3a 3-(Bromomethyl)-N-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)benzamide Intermediate 3a was prepared from 3-(bromomethyl)benzoylchloride and intermediate 1g by a procedure similar to that used to prepare intermediate 1h. Intermediate 3b 3-(3-(2-(1-(Phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenylcarbamoyl)benzylthio)benzoic acid Into a 100-mL round-bottom flask was placed a solution of 3-(bromomethyl)-N-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenyl)benzamide (200 mg, 0.28 mmol, 1.00 equiv) in acetonitrile (20 mL), 3-mercaptobenzoic acid (50 mg, 0.32 mmol, 1.20 equiv), and triethylamine (90 mg, 0.89 mmol, 3.00 equiv). The resulting solution was stirred overnight at 45° C. The resulting mixture was concentrated under vacuum. The residue was dissolved in 60 ml of ethyl acetate. The resulting mixture was washed with 2×30 mL of water. The mixture was dried over sodium sulfate and concentrated under vacuum. This resulted in 200 mg of intermediate 3b as a red solid. Intermediate 3c N-(2-Methoxyethyl)-3-(3-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenylcarbamoyl)-benzylthio)benzamide Into a 100-mL round-bottom flask, was placed a solution of 3-(3-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenylcarbamoyl)benzylthio)-benzoic acid (220 mg, 0.28 mmol, 1.00 equiv) in dichloromethane (20 mL), EDC HCl (80 mg, 0.42 mmol, 1.50 equiv), 4-dimethylaminopyridine (51 mg, 0.41 mmol, 1.50 equiv), and 2-methoxyethanamine (42 mg, 0.56 mmol, 2.00 equiv). The resulting solution was stirred for 2 h at 25° C. The resulting mixture was washed with 2×10 mL of aqueous NH4Cl. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 200 mg (85%) of intermediate 3c as a red solid. Example 3 N-(2-Methoxyethyl)-3-(3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)phenylcarbamoyl)benzylthio)benzamide Into a 50-mL round-bottom flask was placed a solution of N-(2-methoxyethyl)-3-(3-(2-(1-(phenylsulfonyl)-6-(trifluoromethyl)-1H-indole-2-carbonyl)-4-(piperidin-1-yl)phenylcarbamoyl)benzylthio)-benzamide (200 mg, 0.23 mmol, 1.00 equiv) in methanol (3.5 mL), and 3.5 mL of a 1.0 N solution of tetrabutylammonium fluoride in THF. The resulting solution was stirred overnight at 80° C. The resulting mixture was concentrated under vacuum. The residue was dissolved in 50 mL of ethyl acetate. The resulting mixture was washed with 3×20 mL of water. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product (100 mg) was purified by HPLC with the following conditions (Waters 2767-3): Column, SunFire Prep C18, 19×150 mm Sum; mobile phase, water with 0.05% TFA and CH3CN (gradient of 49% to 61% CH3CN over 6 min); Detector, Waters 2545 UV Detector 254 and 270 nm. This resulted in 38.1 mg (17%) of N-(2-methoxyethyl)-3-(3-(4-(piperidin-1-yl)-2-(6-(trifluoromethyl)-1H-indole-2-carbonyl)-phenylcarbamoyl)benzylthio)benzamide as a orange solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.38 (d, J=9 Hz, 1H), 8.01 (d, J=3 Hz, 1H), 7.91-7.87 (m, 2H), 7.78-7.73 (m, 4H), 7.62-7.59 (m, 1H), 7.53-7.51 (m, 1H), 7.47-7.26 (m, 5H), 4.23 (s, 2H), 3.62-3.57 (m, 4H), 3.53 (s, 3H), 3.35-3.34 (m, 2H), 1.98-1.96 (m, 4H), 1.79-1.77 (m, 2H). MS (ES, m/z): 715 [M+H]+. Example 4 Procedure for the Measurement of NaP2b-Mediated Pi Transport Materials. HEK293 cells were obtained from the American Type Culture collection and propagated per their instructions. Expression clones for rat and human NaP2b (SLC34A2) were obtained from Open Biosystems (Catalog numbers MRN1768-9510282, and MHS1010-99823026, respectively). The sequence of the human protein was mutated to insert a threonine after residue 37, and to introduce a N39D mutation. Inhibition of Pi Transport. The rate of phosphate (Pi) uptake into HEK293 cells was measured using a modification of the method described by Mohrmann et al. (Mohrmann, I., Mohrmann, M., Biber, J., and Murer, H. (1986) Am. J. Phys. 250(3 Pt 1):G323-30.) Transfected HEK293 cells were treated with a pharmacological agent to minimize endogenous PiT-mediated phosphate transport activity, such that the only remaining sodium-dependent phosphate transport activity is that which was bestowed by introduction of the NaP2b genes. Cells were seeded into 96-well plates at 25,000 cells/well and cultured overnight. Lipofectamine 2000 (Invitrogen) was used to introduce the NaP2b cDNA, and the cells were allowed to approach confluence during a second overnight incubation. Medium was aspirated from the cultures, and the cells were washed once with choline uptake buffer (14 mM Tris, 137 mM choline chloride, 5.4 mM KCl, 2.8 mM CaCl2, 1.2 mM MgSO4, 100 uM KH2PO4, 1 mg/mL Bovine Serum Albumin, pH 7.4). Cells were then overlayed with either choline uptake buffer or sodium uptake buffer (14 mM Tris, 137 mM sodium chloride, 5.4 mM KCl, 2.8 mM CaCl2, 1.2 mM MgSO4, 100 uM KH2PO4, PiT-silencing agent, 1 mg/mL Bovine Serum Albumin, pH 7.4) containing 6-9 uCi/mL 33P orthophosphoric acid (Perkin Elmer) and test compound. Each compound was tested at twelve concentrations ranging from 0.1 nM to 30 uM. Assays were run in duplicate. After incubation for 3-30 minutes at room temperature, assay mixtures were removed, and the cells were washed twice with ice cold stop solution (137 mM sodium chloride, 14 mM Tris, pH 7.4). Cells were lysed by addition of 20 μL 0.1% Tween 80 followed by 100 μL scintillation fluid, and counted using a TopCount (Perkin Elmer). pIC50 (the negative log of the IC50) values of the test compounds were calculated using GraphPad Prism. Preliminary studies showed that under these conditions, sodium-dependent Pi uptake was linear for at least 30 min and tolerated 0.6% (v/v) DMSO without deleterious effects. To ascertain if an inhibitor was competitive for binding with phosphate, the procedure was repeated, but raising the concentration of the substrate in the assay mixture from 0.1 to 2.1 mM phosphate. Compounds that maintained their potency for inhibition of NaPi2b in the presence of 2.1 vs 0.1 mM phosphate were considered to not be competitive with respect to phosphate. TABLE 1 Inhibitory activity of compounds against rat and human NaP2b values reported as pIC50. pIC50 range for pIC50 range Competitive with Example rat Nap2b for human* respect to Pi?** PFA 2-3 Yes 1 5.1-6.0 5.1-6.0 2 >6.0 >6.0 No 3 4.6-5.7 *A blank indicates not tested **Indicates compound is considered to not be competitive with respect to phosphate. A blank indicates not tested for competitive inhibition. Example 5 In Vivo Evaluation Procedure: Co-Dosing in Chow Male, 7-week-old Sprague-Dawley rats (Charles-River laboratories international, Hollister, Calif.) were allowed to acclimate for a minimum of 3 days. The experiment was initiated by switching animals to a synthetic diet (0.6% phosphorus and 0.6% calcium, Harlan Teklad TD.84122) for four days. After this time, the animals were placed into metabolic cages for daily monitoring of food and water consumption, as well as urine and fecal collections. Test compounds were incorporated into the powdered diet listed above containing 3% chocolate flavoring (w/w, BioSery #7345) at 1.3 mg test compound per gram of diet to achieve an average daily nominal dose of 100 mg/kg/day. The actual dose received by each animal was later determined by measuring prepared diet consumption and body weight. Urine samples were collected in three daily periods from 24-48, 48-72, and 72-96 hours of drug dosing. Averaging these three 24 h periods allows for the more representative measurements of urination, fecal excretion, food consumption and water uptake for each animal. Phosphorus levels in the urine were determined by anion exchange chromatography using a Dionex ICS-3000 ion chromatography system. Urine samples were diluted 1:500 or 1:1000 and injected onto an IonPac AS18 analytical column (2×250 mm) using a potassium hydroxide eluent. Elution of urine phosphate ions was monitored via conductivity detector and reported as ppm relative to a standard ion solution containing phosphate. Daily urinary P output relative to the P consumed in the prepared diet for each animal was calculated. The percentage inhibition of phosphorus absorption was estimated by determining the reduction of this ratio compared to the control group (animals with no drug in chow). The differences between the means of control and treated groups were evaluated by t tests. TABLE 2 Inhibition of uptake of phosphorus from the intestine as measured using the co-dosing in chow model Mean drug dose, Mean % inhibition Example mg/kg/day Urine Pout/P consumed t-test 2 115 20 *** *p < 0.05 versus control; **p < 0.01 versus control; ***p< 0.001 versus control Example 6 Determination of Compound Cmax and AUC Sprague-Dawley rats were orally gavaged with test article at a nominal dose of 2.5 or 10 mg/kg and blood was collected at 0.5, 1, 2 and 4 h. Blood samples were processed to plasma using K2EDTA as an anticoaglulant. Plasma samples were treated with acetonitrile containing an internal standard, precipitated proteins removed by centrifugation. Supernatants were analyzed by LC-MS/MS and compound concentrations were determined by interpolated from a standard curve prepared in plasma. Table 3 illustrates data from the pharmacokinetic profiling of selected example compounds. All compounds were orally dosed at the dosage shown, and pharmacokinetic parameters determined TABLE 3 Pharmacokinetic profiling of representative compounds Actual Oral AUC Dose LLOQ1 Cmax (ng × Example (mg/kg) (ng/mL) (ng/mL) hr/mL) 1 7.5 10 299 433 2 11 0.5 91 <97.0 1LLOQ = Lower Limit of Quantification Example 7 Fecal Recovery of Orally Administered Compounds Quantitative determination of test compound level in feces after oral gavage was performed using the same set of animals used to determine test compound concentration in plasma (Example 6). The animals were kept in metabolic cages and feces were collected from the time of dosing until 48 hr after dosing. Upon collection, feces was dried by lyophilization and ground to a visually homogenous powder. Duplicate samples of ground feces from each individual animal were weighed out and extracted using organic solvent. Extracted samples were then diluted into mobile phase and test compound levels were quantitatively determined by LC-MS/MS analysis as described in Example 6 except that the standard curve was prepared in a feces matrix. TABLE 4 Fraction of orally administered compound recovered in feces 48 hours after dosing % recovered Example in feces 1 34 2 2.9 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 14337032 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Jan 28th, 2020 12:00AM Jan 9th, 2017 12:00AM https://www.uspto.gov?id=US10543207-20200128 Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders The present disclosure is directed to compounds and methods for the treatment of disorders associated with fluid retention or salt overload, such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. The present disclosure is also directed to compounds and methods for the treatment of hypertension. The present disclosure is also directed to compounds and methods for the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders. The methods generally comprise administering to a mammal in need thereof a pharmaceutically effective amount of a compound, or a pharmaceutical composition comprising such a compound, that is designed to be substantially active in the gastrointestinal (GI) tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. More particularly, the method comprises administering to a mammal in need thereof a pharmaceutically effective amount of a compound, or a pharmaceutical composition comprising such a compound, that inhibits NHE-3, -2 and/or -8 mediated antiport of sodium and/or hydrogen ions in the GI tract and is designed to be substantially impermeable to the layer of epithelial cells, or more specifically the epithelium of the GI tract. As a result of the compound being substantially impermeable, it is not absorbed and is thus essentially systemically non-bioavailable, so as to limit the exposure of other internal organs (e.g., liver, heart, brain, etc.) thereto. The present disclosure is still further directed to a method wherein a mammal is administered such a compound with a fluid-absorbing polymer, such that the combination acts as described above and further provides the ability to sequester fluid and/or salt present in the GI tract. 10543207 1. A method for treating a disorder selected from the group consisting of heart failure, chronic kidney disease, end-stage renal disease, liver disease, gastrointestinal tract disorder, hypertension, edema, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound having the formula (X): CoreL-NHE)n  (X) wherein: n is 2; NHE has the structure: wherein: R1 is H or —SO2—NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker, and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH— and —NHSO2—; and Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted benzene, pyridinyl, a polyethylene glycol linker and —(CH2)1-6—O—(CH2)1-6. 2. The method of claim 1, wherein the heart failure is congestive heart failure. 3. The method of claim 1, wherein the hypertension is associated with dietary salt intake. 4. The method of claim 1, wherein the heart failure is associated with fluid overload. 5. The method of claim 4, wherein the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. 6. The method of claim 1, wherein the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. 7. The method of claim 1, wherein the compound is administered orally, by rectal suppository, or enema. 8. The method of claim 1, wherein the method comprises administering a pharmaceutically effective amount of the compound in combination with one or more additional pharmaceutically active compounds or agents. 9. The method of claim 8, wherein the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. 10. The method of claim 9, wherein the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. 11. The method of 10, wherein the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. 12. The method of 10, wherein the pharmaceutically effective amount of the compound , and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. 13. The method of claim 12, wherein the individual pharmaceutical preparation are administered sequentially. 14. The method of claim 13, wherein the individual pharmaceutical preparation are administered simultaneously. 15. A method for treating a gastrointestinal tract disorder selected from the group consisting of constipation, chronic intestinal pseudo obstruction, colonic pseudo obstruction, Crohn's disease, ulcerative colitis, and inflammatory bowel disease, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound having the formula (X): CoreL-NHE)n  (X) wherein: n is 2; NHE has the structure: wherein: R1 is H or —SO2—NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker, and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH— and —NHSO2—; and Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted benzene, pyridinyl, a polyethylene glycol linker and —(CH2)1-6—O—(CH2)1-6. 16. The method of claim 15, wherein the gastrointestinal tract disorder is chronic constipation. 17. The method of claim 15, wherein the gastrointestinal tract disorder is chronic idiopathic constipation. 18. The method of claim 15, wherein the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. 19. The method of claim 15, wherein the gastrointestinal tract disorder is opioid-induced constipation. 20. The method of claim 15, wherein the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. 21. The method of claim 15, wherein the gastrointestinal tract disorder is Crohn's disease. 22. The method of claim 15, wherein the gastrointestinal tract disorder is ulcerative colitis. 23. The method of claim 15, wherein the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. 24. The method of claim 15 , wherein the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). 25. The method of claim 15 , wherein the gastrointestinal tract disorder is constipation induced by calcium supplement. 26. The method of claim 15, wherein the constipation to be treated is associated with the use of a therapeutic agent. 27. The method of claim 15, wherein the constipation to be treated is associated with a neuropathic disorder. 28. The method of claim 15, wherein the constipation to be treated is post-surgical constipation . 29. The method of claim 15, wherein the constipation to be treated is idiopathic. 30. The method of claim 15, wherein the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder . 31. The method of claim 15 , wherein the constipation to be treated is due the use of drugs selected from analgesics , antihypertensives, anticonvulsants, antidepressants, antispasmodics or antipsychotics. 32. The method of claim 15, wherein the compound is administered to treat or reduce pain associated with a gastrointestinal tract disorder. 33. The method of claim 15, wherein the compound is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. 34. The method of claim 15, wherein the compound is administered to treat or reduce inflammation of the gastrointestinal tract. 35. The method of claim 15, wherein the compound is administered to reduce gastrointestinal transit time. 36. The method of claim 15, wherein the compound or composition is administered either orally or by rectal suppository. 37. The method of claim 15, wherein the method comprises administering a pharmaceutically effective amount of the compound, in combination with one or more additional pharmaceutically active compounds or agents. 38. The method of claim 37, wherein the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. 39. The method of claim 37, wherein the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent , methylcellulose , polycarbophil, dietary fiber, apples, stool softeners or surfactant, a hydrating or osmotic agent. 40. The method of claim 1, wherein the compound is selected from the group consisting of: or a pharmaceutically acceptable salt thereof. 41. The method of claim 40, where the compound is 42. The method of claim 15, wherein compound is selected from the group consisting of: or a pharmaceutically acceptable salt thereof. 43. The method of claim 42, where the compound is 43 CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 13/172,394, filed Sep. 24, 2013, which is a Continuation application under 35 U.S.C. § 371 of International Application No. PCT/US2009/069852, filed Dec. 30, 2009 claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/141,853, filed Dec. 31, 2008, U.S. Provisional Patent Application No. 61/169,509, filed Apr. 15, 2009, and U.S. Provisional Patent Application No. 61/237,842, filed Aug. 28, 2009, which applications are incorporated herein by reference in their entireties. FIELD OF INVENTION The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. DESCRIPTION OF THE RELATED ART Disorders Associated with Fluid Retention and Salt Overload According to the American Heart Association, more than 5 million Americans have suffered from heart failure, and an estimated 550,000 cases of congestive heart failure (CHF) occur each year (Schocken, D. D. et al., Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group: Circulation, v. 117, no. 19, p. 2544-2565 (2008)). The clinical syndrome of congestive heart failure occurs when cardiac dysfunction prevents adequate perfusion of peripheral tissues. The most common form of heart failure leading to CHF is systolic heart failure, caused by contractile failure of the myocardium. A main cause of CHF is due to ischemic coronary artery disease, with or without infarction. Long standing hypertension, particularly when it is poorly controlled, may lead to CHF. In patients with CHF, neurohumoral compensatory mechanisms (i.e., the sympathetic nervous system and the renin-angiotensin system) are activated in an effort to maintain normal circulation. The renin-angiotensin system is activated in response to decreased cardiac output, causing increased levels of plasma renin, angiotensin II, and aldosterone. As blood volume increases in the heart, cardiac output increases proportionally, to a point where the heart is unable to dilate further. In the failing heart, contractility is reduced, so the heart operates at higher volumes and higher filling pressures to maintain output. Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath). All of these symptoms are related to fluid volume and salt retention, and this chronic fluid and salt overload further contribute to disease progression. Compliance with the medication regimen and with dietary sodium restrictions is a critical component of self-management for patients with heart failure and may lengthen life, reduce hospitalizations and improve quality of life. Physicians often recommend keeping salt intake below 2.3 g per day and no more than 2 g per day for people with heart failure. Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt. A number of drug therapies currently exist for patients suffering from CHF. For example, diuretics may be used or administered to relieve congestion by decreasing volume and, consequently, filling pressures to below those that cause pulmonary edema. By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms. Among the classes or types of diuretics currently being used is thiazides. Thiazides inhibit NaCl transport in the kidney, thereby preventing reabsorption of Na in the cortical diluting segment at the ending portion of the loop of Henle and the proximal portion of the distal convoluted tubule. However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml/min. Additionally, thiazides, as well as other diuretics, may cause hypokalemia. Also among the classes or types of diuretics currently being used is loop diuretics (e.g., furosemide). These are the most potent diuretics and are particularly effective in treating pulmonary edema. Loop diuretics inhibit the NaKCl transport system, thus preventing reabsorption of Na in the loop of Henle. Patients that have persistent edema despite receiving high doses of diuretics may be or become diuretic-resistant. Diuretic resistance may be caused by poor availability of the drug. In patients with renal failure, which has a high occurrence in the CHF population, endogenous acids compete with loop diuretics such as furosemide for the organic acid secretory pathway in the tubular lumen of the nephron. Higher doses, or continuous infusion, are therefore needed to achieve entrance of an adequate amount of drug into the nephron. However, recent meta-analysis have raised awareness about the long-term risk of chronic use of diuretics in the treatment of CHF. For instance, in a recent study (Ahmed et al., Int J Cardiol. 2008 Apr. 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics. Angiotensin-converting enzyme (“ACE”) inhibitors are an example of another drug therapy that may be used to treat congestive heart failure. ACE inhibitors cause vasodilatation by blocking the renin-angiotensin-aldosterone system. Abnormally low cardiac output may cause the renal system to respond by releasing renin, which then converts angiotensinogen into angiotensin I. ACE converts angiotensin I into angiotensin II. Angiotensin II stimulates the thirst centers in the hypothalamus and causes vasoconstriction, thus increasing blood pressure and venous return. Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase. ACE inhibitors block this compensatory system and improve cardiac performance by decreasing systemic and pulmonary vascular resistance. ACE inhibitors have shown survival benefit and conventionally have been a treatment of choice for CHF. However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia. In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients. (See, e.g., C. S. Cruz et al., “Incidence and Predictors of Development of Acute Renal Failure Related to the Treatment of Congestive Heart Failure with ACE Inhibitors, Nephron Clin. Pract., v. 105, no. 2, pp c77-c83 (2007)). Patients with end stage renal disease (“ESRD”), i.e., stage 5 chronic kidney failure, must undergo hemodialysis three times per week. The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium/volume overload). The fluid overload is characterized as interdialytic weight gain. High fluid overload is also worsened by heart dysfunction, specifically CHF. Dialysis is used to remove uremic toxins and also adjust salt and fluid homeostasis. However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed. SIH is exhibited in about 15% to 25% of the ESRD population (Davenport, A., C. Cox, and R. Thuraisingham, Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey; Nephron Clin. Pract., v. 109, no. 2, p. c65-c71 (2008)). Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food The cause of primary or “essential” hypertension is elusive. However, several observations point to the kidney as a primary factor. The strongest data for excess salt intake and elevated blood pressure come from INTERSALT, a cross-sectional study of greater than 10,000 participants. For individuals, a significant, positive, independent linear relation between 24-hour sodium excretion and systolic blood pressure was found. Higher individual 24-hour urinary sodium excretions were found to be associated with higher systolic/diastolic blood pressure on average, by 6-3/3-0 mm Hg. Primary hypertension is a typical example of a complex, multifactorial, and polygenic trait. All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention. In a broad sense, these syndromes are characterized by increased renal sodium reabsorption arising through either primary defects in sodium transport systems or stimulation of mineralocorticoid receptor activity (Altun, B., and M. Arici, 2006, Salt and blood pressure: time to challenge; Cardiology, v. 105, no. 1, p. 9-16 (2006)). A much larger number of controlled studies have been performed on hypertensive subjects during the last three decades to determine whether sodium reduction will reduce established high blood pressure. Meta-analyses of these studies have clearly shoil a large decrease in blood pressure in hypertensive patients. In end stage liver disease (ESLD), accumulation of fluid as ascites, edema or pleural effusion due to cirrhosis is common and results from a derangement in the extracellular fluid volume regulatory mechanisms. Fluid retention is the most frequent complication of ESLD and occurs in about 50% of patients within 10 years of the diagnosis of cirrhosis. This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis. The one-year and five-year survival rate is 85% and 56%, respectively (Kashani et al., Fluid retention in cirrhosis: pathophysiology and management; QJM, v. 101, no. 2, p. 71-85 (2008)). The most acceptable theories postulate that the initial event in ascites formation in the cirrhotic patient is sinusoidal hypertension. Portal hypertension due to an increase in sinusoidal pressure activates vasodilatory mechanisms. In advanced stages of cirrhosis, arteriolar vasodilation causes underfilling of systemic arterial vascular space. This event, through a decrease in effective blood volume, leads to a drop in arterial pressure. Consequently, baroreceptor-mediated activation of renin-angiotensin aldosterone system, sympathetic nervous system and nonosmotic release of antidiuretic hormone occur to restore the normal blood homeostasis. These events cause further retention of renal sodium and fluid. Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity. Persistent renal sodium and fluid retention, alongside increased splanchnic vascular permeability in addition to lymph leakage into the peritoneal cavity, play a major role in a sustained ascites formation. Thiazolidinediones (TZD's), such as rosiglitazone, are peroxisome proliferator-activated receptor (PPAR) gamma agonist agents used for the treatment of type-2 diabetes and are widely prescribed. Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy. The incidence of TZD-induced fluid retention ranges from 7% in monotherapy and to as high as 15% when combined with insulin (Yan, T., Soodvilai, S., PPAR Research volume 2008, article ID 943614). The mechanisms for such side-effects are not fully understood but may be related in Na and fluid re-absorption in the kidney. However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events. In view of the foregoing, it is recognized that salt and fluid accumulation contribute to the morbidity and mortality of many diseases, including heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and the like. It is also accepted that salt and fluid accumulation are risk factors for hypertension. Accordingly, there is a clear need for a medicament that, when administered to a patient in need, would result in a reduction in sodium retention, fluid retention, or preferably both. Such a medicament would more preferably also not involve or otherwise impair renal mechanisms of fluid/Na homeostasis. One option to consider for treating excessive fluid overload is to induce diarrhea. Diarrhea may be triggered by several agents including, for example, laxatives such as sorbitol, polyethyleneglycol, bisacodyl and phenolphthaleine. Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited. The mechanism of action of phenolphthalein is not clearly established, but is thought to be caused by inhibition of the Na/K ATPase and the Cl/HCO3 anion exchanger and stimulation of electrogenic anion secretion (see, e.g., Eherer, A. J., C. A. Santa Ana, J. Porter, and J. S. Fordtran, 1993, Gastroenterology, v. 104, no. 4, p. 1007-1012). However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans. Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage. Accordingly, it should also be recognized that the induction of chronic diarrhea as part of an effort to control salt and fluid overload would be an undesired treatment modality for most patients. Any medicament utilizing the GI tract for this purpose would therefore need to control diarrhea in order to be of practical benefit. One approach for the treatment of mild diarrhea is the administration of a fluid-absorbing polymer, such as the natural plant fiber psyllium. Polymeric materials, and more specifically hydrogel polymers, may also be used for the removal of fluid from the gastrointestinal (GI) tract. The use of such polymers is described in, for example, U.S. Pat. Nos. 4,470,975 and 6,908,609, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract. Many mammals, including humans, make a soft feces with a water content of about 70%, and do so by transporting fluid against the high hydraulic resistance imposed by the fecal mass. Several studies show that the pressure required to dehydrate feces from about 80% to about 60% is between about 500 kPa and about 1000 kPa (i.e., about 5 to about 10 atm). (See, e.g., McKie, A. T., W. Powrie, and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G391-G394; Bleakman, D., and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G377-G390; Zammit, P. S., M. Mendizabal, and R. J. Naftalin, 1994, J Physiol, v. 477 (Pt 3), p. 539-548.) However, the static pressure measured intraluminally is usually between about 6 kPa and about 15 kPa. The rather high pressure needed to dehydrate feces is essentially due to an osmotic process and not a mechanical process produced by muscular forces. The osmotic pressure arises from the active transport of salt across the colonic mucosa that ultimately produces a hypertonic fluid absorption. The osmotic gradient produced drives fluid from the lumen to the serosal side of the mucosa. Fluid-absorbing polymers, such as those described in for example U.S. Pat. Nos. 4,470,975 and 6,908,609, may not be able to sustain such pressure. Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt. Synthetic polymers that bind sodium have also been described. For example, ion-exchange polymeric resins, such as Dowex-type cation exchange resins, have been known since about the 1950's. However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity. Additionally, during the ion-exchange process, the resins may release a stochiometric amount of exogenous cations (e.g., H, K, Ca), which may in turn potentially cause acidosis (H), hyperkalemia (K) or contribute to vascular calcification (Ca). Such resins may also cause constipation. Gastrointestinal Tract Disorders Constipation is characterized by infrequent and difficult passage of stool and becomes chronic when a patient suffers specified symptoms for over 12 non-consecutive weeks within a 12-month period. Chronic constipation is idiopathic if it is not caused by other diseases or by use of medications. An evidence-based approach to the management of chronic constipation in North America (Brandt et al., 2005, Am. J. Gastroenterol. 100(Suppl. 1):S5-S21) revealed that prevalence is approximately 15% of the general population. Constipation is reported more commonly in women, the elderly, non-whites, and individuals from lower socioeconomic groups. Irritable bowel syndrome (IBS) is a common GI disorder associated with alterations in motility, secretion and visceral sensation. A range of clinical symptoms characterizes this disorder, including stool frequency and form, abdominal pain and bloating. The recognition of clinical symptoms of IBS are yet to be defined, but it is now common to refer to diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS), wherein D-IBS is defined as continuous passage of loose or watery stools and C-IBS as a group of functional disorders which present as difficult, infrequent or seemingly incomplete defecation. The pathophysiology of IBS is not fully understood, and a number of mechanisms have been suggested. Visceral hypersensitivity is often considered to play a major etiologic role and has been proposed to be a biological marker even useful to discriminate IBS from other causes of abdominal pain. In a recent clinical study (Posserud, I. et al, Gastroenterology, 2007; 133:1113-1123) IBS patients were submitted to a visceral sensitivity test (Balloon distention) and compared with healthy subjects. It revealed that 61% of the IBS patients had an altered visceral perception as measured by pain and discomfort threshold. Other reviews have documented the role of visceral hypersensitivity in abdominal pain symptomatic of various gastrointestinal tract disorders (Akbar, A, et al, Aliment. Pharmaco. Ther., 2009, 30, 423-435; Bueno et al., Neurogastroenterol Motility (2007) 19 (suppl. 1), 89-119). Colonic and rectal distention have been widely used as a tool to assess visceral sensitivity in animal and human studies. The type of stress used to induce visceral sensitivity varies upon the models (see for instance Eutamen, H Neurogastroenterol Motil. 2009 Aug. 25. [Epub ahead of print]), however stress such as Partial restraint stress (PRS) is a relatively mild, non-ulcerogenic model that is considered more representative of the IBS setting. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects. Opioid-induced constipation (OIC) (also referred to as opioid-induced bowel dysfunction or opioid bowel dysfuntion (OBD)) is a common adverse effect associated with opioid therapy. OIC is commonly described as constipation; however, it is a constellation of adverse gastrointestinal (GI) effects, which also includes abdominal cramping, bloating, and gastroesophageal reflux. Patients with cancer may have disease-related constipation, which is usually worsened by opioid therapy. However, OIC is not limited to cancer patients. A recent survey of patients taking opioid therapy for pain of non-cancer origin found that approximately 40% of patients experienced constipation related to opioid therapy (<3 complete bowel movements per week) compared with 7.6% in a control group. Of subjects who required laxative therapy, only 46% of opioid-treated patients (control subjects, 84%) reported achieving the desired treatment results>50% of the time (Pappagallo, 2001, Am. J. Surg. 182(5A Suppl.): 1S-18S). Some patients suffering from chronic idiopathic constipation can be successfully treated with lifestyle modification, dietary changes and increased fluid and fiber intake, and these treatments are generally tried first. For patients who fail to respond to these approaches, physicians typically recommend laxatives, most of which are available over-the-counter. Use of laxatives provided over-the-counter is judged inefficient by about half of the patients (Johanson and Kralstein, 2007, Aliment. Pharmacol. Ther. 25(5):599-608). Other therapeutic options currently prescribed or in clinical development for the treatment of IBS and chronic constipation including OIC are described in, for example: Chang et al., 2006, Curr. Teat. Options Gastroenterol. 9(4):314-323; Gershon and Tack, 2007, Gastroenterology 132(1):397-414; and, Hammerle and Surawicz, 2008, World J. Gastroenterol. 14(17):2639-2649. Such treatments include but are not limited to serotonin receptor ligands, chloride channel activators, opioid receptor antagonists, guanylate-cyclase receptor agonists and nucleotide P2Y(2) receptor agonists. Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal. Na+/H+ Exchanger (NHE) Inhibitors A major function of the GI tract is to maintain water/Na homeostasis by absorbing virtually all water and Na to which the GI tract is exposed. The epithelial layer covering the apical surface of the mammalian colon is a typical electrolyte-transporting epithelium, which is able to move large quantities of salt and water in both directions across the mucosa. For example, each day the GI tract processes about 9 liters of fluid and about 800 meq of Na. (See, e.g., Zachos et al., Molecular physiology of intestinal Na+/H+ exchange; Annu. Rev. Physiol., v. 67, p. 411-443 (2005).) Only about 1.5 liters of this fluid and about 150 meq of this sodium originates from ingestion; rather, the majority of the fluid (e.g., about 7.5 liters) and sodium (about 650 meq) is secreted via the GI organs as part of digestion. The GI tract therefore represents a viable target for modulating systemic sodium and fluid levels. Many reviews have been published on the physiology and secretory and/or absorption mechanisms of the GI tract (see, e.g., Kunzelmann et al., Electrolyte transport in the mammalian colon: mechanisms and implications for disease; Physiol. Rev., v. 82, no. 1, p. 245-289 (2002); Geibel, J. P.; Secretion and absorption by colonic crypts; Annu. Rev. Physiol, v. 67, p. 471-490 (2005); Zachos et al., supra; Kiela, P. R. et al., Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl. 7, p. 51-79 (2006)). The two main mechanisms of Na absorption are electroneutral and electrogenic transport. Electroneutral transport is essentially due to the Na+/H+ antiport NHE (e.g., NHE-3) and is responsible for the bulk of Na absorption. Electrogenic transport is provided by the epithelium sodium channel (“ENaC”). Electroneutral transport is located primarily in the ileal segment and proximal colon and electrogenic transport is located in the distal colon. Plasma membrane NHEs contribute to maintenance of intracellular pH and volume, transcellular absorption of NaCl and NaHCO3, and fluid balance carried out by epithelial cells, especially in the kidney, intestine, gallbladder, and salivary glands, as well as regulation of systemic pH. There exists a body of literature devoted to the role and clinical intervention on systemic NHEs to treat disorders related to ischemia and reperfusion for cardioprotection or renal protection. Nine isoforms of NHEs have been identified (Kiela, P. R., et al.; Apical Na+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl 7, p. 51-79 (2006)), of which NHE-2, NHE-3 and NHE-8 are expressed on the apical side of the GI tract, with NHE-3 providing a larger contribution to transport. Another, yet to be identified, Cl-dependant NHE has been identified in the crypt of rat cells. In addition, much research has been devoted to identifying inhibitors of NHEs. The primary targets of such research have been NHE-1 and NHE-3. Small molecule NHE inhibitors are, for example, described in: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,736,705; 6,887,870; 6,737,423; 7,326,705; 5,824,691 (WO 94/026709); U.S. Pat. No. 6,399,824 (WO 02/024637); U.S. Pat. Pub. Nos. 2004/0039001 (WO 02/020496); 2005/0020612 (WO 03/055490); 2004/0113396 (WO 03/051866); 2005/0020612; 2005/0054705; 2008/0194621; 2007/0225323; 2004/0039001; 2004/0224965; 2005/0113396; 2007/0135383; 2007/0135385; 2005/0244367; 2007/0270414; International Publication Nos. WO 01/072742; WO 01021582 (CA2387529); WO 97/024113 (CA02241531) and European Pat. No. EP0744397 (CA2177007); all of which are incorporated herein by reference in their entirety for all relevant and consistent purposes. However, to-date, such research has failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract. Such inhibitors could be utilized in the treatment of disorders associated with fluid retention and salt overload and in the treatment of GI tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. Such inhibitors would be particular advantageous because they could be delivered with reduced fear of systemic on-target or off-target effects (e.g., little or no risk of renal involvement or other systemic effects. Accordingly, while progress has been made in the foregoing fields, there remains a need in the art for novel compounds for use in the disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY OF THE INVENTION In brief, the present invention is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. In one embodiment, a compound is provided having: (i) a topological Polar Surface Area (tPSA) of at least about 200 Å2 and a molecular weight of at least about 710 Daltons in the non-salt form; or (ii) a tPSA of at least about 270 Å2, wherein the compound is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein upon administration to a patient in need thereof. In further embodiments, the compound has a molecular weight of at least about 500 Da, at least about 1000 Da, at least about 2500 Da, or at least about about 5000 Da. In further embodiments, the compound has a tPSA of at least about 250 Å2, at least about 270 Å2, at least about 300 Å2, at least about 350 Å2, at least about 400 Å2, or at least about 500 Å2. In further embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit antiport of sodium ions and hydrogen ions mediated by NHE-3, NHE-2, NHE-8, or a combination thereof. In further embodiments, the compound is substantially systemically non-bioavailable and/or substantially impermeable to the epithelium of the gastrointestinal tract. In further embodiments, the compound is substantially active in the lower gastrointestinal tract. In further embodiments, the compound has (i) a total number of NH and/or OH and/or other potential hydrogen bond donor moieties greater than about 5; (ii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 10; and/or (iii) a Moriguchi partition coefficient greater than about 105 or less than about 10. In further embodiments, the compound has a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s. In further embodiments, the compound is substantially localized in the gastrointestinal tract or lumen. In further embodiments, the compound inhibits NHE irreversibly. In further embodiments, the compound is capable of providing a substantially persistent inhibitory action and wherein the compound is orally administered once-a-day. In further embodiments, the compound is substantially stable under physiological conditions in the gastrointestinal tract. In further embodiments, the compound is inert with regard to gastrointestinal flora. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract past the duodenum. In further embodiments, the compound, when administered at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, less than about 10× the IC50, or less than about 100× the IC50. In further embodiments, upon administration of the compound to a patient in need thereof, the compound exhibits a maximum concentration detected in the serum, defined as Cmax, that is lower than the NHE inhibitory concentration IC50 of the compound. In further embodiments, upon administration of the compound to a patient in need thereof, greater than about 80%, greater than about 90% or greater than about 95% of the amount of compound administered is present in the patient's feces. In further embodiments, the compound has a structure of Formula (I) or (IX): NHE-Z  (I) [NHEEZ  (IX) wherein: NHE is a NHE-inhibiting small molecule that comprises (i) a hetero-atom containing moiety, and (ii) a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto, the heteroatom-containing moiety being selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the scaffold or support moiety to form a fused bicyclic structure; and, Z is a moiety having at least one site thereon for attachment to the NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; and, E is an integer having a value of 1 or more. In further embodiments, the total number of freely rotatable bonds in the NHE-Z molecule is at least about 10. In further embodiments, the total number hydrogen bond donors in the NHE-Z molecule is at least about 5. In further embodiments, the total number of hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the total number of hydrogen bond donors and hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the Log P of the NHE-Z inhibiting compound is at least about 5. In further embodiments, the log P of the NHE-Z inhibiting compound is less than about 1, or less than about 0. In further embodiments, the scaffold is a 5-member or 6-member cyclic or heterocyclic moiety. In further embodiments, the scaffold is aromatic. In further embodiments, the scaffold of the NHE-inhibiting small molecule is bound to the moiety, Z, and the compound has the structure of Formula (II): wherein: Z is a Core having one or more sites thereon for attachment to one or more NHE-inhibiting small molecules, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; Scaffold is the cyclic or heterocyclic scaffold or support moiety of the NHE-inhibiting small molecule, which is bound directly or indirectly to heteroatom-containing moiety, B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl, and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties, which links B and the Scaffold; and, D and E are integers, each independently having a value of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a Core moiety having two or more sites thereon for attachment to multiple NHE-inhibiting small molecules, either directly or indirectly through a linking moiety, L, and the compound has the structure of Formula (X): CoreL-NHE)n  (X) wherein L is a bond or linker connecting the Core to the NHE-inhibiting small molecule, and n is an integer of 2 or more, and further wherein each NHE-inhibiting small molecule may be the same or differ from the others. In further embodiments, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further embodiments, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further embodiments, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further embodiments, L is a polyalkylene glycol linker. In further embodiments, L is a polyethylene glycol linker. In further embodiments, n is 2. In further embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further embodiments, the Core is selected from the group consisting of: In further embodiments, the compound is an oligomer, and Z is a linking moiety, L, that links two or more NHE-inhibiting small molecules together, when the two or more NHE-inhibiting small molecules may be the same or different, and the compound has the structure of Formula (XI): NHEL-NHEmL-NHE  (XI) wherein L is a bond or linker connecting one NHE-inhibiting small molecule to another, and m is 0 or an integer of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a backbone, denoted Repeat Unit, to which is bound multiple NHE-inhibiting moieties, and the compound has the structure of Formula (XIIB): wherein: L is a bond or a linking moiety; NHE is a NHE-inhibiting small molecule; and n is a non-zero integer. In another embodiment, a pharmaceutical composition is provided comprising a compound as set forth above, or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the composition further comprises a fluid-absorbing polymer. In further embodiments, the fluid-absorbing polymer is delivered directly to the colon. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 5 kPa. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 10 kPa. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 10 g/g. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 15 g/g. In further embodiments, the fluid-absorbing polymer is superabsorbent. In further embodiments, the fluid-absorbing polymer is a crosslinked, partially neutralized polyelectrolyte hydrogel. In further embodiments, the fluid-absorbing polymer is a crosslinked polyacrylate. In further embodiments, the fluid-absorbing polymer is a polyelectrolyte. In further embodiments, the fluid-absorbing polymer is calcium Carbophil. In further embodiments, the fluid-absorbing polymer is prepared by a high internal phase emulsion process. In further embodiments, the fluid-absorbing polymer is a foam. In further embodiments, the fluid-absorbing polymer is prepared by a aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker and a free radical initiator redox system in water. In further embodiments, the fluid-absorbing polymer is a hydrogel. In further embodiments, the fluid-absorbing polymer is an N-alkyl acrylamide. In further embodiments, the fluid-absorbing polymer is a superporous gel. In further embodiments, the fluid-absorbing polymer is naturally occurring. In further embodiments, the fluid-absorbing polymer is selected from the group consisting of xanthan, guar, wellan, hemicelluloses, alkyl-cellulose hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In further embodiments, the fluid-absorbing polymer is psyllium. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight. In further embodiments, the composition further comprises another pharmaceutically active agent or compound. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of an analgesic peptide or agent. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In another embodiment, a method for inhibiting NHE-mediated antiport of sodium and hydrogen ions is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder associated with fluid retention or salt overload is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, the disorder includes, but is not limited to, a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, Celiac's Secondary PTH, ankylosing spondylitis, lupus, alpecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. In another embodiment, a method for treating a disorder selected from the group consisting of heart failure (such as congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating hypertension is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium and/or fluid. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium by at least about 30 mmol, and/or fluid by at least about 200 ml. In further embodiments, the mammal's fecal output of sodium and/or fluid is increased without introducing another type of cation in a stoichiometric or near stoichiometric fashion via an ion exchange process. In further embodiments, the method further comprises administering to the mammal a fluid-absorbing polymer to absorb fecal fluid resulting from the use of the compound that is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. In further embodiments, the compound or composition is administered to treat hypertension. In further embodiments, the compound or composition is administered to treat hypertension associated with dietary salt intake. In further embodiments, administration of the compound or composition allows the mammal to intake a more palatable diet. In further embodiments, the compound or composition is administered to treat fluid overload. In further embodiments, the fluid overload is associated with congestive heart failure. In further embodiments, the fluid overload is associated with end stage renal disease. In further embodiments, the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. In further embodiments, the compound or composition is administered to treat sodium overload. In further embodiments, the compound or composition is administered to reduce interdialytic weight gain in ESRD patients. In further embodiments, the compound or composition is administered to treat edema. In further embodiments, the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. In further embodiments, the compound or composition is administered to treat gastric ulcers. In further embodiments, the compound or composition is administered to treat infectious diarrhea. In further embodiments, the compound or composition is administered to treat cancer (colorectal). In further embodiments, the compound or composition is administered to treat “leaky gut syndrome”. In further embodiments, the compound or composition is administered to trea cystic fibrosis gastrointestinal disease. In further embodiments, the compound or composition is administered to treat multi-organ failure. In further embodiments, the compound or composition is administered to treat microscopic colitis. In further embodiments, the compound or composition is administered to treat necrotizing enterocolitis. In further embodiments, the compound or composition is administered to treat atopy. In further embodiments, the compound or composition is administered to treat food allergy. In further embodiments, the compound or composition is administered to treat respiratory infections. In further embodiments, the compound or composition is administered to treat acute inflammation (e.g., sepsis, systemic inflammatory response syndrome). In further embodiments, the compound or composition is administered to treat chronic inflammation (e.g., arthritis). In further embodiments, the compound or composition is administered to treat obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease). In further embodiments, the compound or composition is administered to treat kidney disease. In further embodiments, the compound or composition is administered to treat diabetic kidney disease. In further embodiments, the compound or composition is administered to treat cirrhosis. In further embodiments, the compound or composition is administered to treat steatohepatitis. In further embodiments, the compound or composition is administered to treat nonalcoholic fatty acid liver disease. In further embodiments, the compound or composition is administered to treat steatosis. In further embodiments, the compound or composition is administered to treat primary sclerosing cholangitis. In further embodiments, the compound or composition is administered to treat primary biliary cholangitis. In further embodiments, the compound or composition is administered to treat portal hypertension. In further embodiments, the compound or composition is administered to treat autoimmunie disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), or Raynaud's syndrome). In further embodiments, the compound or composition is administered to treat Schizophrenia. In further embodiments, the compound or composition is administered to treat autism spectrum disorders. In further embodiments, the compound or composition is administered to treat hepatic encephlopathy. In further embodiments, the compound or composition is administered to treat chronic alcoholism. In further embodiments, the compound or composition is administered orally, by rectal suppository, or enema. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. In another embodiment, a method for treating a gastrointestinal tract disorder is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the gastrointestinal tract disorder is a gastrointestinal motility disorder. In further embodiments, the gastrointestinal tract disorder is irritable bowel syndrome. In further embodiments, the gastrointestinal tract disorder is chronic constipation. In further embodiments, the gastrointestinal tract disorder is chronic idiopathic constipation. In further embodiments, the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. In further embodiments, the gastrointestinal tract disorder is opioid-induced constipation. In further embodiments, the gastrointestinal tract disorder is a functional gastrointestinal tract disorder. In further embodiments, the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. In further embodiments, the gastrointestinal tract disorder is Crohn's disease. In further embodiments, the gastrointestinal tract disorder is ulcerative colitis. In further embodiments, the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. In further embodiments, the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). In further embodiments, the gastrointestinal tract disorder is associated with disturbance of pH. In further embodiments, the gastrointestinal tract disorder tract disorder is constipation induced by calcium supplement. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with the use of a therapeutic agent. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with a neuropathic disorder. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is post-surgical constipation (postoperative ileus). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is idiopathic (functional constipation or slow transit constipation). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is due the use of drugs selected from analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In other embodiments, the gastrointestinal tract disorder is associated with gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), or Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, or chronic alcoholism. In another embodiment, a method for treating irritable bowel syndrome is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of an NHE-3 inhibitor compound or a pharmaceutical composition comprising an NHE-3 inhibitor compound. In further embodiments, the NHE-3 inhibitor compound or the pharmaceutical composition comprising an NHE-3 inhibitor compound is a compound or pharmaceutical composition as set forth above. In further embodiments of the above embodiments, the compound or composition is administered to treat or reduce pain associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce inflammation of the gastrointestinal tract. In further embodiments, the compound or composition is administered to reduce gastrointestinal transit time. In further embodiments, the compound or composition is administered either orally or by rectal suppository. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition, in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. In further embodiments, the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), and a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a graph that illustrates the relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of certain example compounds, as further discussed in the Examples (under the subheading “2. Pharmacological Test Example 2”). FIGS. 2A and 2B are graphs that illustrate the cecum and colon water content after oral administration of certain example compounds, as further discussed in the Examples (under the subheading “3. Pharmacological Test Example 3”). FIGS. 3A and 3B are graphs that illustrate the dose dependent decrease of urinary salt levels after administration of certain example compounds, as further discussed in the Examples (under the subheading “14. Pharmacological Test Example 14”). FIG. 4 is a graph that illustrates a dose dependent increase in fecal water content after administration of a certain example compound, as further discussed in the Examples (under the subheading “15. Pharmacological Test Example 15”). FIGS. 5A, 5B and 5C are graphs that illustrate that supplementing the diet with Psyllium results in a slight reduction of fecal stool form, but without impacting the ability of a certain example compound to increase fecal water content or decrease urinary sodium, as further discussed in the Examples (under the subheading “16. Pharmacological Test Example 16”). FIG. 6 is a graph that illustrates that inhibition of NHE-3 reduces hypersensitivity to distention, as further discussed in the Examples (under the subheading “17. Pharmacological Test Example 17”). FIGS. 7A and 7B are graphs that illustrate that inhibition of NHE-3 increases the amount of sodium excreted in feces, as further discussed in the Examples (under subheading “18. Pharmacological Test Example 18”). FIGS. 8A-8D: Depicts NHE3-independent changes in intracellular pH (pHi) modulate trans-epithelial electrical resistance in intestinal ileum monolayer cultures. Changes in pHi and trans-epithelial electrical resistance (TEER) with (A, B) nigericin and (C, D) BAM15 (3 μM) and FCCP (3 μM) compared with the known NHE3 inhibitor tenapanor and vehicle (DMSO) control in monolayer cultures. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs DMSO. DETAILED DESCRIPTION OF THE INVENTION In accordance with the present disclosure, and as further detailed herein below, it has been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various disorders that may be associated with or caused by fluid retention and/or salt overload, and/or disorders such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from, for example, CHF, ESRD/CKD and/or liver disease. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of hypertension, that may be associated with or caused by fluid retention and/or salt overload. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from hypertension. Such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. and/or hypertension. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, and more particularly to the restoration of appropriate fluid secretion in the gut and the improvement of pathological conditions encountered in constipation states. Applicants have further recognized that by blocking sodium ion re-absorption, the compound of the invention restore fluid homeostasis in the GI tract, particularly in situations wherein fluid secretion/absorption is altered in such a way that it results in a high degree of feces dehydration, low gut motility, and/or a slow transit-time producing constipation states and GI discomfort generally. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Due to the presence of NHEs in other organs or tissues in the body, the method of the present disclosure employs the use of compounds and compositions that are desirably highly selective or localized, thus acting substantially in the gastrointestinal tract without exposure to other tissues or organs. In this way, any systemic effects can be minimized (whether they are on-target or off-target). Accordingly, it is to be noted that, as used herein, and as further detailed elsewhere herein, “substantially active in the gastrointestinal tract” generally refers to compounds that are substantially systemically non-bioavailable and/or substantially impermeable to the layer of epithelial cells, and more specifically epithelium of the GI tract. It is to be further noted that, as used herein, and as further detailed elsewhere herein, “substantially impermeable” more particularly encompasses compounds that are impermeable to the layer of epithelial cells, and more specifically the gastrointestinal epithelium (or epithelial layer). “Gastrointestinal epithelium” refers to the membranous tissue covering the internal surface of the gastrointestinal tract. Accordingly, by being substantially impermeable, a compound has very limited ability to be transferred across the gastrointestinal epithelium, and thus contact other internal organs (e.g., the brain, heart, liver, etc.). The typical mechanism by which a compound can be transferred across the gastrointestinal epithelium is by either transcellular transit (a substance travels through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes) and/or by paracellular transit, where a substance travels between cells of an epithelium, usually through highly restrictive structures known as “tight junctions”. Without wishing to be bound to any particular theory, it is believed that the NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure are believed to act via a distinct and unique mechanism, to decrease paracellular permeability of the intestine. NHE3 is expressed at high levels on the apical surface of the gastrointestinal tract and couples luminal Na absorption to the secretion of intracellular protons. Inhibition of NHE3, by the NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure, results in accumulation of intracellular protons. The intracellular proton retention accompanying NHE3 inhibition modulates the tight junction between cells to decrease paracellular permeability which can be measured by an increase in transepithelial electrical resistance. Since increased paracellular and/or transcellular permeability of the intestine is observed in many diseases including, but not limited to a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, multiple sclerosis-induced constipation, parkinson's disease-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel disease, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bactreial overgrowth, and chronic alcoholism, and the like it is anticipated that NHE inhibition could provide therapeutic benefit in these diseases by decreasing paracellular and/or transcellular permeability in the intestine. Thus in some embodiments, the present disclosure provides methods of decreasing paracellular permeability of the intestine. In some embodiments, the method of decreasing paracellular permeability of the intestine comprises administration of an NHE3 inhibitor. In some embodiments, the inhibition of NHE3 results in an accumulation of intracellular protons. In some embodiments, the decrease in paracellular permeability is due to an increase in intracellular protons independent of and without NHE3 inhibition. In other words, an increase in intracellular protons without NHE3 inhibition results in a decrease in paracelllar permeability. Thus methods of decreasing paracellular permeability comprising increasing intracellular protons is provided. In some embodiments, methods of treating diseases associated with paracellular permeability are provided comprising administering an agent that increases intracellular protons at tight junctions thereby decreasing paracellular permeability and thus treating the disease. Non limiting examples of such diseases include, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bactreial overgrowth, and chronic alcoholism, and the like. In some embodiments, the present disclosure provides methods of modulating transcellular permeability of the intestine. In some embodiments, the method of modulating transcellular permeability of the intestine comprises administration of an NHE3 inhibitor. In some embodiments, the inhibition of NHE3 results in a substance travelling through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes. Thus methods of modulating transcellular permeability comprising mediating either passive or active transport of a substance passing through both the apical and basolateral membranes is provided. In some embodiments, methods of treating diseases associated with transcellular permeability are provided comprising administering an agent that mediates either passive or active transport of a substance passing through both the apical and basolateral membranes of a cell, thereby modulating transcellular permeability and thus treating the disease. Non limiting examples of such diseases include a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, multiple sclerosis-induced constipation, parkinson's disease-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction. The compounds of the present disclosure may therefore not be absorbed, and are thus essentially not systemically bioavailable at all (e.g., impermeable to the gastrointestinal epithelium at all), or they show no detectable concentration of the compound in serum. Alternatively, the compounds may: (i) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the liver (i.e., hepatic extraction) via first-pass metabolism; and/or (ii) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the kidney (i.e., renal excretion). In this regard it is to be still further noted that, as used herein, “substantially systemically non-bioavailable” generally refers to the inability to detect a compound in the systemic circulation of an animal or human following an oral dose of the compound. For a compound to be bioavailable, it must be transferred across the gastrointestinal epithelium (that is, substantially permeable as defined above), be transported via the portal circulation to the liver, avoid substantial metabolism in the liver, and then be transferred into systemic circulation. As further detailed elsewhere herein, small molecules exhibiting an inhibitory effect on NHE-mediated antiport of sodium and hydrogen ions described herein may be modified or functionalized to render them “substantially active” in the GI tract (or “substantially impermeable” to the GI tract and/or “substantially systemically non-bioavailable” from the GI tract) by, for example, ensuring that the final compound has: (i) a molecular weight of greater than about 500 Daltons (Da) (e.g., greater than about 1000 Da, about 2500 Da, about 5000 Da, or even about 10000 Da) in its non-salt form; and/or (ii) at least about 10 freely rotatable bonds therein (e.g., about 10, about 15 or even about 20); and/or (iii) a Moriguchi Partition Coefficient of at least about 105 (or log P of at least about 5), by for example increasing the hydrophobicity of the compound (e.g., inserting or installing a hydrocarbon chain of a sufficient or suitable length therein), or alternatively a Moriguchi Partition Coefficient of less than 10 (or alternatively a log P of less than about 1, or less than about 0); and/or (iv) a number of hydrogen-bond donors therein greater than about 5, about 10, or about 15; and/or (v) a number of hydrogen-bond acceptors therein greater than about 5, about 10, or about 15; and/or (vi) a total number of hydrogen-bond donors and acceptors therein of greater than about 5, about 10, or about 15; and/or, (vii) a topological polar surface area (tPSA) therein of greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, by for example inserting or installing a sufficiently hydrophilic functional group therein (e.g., a polyalkylene ether or a polyol or an ionizable group, such as a phosphonate, sulfonate, carboxylate, amine, quaternary amine, etc.), the hydrogen-bond donors/acceptor groups also contributing to compound tPSA. One or more of the above-noted methods for structurally modifying or functionalizing the NHE-inhibiting small molecule may be utilized in order to prepare a compound suitable for use in the methods of the present disclosure, so as to render the compound substantially impermeable or substantially systemically non-bioavailable; that is, one or more of the noted exemplary physical properties may be “engineered” into the NHE-inhibiting small molecule to render the resulting compound substantially impermeable or substantially systemically non-bioavailable, or more generally substantially active, in the GI tract, while still possessing a region or moiety therein that is active to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. Without being being held to any particular theory, the NHE-inhibitors (e.g., NHE-3, -2 and/or -8) of the instant disclosure are believed to act via a distinct and unique mechanism, causing the retention of fluid and ions in the GI tract (and stimulating fecal excretion) rather than stimulating increased secretion of said fluid and ions. For example, lubiprostone (Amitiza® Sucampo/Takeda) is a bicyclic fatty acid prostaglandin E1 analog that activates the Type 2 Chloride Channel (CIC-2) and increases chloride-rich fluid secretion from the serosal to the mucosal side of the GI tract (see, e.g., Pharmacological Reviews for Amitiza®, NDA package). Linaclotide (MD-1100 acetate, Microbia/Forest Labs) is a 14 amino acid peptide analogue of an endogenous hormone, guanylin, and indirectly activates the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) thereby inducing fluid and electrolyte secretion into the GI (see, e.g., Li et al., J. Exp. Med., vol. 202 (2005), pp. 975-986). The substantially impermeable NHE inhibitors described in the instant disclosure act to inhibit the reuptake of salt and fluid rather than promote secretion. Since the GI tract processes about 9 liters of fluid and about 800 meq of Na each day, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to resorb edema and resolve CHF symptoms. I. Substantially Impermeable or Substantially Systemically Non-Bioavailable NHE-Inhibiting Compounds A. General Structure Generally speaking, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that is effective or active as a NHE inhibitor and that is substantially active in the GI tract, and more particularly substantially impermeable or substantially systemically non-bioavalable therein, including known NHE inhibitors that may be modified or functionalized in accordance with the present disclosure to alter the physicochemical properties thereof so as to render the overall compound substantially active in the GI tract. In particular, however, the present disclosure encompasses monovalent or polyvalent compounds that are effective or active as NHE-3, NHE-2 and/or NHE-8 inhibitors. Accordingly, the compounds of the present disclosure may be generally represented by Formula (I): NHE-Z  (I) wherein: (i) NHE represents a NHE-inhibiting small molecule, and (ii) Z represents a moiety having at least one site thereon for attachment to an NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The NHE-inhibiting small molecule generally comprises a heteroatom-containing moiety and a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto. In particular, examination of the structures of small molecules reported to-date to be NHE inhibitors suggest, as further illustrated herein below, that most comprise a cyclic or heterocyclic support or scaffold bound directly or indirectly (by, for example, an acyl moiety or a hydrocabyl or heterohydrocarbyl moiety, such as an alkyl, an alkenyl, a heteroalkyl or a heteroalkenyl moiety) to a heteroatom-containing moiety that is capable of acting as a sodium atom or sodium ion mimic, which is typically selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety (e.g., a nitrogen-containing herocyclic moiety). Optionally, the heteroatom-containing moiety may be fused with the scaffold or support moiety to form a fused, bicyclic structure, and/or it may be capable of forming a positive charge at a physiological pH. In this regard it is to be noted that, while the heteroatom-containing moiety that is capable of acting as a sodium atom or ion mimic may optionally form a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein. Rather, in various embodiments, the compound may have no charged moieties, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof, the compound for example being a zwitterion). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge (e.g., +1, +2, +3, etc.), or a net negative charge (e.g., −1, −2, −3, etc.). The Z moiety may be bound to essentially any position on, or within, the NHE small molecule, and in particular may be: (i) bound to the scaffold or support moiety, (ii) bound to a position on, or within, the heteroatom-containing moiety, and/or (iii) bound to a position on, or within, a spacer moiety that links the scaffold to the heteroatom-containing moiety, provided that the installation of the Z moiety does not significantly adversely impact NHE-inhibiting activity. In one particular embodiment, Z may be in the form of an oligomer, dendrimer or polymer bound to the NHE small molecule (e.g., bound for example to the scaffold or the spacer moiety), or alternatively Z may be in the form of a linker that links multiple NHE small molecules together, and therefore that acts to increase: (i) the overall molecular weight and/or polar surface area of the NHE-Z molecule; and/or, (ii) the number of freely rotatable bonds in the NHE-Z molecule; and/or, (iii) the number of hydrogen-bond donors and/or acceptors in the NHE-Z molecule; and/or, (iv) the Log P value of the NHE-Z molecule to a value of at least about 5 (or alternatively less than 1, or even about 0), all as set forth herein; such that the overall NHE-inhibiting compound (i.e., the NHE-Z compound) is substantially impermeable or substantially systemically non-bioavailable. The present disclosure is more particularly directed to such a substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound, or a pharmaceutical salt thereof, wherein the compound has the structure of Formula (II): wherein: (i) Z, as previously defined above, is a moiety bound to or incorporated in the NHE-inhibiting small molecule, such that the resulting NHE-Z molecule possesses overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; (ii) B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and in one particular embodiment is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; (iii) Scaffold is the cyclic or heterocyclic moiety to which is bound directly or indirectly the hetero-atom containing moiety (e.g., the substituted guanidinyl moiety or a substituted heterocyclic moiety), B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; (iv) X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl (e.g., C1-7 alkyl, alkenyl, heteroalkyl or heteroalkenyl), and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties (e.g., C4-C7 cyclic or heterocyclic moieties), which links B and the Scaffold; and, (v) D and E are integers, each independently having a value of 1, 2 or more. In one or more particular embodiments, as further illustrated herein below, B may be selected from a guanidinyl moiety or a moiety that is a guanidinyl bioisostere selected from the group consisting of substituted cyclobutenedione, substituted imidazole, substituted thiazole, substituted oxadiazole, substituted pyrazole, or a substituted amine. More particularly, B may be selected from guanidinyl, acylguanidinyl, sulfonylguanidinyl, or a guanidine bioisostere such as a cyclobutenedione, a substituted or unsubstituted 5- or 6-member heterocycle such as substituted or unsubstituted imidazole, aminoimidazole, alkylimidizole, thiazole, oxadiazole, pyrazole, alkylthioimidazole, or other functionality that may optionally become positively charged or function as a sodium mimetic, including amines (e.g., tertiary amines), alkylamines, and the like, at a physiological pH. In one particularly preferred embodiment, B is a substituted guanidinyl moiety or a substituted heterocyclic moiety that may optionally become positively charged at a physiological pH to function as a sodium mimetic. In one exemplary embodiment, the compound of the present disclosure (or more particularly the pharmaceutically acceptable HCl salt thereof, as illustrated) may have the structure of Formula (III): wherein Z may be optionally attached to any one of a number of sites on the NHE-inhibiting small molecule, and further wherein the R1, R2 and R3 substituents on the aromatic rings are as detailed elsewhere herein, and/or in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. In this regard it is to be noted, however, that the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may have a structure other than illustrated above, without departing from the scope of the present disclosure. For example, in various alternative embodiments, one or both of the terminal nitrogen atoms in the guanidine moiety may be substituted with one or more substituents, and/or the modifying or functionalizing moiety Z may be attached to the NHE-inhibiting compound by means of (i) the Scaffold, (ii) the spacer X, or (iii) the heteroatom-containing moiety, B, as further illustrated generally in the structures provided below: In this regard it is to be further noted that, as used herein, “bioisostere” generally refers to a moiety with similar physical and chemical properties to a guanidine moiety, which in turn imparts biological properties to that given moiety similar to, again, a guanidine moiety, in this instance. (See, for example, Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes.) As further detailed below, known NHE-inhibiting small molecules or chemotypes that may serve as suitable starting materials (for modification or functionalization, in order to render the small molecules substantially impermeable or substantially systemically non-bioavailable, and/or used in pharmaceutical preparations in combination with, for example, a fluid-absorbing polymer) may generally be organized into a number of subsets, such as for example: wherein: the terminal ring (or, in the case of the non-acyl guanidines, “R”), represent the scaffold or support moiety; the guanidine moiety (or the substituted heterocycle, and more specifically the piperidine ring, in the case of the non-guanidine inhibitors) represents B; and, X is the acyl moiety, or the -A-B-acyl- moiety (or a bond in the case of the non-acyl guanidines and the non-guanidine inhibitors). (See, e.g., Lang, H. J., “Chemistry of NHE Inhibitors” in The Sodium-Hydrogen Exchanger, Harmazyn, M., Avkiran, M. and Fliegel, L., Eds., Kluwer Academic Publishers 2003. See also B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Without being held to any particular theory, it has been proposed that a guanidine group, or an acylguanidine group, or a charged guanidine or acylguanidine group (or, in the case of non-guanidine inhibitors, a heterocycle or other functional group that can replicate the molecular interactions of a guanidinyl functionality including, but not limited to, a protonated nitrogen atom in a piperidine ring) at physiological pH may mimic a sodium ion at the binding site of the exchanger or antiporter (See, e.g., Vigne, P.; Frelin, C.; Lazdunski, M. J. Biol. Chem. 1982, 257, 9394). Although the heteroatom-containing moiety may be capable of forming a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein, or even that the heteroatom-containing moiety therein be capable of forming a positive charge in all instances. Rather, in various alternative embodiments, the compound may have no charged moieties therein, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge, or a net negative charge. In this regard it is to be noted that the U.S. Patents and U.S. Published Applications cited above, or elsewhere herein, are incorporated herein by reference in their entirety, for all relevant and consistent purposes. In addition to the structures illustrated above, and elsewhere herein, it is to be noted that bioisosteric replacements for guanidine or acylguanidine may also be used. Potentially viable bioisosteric “guanidine replacements” identified to-date have a five- or six-membered heterocyclic ring with donor/acceptor and pKa patterns similar to that of guanidine or acylguanidine (see for example Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes), and include those illustrated below: The above bioisosteric embodiments (i.e., the group of structures above) correspond to “B” in the structure of Formula (II), the broken bond therein being attached to “X” (e.g., the acyl moiety, or alternatively a bond linking the bioisostere to the scaffold), with bonds to Z in Formula (III) not shown here. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-inhibiting small molecule and the modifying or functionalizing moiety Z is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-inhibiting small molecule is bound or connected in some way (e.g., by a bond or linker of some kind) to Z, such that the resulting NHE-Z molecule is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). Alternatively, Z may be incorporated into the NHE-inhibiting small molecule, such as for example by positioning it between the guanidine moiety and scaffold. It is to be further noted that a number of structures are provided herein for substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, and/or for NHE-inhibiting small molecules suitable for modification or functionalization in accordance with the present disclosure so as to render them substantially impermeable or substantially systemically non-bioavailable. Due to the large number of structures, various identifiers (e.g., atom identifiers in a chain or ring, identifiers for substituents on a ring or chain, etc.) may be used more than once. An identifier in one structure should therefore not be assumed to have the same meaning in a different structure, unless specifically stated (e.g., “R1” in one structure may or may not be the same as “R1” in another structure). Additionally, it is to be noted that, in one or more of the structures further illustrated herein below, specific details of the structures, including one or more of the identifiers therein, may be provided in a cited reference, the contents of which are specifically incorporated herein by reference for all relevant and consistent purposes. B. Illustrative Small Molecule Embodiments The substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may in general be derived or prepared from essentially any small molecule possessing the ability to inhibit NHE activity, including small molecules that have already been reported or identified as inhibiting NHE activity but lack impermeability (i.e., are not substantially impermeable). In one particularly preferred embodiment, the compounds utilized in the various methods of the present disclosure are derived or prepared from small molecules that inhibit the NHE-3, -2, and/or -8 isoforms. To-date, a considerable amount of work has been devoted to the study of small molecules exhibiting NHE-1 inhibition, while less has been devoted for example to the study of small molecules exhibiting NHE-3 inhibition. Although the present disclosure is directed generally to substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, the substantially impermeable or substantially systemically non-bioavailable compounds exhibiting NHE-3, -2, and/or -8 inhibition are of particular interest. However, while it is envisioned that appropriate starting points may be the modification of known NHE-3, -2, and/or -8 inhibiting small molecules, small molecules identified for the inhibition of other NHE subtypes, including NHE-1, may also be of interest, and may be optimized for selectivity and potency for the NHE-3, -2, and/or -8 subtype antiporter. Small molecules suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) to prepare the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure include those illustrated below. In this regard it is to be noted a bond or link to Z (i.e., the modification or functionalization that renders the small molecules substantially impermeable or substantially systemically non-bioavailable) is not specifically shown. As previously noted, the Z moiety may be attached to, or included within, the small molecule at essentially any site or position that does not interfere (e.g., stericly interfere) with the ability of the resulting compound to effectively inhibit the NHE antiport of interest. More particularly, Z may be attached to essentially any site on the NHE-inhibiting small molecule, Z for example displacing all or a portion of a substituent initially or originally present thereon and as illustrated below, provided that the site of installation of the Z moiety does not have a substantially adversely impact on the NHE-inhibiting activity thereof. In one particular embodiment, however, a bond or link extends from Z to a site on the small molecule that effectively positions the point of attachment as far away (based, for example, on the number of intervening atoms or bonds) from the atom or atoms present in the resulting compound that effectively act as the sodium ion mimic (for example, the atom or atoms capable of forming a positive ion under physiological pH conditions). In a preferred embodiment, the bond or link will extend from Z to a site in a ring, and more preferably an aromatic ring, within the small molecule, which serves as the scaffold. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453 patent, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound II on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H NH2 The variables (“R1”, “R2 ”and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In these structures, a bond or link (not shown) may extend, for example, between the Core and amine-substituted aromatic ring (first structure), the heterocyclic ring or the aromatic ring to which it is bound, or alternatively the chloro-substituted aromatic ring (second structure), or the difluoro-substituted aromatic ring or the sulfonamide-substituted aromatic ring (third structure). C. Exemplary Small Molecule Selectivity Shown below are examples of various NHE inhibiting small molecules and their selectivity across the NHE-1, -2 and -3 isoforms. (See, e.g., B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Most of these small molecules were optimized as NHE-1 inhibitors, and this is reflected in their selectivity with respect thereto (IC50's for subtype-1 are significantly more potent (numerically lower) than for subtype-3). However, the data in Table 1 indicates that NHE-3 activity may be engineered into an inhibitor series originally optimized against a different isoform. For example, amiloride is a poor NHE-3 inhibitor and was inactive against this antiporter at the highest concentration tested (IC50>100 μM); however, analogs of this compound, such as DMA and EIPA, have NHE-3 IC50's of 14 and 2.4 uM, respectively. The cinnamoylguanidine S-2120 is over 500-fold more active against NHE-1 than NHE-3; however, this selectivity is reversed in regioisomer S-3226. It is thus possible to engineer NHE-3 selectivity into a chemical series optimized for potency against another antiporter isoform; that is, the inhibitor classes exemplified in the art may be suitably modified for activity and selectivity against NHE-3 (or alternatively NHE-2 and/or NHE-8), as well as being modified to be rendered substantially impermeable or substantially systemically non-bioavailable. TABLE 1 IC50 or Ki (μM)b Drug a NHE-1 NHE-2 NHE-3 NHE-5 Amiloride    1-1.6*   1.0** >100* 21 EIPA 0.01*-0.02** 0.08*-0.5**    2.4* 0.42 HMA  0.013* —    2.4* 0.37 DMA  0.023*   0.25*    14* — Cariporide  0.03-3.4  4.3-62  1->100 >30 Eniporide 0.005-0.38    2-17 100-460 >30 Zoniporide  0.059  12 >500* — BMS-284640  0.009 1800  >30 3.36 T-162559(S)  0.001   0.43    11 — T-162559(R) 35   0.31  >30 — S-3226  3.6  80**    0.02 S-2120  0.002   0.07    1.32 *= from rat, **= from rabbit. NA = not active a Table adapted from Masereel, B. et al., European Journal of Medicinal Chemistry, 2003, 38, 547-54. bKi values are in italic As previously noted above, the NHE inhibitor small molecules disclosed herein, including those noted above, may advantageously be modified to render them substantially impermeable or substantially systemically non-bioavailable. The compounds as described herein are, accordingly, effectively localized in the gastrointestinal tract or lumen, and in one particular embodiment the colon. Since the various NHE isomforms may be found in many different internal organs (e.g., brain, heart, liver, etc.), localization of the NHE inhibitors in the intestinal lumen is desirable in order to minimize or eliminate systemic effects (i.e., prevent or significantly limit exposure of such organs to these compounds). Accordingly, the present disclosure provides NHE inhibitors, and in particular NHE-3, -2 and/or -8 inhibitors, that are substantially systemically non-bioavailable in the GI tract, and more specifically substantially systemically impermeable to the gut epithelium, as further described below. D. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is monovalent; that is, the molecule contains one moiety that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following structures of Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen (e.g., Cl), —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R4 is selected from H, C1-7 alkyl or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is absent or selected from H and C1-7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines, optionally linked to the ring Ar1 by a heterocyclic linker; R4 and R12 are independently selected from H and R7, where R7 is as defined above; R10 and R11, when presented, are independently selected from H and C1-7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R3 is selected from H or R7, where R7 is as described above; R13 is selected from substituted or unsubstituted C1-8 alkyl; R2 and R12 are independently selected from H or R7, wherein R7 is as described above; R10 and R11, when present, are independently selected from H and C1-7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In another particular embodiment, the NHE-Z molecule of the present disclosure may have the structure of Formula (IV): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted hydrocarbyl, heterohydrocarbyl, or polyols and/or substituted or unsubstituted polyalkylene glycol, wherein substituents thereon are selected from the group consisting of phosphinates, phosphonates, phosphonamidates, phosphates, phosphonthioates and phosphonodithioates; R4 is selected from H or Z, where Z is substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and a polyol, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is selected from —H and C1-7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. Additionally, or alternatively, in one or more embodiments of the compounds illustrated above, the compound may optionally have a tPSA of at least about 100 Å2, about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, or more and/or a molecular weight of at least about 710 Da. II. Polyvalent Structures: Macromolecules and Oligomers A. General Structure As noted above, the compounds of the present disclosure comprise a NHE-inhibiting small molecule that has been modified or functionalized structurally to alter its physicochemical properties (by the attachment or inclusion of moiety Z), and more specifically the physicochemical properties of the NHE-Z molecule, thus rendering it substantially impermeable or substantially systemically non-bioavailable. In one particular embodiment, and as further detailed elsewhere herein, the NHE-Z compound may be polyvalent (i.e., an oligomer, dendrimer or polymer moiety), wherein Z may be referred to in this embodiment generally as a “Core” moiety, and the NHE-inhibiting small molecule may be bound, directly or indirectly (by means of a linking moiety) thereto, the polyvalent compounds having for example one of the following general structures of Formula (VIII), (IX) and (X): NHE-Core  (VIII) [NHEEZ  (IX) CoreL-NHE)n  (X) wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and E and n are both an integer of 2 or more. In various alternative embodiments, however, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-inhibiting small molecules, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (XI): NHEL-NHEmL-NHE  (XI) wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-inhibiting small molecule is modified (e.g., increased) by having a series of NHE-inhibiting small molecules linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In these or yet additional alternative embodiments, the polyvalent compound may be in dimeric, oligomeric or polymeric form, wherein for example Z or the Core is a backbone to which is bound (by means of a linker, for example) multiple NHE-inhibiting small molecules. Such compounds may have, for example, the structures of Formulas (XIIA) or (XIIB): wherein: L is a linking moiety; NHE is a NHE-inhibiting small molecule, each NHE as described above and in further detail hereinafter; and n is a non-zero integer (i.e., an integer of 1 or more). The Core moiety has one or more attachment sites to which NHE-inhibiting small molecules are bound, and preferably covalently bound, via a bond or linker, L. The Core moiety may, in general, be anything that serves to enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable (e.g., an atom, a small molecule, etc.), but in one or more preferred embodiments is an oligomer, a dendrimer or a polymer moiety, in each case having more than one site of attachment for L (and thus for the NHE-inhibiting small molecule). The combination of the Core and NHE-inhibiting small molecule (i.e., the “NHE-Z” molecule) may have physicochemical properties that enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable. In this regard it is to be noted that the repeat unit in Formulas (XIIA) and (XIIB) generally encompasses repeating units of various polymeric embodiments, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-inhibiting small molecule by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-inhibiting moieties therein. In this regard it is to be still further noted that, as further illustrated elsewhere herein, certain polyvalent NHE-inhibiting compounds of the present disclosure show unexpectedly higher potency, as measured by inhibition assays (as further detailed elsewhere herein) and characterized by the concentration of said NHE inhibitor resulting in 50% inhibition (i.e., the IC50 values). It has been observed that certain multivalent structures, represented generally by Formula (X), above, have an IC50 value several fold lower in magnitude than the individual NHE, or L-NHE, structure (which may be referred to as the “monomer” or monovalent form). For example, in one embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 5 time lower (i.e. potency about 5 time higher) than the monomer (or monovalent) form (e.g. Examples 46 and 49). In another embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 10 time lower (i.e. potency about 10 time higher) than the monomer form (e.g. Examples 87 and 88). The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound corresponding to the structure of Formula (X) are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each “NHE” moiety (i.e., the NHE small molecule) in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medicai Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the Core-(L-NHE)n molecule, allowing an increase in distance between the NHE inhibitors while minimally increasing rotational degrees of freedom. In an alternative embodiment (e.g., Formula (XI), wherein m=0), the structure may be for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, n and m may both be within the range of from about 1 to about 50, or from about 1 to about 20. The structures provided above are illustrations of one embodiment of compounds utilized for administration wherein absorption is limited (i.e., the compound is rendered substantially impermeable or substantially systemically non-bioavailable) by means of increasing the molecular weight of the NHE-inhibiting small molecule. In an alternative approach, as noted elsewhere herein, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by means of altering, and more specifically increasing, the topological polar surface area, as further illustrated by the following structures, wherein a substituted aromatic ring is bound to the “scaffold” of the NHE-inhibition small molecule. The selection of ionizable groups such as phosphonates, sulfonates, guanidines and the like may be particularly advantageous at preventing paracellular permeability. Carbohydates are also advantageous, and though uncharged, significantly increase tPSA while minimally increasing molecular weight. It is to be noted, within one or more of the various embodiments illustrated herein, NHE-inhibiting small molecules suitable for use (i.e., suitable for modification or functionalization, in order to render them substantially impermeable or substantially systemically non-bioavailable) may, in particular, be selected independently from one or more of the small molecules described as benzoylguandines, heteroaroylguandines, “spacer-stretched” aroylguandines, non-acyl guanidines and acylguanidine isosteres, above, and as discussed in further detail hereinafter and/or to the small molecules detailed in, for example: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,887,870; 6,737,423; 7,326,705; 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Again, it is to be noted that when it is said that NHE-inhibiting small molecule is selected independently, it is intended that, for example, the oligomeric structures represented in Formulas (X) and (XI) above can include different structures of the NHE small molecules, within the same oligomer or polymer. In other words, each “NHE” within a given polyvalent embodiment may independently be the same or different than other “NHE” moieties within the same polyvalent embodiment. In designing and making the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a small molecule NHE inhibitor, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE inhibitor small molecule and then testing these adducts to determine whether the modified inhibitor still retains desired biological properties (e.g., NHE inhibition). An understanding of the SAR of the inhibitor also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. For example, the SAR of an NHE inhibitor series may show that installation of an N-alkylated piperazine contributes positively to biochemical activity (increased potency) or pharmaceutical properties (increased solubility); the piperazine moiety may then be utilized as the point of attachment for the desired core or linker via N-alkylation. In this fashion, the resulting compound thereby retains the favorable biochemical or pharmaceutical properties of the parent small molecule. In another example, the SAR of an NHE inhibitor series might indicate that a hydrogen bond donor is important for activity or selectivity. Core or linker moieties may then be designed to ensure this H-bond donor is retained. These cores and/or linkers may be further designed to attenuate or potentiate the pKa of the H-bond donor, potentially allowing improvements in potency and selectivity. In another scenario, an aromatic ring in an inhibitor could be an important pharmacophore, interacting with the biological target via a pi-stacking effect or pi-cation interaction. Linker and core motifs may be similarly designed to be isosteric or otherwise synergize with the aromatic features of the small molecule. Accordingly, once the structure-activity relationships within a molecular series are understood, the molecules of interest can be broken down into key pharmacophores which act as essential molecular recognition elements. When considering the installation of a core or linker motif, said motifs can be designed to exploit this SAR and may be installed to be isosteric and isoelectronic with these motifs, resulting in compounds that retain biological activity but have significantly reduced permeability. Another way the SAR of an inhibitor series can be exploited in the installation of core or linker groups is to understand which regions of the molecule are insensitive to structural changes. For example, X-ray co-crystal structures of protein-bound inhibitors can reveal those portions of the inhibitor that are solvent exposed and not involved in productive interactions with the target. Such regions can also be identified empirically when chemical modifications in these regions result in a “flat SAR” (i.e., modifications appear to have minimal contribution to biochemical activity). Those skilled in the art have frequently exploited such regions to engineer in pharmaceutical properties into a compound, for example, by installing motifs that may improve solubility or potentiate ADME properties. In the same fashion, such regions are expected to be advantageous places to install core or linker groups to create compounds as described in the instant disclosure. These regions are also expected to be sites for adding, for example, highly polar functionality such as carboxylic acids, phosphonic acids, sulfonic acids, and the like in order to greatly increase tPSA. Another aspect to be considered in the design of cores and linkers displaying an NHE inhibitor is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-inhibiting compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. Specific examples of NHE-inhibiting small molecules modified consistent with the principles detailed above are illustrated below. These moieties display functional groups that facilitate their appendage to “Z” (e.g., a core group, Core, or linking group, L). These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. Small molecule NHE inhibitors may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE inhibitor may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3] cycloaddtion. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of an NHE inhibiting small molecule to a desired core or linker. Exemplary functionalized derivatives of NHEs include but are not limited to the following: wherein the variables in the above-noted structures (e.g., R, etc.) are as defined in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Patent Application No. 2005/0020612 and U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the Examples and the following: The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-inhibiting small molecule is linked to a core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the inhibitors), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either an NHE inhibitor or a linker moiety displaying an NHE inhibitor, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety is a dendrimer, defined as a repeatedly branded molecule (see, J. M. J. Frėchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, NY, 2001). In this approach, the NHE inhibiting small molecule is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE inhibitor group is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Frechet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as comonomers. For example, specific monomers or comonomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE inhibitor small molecule, NHE, is attached or otherwise a part of is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE inhibiting small molecule, NHE, is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures may be designed and constructed as described herein: It is to be further noted that the repeat moiety in Formulas (XIIA) or (XIIB) generally encompasses repeating units of polymers and copolymers produced by methods referred to herein above. It is to be noted that the various properties of the oligomers and polymers that form the core moiety as disclosed herein above may be optimized for a given use or application using experimental means and principles generally known in the art. For example, the overall molecular weight of the compounds or structures presented herein above may be selected so as to achieve non-absorbability, inhibition persistence and/or potency. Additionally, with respect to those polymeric embodiments that encompass or include the compounds generally represented by the structure of Formula (I) herein, and/or those disclosed for example in the many patents and patent applications cited herein (see, e.g., U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,887,870; 6,737,423; 7,326,705; 5,582,4691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes), such as those wherein these compounds or structures are pendants off of a polymeric backbone or chain, the composition of the polymeric backbone or chain, as well as the overall size or molecular weight of the polymer, and/or the number of pendant molecules present thereon, may be selected according to various principles known in the art in view of the intended application or use. With respect to the polymer composition of the NHE inhibiting compound, it is to be noted that a number of polymers can be used including, for example, synthetic and/or naturally occurring aliphatic, alicyclic, and/or aromatic polymers. In preferred embodiments, the polymer moiety is stable under physiological conditions of the GI tract. By “stable” it is meant that the polymer moiety does not degrade or does not degrade significantly or essentially does not degrade under the physiological conditions of the GI tract. For instance, at least about 90%, preferably at least about 95%, and more preferably at least about 98%, and even more preferably at least about 99% of the polymer moiety remains un-degraded or intact after at least about 5 hours, at least about 12 hours, at least about 18 hours, at least about 24 hours, or at least about 48 hours of residence in a gastrointestinal tract. Stability in a gastrointestinal tract can be evaluated using gastrointestinal mimics, e.g., gastric mimics or intestinal mimics of the small intestine, which approximately model the physiological conditions at one or more locations therein. Polymer moieties detailed herein for use as the core moiety can be hydrophobic, hydrophilic, amphiphilic, uncharged or non-ionic, negatively or positively charged, or a combination thereof. Additionally, the polymer architecture of the polymer moiety can be linear, grafted, comb, block, star and/or dendritic, preferably selected to produce desired solubility and/or stability characteristics as described above. Additionally or alternatively, modifications may be made to NHE-inhibiting small molecules that increase tPSA, thus contributing to the impermeability of the resulting compounds. Such modifications preferably include addition of di-anions, such as phosphonates, malonates, sulfonates and the like, and polyols such as carbohydrates and the like. Exemplary derivatives of NHEs with increased tPSA include but are not limited to the following: B. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is polyvalent; that is, the molecule contains two or more moieties that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 is selected from H, C1-7 alkyl or L, where L is as described above; R6 is absent or selected from H and C1-7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are optionally linked to the ring Ar1 by a heterocyclic linker, and further are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 and R12 are independently selected from H or L, where L is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R3 is selected from H or L, where L is as described above; R13 is selected from substituted or unsubstituted C1-8 alkyl; R2 and R12 are independently selected from H or L, wherein L is as described above; R10 and R11, when present, are independently selected from H and C1-7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In one particular embodiment, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further particular embodiments of the above embodiment, L is a polyalkylene glycol linker, such as a polyethylene glycol linker. In further particular embodiments of the above embodiment, n is 2. In further particular embodiments of the above embodiment, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further particular embodiments of the above embodiment, the Core is selected from the group consisting of: III. Terminology, Physical and Performance Properties A. Terminology Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-C12 alkyl), preferably one to eight carbon atoms (C1-8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbomyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is aso meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure (which includes the NHE-inhibitor small molecule), remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.; stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelium layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). B. Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacodynamics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable NHE inhibitor compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable NHE inhibitor compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; and/or (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0). In view of the foregoing, and as previously noted herein, essentially any known NHE inhibitor small molecule (described herein and/or in the art) can be used in designing a substantially systemically non-bioavailable NHE inhibitor molecular structure, in accordance with the present disclosure. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in A2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is now available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 2, below): TABLE 2 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazime 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some preferred embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. (As previously noted above, see for example U.S. Pat. No. 6,737,423, Example 31 for a description of the Caco-2 Model, which is incorporated herein by reference). A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa, may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, n° AN1725EN00, and n° AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, NHE inhibitor small molecules are modified as described above to hinder the net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise an NHE-inhibiting small molecule linked, coupled or otherwise attached to a moiety Z, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the NHE-inhibiting small molecule is coupled to a multimer or polymer portion or moiety, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. For example, an NHE-inhibiting small molecule may be linked to at least one repeat unit of a polymer portion or moiety according, for example, to the structure of Formula (XIIA) or Formula (XIIB), as illustrated herein. In these or other particular embodiments, the NHE-inhibiting small molecule is modified as described herein to substantially hinder its net absorption through a layer of gut epithelial cells and may comprise, for example, a NHE-inhibiting compound linked, coupled or otherwise attached to a substantially impermeable or substantially systemically non-bioavailable “Core” moiety, as described above. C. Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with the epithelial cell (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., sodium transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the NHE-inhibiting compounds to the NHE protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of sodium transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing NHE transporters are split in different vials and treated with a NHE-inhibiting compound and sodium solution to measure the rate of sodium uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and sodium uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of Na is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for sodium balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical NHE transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing NHE antiport inhibitors with several NHE inhibiting moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, Oct. 5(4), pp. 312-8.) D. GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds sustain the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to enzymatic metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. E. Sodium and/or Fluid Output It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may act to increase the patient's daily fecal output of sodium by at least about 20, about 30 mmol, about 40 mmol, about 50 mmol, about 60 mmol, about 70 mmol, about 80 mmol, about 90 mmol, about 100 mmol, about 125 mmol, about 150 mmol or more, the increase being for example within the range of from about 20 to about 150 mmol/day, or from about 25 to about 100 mmol/day, or from about 30 to about 60 mmol/day Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patent in need thereof, may act to increase the patient's daily fluid output by at least about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml or more, the increase being for example within the range of from about 100 to about 1000 ml/day, or from about 150 to about 750 ml/day, or from about 200 to about 500 ml/day (assuming isotonic fluid). F. Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 1 μM to about 10 μM, or about 2.5 μM to about 7.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the NHE-Z inhibiting compounds (monovalent or divalent) as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as Cmax, is lower than the NHE inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NHE-mediated Na/H antiport activity in a cell based assay. IV. Pharmaceutical Compositions and Methods of Treatment A. Compositions and Methods 1. Fluid Retention and/or Salt Overload Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various disorders associated with fluid retention and/or salt overload in the gastrointestinal tract (e.g., hypertension, heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention) comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” or “mammal” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment may be suffering from hypertension; from salt-sensitive hypertension which may result from dietary salt intake; from a risk of a cardiovascular disorder (e.g., myocardial infarction, congestive heart failure and the like) resulting from hypertension; from heart failure (e.g., congestive heart failure) resulting in fluid or salt overload; from chronic kidney disease resulting in fluid or salt overload, from end stage renal disease resulting in fluid or salt overload; from liver disease resulting in fluid or salt overload; from peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention; or from edema resulting from congestive heart failure or end stage renal disease. In various embodiments, a subject in need of treatment typically shows signs of hypervolemia resulting from salt and fluid retention that are common features of congestive heart failure, renal failure, liver cirrhosis, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. Fluid retention and salt retention manifest themselves by the occurrence of shortness of breath, edema, ascites or interdialytic weight gain. Other examples of subjects that would benefit from the treatment are those suffering from congestive heart failure and hypertensive patients and, particularly, those who are resistant to treatment with diuretics, i.e., patients for whom very few therapeutic options are available. A subject “in need of treatment” also includes a subject with hypertension, salt-sensitive blood pressure and subjects with systolic/diastolic blood pressure greater than about 130-139/85-89 mm Hg. In yet other embodiments, the constipation is associated with gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. Administration of NHE inhibitors, with or without administration of fluid-absorbing polymers, may be beneficial for patients put on “non-added salt” dietary regimen (i.e., 60-100 mmol of Na per day), to liberalize their diet while keeping a neutral or slightly negative sodium balance (i.e., the overall uptake of salt would be equal of less than the secreted salt). In that context, “liberalize their diet” means that patients treated may add salt to their meals to make the meals more palatable, or/and diversify their diet with salt-containing foods, thus maintaining a good nutritional status while improving their quality of life. The treatment methods described herein may also help patients with edema associated with chemotherapy, pre-menstrual fluid overload and preeclampsia (pregnancy-induced hypertension). Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for treating hypertension, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. The method may be for reducing fluid overload associated with heart failure (in particular, congestive heart failure), the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with end stage renal disease, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. The method may be for reducing fluid overload associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. 2. Gastrointestinal Tract Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, comprises, in general, any small molecule, which may be monovalent or polyvalent, that is effective or active as an NHE-inhibitor and that is substantially active in the GI tract, in particular, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment is suffering from a gastrointestinal tract disorder; the patient is suffering from a disorder selected from the group consisting of: a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, and the like. In various preferred embodiments, the constipation to be treated is: associated with the use of a therapeutic agent; associated with a neuropathic disorder; post-surgical constipation (postoperative ileus); associated with a gastrointestinal tract disorder; idiopathic (functional constipation or slow transit constipation); associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). Constipation may also be the result of surgery (postoperative ileus) or due the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for increasing gastrointestinal motility in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for treating a gastrointestinal tract disorder, a gastrointestinal motility disorder, irritable bowel syndrome, chronic calcium-induced constipation in osteoporotic patients, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, Crohn's disease, ulcerative colitis, inflammatory bowel disease, the method comprising administering an antagonist of the intestinal NHE, and more specifically a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition, either orally or by rectal suppository. Additionally, or alternatively, the method may be for treating or reducing pain, including visceral pain, pain associated with a gastrointestinal tract disorder or pain associated with some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. Additionally, or alternatively, the method may be for treating inflammation, including inflammation of the gastrointestinal tract, e.g., inflammation associated with a gastrointestinal tract disorder or infection or some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. B. Combination Therapies 1. Fluid Retention and/or Salt Overload Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with a diuretic (i.e., High Ceiling Loop Diuretics, Benzothiadiazide Diuretics, Potassium Sparing Diuretics, Osmotic Diuretics), cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, peroxisome proliferator-activated receptor (PPAR) gamma agonist agent or compound or with a fluid-absorbing polymer as more fully described below. The agent can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially systemically non-bioavailable NHE-inhibiting compound described herein and a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with a diuretic. Among the useful analgesic agents are, for example: High Ceiling Loop Diuretics [Furosemide (Lasix), Ethacrynic Acid (Edecrin), Bumetanide (Bumex)], Benzothiadiazide Diuretics [Hydrochlorothiazide (Hydrodiuril), Chlorothiazide (Diuril), Clorthalidone (Hygroton), Benzthiazide (Aguapres), Bendroflumethiazide (Naturetin), Methyclothiazide (Aguatensen), Polythiazide (Renese), Indapamide (Lozol), Cyclothiazide (Anhydron), Hydroflumethiazide (Diucardin), Metolazone (Diulo), Quinethazone (Hydromox), Trichlormethiazide (Naqua)], Potassium Sparing Diuretics [Spironolactone (Aldactone), Triamterene (Dyrenium), Amiloride (Midamor)], and Osmotic Diuretics [Mannitol (Osmitrol)]. Diuretic agents in the various classes are known and described in the literature. Cardiac glycosides (cardenolides) or other digitalis preparations can be administered with the compounds of the disclosure in co-therapy. Among the useful cardiac glycosides are, for example: Digitoxin (Crystodigin), Digoxin (Lanoxin) or Deslanoside (Cedilanid-D). Cardiac glycosides in the various classes are described in the literature. Angiotensin Converting Enzyme Inhibitors (ACE Inhibitors) can be administered with the compounds of the disclosure in co-therapy. Among the useful ACE inhibitors are, for example: Captopril (Capoten), Enalapril (Vasotec), Lisinopril (Prinivil). ACE inhibitors in the various classes are described in the literature. Angiotensin-2 Receptor Antagonists (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's) can be administered with the compounds of the disclosure in co-therapy. Among the useful Angiotensin-2 Receptor Antagonists are, for example: Candesartan (Atacand), Eprosartan (Teveten), Irbesartan (Avapro), Losartan (Cozaar), Telmisartan (Micardis), Valsartan (Diovan). Angiotensin-2 Receptor Antagonists in the various classes are described in the literature. Calcium channel blockers such as Amlodipine (Norvasc, Lotrel), Bepridil (Vascor), Diltiazem (Cardizem, Tiazac), Felodipine (Plendil), Nifedipine (Adalat, Procardia), Nimodipine (Nimotop), Nisoldipine (Sular), Verapamil (Calan, Isoptin, Verelan) and related compounds described in, for example, EP 625162B1, U.S. Pat. Nos. 5,364,842, 5,587,454, 5,824,645, 5,859,186, 5,994,305, 6,087,091, 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, 5,891,849, 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with the compounds of the disclosure. Beta blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful beta blockers are, for example: Acebutolol (Sectral), Atenolol (Tenormin), Betaxolol (Kerlone), Bisoprolol/hydrochlorothiazide (Ziac), Bisoprolol (Zebeta), Carteolol (Cartrol), Metoprolol (Lopressor, Toprol XL), Nadolol (Corgard), Propranolol (Inderal), Sotalol (Betapace), Timolol (Blocadren). Beta blockers in the various classes are described in the literature. PPAR gamma agonists such as thiazolidinediones (also called glitazones) can be administered with the compounds of the disclosure in co-therapy. Among the useful PPAR agonists are, for example: rosiglitazone (Avandia), pioglitazone (Actos) and rivoglitazone. Aldosterone antagonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Aldosterone antagonists are, for example: eplerenone, spironolactone, and canrenone. Alpha blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful Alpha blockers are, for example: Doxazosin mesylate (Cardura), Prazosin hydrochloride (Minipress). Prazosin and polythiazide (Minizide), Terazosin hydrochloride (Hytrin). Alpha blockers in the various classes are described in the literature. Central alpha agonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Central alpha agonists are, for example: Clonidine hydrochloride (Catapres), Clonidine hydrochloride and chlorthalidone (Clorpres, Combipres), Guanabenz Acetate (Wytensin), Guanfacine hydrochloride (Tenex), Methyldopa (Aldomet), Methyldopa and chlorothiazide (Aldochlor), Methyldopa and hydrochlorothiazide (Aldoril). Central alpha agonists in the various classes are described in the literature. Vasodilators can be administered with the compounds of the disclosure in co-therapy. Among the useful vasodilators are, for example: Isosorbide dinitrate (Isordil), Nesiritide (Natrecor), Hydralazine (Apresoline), Nitrates/nitroglycerin, Minoxidil (Loniten). Vasodilators in the various classes are described in the literature. Blood thinners can be administered with the compounds of the disclosure in co-therapy. Among the useful blood thinners are, for example: Warfarin (Coumadin) and Heparin. Blood thinners in the various classes are described in the literature. Anti-platelet agents can be administered with the compounds of the disclosure in co-therapy. Among the useful anti-platelet agents are, for example: Cyclooxygenase inhibitors (Aspirin), Adenosine diphosphate (ADP) receptor inhibitors [Clopidogrel (Plavix), Ticlopidine (Ticlid)], Phosphodiesterase inhibitors [Cilostazol (Pletal)], Glycoprotein IIB/IIIA inhibitors [Abciximab (ReoPro), Eptifibatide (Integrilin), Tirofiban (Aggrastat), Defibrotide], Adenosine reuptake inhibitors [Dipyridamole (Persantine)]. Anti-platelet agents in the various classes are described in the literature. Lipid-lowering agents can be administered with the compounds of the disclosure in co-therapy. Among the useful lipid-lowering agents are, for example: Statins (HMG CoA reductase inhibitors), [Atorvastatin (Lipitor), Fluvastatin (Lescol), Lovastatin (Mevacor, Altoprev), Pravastatin (Pravachol), Rosuvastatin Calcium (Crestor), Simvastatin (Zocor)], Selective cholesterol absorption inhibitors [ezetimibe (Zetia)], Resins (bile acid sequestrant or bile acid-binding drugs) [Cholestyramine (Questran, Questran Light, Prevalite, Locholest, Locholest Light), Colestipol (Colestid), Colesevelam Hcl (WelChol)], Fibrates (Fibric acid derivatives) [Gemfibrozil (Lopid), Fenofibrate (Antara, Lofibra, Tricor, and Triglide), Clofibrate (Atromid-S)], Niacin (Nicotinic acid). Lipid-lowering agents in the various classes are described in the literature. The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, 5,489,670, 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Other agents include natriuretic peptides such as nesiritide, a recombinant form of brain-natriuretic peptide (BNP) and an atrial-natriuretic peptide (ANP). Vasopressin receptor antagonists such as tolvaptan and conivaptan may be co-administered as well as phosphate binders such as renagel, renleva, phoslo and fosrenol. Other agents include phosphate transport inhibitors (as described in U.S. Pat. Nos. 4,806,532; 6,355,823; 6,787,528; 7,119,120; 7,109,184; U.S. Pat. Pub. No. 2007/021509; 2006/0280719; 2006/0217426; International Pat. Pubs. WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, WO2003/080630, WO 2004/085448, WO 2004/085382; European Pat. Nos. 1465638 and 1485391; and JP Patent No. 2007131532, or phosphate transport antagonists such as Nicotinamide. 2. Gastrointestinal Tract Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with an analgesic peptide or compound. The analgesic peptide or compound can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound described herein and an analgesic peptide or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic peptide. The analgesic agent can optionally be covalently attached to a compound described herein. Among the useful analgesic agents are, for example: Ca channel blockers, 5HT3 agonists (e.g., MCK-733), 5HT4 agonists (e.g., tegaserod, prucalopride), and 5HT1 receptor antagonists, opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSR1), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Opioid receptor antagonists and agonists can be administered with the compounds of the disclosure in co-therapy or linked to the compound of the disclosure, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of opioid-induced constipaption (OIC). It can be useful to formulate opioid antagonists of this type in a delayed or sustained release formulation, such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in U.S. Pat. No. 6,734,188 (WO 01/32180 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine) is an agonist of the μ- and γ-opioid receptors and is thought to be useful for increasing intestinal motility (Eur. J. Pharm., 219:445, 1992), and this peptide can be used in conjunction with the compounds of the disclosure. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal peptide, gastrin and glucagons. K-opioid receptor agonists such as fedotozine, ketocyclazocine, and compounds described in US 2005/0176746 (WO 03/097051 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. In addition, μ-opioid receptor agonists, such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH2; disclosed in WO 01/019849 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of met-enkephalins to elicit an analgesic effect (J. Biol. Chem. 262:8165, 1987). Kyotorphin can be used with or linked to the compounds of the disclosure. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the compounds of the disclosure. Conotoxin peptides represent a large class of analgesic peptides that act at voltage gated Ca channels, NMDA receptors or nicotinic receptors. These peptides can be used with or linked to the compounds of the disclosure. Peptide analogs of thymulin (U.S. Pat. No. 7,309,690 or FR 2830451, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (U.S. Pat. No. 5,130,474 or WO 88/05774, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. Other useful analgesic agents include 5-HT4 agonists such as tegaserod/zelnorm and lirexapride. Such agonists are described in: EP1321142 A1, WO 03/053432A1, EP 505322 A1, EP 505322 B1, EP 507672 A1, EP 507672 B1, U.S. Pat. Nos. 5,510,353 and 5,273,983, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Calcium channel blockers such as ziconotide and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, 5,587,454, 5,824,645, 5,859,186, 5,994,305, 6,087,091, 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. Nos. 5,795,864, 5,891,849, 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Various antagonists of the NK-1, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003 Drugs 6:758) can be can be used with or linked to the compounds of the disclosure. NK1 receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-14033 and related compounds described in, for example, EP 873753 A1, U.S. 20010006972 A1, U.S. 20030109417 A1, WO 01/52844 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the compounds of the disclosure. NK3 receptor antagonists such as osanetant (Sanofi-Synthelabo), talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 A1, WO 97/21680 A1, U.S. Pat. No. 6,277,862, WO 98/11090, WO 95/28418, WO 97/19927, and Boden et al. (J Med. Chem. 39:1664-75, 1996), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Norepinephrine-serotonin reuptake inhibitors such as milnacipran and related compounds described in WO 03/077897 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. The compounds can be used in combination therapy with a phosphodiesterase inhibitor (examples of such inhibitors can be found in U.S. Pat. No. 6,333,354, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes). The compounds can be used alone or in combination therapy to treat disorders associated with chloride or bicarbonate secretion that may lead to constipation, e.g., Cystic Fibrosis. The compounds can also or alternatively be used alone or in combination therapy to treat calcium-induced constipation effects. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of constipation effects associated therewith. The compounds of the current disclosure have can be used in combination with an opioid. Opioid use is mainly directed to pain relief, with a notable side-effect being GI disorder, e.g. constipation. These agents work by binding to opioid receptors, which are found principally in the central nervous system and the gastrointestinal tract. The receptors in these two organ systems mediate both the beneficial effects, and the undesirable side effects (e.g. decrease of gut motility and ensuing constipation). Opioids suitable for use typically belong to one of the following exemplary classes: natural opiates, alkaloids contained in the resin of the opium poppy including morphine, codeine and thebaine; semi-synthetic opiates, created from the natural opioids, such as hydromorphone, hydrocodone, oxycodone, oxymorphone, desomorphine, diacetylmorphine (Heroin), nicomorphine, dipropanoylmorphine, benzylmorphine and ethylmorphine; fully synthetic opioids, such as fentanyl, pethidine, methadone, tramadol and propoxyphene; endogenous opioid peptides, produced naturally in the body, such as endorphins, enkephalins, dynorphins, and endomorphins. The compound of the disclosure can be used alone or in combination therapy to alleviate GI disorders encountered with patients with renal failure (stage 3-5). Constipation is the second most reported symptom in that category of patients (Murtagh et al., 2006; Murtagh et al., 2007a; Murtagh et al., 2007b). Without being held by theory, it is believed that kidney failure is accompanied by a stimulation of intestinal Na re-absorption (Hatch and Freel, 2008). A total or partial inhibition of such transport by administration of the compounds of the disclosure can have a therapeutic benefit to improve GI transit and relieve abdominal pain. In that context, the compounds of the disclosure can be used in combination with Angiotensin-modulating agents: Angiotensin Converting Enzyme (ACE) inhibitors (e.g. captopril, enalopril, lisinopril, ramipril) and Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's); diuretics such as loop diuretics (e.g. furosemide, bumetanide), Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) and potassium-sparing diuretics: amiloride; beta blockers: bisoprolol, carvedilol, nebivolol and extended-release metoprolol; positive inotropes: Digoxin, dobutamine; phosphodiesterase inhibitors such as milrinone; alternative vasodilators: combination of isosorbide dinitrate/hydralazine; aldosterone receptor antagonists: spironolactone, eplerenone; natriuretic peptides: Nesiritide, a recombinant form of brain-natriuretic peptide (BNP), atrial-natriuretic peptide (ANP); vasopressin receptor antagonists: Tolvaptan and conivaptan; phosphate binder (Renagel, Renleva, Phoslo, Fosrenol); phosphate transport inhibitor such as those described in U.S. Pat. No. 4,806,532, 6,355,823, 6,787,528, WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, U.S. Pat. No. 7,119,120, EP 1465638, US Appl. 2007/021509, WO 2003/080630, U.S. Pat. No. 7,109,184, US Appl. 2006/0280719, EP 1485391, WO 2004/085448, WO 2004/085382, US Appl. 2006/0217426, JP 2007/131532, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, or phosphate transport antagonist (Nicotinamide). The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, 5,489,670, 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with laxative agents such as bulk-producing agents, e.g. psyllium husk (Metamucil), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant such as docusate (Colace, Diocto); hydrating agents (osmotics), such as dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate; hyperosmotic agents: glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG). The compounds of the disclosure can be also be used in combination with agents that stimulate gut peristalsis, such as Bisacodyl tablets (Dulcolax), Casanthranol, Senna and Aloin, from Aloe Vera. In one embodiment, the compounds of the disclosure accelerate gastrointestinal transit, and more specifically in the colon, without substantially affecting the residence time in the stomach, i.e. with no significant effect on the gastric emptying time. Even more specifically the compounds of the invention restore colonic transit without the side-effects associated with delayed gastric emptying time, such as nausea. The GI and colonic transit are measured in patients using methods reported in, for example: Burton D D, Camilleri M, Mullan B P, et al., J. Nucl. Med., 1997; 38:1807-1810; Cremonini F, Mullan B P, Camilleri M, et al., Aliment. Pharmacol. Ther., 2002; 16:1781-1790; Camilleri M, Zinsmeister A R, Gastroenterology, 1992; 103:36-42; Bouras E P, Camilleri M, Burton D D, et al., Gastroenterology, 2001; 120:354-360; Coulie B, Szarka L A, Camilleri M, et al., Gastroenterology, 2000; 119:41-50; Prather C M, Camilleri M, Zinsmeister A R, et al., Gastroenterology, 2000; 118:463-468; and, Camilleri M, McKinzie S, Fox J, et al., Clin. Gastroenterol. Hepatol., 2004; 2:895-904. C. Polymer Combination Therapy The NHE-inhibiting compounds described therein may be administered to patients in need thereof in combination with a fluid-absorbing polymer (“FAP”). The intestinal fluid-absorbing polymers useful for administration in accordance with embodiments of the present disclosure may be administered orally in combination with non-absorbable NHE-inhibitors (e.g., a NHE-3 inhibitor) to absorb the intestinal fluid resulting from the action of the sodium transport inhibitors. Such polymers swell in the colon and bind fluid to impart a consistency to stools that is acceptable for patients. The fluid-absorbing polymers described herein may be selected from polymers with laxative properties, also referred to as bulking agents (i.e., polymers that retain some of the intestinal fluid in the stools and impart a higher degree of hydration in the stools and facilitate transit). The fluid-absorbing polymers may also be optionally selected from pharmaceutical polymers with anti-diarrhea function, i.e., agents that maintain some consistency to the stools to avoid watery stools and potential incontinence. The ability of the polymer to maintain a certain consistency in stools with a high content of fluid can be characterized by its “water holding power.” Wenzl et al. (in Determinants of decreased fecal consistency in patients with diarrhea; Gastroenterology, v. 108, no. 6, p. 1729-1738 (1995)) studied the determinants that control the consistency of stools of patients with diarrhea and found that they were narrowly correlated with the water holding power of the feces. The water holding power is determined as the water content of given stools to achieve a certain level of consistency (corresponding to “formed stool” consistency) after the reconstituted fecal matter has been centrifuged at a certain g number. Without being held to any particular theory, has been found that the water holding power of the feces is increased by ingestion of certain polymers with a given fluid absorbing profile. More specifically, it has been found that the water-holding power of said polymers is correlated with their fluid absorbancy under load (AUL); even more specifically the AUL of said polymers is greater than 15 g of isotonic fluid/g of polymer under a static pressure of 5 kPa, even more preferably under a static pressure of 10 kPa. The FAP utilized in the treatment method of the present disclosure preferably has a AUL of at least about 10 g, about 15 g, about 20 g, about 25 g or more of isotonic fluid/g of polymer under a static pressure of about 5 kPa, and preferably about 10 kPA, and may have a fluid absorbency of about 20 g, about 25 g or more, as determined using means generally known in the art. Additionally or alternatively, the FAP may impart a minimum consistency to fecal matter and, in some embodiments, a consistency graded as “soft” in the scale described in the test method below, when fecal non water-soluble solid fraction is from 10% to 20%, and the polymer concentration is from 1% to 5% of the weight of stool. The determination of the fecal non water-soluble solid fraction of stools is described in Wenz et al. The polymer may be uncharged or may have a low charge density (e.g., 1-2 meq/gr). Alternatively or in addition, the polymer may be delivered directly to the colon using known delivery methods to avoid premature swelling in the esophagus. In one embodiment of the present disclosure, the FAP is a “superabsorbent” polymer (i.e., a lightly crosslinked, partially neutralized polyelectrolyte hydrogel similar to those used in baby diapers, feminine hygiene products, agriculture additives, etc.). Superabsorbent polymers may be made of a lightly crosslinked polyacrylate hydrogel. The swelling of the polymer is driven essentially by two effects: (i) the hydration of the polymer backbone and entropy of mixing and (ii) the osmotic pressure arising from the counter-ions (e.g., Na ions) within the gel. The gel swelling ratio at equilibrium is controlled by the elastic resistance inherent to the polymer network and by the chemical potential of the bathing fluid, i.e., the gel will de-swell at higher salt concentration because the background electrolyte will reduce the apparent charge density on the polymer and will reduce the difference of free ion concentrations inside and outside the gel that drives osmotic pressure. The swelling ratio SR (g of fluid per g of dry polymer and synonymously “fluid absorbency”) may vary from 1000 in pure water down to 30 in 0.9% NaCl solution representative of physiological saline (i.e., isotonic). SR may increase with the degree of neutralization and may decrease with the crosslinking density. SR generally decreases with an applied load with the extent of reduction dependent on the strength of the gel, i.e., the crosslinking density. The salt concentration within the gel, as compared with the external solution, may be lower as a result of the Donnan effect due to the internal electrical potential. The fluid-absorbing polymer may include crosslinked polyacrylates which are fluid absorbent such as those prepared from α,β-ethylenically unsaturated monomers, such as monocarboxylic acids, polycarboxylic acids, acrylamide and their derivatives. These polymers may have repeating units of acrylic acid, methacrylic acid, metal salts of acrylic acid, acrylamide, and acrylamide derivatives (such as 2-acrylamido-2-methylpropanesulfonic acid) along with various combinations of such repeating units as copolymers. Such derivatives include acrylic polymers which include hydrophilic grafts of polymers such as polyvinyl alcohol. Examples of suitable polymers and processes, including gel polymerization processes, for preparing such polymers are disclosed in U.S. Pat. Nos. 3,997,484; 3,926,891; 3,935,099; 4,090,013; 4,093,776; 4,340,706; 4,446,261; 4,683,274; 4,459,396; 4,708,997; 4,076,663; 4,190,562; 4,286,082; 4,857,610; 4,985,518; 5,145,906; 5,629,377 and 6,908,609 which are incorporated herein by reference for all relevant and consistent purposes (in addition, see Buchholz, F. L. and Graham, A. T., “Modern Superabsorbent Polymer Technology,” John Wiley & Sons (1998), which is also incorporated herein by reference for all relevant and consistent purposes). A class of preferred polymers for treatment in combination with NHE-inhibitors is polyelectrolytes. The degree of crosslinking can vary greatly depending upon the specific polymer material; however, in most applications the subject superabsorbent polymers are only lightly crosslinked, that is, the degree of crosslinking is such that the polymer can still absorb over 10 times its weight in physiological saline (i.e., 0.9% saline). For example, such polymers typically include less than about 0.2 mole % crosslinking agent. In some embodiments, the FAP's utilized for treatment are Calcium Carbophil (Registry Number: 9003-97-8, also referred as Carbopol EX-83), and Carpopol 934P. In some embodiments, the fluid-absorbing polymer is prepared by high internal phase emulsion (“HIPE”) processes. The HIPE process leads to polymeric foam slabs with a very large porous fraction of interconnected large voids (about 100 microns) (i.e., open-cell structures). This technique produces flexible and collapsible foam materials with exceptional suction pressure and fluid absorbency (see U.S. Pat. Nos. 5,650,222; 5,763,499 and 6,107,356, which are incorporated herein for all relevant and consistent purposes). The polymer is hydrophobic and, therefore, the surface should be modified so as to be wetted by the aqueous fluid. This is accomplished by post-treating the foam material by a surfactant in order to reduce the interfacial tension. These materials are claimed to be less compliant to loads, i.e., less prone to de-swelling under static pressure. In some embodiments, fluid-absorbing gels are prepared by aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker (e.g., methylene-bis-acrylamide) and a free radical initiator redox system in water. The material is obtained as a slab. Typically the swelling ratio of crosslinked polyacrylamide at low crosslinking density (e.g., 2%-4% expressed as weight % of methylene-bis-acrylamide) is between 25 and 40 (F. Horkay, Macromolecules, 22, pp. 2007-09 (1989)). The swelling properties of these polymers have been extensively studied and are essentially the same of those of crosslinked polyacrylic acids at high salt concentration. Under those conditions, the osmotic pressure is null due to the presence of counter-ions and the swelling is controlled by the free energy of mixing and the network elastic energy. Stated differently, a crosslinked polyacrylamide gel of same crosslink density as a neutralized polyacrylic acid will exhibit the same swelling ratio (i.e., fluid absorbing properties) and it is believed the same degree of deswelling under pressure, as the crosslinked polyelectrolyte at high salt content (e.g., 1 M). The properties (e.g., swelling) of neutral hydrogels will not be sensitive to the salt environment as long as the polymer remains in good solvent conditions. Without being held to any particular theory, it is believed that the fluid contained within the gel has the same salt composition than the surrounding fluid (i.e., there is no salt partitioning due to Donnan effect). Another subclass of fluid-absorbing polymers that may be utilized is hydrogel materials that include N-alkyl acrylamide polymers (e.g., N-isopropylacrylamide (NIPAM)). The corresponding aqueous polyNIPAM hydrogel shows a temperature transition at about 35° C. Above this temperature the hydrogel may collapse. The mechanism is generally reversible and the gel re-swells to its original swelling ratio when the temperature reverts to room temperature. This allows production of nanoparticles by emulsion polymerization (R. Pelton, Advances in Colloid and Interface Science, 85, pp. 1-33, (2000)). The swelling characteristics of poly-NIPAM nanoparticles below the transition temperature have been reported and are similar to those reported for bulk gel of polyNIPAM and equivalent to those found for polyacrylamide (i.e. 30-50 g/g) (W. McPhee, Journal of Colloid and Interface Science, 156, pp. 24-30 (1993); and, K. Oh, Journal of Applied Polymer Science, 69, pp. 109-114 (1997)). In some embodiments, the FAP utilized for treatment in combination with a NHE-inhibitor is a superporous gel that may delay the emptying of the stomach for the treatment of obesity (J. Chen, Journal of Controlled Release, 65, pp. 73-82 (2000), or to deliver proteins. Polyacrylate-based SAP's with a macroporous structure may also be used. Macroporous SAP and superporous gels differ in that the porous structure remains almost intact in the dry state for superporous gels, but disappears upon drying for macroporous SAP's. The method of preparation is different although both methods use a foaming agent (e.g., carbonate salt that generates CO2 bubbles during polymerization). Typical swelling ratios, SR, of superporous materials are around 10. Superporous gels keep a large internal pore volume in the dry state. Macroporous hydrogels may also be formed using a method whereby polymer phase separation in induced by a non-solvent. The polymer may be poly-NIPAM and the non-solvent utilized may be glucose (see, e.g., Z. Zhang, J. Org. Chem., 69, 23 (2004)) or NaCl (see, e.g., Cheng et al., Journal of Biomedical Materials Research-Part A, Vol. 67, Issue 1, 1 Oct. 2003, Pages 96-103). The phase separation induced by the presence of NaCl leads to an increase in swelling ratio. These materials are preferred if the swelling ratio of the material, SR, is maintained in salt isotonic solution and if the gels do not collapse under load. The temperature of “service” should be shifted beyond body temperature, e.g. by diluting NIPAM in the polymer with monomer devoid of transition temperature phenomenon. In some embodiments, the fluid-absorbing polymer may be selected from certain naturally-occurring polymers such as those containing carbohydrate moieties. In a preferred embodiment, such carbohydrate-containing hydrogels are non-digestible, have a low fraction of soluble material and a high fraction of gel-forming materials. In some embodiments, the fluid-absorbing polymer is selected from xanthan, guar, wellan, hemicelluloses, alkyl-cellulose, hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In a preferred embodiment, the gel forming polymer is psyllium. Psyllium (or “ispaghula”) is the common name used for several members of the plant genus Plantago whose seeds are used commercially for the production of mucilage. Most preferably, the fluid-absorbing polymer is in the gel-forming fraction of psyllium, i.e., a neutral saccharide copolymer of arabinose (25%) and xylose (75%) as characterized in (J. Marlett, Proceedings of the Nutrition Society, 62, pp. 2-7-209 (2003); and, M. Fischer, Carbohydrate Research, 339, 2009-2012 (2004)), and further described in U.S. Pat. Nos. 6,287,609; 7,026,303; 5,126,150; 5,445,831; 7,014,862; 4,766,004; 4,999,200, each of which is incorporated herein for all relevant and consistent purposes, and over-the-counter psillium-containing agents such as those marketed under the name Metamucil (The Procter and Gamble company). Preferably the a psyllium-containing dosage form is suitable for chewing, where the chewing action disintegrates the tablet into smaller, discrete particles prior to swallowing but which undergoes minimal gelling in the mouth, and has acceptable mouthfeel and good aesthetics as perceived by the patient. The psyllium-containing dosage form includes physically discrete unit suitable as a unitary dosage for human subjects and other mammals, each containing a predetermined quantity of active material (e.g. the gel-forming polysaccharide) calculated to produce the desired therapeutic effect. Solid oral dosage forms that are suitable for the present compositions include tablets, pills, capsules, lozenges, chewable tablets, troches, cachets, pellets, wafer and the like. In some embodiments, the FAP is a polysaccharide particle wherein the polysaccharide component includes xylose and arabinose. The ratio of the xylose to the arabinose may be at least about 3:1 by weight, as described in U.S. Pat. Nos. 6,287,609; 7,026,303 and 7,014,862, each of which is incorporated herein for all relevant and consistent purposes. The fluid-absorbing polymers described herein may be used in combination with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. The NHE inhibitor and the FAP may also be administered with other agents including those described under the heading “Combination Therapies” without departing from the scope of the present disclosure. As described above, the NHE inhibitor may be administered alone without use of a fluid-absorbing polymer to resolve symptoms without eliciting significant diarrhea or fecal fluid secretion that would require the co-administration of a fluid-absorbing polymer. The fluid-absorbing polymers described herein may be selected so as to not induce any substantial interaction with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. As used herein, “no substantial interaction” generally means that the co-administration of the FAP polymer would not substantially alter (i.e., neither substantially decrease nor substantially increase) the pharmacological property of the NHE-inhibiting compounds administered alone. For example, FAPs containing negatively charged functionality, such as carboxylates, sulfonates, and the like, may potentially interact ionically with positively charged NHE inhibitors, preventing the inhibitor from reaching its pharmacological target. In addition, it may be possible that the shape and arrangement of functionality in a FAP could act as a molecular recognition element, and sequestor NHE inhibitors via “host-guest” interactions via the recognition of specific hydrogen bonds and/or hydrophobic regions of a given inhibitor. Accordingly, in various embodiments of the present disclosure, the FAP polymer may be selected, for co-administration or use with a compound of the present disclosure, to ensure that (i) it does not ionically interact with or bind with the compound of the present disclosure (by means of, for example, a moiety present therein possessing a charge opposite that of a moiety in the compound itself), and/or (ii) it does not possess a charge and/or structural conformation (or shape or arrangement) that enables it to establish a “host-guest” interaction with the compound of the present disclosure (by means of, for example, a moiety present therein that may act as a molecular recognition element and sequester the NHE inhibitor or inhibiting moiety of the compound). D. Dosage It is to be noted that, as used herein, an “effective amount” (or “pharmaceutically effective amount”) of a compound disclosed herein, is a quantity that results in a beneficial clinical outcome of the condition being treated with the compound compared with the absence of treatment. The amount of the compound or compounds administered will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical formulation. It will also depend on the subject's health, size, weight, age, sex and tolerance to drugs. Typically, the compound is administered for a sufficient period of time to achieve the desired therapeutic effect. In embodiments wherein both an NHE-inhibitor compound and a fluid-absorbing polymer are used in the treatment protocol, the NHE-inhibitor and FAP may be administered together or in a “dual-regimen” wherein the two therapeutics are dosed and administered separately. When the NHE inhibitor and the fluid-absorbing polymer are dosed separately, the typical dosage administered to the subject in need of the NHE inhibitor is typically from about 5 mg per day and about 5000 mg per day and, in other embodiments, from about 50 mg per day and about 1000 mg per day. Such dosages may induce fecal excretion of sodium (and its accompanying anions), from about 10 mmol up to about 250 mmol per day, from about 20 mmol to about 70 mmol per day or even from about 30 mmol to about 60 mmol per day. The typical dose of the fluid-absorbing polymer is a function of the extent of fecal secretion induced by the non-absorbable NHE inhibitor. Typically the dose is adjusted according to the frequency of bowel movements and consistency of the stools. More specifically the dose is adjusted so as to avoid liquid stools and maintain stool consistency as “soft” or semi-formed, or formed. To achieve the desired stool consistency and provide abdominal relief to patients, typical dosage ranges of the fluid-absorbing polymer to be administered in combination with the NHE inhibitor, are from about 2 g to about 50 g per day, from about 5 g to about 25 g per day or even from about 10 g to about 20 g per day. When the NHE-inhibitor and the FAP are administered as a single dosage regimen, the daily uptake may be from about 2 g to about 50 g per day, from about 5 g to about 25 g per day, or from about 10 g to about 20 g per day, with a weight ratio of NHE inhibitor to fluid-absorbing polymer being from about 1:1000 to 1:10 or even from about 1:500 to 1:5 or about 1:100 to 1:5. A typical dosage of the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound when used alone without a FAP may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of therapeutics described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. For example, in the case of a dual-regimen, the NHE-inhibitor could be taken once-a-day while the fluid-absorbing polymer could be taken at each meal (TID). E. Modes of Administration The substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds of the present disclosure with or without the fluid-absorbing polymers described herein may be administered by any suitable route. The compound is preferably administrated orally (e.g., dietary) in capsules, suspensions, tablets, pills, dragees, liquids, gels, syrups, slurries, and the like. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986). The compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. The formulation of the pharmaceutical composition will vary according to the route of administration selected. Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. The carriers are biocompatible, i.e., non-toxic, non-inflammatory, non-immunogenic and devoid of other undesired reactions at the administration site. Examples of pharmaceutically acceptable carriers include, for example, saline, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or a collagen matrix. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. In other embodiments, the NHE-3 inhibiting compounds may be systemically administered. In one embodiment, the compounds of the present invention are administered systemically to inhibit NHE-3 in the kidney. Without being held to any particular theory, the impermeable NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure can also be administered parenterally, by intravenous, subcutaneous or intramuscular injection or infusion to inhibit NHE3 in the kidney. NHE3 is expressed at high levels on the apical surface of the proximal tubule of the kidney and couples luminal Na reabsorption to the secretion of intracellular protons. Since NHE3 accounts for approximately 60-80% of sodium reabsorption in the kidney, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to prevent edema and resolve congestive heart failure symptoms. This effect could be achieved by NHE inhibition in combination with other diuretics, specifically loop diuretics, like furosemide, to inhibit tubuloglomerular feedback. In addition, since sodium reabsorption via NHE3 in the proximal tubule is responsible for a large proportion of the energy requirement of the proximal tubule cell, it is anticipated that NHE inhibition in the kidney could be beneficial by reducing the energy requirement and protecting the proximal tubule cell in settings of decreased energy availability to the proximal tubule, such as those that occur as a result of kidney hypoxia such as in kidney ischemia reperfusion injury resulting in acute kidney injury. Pharmaceutical preparations for oral use can be obtained by combining a compound of the present disclosure with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical preparations which can be used orally include push-fit capsules made of a suitable material, such as gelatin, as well as soft, sealed capsules made of a suitable material, for example, gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. It will be understood that, certain compounds of the disclosure may be obtained as different stereoisomers (e.g., diastereomers and enantiomers) or as isotopes and that the disclosure includes all isomeric forms, racemic mixtures and isotopes of the disclosed compounds and a method of treating a subject with both pure isomers and mixtures thereof, including racemic mixtures, as well as isotopes. Stereoisomers can be separated and isolated using any suitable method, such as chromatography. F. Delayed Release NHE proteins show considerable diversity in their patterns of tissue expression, membrane localization and functional roles. (See, e.g., The sodium-hydrogen exchanger—From molecule To Its Role In Disease, Karmazyn, M., Avkiran, M., and Fliegel, L., eds., Kluwer Academics (2003).) In mammals, nine distinct NHE genes (NHE-1 through -9) have been described. Of these nine, five (NHE-1 through -5) are principally active at the plasma membrane, whereas NHE-6, -7 and -9 reside predominantly within intracellular compartments. NHE-1 is ubiquitously expressed and is chiefly responsible for restoration of steady state intracellular pH following cytosolic acidification and for maintenance of cell volume. Recent findings show that NHE-1 is crucial for organ function and survival (e.g. NHE-1-null mice exhibit locomotor abnormalities, epileptic-like seizures and considerable mortality before weaning). In contrast with NHE-1 expressed at the basolateral side of the nephrons and gut epithelial cells, NHE-2 through -4 are predominantly expressed on the apical side of epithelia of the kidney and the gastrointestinal tract. Several lines of evidence show that NHE-3 is the major contributor of renal bulk Na+ and fluid re-absorption by the proximal tubule. The associated secretion of H+ by NHE-3 into the lumen of renal tubules is also essential for about ⅔ of renal HCO3− re-absorption. Complete disruption of NHE-3 function in mice causes a sharp reduction in HCO3−, Na+ and fluid re-absorption in the kidney, which is consistently associated with hypovolemia and acidosis. In one embodiment, the novel compounds of the invention are intended to target the apical NHE antiporters (e.g. NHE-3, NHE-2 and NHE-8) without substantial permeability across the layer of gut epithelial cells, and/or without substantial activity towards NHEs that do not reside predominantly in the GI tract. This invention provides a method to selectively inhibit GI apical NHE antiporters and provide the desired effect of salt and fluid absorption inhibition to correct abnormal fluid homeostasis leading to constipations states. Because of their absence of systemic exposure, said compounds do not interfere with other key physiological roles of NHEs highlighted above. For instance, the compounds of the invention are expected to treat constipation in patients in need thereof, without eliciting undesired systemic effects, such as for example salt wasting or bicarbonate loss leading to hyponatriemia and acidosis among other disorders. In another embodiment, the compounds of the invention are delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The applicant found that an early release of the compounds in the stomach or the duodenum can have an untoward effect on gastric secretion or bicarbonate secretion (also referred to as “bicarbonate dump”). In this embodiment the compounds are designed so as to be released in an active form past the duodenum. This can be accomplished by either a prodrug approach or by specific drug delivery systems. As used herein, “prodrug” is to be understood to refer to a modified form of the compounds detailed herein that is inactive (or significantly less active) in the upper GI, but once administered is metabolised in vivo into an active metabolite after getting past, for example, the duodenum. Thus, in a prodrug approach, the activity of the NHE inhibitor can be masked with a transient protecting group that is liberated after compound passage through the desired gastric compartment. For example, acylation or alkylation of the essential guanidinyl functionality of the NHE inhibitor would render it biochemically inactive; however, cleavage of these functional groups by intestinal amidases, esterases, phosphatases, and the like, as well enzymes present in the colonic flora, would liberate the active parent compound. Prodrugs can be designed to exploit the relative expression and localization of such phase I metabolic enzymes by carefully optimizing the structure of the prodrug for recognition by specific enzymes. As an example, the anti-inflammatory agent sulfasalazine is converted to 5-aminosalicylate in the colon by reduction of the diazo bond by intestinal bacteria. In a drug delivery approach the NHE-inhibitor compounds of the invention are formulated in certain pharmaceutical compositions for oral administration that release the active in the targeted areas of the GI, i.e., jejunum, ileum or colon, or preferably the distal ileum and colon, or even more preferably the colon. Methods known from the skilled-in-the-art are applicable. (See, e.g., Kumar, P. and Mishra, B., Colon Targeted Drug Delivery Systems—An Overview, Curr. Drug Deliv., 2008, 5 (3), 186-198; Jain, S. K. and Jain, A., Target-specific Drug Release to the Colon., Expert Opin. Drug Deliv., 2008, 5 (5), 483-498; Yang, L., Biorelevant Dissolution Testing of Colon-Specific Delivery Systems Activated by Colonic Microflora, J. Control Release, 2008, 125 (2), 77-86; Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; and Bodmeier, R., Polymer Blends for Controlled Release Coatings, J. Control Release 2008, 125 (1), 1-15; Patel, M.; Shah, T.; and Amin, A., Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems, Crit. Rev. Ther. Drug Carrier Syst., 2007, 24 (2), 147-202; Jain, A.; Gupta, Y.; Jain, S. K., Perspectives of Biodegradable Natural Polysaccharides for Site-specific Drug Delivery to the Colon., J. Pharm. Sci., 2007, 10 (1), 86-128; Van den, M. G., Colon Drug Delivery, Expert Opin. Drug Deliv., 2006, 3 (1), 111-125; Basit, A. W., Advances in Colonic Drug Delivery, Drugs 2005, 65 (14), 1991-2007; Chourasia, M. K.; Jain, S. K., Polysaccharides for Colon-Targeted Drug Delivery, Drug Deliv. 2004, 11 (2), 129-148; Shareef, M. A.; Khar, R. K.; Ahuja, A.; Ahmad, F. J.; and Raghava, S., Colonic Drug Delivery: An Updated Review, AAPS Pharm. Sci. 2003, 5 (2), E17; Chourasia, M. K.; Jain, S. K., Pharmaceutical Approaches to Colon Targeted Drug Delivery Systems, J. Pharm. Sci. 2003, 6 (1), 33-66; and, Sinha, V. R.; Kumria, R., Colonic Drug Delivery: Prodrug Approach, Pharm. Res. 2001, 18 (5), 557-564. Typically the active pharmaceutical ingredient (API) is contained in a tablet/capsule designed to release said API as a function of the environment (e.g., pH, enzymatic activity, temperature, etc.), or as a function of time. One example of this approach is Eudracol™ (Pharma Polymers Business Line of Degussa's Specialty Acrylics Business Unit), where the API-containing core tablet is layered with various polymeric coatings with specific dissolution profiles. The first layer ensures that the tablet passes through the stomach intact so it can continue through the small intestine. The change from an acidic environment in the stomach to an alkaline environment in the small intestine initiates the release of the protective outer layer. As it travels through the colon, the next layer is made permeable by the alkalinity and intestinal fluid. This allows fluid to penetrate to the interior layer and release the active ingredient, which diffuses from the core to the outside, where it can be absorbed by the intestinal wall. Other methods are contemplated without departing from the scope of the present disclosure. In another example, the pharmaceutical compositions of the invention can be used with drug carriers including pectin and galactomannan, polysaccharides that are both degradable by colonic bacterial enzymes. (See, e.g., U.S. Pat. No. 6,413,494, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes.) While pectin or galactomannan, if used alone as a drug carrier, are easily dissolved in simulated gastric fluid and simulated intestinal fluid, a mixture of these two polysaccharides prepared at a pH of about 7 or above produces a strong, elastic, and insoluble gel that is not dissolved or disintegrated in the simulated gastric and intestinal fluids, thus protecting drugs coated with the mixture from being released in the upper GI tract. When the mixture of pectin and galactomannan arrives in the colon, it is rapidly degraded by the synergic action of colonic bacterial enzymes. In yet another aspect, the compositions of the invention may be used with the pharmaceutical matrix of a complex of gelatin and an anionic polysaccharide (e.g., pectinate, pectate, alginate, chondroitin sulfate, polygalacturonic acid, tragacanth gum, arabic gum, and a mixture thereof), which is degradable by colonic enzymes (U.S. Pat. No. 6,319,518). In yet other embodiments, fluid-absorbing polymers that are administered in accordance with treatment methods of the present disclosure are formulated to provide acceptable/pleasant organoleptic properties such as mouthfeel, taste, and/or to avoid premature swelling/gelation in the mouth and in the esophagus and provoke choking or obstruction. The formulation may be designed in such a way so as to ensure the full hydration and swelling of the FAP in the GI tract and avoid the formation of lumps. The oral dosages for the FAP may take various forms including, for example, powder, granulates, tablets, wafer, cookie and the like, and are most preferably delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The above-described approaches or methods are only some of the many methods reported to selectively deliver an active in the lower part of the intestine, and therefore should not be viewed to restrain or limit the scope of the disclosure. The following non-limiting examples are provided to further illustrate the present disclosure. EXAMPLES Exemplary Compound Synthesis Example 1 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid Intermediate 1.1: 2-bromo-1-(3-bromophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-bromophenyl)ethanone (40 g, 202.02 mmol, 1.00 equiv) in acetic acid (200 mL). This was followed by the addition of a solution of Br2 (32 g, 200.00 mmol) in acetic acid (50 mL) dropwise with stirring at 60° C. The resulting solution was stirred for 3 h at 60° C. in an oil bath. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 24 g (43%) of 2-bromo-1-(3-bromophenyl)ethanone as a yellow solid. Intermediate 1.2: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-bromophenyl)ethanone (55 g, 199.28 mmol, 1.00 equiv) in 1,4-dioxane (300 mL), TEA (40 g, 396.04 mmol, 1.99 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (38 g, 201.06 mmol, 1.01 equiv). The resulting solution was stirred for 2 h at 25° C. in an oil bath. The solids were filtered out and the filtrate was used without any further purification. Intermediate 1.3: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanol Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanone (77 g, 198.97 mmol, 1.00 equiv, theoretical yield) in methanol (300 mL). This was followed by the addition of NaBH4 (15 g, 394.74 mmol, 1.98 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 100 mL of acetone. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100). This resulted in 50 g (65%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol as a yellow oil. Intermediate 1.4: 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol (25 g, 64.27 mmol, 1.00 equiv) in dichloromethane (100 mL). This was followed by the addition of sulfuric acid (100 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 4 h at room temperature. The resulting solution was diluted with of ice water. The pH value of the solution was adjusted to 8 with sodium hydroxide. The resulting solution was extracted with 3×300 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 15 g (63%) of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a white solid. Intermediate 1.5: 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of potassium carbonate (930 mg, 0.50 equiv) in xylene (50 mL). This was followed by the addition of phenylmethanethiol (2.5 g, 1.50 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at 25° C. Into another 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was added a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (5.0 g, 1 equiv) in xylene (50 mL), Pd2(dba)3 (300 mg), Xantphos (300 mg). The resulting solution was stirred for 30 min at 25° C. and then added to the above reaction solution. The mixture was stirred overnight at 140° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 2.5 g (45%) of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a yellow oil. Intermediate 1.6: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl Chloride Into a 250-mL 3-necked round-bottom flask, was placed a solution of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (8 g, 13.53 mmol, 1.00 equiv, 70%) in acetic acid/water (80/8 mL). Cl2(g) was introduced and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 5.0 g (90%) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride as a yellowish solid. Intermediate 1.7: 2-(2-bromoethyl)isoindoline-1,3-dione Into a 500-mL round-bottom flask, was placed a solution of 1,2-dibromoethane (30 g, 159.57 mmol, 2.95 equiv) in N,N-dimethylformamide (200 mL). This was followed by the addition of potassium phthalimide (10 g, 54.05 mmol, 1.00 equiv) in several batches. The resulting solution was stirred for 24 h at 60° C. The reaction was then quenched by the addition of 500 mL of water. The resulting solution was extracted with 2×200 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10). This resulted in 8 g (57%) of 2-(2-bromoethyl)isoindoline-1,3-dione as a white solid. Intermediate 1.8: diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 2-(2-bromoethyl)isoindoline-1,3-dione (8 g, 31.50 mmol, 1.00 equiv) and triethyl phosphite (6.2 g, 37.35 mmol, 1.19 equiv). The resulting solution was stirred for 18 h at 130° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ether:n-hexane (1:2). This resulted in 5 g (48%) of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate as a white solid. Intermediate 1.9: diethyl 2-aminoethylphosphonate Into a 500-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate (5 g, 16.08 mmol, 1.00 equiv) in ethanol (200 mL) and hydrazine hydrate (8 g, 160.00 mmol, 9.95 equiv). The resulting solution was stirred for 12 h at room temperature. The solids were filtered and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (9:1). This resulted in 1.5 g (51%) of diethyl 2-aminoethylphosphonate as colorless oil. Intermediate 1.10: Diethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 2-aminoethylphosphonate (100 mg, 0.55 mmol, 1.00 equiv) in dichloromethane (10 mL) with TEA (220 mg, 2.18 mmol, 3.94 equiv). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.60 mmol, 1.08 equiv, 78%) in several batches. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 0.07 g (24%) of the title compound as a colorless oil. Compound 1: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid To a solution of Intermediate 1.10 (70 mg, 0.13 mmol, 1.00 equiv) in dichloromethane (10 mL) was added bromotrimethylsilane (200 mg, 1.32 mmol, 10.04 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. To the above was added methanol. The resulting mixture was concentrated under vacuum. This was followed by the addition of a solution of sodium hydroxide (11 mg, 0.28 mmol, 2.10 equiv) in methanol (2 mL). The resulting solution was stirred for an additional 1 h at room temperature. The resulting mixture was concentrated under vacuum. The solid was dried in an oven under reduced pressure. This resulted in 52.3 mg (73%) of the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.82 (d, J=7.5 Hz, 1H), 7.73 (s, 1H), 7.56 (m, 1H), 7.48 (d, J=8.1 Hz, 1H), 7.41 (s, 1H), 6.88 (s, 1H), 4.54 (s, 1H), 3.97 (m, 2H), 3.17 (m, 3H), 2.97 (m, 1H), 2.67 (s, 3H), 1.68 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 2 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic Acid Intermediate 2.1: Diethyl 4-nitrophenylphosphonate Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl phosphonate (3.02 g, 21.88 mmol, 1.10 equiv) in toluene (10 mL), Pd(PPh3)4 (1.15 g, 1.00 mmol, 0.05 equiv), TEA (2.21 g, 21.88 mmol, 1.10 equiv), 1-bromo-4-nitrobenzene (4 g, 19.90 mmol, 1.00 equiv). The resulting solution was stirred for 15 h at 90° C. The solids were filtered out and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2). This resulted in 3.53 g (68%) of diethyl 4-nitrophenylphosphonate as a yellow liquid. Intermediate 2.2: Diethyl 4-aminophenylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 4-nitrophenylphosphonate (1.07 g, 4.13 mmol, 1.00 equiv), TEA (3 mL), Palladium carbon (0.025 g). This was followed by the addition of formic acid (2 mL) dropwise with stirring at room temperature. The resulting solution was heated to reflux for 3 hr. The reaction was then quenched by the addition of 5 mL of water and the solids were filtered out. The resulting filtrate was extracted with 5×10 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate. This resulted in 800 mg (85%) of diethyl 4-aminophenylphosphonate as a white solid. Compound 2: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl-sulfonamido)phenylphosphonic Acid Compound 2 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminophenylphosphonate (Intermediate 2.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.86 (d, 1H), 7.69 (m, 3H), 7.55 (m, 3H), 7.21 (m, 2H), 6.73 (s, 1H), 4.70 (m, 2H), 4.48 (d, 1H), 3.79 (m, 1H), 3.46 (m, 1H), 3.09 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 3 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic Acid Intermediate 3.1: Diethyl 4-nitrobenzylphosphonate Into a 250-mL round-bottom flask, was placed 1-(bromomethyl)-4-nitrobenzene (15 g, 69.77 mmol, 1.00 equiv), triethyl phosphite (70 mL). The resulting solution was stirred for 2 h at 110° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:1). This resulted in 17 g (89%) of the title compound as a yellow oil. Intermediate 3.2: Diethyl 4-aminobenzylphosphonate Into a 100-mL 3-necked round-bottom flask, was placed a solution of diethyl 4-nitrobenzylphosphonate (5 g, 18.32 mmol, 1.00 equiv) in ethanol (50 mL) and a solution of NH4Cl (2.9 g, 54.72 mmol, 2.99 equiv) in water (50 mL) was added. This was followed by the addition of Fe (4.1 g, 73.21 mmol, 4.00 equiv), while the temperature was maintained at reflux. The resulting solution was heated to reflux for 1 hr. The solids were filtered out. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:3). This resulted in 2.5 g (56%) of the title compound as a yellow solid. Compound 3: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic Acid Compound 3 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminobenzylphosphonate (Intermediate 3.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.61˜7.66 (m, 1H), 7.52˜7.54 (m, 2H), 7.21˜7.20 (m, 2H), 7.11 (s, 1H), 6.95 (d, J=8.1 Hz, 2H), 6.73 (s, 1H), 4.51˜4.59 (m, 3H), 3.33 (s, 1H), 3.03˜2.89 (m, 6H). MS (ES, m/z): 541 [M+H]+. Example 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Intermediate 4.1: 3-diethyl 3-aminopropylphosphonate Following the procedures outlined in Example 1, substituting dibromopropane for dibromoethane gave the title compound. Compound 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Compound 4 was prepared in an analogous manner to that of Compound 1 using 3-diethyl 3-aminopropylphosphonate (Intermediate 4.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.87 (d, J=8.1 Hz, 1H), 7.77 (s, 1H), 7.61˜7.66 (m, 1H), 7.51˜7.54 (m, 2H), 6.88 (s, 1H), 4.77˜4.83 (m, 1H), 4.65 (d, J=16.2 Hz, 1H), 4.44 (d, J=15.6 Hz, 1H), 3.78˜3.84 (m, 1H), 3.50˜3.57 (m, 1H), 3.08 (s, 3H), 2.93˜2.97 (m, 2H), 1.61˜1.72 (m, 2H), 1.48˜1.59 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 5 (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Intermediate 5.1: 1,3,5-tribenzyl-1,3,5-triazinane Into a 100-mL 3-necked round-bottom flask was placed benzylamine (10 g, 93.46 mmol, 1.00 equiv), followed by the addition of formaldehyde (9.0 g, 1.20 equiv, 37%) dropwise with stirring at 0-10° C. To the precipitated gum was added 3M aqueous sodium hydroxide (20 mL), and the mixture was stirred. After standing in ice for 0.3 h, ether (30 mL) was added, and the mixture stirred until all precipitate dissolved. The aqueous phase was separated and extracted with ether. The solvents were removed under vacuum to afford 12 g (36%) of 1,3,5-tribenzyl-1,3,5-triazinane as colorless oil. Intermediate 5.2: Diethyl (benzylamino)methylphosphonate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 1,3,5-tribenzyl-1,3,5-triazinane (3.0 g, 8.40 mmol, 1.00 equiv) and diethyl phosphite (3.5 g, 25.36 mmol, 3.00 equiv). The resulting solution was stirred for 3 h at 100° C. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:1). This resulted in 2.0 g (90%) of diethyl (benzylamino)methylphosphonate as a colorless oil. Intermediate 5.3: Diethyl Aminomethylphosphonate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of diethyl (benzylamino)methylphosphonate (3.5 g, 13.62 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL) and Palladium carbon (0.2 g, 0.10 equiv). The resulting solution was stirred for 24 h at 50° C. under 20 atm pressure. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 2.0 g (crude) of the title compound as brown oil which was used without further purification. Compound 5: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Compound 5 was prepared in an analogous manner to that of Compound 1 using diethyl aminomethylphosphonate (Intermediate 5.3) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.74 (s, 1H), 7.63˜7.66 (m, 1H), 7.57˜7.61 (m, 2H), 6.97 (s, 1H), 4.80˜4.89 (m, 1H), 4.55˜4.67 (m, 2H), 3.83˜3.89 (m, 1H), 3.55˜3.66 (m, 1H), 3.02˜3.11 (m, 5H). MS (ES, m/z): 465 [M+H]+. Example 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic Acid Intermediate 6.1: 4-diethyl 4-(aminomethyl)benzylphosphonate Following the procedures outlined in Example 1, substituting 1,4-bis(bromomethyl)benzene for dibromoethane gave the title compound. Compound 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic Acid Compound 6 was prepared in an analogous manner to that of Compound 1 using 4-diethyl 4-(aminomethyl)benzylphosphonate (Intermediate 6.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.85˜7.88 (m, 1H), 7.54˜7.59 (m, 2H), 7.37˜7.42 (m, 2H), 7.198˜7.22 (m, 2H), 7.06˜7.09 (m, 1H), 6.77 (s, 1H), 4.64 (m, J=16.2 Hz, 1H), 4.49˜4.53 (m, 1H), 4.37 (m, J=16.5, 1H), 4.17 (s, 2H), 3.45˜3.56 (m, 1H), 3.11˜3.27 (m, 1H), 3.09˜3.10 (m, 4H), 2.96˜2.97 (m, 1H). MS (ES, m/z): 555 [M+H]+. Example 7 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Compound 7: 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Into a 50-mL round-bottom flask, was placed a solution of 3-aminopropane-1-sulfonic acid (180 mg, 1.29 mmol, 1.00 equiv) in tetrahydrofuran/water (10/10 mL) with sodium bicarbonate (430 mg, 5.12 mmol). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.29 mmol, 0.99 equiv) in several batches. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (500 mg) was purified by preparative HPLC to give 26.7 mg of the title compound (4%) as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): 10.28 (s, 1H), 7.53˜7.79 (m, 6H), 6.83 (s, 1H), 4.74 (s, 2H), 4.51 (s, 1H), 3.90 (s, 1H), 3.06 (s, 3H), 2.86˜2.93 (m, 2H), 2.33˜2.44 (m, 2H), 1.58˜1.63 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 8 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Intermediate 8.1: Ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate Into a 500-mL 3-necked round-bottom flask, was placed a solution of diethyl (benzylamino)methylphosphonate (intermediate 5.2) (12 g, 46.69 mmol, 1.00 equiv) in acetonitrile (150 mL), DIEA (12 g, 2.00 equiv). This was followed by the addition of ethyl 2-bromoacetate (8.4 g, 50.30 mmol, 1.10 equiv) dropwise with stirring. The mixture was stirred for 30 min at room temperature. The resulting solution was heated to reflux for 6 hr. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:5). This resulted in 8.0 g (50%) of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate as yellow oil. Intermediate 8.2: Ethyl 2-((diethoxyphosphoryl)methylamino)acetate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate (8.0 g, 23.32 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL), Pd/C (0.9 g). The resulting solution was stirred at 20 atm for 32 h at 50° C. The solids were filtered out, and the resulting mixture was concentrated under vacuum. This resulted in 6.0 g (82%) of the acetic acid salt of ethyl 2-((diethoxyphosphoryl)methylamino)acetate as a brown oil. Intermediate 8.3: Ethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-((diethoxyphosphoryl)methyl)phenylsulfonamido)acetate Into a 50-mL round-bottom flask, was placed a solution of ethyl 2-((diethoxyphosphoryl)methylamino)acetate (320 mg, 1.26 mmol, 1.00 equiv) in pyridine (10 mL). 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.28 mmol, 1.01 equiv) was added and the resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product (400 mg) was purified by preparative HPLC to give 200 mg (24%) of the title compound as a TFA salt. Intermediate 8.4: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic Acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 8.3 (200 mg, 0.33 mmol, 1.00 equiv) in dichloromethane (6 mL). Bromotrimethylsilane (502 mg, 3.30 mmol, 10.01 equiv) was added and the resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was dissolved in 10 mL of methanol. The resulting mixture was concentrated under vacuum. This resulted in 180 mg (99%) of the title compound as a yellow solid. Compound 8: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Into a 50-mL round-bottom flask, was placed a solution of (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic acid (Intermediate 8.4) (180 mg, 0.33 mmol, 1.00 equiv) in tetrahydrofuran/water (5/5 mL). This was followed by the addition of lithium hydroxide (39 mg, 1.62 mmol, 4.97 equiv) in several batches at room temperature. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC giving 59.2 mg (35%) of the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.73˜7.74 (m, 1H), 7.67˜7.68 (m, 1H), 7.58˜7.62 (m, 2H), 7.49 (s, 1H), 7.00 (s, 1H), 4.71˜4.75 (m, 1H), 4.49 (d, J=16.2 Hz, 1H), 4.33 (d, J=15.9 Hz, 1H), 4.07 (s, 2H), 3.62˜3.64 (m, 1H), 3.45˜3.54 (m, 2H), 3.31˜3.40 (m, 1H), 2.88 (s, 3H). MS (ES, m/z): 523 [M+H]+. Example 9 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic Acid Intermediate 9.1: Dimethyl 2-aminosuccinate Hydrochloride Into a 100-mL round-bottom flask, was placed a solution of 2-aminosuccinic acid (3 g, 22.56 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of thionyl chloride (10 g, 84.75 mmol, 3.76 equiv) dropwise with stirring at 0-5° C. The resulting solution was heated to reflux for 2 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 4.2 g (95%) of the title compound as a white solid. Intermediate 9.2: Dimethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinate Into a 50-mL round-bottom flask, was placed a solution of dimethyl 2-aminosuccinate hydrochloride (107 mg, 0.54 mmol, 1.00 equiv) in pyridine (5 mL). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.69 mmol, 1.27 equiv, 90%) in several batches. The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 200 mg (72%) of the title compound as a colorless oil Compound 9: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 9.2 (100 mg, 0.19 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) and water (5 mL). This was followed by the addition of LiOH (23 mg, 0.96 mmol, 4.93 equiv) in several batches at room temperature. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with hydrogen chloride (1 mol/L). The solids were collected by filtration. The crude product (200 mg) was purified by preparative HPLC to give 12.1 mg (10%) the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.2 Hz, 1H), 7.80 (d, J=6.3 Hz, 1H), 7.64˜7.52 (m, 3H), 6.95 (s, 1H), 4.78˜4.70 (m, 2H), 4.55˜4.50 (m, 1H), 4.23˜4.17 (m, 1H), 3.87˜3.82 (m, 1H), 3.63˜3.57 (m, 1H), 3.12 (s, 3H), 2.79˜2.65 (m, 2H). MS (ES, m/z): 487 [M-CF3COOH+H]+. Example 10 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid Intermediate 10.1: 2-bromo-1-(4-bromophenyl)ethanone Into a 250-mL 3-necked round-bottom flask, was placed a solution of 1-(4-bromophenyl)ethanone (10.0 g, 50.25 mmol, 1.00 equiv) in acetic acid (50 mL). This was followed by the addition of a solution of bromine (8.2 g, 1.05 equiv) in acetic acid (50 mL) dropwise with stirring at 60° C. over 90 min. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate in the ratio of 7:1. This resulted in 9.3 g (67%) of the title compound as a yellow solid. Intermediate 10.2: 1-(4-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(4-bromophenyl)ethanone (9.3 g, 33.45 mmol, 1.00 equiv) in dioxane (100 mL), triethylamine (5.0 g, 1.50 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (6.4 g, 33.68 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was used for next step directly. Intermediate 10.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of the crude Intermediate 10.2 in fresh methanol (100 mL). This was followed by the addition of sodium borohydride (2.5 g, 65.79 mmol, 2.00 equiv) in several batches at 0-5° C. The resulting solution was stirred for 1 h at 25° C. The reaction was then quenched by the addition of sat. NH4Cl. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with EtOAc (2×100 mL) and the organic layers combined and concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate(60 mL) in the ratio of 7:1. This resulted in 6.5 g (50%) of the title compound as a white solid. MS (ES, m/z): 390 [M+H]+. Intermediate 10.4: 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 50-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol (1.0 g, 2.57 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of conc.H2SO4 (2 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 3 h at 20° C. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 9 with sodium hydroxide. The resulting solution was extracted with dichloromethane (2×30 mL) and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.9 g of the title compound which was used without further purification. MS (ES, m/z): 372 [M+H]+. Intermediate 10.5: 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed K2CO3 (800 mg, 0.50 equiv) and xylene (50 mL). This was followed by the addition of phenylmethanethiol (1.75 g, 1.00 equiv) dropwise with stirring at 0° C. The resulting mixture was then allowed to warm to room temperature and stirred for 1 h. Into another 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (4.8 g, 0.80 equiv), Xantphos (200 mg, 0.08 equiv) and Pd2(dba)3 (200 mg, 0.08 equiv) in xylene (30 mL). The mixture was stirred at room temperature for 20 min and transferred to the previously formed potassium thiolate. The dark solution was then purged with nitrogen and heated to 130° C. for 15 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The crude product was then purified by silica gel chromatography with ethyl acetate/petroleum ether (1:80˜1:50) to afford 1.8 g (30%) of the title compound as yellow oil. MS (ES, m/z): 414 [M+H]+. Compound 10.6: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl Chloride Into a 50-mL 3-necked round-bottom flask, was placed a solution of 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (250 mg, 0.60 mmol, 1.00 equiv) in acetic acid (8 mL), water (1 mL). To the above Cl2(g) was introduced and the resulting solution was stirred for 30 min at 25° C. The resulting mixture was concentrated under vacuum. This resulted in 200 mg (85%) of the title compound as a yellow solid. MS (ES, m/z): 390 [M−HCl+H]+. Compound 10: 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic Acid Following the procedures outlined in Example 1, 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) was converted to compound 10. Purification by preparative HPLC gave a TFA salt of the title compound as a white solid. 1H-NMR (CD3OD, 300 MHz, ppm): 7.93 (d, J=8.4 Hz, 2H), 7.58˜7.51 (m, 3H), 6.89 (s, 1H), 4.89˜4.80 (m, 2H), 4.56˜4.51 (m, 1H), 3.95˜3.90 (m, 1H), 3.69˜3.65 (m, 1H), 3.21˜3.10 (m, 5H), 2.01˜1.89 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 11 (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Compound 11: (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic Acid Following the procedures outlined in Example 1, compound 11 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and diethyl aminomethylphosphonate (intermediate 5.3). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.87 (d, J=8.4 Hz, 2H), 7.68 (d, J=1.5 Hz, 1H), 7.48 (d, J=9.4 Hz, 2H), 6.80 (s, 1H), 4.74˜4.66 (m, 1H), 4.46˜4.40 (m, 1H), 3.82˜3.77 (m, 1H), 3.69˜3.39 (m, 1H), 3.01 (s, 3H), 2.91˜2.74 (m, 2H). MS 465 [M+H]+. Example 12 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Compound 12: 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic Acid Following the procedures outlined in Example 1, compound 12 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 3-diethyl 3-aminopropylphosphonate (intermediate 4.1). Purification by preparative HPLC gave a TFA salt of the title compound 1H-NMR (300 MHz, CD3OD, ppm): 7.90 (d, J=8.4, 2H), 7.55 (s, 1H), 7.46 (d, J=8.1 Hz, 2H), 6.88 (s, 1H), 4.77˜4.82 (m, 1H), 4.71 (d, J=16.2 Hz, 1H), 4.47 (d, J=15.9 Hz, 1H), 3.80˜3.86 (m, 1H), 3.54˜3.61 (m, 1H), 3.11 (s, 3H), 2.95˜2.99 (m, 2H), 1.53˜1.71 (m, 4H). MS 493 [M+H]+. Example 13 (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic Acid Compound 13: (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic Acid Following the procedures outlined in Example 1, compound 13 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-aminobenzylphosphonate (intermediate 3.2). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.69 (d, J=8.4 Hz, 2H), 7.46˜7.46 (m, 1H), 7.34 (d, J=8.4 Hz, 2H), 7.07 (d, J=7.8 Hz, 2H), 6.94 (d, J=8.1 Hz, 2H), 6.71˜6.71 (m, 1H), 4.36˜4.40 (m, 1H), 3.65˜3.80 (m, 2H), 2.95˜3.01 (m, 1H), 2.72˜2.79 (m, 3H), 2.41 (s, 3H). MS (ES, m/z): 541 [M+H]+. Example 14 (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl) methylphosphonic Acid Compound 14: (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl) methylphosphonic Acid Following the procedures outlined in Example 1, compound 14 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-(aminomethyl)benzylphosphonate (intermediate 6.1). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.71 (d, J=8.4 Hz, 2H), 7.50 (m, 1H), 7.40 (d, J=8.4 Hz, 2H), 7.06˜7.15 (m, 4H), 6.86˜6.87 (m, 1H), 4.38˜4.40 (m, 1H), 3.95 (s, 2H), 3.75 (d, J=16.2 Hz, 1H), 3.53 (m, 1H), 2.85˜2.92 (m, 3H), 2.69˜2.75 (m, 1H), 2.41 (s, 3H). MS (ES, m/z): 555 [M+H]+. Example 15 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic acid Intermediate 15.1: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-phenylethanone (1 g, 5.05 mmol, 1.00 equiv) in 1,4-dioxane (20 mL) and (2,4-dichlorophenyl)-N-methylmethanamine (1.1 g, 5.82 mmol, 1.15 equiv). Triethylamine (2 g, 19.80 mmol, 3.92 equiv) was added dropwise with stirring at 20° C. The resulting solution was stirred for 1 h at 20° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.4 g (90%) of the title compound as a yellow oil. Intermediate 15.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol Into a 250 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone (4.3 g, 14.01 mmol, 1.00 equiv) in methanol (50 mL). This was followed by the addition of NaBH4 (1.5 g, 39.47 mmol, 2.82 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 20 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:80˜1:20). This resulted in 3.4 g (79%) of the title compound as a white solid. Intermediate 15.3: 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline Into a 100-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol (3.4 g, 11.00 mmol, 1.00 equiv) in dichloromethane (15 mL). This was followed by the addition of sulfuric acid (15 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. in a water/ice bath. The pH value of the solution was adjusted to 7 with 1M sodium hydroxide. The resulting solution was extracted with ethyl acetate (3×60 mL) and the combined organic layers dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether:ethyl acetate (80:1). This resulted in 1.6 g (50%) of the title compound as a colorless oil. Intermediate 15.4: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed chlorosulfonic acid (4 mL). This was followed by the dropwise addition of a solution of 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (1.6 g, 5.5 mmol, 1.00 equiv) in dichloromethane (30 mL) at 0° C. The resulting solution was stirred for 1 h at 0° C. in a water/ice bath and for an additional 1 h at 25° C. in an oil bath. To this was added chlorosulfonic acid (16 mL) dropwise at 25° C. The resulting solution was stirred for an additional 1 h at 25° C. To the resulting mixture was cooled to 0° C. and aqueous ammonia (120 mL) was added dropwise. The resulting solution was stirred for an additional 3 h 90° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was dissolved in 20 mL of water. The resulting solution was extracted with dichloromethane (3×30 mL) and the combined organic layers concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1). The crude product (0.5 g) was purified by preparative HPLC to give 53 mg (3%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CDCl3, ppm): 7.89 (1H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 7.30 (1H, m), 6.77 (1H, s), 4.87 (1H, s), 4.39 (1H, s), 3.69 (2H, m), 2.98 (1H, t), 2.67 (1H, dd), 2.55 (3H, s). MS (ES, m/z): 371 [M+H]+. Intermediate 15.5: dimethyl 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 15.4, 100 mg, 0.27 mmol, 1.00 equiv) in acetonitrile (5 mL). Methyl but-3-enoate (40 mg, 0.40 mmol, 1.48 equiv) was added, along with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 20 mg, 0.13 mmol, 0.49 equiv). The resulting solution was stirred overnight at 25° C. in an oil bath. Removing the solvent under vacuum gave the title compound which was used without further purification. Compound 15: 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic Acid Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of Intermediate 15.5 (140 mg, 0.26 mmol, 1.00 equiv, theoretical yield) in tetrahydrofuran(5 mL) and water (5 mL). LiOH (20 mg, 0.83 mmol, 3.23 equiv) was added and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1˜20:1). This resulted in 0.015 g (11%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.84 (d, J=8.1 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.35 (s, 1H), 6.84 (s, 1H), 4.39 (t, 1H), 3.77 (d, 1H), 3.67 (d, 1H), 3.45 (m, 1H), 3.33 (m, 4H), 2.69 (d, 1H), 3.0 (m, 1H), 2.47 (m, 6H). MS (ES, m/z): 515 [M+H]+. Example 16 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 16: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.235 mmol) in DMF (1.5 mL) was added TEA (94.94 mg, 0.94 mmol) and a solution of N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (11.45 mg, 0.0783 mmol) in 0.1 mL DMF. The reaction was stirred for 40 minutes at which point LCMS indicated no starting material remained. The solvent was removed and the residue dissolved in 50% acetic acid in water and purified by preparative HPLC to yield the title compound (25.4 mg) as a TFA salt. 1H-NMR (400 MHz, d6-DMSO): δ7.77 (s, 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.59 (m, 3H), 6.76 (s, 1H), 4.70 (m, 1H), 4.38 (m, 1H), 3.90 (br m, 8H), 3.26 (m, 1H), 3.95 (s, 3H), 2.65 (m, 2H). MS (m/z): 1210.01 (M+H). Example 17 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 17: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (26.17 mg, 0.176 mmol) in chloroform (0.223 mL) at 0° C. was added diisopropylethylamine (DIEA, 182 mg, 1.412 mmol) and a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL). The resulting solution was stirred for 10 minutes at which point the solvent was removed and the residue taken up in 50% isopropanol/water mixture and purified by preparative HPLC. The title compound was obtained (44.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.87 (d, 1H), 7.78 (d, 1H), 7.64 (t, 1H), 7.55 (d, 1H), 7.51 (d, 1H), 6.81 (s, 1H), 4.47 (d, 1H), 3.83 (dd, 1H), 3.59 (t, 1H), 3.43 (m, 2H), 3.12 (s, 4H), 3.01 (q, 2H). MS (m/z): 857.17 (M+H). Example 18 N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 18: N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 18 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.67 (s, 2H), 7.52 (m, 4H), 7.49 (d, 2H), 7.09 (s, 4H), 6.82 (s, 2H), 4.78 (m, 7H), 4.43 (d, 2H), 4.00 (s, 4H), 3.82 (dd, 2H), 3.51 (t, 2H), 3.11 (s, 6H). MS (m/z): 845.03 (M+H). Example 19 N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 19: N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 19 was made using butane-1,4-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 2H), 7.80 (s, 2H), 7.63 (t, 2H), 7.54 (t, 4H), 6.82 (s, 2H), 4.49 (d, 1H), 3.88 (dd, 2H), 3.58 (t, 2H), 3.14 (s, 6H), 2.81 (m, 4H), 1.42 (m, 4H). MS (m/z): 797.19 (M+H). Example 20 N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 20: N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 20 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.71 (s, 2H), 7.63 (t, 2H), 7.54 (m, 4H), 6.81 (s, 2H), 4.74 (m, 2H), 4.51 (d, 2H), 3.86 (dd, 2H), 3.29 (t, 2H), 3.13 (s, 7H), 2.79 (t, 4H), 1.39 (m, 4H), 1.22 (m, 20H). MS (m/z): 909.28 (M+H). Example 21 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 21: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.352 mmol) in THF/H2O (0.704 mL, 50% v/v) was added DIEA (181.6 mg, 1.41 mmol) and finally N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) (27.94 mg, 0.08825 mmol). The reaction mixture was stirred vigorously for 1 hour at which point the solvent was removed. The resulting residue was brought up in 50% acetonitrile/water and purified by preparative HPLC to give the title compound (117 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.78 (s, 2H), 7.62 (t, 2H), 7.36 (m, 4H), 6.79 (s, 2H), 4.78 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.55 (t, 2H), 3.12 (s, 6H), 2.94 (m, 4H), 1.90 (m, 4H), 1.85 (m, 2H). MS (m/z): 1732.90 (M+H). Example 22 N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 22: N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL) was added DIEA (182 mg, 1.412 mmol) and a solution of butane-1,4-diamine (15.5 mg, 0.176 mmol) in chloroform (0.176 mL). The reaction was stirred overnight at which point the solvent was removed and the resulting residue brought up in 50% IPA/H2O. Purification by preparative HPLC gave the title compound (18.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.86 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.73 (m, 3H), 4.46 (d, 2H), 3.86 (dd, 2H), 3.57 (t, 2H), 3.12 (s, 6H), 2.84 (m, 4H), 1.41 (m, 4H). MS (m/z): 797.15 (M+H). Example 23 N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 23: N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 22, compound 23 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 4H), 7.54 (m, 2H), 7.42 (m, 4H), 6.82 (s, 2H), 4.85 (m, 3H), 4.72 (d, 2H), 3.85 (dd, 2H), 3.59 (t, 2H), 3.13 (m, 8H), 2.85 (m, 4H), 1.89 (m, 5H), 1.33 (m, 23H). MS (m/z): 909.21 (M+H). Example 24 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 24: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in THF/H2O solution (50% v/v, 0.704 mL) was added DIEA (182.2 mg, 1.412 mmol) and N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (17.0 mg, 0.116 mmol). The reaction was stirred vigorously at room temperature for 40 minutes at which point the solvent was removed. The resulting residue was dissolved in acetonitrile/water (50% v/v) and purified by preparative HPLC to give the title compound (57.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.94 (d, 6H), 7.51 (t, 9H), 6.83 (s, 3H), 4.78 (m, 6H), 4.45 (d, 3H), 3.83 (dd, 3H), 3.49 (t, 3H), 3.30 (m, 6H), 3.29 (m, 21H), 3.12 (s, 9H). MS (m/z): 1208.09 (M+H). Example 25 N,N′,N″,N′″-(3,3′,3″3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 25: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, Compound 25 was made using N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.88 (d, 8H), 7.51 (s, 4H), 7.48 (d, 8H), 6.81 (s, 4H), 4.75 (m, 8H), 4.47 (d, 4H), 3.85 (dd, 4H), 3.58 (t, 4H), 3.13 (s, 12H), 2.98 (t, 8H), 1.97 (m, 8H), 1.88 (m, 4H). MS (m/z): 1733.02 (M+H). Example 26 N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 26: N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 26 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.76 (d, 4H), 7.54 (s, 2H), 7.39 (d, 4H), 7.08 (s, 4H), 6.82 (s, 2H), 4.72 (m, 3H), 4.47 (d, 2H), 4.07 (s, 4H), 3.88 (dd, 2H), 3.61 (t, 2H), 3.16 (s, 6H). MS (m/z): 845.07 (M+H). Example 27 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 27: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 27 was made using 2,2′-(ethane-1,2-diylbis(oxy))diethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d. 4H), 7.52 (s, 2H), 7.47 (d, 4H), 6.82 (s, 2H), 4.77 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.59 (t, 2H), 3.43 (t, 8H), 3.13 (s, 6H), 3.06 (t, 4H). MS (m/z): 857.15 (M+H). Example 28 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 28.1 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (600 mg, 1.41 mmol) in chloroform (2.82 mL) was added DIEA (545.7 mg, 4.24 mmol) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (616.3 mg, 2.82 mmol). The reaction was stirred overnight at which point the mixture was diluted with 50 mL DCM and washed with NaHCO3 (50 mL). The aqueous layer was extracted with DCM (2×50 mL) and the combined organic fractions washed with water (200 mL), brine (200 mL), and dried over Na2SO4. Removing the solvent gave the title compound as an oil which was used without further purification. Compound 28: N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1) (1.035 g, assume 1.41 mmol) was dissolved in a 10:1 THF:water solution (26.5 mL) and placed under N2. PMe3 (165 mg, 2.18 mmol) was added and the reaction stirred overnight. The solvent was removed and the resulting residue brought up in EtOAc (100 mL) and washed with NaHCO3 (100 mL) and brine (100 mL). After drying the organic layer over Na2SO4, the solvent was removed to give 446 mg of the title compound (58% over two steps) as an oil. A portion of the crude product was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (m, 1H), 7.73 (m, 1H), 7.67 (t, j=7.7 Hz, 1H), 7.54 (m, 2H), 6.82 (s, 1H), 4.8-4.6 (m, 4H), 4.46 (m, 1H), 3.86 (m, 1H), 3.69 (m, 2H), 3.66 (s, 3H), 3.61 (m, 2H), 3.55 (m, 2H), 3.12 (m, 4H), 3.03 (t, j=5.4 Hz, 1H). MS (m/z): 546.18 (M+H). Example 29 N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide Compound 29: N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (54.5 mg, 0.1 mmol) in DMF (0.20 mL) was added DIEA (15.5 mg, 0.12 mmol) and bis(2,5-dioxopyrrolidin-1-yl) octanedioate (18.4 mg, 0.05 mmol). The reaction was stirred at room temperature for 3 hours at which point an additional 0.03 mmol of compound 28 was added. After a further hour the solvent was removed and the resulting residue dissolved in acetonitrile/water (1:1) and purified by preparative HPLC to give the title compound (17.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 2H), 7.78 (s, 2H), 7.64 (t, 2H), 7.52 (m, 4H), 6.83 (s, 2H), 4.81 (m, 4H), 4.45 (d, 2H), 3.89 (dd, 2H), 3.61 (m, 18H), 3.55 (m, 10H), 3.47 (m, 5H), 3.33 (m, 5H), 3.14 (s, 7H), 3.04 (t, 4H), 2.16 (t, 4H), 1.55 (m, 4H), 1.29 (m, 4H). MS (m/z): 1231.87 (M+H). Example 30 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Intermediate 30.1: 1-(4-aminophenyl)ethanone Into a 100-mL 3-necked round-bottom flask, was placed a solution of 1-(4-nitrophenyl)ethanone (6 g, 36.36 mmol, 1.00 equiv) in ethanol(100 mL), water(15 mL). This was followed by the addition of NH4Cl (3.85 g, 72.64 mmol, 2.00 equiv) in several batches. To this was added Fe (10.18 g, 181.79 mmol, 5.00 equiv) in several batches, while the temperature was maintained at reflux. The resulting mixture was heated to reflux for 2 h. The solids were filtered out and the resulting filtrate was concentrated under vacuum. The residue was diluted with 50 mL of water. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.1 g (60%) of 1-(4-aminophenyl)ethanone as a yellow solid. Intermediate 30.2: N-(4-acetylphenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-aminophenyl)ethanone (3.1 g, 22.96 mmol, 1.00 equiv) in dichloromethane (30 mL), triethylamine (4.64 g, 45.94 mmol, 2.00 equiv). This was followed by the addition of acetyl chloride (1.79 g, 22.95 mmol, 1.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 30 min at 0° C. The reaction was then quenched by the addition of 2 mL of water. The resulting mixture was washed with 3×50 mL of saturated aqueous sodium chloride. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.0 g (74%) of N-(4-acetylphenyl)acetamide as a white solid. Intermediate 30.3: N-(4-(2-bromoacetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-acetylphenyl)acetamide (1 g, 5.65 mmol, 1.00 equiv) in acetic acid (10 mL). This was followed by the addition of a solution of bromine (910 mg, 5.69 mmol, 1.01 equiv) in acetic acid (2 mL) dropwise with stirring at 50° C. The resulting solution was stirred for 1.5 h at 50° C. The reaction was then quenched by the addition of 100 mL of water/ice. The solids were collected by filtration and dried under vacuum. This resulted in 0.5 g (33%) of N-(4-(2-bromoacetyl)phenyl)acetamide as a white solid. Intermediate 30.4: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-bromoacetyl)phenyl)acetamide (1 g, 3.91 mmol, 1.00 equiv) in 1,4-dioxane (40 mL). This was followed by the addition of triethylamine (1.58 g, 15.64 mmol, 4.00 equiv) dropwise with stirring at 20° C. To this was added (2,4-dichlorophenyl)-N-methylmethanamine (880 mg, 4.63 mmol, 1.19 equiv) dropwise with stirring at 20° C. The resulting solution was stirred for 4 h at 20° C. The solids were filtered out. The resulting mixture was concentrated under vacuum to give 1.5 g (84%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide as a white solid. Intermediate 30.5: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide (1.5 g, 4.11 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of NaBH4 (300 mg, 7.89 mmol, 2.06 equiv) in several batches at 0-5° C. The resulting solution was stirred for 2 h at 0-5° C. The reaction was then quenched by the addition of 5 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 1.2 g (76%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide as yellow oil. Intermediate 30.6: N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide (500 mg, 1.36 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of sulfuric acid (3 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 5 h at 0-5° C. The reaction was then quenched by the addition of 20 mL of water/ice. The pH value of the solution was adjusted to 7-8 with sodium hydroxide. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 25 mg (5%) of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide as a white solid. 1H-NMR (300 HMz, CDCl3, ppm): δ 7.46-7.49 (2H, d, J=8.4 Hz), 7.23-7.29 (1H, m), 7.12-7.15 (2H, d, J=8.4 Hz), 6.80 (1H, s), 4.314 (1H, s), 3.92 (1H, d), 3.58-3.63 (1H, d), 3.06 (1H, s), 2.61-2.68 (1H, m), 2.57 (3H, s), 2.20 (3H, s). MS (ES, m/z): 349 [M+H]+. Intermediate 30.7: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide (2 g, 5.73 mmol, 1.00 equiv) in ethanol (20 mL). This was followed by the addition of sodium methanolate (5 g, 92.59 mmol, 16.16 equiv) in several batches, while the temperature was maintained at reflux. The resulting solution was heated to reflux overnight. The reaction was then quenched by the addition of 50 mL of water/ice. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. This resulted in 1.5 g (85%) of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.42-7.42 (1H, d, J=1.5 Hz), 6.83-6.86 (2H, d, J=8.1 Hz), 6.78-6.78 (1H, d, J=1.2 Hz), 6.48-6.51 (2H, d, J=8.4 Hz), 4.98 (2H, s), 4.02-4.06 (1H, m), 3.62-3.67 (1H, d, J=16.2 Hz), 3.43-3.48 (1H, d, J=15.9 Hz), 2.80-2.86 (1H, m), 2.37 (3H, s). MS (ES, m/z): 307 [M+H]+. Intermediate 30.8: Diethyl 2-(chlorosulfonylamino)ethylphosphonate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of sulfuryl dichloride (1.1 g, 8.15 mmol, 1.47 equiv) in dichloromethane (10 mL). This was followed by the addition of a solution of diethyl 2-aminoethylphosphonate (intermediate 1.9) (1.0 g, 5.52 mmol, 1.00 equiv) and triethylamine (800 mg, 7.92 mmol, 1.43 equiv) in dichloromethane (20 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. The reaction was then quenched by the addition of ice water. The organic layer was washed with saturated sodium chloride (20 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.5 g (crude) of the title compound as a colorless oil. Intermediate 30.9: Diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed diethyl 2-(chlorosulfonylamino)ethylphosphonate (intermediate 30.8) (670 mg, 2.40 mmol, 1.47 equiv), 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (500 mg, 1.63 mmol, 1.00 equiv), N-ethyl-N-isopropylpropan-2-amine (400 mg, 3.10 mmol, 1.91 equiv) in acetonitrile (20 mL). The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum and the residue was applied to a silica gel column and eluted with dichloromethane/methanol (20:1). This resulted in 150 mg (16%) of the title compound as a light yellow solid. Compound 30: 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate (100 mg, 0.18 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (275 mg, 1.80 mmol, 9.89 equiv). The resulting solution was stirred overnight at 39° C. The resulting mixture was concentrated under vacuum and the residue was dissolved in dichloromethane (5 mL). This was followed by the addition of a solution of sodium hydroxide (14.5 mg, 0.36 mmol, 2.00 equiv) in methanol (0.2 mL) dropwise with stirring. The solids were collected by filtration and dried under reduced pressure. This gave 40 mg (40%) of a sodium salt of the title compound as a white solid. 1H-NMR (300 MHz, d6-DMSO, ppm): δ 9.78 (1H, brs), 7.54 (1H, s), 7.47 (1H, brs), 7.09-7.17 (4H, m), 6.82 (1H, s), 4.31 (1H, brs), 3.88 (2H, brs), 3.13 (1H, brs), 3.04 (2H, brs), 2.90 (1H, brs), 2.58 (3H, s), 1.65-1.77 (2H, m). MS(m/z): 494 [M+H]+. Example 31 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Intermediate 31.1: 2-bromo-1-(3-nitrophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-nitrophenyl)ethanone (50 g, 303.03 mmol, 1.00 equiv) in acetic acid (300 mL), Br2 (53.5 g, 331.6 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 60° C. in an oil bath. The reaction was then quenched by the addition of ice and the solids were collected by filtration. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. This resulted in 25 g (34%) of 2-bromo-1-(3-nitrophenyl)ethanone as a white solid. Intermediate 31.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (2 g, 8.23 mmol, 1.00 equiv), triethylamine (3.4 g, 4.00 equiv), (2,4-dichlorophenyl)-N-methylmethanamine (1.9 g, 10.05 mmol, 1.20 equiv), 1,4-dioxane (50 mL). The resulting solution was stirred for 2 h at room temperature at which time it was judged to be complete by LCMS. The mixture was concentrated under vacuum and the residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 1.5 g (50%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone as a yellow solid. Intermediate 31.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone (28 g, 1.00 equiv, Crude) in methanol (280 mL), NaBH4 (6.38 mg, 0.17 mmol, 2.00 equiv). The resulting solution was stirred for 0.5 h at 0° C. The reaction progress was monitored by LCMS. The reaction was then quenched by the addition of 10 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 14 g of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol as a yellow solid. Intermediate 31.4: 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol (14 g, 39.55 mmol, 1.00 equiv) in dichloromethane (140 mL), sulfuric acid (140 mL). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting solution was diluted with 100 mL of ice. The pH value of the solution was adjusted to 8-9 with sat. sodium hydroxide (100 mL). The resulting solution was extracted with 2×500 mL of ethyl acetate and the organic layers combined and dried over sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 7 g (51%) of 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as a yellow solid. Intermediate 31.5: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (200 mg, 0.59 mmol, 1.00 equiv), Fe (360 mg, 6.43 mmol, 8.60 equiv), hydrogen chloride (0.02 mL), ethanol (0.6 mL), water (0.2 mL). The resulting solution was stirred for 0.5 h at 80° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 0.2 g (crude) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Compound 31: 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic Acid Following the procedures outlined in Example 30, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, D2O+DMSO-d6, ppm): δ 7.67 (s, 1H), 7.33 (t, J=8.1 Hz, 1H), 7.07-7.15 (m, 2H), 6.81-6.86 (m, 2H), 4.39-4.66 (m, 3H), 3.75-3.81 (m, 1H), 3.45-3.50 (m, 1H), 3.02-3.08 (m, 5H), 1.67-1.78 (m, 2H). MS (ES, m/z): 494.0 [M+H]+. Example 32 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Compound 32: 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.28 (s, 4H), 6.81 (s, 1H), 4.73-4.77 (m, 2H), 4.57 (m, 1H), 3.81 (s, 1H), 3.66 (s, 1H), 3.18 (s, 3H), 3.06 (s, 2H), 1.74 (m, 4H), 1.20-1.35 (m, 1H). MS (ES, m/z): 508 [M+H]+ Example 33 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Compound 33: 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic Acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.54 (s, 1H), 7.38 (s, 1H), 7.25 (s, 1H), 7.11 (s, 1H), 6.94 (m, 2H), 4.66 (s, 1H), 4.55-4.51 (m, 1H), 3.89 (s, 1H), 3.65 (m, 2H), 3.18 (s, 3H), 3.05 (s, 2H), 1.71 (m, 4H). MS (ES, m/z): 508 [M+H]+. Example 34 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Intermediate 34.1: (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (200 mg, 0.65 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine(1.2 mL). This was followed by the addition of bis(trichloromethyl) carbonate (200 mg, 0.67 mmol, 1.03 equiv) slowly with stirring at 0-5° C. The resulting solution was stirred for 1 h at room temperature. To this was added triethylamine (1 mL) followed by (S)-dimethyl 2-aminosuccinate (200 mg, 1.24 mmol, 1.91 equiv) in several batches. The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum and the residue was applied onto a silica gel column and eltued with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 50 mg (15%) of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate as yellow oil. Compound 34: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate (100 mg, 0.20 mmol, 1.00 equiv) in methanol(5 mL), water (1 mL), sodium hydroxide (30 mg, 0.75 mmol, 3.71 equiv). The resulting solution was stirred for 3 h at room temperature and then concentrated under vacuum. The pH of the solution was adjusted to 3-4 with 1N hydrochloric acid. The solids were collected by filtration and the residue was lyophilized. This resulted in 16 mg (16%) of (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.98 (s, 1H), 7.66 (s, 1H), 7.38-7.44 (d, J=17.1 Hz, 2H), 7.12-7.15 (d, J=8.4 Hz, 2H), 6.78 (s, 1H), 6.60-6.63 (s, 1H), 4.48-4.54 (m, 4H), 3.63-3.66 (s, 2H), 3.01 (s, 1H), 2.51-2.84 (m, 2H). MS (ES, m/z): 466 [M+H]+. Example 35 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Compound 35: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic Acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): δ 8.88 (s, 1H), 7.54 (s, 1H), 7.31-7.18 (m, 3H), 6.83-6.78 (m, 2H), 6.53-6.51 (m, 1H), 4.49-4.47 (m, 1H), 4.29 (m, 1H), 3.87 (m, 2H), 3.32 (m, 2H), 2.76-2.59 (m, 2H), 2.50 (s, 3H). MS 466 [M+H]+. Example 36 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Compound 36: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Following the procedures outlined in Example 34, substituting (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave the title compound. 1H-NMR (300 MHz, DMSO, ppm) δ 12.32 (s, 2H), 8.63 (s, 1H), 7.47 (s, 1H), 7.30-7.33 (d, J=8.1 Hz, 2H), 7.06-7.09 (d, J=5.4 Hz, 2H), 6.79 (s, 1H), 6.45-6.48 (d, J=8.1 Hz, 1H), 4.19-4.20 (s, 2H), 3.68 (s, 2H), 2.95 (s, 1H), 2.68 (s, 1H), 2.45 (s, 3H), 2.27-2.30 (s, 2H), 1.99-2.02 (s, 1H), 1.76-7.78 (s, 1H). MS (ES, m/z): 480 [M+H]+. Example 37 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Compound 37: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic Acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline and (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 8.74 (s, 1H), 7.67 (s, 1H), 7.42 (m, 1H), 7.27-7.25 (m, 2H), 6.79 (m, 2H), 6.52-6.49 (m, 1H), 4.63-4.58 (m, 1H), 4.44 (m, 2H), 4.20-4.16 (m, 1H), 3.72-3.64 (m, 2H), 2.99 (s, 3H), 2.34-2.27 (m, 2H), 2.01-1.97 (m, 2H), 1.82-1.77 (m, 2H). MS 480 [M+H]+. Example 38 (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Intermediate 38.1: 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (300 mg, 0.98 mmol, 1.00 equiv) in dichloromethane (10 mL). This was followed by the addition of 4-nitrophenyl chloroformate (230 mg, 1.14 mmol, 1.20 equiv) in several batches at room temperature. The resulting solution was stirred for 3 h at room temperature. The solids were collected by filtration. This resulted in 0.3 g (65%) of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate as a yellow solid. Intermediate 38.2: Diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (200 mg, 0.42 mmol, 1.00 equiv) in N,N-dimethylformamide (6 mL), a solution of diethyl aminomethylphosphonate (144 mg, 0.63 mmol, 1.50 equiv) in N,N-dimethylformamide (1 mL) and triethylamine (64 mg). The resulting solution was stirred overnight at room temperature. The reaction was then quenched by the addition of 10 mL of water. The resulting solution was extracted with 3×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 40 mg (17%) of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate as a solid. Compound 38: (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate (40 mg, 0.08 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (0.15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. To the above was added methanol (5 mL) and sodium hydroxide (5 mg). The resulting mixture was stirred 0.5 h at room temperature. The solids were collected by filtration and the residue was lyophilized. This resulted in 17.4 mg (42%) a sodium salt of the title compound as a yellow solid. 1H-NMR (300 MHz, CD3OD+DCl, ppm): δ 7.46-7.49 (m, 3H), 7.20-7.23 (d, J=8.7 Hz, 2H), 6.80 (s, 1H), 4.77-4.83 (d, J=15.9 Hz, 1H), 4.65-4.71 (m, 1H), 4.50-4.55 (d, J=16.2 Hz, 1H), 3.79-3.85 (m, 1H), 3.56-3.69 (m, 3H), 3.32 (s, 3H). MS (ES, m/z): 444 [M+H]+. Example 39 (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Compound 39: (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic Acid Following the procedures outlined in Example 38, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.37 (m, 3H), 6.96 (m, 1H), 6.82 (s, 1H), 4.81 (m, 1H), 4.70 (m, 1H), 4.54 (m, 1H), 3.83 (m, 1H), 3.65 (m, 3H), 3.19 (s, 3H). Example 40 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic Acid Intermediate 40.1: Ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate Following the procedures outlined in Example 34, substituting ethyl 3-aminopropanoate for (S)-dimethyl 2-aminosuccinate gave the title compound as a yellow oil. Intermediate 40.2: 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic Acid Into a 50-mL round-bottom flask, was placed a solution of ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate (150 mg, 0.33 mmol, 1.00 equiv) in methanol (10 mL), water (2 mL) and sodium hydroxide (80 mg, 2.00 mmol). The resulting solution was stirred for 2 h at 25° C. and the resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7-8 with hydrogen chloride. The resulting solution was extracted with chloroform (3×10 ml) and the organic layers combined and dried over sodium sulfate. This resulted in 31.5 mg (22%) of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.56 (1H, s), 7.45 (1H, s), 7.29-7.32 (2H, d, J=8.1 Hz), 7.04-7.07 (2H, d, J=8.4 Hz), 6.79 (1H, s), 6.21 (1H, s), 4.16 (1H, m), 3.56-3.58 (2H, d, J=5.4 Hz), 3.27-3.29 (2H, d, J=6 Hz), 2.82-2.87 (1H, m), 2.59 (2H, s), 2.38-2.40 (4H, m). MS (ES, m/z): 422 [M+H]+. Intermediate 40.3: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid (200 mg, 0.47 mmol, 1.00 equiv) in dichloromethane (20 mL), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (136 mg, 0.71 mmol, 1.50 equiv) and 4-dimethylaminopyridine (115 mg, 0.94 mmol, 1.99 equiv). This was followed by the addition of a solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (102 mg, 0.71 mmol, 1.49 equiv) in dichloromethane (2 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was washed with KHSO4 (2×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 240 mg (92%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea as a yellow solid. Intermediate 40.4: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea (150 mg, 0.27 mmol, 1.00 equiv) in dichloromethane(10 mL) and acetic acid (1 mL) Sodium borohydride (42 mg, 1.11 mmol, 4.04 equiv) was added and the resulting solution was stirred overnight at room temperature. The resulting mixture was washed with saturated aqueous sodium chloride (3×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 30 mg (21%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea as a yellow solid. Compound 40: 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic Acid Into a 50-mL round-bottom flask, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea (100 mg, 0.19 mmol, 1.00 equiv) in 2,2,2-trifluoroacetic acid (10 mL), and water (2 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with methanol:water (60%). The residue was lyophilized. This resulted in 36.3 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.55 (s, 1H), 7.64 (s, 1H), 7.39-7.42 (d, J=8.7 Hz, 2H), 7.09-7.12 (d, J=8.4 Hz, 2H), 6.79 (s, 1H), 6.23-6.27 (m, 1H), 4.33-4.50 (m, 3H), 3.62 (s, 1H), 3.19 (m, 1H), 3.08-3.10 (d, J=5.7 Hz, 2H), 2.94 (s, 3H), 1.70-1.77 (d, J=23.1 Hz, 2H), 1.41-1.46 (d, J=12 Hz, 2H). MS (ES, m/z): 494 [M+H]+. Example 41 N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 41.1 (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate To a solution of dry DMF (50 mL) under N2 was added 3,4,5-trifluorobenzaldehyde (4.26 g, 26.6 mmol) followed by ethyl 2-(triphenylphosphoranylidene)propionate (10.6 g, 29.3 mmol) in portions, keeping the solution at room temperature. After 1 hour, TLC (10% EtOAC in Hexanes) showed complete conversion, and the solvent was removed by rotary evaporation. The resulting material was brought up in 50 mL methyl t-butyl ether (MBTE) and the precipitate removed by filtration and washed with additional MBTE (3×50 mL). After concentration, the resulting filtrate was applied onto a silica gel column (25% EtOAc in hexanes) resulting in 6.0 g of the title compound (93%) as a white powder. Intermediate 41.2 (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate To a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (Intermediate 41.1, 6.0 g, 24.56 mmol) in dry DMF (25 mL) under N2 was added phenol (2.774 g, 29.5 mmol) and K2CO3 (10.2 g, 73.68 mmol). The resulting solution was brought to 120° C. and stirred for 3 hours at which point TLC indicated complete conversion. The solvent was removed by rotary evaporation and the resulting residue brought up in EtOAc (200 mL) and washed with water (2×200 mL), 1N NaOH (2×200 mL) and brine (200 mL). The organic layer was dried over Na2SO4 and concentrated to yield 6.94 g (89%) of the title compound as tan crystals. Intermediate 41.3 (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (1 g, 3.14 mmol) in DCM (3.14 mL) under N2 was added chlorosulfonic acid (0.419 mL, 6.28 mmol) dropwise. After 1 hour an additional 0.209 mL chlorosulfonic acid was added. After an additional hour the reaction mixture was quenched with ice-water and extracted into EtOAc (2×200 mL). The combined organic layers were dried briefly (<10 min) over Na2SO4 and concentrated to recover 1.283 g of the title compound (98%) as a yellow oil. Intermediate 41.4 N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 41.3) (104.3 mg, 0.25 mmol) in chloroform (0.5 mL) was added DIEA (0.0869 mL, 0.5 mmol) and a solution of butane-1,4-diamine (12.6 uL, 0.125 mmol) and DIEA (0.087 mL, 0.5 mmol) in chloroform (0.125 mL). After one hour the solvent was removed and the resulting residue brought up in EtOAc (40 mL), washed with water (2×40 mL), brine (40 mL) and dried over Na2SO4. Removing the solvent gave 118 mg of the title compound which was used without further purification. Intermediate 41.5: N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide] To a solution of Intermediate 41.4 (118 mg, 0.139 mmol) in MeOH (1.39 mL) was added a NaOH (0.3M in water, 0.278 mL, 0.835 mmol). The reaction was placed under N2 and heated at 60° C. for 30 minutes. After cooling the reaction mixture was diluted with water (20 mL), partitioned with EtOAc (20 mL) and acidified with HCl. After extracting with EtOAc (2×20 mL) the combined organic phases were dried over Na2SO4 and the solvent removed to give 40.7 mg of the title compound. Compound 41: N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (2 mL) was added to intermediate 41.5 (40.7 mg, 0.051 mmol) and was heated at 80c under N2. After 70 minutes, the solvent was removed in vacuo. The residue was brought up in toluene (2 mL) and the toluene was also removed in vacuo. The bis-acid chloride was dissolved in DME (0.5 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (7.8 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.80 (d, 4H), 7.44 (s, 2H), 7.30 (d, 4H), 7.11 (d, 4H), 2.80 (m, 4H), 2.18 (s, 6H), 1.44 (m, 4H). MS (m/z): 875.16 (M+H). Example 42 N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 42: N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide]) Following the procedures outlined in Example 41, compound 42 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.06 (d, 6H), 7.04 (s, 2H), 4.02 (s, 4H), 2.19 (s, 6H). MS (m/z): 924.21 (M+H) Example 43 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 43.1 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide) To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate(intermediate 41.3) (225 mg, 0.54 mmol) in DCM (3 mL) was added a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (38 mg, 0.26 mmol) and triethylamine (101 mg, 1.0 mmol) in DCM (2 mL) dropwise. After 30 minutes, 1N HCl was added (10 mL) and the reaction mixture was extracted with DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (262 mg). Intermediate 43.2 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide) A solution of the intermediate 43.1 (262 mg, 0.29 mmol) and 3N NaOH (0.6 mL, 1.8 mmol) in methanol (3 mL) was heated at 65° C. for 1 hour. The reaction mixture was cooled to RT and the methanol removed at reduced pressure and 1N HCl (3 mL, 3 mmol) was added to the residue. The product was extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (173 mg). Compound 43: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (1 mL) was added to intermediate 43.2 (63 mg, 0.074 mmol) and was heated at 80c. After 2 hours, the solvent was removed in vacuo. The bis-acid chloride was dissolved in DME (1 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (20 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.83 (d, j=8.8 Hz, 4H), 7.43 (s, 2H), 7.30 (d, j=8.9 Hz, 4H), 7.11 (d, j=8.6 Hz, 4H), 3.42 (t, j=5.5 Hz, 8H), 3.03 (t, j=5.4 Hz, 4H), 2.17 (s, 6H). MS (m/z): 935.08 (M+H). Example 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 44.1: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (250 mg, 0.60 mmol) in DCM (3 mL) was added a solution of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (157 mg, 0.72 mmol) and triethylamine (72 mg, 0.72 mmol) in DCM (2 mL). After 15 minutes, water (10 mL) was added and the reaction mixture was extracted with DCM (2×25 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried (Na2SO4) and concentrated. The crude material was purified by flash chromatography on silica gel eluting with 50% EtOAc in DCM to give the title compound (169 mg). Intermediate 44.2: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (169 mg, 0.28 mmol) in THF (6 ml) and water (0.6 mL) under nitrogen was added trimethylphosphine (26 mg, 0.34 mmol). After stirring for 3 hours, the solvents were removed at reduced pressure and. The residue was dissolved in water (5 mL) and extracted with EtOAc (3×25 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (162 mg). Intermediate 44.3: N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] A solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (71 mg, 0.17 mmol) in EtOAc (1 mL) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (84 mg, 0.15 mmol) and triethylamine (22 mg, 0.22 mmol) in DCM (1 mL) with stirring. After 30 minutes, water (10 mL) was added and the product extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (177 mg). Compound 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures outlined in Example 43, intermediate 44.3 was converted to the bis-guanidine and gave, after purification by preparative HPLC, the title compound (21 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.8 Hz, 4H), 7.44 (s, 2H), 7.30 (d, j=8.8 Hz, 4H), 7.10 (d, j=8.8 Hz, 4H), 3.54 (m, 4H), 3.48 (m, 4H), 3.43 (t, j=5.5 Hz, 4H), 3.04 (t, j=5.5 Hz, 4H), 2.17 (d, j=1.2 Hz, 6H). MS (m/z): 979.05 (M+H). Example 45 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 45: (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide A 4.3 M solution of guanidine free base in methanol was prepared. A 25% solution of NaOMe in MeOH (1.03 mL, 4.5 mmol) was added to guanidine hydrochloride (480 mg, 5.0 mmol), and the mixture was stirred for 30 minutes. The mixture was filtered (0.2 t, PTFE) to give the guanidine free base solution. A portion (0.3 mL, 1.3 mmol) was added to (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (74 mg, 0.13 mmol) with stirring. After 15 minutes, water (10 mL) was added and the product extracted with DCM (4×20 mL). The combined organic layers were dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (34 mg) as a TFA salt. 1H-NMR (400 mHz, d6-DMSO) δ 11.14 (s, 1H), 8.38 (br s, 4H), 7.78 (d, j=9.0 Hz, 2H), 7.5 (m, 3H), 7.45 (d, j=9.1, 2H), 7.42 (s, 1H), 7.19 (d, j=8.8 Hz, 2H), 3.55 (m, 6H), 3.44 (m, 4H), 3.36 (m, 2H), 2.95 (m, 2H), 2.87 (m, 2H), 2.11 (s, 3H). MS (m/z): 586.11 (M+H). Example 46 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 46.1 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] Carbonyldiimidisole (16.2 mg, 0.10 mmol) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 44.2) (125 mg, 0.22 mmol) in DMF (2 mL) and stirred for 23 hours at which time the solvent was removed under vacuum. The residue was dissolved in EtOAc, washed with water (4×10 mL), dried (Na2SO4) and concentrated to give the title compound (132 mg). Compound 46: N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] A solution of 4.4 M guanidine in methanol (Example 45) (0.5 mL, 2.2 mmol) was added to a solution of intermediate 46.1 (65 mg, 0.055 mmol) in DMF, and stirred for 4 hours. The reaction was quenched with 50% aqueous AcOH, and then concentrated to dryness. The residue was purified by preparative HPLC to give the title compound (35 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.2 Hz, 4H), 7.43 (d, j=1.4 Hz, 2H), 7.30 (d, j=9.0 Hz, 4H), 7.11 (d, j=9.0 Hz, 4H), 3.57 (m, 12H), 3.46 (m, 12H), 3.26 (t, J=5.4 Hz, 4H), 3.04 (t, j=5.4 Hz, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1197.07 (M+H). Example 47 N,N′-(13,20 dioxo-3, 6, 9, 24, 27, 30-hexaoxa-12, 21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 47: N,N′-(13,20 dioxo-3, 6, 9, 24, 27, 30-hexaoxa-12, 21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in Example 46, substituting subaric acid bis(N-hydroxysuccinimide ester) for carbonyldiimidazole gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (m, 4H), 7.43 (m, 2H), 7.30 (m, 4H), 7.11 (m, 4H), 3.58 (m, 12H), 3.50 (m, 8H), 3.32 (m, 4H), 3.05 (t, j=5.4 Hz, 4H), 2.18 (d, j=1.6 Hz, 6H), 2.15 (m, 4H), 1.56 (m, 4H), 1.29 (m, 4H). MS (m/z): 1309.12 (M+H). Example 48 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 48.1: (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide To (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (250 mg, 0.42 mmol) was added 4.4 M guanidine in in methanol (as prepared in example 45) (1.0 mL, 4.4 mmol) and the reaction was stirred at RT. After 30 minutes, water (10 mL) was added, and the mixture was extracted with DCM (4×25 mL). The aqueous phase was adjusted to pH 7, and extracted with DCM (2×25 mL). The combined organic extracts were dried (Na2SO4) and concentrated to give the title compound (245 mg). Compound 48: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide To a mixture of (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide (70 mg, 0.11 mmol) and propargyl alcohol (6.4 mg, 0.11 mmol) in t-butanol (0.22 mL) and water (0.22 mL) was added 1 M sodium ascorbate (11 μL, 0.011 mmol) and 0.3 M copper sulfate (3.6 μL, 0.0011 mmol) and the reaction was stirred at RT. After 14 hours, the product was purified by preparative HPLC to give the title compound (22 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.93 (s, 1H), 7.84 (m, , 2H), 7.44 (s, 1H), 7.30 (m, 2H), 7.11 (m, 2H), 4.64 (d, j=0.6 Hz, 2H), 4.55 (t, j=5.0 Hz, 2H), 3.86 (t, j=5.0 Hz, 2H), 3.57 (m, 4H), 3.52-3.42 (m, 6H), 3.03 (t, j=5.4 Hz, 2H), 2.18 (d, j=1.3 Hz, 3H). MS (m/z): 668.14 (M+H). Example 49 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 49: N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in example 48, substituting propargyl ether for propargyl alcohol gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 8.00 (s, 2H), 7.83 (m, 4H), 7.43 (s, 2H), 7.30 (m, 4H), 7.10 (m, 4H), 4.61 (s, 4H), 4.55 (m, 4H), 3.86 (m, 4H), 3.58-3.50 (m, 8H), 3.50-3.40 (m, 12H), 3.01 (m, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1317.09 (M+H). Example 50 N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) Intermediate 50.1: 2,2′-(piperazine-1,4-diyl)diacetonitrile To a solution of piperazine (6 g, 69.77 mmol, 1.00 equiv) in acetonitrile (150 mL) was added potassium carbonate (19.2 g, 139.13 mmol, 2.00 equiv) and the mixture was stirred. To this was added dropwise a solution of 2-bromoacetonitrile (16.7 g, 140.34 mmol, 2.00 equiv) in acetonitrile (100 mL) and the suspension was stirred for 4 h at room temperature. The solids were filtered out and the resulting solution was concentrated under vacuum. The crude product was purified by re-crystallization from methanol resulting in 7.75 g (68%) of Intermediate 50.1 as a white solid. Intermediate 50.2: 2,2′-(piperazine-1,4-diyl)diethanamine To a suspension of lithium aluminum hydride (LiAlH4; 700 mg, 18.42 mmol, 4.30 equiv) in tetrahydrofuran (40 mL) cooled to 0° C. was added dropwise a solution of Intermediate 50.1 (700 mg, 4.27 mmol, 1.00 equiv) in tetrahydrofuran (10 mL). The mixture was stirred for 15 minutes at 0° C. and heated to reflux for 3 h. The reaction was cooled, the pH adjusted to 8-9 with potassium hydroxide (50%), and the solids filtered out. The resulting mixture was concentrated under vacuum and the resulting solids washed with hexane to afford 0.3 g (41%) of Intermediate 50.2 as a yellow solid. Intermediate 50.3: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-(benzyloxy)benzenesulfonamide) To Intermediate 50.2 (500 mg, 2.91 mmol, 1.00 equiv) in dichloromethane (10 mL) was added triethylamine (1.46 g, 0.01 mmol, 2.00 equiv) and 4-(benzyloxy)benzene-1-sulfonyl chloride (2.0 g, 0.01 mmol, 2.40 equiv) and the resulting solution was stirred for 2 h at room temperature. The reaction was diluted with dichloromethane, washed with 3×10 mL of water, dried over sodium sulfate then filtered and concentrated under vacuum to afford 0.9 g (47%) of Intermediate 50.3 as a yellow solid. Intermediate 50.4: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-hydroxybenzenesulfonamide) To intermediate 50.3 (3 g, 4.52 mmol, 1.00 equiv) in N,N-dimethylformamide (500 mL) and methanol (100 mL) was added Palladium on carbon (1 g) and the suspension stirred under hydrogen gas for 4 h at room temperature. The solids were filtered out and the resulting mixture was concentrated under vacuum to afford 1.5 g (69%) of Intermediate 50.4 as a gray solid. Intermediate 50.5: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis((E)-ethyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate) To Intermediate 50.4 (1 g, 2.06 mmol, 1.00 equiv) in N,N-dimethylformamide (30 mL) was added Cs2CO3 (1.45 g, 4.45 mmol, 2.16 equiv) and the resulting suspension stirred for 2 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (1.1 g, 4.51 mmol, 2.19 equiv) in N,N-dimethylformamide (10 mL) dropwise with stirring. The reaction was stirred for 0.5 h at room temperature and then overnight at 90° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and then eluted with dichloromethane:methanol (100:1) to afford 390 mg (20%) of Intermediate 50.5 as a yellow solid. Intermediate 50.6: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic Acid) To Intermediate 50.5 (170 mg, 0.16 mmol, 1.00 equiv, 90%) in 1:1 methanol/tetrahydrofuran (20 mL) was added lithium hydroxide (4 equiv, 30 mg) and the reaction was stirred for 2 h at 27° C. The pH value of the solution was adjusted to 1˜2 with aqueous hydrochloric acid (6 mol/L) and the solids were collected by filtration. The residue was washed with ethyl acetate(2×5 mL) and then dried under vacuum to afford 150 mg (94%) of Intermediate 50.6 as a white solid. Compound 50: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) To a solution of Intermediate 50.6 (100 mg, 0.09 mmol, 1.00 equiv, 80%) in tetrahydrofuran (30 mL) was added carbonyl diimidazole (CDI; 58 mg, 0.36 mmol, 4.00 equiv) and the resulting solution was stirred for 1 h at 25° C. To this was added guanidine (2M in methanol, 10 ml) and the resulting solution was stirred for an additional 14 h at 30° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and eluted with dichloromethane:methanol (10:1). The crude product (230 mg) was then purified by reverse-phase (C18) preparative-HPLC to afford 16 mg (17%) of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.89-7.92 (4H, d, J=8.7 Hz), 7.50 (2H, s), 7.34-7.36 (4H, d, J=8.7 Hz), 7.16-7.19 (4H, d, J=8.7 Hz), 2.88-3.16 (16H, m), 2.20 (6H, s); MS (ES, m/z): 959 [M+H]+ Example 51 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic Acid Intermediate 51.1: (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylic Acid To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (900 mg, 2.83 mmol, 1.00 equiv) in methanol (20 mL) was added methanolic 2M LiOH (50 mL) and the resulting solution stirred for 2 h. The resulting mixture was concentrated under vacuum, the pH value of the solution was adjusted to 5-6 with aqueous HCl (6 mol/L) and the mixture was extracted with 3×20 mL of ethyl acetate. The organic layers were combined, washed with 2×10 mL of sodium chloride (sat.) and then dried over anhydrous sodium sulfate. The solids were filtered out and the solution was concentrated to afford 0.7 g (85%) of Intermediate 51.1 as a white solid. Intermediate 51.2: (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To Intermediate 51.1 (1 g, 3.14 mmol, 1.00 equiv) in dichloromethane (15 mL) at 0-5° C. was added dropwise a solution of sulfurochloridic acid (8.5 g, 73.28 mmol, 23.00 equiv) in dichloromethane (5 mL). The reaction was stirred overnight at 25° C. in an oil bath, and then quenched by the addition of 200 mL of water/ice. The mixture was extracted with 4×50 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate to afford 1.1 g (90%) of Intermediate 51.2 as a yellow solid. Intermediate 51.3: (E)-3-(4-(4-(N-(4-(diethoxyphosphoryl)phenyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To diethyl 4-aminophenylphosphonate (intermediate 2.2) (150 mg, 0.66 mmol, 1.00 equiv) in pyridine (3 mL) was added Intermediate 51.2 (300 mg, 0.77 mmol, 1.22 equiv) in several portions. The mixture was stirred for 3 h at 30° C. and then concentrated, the pH value of the solution adjusted to 3 with aqueous HCl (1 mol/L) and the resulting mixture extracted with 3×30 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and eluted with dichloromethane:methanol (50:1) to afford 100 mg (26%) of Intermediate 51.3 as a yellowish solid. Intermediate 51.4: (E)-diethyl 4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonate To Intermediate 51.3 (150 mg, 0.26 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added CDI (120 mg, 0.74 mmol, 1.40 equiv) and the reaction stirred for 2 h at RT. To this was added guanidine (1M in DMF; 0.8 ml) and the reaction was stirred overnight at 30° C. The resulting mixture was concentrated under vacuum and the crude product was purified by reverse phase (C18) Prep-HPLC to afford 40 mg (25%) of Intermediate 51.4 as a White solid. Compound 51: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic Acid To Intermediate 51.4 (40 mg, 0.06 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added bromotrimethylsilane (15 mg, 0.09 mmol, 1.37 equiv) dropwise with stirring and the resulting solution was stirred at 40° C. overnight. The resulting mixture was concentrated, diluted with methanol (2 mL) and then concentrated under vacuum. This operation was repeated four times. The crude product (75 mg) was purified by reverse phase (C18) Prep-HPLC to afford 12.5 mg of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): 10.54 (s, 1H), 7.82-7.79 (d, J=8.4 Hz, 2H), 7.52-7.40 (m, 5H), 7.18-7.10 (m, 4H), 2.08 (s, 3H); 31P-NMR (400 MHz, DMSO, ppm): 11.29; MS (ES, m/z): 567 [M+H]+ Example 52 (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic Acid Intermediate 52.1: Diethyl 4-((4-(benzyloxy)phenylsulfonamido)methyl)benzyl-phosphonate To 4-diethyl 4-(aminomethyl)benzylphosphonate (intermediate 6.1) (60 mg, 0.23 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (47 mg, 0.47 mmol, 2.00 equiv) was added dropwise a solution of 4-(benzyloxy)benzene-1-sulfonyl chloride (72 mg, 0.26 mmol, 1.10 equiv) in dichloromethane (5 mL) and the resulting solution was stirred for 1 h at 25° C. The reaction mixture was concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1). The isolated product was washed with 2×50 mL of n-hexane resulting in 50 mg (43%) of Intermediate 52.1 as a white solid. Intermediate 52.2: Diethyl 4-((4-hydroxyphenylsulfonamido)methyl)benzyl-phosphonate To Intermediate 52.1 (1.2 g, 2.39 mmol, 1.00 equiv) in methanol (20 mL) in N,N-dimethylformamide (5 mL) was added Palladium on carbon (0.9 g) and the suspension stirred overnight at 30° C. under a hydrogen atmosphere. The reaction was filtered and concentrated under vacuum to afford 1 g (91%) of Intermediate 52.2 as brown oil. Intermediate 52.3: (E)-ethyl 3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)-sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To Intermediate 52.2 (100 mg, 0.24 mmol, 1.00 equiv) in N,N-dimethylformamide (10 mL) was added Cs2CO3 (160 mg, 0.49 mmol, 2.10 equiv) and the mixture was stirred for 1.5 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (60 mg, 0.25 mmol, 1.10 equiv) in N,N-dimethylformamide (5 mL) and the reaction was stirred overnight at 90° C. The solids were filtered out and the filtrate was concentrated under vacuum, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (200:1) to afford 50 mg (23%) of Intermediate 52.3 as yellow oil. Intermediate 52.4: (E)-3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)sulfamoyl)-phenoxy)-3,5-difluorophenyl)-2-methylacrylic Acid To Intermediate 52.3 (700 mg, 1.10 mmol, 1.00 equiv) in tetrahydrofuran (20 mL) and water (20 mL) was added LiOH (700 mg, 29.17 mmol, 30.00 equiv) and the resulting solution was stirred for 1 h at 25° C. The reaction was concentrated, the pH value of the solution was adjusted to 4-5 with aqueous HCl (2 mol/L) and the mixture was extracted with 2×150 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1-2:1) to afford 250 mg (35%) of Intermediate 52.4 as a white solid. Compound 52: (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic Acid Compound 52 was prepared from Intermediate 52.4 using the procedures described under Example 51, except preparative HPLC was not required, affording 84 mg (89%) of a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.83-7.80 (d, J=8.7 Hz, 2H), 7.52 (s, 1H), 7.38-7.36 (d, J=8.7 Hz, 2H), 7.23-7.20 (m, 2H), 7.17-7.09 (m, 4H), 4.06 (s, 2H), 3.11 (s, 1H), 3.04 (s, 1H), 2.23-2.23 (s, 3H). MS (ES, m/z): 595 [M+H]+ Example 53 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic Acid Compound 53: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic Acid Compound 53 was prepared from diethyl 4-aminobenzylphosphonate (intermediate 3.2) using the procedures described in Example 52 except the final product was purified by preparative HPLC. 1H-NMR (300 MHz, CD3OD, ppm): 7.77-7.74 (d, J=8.7 Hz, 2H), 7.46 (s, 1H), 7.33-7.31 (d, J=8.7 Hz, 2H), 7.21-7.19 (m, 2H), 7.06-7.11 (m, 4H), 3.04-2.97 (d, J=21.6 Hz, 2H), 2.19 (s, 3H); 31P-NMR (400 MHz, CD3OD, ppm): 22.49. MS (ES, m z): 581 [M+H]+. Example 54 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic Acid Compound 54: (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic Acid Compound 54 was prepared from diethyl 3-aminopropylphosphonate (intermediate 4.1) using the procedures described under Example 51. 1H-NMR (400 MHz, DMSO, ppm): 7.81-7.78 (d, J=8.4 Hz, 2H), 7.57 (s, 1H), 7.42-7.39 (d, J=9.3 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 2.75-2.77 (q, 2H), 2.10 (s, 3H), 1.59-1.42 (m, 4H). MS (ES, m/z): 533 [M+H]+ Example 55 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic Acid Compound 55: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic Acid Compound 55 was prepared from diethyl 2-aminoethylphosphonate (intermediate 1.9) using the procedures described under Example 51, except purification of the final product by preparative HPLC was not required. 1H-NMR (400 MHz, DMSO, ppm): 11.02 (s, 1H), 8.28 (s, 4H), 7.79-7.82 (d, J=9.2 Hz, 2H), 7.62-7.65 (t, 1H), 7.54-7.49 (m, 3H), 7.26-7.24 (d, J=8.8 Hz, 2H), 3.42-3.58 (m, 2H), 2.15 (s, 3H), 1.73-1.65 (m, 2H); 31P-NMR (400 MHz, DMSO, ppm): 21.36. MS (ES, m/z): 519 [M+H]+ Example 56 (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic Acid Compound 56: (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic Acid Compound 56 was prepared from diethyl aminomethylphosphonate (intermediate 5.3) using the procedures described under Example 51, except purification of the final product by Flash-Prep-HPLC with CH3CN:water (10:100). 1H-NMR (300 MHz, DMSO, ppm): δ 7.84-7.81 (d, J=8.1 Hz, 2H), 7.57 (s, 1H), 7.45-7.42 (d, J=9.3 Hz, 3H), 7.18-7.15 (d, J=8.4 Hz, 2H), 3.04-3.01 (m, 2H), 2.08 (s, 3H). MS (ES, m/z): 505 [M+H]+. Example 57 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Compound 57: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenyl-sulfonamido)acetic Acid Compound 57 was prepared from ethyl 2-((diethoxyphosphoryl)methylamino)acetate (intermediate 8.2) using the procedures described under Example 51. 1H-NMR (300 MHz, DMSO, ppm): δ 8.33 (s, 4H), 7.84-7.81 (d, J=8.1 Hz, 2H), 7.52-7.50 (d, J=7.8 Hz, 2H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.11 (s, 2H), 2.14 (s, 3H); MS (ES, m/z): 563 [M+H]+. Example 58 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.1: (E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic Acid (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid (Intermediate 51.2) was converted to intermediate 58.1 using procedures outlined in Example 58, with aqueous ammonia as the amine. The title compound was obtained as a yellow solid Intermediate 58.2: (E)-methyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.1 (2 g, 5.42 mmol, 1.00 equiv) in methanol (60 mL). This was followed by the addition of thionyl chloride (2.5 g, 21.19 mmol, 4.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at 50° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7 with ammonia (2 mol/L). The resulting solution was extracted with 10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (30:1-1:1). This resulted in 2.1 g (97%) of the title compound as a white solid. Intermediate 58.3: (E)-methyl 3-(4-(4-(N-(ethoxycarbonyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.2 (280 mg, 0.73 mmol, 1.00 equiv) in acetone (20 mL). This was followed by the addition of potassium carbonate (200 mg, 1.45 mmol, 2.00 equiv). The mixture was stirred for 3 h at room temperature. To this was added ethyl chloroformate (90 mg, 0.83 mmol, 1.20 equiv). The resulting solution was stirred for 6 h at 65° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 2-3 with hydrogen chloride (1 mol/L). The resulting solution was extracted with 2×50 ml of ethyl acetate and the organic layers combined. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (72%) of the title compound as yellow oil. Intermediate 58.4: (E)-methyl 3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)-sulfamoyl)phenoxy)phenyl)-2-methylacrylate Into a 100-mL round-bottom flask, was placed a solution of intermediate 58.3 (300 mg, 0.66 mmol, 1.00 equiv) in toluene (20 mL), 2-methoxyethanamine (100 mg, 1.33 mmol, 1.10 equiv). The resulting solution was stirred for 1 h at 110° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (1:1). This resulted in 0.3 g (92%) of the title compound as a yellow solid. Compound 58: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.4 was converted to compound 58 using the procedures described under Example 52. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO, ppm): 610.62 (s, 1H), 8.33 (s, 3H), 7.94-7.91 (d, J=8.7 Hz, 2H), 7.55-7.52 (d, J=9 Hz, 2H), 7.45 (s, 1H), 7.26-7.22 (d, J=9 Hz, 2H), 6.55 (s, 1H), 3.37-3.27 (m, 2H), 3.21 (s, 3H), 3.15-3.12 (m, 2H), 2.16 (s, 3H). MS (ES, m/z): 512 [M+H]+. Example 59 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic Acid Intermediate 59.1: (E)-di-tert-butyl 2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinate Intermediate 59.1 was prepared from di-tert-butyl 2-aminosuccinate using the procedures described under Example 51. Compound 59: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic Acid Into a 50-mL round-bottom flask, was placed a solution of intermediate 59.1 (100 mg, 0.16 mmol, 1.00 equiv) in tetrahydrofuran (5 mL). This was followed by the addition of 2,2,2-trifluoroacetic acid (10 mL) dropwise with stirring. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 63.6 mg (64%) of a TFA salt of the title compound as a light yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.26 (s, 4H), 7.82-7.79 (d, J=8.7 Hz, 2H), 7.49-7.45 (m, 3H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.00-3.96 (m, 1H), 2.65-2.60 (m, 1H), 2.48-2.41 (m, 1H), 2.13 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 60 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Intermediate 60.1: tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed copper(I) iodide (1.0 g, 5.26 mmol, 0.20 equiv), L-proline (930 mg, 8.09 mmol, 0.30 equiv) in DMSO (50 mL). The resulting solution was stirred for 15 min at room temperature. Then, tert-butyl piperazine-1-carboxylate (5 g, 26.88 mmol, 1.00 equiv), 1,3-dibromobenzene (9.5 g, 40.25 mmol, 1.50 equiv), potassium carbonate (7.4 g, 53.62 mmol, 1.99 equiv) was added. The resulting solution was stirred overnight at 90° C. The reaction was then quenched by the addition of 100 mL of water. The resulting solution was extracted with 2×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 2.9 g of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate as a white solid. Intermediate 60.2: 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic Acid Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate (3.8 g, 11.14 mmol, 1.00 equiv) in toluene/tetrahydrofuran=1:1 (40 mL). This was followed by the addition of n-BuLi (4.9 mL, 2.5M/L) dropwise with stirring at −70° C. The resulting solution was stirred for 30 min at −70° C. To this was added triisopropyl borate (2.5 g, 13.30 mmol, 1.19 equiv)dropwise with stirring at −70° C. The mixture was warmed to 0° C., the reaction was then quenched by the addition of 13 mL of saturated ammonium chloride and 3.4 mL of water. Phosphoric acid (85 wt %, 1.5 g, 1.2 equiv) was added and the mixture was stirred for 30 min. The organic layer was separated and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was dissolved in 20 mL of toluene. The product was precipitated by the addition of 80 mL of heptane. The solids were washed with 20 mL of heptane and collected by filtration. This resulted in 2.9 g (85%) of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid as a white solid. Intermediate 60.3: 6-chloroquinazoline-2,4(1H,3H)-dione Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-amino-5-chlorobenzoic acid (10 g, 58.48 mmol, 1.00 equiv) in water (100 mL), acetic acid (8 g, 133.33 mmol, 2.24 equiv). This was followed by the addition of NaOCN (8.2 g, 126.15 mmol, 2.13 equiv). The mixture was stirred for 30 mins at 30° C. To this was added sodium hydroxide (86 g, 2.15 mol, 37.00 equiv). The resulting solution was stirred overnight at 30° C. The solids were collected by filtration. The residue was dissolved in water. The pH value of the solution was adjusted to 7 with hydrogen chloride (12 mol/L). The solids were collected by filtration. This resulted in 5 g (44%) of 6-chloroquinazoline-2,4(1H,3H)-dione as a white solid. Intermediate 60.4: 2,4,6-trichloroquinazoline Into a 50-mL round-bottom flask, was placed a solution of 6-chloroquinazoline-2,4(1H,3H)-dione (2.2 g, 11.22 mmol, 1.00 equiv) in 1,4-dioxane (20 mL), phosphoryl trichloride (17 g, 111.84 mmol, 10.00 equiv). The resulting solution was stirred overnight at 120° C. in an oil bath. The resulting mixture was concentrated under vacuum. The reaction was then quenched by the addition of 200 mL of water. The resulting solution was extracted with 3×200 mL of ethyl acetate and the organic layers combined. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.8 g (69%) of 2,4,6-trichloroquinazoline as a white solid. Intermediate 60.5: tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid (intermediate 60.2) (960 mg, 3.14 mmol, 1.00 equiv), 2,4,6-trichloroquinazoline (800 mg, 3.43 mmol, 1.09 equiv), PdCl2(dppf).CH2Cl2 (130 mg, 0.16 mmol, 0.05 equiv), Potassium Carbonate (860 mg, 6.23 mmol, 1.99 equiv) in N,N-dimethylformamide (30 mL). The resulting solution was stirred for 3 h at 85° C. The reaction was then quenched by the addition of 50 mL of saturated brine. The resulting solution was extracted with 2×30 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 0.45 g (31%) of tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate as a yellow solid. Intermediate 60.6: 2,6-dichloro-4-(3-(piperazin-1-yl)phenyl)quinazoline 2,2,2-trifluoroacetate To intermediate 60.5 (100 mg, 0.22 mmol, 1.00 equiv) was added dichloromethane (10 mL) and 2,2,2-trifluoroacetic acid (124 mg, 1.09 mmol, 5.00 equiv) and the resulting solution was stirred for 3 h at 40° C. The reaction was then concentrated under vacuum to afford 70 mg of Intermediate 60.6 as yellow solid. Intermediate 60.7: tert-butyl (4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.6 (70 mg, 0.15 mmol, 1.00 equiv) in dichloromethane (10 mL) was added N-tert-butoxycarbonyl-N′-tert-butoxycarbonyl-N″-trifluoromethanesulfonylguanidine (91 mg, 0.23 mmol, 1.57 equiv) and triethylamine (38 mg, 0.38 mmol, 2.54 equiv) and the resulting solution was stirred for 3 h at 40° C. The mixture was then concentrated under vacuum, the residue applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:8) to afford 70 mg (77%) of Intermediate 60.7 as a yellow solid. Intermediate 60.8: tert-butyl (4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.7 (70 mg, 0.12 mmol, 1.00 equiv) in NMP (1.5 mL) was added guanidine (0.24 mL, 2.00 equiv, 1 mol/L) and 1,4-diaza-bicyclo[2.2.2]octane (26 mg, 0.23 mmol, 1.99 equiv) and the resulting solution stirred for 1.5 h at 25° C. The reaction was quenched by the addition of 20 mL of water and the resulting solution was extracted with 2×20 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (5:1) to afford 30 mg (41%) of Intermediate 60.8 as a yellow solid. Compound 60: 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide To Intermediate 60.8 (30 mg, 0.05 mmol, 1.00 equiv) in dichloromethane (5 mL) was added 2,2,2-trifluoroacetic acid (0.2 mL) and the resulting solution stirred for 6 h at 30° C. The mixture was then concentrated under vacuum and the residue lyophilized to afford 20 mg (75%) of a TFA salt of the title compound as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.97-8.08 (m, 3H), 7.54-7.59 (m, 1H), 7.28-7.39 (m, 3H), 3.71 (d, J=4.8 Hz, 4H), 3.44 (d, J=4.8 Hz, 4H). MS (ES, m/z): 424.0 [M+H]+. Example 61 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Intermediate 61.1: 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline Hydrochloride Following the procedures outlined in example 60, substituting 1,4-dibromobenzene for 1,3-dibromobenzene, 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride was obtained as a red solid. Intermediate 61.2: Methyl 2-(4-(4-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)acetate To methyl 2-bromoacetate (116 mg, 0.76 mmol, 3.00 equiv) in N,N-dimethylformamide (10 mL) was added potassium carbonate (140 mg, 1.01 mmol, 4.00 equiv) followed by the portion-wise addition of Intermediate 61.1 (100 mg, 0.25 mmol, 1.00 equiv) and the reaction was stirred for 4 h at 30° C. The mixture was concentrated under vacuum and the residue applied onto a silica gel column, eluting with ethyl acetate/petroleum ether (1:5) to afford 60 mg (55%) of Intermediate 61.2 as a yellow solid. Intermediate 61.3: Methyl 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetate To Intermediate 61.2 (60 mg, 0.14 mmol, 1.00 equiv) in NMP (5 mL) was added 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 15 mg, 0.13 mmol, 1.00 equiv), guanidine (0.3 mL of a 1M solution in NMP, 2.00 equiv) and the resulting solution was stirred for 2 h at 30° C. The reaction was diluted with 10 mL of water, extracted with 4×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (50:1-20:1) to afford 30 mg (47%) of Intermediate 61.3 as a yellow solid. Compound 61: 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid To Intermediate 61.3 (20 mg, 0.04 mmol, 1.00 equiv) in methanol (5 mL) was added a solution of LiOH (32 mg, 1.33 mmol, 30.00 equiv) in water (1 mL) and the reaction was stirred for 3 h at 25° C. The solution was concentrated under vacuum, the pH value adjusted to 6 with aqueous HCl (1 mol/L) and the resulting solids were collected by filtration to afford 15.6 mg (80%) of compound 61 as a yellow solid. 1H-NMR (300 MHz, DMSO ppm): 8.07-8.06 (t, 1H), 7.96-7.93 (t, 2H), 7.72-7.69 (d, J=8.7 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 3.58-3.54 (m, 4H), 3.43-3.36 (m, 6H). MS (ES, m/z): 440 [M+H]+. Example 62 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Compound 62: 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic Acid Compound 62 was prepared from intermediate 60.6, using the procedures described for Example 61. 1H-NMR (300 HHz, DMSO-d6, ppm): 7.80-7.86 (m, 3H), 7.41-7.46 (m, 1H), 7.16-7.22 (m, 2H), 7.08-7.10 (m, 1H), 3.13 (brs, 4H), 2.71 (brs, 4H). MS (ES, m/z): 440 [M+H]+; Example 63 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Intermediate 63.1: (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic Acid Into a 50-mL 3-necked round-bottom flask, was placed ZnCl2 (0.5 g, 0.50 equiv), acetic anhydride(5 mL). To the above was added sodium (2S,3R,4S,5R)-2,3,4,5,6-pentahydroxyhexanoate (1.6 g, 6.97 mmol, 1.00 equiv, 95%) at −5° C. Anhydrous HCl was introduced in for 0.5 h at 0° C. The resulting solution was stirred overnight at room temperature. The reaction mixture was cooled to 0° C. The reaction was then quenched by the addition of 8 g of ice. The mixture was stirred for 1 h at room temperature. The resulting solution was diluted with 20 mL of water. The resulting solution was extracted with 3×20 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.0 g (35%) of (2R,3 S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid as a yellow liquid. Intermediate 63.2: (2R,3R,4S,5R)-6-chloro-6-oxohexane-1,2,3,4,5-pentayl Pentaacetate Into a 50-mL 3-necked round-bottom flask, was placed a solution of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid (intermediate 63.1) (610 mg, 1.35 mmol, 1.00 equiv, 90%) in CCl4 (30 mL). This was followed by the addition of oxalyl dichloride (3 mL) dropwise with stirring. The resulting solution was heated to reflux for 3 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 0.62 g (crude) of intermediate 63.2 as yellow oil. Intermediate 63.3: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine 2,2,2-trifluoroacetate To Intermediate 60.6 (150 mg, 0.32 mmol, 1.00 equiv) in dichloromethane (5 mL) was added triethylamine (96 mg, 0.95 mmol, 2.99 equiv) and the solution cooled to 0° C. Intermediate 63.2 (407 mg, 0.96 mmol, 3.02 equiv) in dichloromethane (5 mL) was then added dropwise and the reaction was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:2) to afford 150 mg (62%) of Intermediate 63.3 as a yellow solid. Intermediate 63.4: (2R,3R,4S,5R)-6-(4-(3-(6-chloro-2-(diaminomethyleneamino)-quinazolin-4-yl)phenyl)piperazin-1-yl)-6-oxohexane-1,2,3,4,5-pentayl Pentaacetate To Intermediate 63.3 (150 mg, 0.20 mmol, 1.00 equiv) in NMP (5 mL) was added guanidine (0.8 mL of a 1 mol/L solution in NMP; 4.0 equiv) and 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 44.8 mg, 0.40 mmol, 2.00 equiv) and the resulting solution was stirred for 1.5 h at 30° C. The reaction was quenched by the addition of 10 mL of water and then extracted with 2×10 mL of ethyl acetate. The organic layers combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and then eluted with dichloromethane/methanol (10:1) to afford 30 mg (19%) of Intermediate 63.4 as a yellow solid. Compound 63: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine To Intermediate 63.4 (25 mg, 0.03 mmol, 1.00 equiv) in methanol (5 mL), was added a solution of LiOH (3.9 mg, 0.16 mmol, 5.03 equiv) in water (0.2 mL) and the resulting solution was stirred for 0.5 h at 0° C. The pH value of the solution was adjusted to 7 with aqueous HCl (5%), the resulting mixture was concentrated under vacuum and then purified by Prep-HPLC to afford 10 mg (45%) a TFA salt of compound 63 as a yellow solid. LCMS (ES, m/z): 560.0 [M+H]+; 1H-NMR (300 MHz, CD3OD, ppm): 7.96-8.09 (m, 3H), 7.52-7.57 (m, 1H), 7.25-7.39 (m, 3H), 4.73 (d, J=5.1 Hz, 1H), 4.07-4.09 (m, 1H), 3.62-3.89 (m, 8H). MS (ES, m/z): 560.0 [M+H]+ Example 64 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic Acid Intermediate 64.1: Methyl 3-(4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)propanoate To Intermediate 60.6 (200 mg, 0.51 mmol, 1.00 equiv) in tetrahydrofuran (10 mL) was added methyl acrylate (253 mg, 2.94 mmol, 5.81 equiv) and triethylamine (253 mg, 2.50 mmol, 4.95 equiv) and the resulting mixture was stirred for 3 h at room temperature. The reaction was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:3) to afford 100 mg (44%) of Intermediate 64.1 as a yellow solid. Compound 64: 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic Acid Compound 64 was prepared from Intermediate 64.1 using the procedures described in Example 61, affording 25 mg of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 7.89-7.92 (m, 3H), 7.42-7.47 (m, 1H), 7.35 (brs, 1H), 7.15-7.24 (m, 2H), 3.25 (brs, 4H), 2.63-2.74 (m, 6H), 2.31-2.35 (m, 2H). LCMS (ES, m/z): 454.0 [M+H]+ Example 65 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 65: 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of the title compound was prepared using procedures similar to those outlined in Example 61, starting with intermediate 60.6 and tert-butyl 3-bromopropylcarbamate. MS (ES, m/z): 439 [M+H]+ Example 66 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Compound 66: 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide A TFA salt of Compound 66 was prepared from Intermediate 61.1, using the procedures described in Example 60. MS (ES, m/z): 424 [M+H]+ Example 67 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 67: 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of Compound 67 was prepared from Compound 65 using the procedures outlined in Example 60. MS (ES, m/z): 481 [M+H]+ Example 68 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 68: 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine A TFA salt of Compound 68 was prepared from Compound 60.6 and ethylene oxide using the procedures outlined in Example 61. MS (ES, m/z): 426 [M+H]+ Example 69 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 69: 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine a TFA salt of Compound 69 was prepared from Intermediate 61.1 using the procedures described in Example 68. MS (ES, m/z): 426 [M+H]+ Example 70 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic Acid 2,2,2-trifluoroacetic Acid Salt Compound 70: 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic Acid Compound 70 was prepared from Intermediate 60.6 and methyl 4-bromobutanoate using the procedures described in Example 61. Purification by silica gel column with methanol:water (0˜0.04) gave a TFA salt of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 11.33 (s, 1H), 8.09-8.19 (m, 2H), 7.96-7.96 (s, 1H), 7.53-7.58 (m, 1H), 7.25-7.37 (m, 3H), 4.0 (s, 4H), 3.16 (s, 6H), 2.34-2.39 (m, 2H), 1.92 (s, 2H); MS (ES, m/z): 468 [M+H] Examples 71-104 Examples 71-104 were prepared using methods described in Examples 1-70. Characterization data (mass spectra) for compounds 71-104 are provided in Table 3. Example 71 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propane-1-sulfonic Acid Example 72 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic Acid Example 73 4-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl) Butanoic Acid Example 74 (E)-N-(diaminomethylene)-3-(4-(4-(N-(ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 75 (E)-N-(diaminomethylene)-3-(4-(4-(N-(2-(dimethylamino)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 76 4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic Acid Example 77 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-methyl-N-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 78 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic Acid Example 79 2-(4-(4-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 80 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)benzenesulfonamide Example 81 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 82 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 83 1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazole-4,5-dicarboxylic Acid Example 84 (E)-3-(4-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 85 2-(4-(4-(4-(2-aminoethyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 86 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 87 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 88 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 89 1-(4-(4-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 90 (E)-2-(4-(2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethyl)piperazin-1-yl)acetic Acid Example 91 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 92 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 93 (E)-1-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)guanidine Intermediate 93.1 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (Intermediate 41.2) (800 mg, 2.51 mmol) in dry DCM (25 mL) under N2 at −78° C. was added a solution of DIBAL-H (8.79 mL, 1M in DCM) dropwise over several minutes. The reaction was allowed to warm to room temperature over 2 hours. The reaction mixture was cooled to 0° C., quenched with 25 mL of Rochelle's Salt solution (10% w/v in water), and stirred vigorously for 1 hour. The resulting suspension was diluted with water (20 mL) and extracted with DCM (3×30 mL). The combined organic layers were dried over Na2SO4 and concentrated. The resulting oil was applied onto a silica gel column (50% EtOAc in hexanes) to yield 566 mg of the title compound (82%) as a yellow oil. Intermediate 93.2 (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol (Intermediate 93.1) (410 mg, 1.49 mmol) in dry toluene (7.45 mL) under N2 was added PPh3 and phthalimide. The resulting solution was cooled to 0° C. and diethyl azodicarboxylate (DEAD, 0.748 mL) was added dropwise over several minutes. The reaction was allowed to warm to room temperature and stirred overnight. After diluting with EtOAc (20 mL), the organic layer was washed with water (2×30 mL), brine (30 mL) and dried over Na2SO4. After removal of solvent, the resulting residue was applied to a silica gel column (15% EtOAc in hexanes) to yield 385 mg of the title compound (63%) as an oil. Intermediate 93.3 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine To a solution of (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione (Intermediate 93.2, 100 mg, 0.25 mmol) in methanol (1 mL) was added hydrazine hydrate (25 mg, 0.5 mmol) and the reaction stirred at 50° C. overnight. The white solid was filtered with DCM, and the solvent removed from the filtrate. The residue was brought up in DCM and filtered. This was repeated until no further precipitate formed to give 49.5 mg of the title compound (71%) as a yellow oil, a 10 mg portion of which was diluted with 1N HCl and freeze dried to give 7.8 mg of the title compound as an HCl salt. 1H-NMR (400 MHz, d6-DMSO): δ 8.25 (s, 2H), 7.37 (t, 2H), 7.20 (d, 2H), 7.12 (t, 1H), 6.97 (s, 1H), 3.57 (s, 2H), 1.96 (s, 3H). MS (m/z): 258.96 (M-NH2). Intermediate 93.4: (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine (intermediate 93.3, 100 mg, 0.364 mmol) in DCM (0.364 mL, 1M) was added chlorosulfonic acid (2.91 mmol, 194.3 uL) in 4 portions dropwise every 20 minutes. The reaction was stirred an additional 20 minutes and then quenched into a solution of N1,N1-dimethylethane-1,2-diamine (3.78 mL) in DCM (12 mL) at 0° C. The resulting solution was warmed to room temperature and stirred for 30 minutes. Upon completion the solvent was removed and the residue brought up in 1:1 Acetonitrile:water solution and purified by preparative HPLC to give 74.5 mg of the title compound (31%) as a TFA salt. Compound 93: (E)-4-(2,6-difluoro-4-(3-guanidino-2-methylprop-1-enyl)phenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide (Intermediate 93.4, 39.3 mg, 0.092 mmol) in dry THF (460 uL, 0.2M) under N2 was added TEA (0.276 mmol, 27.9 mg) and (1H-pyrazol-1-yl)methanediamine hydrochloride (0.102 mmol, 14.9 mg). The resulting solution was stirred for 1 hour, at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 1:1 ACN:water and purified by preparative HPLC to give 16.9 mg of the title compound (26%) as a TFA salt. 1H-NMR (400 MHz, CD4OD): δ 7.87 (d, 2H), 7.12 (d, 2H), 7.08 (d, 2H), 3.92 (s, 2H), 3.62 (m, 2H), 3.29 (m, 2H), 3.17 (t, 2H), 2.01 (s, 6H), 1.91 (s, 3H). MS (m/z): 468.12 (M+H)+. Example 94 N-(2-(2-(2-(2-(4,5-bis(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 95 N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 96 N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 97 N1,N31-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 98 N1,N31-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 99 (E)-3-(4-(4-(N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 100 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 101 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 102 N1,N31-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 103 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 104 N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide TABLE 3 Analytical Data for Example Compounds 71-104 Example [M + H]+ 71 533 72 523 73 468 74 482 75 525 76 527 77 589 78 493 79 439 80 628 81 1239.1 82 546.3 83 686 84 542 85 425 86 629 87 604 [M + 2]/2 88 604 [M + 2]/2 89 481 90 581 91 588 92 588 94 658 95 588 96 588 97 1571 98 1571 99 628 100 1117 101 628 102 1649 103 1117 104 1549 Example 105 4-/3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-polyethylimino-sulfonamide Example 105 is prepared from polyethylamine according to the procedures in described in Examples 1-70, where “x,” “y,” “n” and “m” are determined by the stoichiometry of the sulfonylchloride and polyethylamine. Example 106 As illustrated below, other polymeric nucleophiles are employed using the procedures described in Examples 1-70 to prepare polyvalent compounds: Other polymeric nucleophiles Example 107 As illustrated below, polymeric electrophiles are used with nucleophilic Intermediates to prepare polyvalent compounds using, for example, the procedures outlined in Example 68. Example 108-147 General Procedure for copolymerization of Intermediate 108.1 and Intermediate 108.2 with other monomers Intermediate 108.1: N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acrylamide Intermediate 108.1 (Int 108.1) was prepared from intermediate 30.7 and acrylic acid using procedures described in Examples 1-70. MS (m/z): 361.1 (M+H) Intermediate 108.2: N-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethyl)acrylamide Intermediate 108.2 (Int 108.2) was prepared from intermediate 30.7 using procedures described in Examples 1-70. MS (m/z): 404.1 (M+H) A 20-mL vial is charged with a total of 1 g of Intermediate 108.1 or Intermediate 108.2 and other monomers, a total of 9 g of isopropanol/dimethylformamide solvent mixture, and 20 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and is sealed under a nitrogen atmosphere. The stoichiometry for each example is shown in Table 1. The reaction mixture is heated in an oil bath to 70° C. under stirring. After 8 h at 70° C. the reaction mixture is cooled down to ambient temperature and then 10 mL of water is added. The solution is then transferred to a dialysis bag (MWCO 1000) for dialysis against DI water for 2 days. The resulting solution is freeze-dried to afford copolymers. TABLE 4 Examples of conditions that can be used to create copolymers from acrylamide-functionalized NHE inhibitors and substituted acrylamides and methacrylates Monomer (mg) Poly(ethylene Int glycol) 108.1 methyl Solvent Ex- Or ether (g) am- Int acryl metha- butyl acrylic IPA/ ple 108.2 amide crylate acrylate acid DMF 108 10 990 0 0 0 0/9 109 50 950 0 0 0 0/9 110 100 900 0 0 0 0/9 111 250 750 0 0 0 0/9 112 500 500 0 0 0 0/9 113 10 990 0 0 0 2.25/6.75 114 50 950 0 0 0 2.25/6.75 115 100 900 0 0 0 2.25/6.75 116 250 750 0 0 0 2.25/6.75 117 500 500 0 0 0 2.25/6.75 118 10 990 0 0 0 4.5/4.5 119 50 950 0 0 0 4.5/4.5 120 100 900 0 0 0 4.5/4.5 121 250 750 0 0 0 4.5/4.5 122 500 500 0 0 0 4.5/4.5 123 10 990 0 0 0 6.75/2.25 124 50 950 0 0 0 6.75/2.25 125 100 900 0 0 0 6.75/2.25 126 250 750 0 0 0 6.75/2.25 127 500 500 0 0 0 6.75/2.25 128 10 990 0 0 0 9/0 129 50 950 0 0 0 9/0 130 100 900 0 0 0 9/0 131 250 750 0 0 0 9/0 132 500 500 0 0 0 9/0 133 10 0 990 0 0 6.75/2.25 134 50 0 950 0 0 6.75/2.25 135 100 0 900 0 0 6.75/2.25 136 250 0 750 0 0 6.75/2.25 137 500 0 500 0 0 6.75/2.25 138 100 775 0 25 0 6.75/2.25 139 100 750 0 50 0 6.75/2.25 140 100 700 0 100 0 6.75/2.25 141 100 650 0 150 0 6.75/2.25 142 100 600 0 200 0 6.75/2.25 143 100 800 0 0 10 6.75/2.25 144 100 800 0 0 25 6.75/2.25 145 100 800 0 0 50 6.75/2.25 146 100 800 0 0 100 6.75/2.25 147 100 800 0 0 150 6.75/2.25 Example 148 Synthesis of 2-Methyl-acrylic acid 3-trimethylsilanyl-prop-2-ynyl Ester A solution of trimethylsilyl propyn-1-ol (1 g, 7.8 mmol) and Et3N (1.4 mL, 10 mmol) in Et2O (10 mL) is cooled to −20° C. and a solution of methacryloyl chloride (0.9 mL, 9.3 mmol) in Et2O (5 mL) is added dropwise over 1 h. The mixture is stirred at this temperature for 30 min, and then allowed to warm to ambient temperature overnight. Any precipitated ammonium salts can be removed by filtration, and volatile components can be removed under reduced pressure. The crude product is then purified by flash chromatography. Examples 149-154 General Procedure for Synthesis of Poly N-(2-hydroxypropyl)methacrylamide-co-prop-2-ynyl Methacrylate General procedure for copolymerization of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate A 100-m round bottom flask equipped with a reflux condenser is charged with a total 5 g of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate, 45 g of isopropanol/dimethylformamide solvent mixture, and 100 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and maintained under nitrogen atmosphere during the reaction. Stoichiometry for each example is shown in Table 5. The reaction mixture is heated in an oil bath to 70° C. under stirring, and after 8 h the reaction mixture is cooled to ambient temperature and then 30 mL of solvent is evaporated under vacuum. The resulting solution is then precipitated into 250 mL of Et2O. The precipitate is collected, redissolved in 10 mL of DMF, and precipitated again into 250 mL of Et2O. The resulting precipitate is dried under vacuum to afford copolymers. General Procedure for Removal of Trimethyl Silyl Group The trimethyl silyl protected polymer (4 g), acetic acid (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups), and 200 mL of THF is mixed in a 500 mL flask. The mixture is cooled to −20° C. under nitrogen atmosphere and followed by addition of 0.20 M solution of tetra-n-butylammonium fluoride trihydrate (TBAF.3H2O) in THF (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups) over a course of 5 min. The solution is stirred at this temperature for 30 min and then warmed to ambient temperature for an additional 8 hours. The resulting mixture is passed through a short silica pad and then precipitated in Et2O. The resulting precipitate is dried under vacuum to afford copolymers. TABLE 5 Examples of copolymerization conditions that can be used to prepared polymethacrylates Monomer (g) 3-(trimethylsilyl) N-(2-hydroxypropyl) prop-2-ynyl Solvent (g) Example methacrylamide methacrylate IPA/DMF 149 2.5 2.5 0/45 150 2.5 2.5 11.25/33.75 151 2.5 2.5 22.5/22.5 152 2.5 2.5 33.75/11.25 153 2.5 2.5 45/0 Examples 154-167 General Procedure for Post-Modification of Examples 149-153 by [2+3]Cycloaddition Polymer 154 (54 mg) containing 0.1 mmol of alkyne moiety, a total of 0.1 mmol of azido-compounds (Intermediate 28.1, 13-azido-2,5,8,11-tetraoxatridecane, N-(2-azidoethyl)-3-(dimethylamino)propanamide and 1-azidodecane, corresponding ratios shown in Table 6), 0.05 mmol of diisopropylethylamine, and 1 mL of DMF is mixed at ambient temperature and degassed for 1 min. While maintaining a nitrogen atmosphere, copper iodide (10 mg, 0.01 mmol) is then added to the mixture. The solution is stirred at ambient temperature for 3 days and then passed through a short neutral alumina pad. The resulting solution is diluted with 10 mL of DI water, dialyzed against DI water for 2 days, and lyophilized to afford copolymers. TABLE 6 Examples of compounds that can be prepared from polymeric alkynes and varying ratios of substituted azides via [3 + 2] cycloaddition Azido compounds (mmol) Inter- 13-azido- N-(2-azidoethyl)- Exam- mediate 2,5,8,11- 3-(dimethylamino) 1- ple 28.1 tetraoxatridecane propanamide azidodecane 155 0.002 0.098 0 0 156 0.005 0.095 0 0 157 0.01 0.09 0 0 158 0.025 0.075 0 0 159 0.05 0.05 0 0 160 0.01 0.088 0.002 0 161 0.01 0.085 0.005 0 162 0.01 0.08 0.01 0 163 0.01 0.07 0.02 0 164 0.01 0.088 0 0.002 165 0.01 0.085 0 0.005 166 0.01 0.08 0 0.01 167 0.01 0.07 0 0.02 Example 168 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 168.1, bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate To a 500 ml 3-necked roundbottom flask was added 2,3-dihydroxysuccinic acid (10.0 g, 66.62 mmol, 1.00 equiv), N,N′-Dicyclohexyl carbodiimide (DCC; 30.0 g, 145.42 mmol, 2.18 equiv) and tetrahydrofuran (THF; 100 mL). This was followed by the addition of a solution of N-hydroxysuccinimide (NHS; 16.5 g, 143.35 mmol, 2.15 equiv) in THF (100 mL) at 0-10° C. The resulting solution was warmed to room temperature and stirred for 16 h. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from N,N-dimethylformamide (DMF)/ethanol in the ratio of 1:10. This resulted in 5.2 g (22%) of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 6.70 (d, J=7.8 Hz, 2H), 4.89 (d, J=7.2 Hz, 2H), 2.89 (s, 8H). MS (m/z): 367 [M+Na]+. Intermediate 168.2 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a 50-mL 3-necked round-bottom flask was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3.2 g, 21.59 mmol, 21.09 equiv) and dichloromethane (DCM; 20 mL). This was followed by the addition of a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (Intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv) in DMF (5 mL) dropwise with stirring. The resulting solution was stirred for 5 h at which time it was diluted with 100 mL of ethyl acetate. The resulting mixture was washed successively with 2×10 mL of water and 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (58%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 168, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (300 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (92.5 mg, 0.27 mmol, 0.45 equiv) and triethylamine (TEA; 1.0 g, 9.88 mmol, 16.55 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (300 mg) was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (20% CH3CN up to 40% in 5 min, up to 100% in 2 min); Detector, uv 220&254 nm. This resulted in 192.4 mg (28%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 7.92 (d, J=7.8 Hz, 2H), 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119 [M+H]+. Example 169 N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Intermediate 169.1, N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.26 mmol, 1.00 equiv) in DCM (5 mL). This was followed by the addition of a solution of ethane-1,2-diamine (307 mg, 5.11 mmol, 19.96 equiv) in DCM/DMF (10/1 mL). The resulting solution was stirred for 5 h at room temperature. The mixture was concentrated under vacuum. The resulting solution was diluted with 50 mL of ethyl acetate and washed with 2×10 mL of water and then 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to afford 90 mg (76%) of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 169, N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroiso-quinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (250 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (92 mg, 0.27 mmol, 0.44 equiv) and triethylamine (280 mg, 2.77 mmol, 4.55 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum, the residue diluted with 100 mL of ethyl acetate and then washed with 2×10 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (25% CH3CN up to 35% in 5 min, up to 100% in 2.5 min); Detector, uv 220&254 nm. This resulted in 88.4 mg (15%) of a TFA salt of N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, CD3OD, ppm) δ 7.67 (d, J=7.6 Hz, 2H), 7.61 (s, 2H), 7.44 (t, J=7.6 Hz, 2H), 7.37 (d, J=7.6 Hz, 2H), 7.25 (d, J=2 Hz, 2H), 6.72 (s, 2H), 4.33 (t, J=6.4 Hz, 2H), 4.30 (s, 2H), 3.64 (m, 4H), 3.21 (s, 4H), 2.98 (m, 2H), 2.90 (m, 4H), 2.65 (m, 2H), 2.42 (s, 6H). MS (m/z): 943 [M+H]+. Example 170 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 170.1, 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl Chloride Using procedures outlined in Example 1 to prepare intermediate 1.6, substituting N-(2,4-dichlorobenzyl)ethanamine for 1-(2,4-dichlorophenyl)-N-methylmethanamine, the title compound was prepared as a hydrochloride salt. Intermediate 170.2 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (300 mg, 1.51 mmol, 1.00 equiv) in DCM (10 mL) was added TEA (375 mg, 3.00 equiv) followed by the portionwise addition of 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.23 mmol, 1.00 equiv). The resulting solution was stirred for 1 h at room temperature and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 0.4 g (41%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Intermediate 170.3, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL round-bottom flask, was placed N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (400 mg, 0.68 mmol, 1.00 equiv), triphenylphosphine (400 mg, 2.20 equiv), THF (10 mL) and water(1 mL) and the reaction was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and applied onto a preparative thin-layer chromatography (TLC) plate, eluting with DCM:methanol (5:1). This resulted in 350 mg (73%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 170, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.18 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (25 mg, 0.07 mmol, 0.45 equiv) and triethylamine (75 mg, 4.50 equiv). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC with water: methanol (1:10-1:100). This resulted in 12.1 mg (5%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.70-7.60 (m, 8H), 7.53-7.49 (m, 6H), 6.88 (s, 2H), 5.61-5.59 (m, 2H), 4.38 (m, 2H), 4.24-4.22 (m, 2H), 3.78-3.72 (m, 2H), 3.58-3.48 (m, 2H), 3.43 (m, 7H), 3.43-3.40 (m, 11H), 3.27-3.20 (m, 5H), 2.91-2.87 (m, 6H), 2.76-2.70 (m, 2H), 2.61-2.55 (m, 3H), 1.04-0.99 (m, 6H). MS (m/z): 1235 [M+H]+. Example 171 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline Intermediate 171.1, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (10.0 g, 41.15 mmol, 1.00 equiv) in THF (150 mL), (2,4-dichlorophenyl)methanamine (7.16 g, 40.91 mmol, 1.00 equiv) and triethylamine (5.96 g, 59.01 mmol, 1.50 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was concentrated to dryness and used for next step, assuming theoretical yield. Intermediate 171.2, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of intermediate 171.1 (40.91 mmol, 1.00 equiv) in methanol (150 mL). This was followed by the addition of NaBH4 (2.5 g, 65.79 mmol, 1.50 equiv) in several batches at 0° C. The resulting solution was stirred for 2 h at 25° C. The reaction was then quenched by the addition of aqueous NH4Cl. The resulting mixture was concentrated under vacuum, and the solids were collected by filtration. The crude product was purified by re-crystallization from ethyl acetate. This resulted in 3.5 g (23%) of 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol as a yellowish solid. Intermediate 171.3, 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol (intermediate 171.2) (500 mg, 1.47 mmol, 1.00 equiv) in DCM (10 mL) was added conc. sulfuric acid (4 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 12 h at room temperature. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 10 with sodium hydroxide. The resulting solution was extracted with 2×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (63%) of 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as yellow oil. Intermediate 171.4, 2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) Into a 250-mL 3-necked round-bottom flask, was placed a solution of tetraethylene glycol (10 g, 51.55 mmol, 1.00 equiv) in DCM (100 mL). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (21.4 g, 112.63 mmol, 2.20 equiv) in DCM (50 mL) dropwise with stirring at 5° C. To this was added N,N-dimethylpyridin-4-amine (15.7 g, 128.69 mmol, 2.50 equiv). The resulting solution was stirred for 2 h at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×100 mL of DCM and the organic layers combined. The resulting mixture was washed with 1×100 mL of brine and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 11 g (43%) of the title compound as white oil. Intermediate 171.5, 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (intermediate 171.3) (171 mg, 0.53 mmol, 2.50 equiv) in DMF (2 mL) was added potassium carbonate (87 mg, 0.63 mmol, 3.00 equiv) and intermediate 171.4 (106 mg, 0.21 mmol, 1.00 equiv) and the resulting solution was stirred at 50° C. After stirring overnight, the resulting solution was diluted with 20 ml of water. The resulting mixture was extracted with 3×20 ml of ethyl acetate and the organic layers combined and concentrated under vacuum. The crude product was purified by Prep-HPLC with methanol:water (1:1). This resulted in 10 mg (2%) of 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline) as a light yellow solid. Compound 171, 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline To intermediate 171.5 (50 mg, 0.06 mmol, 1.00 equiv) in ethanol (5 mL) was added iron (34 mg, 0.61 mmol, 9.76 equiv) followed by the addition of hydrogen chloride (5 mL) dropwise with stirring. The resulting solution was stirred for 2 h at room temperature and then for an additional 4 h at 55° C. The reaction progress was monitored by LCMS. The solids were filtered out and the resulting solution was diluted with 10 mL of water. The resulting mixture was concentrated under vacuum and the pH of the solution was adjusted to 9-10 with sodium carbonate. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined, washed with 50 mL of brine and then concentrated under vacuum. The crude product was purified by Prep-HPLC with H2O:CH3CN (10:1). This resulted in 5 mg (11%) of 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline as a yellow solid.). 1H-NMR (400 MHz, CD3OD, ppm) δ 7.27 (m, 2H), 7.06 (m, 2H), 6.80 (s, 2H), 6.63 (d, 2H), 6.54 (m, 4H), 4.14 (m, 2H), 4.02 (d, 2H), 3.65 (m, 12H), 3.19 (m, 3H), 2.81 (s, 4H), 2.71 (m, 2H). MS (m/z): 745 [M+H]+. Example 172 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 28.1: N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (1.5 g, 6.87 mmol, 1.79 equiv) in DCM (20 mL) was added triethylamine (1.5 g, 14.82 mmol, 3.86 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (1.5 g, 3.84 mmol, 1.00 equiv). The reaction was stirred overnight at room temperature at which time the resulting mixture was concentrated under vacuum. The residue was dissolved in 100 mL of ethyl acetate and then was washed with 2×20 mL of water, dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.8 g (85%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 28, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (1.8 g, 3.26 mmol, 1.00 equiv) in THF (30 mL) was added triphenylphosphine (2.6 g, 9.91 mmol, 3.04 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (5.0 g) was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. 1.2 g product was obtained. This resulted in 1.2 g (64%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 172, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (1.2 g, 2.28 mmol, 1.00 equiv) in DMF (8 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (intermediate 168.1) (393 mg, 1.14 mmol, 0.50 equiv) and triethylamine (1.5 g, 14.82 mmol, 6.50 equiv) and the resulting solution was stirred overnight at room temperature. The mixture was concentrated under vacuum and the crude product was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. This resulted in 591 mg (43%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H, 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 30H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 603 [1/2M+H]+. Example 173 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 173.1, N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4) (400 mg, 1.08 mmol, 1.00 equiv) in DMSO (6 mL), 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (236.11 mg, 1.08 mmol, 1.00 equiv), (S)-pyrrolidine-2-carboxylic acid (24.79 mg, 0.21 mmol, 0.20 equiv), copper(I) iodide (20.48 mg, 0.11 mmol, 0.10 equiv) and potassium carbonate (223.18 mg, 1.62 mmol, 1.50 equiv). The resulting solution was stirred at 90° C. in an oil bath and the reaction progress was monitored by LCMS. After stirring overnight the reaction mixture was cooled with a water/ice bath and then diluted with ice water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic extracts were combined and washed with 2×20 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (2:1). This resulted in 130 mg (24%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Intermediate 173.2, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 50-mL round-bottom flask, was placed a solution of intermediate 173.1 (350 mg, 0.69 mmol, 1.00 equiv) in THF/water (4/0.4 mL) and triphenylphosphine (205 mg, 0.78 mmol, 1.20 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The resulting mixture was then concentrated under vacuum. The pH of the solution was adjusted to 2-3 with 1N hydrogen chloride (10 ml). The resulting solution was extracted with 2×10 mL of ethyl acetate and the aqueous layers combined. The pH value of the solution was adjusted to 11 with NH3.H2O. The resulting solution was extracted with 3×30 mL of DCM and the organic layers combined. The resulting mixture was washed with 30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 250 mg (75%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline as yellow oil. Compound 173, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To intermediate 173.2 (240 mg, 0.50 mmol, 1.00 equiv) in DMF (5 mL) was added TEA (233 mg, 2.31 mmol, 4.50 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (62 mg, 0.18 mmol, 0.35 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with methanol:water (1:10). This resulted in 140 mg (26%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamideas a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 7.65 (m, 4H), 7.11 (m, 2H), 6.83 (m, 2H), 6.58 (m, 2H), 6.41 (m, 4H), 4.09 (m, 32H), 3.45 (m, 17H), 3.43 (m, 5H), 3.31 (m, 9H), 2.51 (m, 6H). MS (m/z): 1079 [M+H]+. Example 174 N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Intermediate 174.1, 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea To 4-nitrophenyl 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (prepared by the procedure described in example 38) (200 mg, 0.40 mmol, 1.00 equiv, 95%) in DMF (5 mL) was added TEA (170 mg, 1.60 mmol, 4.00 equiv, 95%) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (90 mg, 0.39 mmol, 1.00 equiv, 95%) and the resulting solution was stirred for 2 h. The mixture was then concentrated under vacuum, diluted with 10 mL of water and then extracted with 3×30 mL of ethyl acetate. The organic layers were combined, washed with 3×30 mL of brine, dried over anhydrous sodium sulfate and then evaporated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜1:1). This resulted in 160 mg (72%) of 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Intermediate 174.2 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea Intermediate 174.2 was prepared from 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.1) using the procedure described to prepare intermediate 173.2. The crude product was purified by silica gel chromatography, eluting with DCM/methanol (50:1). This resulted in 230 mg of 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Compound 174, N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Compound 174 was prepared from 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6, 8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.2) using the procedures described in example 172. The crude product (400 mg) was purified by Prep-HPLC with methanol:acetonitrile=60:40. This resulted in 113 mg (23%) of N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, DMSO, ppm): δ 8.68 (s, 2H), 7.68 (s, 2H), 7.64 (t, 2H), 7.39 (s, 2H), 7.24-7.28 (m, 6H), 6.77-6.78 (m, 4H), 6.23 (s, 2H), 4.47 (s, 4H), 4.23 (s, 2H), 3.76 (s, 4H), 3.42-3.69 (m, 24H), 3.28-3.36 (m, 4H), 3.20-3.24 (m, 6H), 3.02 (s, 6H). MS (m/z): 583 [1/2M+1]+. Example 175 N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Intermediate 175.1, N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (intermediate 10.6) (9 g, 20.02 mmol, 1.00 equiv, 95%) in DCM (200 mL) was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (15.6 g, 105.41 mmol, 5.00 equiv) and triethylamine (4.26 g, 42.18 mmol, 2.00 equiv) and the resulting solution was stirred for 3 h at room temperature. The reaction mixture was diluted with 100 mL of DCM and then washed with 2×50 mL of Brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (10:1). This resulted in 3 g (28%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. Compound 175, N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (150 mg, 0.28 mmol, 2.50 equiv, 92%) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) oxalate (34 mg, 0.12 mmol, 1.00 equiv) and triethylamine (49 mg, 0.49 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 97 mg (68%) of a TFA salt of N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90 (m, 4H), 7.56 (s, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.77 (m, 4H), 4.53 (d, 2H), 3.90 (m, 2H), 3.88 (m, 10H), 3.58 (m, 12H), 3.31 (s, 6H), 3.12 (m, 4H). MS (m/z): 530 [1/2M+1]+. Example 176 N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 176.1, N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-(2-aminoethoxy)ethanamine dihydrochloride (1.0 g, 5.65 mmol, 5.52 equiv) in DMF (20 mL), potassium carbonate (2.0 g, 14.39 mmol, 14.05 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv). The resulting solution was stirred overnight at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic layers were combined and dried over sodium sulfate and concentrated under vacuum. This resulted in 60 mg (13%) of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow solid. Compound 176, N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 176.1) (60 mg, 0.13 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (21 mg, 0.06 mmol, 0.47 equiv) and triethylamine (50 mg, 0.49 mmol, 3.77 equiv). The resulting solution was stirred overnight at room temperature at which time the mixture was concentrated under vacuum. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 21 mg (13%) of a TFA salt of N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 10H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 517 [1/2M+1]+. Example 177 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Intermediate 177.1, bis(2,5-dioxopyrrolidin-1-yl) Succinate To succinic acid (3.0 g, 25.42 mmol, 1.00 equiv) in THF (50 mL) was added a solution of 1-hydroxypyrrolidine-2,5-dione (6.4 g, 55.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (11.5 g, 55.83 mmol, 2.20 equiv) in THF (50 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The solids were collected by filtration and the filtrate was concentrated to give the crude product. The resulting solids were washed with THF and ethanol. This resulted in 2.4 g (27%) of bis(2,5-dioxopyrrolidin-1-yl) succinate as a white solid. Compound 177, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 177 was prepared using the procedure described in example 175, substituting (2,5-dioxopyrrolidin-1-yl) succinate (intermediate 177.1) for bis(2,5-dioxopyrrolidin-1-yl) oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 32.8 mg (8%) of N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.93-7.91 (d, J=8.1 Hz, 4H), 7.57-7.56 (d, J=1.8 Hz, 2H), 7.50-7.47 (d, J=8.4 Hz, 4H), 6.86 (s, 2H), 4.78-4.73 (d, J=13.5 Hz, 4H), 4.52 (m, 2H), 3.85 (m, 2H), 3.59-3.47 (m, 18H), 3.15-3.09 (m, 10H), 2.49 (s, 4H). MS (m/z): 544 [1/2M+1]+. Example 178 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Intermediate 178.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate Intermediate 178.1 was prepared using the procedure outlined in example 177, substituting 2,2′-oxydiacetic acid for succinic acid. The crude product was washed with ethyl acetate. This resulted in 1.5 g (19%) of Intermediate 178.1 as a white solid. Compound 178, 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 178 was prepared using the procedure described in example 175, substituting bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) for bis(2,5-dioxopyrrolidin-1-yl) oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 39.1 mg (7%) of a TFA salt of 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 552 [1/2M+1]+. Example 179 (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 179.1, Tert-Butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate To triethyleneglycol (17.6 g, 117.20 mmol, 3.00 equiv) in anhydrous THF (70 mL), was added sodium (30 mg, 1.25 mmol, 0.03 equiv). Tert-butyl acrylate (5.0 g, 39.01 mmol, 1.00 equiv) was added after the sodium had dissolved. The resulting solution was stirred overnight at room temperature and then neutralized with 1.0 N hydrogen chloride. After removal of the solvent, the residue was suspended in 50 mL of brine and extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of the solvent, the tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (9.6 g) was isolated as a colorless oil, which was used directly for the next reaction step without further purification. Intermediate 179.2, Tert-Butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (intermediate 179.1) (9.6 g, 34.49 mmol, 1.00 equiv) in anhydrous pyridine (12 mL). The mixture was cooled to 0° C. and 4-methylbenzene-1-sulfonyl chloride (7.9 g, 41.44 mmol, 1.20 equiv) was added slowly in several portions. The resulting solution was stirred at 0° C. for 1-2 h and then the flask containing the reaction mixture was sealed and placed in a refrigerator at 0° C. overnight. The mixture was poured into 120 mL of water/ice, and the aqueous layer was extracted with 3×50 mL of DCM. The combined organic layers were washed with 2×50 mL of cold 1.0 N hydrogen chloride and saturated brine and dried over anhydrous sodium sulfate. The solvent was removed under vacuum to yield 13.4 g (90%) of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.3, Tert-Butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate (13.4 g, 30.98 mmol, 1.00 equiv) in anhydrous DMF (100 mL) followed by potassium phthalimide (7.5 g, 40.49 mmol, 1.31 equiv). The resulting solution was heated to 100° C. and stirred for 3 h. The reaction progress was monitored by LCMS. The DMF was removed under vacuum to afford a brown oil residue. To the residue was added 200 mL water and the mixture was extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of solvent, The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (0˜1:3). The solvent was removed from fractions containing phthalimide and the residue was washed with 20% ethyl acetate/petroleum ether to yield 10.1 g (78%) of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.4, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic Acid Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate (intermediate 179.3) (1.5 g, 3.68 mmol, 1.00 equiv) in neat 2,2,2-trifluoroacetic acid (TFA; 2.0 mL). The resulting solution was stirred for 40 min at ambient temperature. Excess TFA was removed under vacuum to afford a pale-yellow oil residue which was purified on a silica gel column eluting with ethyl acetate/petroleum ether (1:5˜1:2˜2:1) to yeild 1.1 g (84%) of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid as a white solid. Intermediate 179.5, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl Chloride Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid (700 mg, 1.99 mmol, 1.00 equiv) in anhydrous DCM (30.0 mL), then oxalyl dichloride (0.7 mL) was added dropwise at room temperature. Two drops of anhydrous DMF were then added. The resulting solution was heated to reflux for 40 min. The solvent was removed under vacuum to yield 750 mg of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride as pale yellow oil, which was used directly for the next reaction step without further purification. Intermediate 179.6, N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide To 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 31.5) (600.0 mg, 1.95 mmol, 1.00 equiv) in anhydrous DCM (5.0 mL) was added N-ethyl-N,N-diisopropylamine (DIEA; 0.5 mL). Then a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride (intermediate 179.5) (794 mg, 2.15 mmol, 1.10 equiv) was added dropwise with stirring at room temperature. The resulting solution was stirred for 2 h at ambient temperature and then concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1). This resulted in 870 mg (66%) of N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide as a pale yellow syrup. The other fractions was collected and evaporated to get an additional 200 mg of impure product. Intermediate 179.7, 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide Into a 100-mL round-bottom flask, was placed N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide (870.0 mg, 1.36 mmol, 1.00 equiv) and 1M hydrazine monohydrate in ethanol (30.0 mL, 30.0 mmol). The resulting solution was heated at reflux for 1 hour. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residual solution was diluted with 30 mL of water and then extracted with 3×50 mL of DCM. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1˜10:1˜1:1). This resulted in 600 mg (85%) of 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide as a pale yellow syrup. Compound 179, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide (intermediate 179.7) (270 mg, 0.53 mmol, 2.00 equiv) in anhydrous DMF (5.0 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91.0 mg, 0.26 mmol, 1.00 equiv) and triethylamine (0.3 mL) and the resulting solution was stirred for 2 h at 35° C. The resulting mixture was then concentrated under vacuum. The residue was purified by Prep-HPLC, to give 170 mg (56%) of a TFA salt of (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (s, 1H), 7.65 (s, 2H), 7.54 (d, J=1.5 Hz, 2H), 7.36-7.46 (m, 4H), 7.02 (dd, J=7.5, 1.2 Hz, 2H), 6.90 (s, 2H), 4.83-4.75 (m, 2H), 4.65-4.60 (m, 2H), 4.53 (s, 1H), 4.46 (m, 3H), 3.88-3.80 (m, 6H), 3.64-3.51 (m, 22H), 3.41-3.35 (m, 4H), 3.16 (s, 6H), 2.64 (t, J=6.0 Hz, 4H). MS (m/z): 1136 [M+H]+. Example 180 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 180, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide Compound 180 was prepared from compound 28 following the procedure outlined in example 175. The crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=39/100/0.05 increasing to CH3CN/H2O/CF3COOH=39/100/0.05 within min; Detector, UV 254 nm. This resulted in 113.4 mg (11%) of a TFA salt of N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.766 (d, J=7.5 Hz, 2H), 7.683 (s, 2H), 7.586˜7.637 (m, 4H), 7.537 (d, J=7.8 Hz, 2H), 6.644 (s, 2H), 4.834˜4.889 (m, 2H), 4.598 (d, J=16.2 Hz, 2H), 4.446 (d, J=15.0 Hz, 2H), 3.602˜3.763 (m, 4H), 3.2993.436 (m, 24H), 3.224˜3.263 (m, 4H), 2.975 (s, 6H), 2.8252.863 (m, 4H). MS (m/z): 574 [M/2+H]+. Example 181 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181 was prepared from compound 28 and (2,5-dioxopyrrolidin-1-yl) succinate following the procedure outlined in example 175. The crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=0.05/100/0.05 increasing to CH3CN/H2O/CF3COOH=90/100/0.05 within 19 min; Detector, UV 254 nm. This resulted in 201 mg (78%) of a TFA salt of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.76 (d, J=7.5 Hz, 2H), 7.68 (s, 2H), 7.63˜7.52 (m, 6H), 6.64 (s, 1H), 4.88˜4.82 (m, 2H), 4.62˜4.42 (m, 4H), 3.76˜3.60 (m, 4H), 3.43˜3.30 (m, 25H), 3.14˜3.10 (m, 4H), 2.97 (s, 6H), 2.86˜2.82 (m, 4H), 2.27 (s, 4H). MS (m/z): 589 [M/2+1]+. Example 182 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182 was prepared from compound 28 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product (250 mg) was purified by Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, MeCN/H2O/CF3COOH=39/100/0.05; Detector, UV 254 nm. This resulted in 152.3 mg (47%) of a TFA salt of N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CDCl3, ppm): δ 7.92-7.89 (d, J=8.1 Hz, 2H), 7.79 (s, 2H), 7.69˜7.64 (m, 2H), 7.57˜7.55 (d, J=7.5 Hz, 4H), 3.68 (s, 2H), 4.87˜4.75 (m, 4H), 4.54˜4.49 (m, 2H), 3.90˜3.88 (m, 2H), 3.67˜3.45 (m, 20H), 3.39˜3.32 (m, 4H), 3.31 (s, 6H), 3.17˜3.05 (m, 4H), 1.41 (s, 1H). MS (m/z): 1189 [M+H]+. Example 183 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Example 183, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 183 was prepared from intermediate 175.1 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%). This resulted in 29.5 mg (5%) of a TFA salt of N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.92 (m, 4H), 7.57 (m, 2H), 7.51-7.49 (m, 4H), 6.87 (m, 2H), 4.83-4.74 (m, 4H), 4.55-4.50 (m, 2H), 3.92-3.87 (m, 2H), 3.67-3.48 (m, 8H), 3.40-3.38 (m, 4H), 3.18 (s, 6H), 3.14-3.00 (m, 4H), 1.41 (s, 6H). MS (m/z): 551 [1/2M+H]+. Example 184 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 184.1, 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate Into a 250-mL round-bottom flask was placed a solution of tetraethylene glycol (50 g, 257.47 mmol, 9.81 equiv) in DCM (150 mL) and triethylamine (8 g, 79.05 mmol, 3.01 equiv). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (5.0 g, 26.23 mmol, 1.00 equiv) in DCM (10 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at room temperature, at which time it was diluted with 200 ml of hydrogen chloride (3N aq.). The resulting solution was extracted with 2×150 mL of DCM and the combined organic layers were washed with 3×150 mL of saturated sodium bicarbonate. The mixture was dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5-ethyl acetate). This resulted in 7.0 g (77%) of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate as colorless oil. Intermediate 184.2, 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol To intermediate 184.1 (2.0 g, 5.74 mmol, 1.00 equiv) in DMF (40 mL) was added sodium azide (700 mg, 10.77 mmol, 1.88 equiv) and sodium bicarbonate (800 mg, 9.52 mmol, 1.66 equiv). The resulting solution was stirred for 2 h at 80° C. at which time the mixture was concentrated under vacuum. The residue was diluted with 100 mL of water and then extracted with 3×100 mL of DCM. The organic layers were combined and concentrated under vacuum to afford 1.3 g of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol as light yellow oil. Intermediate 184.3, 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine Into a 50-mL round-bottom flask, was placed a solution of intermediate 184.2 (220 mg, 1.00 mmol, 2.38 equiv) in DMF (10 mL) and sodium hydride (40 mg, 1.00 mmol, 2.37 equiv, 60%). The resulting solution was stirred for 30 min at room temperature, at which time 2,6-dibromopyridine (100 mg, 0.42 mmol, 1.00 equiv) was added. The resulting solution was stirred for an additional 2 h at 80° C., and then was concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (50:1-30:1). This resulted in 180 mg (83%) of 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine as light yellow oil. Intermediate 184.4, 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine To intermediate 184.3 (180 mg, 0.35 mmol, 1.00 equiv) in THF/water (30/3 mL) was added triphenylphosphine (400 mg, 1.52 mmol, 4.35 equiv) and the resulting solution was stirred overnight at 40° C. After cooling to room temperature, the reaction mixture was extracted with 4×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (80:1˜20:1). This resulted in 100 mg (62%) of 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine as light yellow oil. Compound 184, N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To intermediate 184.4 (100 mg, 0.22 mmol, 1.00 equiv) in DCM (50 mL) was added triethylamine (70 mg, 0.69 mmol, 3.20 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (350 mg, 0.90 mmol, 4.13 equiv). The resulting solution was stirred overnight at room temperature, and then concentrated under vacuum. The residue was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)=35%-40%. This resulted in 88.4 mg (29%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (d, 2H), 7.78 (s, 2H), 7.67-7.50 (m, 7H), 6.86 (s, 2H), 6.34-6.31 (d, 2H), 4.90-4.75 (m, 4H), 4.52-4.46 (m, 2H), 4.42-4.39 (t, 4H), 3.90-3.81 (m, 6H), 3.71-3.43 (m, 22H), 3.16 (s, 6H), 3.07-3.03 (t, 4H). MS (m/z): 1170 [M+H]+ Example 185 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) tris(2,2,2-trifluoroacetate) Intermediate 185.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-(methylazanediyl)diacetate To 2-[(carboxymethyl)(methyl)amino]acetic acid (2.0 g, 13.60 mmol, 1.00 equiv) in THF (30 mL) was added DCC (6.2 g, 30.05 mmol, 2.21 equiv) and a solution of NHS (3.5 g, 30.41 mmol, 2.24 equiv) in THF (30 mL) and the reaction stirred at 0-10° C. for 2 h. The resulting solution was allowed to warm to room temperature and stirred for 16 h. The solids were then filtered out, and the resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. to afford 2.0 g (21%) of the title compound as a white solid. Compound 185, 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-acetamide) tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 185.1 (106 mg, 0.15 mmol, 0.50 equiv, 48%) and triethylamine (150 mg, 1.48 mmol, 4.97 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 26.4 mg (12%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (m, 4H), 7.5 (m, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.81 (m, 4H), 4.50 (m, 2H), 4.06 (s, 4H), 3.89 (m, 2H), 3.66-3.44 (m, 22H), 3.32 (s, 6H), 3.15 (m, 4H), 3.01 (s, 3H). MS (m/z): 559 [(M+2H)/2]+ Example 186 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) Intermediate 186.1, bis(2,5-dioxopyrrolidin-1-yl) 5-aminoisophthalate Into a 50-mL 3-necked round-bottom flask, was placed a solution of 5-aminoisophthalic acid (300 mg, 1.66 mmol, 1.00 equiv) in THF (5 mL) and 1-hydroxypyrrolidine-2,5-dione (420 mg, 3.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (750 mg, 3.64 mmol, 2.20 equiv) in THF (5 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The solids were removed by filtration and the filtrate was concentrated under vacuum. The crude product was purified by re-crystallization from ethanol. This resulted in 70 mg (11%) of the title compound as a light yellow solid. Compound 186, 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.20 mmol, 1.00 equiv) in DMF (5 mL) was added intermediate 186.1 (44.8 mg, 0.12 mmol, 0.60 equiv) and triethylamine (60.4 mg, 0.60 mmol, 3.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 32.4 mg (19%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90-7.87 (d, J=8.4 Hz, 4H), 7.60-7.54 (3H, m), 7.46-7.44 (d, J=8.4 Hz, 4H), 7.34 (d, J=1.2 Hz, 2H), 6.82 (s, 2H), 4.89-4.71 (m, 4H), 4.53-4.48 (d, J=16.2 Hz, 2H), 3.91-3.85 (m, 2H), 3.67-3.45 (m, 22H), 3.33-3.32 (m, 6H), 3.18-3.01 (m, 4H). MS (m/z): 575 [(M+2H)/2]+ Example 187 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 187, 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (150 mg, 0.28 mmol, 1.00 equiv) in DMF (5 mL), triethylamine (56 mg, 0.55 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (44 mg, 0.14 mmol, 0.49 equiv). The resulting solution was stirred overnight at room temperature, at which time the mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 19 min; Detector, UV 254 nm. This resulted in 72.4 mg (44%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.2 Hz, 2H), 7.71 (s, 2H), 7.49˜7.58 (m, 4H), 7.36˜7.37 (m, 2H), 6.82 (s, 2H), 4.39˜4.44 (m, 2H), 4.06 (s, 4H), 3.80 (d, J=16.2 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55˜3.61 (m, 16H), 3.43˜3.52 (m, 12H), 3.02˜3.08 (m, 6H), 2.65˜2.70 (m, 2H), 2.49 (s, 6H). MS (m/z): 1190 [M+H]+ Example 188 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate) Intermediate 188.1, 5-bromoisophthalic Acid Into a 100-mL round-bottom flask, was placed a solution of isophthalic acid (10 g, 60.24 mmol, 1.00 equiv) in 98% H2SO4 (60 mL). This was followed by the addition of N-bromosuccinimide (12.80 g, 72.32 mmol, 1.20 equiv), in portions at 60° C. in 10 min. The resulting solution was stirred overnight at 60° C. in an oil bath. The reaction was cooled to room temperature and then quenched by the addition of water/ice. The solids were collected by filtration, and washed with 2×60 mL of hexane. The solid was dried in an oven under reduced pressure. The crude product was purified by re-crystallization from ethyl acetate to give 3 g (20%) of 5-bromoisophthalic acid as a white solid. Intermediate 188.2, bis(2,5-dioxopyrrolidin-1-yl) 5-bromoisophthalate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-bromoisophthalic acid (3 g, 11.76 mmol, 1.00 equiv, 96%) in THF (20 mL) followed by NHS (3 g, 26.09 mmol, 2.20 equiv) at 0-5° C. To this was added a solution of DCC (5.6 g, 27.18 mmol, 2.20 equiv) in THF (20 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred overnight at room temperature. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from DCM/ethanol in the ratio of 1:10. This resulted in 4 g (75%) of the title compound as a white solid. Compound 188, 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.19 mmol, 2.50 equiv, 95%) in DMF (8 mL), intermediate 188.1 (35 mg, 0.08 mmol, 1.00 equiv, 98%) and triethylamine (32 mg, 0.32 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature and then concentrated to dryness. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)=30%˜42%. This resulted in 86 mg (75%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.26 (s, 1H), 8.13 (s, 2H), 7.90 (d, J=9 Hz, 4H), 7.55 (s, 2H), 7.48 (d, J=9 Hz, 4H), 6.84 (s, 2H), 4.76 (m, 4H), 4.54 (m, 2H), 3.89 (m, 2H), 3.68 (m, 18H), 3.53 (m, 4H), 3.33 (s, 6H), 3.18 (m, 4H). MS (m/z): 609 [(M+2H)/2]+ Example 189 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) Intermediate 189.1, bis(2,5-dioxopyrrolidin-1-yl) 2-hydroxymalonate Into a 100 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-hydroxymalonic acid (1.6 g, 13.32 mmol, 1.00 equiv) in THF (30 mL) and DCC (6.2 g, 30.05 mmol, 2.26 equiv). This was followed by the addition of a solution of NHS (3.5 g, 30.41 mmol, 2.28 equiv) in THF (30 mL) at 0-10° C. in 2 h. The resulting solution was stirred for 16 h at room temperature. The solids were then filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from ethanol to give 0.5 g (12%) of the title compound as a white solid. Compound 189, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL), was added Intermediate 189.1 (29 mg, 0.10 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred for 3 h at 30° C. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 36.5 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 546 [(M+2H)/2]+ Example 190 N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Compound 190, N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6, 8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 168.2) (200 mg, 0.40 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (81 mg, 0.80 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) oxalate (57 mg, 0.20 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 72.3 mg (34%) of N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.81 (m, 2H), 7.72 (s, 2H), 7.48-7.57 (m, 4H), 7.35-7.36 (m, 2H), 6.81-6.82 (m, 2H), 4.39-4.43 (m, 2H), 3.79 (d, J=16.5 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55-3.60 (m, 8H), 3.43-3.50 (m, 12H), 3.02-3.09 (m, 6H), 2.64-2.71 (m, 2H), 2.49 (s, 6H). MS (m/z): 1059 [M+H]+ Example 191 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 191, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 168.2) (150 mg, 0.30 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol, 1.98 equiv) and intermediate 177.1 (47 mg, 0.15 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was then concentrated under vacuum and the crude product (150 mg) was purified by Flash-Prep-HPLC with the following conditions: column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 53.1 mg (33%) of N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.80 (m, 2H), 7.71 (s, 2H), 7.48-7.57 (m, 4H), 7.36-7.37 (m, 2H), 6.82 (s, 2H), 4.39-4.44 (m, 2H), 3.79 (d, J=15.9 Hz, 2H), 3.66 (d, J=16.2 Hz, 2H), 3.45-3.57 (m, 16H), 3.35-3.37 (m, 4H), 3.03-3.08 (m, 6H), 2.65-2.71 (m, 2H), 2.49-2.50 (m, 10H). MS (m/z): 1089 [M+H]+ Example 192 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamoyl)benzenesulfonic Acid Intermediate 192.1, sodium 3,5-bis((2,5-dioxopyrrolidin-1-yloxy)carbonyl)benzenesulfonate To sodium 3,5-dicarboxybenzenesulfonate (1 g, 3.73 mmol, 1.00 equiv) and NHS (940 mg, 8.17 mmol, 2.20 equiv) in DMF (10 mL) at 0° C. was added dropwise a solution of DCC (1.69 g, 8.20 mmol, 2.20 equiv) in THF (10 mL) and the reaction stirred overnight. The solids were removed by filtration and the filtrate was concentrated under vacuum to afford 500 mg (29%) of the title compound as a white solid. Compound 192, 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl-carbamoyl)benzenesulfonic Acid To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added intermediate 192.1 (45 mg, 0.10 mmol, 0.50 equiv) and triethylamine (90 mg, 4.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30.6 mg (22%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.35-8.34 (m, 3H), 7.84-7.81 (m, 4H), 7.48 (m, 2H), 7.41-7.38 (m, 4H), 6.75 (m, 2H), 4.87-4.70 (m, 4H), 4.56-4.50 (m, 2H), 3.92-3.85 (m, 2H), 3.70-3.42 (m, 22H), 3.37-3.32 (m, 6H), 3.20-3.06 (m, 4H). MS (m/z): 608 [[(M+2H)/2]+ Example 193 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide Intermediate 193.1, 5-Hydroxyisophthalic Acid To dimethyl 5-hydroxyisophthalate (4.0 g, 19.03 mmol, 1.00 equiv) in THF (10 mL) was added lithium hydroxide (20 mL, 2M in water) and the resulting solution was stirred overnight at 40° C. The mixture concentrated under vacuum to remove the organic solvents and then the pH of the solution was adjusted to ˜2 with 6N hydrochloric acid. The resulting solids were collected by filtration and dried in a vacuum oven to afford 2.0 g (58%) of 5-hydroxyisophthalic acid as a white solid. Intermediate 193.2, bis(2,5-dioxopyrrolidin-1-yl) 5-hydroxyisophthalate To 5-hydroxyisophthalic acid (Intermediate 193.1; 1 g, 5.49 mmol, 1.00 equiv) and NHS (1.39 g, 2.20 equiv), in THF (5 mL) at 0° C. was added dropwise a solution of DCC (2.4 g, 2.20 equiv) in THF (5 mL). The resulting solution was stirred overnight at room temperature, then filtered and concentrated under vacuum to give 0.5 g (22%) of the title compound as a white solid. Compound 193, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added Intermediate 193.2 (34 mg, 0.09 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30 mg (24%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (m, 4H), 7.71-7.70 (m, 1H), 7.56-7.55 (m, 2H), 7.47-7.44 (m, 4H), 7.37-7.36 (m, 2H), 6.84 (m, 2H), 4.87-4.70 (m, 4H), 4.53-4.48 (m, 2H), 3.92-3.85 (m, 2H), 3.67-3.46 (m, 22H), 3.37-3.32 (m, 6H), 3.17-3.07 (m, 4H). MS (m/z): 576 [[(M+2H)/2]+ Example 194 (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide Intermediate 194.1, N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N1-(3-aminopropyl)-N1-methylpropane-1,3-diamine (560 mg, 3.85 mmol) dissolved in DCM (20 mL), was added triethylamine (300 mg, 2.96 mmol) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.77 mmol). The resulting solution was stirred for 3 h at room temperature. After removing the solvent, the resulting residue was diluted with EtOAc (50 mL), washed with water (2×10 mL) and dried over anhydrous sodium sulfate. The crude product was purified by Flash-Prep-HPLC with H2O:MeOH (1:4) to afford 300 mg (74%) of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 194, (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide To a solution of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 194.1, 300 mg, 0.60 mmol) in DMF (2 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91 mg, 0.27 mmol) and triethylamine (270 mg, 2.67 mmol) and the resulting solution was stirred for 2 h at room temperature and the reaction progress was monitored by LCMS. Upon completion, the mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (20%-29%) to afford 30.9 mg (8%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.90-7.88 (m, 2H), 7.80 (m, 2H), 7.69-7.65 (m, 2H), 7.58-7.56 (m, 4H), 6.85 (m, 2H), 4.87-4.71 (m, 4H), 4.54-4.44 (m, 4H), 3.88-3.82 (m, 2H), 3.62-3.53 (m, 4H), 3.22 (m, 6H), 3.13-3.09 (m, 6H), 3.01-2.97 (m, 4H), 2.88 (m, 6H), 2.00-1.96 (m, 8H). LCMS (ES, m/z): 1114 [M+H]+. Example 195 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 195, 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. After removal of the solvent, the crude product (150 mg) was purified by Flash-Prep-HPLC (C18 silica gel; methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 44.4 mg (27%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3CD, ppm): 7.79˜7.76 (m, 2H), 7.70 (s, 2H), 7.57-7.50 (m, 4H), 7.36 (d, J=Hz, 2H), 4.89-4.41 (m, 2H), 4.06 (m, 4H), 3.81-3.62 (m, 5H), 3.59-3.42 (m, 11H), 3.33-3.31 (m, 8H), 3.07-3.01 (m, 6H), 2.71-2.64 (m, 2H), 2.48 (s, 6H). LCMS (ES, m/z): 1103[M+H]+. Example 196 N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 196, N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared from 2,2-dimethylmalonic acid as described in Example 168) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. The mixture was concentrated and then purified by Flash-Prep-HPLC (C18 silica gel, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 75.1 mg of the title compound (46%) as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.80˜7.77 (m, 2H), 7.71 (s, 2H), 7.57-7.48 (m, 4H), 7.36-7.35 (d, J=2.1 Hz, 2H), 6.81 (d, J=1.2 Hz, 2H), 4.43-4.38 (m, 2H), 3.82-3.62 (m, 4H), 3.57-˜3.31 (m, 18H), 3.07-3.02 (m, 6H), 2.71-2.64 (m, 2H), 2.49 (s, 6H), 1.41 (s, 6H). LC-MS (ES, m/z): 1101[M+H]+. Example 197 N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 197, N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (148 mg, 0.26 mmol) in DMF (5 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl) oxalate (prepared from oxalic acid as described in Example 168) (31 mg, 0.11 mmol) and triethylamine (44 mg, 0.44 mmol) and the resulting solution was stirred overnight. The crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)(28%-35%) to afford 101.8 mg (68%) of the title compound as a TFA salt. 1H-NMR (300 Hz, CD3OD, ppm): 7.94 (d, J=9 Hz, 4H), 7.58 (s, 2H), 7.50 (d, J=9 Hz, 4H), 6.88 (s, 2H), 4.80 (m, 4H), 4.53 (m, 2H), 3.90 (m, 2H), 3.59 (m, 16H), 3.52 (m, 2H), 3.49 (m, 12H), 3.13 (s, 6H), 3.09 (m, 4H). LC-MS (ES, m/z): 574 [(M+2H)/2]+. Example 198 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 198, 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82) (200 mg, 0.37 mmol) in DMF (2 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (60 mg) and triethylamine (184 mg). The resulting solution was stirred for 2 h at room temperature at which point LCMS indicated complete conversion. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(25%-35%). This resulted in 79.6 mg (31%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.94-7.91 (m, 4H), 7.58-7.57 (m, 2H), 7.51-7.48 (m, 4H), 6.88 (m, 2H), 4.82-4.74 (m, 4H), 4.52-4.47 (m, 2H), 4.06 (m, 4H), 3.90 (m, 2H), 3.64-3.42 (m, 34H), 3.15-3.13 (s, 6H), 3.11-3.09 (m, 4H). LC-MS (ES, m/z): 596 [(M+2H)/2]+. Example 199 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 199, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)succinamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (200 mg, 0.37 mmol) in dry DMF (10 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl) succinate (intermediate 177.1) (57.1 mg, 0.18 mmol) and triethylamine (111 mg, 1.10 mmol). The resulting solution was stirred for 4 h at 25° C. in an oil bath and monitored by LCMS. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(28%-35%). This resulted in 113.8 mg (45%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.93-7.91 (d, J=8.1 Hz, 4H), 7.58-7.57 (m, 2H), 7.50-7.48 (m, 4H), 6.87 (s, 2H), 4.88-4.74 (m, 4H), 4.55-4.49 (d, J=16.2 Hz, 2H), 3.94-3.88 (m, 2H), 3.67-3.59 (m, 14H), 3.55-3.45 (m, 12H), 3.35-3.09 (m, 10H), 2.48 (s, 4H). LC-MS (ES, m/z): 588 [(M+2H)/2]+. Example 200 N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt Intermediate 200.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 175.1 (3 g) was purified by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, C02 (50%), iso-propanol (50%); Detector, UV 254 nm This resulted in 1 g of (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 200.1) as a yellow solid. Compound 200, N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt To Intermediate 200.1 (280 mg, 0.56 mmol, 2.00 equiv) in DMF (10 mL) was added intermediate 177.1 (87 mg, 0.28 mmol, 1.00 equiv) and triethylamine (94.3 mg, 0.93 mmol, 4.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product (300 mg) was purified by Prep-HPLC with CH3CN:H2O (35-55%). The product was then dissolved in 15 mL of dichloromethane and gaseous hydrochloric acid was introduced for 20 minutes, then the mixture was concentrated under vacuum. The crude product was washed with 3×10 mL of ether to afford 222.4 mg of Compound 200 as a light yellow solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (d, J=8 Hz, 4H), 7.56-7.52 (m, 6H), 6.82 (s, 2H), 4.89-4.84 (m, 4H), 4.52-4.48 (d, J=16.4 Hz, 2H), 3.91-3.90 (d, J=4 Hz, 2H), 3.62-3.48 (m, 18H), 3.39-3.32 (m, 4H), 3.19-3.10 (m, 10H), 2.57-2.55 (d, J=5.2 Hz, 4H). LCMS (ES, m/z): 544 [M−2HCl]/2+H+. Example 201 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) bis-hydrochloride Salt Compound 201, 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) bis-hydrochloride Salt To intermediate 200.1 (500 mg, 1.00 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 178.1 (150 mg, 0.46 mmol, 0.45 equiv) and triethylamine (0.4 g, 4.50 equiv) and the resulting solution was stirred for 2 h. The crude product was purified by Prep-HPLC with CH3CN/H2O (0.05% TFA) (28%-34%). The product was dissolved in 15 mL of dichloromethane and then gaseous hydrochloric acid was introduced for 20 mins. The mixture was concentrated under vacuum and the crude product was washed with 3×10 mL of ether to afford 101.1 mg (18%) of Compound 201 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (m, 4H), 7.57-7.51 (m, 6H), 6.84 (s, 2H), 4.88-4.70 (m, 4H), 4.50 (s, 2H), 4.08 (s, 4H), 3.92-3.91 (m, 2H), 3.90-3.54 (m, 9H), 3.50-3.49 (m, 5H), 3.47-3.44 (m, 8H), 3.18 (s, 6H), 3.12-3.10 (m, 4H). LCMS (ES, m/z): 552 [M−2HCl]/2+H+. Example 202 (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) bis-hydrochloride Salt Intermediate 202.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide bis(2,2,2-trifluoroacetate) To 2-(2-(2-aminoethoxy)ethoxy)ethanamine (30.4 g, 205.41 mmol, 8.01 equiv) in dichloromethane (1000 mL) was added triethylamine (5.2 g, 51.49 mmol, 2.01 equiv). This was followed by the addition of (S)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (10 g, 23.42 mmol, 1.00 equiv; prepared from intermediate 244.1 and the procedures described in Example 1) in portions at 10° C. in 1 h. The resulting solution was stirred for 15 min at room temperature. The resulting mixture was washed with 3×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water/TFA (4/100/0.0005) increasing to 8/10/0.0005 within 30 min; Detector, UV 254 nm. This resulted in 7.2 g (42%) of intermediate 202.1 as a white solid Compound 202, (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) bis-hydrochloride Salt To intermediate 202.1 (500 mg, 0.69 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (138 mg, 1.37 mmol, 1.99 equiv) followed by the addition of 1,4-diisocyanatobutane (48 mg, 0.34 mmol, 0.50 equiv) in portions. The resulting solution was stirred for 10 min at room temperature then the crude product (500 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 246.7 mg (59%) of Compound 202 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.92 (d, J=7.2 Hz, 2H), 7.83 (s, 2H), 7.69-7.65 (m, 2H), 7.60-7.55 (m, 4H), 6.81 (s, 2H), 4.87-4.83 (m, 4H), 4.54-4.50 (m, 2H), 3.94-3.91 (m, 2H), 3.69-3.49 (m, 18H), 3.39-3.32 (m, 4H), 3.21-3.15 (m, 10H), 3.08-3.05 (m, 4H), 1.57 (s, 4H). LCMS (ES, m/z): 1145 [M−2HCl+1]+. Example 203 (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) bis-hydrochloride Salt Compound 203, (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis-(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) bis-hydrochloride Salt To intermediate 202.1 (400 mg, 0.55 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (111 mg, 1.10 mmol, 2.00 equiv) followed by the portionwise addition of 1,4-diisocyanatobenzene (44 mg, 0.28 mmol, 0.50 equiv). The resulting solution was stirred for 10 min and the crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water (0.05/100) increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 201.7 mg (59%) of Compound 203 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.84 (d, J=7.6 Hz, 2H), 7.71 (s, 2H), 7.60-7.56 (m, 2H), 7.48-7.45 (m, 4H), 7.16 (s, 4H), 6.76 (s, 2H), 4.70-4.66 (m, 4H), 4.42-4.38 (m, 2H), 3.78-3.74 (m, 2H), 3.53-3.48 (m, 18H), 3.44-3.26 (m, 4H), 3.06-2.99 (m, 10H). LCMS (ES, m/z): 1163[M−2HCl+l]+. Example 204 N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1, 2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetic Acid To a slurry of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (Intermediate 1.6) (283 mg, 0.66 mmol) and triglycine (152 mg, 0.80 mmol) in THF (1.5 mL) at 0° C. was added water (1.0 mL) followed by triethylamine (202 mg, 2.0 mmol). The reaction was allowed to warm to room temperature and stirred for 15 hours. The solvents were removed at reduced pressure and the residue was purified by preparative HPLC to give Intermediate 204.1 (122 mg) as a TFA salt. Compound 204, N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1 (60 mg, 0.091 mmol) was dissolved in DMF (0.90 mL) followed by N-hydroxysuccinimide (12.6 mg, 0.11 mmol) and 1,4-diaminobutane (4.0 mg, 0.045 mmol). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (21 mg, 0.11 mmol) was added and the reaction was stirred at room temperature for 16 hours, at which time additional 1,4-diaminobutane (1 uL) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (5 mg) were added. Two hours after the addition, solvent was removed at reduced pressure and the residue was purified by preparative HPLC. The title compound was obtained as a TFA salt (26 mg). 1H-NMR (400 mHz, CD3OD) δ 7.90 (d, j=8.6 Hz, 4H), 7.52 (d, j=1.8 Hz, 2H), 7.47 (d, j=8.6 Hz, 4H), 6.84 (s, 2H), 7.75 (m, 6H), 4.44 (d, J=15.6 Hz, 2H), 3.86 (s, 4H), 3.81 (s, 4H), 3.61 (s, 4H), 3.54 (m, 2H), 3.16 (m, 4H), 3.16 (s, 6H), 1.49 (m, 4H). MS (m/z): 1636.98 [M+H]+. Example 205 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 205, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (110 mg, 0.22 mmol) in DMF (2.0 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (34 mg, 0.10 mmol) and the reaction was stirred for 10 minutes. The solvent was removed under vacuum and the residue was purified by preparative HPLC to give the title compound (23 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.81 (m, 4H), 7.44 (s, 1H), 7.37 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.72 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.02 [M+H]+. Example 206 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 206.1, N,N′-(1,4-phenylenebis(methylene))bis(2-(2-(2-aminoethoxy)ethoxy)ethanamine) A solution of terephthalaldehyde (134 mg, 1.0 mmol) and 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (1.48 g, 10.0 mmol) in DCM (10 mL) was stirred at room temperature. After 15 minutes sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added and the reaction was stirred for 1.5 hours. Acetic acid (600 mg, 10 mmol) was then added. After stirring for an additional 1.5 hours, acetic acid (600 mg, 10 mmol) and sodium triacetoxyborohydride (636 mg, 3.0 mmol) were added, and stirring was continued at room temperature. One hour later an additional portion of sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added. Twenty hours later the reaction was quenched with 1N HCl (5 mL) and concentrated to dryness. Methanol (10 mL) and 12N HCl (3 drops) were added and the mixture was concentrated to dryness. The residue was dissolved in water (10 mL) and a portion (1.0 mL) was purified by preparative HPLC to give a TFA salt of the title compound (25 mg) as a TFA salt. Compound 206, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of intermediate 206.1 (25 mg, 0.029 mmol) in DCM (0.5 mL) was added of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (25 mg, 0.06 mmol) followed by triethylamine (24.2 mg, 0.24 mmol) and the reaction was allowed to stir at room temperature for 18 hours. The reaction was concentrated to dryness, and then purified by preparative HPLC to give the title compound (8 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.85 (m, 2H), 7.74 (m, 2H), 7.62 (m, 6H), 7.53 (m, 4H), 6.80 (s, 1H), 4.74 (m, 6H), 4.44 (m, 2H), 4.30 (s, 4H), 3.83 (m, 2H), 3.76 (m, 4H), 3.62 (m, 8H), 3.50 (m, 4H), 3.23 (m, 4H), 3.10 (s, 6H), 3.02 (m, 4H). MS (m/z): 1105.05 [M+H]+. Example 207 (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 207, (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Following the procedures outlined in example 205, compound 207 was prepared using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.82 (m, 4H), 7.45 (m, 1H), 7.38 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.74 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.07 [M+H]+. Example 208 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 208, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (47 mg, 0.061 mmol) in DMF (0.20 mL) was added 1,4-diisocyanatobutane (4.0 mg, 0.03 mmol) followed by diisopropylethylamine (15 mg, 0.12 mmol). After stirring at room temperature for 30 minutes, the reaction was purified by preparative HPLC to give the title compound (31 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.88 (m, 2H), 7.75 (m, 2H), 7.63 (m, 2H), 7.54 (m, 4H), 6.83 (m, 2H), 4.74 (m, 4H), 4.48 (m, 2H), 3.87 (m, 2H), 3.62-3.55 (m, 14H), 3.51-3.43 (m, 12H), 3.24 (m, 4H), 3.14 (s, 6H), 3.05 (m, 8H), 1.43 (m, 4H). MS (m/z): 1230.99 [M+H]+. Example 209 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 209, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in example 208, compound 209 was prepared using 1,4-diisocyanatobenzene. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.78 (m, 2H), 7.64 (m, 2H), 7.53 (m, 2H), 7.43 (m, 2H), 7.39 (m, 2H), 7.10 (s, 4H), 6.71 (s, 2H), 4.58 (m, 4H), 4.39 (m, 2H), 3.68 (m, 2H), 3.54 (s, 8H), 3.50-3.44 (m, 8H), 3.42 (m, 6H), 3.35 (m, 4H), 2.99 (s, 6H), 2.95 (m, 4H). MS (m/z): 1250.98 [M+H]+. Example 210 (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.1, (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Intermediate 210.1 was prepared following the procedure outlined in Example 44.2 using 20-azido-3,6,9,12,15,18-hexaoxaicosan-1-amine. The title compound was recovered in 64% yield as a yellow oil. Intermediate 210.2, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-4-(2-carboxyprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.2 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (22.4 mg, 0.065 mmol) and (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (91.5 mg, 0.13 mmol). The title compound was recovered in 60% yield as a clear semi-solid. Compound 210, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Compound 210 was prepared following the procedure outlined in Example 45 using Intermediate 210.2 (59.6 mg). Purification by preparative HPLC gave the title compound (10 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.64 (d, 4H), 7.48 (s, 1H), 7.32 (d, 4H), 7.12 (d, 4H), 3.62-3.58 (m, 17H), 3.55-3.52 (m, 9H), 3.48-3.41 (m, 13H), 3.06 (s, 3H), 2.72 (s, 6H). MS (m/z): 1549.23 [M+H]+. Compound 211 (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211, (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211 was prepared following the procedure outlined in Example 45 using (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 210.2, 13.2 mg). Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.84 (d, 2H), 7.52 (s, 1H), 7.35 (d, 2H), 7.12 (d, 2H), 3.74-3.70 (m, 2H), 3.69-3.58 (m, 24H), 3.55-3.51 (m, 2H), 3.49-3.46 (m, 2H), 3.15-3.12 (m, 2H), 3.07-3.04 (m, 2H). MS (m/z): 718.28 [M+H]+. Example 212 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 212.1, (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Compound 44.2 (100 mg, 0.175 mmol) and (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (30.1 mg, 0.087 mmol) were dissolved in DMF (0.35 mL) with DIEA (67.7 mg, 0.525 mmol) and stirred for 2 hours at room temperature. The solvent was removed and the resulting material partitioned between EtOAc (20 mL) and water (20 mL). The organic layer was washed with saturated NaHCO3 (20 mL), brine (20 mL) and dried over Na2SO4 to give the product (87.7 mg) as a yellow oil that was used without further purification. Compound 212, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 212 was prepared following the procedures outlined in Example 45. Purification by preparative HPLC gave 9.6 mg of the title compound as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.11 (d, 4H), 4.44 (s, 2H), 3.61-3.53 (m, 21H), 3.50-3.41 (m, 15H), 3.05 (t, 4H), 2.17 (s, 6H). MS (m/z): 1286.11 [M+H]+. Example 213 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 213, 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)acetamide) Compound 213 was prepared following the procedure outlined in Example 168 using tris(2,5-dioxopyrrolidin-1-yl) 2,2′,2″-nitrilotriacetate (75 mg, 0.156 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 254 mg, 0.467 mmol). Purification by preparative HPLC gave the title compound (32.0 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 3H), 7.75 (s, 3H), 7.63 (t, 3H), 7.54 (t, 6H), 6.82 (s, 3H), 4.84-4.75 (m, 6H), 4.48 (d, 3H), 3.86 (m, 3H), 3.85-3.37 (m, 54H), 3.14 (s, 9H), 3.02 (t, 6H). MS (m/z): 1777.07 [M+H]+. Example 214 N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 214.1, N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide A solution of 32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontan-1-amine (436.9 mg, 0.777 mmol) in dry DMF (3.5 mL) under N2 was cooled to 0° C. A solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.706 mmol) and DIEA (273.2 mg, 2.118 mmol) in DMF (3 mL) was added dropwise. After 60 minutes LCMS indicated complete conversion and the solvent was removed to give N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (620 mg) as a yellow oil which was used without further purification. Compound 214, N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 214.1, 620 mg, 0.706 mmol) in THF/H2O (10:1 v/v, 14.3 mL) under N2 was added trimethylphosphine (214.8 mg, 2.82 mmol). The resulting solution was stirred overnight at which point LCMS indicated complete conversion. The solvent was removed to give 819 mg of an orange oil, a portion of which was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 1H), 7.68 (s, 1H), 7.62 (t, 1H), 7.55 (m, 2H), 6.82 (s, 1H), 3.85 (m, 1H), 3.78 (q, 3H), 3.70-3.58 (m, 55H), 3.52 (m, 2H), 3.46 (t, 3H), 3.18 (t, 3H), 3.11 (s, 3H), 3.03 (t, 2H). MS (m/z): 855.24 [M+H]+. Example 215 N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide Compound 215, N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968) in DMF (0.5 mL) was added benzene-1,3,5-tricarboxylic acid (6.7 mg, 0.0319 mmol), DIEA (37.5 mg, 0.291 mmol), and finally HATU (40.4 mg, 0.107 mmol). The reaction was stirred for 60 minutes at room temperature at which point LCMS indicated complete conversion. The resulting solution was diluted with acetonitrile/water solution (1:1 v/v) and filtered. Purification by preparative HPLC gave the title compound (37.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.37 (s, 3H), 7.84 (d, 2H (7.83 (s, 2H), 7.62 (t, 2H), 7.51-7.50 (m, 4H), 6.79 (s, 2H), 4.83-4.70 (m, 5H), 4.46 (d, 2H), 3.86 (q, 2H), 3.67-3.53 (m, 27H), 3.45 (t, 5H), 3.39 (t, 5H), 3.14 (s, 7H), 2.98 (t, 4H). MS (m/z): 1797.15 [M+H]+. Example 216 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 216, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 216 was prepared following the procedure outlined in Example 215 using terephthalic acid (10.7 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 100 mg, 0.129 mmol). Purification by preparative HPLC gave the title compound (46.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (m, 6H), 7.73 (s, 2H), 7.59 (t, 2H), 7.52-7.49 (m, 4H) m, 6.80 (s, 2H), 4.77-4.69 (m, 4H), 4.49 (d, 2H), 3.587 (qs, 2H), 3.67-3.54 (m, 27H), 3.45 (t, 5H), 3.40 (t, 5H), 3.13 (s, 7H), 2.99 (t, 4H). MS (m/z): 1224.34 [M+H]+. Example 217 N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217, N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-dioate (69.1 mg, 0.0975 mmol) and N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 214, 166.2 mg, 0.195 mmol). Purification by preparative HPLC gave the title compound (106.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.76 (s, 2H), 7.66 (t, 2H), 7.56 (m, 4H), 6.86 (s, 2H), 3.90 (m, 2H), 3.82 (t, 2H), 3.76 (m, 6H), 3.62-3.41 (m, 28H), 3.38 (m, 6H), 3.35-3.28 (m, 56H), 3.15 (s, 6H), 3.05 (t, 4H), 2.43 (t, 4H). MS (m/z): 1094.37 [(M+2H)/2]+. Example 218 2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (10.2 mg, 0.0298 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 30 mg, 0.0597 mmol). Purification by preparative HPLC gave the title compound (5.1 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.92 (d, J=7.8 Hz, 2H), 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H0, 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119.04 [M+H]+. Example 219 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide Compound 219, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol) and DIEA (35.5 mg, 0.275 mmol) in dry DCM (0.183 mL) under N2 was added benzene-1,3-disulfonyl dichloride (12.7 mg, 0.0459 mmol) in DCM (0.183 mL). The reaction mixture was stirred at room temperature for 60 minutes at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 4 mL ACN/H2O solution (1:1). Filtration and purification by preparative HPLC gave the title compound (16.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.28 (s, 1H), 8.06 (d, 1H), 7.85 (d, 2H), 7.75 (d, 2H), 7.70 (s, 1H), 7.63 (t, 2H), 7.53 (m, 3H), 6.82 (s, 1H), 4.52 (d, 1H), 3.85 (d, 1H), 3.61-3.46 (m, 28H), 3.13 (s, 6H), 3.09-3.03 (m, 7H). MS (m/z): 1294.99 [M+H]+. Example 220 N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)biphenyl-4,4′-disulfonamide Compound 220, N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)biphenyl-4,4′-disulfonamide Compound 220 was prepared following the procedure outlined in Example 219 using biphenyl-4,4′-disulfonyl dichloride (16.1 mg, 0.0459 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol). Purification by preparative HPLC gave the title compound (16.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.96 (d, 4H), 7.88-7.85 (m, 5H), 7.78 (s, 2H), 7.61 (t, 2H), 7.47 (d, 2H), 6.78 (s, 2H), 4.74-4.69 (m, 3H), 4.45 (d, 2H), 3.88-3.83 (m, 2H), 3.62-3.59 (m, 2H), 3.55-3.53 (m, 9H), 3.52-3.43 (m, 17H), 3.13 (s, 6H), 3.11-3.03 (m, 8H). MS (m/z): 1371.02 [M+H]+. Example 221 (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oicacid Compound 221, (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic Acid Compound 221 was prepared by isolating the mono-addition byproduct from the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (70.4 mg, 0.205 mmol) and Compound 28 (223 mg, 0.409 mmol). Purification by preparative HPLC gave the title compound (44.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 1H), 7.81 (d, 1H), 7.63 (t, 1H), 7.55 (s, 1H), 7.50 (t, 1H), 6.84 (s, 0.5H), 3.88-3.84 (m, 1H), 3.64-3.34 (m, 22H), 3.14 (s, 4H), 3.07 (m, 2H). MS (m/z): 677.36 [M+H]+. Example 222 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222 was prepared following the procedure outlined in Example 215 using (2S,3S)-2,3-dihydroxysuccinic acid (15.5 mg, 0.103 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 112 mg, 0.206 mmol). Purification by preparative HPLC gave the title compound (39.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.54-7.50 (m, 4H), 6.82 (s, 2H), 4.34 (s, 2H), 3.90-3.85 (m, 1H), 3.62-3.30 (m, 47H), 3.14 (m, 8H), 3.05 (t, 4H). MS (m/z): 1206.95 [M+H]+. Example 223 N1,N4-bis(2-(2-(2-(2-(3-((R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 223.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and 223.1b (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1, 4.5 g, 7.88 mmol, 1.00 equiv) was separated into its enantiomers by chiral phase preparative Supercritical Fluid Chromatography (Prep-SFC) with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), methanol (20%); Detector, UV 254 nm. This resulted in 1.61 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.5 Hz, 1H), 7.711 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=16.2 Hz, 1H), 3.58-3.69 (m, 9H), 3.40-3.52 (m, 4H), 3.33-3.38 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. This also gave 1.81 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.78-7.81 (m, 1H), 7.71 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=15.9 Hz, 1H), 3.57-3.70 (m, 9H), 3.44-3.53 (m, 4H), 3.37-3.40 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 223.2, (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1a was converted to Intermediate 223.2. Compound 223, N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 223 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 223.2, 239 mg, 0.439 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (75.5 mg, 0.219 mmol). Purification by preparative HPLC gave the title compound (135.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.68 (s, 2H), 7.63 (t, 2H), 7.54-7.52 (m, 4H), 6.83 (s, 2H), 4.83-4.75 (m, 5H), 4.50-4.48 (m, 2H), 4.43 (d, 2H), 3.89-3.82 (m, 2H), 3.63-3.35 (m, 34H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.11 [M+H]+. Example 224 N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 224.1, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1b was converted to Intermediate 224.1. Compound 224, N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 224 was prepared following the procedures outlined in Example 223 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 274 mg, 0.502 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (86.4 mg, 0.251 mmol). Purification by preparative HPLC gave the title compound (159 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 6.54-6.51 (m, 4H), 6.83 (s, 2H), 4.84-4.75 (m, 4H), 4.50-4.43 (m, 4H), 3.90-3.85 (m, 4H), 3.62-3.28 (m, 35H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1207.11 [M+H]+. Example 225 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 225.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and intermediate 225.1b, (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (5 g, 8.76 mmol, 1.00 equiv) was separated into its enantiomers by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, C02 (80%), ethanol (20%); Detector, UV 254 nm. This resulted in 1.69 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.85 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.43 (t, 1H), 3.81 (m, 1H), 3.67 (m, 9H), 3.48 (m, 4H), 3.33 (m, 2H), 3.01 (m, 1H), 2.71 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Also isolated was 1.65 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.84 (d, J=8.4 Hz, 2H), 7.43 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.42 (t, 1H), 3.81 (m, 1H), 3.67 (m, 10H), 3.59 (m, 4H), 3.49 (m, 2H), 3.11 (m, 2H), 2.72 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 225.2, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1b was converted to Intermediate 225.2. Compound 225, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 225 was prepared following the procedures outlined in Example 168 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 302.4 mg, 0.555 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (95.5 mg, 0.277 mmol). Purification by preparative HPLC gave the title compound (97.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.46 (d, 4H), 6.84 (s, 2H), 4.88-4.72 (m, 3H), 4.43-4.42 (m, 2H), 3.85-3.80 (m, 1H), 3.63-3.35 (m, 24H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.05 [M+H]+. Example 226 N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 226.1, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1a was converted to intermediate 226.1. Compound 226, N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 226 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 226.1, 267.5 mg, 0.491 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (84.5 mg, 0.245 mmol). Purification by preparative HPLC gave the title compound (145.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 5H), 7.54 (s, 2H), 7.48 (d, 4H), 6.84 (s, 2H), 4.84-4.73 (m, 4H), 4.50-4.43 (d, 2H), 4.18 (d, 2H), 3.85-3.80 (m, 2H), 3.64-3.40 (m, 32H), 3.13 (s, 6H), 3.08 (t, 3H). MS (m/z): 1207.10 [M+H]+. Example 227 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (49.6 mg, 0.144 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 157 mg, 0.288 mmol). Purification by preparative HPLC gave the title compound (34.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.77-4.74 (m, 6H), 4.46 (d, 2H), 4.43 (t, 2H), 3.89-3.84 (m, 2H), 3.62-3.53 (m, 19H), 3.49-3.41 (m, 13H), 3.14 (s, 6H), 3.08 (t, 4H). MS (m/z): 1206.94 [M+H]+. Example 228 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)isophthalamide Compound 228, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)isophthalamide Compound 228 was prepared following the procedure outlined in Example 215 using isophthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (45.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.25 (s, 1H), 7.92 (d, 2H), 7.85 (d, 2H), 7.73 (s, 2H), 7.58 (t, 2H), 7.49 (m, 5H), 6.81 (s, 2H), 4.83-4.71 (m, 4H), 4.49 (d, 2H), 3.87 (m, 2H), 3.67-3.54 (m, 28H), 3.45 (t, 5H), 3.44 (q, 5H), 3.14 (s, 7H), 2.99 (t, 4H). MS (m/z): 1223.19 [M+H]+. Example 229 (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 229, (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 25 mg, 0.0322 mmol) was dissolved in DMF (0.161 mL) with DIEA (12.4 mg, 0.0966 mmol) and (2R,3S)-2,3-dihydroxysuccinic acid (2.7 mg, 0.0161 mmol). Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (18.4 mg, 0.0354 mmol) was added and the resulting solution stirred for 60 minutes, at which point LCMS indicated complete conversion. The reaction mixture was diluted to 2 mL with acetonitrile/water (1:1) and filtered. Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.80 (d, 2H), 7.69 (s, 2H), 7.55 (t, 2H), 7.43 (m, 4H), 6.75 (s, 2H), 4.80-4.75 (m, 3H), 4.39 (d, 2H), 4.24 (d, 2H), 3.76 (m, 2H), 3.64-3.25 (m, 33H), 3.04 (s, 7H), 2.95 (t, 4H). MS (m/z): 1207.10 [M+H]+. Example 230 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)phthalamide Compound 230, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)phthalamide Compound 230 was prepared by following the procedure outlined in Example 215 using phthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (35.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.76 (s, 2H), 7.63 (t, 2H), 7.50 (m, 8H), 6.79 (s, 2H), 4.83-4.73 (m, 4H), 4.65 (d, 2H), 3.85 (q, 2H), 3.62-3.39 (m, 36H), 3.10 (s, 6H), 3.02 (t, 4H). MS (m/z): 1223.00 [M+H]+. Example 231 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 231, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 231 was prepared following the procedure outlined in Example 215 using terephthalic acid (11.4 mg, 0.0684 mmol) and 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-hydroxyethoxy)ethoxy)-ethyl)benzenesulfonamide (Compound 175.1, 100 mg, 0.136 mmol). Purification by preparative HPLC gave the title compound (9.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86-7.85 (m, 9H), 7.83 (s, 2H), 7.50 (s, 1H), 7.41 (d, 4H), 6.80 (s, 1H), 3.68-3.42 (m, 26H), 3.34 (m, 2H), 3.09-3.01 (m, 12H). MS (m/z): 1135.07 [M+H]+. Example 232 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 232, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 80 mg, 0.110 mmol) and DIEA (42.1 mg, 0.330 mmol) were dissolved in dry DCM (0.5 mL) under N2 and cooled to 0° C. A solution of triphosgene (4.9 mg, 0.0165 mmol) in DCM (0.2 mL) was added dropwise and the resulting solution was warmed to room temperature over 30 minutes. The solvent was removed; the resulting residue was brought up in 4 mL of acetonitrile/water (1:1) solution and filtered. Purification by preparative HPLC gave the title compound (8.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 4H), 7.60 (s, 2H), 7.47 (d, 4H), 6.84 (s, 2H), 3.58-3.42 (m, 24H), 3.12-3.05 (m, 17H). MS (m/z): 1031.96 [M+H]+. Example 233 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 233, N,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 233 was prepared following the procedures outlined in Example 215 using terephthalic acid (10.4 mg, 0.0628 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 97.2 mg, 0.1255 mmol). Purification by preparative HPLC gave the title compound (38.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.83 (m, 10H), 7.85 (s, 2H), 7.42 (d, 4H), 6.83 (s, 1H), 3.66-3.55 (m, 28H), 3.46-3.39 (m, 11H), 3.12 (s, 7H), 3.04 (t, 4H). MS (m/z): 1223.14 [M+H]+. Example 234 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 234, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 234 was prepared following the procedures outlined in Example 215 using terephthalic acid (13.8 mg, 0.0833 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 121.7 mg, 0.167 mmol). Purification by preparative HPLC gave the title compound (60.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (m, 6H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51 (m, 4H), 6.80 (s, 2H), 4.88-4.75 (m, 4H), 4.75 (d, 2H), 4.74 (m, 2H), 3.85-3.42 (m, 25H), 3.12 (s, 6H), 2.99 (t, 4H). MS (m/z): 1135.11 [M+H]+. Example 235 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235 was prepared following the procedures outlined in Example 232 using N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 56.6 mg, 0.0775 mmol). Purification by preparative HPLC gave the title compound (25.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.75 (s, 2H, 7.65 (t, 2H), 7.53 (m, 4H), 6.83 (s, 2H), 4.89-4.68 (m, 2H), 3.88 (m, 2H), 3.62-3.43 (m, 21H), 3.30-3.27 (m, 6H), 3.11 (s, 7H), 3.03 (t, 4H). MS (m/z): 1031.07 [M+H]+. Example 236 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (5.24 mg, 0.0374 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 54.7 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (27.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88-7.86 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 4.48 (m, 2H), 3.38-3.31 (m, 1H), 3.61-3.42 (m, 17H), 3.35-3.30 (m, 4H), 3.13 (s, 6H), 3.08-3.02 (m, 7H), 1.45 (m, 2H). MS (m/z): 1145.04 [M+H]+. Example 237 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (8.79 mg, 0.0549 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 80.2 mg, 0.110 mmol). Purification by preparative HPLC gave the title compound (37.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.73 (s, 2H), 7.61 (t, 2H), 7.52 (d, 2H), 7.48 (d, 2H), 7.18 (s, 5H), 6.78 (s, 2H), 4.71-4.63 (m, 6H), 4.45-4.40 (m, 2H), 3.81-3.77 (m, 2H), 3.58-3.55 (m, 6H), 3.53-3.50 (m, 14H), 3.47-3.44 (m, 6H), 3.35-3.33 (m, 6H), 3.09 (s, 8H), 3.03 (t, 5H). MS (m/z): 1165.06 [M+H]+. Example 238 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (5.64 mg, 0.402 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 58.8 mg, 0.805 mmol). Purification by preparative HPLC gave the title compound (13.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, J=8 Hz, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.52 (s, 2H), 7.47 (d, J=7 Hz, 2H), 7.18 (s, 5H), 7.78 (s, 2H), 4.77-4.68 (m, 5H), 4.48-4.40 (m, 2H), 3.35-3.28 (m, 2H), 3.56-3.51 (m, 16H), 3.45 (t, J=5 Hz, 5H), 3.35-3.32 (m, 10H), 3.09 (s, 6H), 3.03 (t, J=5 Hz, 3H). MS (m/z): 1145.01 [M+H]+. Example 239 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (12.5 mg, 0.078 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 113.9 mg, 0.156 mmol). Purification by preparative HPLC gave the title compound (48.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, J=8 Hz, 4H), 7.52 (s, 2H), 7.40 (d, J=8 Hz, 4H), 7.18 (s, 4H), 7.69 (s, 2H), 4.70-4.62 (m, 3H), 4.48-4.40) (m, 2H), 3.82-3.76 (m, 2H), 3.58-3.43 (m, 21H), 3.35-3.30 (m, 4H), 3.11-3.06 (m, 11H). MS (m/z): 1165.12[M+H]+. Example 240 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (9.6 mg, 0.057 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 88.6 mg, 0.114 mmol). Purification by preparative HPLC gave the title compound (24.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.94 (t, 1H), 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.53-7.50 (m, 4H), 6.82 (s, 2H), 4.479-4.45 (m, 2H), 4.44 (s, 2H), 3.88-3.84 (m, 2H), 3.62-3.53 (m, 22H), 3.50-3.48 (m, 5H), 3.45-3.40 (m, 9H), 3.13 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.02 [M+H]+. Example 241 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.7 mg, 0.0519 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 80.5 mg, 0.104 mmol). Purification by preparative HPLC gave the title compound (25.7) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 3H), 7.76 (s, 2H), 7.63 (t, 2H), 7.54-7.51 (m, 4H), 6.83 (s, 2H), 4.78-4.73 (m, 4H), 4.49-4.42 (m, 4H), 3.89-3.85 (m, 2H), 3.62-3.53 (m, 22H), 3.51-48 (m, 5H), 3.46-3.38 (m, 9H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.21 [M+H]+. Example 242 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (6.3 mg, 0.0374 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 58.0 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (21.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 3H), 6.84 (s, 1H), 4.772-4.69 (m, 3H), 4.43 (s, 2H), 3.86-3.81 (m, 1H), 3.59-3.53 (m, 16H), 3.49-3.39 (m, 11H), 3.12 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.14 [M+H]+. Example 243 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.4 mg, 0.0.0499 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 77.3 mg, 0.0999 mmol). Purification by preparative HPLC gave the title compound (23.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.81-4.71 (m, 4H), 4.49-4.41 (m, 4H), 3.89-3.83 (m, 2H), 3.60-3.53 (m, 17H), 3.49-3.38 (m, 12H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.09 [M+H]+. Example 244 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 244.1, (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 2000-mL round-bottom flask, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4; 20 g, 54.20 mmol, 1.00 equiv) in ethanol (500 mL). This was followed by the addition of D-(+)-dibenzoyl tartaric acid (19 g, 53.07 mmol, 0.98 equiv), water (160 mL) and ethanol (1440 mL) at 45° C. The resulting solution was stirred for 30 min at 45° C. in an oil bath. After cooling to room temperature over 24 hours, the solids were collected by filtration. The filter cake was dissolved in potassium carbonate (saturated.) and was extracted with 2×500 mL of ethyl acetate. The combined organic layers were washed with 2×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. This gave (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a colorless oil. Intermediate 224.1 (alternate synthesis), (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 244.1) was converted to (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1) following the procedures outlined for the racemic substrates in Example 1 and the reduction described in Example 170. Compound 244, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 244 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (6.5 mg, 0.0471 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 72.9 mg, 0.0941 mmol). Purification by preparative HPLC gave the title compound (34.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 6.83 (s, 2H), 4.48 (d, 2H), 3.90-3.85 (m, 2H), 3.59-3.55 (m, 17H), 3.51-3.43 (m, 14H), 3.31-3.23 (m, 6H), 3.14 (s, 7H), 3.04 (m, 9H), 1.43 (m, 4H). MS (m/z): 1232.99 [M+H]+. Example 245 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 79.1 mg, 0.102 mmol) and 1,4-diisocyanatobenzene (8.2 mg, 0.0511 mmol). Purification by preparative HPLC gave the title compound (43.2 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51-7.46 (m, 4H), 7.17 (s, 4H), 6.78 (s, 2H), 4.44-4.39 (m, 2H), 3.82-3.77 (m, 2H), 3.61 (s, 11H), 3.57-3.53 (m, 13H), 3.49-3.48 (m, 6H), 3.44 (t, 5H), 3.35-3.29 (m, 6H), 3.09 (s, 7H), 3.03 (t, 4H). MS (m/z): 1253.01 [M+H]+. Compound 246 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246 was prepared following the procedures outlined in Example 215 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 65.1 mg, 0.0841 mmol) and terephthalic acid (6.98 mg, 0.042 mmol). Purification by preparative HPLC gave the title compound (19.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89-7.85 (m, 6H), 7.52 (s, 2H), 7.43 (d, 4H), 6.81 (s, 2H), 4.73-4.66 (m, 3H), 4.47-4.42 (m, 1H), 3.84-3.79 (m, 2H), 3.64-3.59 (m, 14H), 3.57-3.54 (m, 11H), 3.46-3.39 (m, 8H), 3.12 (s, 6H), 3.03 (t, 4H). MS (m/z): 1233.04 [M+H]+. Example 247 N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247, N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247 was prepared following the procedure outlined in Example 215 using 4-amino-4-oxobutanoic acid (7.6 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0646 mmol). Purification by preparative HPLC gave the title compound (27.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 1H), 7.75 (s, 1H), 7.64 (t, 1H), 7.55 (s, 1H), 7.51 (d, 1H), 6.84 (s, 1H), 4.78-4.71 (m, 2H), 4.55-4.48 (m, 1H), 3.81-3.75 (m, 1H), 3.63-3.55 (m, 10H), 3.51-4.45 (m, 5H), 3.44-3.41 (m, 3H), 3.38-3.31 (m, 3H), 3.13 (s, 3H), 3.07-3.02 (t, 2H), 2.48-2.43 (m, 4H). MS (m/z): 645.32 [M+H]+. Example 248 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (7.64 mg, 0.545 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 84.4 mg, 0.109 mmol). Purification by preparative HPLC gave the title compound (43.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.71 (m, 4H), 3.89-3.85 (dd, 2H), 3.59-3.56 (m, 17H), 3.49-3.43 (m, 14H), 3.28-3.23 (m, 5H), 3.14 (s, 7H), 3.09-3.04 (m, 9H), 1.42 (s, 4H). MS (m/z): 1233.03 [M+H]+. Example 249 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (7.95 mg, 0.0495 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 76.7 mg, 0.099 mmol). Purification by preparative HPLC gave the title compound (39.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.40 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.88-4.83 (m, 4H), 4.65-4.50 (m, 2H), 3.81-3.77 (m, 2H), 3.61-3.59 (m, 9H), 3.58-3.54 (m, 11H), 3.53-3.48 (m, 5H), 3.47-3.42 (m, 5H), 3.35-3.30 (m, 4H), 3.11 (s, 6H), 3.07 (t, 4H). MS (m/z): 1253.04 [M+H]+. Example 250 (S or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250, (S- or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250 was prepared following the procedures outlined in Example 232 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 225.2, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (26.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.72 (m, 5H), 4.48-4.42 (m, 2H), 3.87-3.83 (m, 2H), 3.58-3.54 (m, 17H), 3.49-3.43 (m, 15H), 3.24-3.22 (m, 6H), 3.12 (s. 6H), 3.08 (t, 4H). MS (m/z): 1118.96 [M+H]+. Example 251 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 88.1 mg, 0.114 mmol) and 1,4-diisocyanatobutane (7.9 mg, 0.0569 mmol). Purification by preparative HPLC gave the title compound (56.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.77-4.74 (m, 4H), 4.50-4.46 (m, 2H), 3.89-3.84 (m, 2H), 3.61-3.56 (m, 17H), 3.50-3.43 (m, 14H), 3.26-3.23 (m, 6H), 3.14 (s, 7H), 3.09-3.04 (m, 10H), 1.48 (s, 4H). MS (m/z): 1233.01 [M+H]+. Example 252 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252 was prepared following the procedures outlined in Example 208 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 45.2 mg, 0.0584 mmol) and 1,4-diisocyanatobenzene (4.7 mg, 0.0292 mmol). Purification by preparative HPLC gave the title compound (20.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.39 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.72-4.61 (m, 4H), 4.46-3.99 (m, 1H), 3.81-3.73 (m, 1H), 3.62-3.42 (m, 33H), 3.35-3.33 (m, 5H), 3.09-3.06 (m, 13H). MS (m/z): 1252.95 [M+H]+. Example 253 Cell-Based Assay of NHE-3 Activity (Pre-Incubation Inhibition) Rat and human NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Paradiso (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). PS120 fibroblasts stably expressing human NHE3 and NHERF2 were obtained from Mark Donowitz (Baltimore, Md.). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene (GenBank M85300) was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells then incubated for 30 min at 37° C. with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM BCECF-AM. Cells were washed once with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH with 0-30 μM test compound. After incubation, NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 0.4 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3). Changes in intracellular pH were monitored using a FLIPR Tetra® (Molecular Devices, Sunnyvale, Calif.) by excitation at λex 439 to 505 nm, and measuring BCECF fluorescence at λem 538 nm. The initial rate of the fluorescence ratio change was used as a measure of NHE-mediated Na+/H+ activity, and reported as the change in fluorescence ratio per minute. Initial rates were plotted as the average of 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. TABLE 7 Data for example in human Preincubation assay: % inhibition Result pIC50 Range range A NHE3 pIC50 <6 NHE3 <40% B NHE3 pIC50 6-7 40-70% C NHE3 pIC50 >7 >70% % Example pIC50 inhibition 202 C C 203 C C Example 254 Cell-Based Assay of NHE-3 Activity (Persistent Inhibition) The ability of compounds to inhibit human and rat NHE-3-mediated Na+-dependent H+ antiport after application and washout was measured using a modification of the pH sensitive dye method described above. PS120 fibroblasts stably expressing human NHE3 and NHERF2 were obtained from Mark Donowitz (Baltimore, Md.). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed once with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then overlayed with NaCl-HEPES buffer containing 0-30 μM test compound. After a 60 min incubation at room temperature, the test drug containing buffer was aspirated from the cells. Following aspiration, cells were washed once with NaCl-HEPES buffer without drug, then incubated for 30 min at 37° C. with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM BCECF-AM. Cells were washed once with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated (10 min after compound washout) by addition of Na-HEPES buffer. For the rat NHE3 assay, the Na-HEPES buffer contained 0.4 μM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3). Changes in intracellular pH were monitored using a FLIPR Tetra® (Molecular Devices, Sunnyvale, Calif.) by excitation at λex 439 to 505 nm, and measuring BCECF fluorescence at λem 538 nm. The initial rate of the fluorescence ratio change was used as a measure of NHE-mediated Na+/H+ activity, and reported as the change in fluorescence ratio per minute. Initial rates were plotted as the average of 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. TABLE 8 Data for example in human Persistence assay: % inhibition Result pIC50 Range range A NHE3 pIC50 <6 NHE3 <40% B NHE3 pIC50 6-7 40-70% C NHE3 pIC50 >7 >70% Example pIC50 % inhibition 202 C C 203 C C Example 255 Sustained Inhibition of Apical Acid Secretion in Human Organoid Monolayer Cell Cultures Basal media (BM) consisted of advanced DMEM/F12 containing 10 mM HEPES (Invitrogen, 15630-080), 1:100 Glutamax (Invitrogen, 35050-061), and 1:100 penicillin/streptomycin (Invitrogen, 15140-122). Supplemented basal media (SBM) contained 1:100 N2 (Invitrogen, 17502-048), 1:50 B27 (Invitrogen, 12587-010), 1 mM N-acetylcysteine (Sigma, A9165), and 10 nM [Leu15]-gastrin I (Sigma, G9145). Growth factors used included 50 ng per mL mouse EGF (Peprotech, 315-09), 100 ng per mL mouse noggin (Peprotech, 250-38), 500 ng per mL human R-spondin 1 (R&D, 4645-RS), 100 ng per mL mouse Wnt-3a (R&D, 1324-WN), 20 μM Y-27632 (Tocris, 1254), 10 mM nicotinamide (Sigma, N0636), 500 nM A83-01 (Tocris, 2939), 10 μM SB202190 (Tocris, 1264). Transwells were 0.4 μm pore polyester membrane 24-well Transwell inserts (Corning). Cultures were incubated at 37° C. in 5% CO2. Human ileum organoids were cultured in WENRNAS (Wnt, EGF, noggin, R-spondin1, Nicotinamide, A83-01, SB202190) and typically grown for 7-12 days before being used to plate monolayer cultures. On day 0, organoid cultures embedded in Matrigel were treated with TrypLE Express to break organoids into small pieces and/or single cells. The cells were resuspended to 0.5×106 cells/mL in SBM containing WENRAY (Wnt, EGF, noggin, R-spondin1, A83-01, Y-27632). Following this step, 200 μL of cell suspension was plated into the apical side of a 24-well Transwell (100,000 cells/well) and 600 μL of SBM with WENRAY was added to the basolateral side. Ileum cells were differentiated with ENRA (EGF, noggin, R-spondin 1, A83-01) on day 3. The color of apical compartment turns from pink or orange to yellow due to the increase in NHE3 expression after differentiation. Each human ileum monolayer culture well was washed twice with fresh SBM on the apical side on day 6 before compound dosing. All compound stocks were 10 mM dissolved in DMSO. Each compound stock was individually mixed with fresh SBM to reach final compound concentration 1 μM and dosed only on the apical side of the monolayer (total volume 200 μl). DMSO at the equivalent concentration was used as the vehicle control. Duplicate wells were dosed for each compound. On day 8, apical media pH was measured by pH electrode, to determine the ability of example compounds to produce sustained inhibition of NHE3 activity in a human monolayer culture system by preventing proton secretion into the apical compartment. Each of the duplicate apical pH values for each example compound was compared to the average of the DMSO wells and expressed as a percent inhibition of apical acid secretion. TABLE 9 % Inhibition (GI Result Segment) A <50% B 50-70% C >70% % % inhibition inhibition Example (ileum) (duodenum) 202 C C Example 256 Increased Trans-Epithelial Resistance in Human Organoid Monolayer Cell Cultures Basal media (BM) consisted of advanced DMEM/F12 containing 10 mM HEPES (Invitrogen, 15630-080), 1:100 Glutamax (Invitrogen, 35050-061), and 1:100 penicillin/streptomycin (Invitrogen, 15140-122). Supplemented basal media (SBM) contained 1:100 N2 (Invitrogen, 17502-048), 1:50 B27 (Invitrogen, 12587-010), 1 mM N-acetylcysteine (Sigma, A9165), and 10 nM [Leu15]-gastrin I (Sigma, G9145). Growth factors used included 50 ng per mL mouse EGF (Peprotech, 315-09), 100 ng per mL mouse noggin (Peprotech, 250-38), 500 ng per mL human R-spondin 1 (R&D, 4645-RS), 100 ng per mL mouse Wnt-3a (R&D, 1324-WN), 20 μM Y-27632 (Tocris, 1254), 10 mM nicotinamide (Sigma, N0636), 500 nM A83-01 (Tocris, 2939), 10 μM SB202190 (Tocris, 1264). Transwells were 0.4 μm pore polyester membrane 24-well Transwell inserts (Corning). Cultures were incubated at 37° C. in 5% CO2. Human duodenum organoids were cultured in WENRNAS (Wnt, EGF, noggin, R-spondin1, Nicotinamide, A83-01, SB202190) and typically grown for 7-12 days before being used to plate monolayer cultures. On day 0, organoid cultures embedded in Matrigel were treated with TrypLE Express to break organoids into small pieces and/or single cells. The cells were resuspended to 0.5×106 cells/mL in SBM containing WENRAY (Wnt, EGF, noggin, R-spondin1, A83-01, Y-27632). Following this step, 200 μL of cell suspension was plated into the apical side of a 24-well Transwell (100,000 cells/well) and 600 μL of SBM with WENRAY was added to the basolateral side. Duodenum cells were differentiated with ENA (EGF, noggin, A83-01) on day 3. The color of apical compartment turns from pink or orange to yellow due to the increase in NHE3 expression after differentiation. Each human duodenum monolayer culture well was washed twice with fresh SBM on the apical side on day 6 or day 7 before dosing. All compound stocks were 10 mM dissolved in DMSO. Each compound stock was individually mixed with fresh SBM to reach final compound concentration 1 μM and dosed only on the apical side of the monolayer (total volume 200 μl). DMSO at the equivalent concentration was used as the vehicle control. Duplicate wells were dosed for each compound. Transepithelial electrical resistance (TEER) was used as a quantitative technique to measure of tight junction permeability. TEER values were recorded (MERS00002, Millipore) before dosing and 30 mins and 1 hr after dosing for all wells. Each of the duplicate TEER values following treatment were corrected for the individual well baseline TEER. Baseline corrected TEER for each example compound was compared to the average of the DMSO wells and expressed as a percent TEER of vehicle control. TABLE 10 Result TEER (% of vehicle) A <100% B 100-130% C >130% TEER at 30 TEER at 60 minutes minutes Example (% of Vehicle) (% of Vehicle) 202 B B Example 257 Inhibition of Intestinal Sodium Absorption in Mice Urinary and fecal sodium excretion were measured to assess the ability of selected example compounds to inhibit the absorption of sodium from the intestinal lumen. In addition, an assessment of the absence or presence of diarrhea in response to compound treatment was made. Approximately eight-week old, male, CD-1 mice were purchased from Envigo (Livermore, Calif.), were housed 6 per cage and acclimated for at least 48 hours before study initiation. Animals were fed Harlan Teklad Global TD.160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals had ad libitum access to food and water for the duration of the study and were maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. To initiate the study, mice were weighed and then individually placed in metabolic cages. Following a 3-day acclimation period to the metabolic cage, a 24-hr baseline collection of urine and feces was performed. Mice (n=8/group) were then dosed by oral gavage with test compound (15 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily at 6 AM and 3 PM for 3 consecutive days. Each day, measurements of body weight, 24-hour food intake, water intake, urine volume and wet fecal weight were recorded, along with any observation of diarrhea. Fecal samples were dried using a lyophilizer for at least 3 days, following which dry weight was recorded and fecal fluid content was calculated based on the difference between the wet and dry stool weights. Fecal fluid content on day 3 of compound treatment was calculated as a change from the vehicle group mean. For urine samples, the volumes were determined gravimetrically. Feces and urine were analyzed for sodium content by microwave plasma-atomic emission spectroscopy or ion chromatography, respectively. Urine samples were analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations was performed using an IonPac CS12A (Thermo Fisher) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Concentrations were interpolated from a a standard curve (prepared in 10 mM HCl) for sodium ion based on retention time and peak area. Fecal sample analysis by Microwave Plasma Atomic Emission Spectrometry (MP-AES). Dry fecal samples were ground into a fine powder on a homogenizer and the ground samples (400-600 mg aliquots weighed) were digested with nitric acid by microwave method (Mars 6). These digested samples were diluted with 1% Nitric acid and analyzed on Agilent 4100 MP-AES. Concentrations were calculated relative to a standard curve (prepared in 1% Nitric acid) for sodium based on the signal intensity. Sodium was detected at a wavelength of 588.995 nm. Twenty-four-hour urinary sodium excretion (mg/24-hours) was calculated by multiplying urinary sodium concentration by 24-hour urine volume. Twenty-four-hour fecal sodium excretion (mg/24-hours) was calculated by multiplying fecal sodium concentration by 24-hour dry fecal weight. The urinary and fecal sodium excretion on day 3 of compound treatment were normalized to dietary sodium intake and expressed as a percentage of the vehicle mean TABLE 11 Urinary Na Fecal Na Fecal fluid Excretion Excretion content (% of (% of (Δ from Result vehicle) vehicle) vehicle) A >70%  <50% <5 B 50-70% 150-200% 5-10 C <50% >200% >10 Urinary Na Fecal Na Fecal fluid Excretion Excretion content (% of (% of (Δ from Diarrhea Example vehicle) vehicle) vehicle) (±) 203 C C C + Example 258 Inhibition of Intestinal Sodium Absorption in Rats Urinary sodium excretion and fecal form were measured to assess the ability of selected example compounds to inhibit the absorption of sodium from the intestinal lumen. Eight-week old, male, Sprague Dawley rats were purchased from Envigo (Livermore, Calif.), were housed 2 per cage and acclimated for at least 48 hours before study initiation. Animals were fed Harlan Teklad Global TD.160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals had ad libitum access to food and water for the duration of the study and were maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. On the day of study initiation, rats (n=5/group) were dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Immediately after dose administration animals were placed in individual metabolic cages. At 13-hours post-dose, urine samples were collected and fecal form was assessed. In addition, the weight of food consumed over the 13-hour period was measured and recorded. Fecal forms were scored according to a common scale associated with increasing fecal water to the wettest observation in the cage's collection funnel (1, normal pellet; 2, pellet adhering to sides of collection funnel due to moisture; 3, loss of normal pellet shape; 4, complete loss of shape with a blotting pattern; 5, liquid fecal streams evident). Fecal form score (FFS) was calculated for each group as the median of each individual rat's FFS within the group and reported in Table 12. Fecal samples were dried using a lyophilizer for at least 3 days, following which dry weight was recorded and fecal fluid content was calculated based on the difference between the wet and dry stool weights. Fecal fluid content was calculated as a change from the vehicle group mean. For urine samples, the volumes were determined gravimetrically. Urine samples were analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations was performed using an IonPac CS12A (Thermo Fisher) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Concentrations were interpolated from a standard curve (prepared in 10 mM HCl) for sodium based on retention time and peak area. Thirteen-s-hour urinary sodium excretion (mg/13-hours) was calculated by multiplying urinary sodium concentration by 13-hour urine volume. The urinary sodium excretion of compound treatment was normalized to dietary sodium intake and expressed as a percentage of the vehicle mean. TABLE 12 Urinary Na (% of Vehicle, Result out/in) A >70% B 40-70% C <40% Urinary Na Dose (% of Vehicle, FFS Example (mg/kg) out/in) (1-5) 203 0.1 C 3 Example 259 Inhibition of Intestinal Sodium and Phosphorous Absorption in the Rat Balance Model Urinary and fecal sodium excretion, along with urinary phosphorous excretion are measured to assess the ability of selected example compounds to inhibit the absorption of sodium and phosphorous from the intestinal lumen. In addition, an assessment of fecal form in response to compound treatment is made. Approximately eight-week old, male, Sprague Dawley rats are purchased from Envigo (Livermore, Calif.), housed 2 per cage and acclimated for at least 48 hours before study initiation. Animals are fed Harlan Teklad Global TD. 160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a reversed light/dark cycle of 6 PM to 6 AM. To initiate the study, rats are weighed and individually placed in metabolic cages. Following a 2-day acclimation period to the metabolic cage, a 24-hr baseline collection of urine and feces is performed. Rats (n=6/group) are then dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily at 6 AM and 3 PM for 3 consecutive days. Each day, measurements of body weight, 24-hour food intake, water intake, urine volume and wet fecal weight are recorded, along with any observation of diarrhea. Fecal samples are dried using a lyophilizer for at least 3 days, following which dry weight is recorded and fecal fluid content is calculated based on the difference between the wet and dry stool weights. Fecal fluid content on day 3 of compound treatment is calculated as a change from the vehicle group mean. For urine samples, the volumes are determined gravimetrically. Feces and urine are analyzed for sodium and phosphorous content by microwave plasma-atomic emission spectroscopy or ion chromatography, respectively. Urine samples are analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations is performed using an IonPac CS12A (Thermo Fisher) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Chromatographic separation of anions is performed using an IonPac AS 18 (Thermo Fisher) 2×250 mm analytical column with an isocratic elution using 35 mM potassium hydroxide. Concentrations are interpolated from a standard curve (prepared in 10 mM HCl) for each ion based on retention time and peak area. Fecal sample analysis by Microwave Plasma Atomic Emission Spectrometry (MP-AES). Dry fecal samples are ground into a fine powder on a homogenizer and the ground samples (400-600 mg aliquots weighed) are digested with nitric acid by microwave method (Mars 6). These digested samples are diluted with 1% Nitric acid and analyzed on Agilent 4100 MP-AES. Concentrations are interpolated from a standard curve (prepared in 1% Nitric acid) for sodium based on the signal intensity. Sodium is detected at a wavelength of 588.995 nm. Twenty-four-hour urinary sodium and phosphorous excretion (mg/24-hours) is calculated by multiplying urinary sodium or phosphorous concentration, respectively, by 24-hour urine volume. Twenty-four-hour fecal sodium excretion (mg/24-hours) is calculated by multiplying fecal sodium concentration by 24-hour dry fecal weight. The urinary and fecal sodium excretion and urinary phosphorous excretion on day 3 of compound treatment are normalized to dietary sodium or phosphorous intake, respectively, and expressed as a percentage of the vehicle mean. Example 260 Restoration of Gastrointestinal Motility in Opioid Induced Constipation Gastrointestinal transit was measured in mice treated with the peripherally acting g-opioid agonist loperamide to assess the ability of selected example compounds to restore gastrointestinal motility in a model of opioid induced constipation. Approximately eight-week old, female, CD1 rats were purchased from Envigo (Livermore, Calif.), were housed 4 per cage and acclimated for at least 48 hours before study initiation. Animals were fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals had ad libitum access to food and water for the duration of the acclimation period and were maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. Following an overnight fast, with free access to water, animals were dosed by oral gavage with varying doses of test compound or vehicle (3 mM HCl, 0.01% Tween80), at a dose volume of 5 mL/kg. Approximately fifteen minutes following oral dosing of test compound or vehicle, animals were dosed by subcutaneous injection with loperamide (0.3 to 6 mg/kg) or vehicle (30:70 PG:0.9% NaCl) at a dose volume of 5 mL/kg. Fifteen minutes later, animals were dosed orally with Evans Blue Dye (6%) at a dose volume of 100 μL. 30 minutes later, animals were euthanized by carbon dioxide inhalation, and the length from the pylorus to cecum (whole length of the small intestine) and the length from the pylorus to the Evans Blue dye front were measured and recorded. For an individual animal, the length travelled by the Evans Blue dye front was divided by the length of the whole small intestine, measured from the pylorus to the cecum, and multiplied by 100, to provide the distance of the small intestine travelled by the dye as a percentage. In animals dosed orally with vehicle and injected subcutaneously with vehicle (vehicle/vehicle), the Evans Blue dye front travelled approximately 70% of the length of the small intestine in the 30-minute period. In animals dosed orally with vehicle and injected subcutaneously with loperamide (vehicle/loperamide), the Evans Blue dye front travelled approximately only 25% of the length of the small intestine in the 30-minute period, indicating decreased gastrointestinal motility in response to loperamide. The effect of example compounds on GIT motility in the presence of loperamide was calculated as the ability to restore vehicle/vehicle transit distance from the vehicle/loperamide transit, expressed as a percentage. TABLE 13 % Restoration Result of Transit A <20% B 20-40% C >40% % Dose Restoration Example (mg/kg) of Transit 202 15 C Example 260 Restoration of Gastrointestinal Motility in Multiple Sclerosis Gastrointestinal transit time is measured to assess the ability of selected example compounds to restore gastrointestinal motility in a model of multiple sclerosis. Multiple sclerosis (MS) patients often experience constipation and other gastrointestinal manifestations related to disturbed gastrointestinal motility. The Experimental Autoimmune Encephalomyelitis (EAE) mouse model is one of the most frequently used animal models for studying multiple sclerosis (MS), in which immunization against CNS-specific antigen results in central nervous system inflammation. This model results in a spectrum of acute, chronic, and relapsing disease that results in varying degrees of progressive paralysis and gastrointestinal dysmotility. Animals are 8-16 weeks of age at study initiation, and are fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. EAE is induced in female mice by injection of a combination of antigen (MOG35-55, S.C.) in complete Freund's adjuvant (CFA), and pertussis toxin (PTX, IP). After somatic motor symptoms develop, generally 10 or more days' post immunization, EAE mice are dosed by oral gavage with test compound at varying doses (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Test compound is administered for a single dose or twice daily for multiple doses. Fecal output is monitored for a standardized period of time (1-24 hours) and recorded as fecal pellet number, fecal mass and fecal dry weight. Whole gastrointestinal transit time is determined by oral gavage of carmine red or Evans Blue and calculating the latency for dye to appear in the feces. Small intestinal transit is measured by dosing carmine red or Evans Blue by oral gavage and measuring the distance of the leading edge of the dye from compared to the whole length of the small intestine 15 minutes to two hours following oral dosing of the dye. Colonic motility is assessed by measuring time to extrusion of a single glass bead inserted a standardized distance into the distal colon. The effect of example compounds on GIT motility in EAE mice is calculated as the ability to restore transit distance to those observed in control mice from those observed in EAE treated with vehicle, expressed as a percentage. Example 261 Restoration of Gastrointestinal Motility in Parkinson's Disease Gastrointestinal transit time is measured to assess the ability of selected example compounds to restore gastrointestinal motility in a model of Parkinson's Disease. Parkinson's Disease (PD) is a neurodegenerative disorder characterized by chronic and progressive motor impairment. PD patients also experience significant non-motor symptoms including constipation and other gastrointestinal manifestations related to disturbed gastrointestinal motility. The toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used to develop animal models for testing new therapies in the PD. This model results in motor changes and pathology that resemble PD and has also been reported to manifest gastrointestinal dysmotility (Scientific Reports, 2016 6:30269) Animals are 8-16 weeks of age at study initiation, and fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. PD is induced in mice by multiple, generally four, intraperitoneal injections of MPTP. After MPTP is injected, generally 4 to 20 days' post injection, PD mice are dosed by oral gavage with test compound at varying doses (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Test compound is administered once or twice daily for multiple doses. Fecal output is monitored for a standardized period of time (1-24 hours) and recorded as fecal pellet number, fecal mass and fecal dry weight. Whole gastrointestinal transit time is determined by oral gavage of carmine red or Evans Blue and calculating the latency for dye to appear in the feces. Small intestinal transit is measured by dosing carmine red or Evans Blue by oral gavage and measuring the distance of the leading edge of the dye from compared to the whole length of the small intestine 15 minutes to two hours following oral dosing of the dye. Colonic motility is assessed by measuring time to extrusion of a single glass bead inserted a standardized distance into the distal colon. The effect of example compounds on GIT motility in PD mice is calculated as the ability to restore transit distance to those observed in control mice from those observed in PD mice treated with vehicle, expressed as a percentage. Example 262 Effect on Blood Pressure in a Models of Salt-Sensitive Hypertension Arterial blood pressure is measured to assess the ability of selected example compounds to attenuate hypertension in a model of salt-sensitive hypertension. Dahl Salt Sensitive (DSS) rats are a well characterized model of salt-sensitive hypertension and end-organ injury. Salt-sensitive hypertension is established in DSS rats by increasing the NaCl content of the diet from 0.49% up to 4% NaCl for a period of 1 to 4-weeks. DSS rats maintained on 0.49% NaCl are used as a control group. Animals are 6-10 weeks of age at study initiation, and have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a 12-hr light/dark cycle. Rats (n=6-8/group) are dosed by oral gavage with test compound (0.01-30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for 1 to 3 weeks, while maintained on a 4% NaCl diet. Arterial blood pressure is measured weekly by tail cuff plethysmography. A 24-hr urine collection is also collected weekly by placing animals individually in metabolic cages. Example 263 Effect on Cardiac Function in Models of Heart Failure Serial echocardiography is used to measure cardiac function and morphology to assess the ability of selected example compounds to improve cardiac function, structure and neurohumoral activation in a rat model of heart failure. Male Dahl Salt Sensitive (DSS) rats or male Lewis rats are used to induce heart failure by permanent left main coronary arterial ligation. Animals are 6-10 weeks of age at study initiation, and have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a 12-hr light/dark cycle. Rats (n=6-10/group) are dosed by oral gavage with test compound (0.01-30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for 1 to 8 weeks. Serial echocardiography is performed weekly to assess time-dependent cardiac remodeling (HWI, LVI, chamber size), time-dependent cardiac performance (EF, dP/dt, LVEDP) changes and time-dependent cardiac morphometry (HWI, LVI, LVEDV, LVESV) indices. Terminal assessment of load-dependent and load-independent left ventricular function are made using pressure-volume loop analysis. Extracellular volume expansion is assessed by measuring volume sensitive hormones ANP and BNP. Example 264 Pain relief in IBS-C—Reduction of Visceral Hypersensitivity in Rats The ability of selected example compounds to reduce the hypersensitivty of the colon to balloon distension (CRD) in a rat model of visceral hypersensitivy is measured by grading the rat's abdominal withdrawal reflex (AWR) and by measuring electromyographic (EMG) responses. Visceral hypersensitivity is induced by injecting 10-day old male Sprague Dawley rat pups with a 0.2 mL infusion of 0.5% acetic acid solution in saline into the colon 2 cm from the anus. Control rats receive an equal volume of saline. Visceral hypersensitivity is then assessed in these rats as adults, between 8 and 12 weeks of age. Rats (n=4-10/group) are dosed by oral gavage with test compound (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for up to 2 weeks prior to the assessment of visceral hypersensitivity. Visceral hypersensitivity is measured by grading the response to CRD. Under mild sedation with 1% methohexital sodium, a flexible balloon attached to Tygon tubing is inserted 8 cm into the descending colon and rectum via the anus and secured in place by taping the tube to the tail. Approximately 30 minutes later, CRD is performed by rapidly inflating the balloon to varying pressures (10 to 80 mmHg) measured by a sphygmomanometer connected to a pressure transducer for a 20 second period followed by a 2-minute rest period. Behavioral responses to CRD are measured by grading the AWR by blinded observer and assigning an AWR score as follows: 1, normal behavior without response; 2, contraction of abdominal muscles; 3, lifting of abdominal wall; 4, body arching and lifting of pelvic structures. EMG responses are measured continuously in response to CRD via two electrodes implanted at least one-week prior to in the external oblique muscle and calculated as the area under the curve of the EMG in response to CRD. Topological Polar Surface Area Data Topological Polar Surface Area (tPSA) values for representative compounds in the disclosure are shown in Table 14, below. The tPSA values were calculated using the method of Ertl et al., Journal of Medicinal Chemistry, 43:3714-3717 (2000). TABLE 14 tPSA Values of Compounds Topological polar Example # surface area (Å2) Example 01 125 Example 02 125 Example 03 125 Example 04 125 Example 05 125 Example 06 125 Example 07 121 Example 08 154 Example 09 132 Example 10 125 Example 11 125 Example 12 125 Example 13 125 Example 14 125 Example 15 124 Example 16 177 Example 17 134 Example 18 116 Example 19 116 Example 20 116 Example 21 238 Example 22 116 Example 23 116 Example 24 177 Example 25 238 Example 26 116 Example 27 134 Example 28 112 Example 29 229 Example 30 137 Example 31 137 Example 32 137 Example 33 137 Example 34 119 Example 35 119 Example 36 119 Example 37 119 Example 38 112 Example 39 112 Example 40 119 Example 41 291 Example 42 291 Example 43 309 Example 44 318 Example 45 199 Example 46 387 Example 47 404 Example 48 224 Example 49 417 Example 50 297 Example 51 213 Example 52 213 Example 53 213 Example 54 213 Example 55 213 Example 56 213 Example 57 241 Example 58 184 Example 59 220 Example 60 147 Example 61 134 Example 62 134 Example 63 215 Example 64 134 Example 65 123 Example 66 147 Example 67 161 Example 68 117 Example 69 117 Example 70 134 Example 71 208 Example 72 154 Example 73 134 Example 74 174 Example 75 178 Example 76 125 Example 77 238 Example 78 121 Example 79 123 Example 80 136 Example 81 242 Example 82 112 Example 83 191 Example 84 190 Example 85 123 Example 86 228 Example 87 270 Example 88 270 Example 89 159 Example 90 189 Example 91 147 Example 92 147 Example 93 74 Example 94 157 Example 95 115 Example 96 115 Example 97 312 Example 98 312 Example 99 235 Example 100 212 Example 101 202 Example 102 487 Example 103 212 Example 104 500 Example 168 251 Example 169 214 Example 170 270 Example 171 86 Example 172 270 Example 173 185 Example 174 243 Example 175 211 Example 176 233 Example 177 211 Example 178 220 Example 179 219 Example 180 229 Example 181 229 Example 182 229 Example 183 211 Example 184 202 Example 185 214 Example 186 237 Example 187 238 Example 188 211 Example 189 231 Example 190 211 Example 191 211 Example 192 273 Example 193 231 Example 194 221 Example 195 220 Example 196 211 Example 197 229 Example 198 238 Example 199 229 Example 200 211 Example 201 220 Example 202 235 Example 203 235 Example 204 290 Example 205 251 Example 206 177 Example 207 251 Example 208 253 Example 209 253 Example 210 500 Example 211 227 Example 212 445 Example 213 347 Example 214 176 Example 215 344 Example 216 229 Example 217 441 Example 218 251 Example 219 280 Example 220 280 Example 221 192 Example 222 270 Example 223 270 Example 224 270 Example 225 270 Example 226 270 Example 227 270 Example 228 229 Example 229 270 Example 230 229 Example 231 211 Example 232 194 Example 233 229 Example 234 211 Example 235 194 Example 236 235 Example 237 235 Example 238 235 Example 239 235 Example 240 270 Example 241 270 Example 242 270 Example 243 270 Example 244 253 Example 245 253 Example 246 229 Example 247 158 Example 248 253 Example 249 253 Example 250 212 Example 251 253 Example 252 253 Pharmacological Data 1. Pharmacological Test Example 1 Cell-Based Assay of NHE-3 Activity. Rat NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Tsien (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 uM BCECF-AM (Invitrogen). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 5 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3) and 0-30 uM test compound, and monitoring the pH sensitive changes in BCECF fluorescence (ex 505 nm, λem 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem 538 nm). Initial rates were were plotted as the average 3-6 replicates, and pIC50 values were estimated using GraphPad Prism. The inhibitory data of many of the example compounds illustrated above are shown in Table 15, below. TABLE 15 Inhibitory data of compounds against rat NHE-3 rat NHE-3 Example # Average pIC50 1 Example 171 <5.0 Example 174 <5.0 Example 175 <5.0 Example 223 <5.0 Example 231 <5.0 Example 232 <5.0 Example 233 <5.0 Example 235 <5.0 Example 30 5 to 6 Example 31 5 to 6 Example 52 5 to 6 Example 54 5 to 6 Example 63 5 to 6 Example 64 5 to 6 Example 176 5 to 6 Example 196 5 to 6 Example 209 5 to 6 Example 219 5 to 6 Example 234 5 to 6 Example 28 6 to 7 Example 29 6 to 7 Example 45 6 to 7 Example 46 6 to 7 Example 60 6 to 7 Example 65 6 to 7 Example 66 6 to 7 Example 67 6 to 7 Example 68 6 to 7 Example 69 6 to 7 Example 97 6 to 7 Example 100 6 to 7 Example 102 6 to 7 Example 104 6 to 7 Example 169 6 to 7 Example 170 6 to 7 Example 178 6 to 7 Example 207 6 to 7 Example 210 6 to 7 Example 211 6 to 7 Example 213 6 to 7 Example 217 6 to 7 Example 218 6 to 7 Example 225 6 to 7 Example 228 6 to 7 Example 47 >7 Example 81 >7 Example 87 >7 Example 88 >7 Example 98 >7 Example 103 >7 Example 172 >7 Example 177 >7 Example 191 >7 Example 195 >7 Example 200 >7 Example 201 >7 Example 202 >7 Example 203 >7 Example 204 >7 Example 205 >7 Example 206 >7 Example 208 >7 Example 212 >7 Example 215 >7 Example 216 >7 Example 222 >7 Example 224 >7 Example 229 >7 Example 230 >7 Example 236 >7 Example 237 >7 Example 244 >7 Example 250 >7 Example 251 >7 1 pIC50 is the negative log the IC50 value (an IC50 value of 1 micromolar corresponds to a pIC50 value of 6.0) 2. Pharmacological Test Example 2 Parallel Artificial Membrane Permeability Assay (PAMPA). The model consists of a hydrophobic filter material coated with a mixture of lecithin/phospholipids creating an artificial lipid membrane. BD Gentest PAMPA 96-well plates (cat #353015) are warmed for 1 hr at room temperature. 1 mL of 20 uM control compounds (pooled mix of 10 mM atenolol, ranitidine, labetalol, and propranolol) in transport buffer (10 mM HEPES in HBSS pH 7.4) are prepared along with 1 mL of 20 uM test compounds in transport buffer. The PAMPA plates are separated, and 0.3 mL of compound are added in duplicate to apical side (bottom/donor plate=“AP”), and 2 mL buffer are placed in the basolateral chamber (top/receiver plate=“BL”). The BL plate is placed on the AP plate and incubated for 3 hrs in 37° C. incubator. At that time, samples are removed from both plates, and analyzed for compound concentration using LC/MS. A “Pe” (effective permeability) value is calculated using the following formula. Pe=(−ln [1−CA(t)/Ceq])/[A*(1/VD+1/VA)*t where CA=concentration in acceptor well, CD=concentration in donor well VD=donor well volume (mL), VA=acceptor well volume (mL) A=filter area=0.3 cm2, t=transport time (seconds) Ceq=equilibrium concentration=[CD(t)*VD+CA(t)*VA]/(VD+VA) Pe is reported in units of cm/sec×10−6. Results from PAMPA testing are shown in Table 16. TABLE 16 Papp values as determined using the PAMPA assay Avg Papp, A → B, Example # cm/sec × 10−6 Example 01 0.53 Example 03 0.8 Example 07 0.5 Example 08 0.2 Example 13 0.3 Example 14 0.4 Example 15 0.05 Example 16 <0.02 Example 23 <0.04 Example 24 0.03 Example 26 <0.02 Example 27 <0.02 Example 30 0.56 Example 31 0.61 Example 34 0.2 Example 35 0.17 Example 36 0.2 Example 37 0.1 Example 38 0.1 Example 44 0.1 Example 47 <0.01 Example 48 0.9 Example 51 0.2 Example 52 1.61 Example 53 1.6 Example 54 1.3 Example 56 0.5 Example 57 1.65 Example 58 0.2 Example 59 0.1 Example 60 0.99 Example 61 0.1 Example 63 0.43 Example 68 0.35 Example 69 0.3 Example 70 0.4 Example 71 0.45 Example 72 0.2 Example 73 0.27 Example 74 0.45 Example 75 0.4 Example 76 0.2 Increasing values of tPSA are typically associated with lower permeability. FIG. 1 illustrates the Relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of Example compounds. Compounds with higher tPSA values trend toward lower permeability. 3. Pharmacological Test Example 3 Pharmacodynamic Model: Effect of Test Compounds on Fluid Content of Intestinal Compartments. Normal female Sprague Dawley rats, 7 weeks old, were acclimated for at least 2 days. The animals were fed ad lib through the experiment. Groups of 5 rats were orally gavaged with 1.5 mL of water containing a negative control compound or test compounds, adjusted to a concentration that results in a dose of 10 mg/kg. Six hours after dosing, rats were euthanized with isofluorane. The cecum and colon were ligated and then removed. After a brief rinse in saline and pat-drying, the segments were weighed. The segments were then opened, and the contents collected and weighed. The collected contents were then dried, and weighed again. The % water content was reported as 100×((Ww−Wd)/Ww) where Ww is the weight of the wet contents, and Wd is the weight of the contents after drying. The differences between groups are evaluated by one way ANOVA with Bonferroni post tests. Examples are shown in FIGS. 2A and 2B (wherein rats were dosed orally with 10 mg/kg of compound (Example or Control), and then after 6 hours, cecum and colon contents were removed, weighed and dried, and the % water in the contents was determined: *, P<0.05 and ***, P<0.01 compared to control in ANOVA analysis). 4. Pharmacological Test Example 4 Determination of Compound Cmax and AUC. Sprague-Dawley rats were orally gavaged with test article (2.5 mg/kg) and serum was collected at 0.5, 1, 2 and 4 h. Serum samples were treated with acetonitrile, precipitated proteins removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. Table 17 illustrates data from the pharmacokinetic profiling of selected example compounds. All compounds were orally dosed at the dosage shown, and pharmacokinetic parameters determined as described in the text. TABLE 17 Pharmacokinetic Profiling of Selected Example Compounds Actual Oral Dose Cmax AUC Example (mg/kg) (ng/mL) (ng × hr/mL) Example 01 2.1 21 53 Example 16 1.6 71 159 Example 31 1.3 11 56 Example 35 2.2 2.4 5 Example 50 2.3 93 242 Example 52 4.6 14 9 Example 55 2.2 9 23 Example 60 2.4 2 0 Example 63 2.4 0 0 Example 211 0.7 <2.3 <3.0 Example 212 1.5 <2.7 <4.4 Example 213 9.5 <5.0 <5.0 Example 214 2.6 <5.0 <5.0 Example 215 7.7 <2.0 <2.0 Example 216 1.9 <4.0 <8.3 Example 217 9.1 <10.0 <10.0 Example 204 10.9 <2.0 <2.0 Example 218 9 <1.0 <1.0 Example 169 11 <3.5 <4.0 Example 205 10.7 <2.0 <2.0 Example 225 27 <3.5 <5.3 Example 226 31 <3.0 <5.0 Example 172 26 <2.0 <2.0 Example 228 23 <5.0 <5.0 Example 230 17 <5.0 <5.0 Example 173 28 23 19 Example 174 27 <5.4 <5.0 Example 208 12 <5.0 <5.0 Example 231 23 <2.5 <3.0 Example 232 17 <2.0 <2.0 Example 233 19 <2.6 <6.8 Example 234 22 <2.0 <2.0 Example 235 11 <5.0 <5.0 Example 175 28 8 6 Example 177 14 <3.2 <4.0 Example 178 18 <2.0 <2.0 Example 179 27 <16.0 <35.0 Example 180 25 <10.0 <19.0 Example 181 28 <2.0 <2.0 Example 185 17 <2.0 <2.0 Example 186 15 <3.4 <5.0 Example 244 16 <7.0 <15.0 Example 245 21 <2.0 <2.0 5. Pharmacological Test Example 5 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: CRF/ESRD Model. Male Sprague-Dawley rats with subtotal (5/6th) nephrectomy, 7 weeks old and weighing 175-200 g at surgery time, are purchased from Charles River Laboratories. The animals are subjected to acclimation for 7 days, and randomly grouped (using random number table) before proceeding to experiments. During acclimation, all animals are fed with base diet HD8728CM. The rats are housed in holding cages (2/cage) during the acclimation period and the time between sample collections. The rats are transferred to metabolic cages on the days of sample collections. Food and water is provided ad libitum. Chronic renal failure is induced in the rats by subtotal (5/6th) nephrectomy (Nx) followed by intravenous (IV) injection of adriamycin (ADR) at 2 weeks post-nephrectomy, at a dose of 3.5 mg/kg body weight. Animals are then randomized into control and treatment groups with 10 rats per group. Rats in untreated group are fed with base diet and rats in the treatment groups are fed the same chow supplemented with NHE-3 inhibitor/fluid holding polymer at various doses. All the groups are maintained for 28 days. Serum samples are collected at day (−1) (1 days before ADR injection), days 14 and 28 post ADR treatment. Twenty four hour urine and fecal samples are collected at day (−1), days 14 and 28 post ADR treatment and stored at −20° C. for later analysis. Body weight, food and water consumption are measured at the same time points as urine collections. Serum and urine chemistry (Na, K, Ca, Cl) are determined using an ACE Clinical Chemistry System (ALFA WASSER MANN Diagnostic Technologies, LLC). Fecal electrolyte (Na, K, Ca, Cl) excretions are determined by IC. Fluid balance are also determined via amount of fluid intake (in drinking water) subtracted by combined fecal water amount and urine volume. Tissues (heart, kidney and small intestine) are harvested at the end of experiments for later histopathological analysis. The third space (pleural fluids and ascites) body fluid accumulation are scored semi-quantitatively as follows: grade 0, no fluid accumulation; grade 1, trace amount of fluids; grade 2, obvious amount of fluids; grade 3, both cavities full of fluids; grade 4, fluids overflowed once the cavities are opened. Each score of body fluid accumulation is confirmed and agreed on by 2 investigators. Animals treated with NHE-3 inhibitor/fluid holding polymer show decreased serum aldosterone, decreased 24 hr urine volume and decreased urine K excretion, and increased urine Na excretion compared to no treatment group. Treated animals also have increased fecal Na and fluid excretion, compared to control group. Compared to untreated rats which show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 5 g per day. Treatment of NHE-3 inhibitor/fluid holding polymer in CRF rats is associated with less edema in heart, kidney and small intestine tissues, less hypertrophy in heart, less third space fluid accumulation, and lower body weight at the end of experiment compared to untreated group. 6. Pharmacological Test Example 6 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Congestive Heart Failure Model. CHFs are introduced to male Spraque Dawley rats, 7-8 weeks old fed ad lib regular diet and ad lib 10% ethanol in drinking water, and gavaged with a daily dose of 6.3 mg cobalt acetate for 7 days. Then CHF rats are gavaged with a daily dose of 4 mg of furosemide for 5 days, inducing resistance to furosemide diuretic effects. The rats are then randomly divided into 2 groups, control and treatment, and the treatment group administered NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer have decreased serum aldosterone levels, decreased 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to control group. Animals treated with NHE-3 inhibitor/fluid holding polymer have, for example, increased fecal Na and fluid excretion. Compared to untreated rats, which show a positive fluid balance of, for example, 4 g per day, treated animals demonstrate a fluid loss of 5 g per day. 7. Pharmacological Test Example 7 Evaluation of NHE-3-inhibitory Compounds in Disease Models with Na/H2O Retention: Hypertension Model. Male Dahl salt-sensitive rats are obtained from Harlan Teklad. After acclimation, animals are randomly grouped and fed diet containing 8% NaCl±NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment systolic BP, serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer would show decreased systolic BP, serum aldosterone levels, 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to no treatment group. Animals treated with NHE-3 inhibitor/fluid holding polymer would also show increased fecal fluid excretion. Compared to untreated rats which would show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 2 g per day. 8. Pharmacological Test Example 8 Na Transport Inhibition Study on Colonic Tissues. Immediately following euthanasia and exsanguinations of the rats, the entire distal colon is removed, cleansed in ice-cold isotonic saline, and partially stripped of the serosal muscularis using blunt dissection. Flat sheets of tissue are mounted in modified Using chambers with an exposed tissue area of 0.64 cm2. Transepithelial fluxes of 22Na+ (Perkin Elmer Life Sciences, Boston, Mass.) are measured across colonic tissues bathed on both sides by 10 ml of buffered saline (pH 7.4) at 37° C. and circulated by bubbling with 95% O2—5% CO2. The standard saline contains the following solutes (in mmol/1): 139.4 Na+, 5.4 K, 1.2 Mg2+, 123.2 Cl−, 21.0 HCO3−, 1.2 Ca2+, 0.6 H2PO4−, 2.4 HPO2−, and 10 glucose. The magnitude and direction of the net flux (Jnet Na) is calculated as the difference between the two unidirectional fluxes (mucosal to serosal, Jms Na and serosal to mucosal, Jsm Na) measured at 15-min intervals for a control period of 45 min (Per I), under short-circuit conditions. In some series, Per I is followed by a second 45-min flux period (Per II) to determine the acute effects of NHE inhibitors. 9. Pharmacological Test Example 9 Pharmacodynamic Model: Effect of Test Compounds and FAP on Consistency and Form of Rat Stools. Normal rats are given a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer mixed in their diet at escalated doses. Distilled water is available at libitum. Clinical data monitored are body weight, food intake, water intake, fecal and urinary output. Urinary Na, K and creatinine are measured by a Clinical Analyzer (VetAce; Alfa Wassermann Diagnostic Technologies, LLC, West Caldwell, N.J.). The consistency of the stools expelled within 24 h after the administration of each drug or vehicle is reported as follows: when the feces are unformed, i.e., muddy or watery, this is judged to be diarrhea and the percentage diarrhea is reported as the ratio of the number of animals producing unformed stools to the number tested. All of the feces is collected just after each evacuation and put into a covered vessel prepared for each animal in order to prevent the feces from drying. To investigate the duration of activity of each drug, the feces collected over each 8-h period is dried for more than 8 h at 70° C. in a ventilated oven after the wet weight is measured. The fecal fluid content is calculated from the difference between the fecal wet weight and the dry weight. Fecal Na and K is analyzed by ion Chromatography (Dionex) after acid digestion of the feces specimen. 10. Pharmacological Test Example 10 Effect of Test Compounds and FAP on CKD Rats. Male Sprague-Dawley rats (275-300 g; Harlan, Indianapolis, Ind.) are used and have free access to water and Purina rat chow 5001 at all times. A 5/6 nephrectomy is performed to produce a surgical resection CRF model and the treatment study is performed 6 wk after this procedure. In one control group, CRF rats are given access to Purina rat chow; in treated groups, CRF rats are given access to Purina rat chow mixed with the article, i.e. a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer. The treatment period is 30 days. Systolic blood pressure is monitored in all animals with the use of a tail sphygmomanometer (Harvard Apparatus, South Natick, Mass.). All rats are euthanatized by an intraperitoneal injection of pentobarbital (150 mg/kg body wt), and blood is collected by cardiac puncture for serum Na+(Roche Hitachi Modular P800 chemistry analyzer; Roche Diagnostics, Indianapolis, Ind.) and creatinine determination (kit 555 Å; Sigma Chemical, St. Louis, Mo.). Sodium and creatinine is also determined in a urine specimen collected over 24 h immediately before euthanasia. 11. Pharmacological Test Example 11 Effect of Test Compounds on Intestinal Fluid Accumulation in Suckling Mice. Institute of Cancer Research/Harlan Sprague-Dawley (ICR-HSD) suckling mice, 2 to 4 days old (2.1±1.0 g), are dosed orally with 0.1 mL of test solution (vehicle (1 mmol/L HEPES) or NHE inhibitor dissolved in vehicle). After dosing, the mice are kept at room temperature for 3 hours, then killed, the intestinal and body weights measured, and a ratio of the intestinal weight to remaining body weight is calculated. A ratio of 0.0875 represents one mouse unit of activity, indicating significant fluid accumulation in the intestine. 12. Pharmacological Test Example 12 Determination of Water-Absorbing Capacity. This test is designed to measure the ability of a polymer to absorb 0.9% saline solution against a pressure of 50 g/cm2 or 5 kPa. The superabsorbent is put into a plastic cylinder that has a screen fabric as bottom. A weight giving the desired pressure is put on top. The cylinder arrangement is then placed on a liquid source. The superabsorbent soaks for one hour, and the absorption capacity is determined in g/g. This test principle is described in the European Disposables And Nonwovens Association (EDANA) standard EDANA ERT 442—Gravimetric Determination of Absorption under Pressure or Absorbency Under Load (AUL), or in the AUL-test found in column 12 in U.S. Pat. No. 5,601,542, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Any of these two methods can be used, or the simplified method described below. Equipment: A plastic cylinder having a screen fabric made of steel or nylon glued to the bottom. The fabric can have mesh openings of 36 μm (designated “400 mesh”), or in any case smaller than the smallest tested particles. The cylinder can have an internal diameter of 25.4 mm, and a height of 40 mm. A larger cylinder can also be used, such as the apparatus in the EDANA standard ERT 442—Gravimetric Determination of Absorption under Pressure. A plastic piston or spacer disc with a diameter slightly smaller than the cylinder's inner diameter. For a cup with a 25.4 mm inner diameter the disc can be 25.2 mm wide, 8 mm high, and weigh about 4.4 g. A weight that exerts a 50 g/cm2 pressure on the superabsorbent (in combination with the piston). For a 25.4 mm inner diameter cylinder (=5.067 cm2) and a 4.4 g piston, the weight should have a mass of 249 g. Glass or ceramic filter plate (porosity=0). The plate is at least 5 mm high, and it has a larger diameter than the cylinder. Filter paper with a larger diameter than the cylinder. Pore size<25 μm. Petri dish or tray 0.9% NaCl solution Procedure: Put the glass filter plate in a Petri dish, and place a filter paper on top. Fill the Petri dish with 0.9% NaCl solution—up to the edge of the filter plate. Weigh a superabsorbent sample that corresponds to a 0.032 g/cm2 coverage on the cylinder's screen fabric (=0.16 g for a cylinder with a 25.4 mm inner diameter). Record the exact weight of the sample (A). Carefully distribute the sample on the screen fabric. Place the plastic piston on top of the distributed sample, and weigh the cylinder assembly (B). Then mount the weight onto the piston. Place the assembly on the filter paper, and let the superabsorbent soak for 60 minutes. Remove the weight, and weigh the assembly with the swollen superabsorbent (C). Calculate the AUL in g/g according to this formula: C-B. 13. Pharmacological Test Example 13 Pharmacodynamic Model: Effect of Test Compounds on Fecal Water Content. Normal female Sprague Dawley rats (Charles-River laboratories international, Hollister, Calif.), 7-8 weeks old with body weight 175-200 g were acclimated for at least 3 days before proceeding to experiments. The animals were provided food (Harlan Teklad 2018c) and water ad lib. through the experiment. Animals were randomly grouped with 6 rats per group. The experiments were initiated by orally dosing test compounds at 3 mg/kg in volume of 10 ml/kg. Rats from control group were gavaged with the same volume of vehicle (water). After dosing, rats were placed in metabolic cages for 16 hrs (overnight). Food and water consumption were monitored. After sixteen hours, feces and urine were collected. The percent of fecal water was measured by weighing fecal samples before and after drying. Representative data of % fecal water content are shown in Table 12 (data are expressed as means, with 6 animals per data point). The differences between control and treated groups were evaluated by one way ANOVA with Dunnett post tests. Results are significant if p<0.05. TABLE 12 % Fecal % Fecal water (% of Example water control) Significant? 224 65% 125% Y 234 58% 117% Y 239 58% 114% Y 178 59% 118% Y 237 60% 120% Y 238 60% 121% Y 177 60% 121% Y 244 61% 118% Y 236 64% 128% Y 250 60% 120% Y 200 62% 124% Y 201 63% 127% Y 202 63% 134% Y 203 61% 130% Y 14. Pharmacological Test Example 14 Pharmacodynamic Model: Effect of Test Compounds on Urinary Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in reduced levels of sodium in the urine. To test this, the protocols in Example 13 were repeated, but urine was collected in addition to feces. Urine sodium levels were analyzed by ion chromatography (IC), and the amount of sodium excreted in the urine was corrected for variations in sodium intake by measuring food consumption. In addition, test compounds were administered at several dose levels to demonstrate a dose-response relationship. As shown in FIGS. 3A and 3B for Examples 201, 244, and 260, where as rats excrete about half the sodium they consume in urine, in rats treated with increasing doses of NHE-3 inhibitor, the amount of sodium excreted in the urine diminishes significantly and dose dependently. 15. Pharmacological Test Example 15 Pharmacodynamic Model: Dose Dependent Effect of Test Compound on Fecal Water Content. Rats were monitored for fecal water content as in Example 13, and the test compound was administered at several dose levels to demonstrate a dose-response relationship. As shown in FIG. 4, in rats treated with increasing doses of the NHE-3 inhibitor tested (i.e., Example 87), the fecal water content increased significantly and dose dependently. 16. Pharmacological Test Example 16 Pharmacodynamic model: Addition of a fluid absorbing polymer to chow. Rats were monitored for fecal water content as in Example 13, with the addition of a second group that were fed chow with the addition of 1% Psyllium to their diet. In addition to fecal water and urinary sodium, fecal form was monitored on a scale of 1-5, where 1 is a normal pellet, 3 indicates soft and unformed pellets, and 5 indicates watery feces. As shown in FIGS. 5A, 5B and 5C, supplementing the diet with Psyllium resulted in a slight reduction of fecal stool form, but without impacting the ability of the test compound (i.e., Example 224) to increase fecal water content or decrease urinary sodium. 17. Pharmacological Test Example 17 Pharmacodynamic Model: Effect of Test Compounds on Acute Stress-Induced Visceral Hypersensitivity in Female Wistar Rats. Female Wistar rats weighing 220-250 g were prepared for electromyography. The animals were anaesthetized, and three pairs of nichrome wire electrodes were implanted bilaterally in the striated muscles at 3 cm laterally from the midline. The free ends of electrodes were exteriorised on the back of the neck and protected by a glass tube attached to the skin. Electromyographic recordings (EMG) were begun 5 days after surgery. The electrical activity of the abdominal striated muscles were recorded with an electromyograph machine (Mini VIII; Alvar, Paris, France) using a short time constant (0.03 sec.) to remove low-frequency signals (<3 Hz). Partial restraint stress (PRS), a relatively mild stress, was performed as follows. Briefly, animals were lightly anaesthetized with ethyl-ether, and their freeholders, upper forelimbs and thoracic trunk were wrapped in a confining harness of paper tape to restrict, but not prevent their body movements and placed in their home cage for 2 hours. Control sham-stress animals were anaesthetized but not wrapped. PRS was performed between 10:00 and 12:00 AM. Colorectal distension (CRD) was accomplished as follows: rats were placed in a plastic tunnel, where they were not allowed to move or escape daily during 3 consecutive days (3 h/day) before any CRD. The balloon used for distension was 4 cm in long and made from a latex condom inserted in the rectum at 1 cm of the anus and fixed at the tail. The balloon, connected to a barostat was inflated progressively by steps of 15 mmHg, from 0, 15, 45 and 60 mmHg, each step of inflation lasting 5 min. CRD was performed at T+2 h15 as a measure of PRS induced visceral hyperalgesia±test compound or vehicle. To determine the antinociceptive effect of test compounds on stress-induced visceral hypersensitivity, test compounds were administered 1 h before CRD in 6 groups of 8 female rats. For each parameter studied (the number of abdominal contractions for each 5-min period during rectal distension) data is expressed as mean±SEM. Comparisons between the different treatments were performed using an analysis of variance (ANOVA) followed by a Dunnett post test. The criterion for statistical significance is p<0.05. FIG. 6 shows the results of this test using the compound illustrated in Example 224 dosed orally at 10 mg/kg, and shows that at 45 and 60 mm Hg, inhibition of NHE-3 in rats surprisingly reduces visceral hypersensitivity to distension (p<0.05). 18. Pharmacological Test Example 18 Pharmacodynamic Model: Effect of Test Compounds on Fecal Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in increase levels of sodium in the feces. To test this, the protocols in Example 13 were repeated. After drying of feces to determine water content, 1M HCl was added to dried ground feces to a concentration of 50 mg/mL and extracted at room temperature on rotator for 5 days. Sodium content was analyzed by ion chromatography (IC). As shown in FIGS. 7A and 7B for Example 224, in rats treated with an NHE-3 inhibitor, the amount of sodium excreted in the feces significantly (p<0.05 by t-test). 19. Pharmacological Test Example 19 Determination of Compound Remaining in Feces. Sprague-Dawley rats were orally gavaged with test article. A low dose of compound (0.1 mg/kg) was selected so that feces would remain solid and practical to collect. For both Examples 202 and 203, three rats were dosed, and following dosage of compounds, the rats were placed in metabolic cages for 72 hours. After 72 hours, fecal samples were recovered and dried for 48 hours. Dried fecal samples were ground to a powdered from, and for each rat, 10 replicates of 50 mg samples were extracted with acetonitrile. Insoluble materials were removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. The amount of compound actually dosed was determined by LC/MS/MS analysis of the dosing solutions. The total amount of compound present in the 72-hour fecal samples was compared to the total amount of compound dosed, and reported as percentage of total dose recovered. The results, shown in Table 13, demonstrate near quantitative recovery of Examples 202 and 203 in 72-hour fecal samples. TABLE 13 Recovery of dosed compounds from 72-hour fecal samples % Recovery ± SD Example 202 Example 203 Rat 1 93.8 ± 11.8 100.3 ± 6.7 Rat 2 90.5 ± 5.5   75.8 ± 8.2 Rat 3 92.4 ± 10.6 104.4 ± 7.1 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 15402211 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Jan 24th, 2017 12:00AM Feb 24th, 2016 12:00AM https://www.uspto.gov?id=US09549947-20170124 Pharmaceutical compositions for treating hyperkalemia The present invention is directed to compositions and methods of removing potassium or treating hyperkalemia by administering pharmaceutical compositions of cation exchange polymers with low crosslinking for improved potassium excretion and for beneficial physical properties to increase patient compliance. 9549947 1. A pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of vanilla VM36 vanilla flavoring agent; vii) about 0.1% to about 1.0% of xanthan gum; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. 2. The pharmaceutical composition of claim 1, wherein the ratio of m to n is 68:1. 3. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. 4. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. 5. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. 6. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. 7. The pharmaceutical composition of claim 1, wherein the potassium binding polymer further comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm. 8. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.9) between about 80 μm to about 130 μm. 9. The pharmaceutical composition of claim 8, wherein the particles have an average particle size Dv(0.9) between about 90 μm to about 120 μm. 10. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.9) between about 40 μm to about 70 μm. 11. The pharmaceutical composition of claim 10, wherein the particles have an average particle size Dv(0.9) between about 50 μm to about 60 μm. 12. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.5) between about 60 μm to about 90 μm. 13. The pharmaceutical composition of claim 12, wherein the particles have an average particle size Dv(0.5) between about 70 μm to about 80 μm. 14. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.5) between about 20 μm to about 50 μm. 15. The pharmaceutical composition of claim 14, wherein the particles have an average particle size Dv(0.5) between about 30 μm to about 40 μm. 16. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.1) between about 20 μm to about 70 μm. 17. The pharmaceutical composition of claim 16, wherein the particles have an average particle size Dv(0.1) between about 30 μm to about 60 μm. 18. The pharmaceutical composition of claim 7, wherein the particles have an average particle size Dv(0.1) between about 5 μm to about 30 μm. 19. The pharmaceutical composition of claim 18, wherein the particles have an average particle size Dv(0.1) between about 6 μm to about 23 μm. 20. The pharmaceutical composition of claim 1, wherein ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. 21. The pharmaceutical composition of claim 1, wherein the ratio of Dv(0.9):Dv(0.5) and the ratio of Dv(0.5):Dv(0.1) are each independently about two or less. 22. The pharmaceutical composition of claim 1, wherein the potassium binding polymer has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer. 23. The pharmaceutical composition of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5. 24. The pharmaceutical composition of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 4.5. 25. The pharmaceutical composition of claim 1, wherein the potassium binding polymer has a Mouth Feel score greater than 5.0. 26. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±5%. 27. The pharmaceutical composition of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of 1.8%. 28. A pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polystyrene sulfonate divinylbenzene polymer characterized by a crosslinking of 1.6% to 1.9%; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of vanilla flavoring agent; vii) about 0.1% to about 1.0% of xanthan gum; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. 28 RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 14/912,682, filed Feb. 18, 2016, which is a National Phase application of International Application No. PCT/US2015/067460, filed Dec. 22, 2015, which claims the benefit of and priority to U.S. provisional application No. 62/096,447, filed Dec. 23, 2014, the entire contents of each of which are incorporated herein by reference in their entireties. FIELD OF INVENTION The present invention relates to compositions and methods of removing potassium from the gastrointestinal track, including methods of treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking for improved potassium excretion and for improved patient tolerance and compliance. BACKGROUND OF THE INVENTION Potassium is the most abundant cation in the intracellular fluid and plays an important role in normal human physiology, especially with regard to the firing of action potential in nerve and muscle cells (Giebisch G. Am J Physiol. 1998, 274(5), F817-33). Total body potassium content is about 50 mmol/kg of body weight, which translates to approximately 3500 mmols of potassium in a 70 kg adult (Ahmed, J. and Weisberg, L. S. Seminars in Dialysis 2001, 14(5), 348-356). The bulk of total body potassium is intracellular (˜98%), with only approximately 70 mmol (˜2%) in the extracellular space (Giebisch, G. H., Kidney Int. 2002 62(5), 1498-512). This large differential between intracellular potassium (˜120-140 mmol/L) and extracellular potassium (˜4 mmol/L) largely determines the resting membrane potential of cells. As a consequence, very small absolute changes in the extracellular potassium concentration will have a major effect on this ratio and consequently on the function of excitable tissues (muscle and nerve) (Weiner, I. D. and Wingo, C. S., J Am. Soc. Nephrol. 1998, 9, 1535-1543). Extracellular potassium levels are therefore tightly regulated. Two separate and cooperative systems participate in potassium homeostasis, one regulating external potassium balance (the body parity of potassium intake vs. potassium elimination) while the other regulates internal potassium balance (distribution between intracellular and extracellular fluid compartments) (Giebisch, Kidney Int. 2002). Intracellular/extracellular balance provides short-term management of changes in serum potassium, and is primarily driven physiologically by the action of Na+, K+-ATPase “pumps,” which use the energy of ATP hydrolysis to pump Na and K against their concentration gradients (Giebisch, Kidney Int. 2002). Almost all cells possess an Na+, K+-ATPase (Palmer, B. F., Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). Body parity is managed by elimination mechanisms via the kidney and gastrointestinal tract: in healthy kidneys, 90-95% of the daily potassium load is excreted through the kidneys with the balance eliminated in the feces (Ahmed, Seminars in Dialysis 2001). Due to the fact that intracellular/extracellular potassium ratio (Ki:Ke ratio) is the major determinant of the resting membrane potential of cells, small changes in Ke (i.e., serum [K]) have profound effects on the function of electrically active tissues, such as muscle and nerve. Potassium and sodium ions drive action potentials in nerve and muscle cells by actively crossing the cell membrane and shifting the membrane potential, which is the difference in electrical potential between the exterior and interior of the cell. In addition to active transport, K+ can also move passively between the extracellular and intracellular compartments. An overload of passive K− transport, caused by higher levels of blood potassium, depolarizes the membrane in the absence of a stimulus. Excess serum potassium, known as hyperkalemia, can disrupt the membrane potential in cardiac cells that regulate ventricular conduction and contraction. Clinically, the effects of hyperkalemia on cardiac electrophysiology are of greatest concern because they can cause arrhythmias and death (Kovesdy, C. P., Nat. Rev. Nephrol. 2014, 10(11), 653-62). Since the bulk of body parity is maintained by renal excretion, it is therefore to be expected that as kidney function declines, the ability to manage total body potassium becomes impaired. The balance and regulation of potassium in the blood requires an appropriate level of intake through food and the effective elimination via the kidneys and digestive tract. Under non-disease conditions, the amount of potassium intake equals the amount of elimination, and hormones such as aldosterone act in the kidneys to stimulate the removal of excess potassium (Palmer, B. F. Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). The principal mechanism through which the kidneys maintain potassium homeostasis is the secretion of potassium into the distal convoluted tubule and the proximal collecting duct. In healthy humans, serum potassium levels are tightly controlled within the narrow range of 3.5 to 5.0 mEq/L (Macdonald, J. E. and Struthers, A. D. J. Am. Coll. of Cardiol. 2004, 43(2), 155-61). As glomerular filtration rate (GFR) decreases, the ability of the kidneys to maintain serum potassium levels in a physiologically normal range is increasingly jeopardized. Studies suggest that the kidneys can adjust to a decrease in the number of nephrons by increasing potassium secretion by the surviving nephrons, and remain able to maintain normokalemia. However, as kidney function continues to decline these compensatory mechanisms cannot respond to potassium load and serum K increases (Kovesdy, Nat. Rev. Nephrol. 2014). Potassium homeostasis is generally maintained in patients with advanced CKD until the glomerular filtration rate (GFR; a measure of kidney function) falls below 10-15 mL/min. At this point, compensatory increases in the secretory rate of K+ in remaining nephrons cannot keep up with potassium load (Palmer, J. Am. Soc. Nephrol. 2015). Excessive levels of potassium build up in the extracellular fluid, hence leading to hyperkalemia. Hyperkalemia is a clinically significant electrolyte abnormality that can cause severe electrophysiological disturbances, including cardiac arrhythmias and death. Hyperkalemia is defined as a serum potassium level above the normal range, typically >5.0 mmol/L (Kovesdy, Nat. Rev. Nephrol. 2014). Moderate hyperkalemia (serum potassium above 6.0 mEq/L) has been reported to have a 1-day mortality rate up to 30 times higher than that of patients with serum potassium less than 5.5 mEq/L (Einhorn, L. M., et als. Arch Intern Med. 2009, 169(12), 1156-1162). Severe hyperkalemia (serum K+ of at least 6.5 mmol/L) is a potentially life-threatening electrolyte disorder that has been reported to occur in 1% to 10% of all hospitalized patients and constitutes a medical emergency requiring immediate treatment (An, J. N. et al., Critical Care 2012, 16, R225). Hyperkalemia is caused by deficiencies in potassium excretion, and since the kidney is the primary mechanism of potassium removal, hyperkalemia commonly affects patients with kidney diseases such as chronic kidney disease (CKD; Einhorn, Arch Intern Med. 2009) or end-stage renal disease (ESRD; Ahmed, Seminars in Dialysis 2001). However, episodes of hyperkalemia can occur in patients with normal kidney function, where it is still a life-threatening condition. For example, in hospitalized patients, hyperkalemia has been associated with increased mortality in patients both with and without CKD (Fordjour, K. N., et al Am. J. Med. Sci. 2014, 347(2), 93-100). While CKD is the most common predisposing condition for hyperkalemia, the mechanisms driving hyperkalemia typically involve a combination of factors, such as increased dietary potassium intake, disordered distribution of potassium between intracellular and extracellular compartments and abnormalities in potassium excretion. These mechanisms can be modulated by a variety of factors with causality outside of CKD. These include the presence of other comorbidities, such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) or the use of co-medications that can disrupt potassium homeostasis as side effects, such as blockade of the renin-angiotensin-aldosterone system (RAAS). These contributing factors to hyperkalemia are described below. In clinical practice, CKD is the most common predisposing condition for hyperkalemia (Kovesdy, Nat. Rev. Nephrol. 2014). Other common predisposing conditions, often comorbidities with CKD, include both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), both of which are linked to the development of hyperkalemia through different mechanisms. Insulin deficiency and hypertonicity caused by hyperglycemia in patients with diabetes contributes to an inability to disperse high acute potassium loads into the intracellular space. Furthermore, diabetes mellitus is associated with hyporeninemic hypoaldosteronism and the resultant inability to upregulate tubular potassium secretion (Kovesdy, Nat. Rev. Nephrol. 2014). Cardiovascular disease (CVD) and other associated conditions, such as acute myocardial ischaemia, left ventricular hypertrophy and congestive heart failure (CHF), require various medical treatments that have been linked to hyperkalaemia. For example, β2-adrenergic-receptor blockers, which have beneficial antihypertensive effects via modulation of heart rate and cardiac contractility, contribute to hyperkalemia through inhibition of cellular adrenergic receptor-dependent potassium translocation, causing a decreased ability to redistribute potassium to the intracellular space (Weir, M. A., et al., Clin. J. Am. Soc. Nephrol. 2010, 5, 1544-15515). Heparin treatment, used to manage or prevent blood clots in CVD, has also been linked to hyperkalemia through decreased production of aldosterone (Edes, T. E., et al., Arch. Intern. Med. 1985, 145, 1070-72)). Cardiac glycosides such as digoxin—used to help control atrial fibrillation and atrial flutter—inhibit cardiac Na+/K+-ATPase, but also modulate the related Na+/K+-APTases in the nephrons. This can inhibit the ability of the kidney to secrete potassium into the collecting duct and can also cause hyperkalemia. Hyperkalemia occurs especially frequently in patients with CKD who are treated with certain classes of medications, such as angiotensin-converting-enzyme (ACE) inhibitors, angiotensin-receptor blockers (ARBs) or other inhibitors of the renin-angiotensin-aldosterone system (RAAS) (Kovesdy, Nat. Rev. Nephrol. 2014). The RAAS is important for the regulation of blood pressure, and the maximum doses of RAAS inhibitors are widely recommended for patients with hypertension, heart failure (HF), chronic kidney disease (CKD), and diabetes. Large outcome studies have shown that RAAS inhibitors can significantly decrease hospitalization, morbidity, and mortality in these patients. In patients with CKD, RAAS inhibition is beneficial for some of the common comorbidities, such as congestive heart failure (CHF). However, inhibition of the RAAS pathway also promotes potassium retention and is a major cause of hyperkalemia. Even in populations without CKD, RAAS inhibitor monotherapy (treatment with a single agent) has an incidence of hyperkalemia of <2%, but this increased to ˜5% in patients receiving dual-agent RAAS inhibitor therapy. This is further exacerbated in CKD patients, where the incidence of hyperkalemia rises to 5-10% when dual therapy is administered (Bakris, G. L., et al., Kid. Int. 2000, 58, 2084-92, Weir, Clin. J. Am. Soc. Nephrol. 2010). It is therefore often difficult or impossible to continue RAAS inhibitor therapy over extended periods of time. Hyperkalemia is perhaps the most important cause of the intolerance to RAAS inhibitors observed in patients with CKD. As a consequence, hyperkalemia has led to the suboptimal use of RAAS inhibitors in the treatment of serious diseases such as CKD and heart failure (Kovesdy, Nat. Rev. Nephrol. 2014). Congestive heart failure patients, especially those taking RAAS inhibitors, are another large group that is at risk of developing life-threatening levels of serum potassium. The decreased heart output and corresponding low blood flow through the kidneys, coupled with inhibition of aldosterone, can lead to chronic hyperkalemia. Approximately 5.7 million individuals in the US have congestive heart failure (Roger, V. L., et al., Circulation. 2012, 125, 188-197). Most of these are taking at least one RAAS inhibitor, and studies show that many are taking a suboptimal dose, often due to hyperkalemia (Choudhry, N. K. et al, Pharmacoepidem. Dr. S. 2008, 17, 1189-1196). In summary, hyperkalemia is a proven risk factor for adverse cardiac events, including arrhythmias and death. Hyperkalemia has multiple causalities, the most common of which is chronic or end-stage kidney disease (CKD; ESRD); however, patients with T2DM and CVD are also at risk for hyperkalemia, especially if CKD is present as a comorbidity. Treatment of these conditions with commonly prescribed agents, including RAAS inhibitors, can exacerbate hyperkalemia, which often leads to dosing limitations of these otherwise proven beneficial agents. There is therefore a clear need for a potassium control regimen to not only control serum K in the CKD/ESRD population, but also permit the administration of therapeutic doses of cardio-protective RAAS inhibitor therapy. Dietary intervention is one possible point of control for managing potassium burden, but is difficult to manage. Furthermore, in the patient population susceptible to hyperkalemia, dietary modifications often involve an emphasis on sodium restriction, and some patients switch to salt substitutes, not realizing that these can contain potassium salts (Kovesdy, Nat. Rev. Nephrol. 2014). Finally, “heart-healthy” diets are inherently rich in potassium. Ingested potassium is also readily bioavailable, and rapidly partitions into extracellular fluid. For example, the typical daily potassium intake in healthy individuals in the United States is approximately 70 mmol/d, or ˜1 mmol/kg of body weight for a 70 kg individual (Holbrook, J. T., et al., Am. J of Clin. Nutrition. 1984, 40, 786-793). Since absorption of ingested potassium from the gut into the extracellular fluid is nearly complete, and assuming ˜17 l of extracellular fluid in a 70 kg adult, this potassium burden would essentially double serum K (70 mmol/17 L=˜4 mmol/L increase). Such an increase would be lethal in the absence of compensatory mechanisms, and the fact that ESRD patients on dialysis do not die during the interdialytic interval is a testament to the integrity of the extrarenal potassium disposal mechanisms that get upregulated in ESRD (Ahmed, Seminars in Dialysis 2001). Patients with normal renal function eliminate ˜5-10% of their daily potassium load through the gut (feces). In patients with chronic renal failure, fecal excretion can account for as much as 25% of daily potassium elimination. This adaptation is mediated by increased colonic secretion, which is 2- to 3-fold higher in dialysis patients than in normal volunteers (Sandle, G. I. and McGlone, F., Pflugers Arch 1987, 410, 173-180). This increase in fecal excretion appears due to the upregulation of the amount and location of so-called “big potassium” channels (BK channels; KCNMA1) present in the colonic epithelia cells, as well as an alteration in the regulatory signals that promote potassium secretion through these channels (Sandle, G. I. and Hunter, M. Q., J Med 2010, 103, 85-89; Sorensen, M. V. Pflugers Arch—Eur J. Physiol 2011, 462, 745-752). Additional compensation is also provided by cellular uptake of potassium (Tzamaloukas, A. H. and Avasthi, P. S., Am. J Nephrol. 1987, 7, 101-109). Despite these compensatory mechanisms, ˜15-20% of the ingested potassium accumulates in the extracellular space and must be removed by dialysis. Interdialytic increases that occur over the weekend can lead to serious cardiovascular events, including sudden death. In summary, dietary intervention is both impractical and insufficient. Serum potassium can be lowered by two general mechanisms: the first is by shifting potassium intracellularly using agents such as insulin, albuterol or sodium bicarbonate (Fordjour, Am. J. Med. Sci. 2014). The second is by excreting it from the body using 1 of 4 routes: the stool with K binding resins such as sodium polystyrene sulfonate (Na-PSS), the urine with diuretics, the blood with hemodialysis or the peritoneal fluid with peritoneal dialysis (Fordjour, Am. J. Med. Sci. 2014). Other than Na-PSS, the medications that treat hyperkalemia, such as insulin, diuretics, beta agonists and sodium bicarbonate, simply cause hypokalemia as a side effect and are not suitable as chronic treatments. Definitive therapy necessitates the removal of potassium from the body. Studies have confirmed that reducing serum potassium levels in hyperkalemia patients actually reduces the mortality risk, further solidifying the role of excess potassium in the risk of death. One study found that treatment of hyperkalemia with common therapies both improved serum potassium levels and resulted in a statistically significant increase in survival (An, Critical Care 2012). Another study, in hospitalized patients receiving critical care, showed that the reduction of serum potassium by ≧1 mEq/L 48 hours after hospitalization also decreased the mortality risk (McMahon, G. M., et al., Intensive Care Med, 2012, 38, 1834-1842). These studies suggest that treating hyperkalemia in the acute and chronic settings can have a real impact on patient outcomes by reducing the risk of death The potassium binder sodium polystyrene sulfonate (Na-PSS; Kayexalate) is the most common agent used in the management of hyperkalemia in hospitalized patients (Fordjour, Am. J. Med. Sci. 2014). Polystyrene sulfonate (PSS) is typically provided as a sodium salt (Na-PSS), and in the lumen of the intestine it exchanges sodium for secreted potassium. Most of this takes place in the colon, the site of most potassium secretion in the gut (and the region where K secretion appears to be upregulated in CKD). Each gram of Na-PSS can theoretically bind ˜4 mEq of cation; however, approximately 0.65 mmol of potassium is sequestered in vivo due to competing cations (e.g., hydrogen ion, sodium, calcium and magnesium). Sodium is concomitantly released. This may lead to sodium retention, which can lead to hypernatremia, edema, and possible worsening of hypertension or acute HF (Chernin, G. et al., Clin. Cardiol. 2012, 35(1), 32-36). Na-PSS was approved in 1958 by the US FDA, as a potassium-binding resin in the colon for the management of hyperkalemia. This approval was based on a clinical trial performed in 32 hyperkalemic patients, who showed a decrease in serum potassium of 0.9 mmol/l in the first 24 h following treatment with Na-PSS (Scherr, L. et al., NEJM 1961, 264(3), 115-119). Such acute use of Na-PSS has become common. For example, the use of potassium-binding resins has proven to be of value in the pre-dialysis CKD setting and in the management of emergency hyperkalemia, and is reportedly used in >95% of hyperkalemic episodes in the hospital setting (Fordjour, Am. J. Med. Sci. 2014). Na-PSS can be given orally or rectally. When given orally, it is commonly administered with sorbitol to promote diarrhea/prevent constipation. The onset of action is within 1-2 h and lasts approximately 4-6 hours. The recommended average daily dose is 15-60 g given singly or in divided doses (Kessler, C. et al., J. Hosp. Med. 2011, 6(3), 136-140). Kayexalate has been shown to be active in broad populations of hyperkalemic patients, including subjects both with and without chronic kidney disease (Fordjour, Am. J. Med. Sci. 2014). There are fewer reports of the use of Na-PSS in chronic hyperkalemia, but chronic treatment is not uncommon. Chernin et al. report a retrospective study of patients on RAAS inhibition therapy that were treated chronically with Na-PSS as a secondary prevention of hyperkalemia (Chernin, Clin. Cardiol. 2012). Each patient began chronic treatment after being first treated for an acute episode of hyperkalemia (K+ levels ≧6.0 mmol/L). Fourteen patients were treated with low-dose Na-PSS (15 g once-daily) for a total of 289 months, and this regimen was found to be safe and effective. No episodes of hyperkalemia were recorded while patients were on therapy, but two subjects experienced hypokalemia which resolved when the dose of Na-PSS was reduced. Last, none of the patients developed colonic necrosis or any other life-threatening event that could be attributed to Na-PSS use (Chernin, Clin. Cardiol. 2012). Chronic treatment with once-daily Na-PSS was found safe and effective in this study. While Na-PSS is the current standard of care treatment for potassium reduction in the U.S., the calcium salt of PSS (Ca-PSS) is also commonly used in other parts of the world, including Europe (e.g., Resonium) and Japan. All salt forms of these polymers are poorly tolerated by patients due to a number of compliance-limiting properties, including both GI side effects such as constipation, as well as dosing complexities due to dosing size and frequency, taste and/or texture which contribute to an overall low palatability. The safety and efficacy of PSS has been underexplored (by modern standards) in randomized and controlled clinical trials. Kayexalate/Na-PSS is also poorly tolerated causing a high incidence of GI side effects including nausea, vomiting, constipation and diarrhea. In addition, Kayexalate is a milled product and consists of irregularly shaped particles ranging in size from about 1-150 μm in size, and has sand-like properties in the human mouth: on ingestion, it gives a strong sensation of foreign matter on the palate and this sensation contributes negatively to patient compliance (Schroder, C. H. Eur. J. Pediatr. 1993, 152, 263-264). In total, the physical properties and associated side-effects of Kayexalate lead to poor compliance and render the drug suboptimal for chronic use. Due to these properties, there has been a long felt need to provide an optimal drug for chronic use. In summary, hyperkalemia is a serious medical condition that can lead to life-threatening arrhythmias and sudden death. Individuals with CKD are at particular risk; however, hyperkalemia can be a comorbidity for individuals with T2DM and CVD, and can also be exacerbated by common medications, especially RAAS inhibitors. The management of hyperkalemia involves the treatment of both acute and chronic increases in serum K+. For example, in an emergency medicine environment, patients can present with significant increases in serum K+ due to comorbidities that cause an acute impairment in the renal excretion of potassium. Examples of chronic hyperkalemia include the recurrent elevations in serum K+ that can occur during the interdialytic interval for patients with ESRD, or the persistent elevations in serum K+ that can occur in CKD patients taking dual RAAS blockade. There is thus a clear need for agents that can be used to treat hyperkalemia. Such agents, suitable for treatment of both acute and chronic hyperkalemia, while being palatable and well-tolerated by the patient, would be advantageous. SUMMARY OF THE INVENTION The present invention solves these problems by providing a polymeric binder or a composition containing a polymeric binder than can be given once, twice or three times a day, possesses equivalent or significantly better efficacy, and has physical properties that include a spherical morphology, smaller and more uniform particle size distribution and significantly improved texture—factors that contribute dramatically to improved palatability. These improvements in efficacy (potentially lower doses and/or less frequent dosing) and palatability (better mouth feel, taste, etc.) should increase tolerance, which will improve patient compliance, and hence potassium binding effectiveness. The cation exchange polymers with low levels of crosslinking described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. Surprisingly, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium, with a high level of crosslinking, is similarly dosed (same dosing and fecal collection conditions). The higher potassium capacity of the polymers of this invention may enable the administration of a lower dose of the polymer and meet the long felt need to provide an optimal drug for chronic use in treating hyperkalemia. In brief, the present invention is directed to compositions and methods for removing potassium from the gastrointestinal track, including methods for treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking, and a spherical and better controlled particle size distribution, for improved patient tolerance and compliance. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 25 μm to about 125 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a pharmaceutical composition comprising a crosslinked potassium binding polymer of Formula (I) and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 mole % to about 3 mole % of the potassium binding polymer and wherein the potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 25 μm, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering of a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 wt. % to about 3 wt. % of the potassium binding polymer. In some embodiments, the crosslinker comprises from about 1 mole % to about 4 mole % of the potassium binding polymer. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 200 μm. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1 wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1.0% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: shows the swelling ratio of calcium polystyrene sulfonate resins in water as well as the observed fecal potassium excretion from rodents orally dosed with selected resins. FIG. 2: shows the fecal K+ excretion of rats dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 4% or 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. FIG. 3: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer. FIG. 4: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (1.6%, 1.8%, 2%, and 8% DVB crosslinking) blended into chow at 8% wt/wt. The level of K+ in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to the vehicle or 8% DVB (Example 6). FIG. 5: shows the fecal K+ excretion of mice dosed with Na-PSS, USP, Ca-PSS, BP and Example 10, all blended into chow at 8% wt/wt compared to a vehicle control. Only Ca-PSS, BP and Example 10 afforded significant levels of fecal K+ excretion, and the highest fecal K+ was seen in the group that was fed Example 10. FIG. 6: shows the fecal K+ excretion of mice dosed with Na-PSS, USP and Example 10, both blended into chow at 4% and 8% wt/wt, and compared to a vehicle control. The level of K+ in the feces was significantly higher with Example 10, when present in chow at either 4% or 8% wt/wt, compared to vehicle. Na-PSS, USP afforded significant fecal K+ excretion only when present in chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed Example 10. FIG. 7: shows dose-response data for mice fed Example 10 blended into chow at 2%, 4%, 6% and 8%, wt/wt, compared to a vehicle control. The level of K+ in the feces was significantly higher for Example 10 when present in chow at 4%, 6% and 8%, wt/wt, while 2% in chow afforded a trend but was not significant. Increasing amounts of Example 10 blended in chow afford increasing amounts of K+ in the feces. FIG. 8: shows fecal K+ excretion of mice dosed with several Examples from the invention, blended in chow at 8%, wt/wt, and compared to Example 6 as a control. Examples 10, 13 and 18 afforded significant amounts of K+ in the feces. FIG. 9: shows fecal K+ secretion of mice dosed with two Examples from the invention, blended in chow at 8%, wt/wt, and compared to Ca-PSS, BP as a control. Example 20 afforded the highest level of fecal potassium in this experiment. FIG. 10: shows scanning electron micrograph (SEM) images for Na-PSS, USP, Ca-PSS, USP, Example 13 and Example 10. FIG. 11: shows particle size analysis data (laser diffraction) for samples of Na-PSS, USP and Ca-PSS, BP obtained from several different manufacturers compared to Example 10 of the present invention. FIG. 12: shows the relationship between DVB weight percent, DVB mole percent, and styrene:DVB ratio for crosslinked polystyrene. FIG. 13: shows the fecal and urinary excretion of phosphate in mice treated with Example 10 compared to Na-PSS, USP as a control. FIG. 14: shows the fecal K+ excretion in mice treated with Examples 30 and 31 compared to Na-PSS, USP and Ca-PSS, BP as controls. FIG. 15: shows the fecal and urinary K+ excretion in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 16: shows the fecal excretion of phosphate and urinary excretion of sodium in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 17: shows the fecal K+ excretion of mice dosed with Examples 36, 37, 38 and 34 compared to Na-PSS, USP as a control. DETAILED DESCRIPTION OF THE INVENTION The details of the invention are set forth in the accompanying description below. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Throughout this disclosure, various patents, patent applications and publications are referenced. The disclosures of these patents, patent applications and publications in their entireties are incorporated into this disclosure by reference in order to more fully describe the state of the art as known to those skilled therein as of the date of this disclosure. This disclosure will govern in the instance that there is any inconsistency between the patents, patent applications and publications and this disclosure. For convenience, certain terms employed in the specification, examples and claims are collected here. Unless defined otherwise, all technical and scientific terms used in this disclosure have the same meanings as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The initial definition provided for a group or term provided in this disclosure applies to that group or term throughout the present disclosure individually or as part of another group, unless otherwise indicated. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: R1, R2, R3, X, Y, m, and n are as defined above; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. In some embodiments, R1 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R1 is H and —S(O)2OH. In some embodiments, R2 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R2 is H or —S(O)2OH. In some embodiments, R3 is selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, and —S(O)2OH. In another embodiment, R3 is H or phenyl. In yet another embodiment, R3 is H. In some embodiments, X is either absent. In another embodiment, X is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or unsubstituted (C6-C18)aryl. In another embodiment, X is absent or phenyl. In yet another embodiment, X is absent and R1 is H when XR1 is attached to the carbon atom substituted with Y. In some embodiments, Y is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is unsubstituted (C6-C18)aryl. In yet another embodiment, Y is phenyl. In some embodiments, the mole ratio of m to n is from about 120:1 to about 40:1. In another embodiment, the ratio of m to n is from about 70:1 to about 50:1. In yet another embodiment, the ratio of m to n is from about 70:1 to about 60:1. In another embodiment, the ratio of m to n is about 68:1. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a composition for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia, comprising a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising: a i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) artificial orange flavored powder; and vi) methyl cellulose. In some embodiments, the pharmaceutical composition comprises about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 87% to about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88% to about 89% of the calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 86%, about 87%, about 88%, about 89%, or about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88.6% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.8%, about 2.9%, or about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.64% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.66% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.53% of sucralose. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.66% of artificial orange flavored powder. In one embodiment, the artificial orange flavored powder is artificial orange flavored powder FV633. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.0% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.92% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) vanillin powder; vi) methyl cellulose; and vii) titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 90% to about 93.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91% to about 92.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 89%, about 89.5%, about 90%, about 90.5%, about 91%, about 91.5%, about 92%, about 92.5%, about 93%, about 93.5%, about 94%, about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91.7% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.2% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 1.21% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.02% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.4% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.2% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.1% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.3% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.24% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.55% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.3% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 1.0% to about 1.2% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of vanillin powder. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.3% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 3.0% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 3.03% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. In some embodiments, the pharmaceutical composition comprises about 1.6% to about 2.6% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.7% to about 2.5% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 1.8% to about 2.4% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.9% to about 2.3% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 2.0% to about 2.3% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, or about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) benzoic acid; iv) anhydrous citric acid; v) sucralose; vi) of natural orange WONF FV7466; vii) xanthan gum; and viii) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.28% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.090% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.015%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14%, or about 0.15% of benzoic acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.10% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.015%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, about 0.14%, or about 0.15% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of natural orange WONF FV7466. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.68% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 73.7% to about 85.6% of water. In another embodiment, the pharmaceutical composition comprises about 74% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 81% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.7%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.4% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) sorbic acid; iv) anhydrous citric acid; v) sucralose; vi) SuperVan art vanilla VM36; vii) xanthan gum cp; viii) titanium dioxide; and ix) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.36% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.4% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.2% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.01% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.22% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.1% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.09% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.08% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.07% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.06% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of sorbic acid. In some embodiments, the pharmaceutical composition comprises about 0.001% to about 0.1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.002% to about 0.09% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.003% to about 0.08% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.004% to about 0.07% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.005% to about 0.06% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.006% to about 0.05% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.007% to about 0.04% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.008% to about 0.03% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.009% to about 0.02% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of anhydrous citric acid In some embodiments, the pharmaceutical composition comprises about 0.05% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.12% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, or about 0.14% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of SuperVan art vanilla VM36. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.59% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.6% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.5% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.39% of titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 73.2% to about 86.65% water. In another embodiment, the pharmaceutical composition comprises about 74% to about 86% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 85% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.2%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.8% of water. Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Among the various aspects of the invention are crosslinked cation exchange polymers having desirable particle size, particle shape, particle size distribution, swelling ratio, potassium binding capacity, and methods of removing potassium by administering the polymer—or a pharmaceutical composition including the polymer—to an animal subject in need thereof. Another aspect of the invention is a method for removing potassium and/or treating hyperkalemia from an animal subject in need thereof comprising administering a potassium binding polymer to the animal subject. The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a more controlled particle size distribution than Kayexylate, Kalimate and the like. Unless particles are perfectly monodisperse, i.e., all the particles have the same dimensions, polymer resins will typically consist of a statistical distribution of particles of different sizes. This distribution of particles can be represented in several ways. Without being bound to a particular theory, it is often convenient to assess particle size using both number weighted distributions and volume weighted distributions. Image analysis is a counting technique and can provide a number weighted distribution: each particle is given equal weighting irrespective of its size. Light scattering techniques such as laser diffraction give a volume weighted distribution: the contribution of each particle in the distribution relates to the volume of that particle, i.e. the relative contribution will be proportional to (size)3. When comparing particle size data for the same sample measured by different techniques, it is important to realize that the types of distribution being measured and reported can produce very different particle size results. For example, for a sample consisting of equal numbers of particles with diameters of 5 μm and 50 μm, an analytical method that provides a weighted distribution would give equal weighting to both types of particles and said sample would consist of 50% 5 μm particles and 50% 50 μm particles, by number. The same sample, analyzed using an analytical method that provides a volume weighted distribution, would represent the 50 μm samples as present at 1000× the intensity of the 5 μm particles (since volume is a (radius)3 function if assuming the particles are spheres). For volume weighted particle size distributions, such as those measured by laser diffraction, it is often convenient to report parameters based upon the maximum particle size for a given percentage volume of the sample. Percentiles are defined here using the nomenclature “Dv(B)” where “D”=diameter, “v”=volume, and “B”=is percentage written as a decimal fraction. For example, when expressing particle size for a given sample as “Dv(0.5)=50 μm,” 50% of the sample is below this particle size. Thus, the Dv(0.5) would be the maximum particle diameter below which 50% of the sample volume exists—also known as the median particle size by volume. For the scenario described earlier wherein a sample consists of equal numbers of particles with diameters of 5 μm and 50 μm, a volume analysis of this sample performed via laser diffraction could theoretically afford: Dv(0.999)=50 μm and Dv(0.001)=5 μm. In practice, samples are typically characterized by reporting a range of percentiles, typically the median, Dv(0.5), and values above and below the median (e.g., typically Dv(0.1) and Dv(0.9)). The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a median diameter, when in their calcium salt form and swollen in water, of from about 1 μm to about 200 μm. In other embodiments, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 130 μm. In another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 60 μm. In yet another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 60 μm to about 120 μm. In some embodiments, the Dv50—the median particle size by volume and defined as the maximum particle diameter below which 50% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In other embodiments, the Dv50 is between about 20 μm and about 50 μm. In another embodiment, Dv(0.5) is between about 40 μm and about 50 μm. In yet another embodiment, Dv(0.5) is between about 20 μm and about 30 μm. In another embodiment, Dv(0.5) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.5) is between about 35 μm and about 45 μm. In another embodiment, Dv(0.5) is between about 30 μm and about 40 μm. In yet another embodiment, Dv(0.5) is about 35 μm. In yet another embodiment, Dv(0.5) is about 30 μm. In another embodiment, Dv(0.5) is about 40 μm. In yet another embodiment, Dv(0.5) is about 45 μm. In another embodiment, Dv(0.5) is about 25 μm. In some embodiments, the Dv90—the median particle size by volume and defined as the maximum particle diameter below which 90% of the sample volume exists—is between about 40 μm and about 140 μm. In yet another embodiment, Dv(0.9) is between about 80 μm and about 130 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 120 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 100 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In other embodiments, the Dv(0.9) is between about 85 μm and about 115 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In yet another embodiment, Dv(0.9) is about 100 μm. In another embodiment, Dv(0.9) is about 105 μm. In yet another embodiment, Dv(0.9) is about 110 μm. In another embodiment, Dv(0.9) is about 90 μm. In yet another embodiment, Dv(0.9) is about 95 μm. In yet another embodiment, Dv(0.9) is about 85 μm. In other embodiments, the Dv90 is between about 20 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 20 μm and about 60 μm. In yet another embodiment, Dv(0.9) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.9) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.9) is between about 40 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 40 and about 70 μm. In yet another embodiment, Dv(0.9) is between about 50 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 50 μm and about 60 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 50 μm. In yet another embodiment, Dv(0.9) is about 30 μm. In another embodiment, Dv(0.9) is about 35 μm. In yet another embodiment, Dv(0.9) is about 40 μm. In another embodiment, Dv(0.9) is about 45 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 60 μm. In yet another embodiment, Dv(0.9) is about 25 μm. In some embodiments, the Dv10—the median particle size by volume and defined as the maximum particle diameter below which 10% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 70 μm. In another embodiment, Dv(0.1) is between about 30 μm and about 60 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In yet another embodiment, Dv(0.1) is between about 40 μm and about 60 μm. In another embodiment, Dv(0.1) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.1) is between about 45 μm and about 55 μm. In other embodiments, the Dv10 is between about 1 μm and about 60 μm. In another embodiment, Dv(0.1) is between about 5 μm and about 30 μm. In yet another embodiment, Dv(0.1) is between about 6 μm and about 23 μm. In another embodiment, Dv(0.1) is between about 15 μm and about 25 μm. In another embodiment, Dv(0.1) is between about 1 μm and about 15 μm. In another embodiment, Dv(0.1) is between about 1 μm and about 10 μm. In another embodiment, Dv(0.1) is between about 10 μm and about 20 μm. In another embodiment, Dv(0.1) is about 15 μm. In another embodiment, Dv(0.1) is about 20 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In some embodiments, the Dv(0.5) is between 60 μm and about 90 μm and Dv(0.9) is between 80 μm and about 130 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 80 μm and about 130 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 90 μm and about 120 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 110 μm and about 120 μm, Dv(0.1) is between 50 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 50 μm and about 60 μm, Dv(0.9) is between 85 μm and about 95 μm, Dv(0.1) is between 25 μm and about 35 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 100 μm and about 110 μm, Dv(0.1) is between 50 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 25 μm and about 35 μm, Dv(0.9) is between 45 μm and about 55 μm, Dv(0.1) is between 10 μm and about 20 μm. In yet another embodiment, the Dv(0.5) is between 10 μm and about 20 μm, Dv(0.9) is between 25 μm and about 35 μm, Dv(0.1) is between 1 μm and about 10 μm. In another embodiment, the Dv(0.5) is <35 μm, Dv(0.9) is <55 μm, Dv(0.1) is >5 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In some embodiments, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently <2. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 2.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is <2.0. In yet another embodiment, Dv(0.5):Dv(0.1) is <1.9. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 2.0. In yet another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <5.0 and the ratio of Dv(0.5):Dv(0.1) is <5.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <2.0 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8 and the ratio of Dv(0.5):Dv(0.1) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.6 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In some embodiments, the Dv50 is about 75 μm. In some embodiments, Dv(0.5) is between about 30 and 100 μm. More preferably, Dv(0.5) is between about 60 and 90 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In other embodiments, Dv(0.5) is between about 1 and 25 μm, more preferably between about 5 and 20 μm. In these embodiments, Dv(0.1) is between about 1 and 10 μm, more preferably between about 2 and 6 μm, and Dv(0.9) is between about 5 and 50 μm, more preferably between about 20 and 35 μm. In another embodiment, Dv(0.5) is between about 5 and 20 μm. In another embodiment, Dv(0.5) is between about 10 and 20 μm. In another embodiment, Dv(0.5) is about 15 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In some embodiments, the particle size distribution is relatively narrow. For example, 90% of the particles are within the range of 10 μm to 25 μm. In some embodiments, particles are essentially monodisperse with controlled sized from about 5-10 μm. It has been theorized that small particles, less than 3 μm in diameter, could potentially be absorbed into a patient's bloodstream resulting in undesirable effects such as the accumulation of particles in the urinary tract of the patient, and particularly in the patient's kidneys. Following ingestion, translocation of particles into and across the gastrointestinal mucosa can occur via four different pathways: 1) endocytosis through epithelial cells; 2) transcytosis at the M-cells located in the Peyer's Patches (small intestinal lymphoid aggregates), persorption (passage through “gaps” at the villous tip) and 4) putative paracellular uptake (Powell, J. J. et al Journal of Autoimmunity 2010, 34, J226-J233). The most documented and common route of uptake for micro particles is via the M-cell rich layer of Peyer's Patches, especially for small microparticles on the order of 0.1 to 0.5 μm in size (Powell, Journal of Autoimmunity 2010). Thus, excessively small particles, often called the “fines,” should be controlled during the polymer manufacturing process. The presence of such fine particulate matter could present a safety challenge, and at minimum would impact the non-absorbed nature of the polymeric drug and associated safety advantages. In another aspect of the invention, the swelling ratios of the polymer particles have been optimized. In some embodiments, polymers have a swelling ratio of less than about 10 grams of water per gram of polymer and more than about 2 grams of water per gram of polymer. In another embodiment, the polymer particles have a swelling ratio of less than about 7 grams of water per gram of polymer, but greater than about 2 grams of water per gram of polymer. In yet another embodiment, the swelling ratio is less than about 4.5 grams of water per gram of polymer, and more than about 3 grams of water per gram of polymer. In some embodiments, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the polymers have a swelling ratio in water of about 4.3 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3.5 to about 6.5 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 6.0 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 5.8 grams of water per gram of polymer. In some embodiments, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. The present invention provides a method of removing potassium and/or treating hyperkalemia in an animal subject in need thereof, comprising administering an effective amount once, twice or three times per day to the subject of a crosslinked cation exchange polymer in the form of substantially spherical particles having a well-defined particle size distribution and a preferred swelling ratio in water. The particle shape, size distribution and swelling ratio of the polymer is chosen to not only increase the amount of potassium that can be diverted into the feces in an animal subject consuming said polymer, but these physical properties also improve the palatability (mouth feel, taste, etc.) of the polymer when it is ingested by a subject in need thereof. Preferred physical properties include a generally spherical shape of the particles, a well-defined particle size distribution with the smallest particles typically no smaller than 1-2 μm and the largest particles typically no larger than 100-120 μm, and a swelling ratio between about 2 grams of water per gram of polymer to 6 grams of water per gram of polymer when measured in water with the polymer in the calcium salt form. Generally, the potassium binding polymers described herein are not absorbed from the gastrointestinal tract. The term “non-absorbed” and its grammatical equivalents (such as “non-systemic,” “non-bioavailable,” etc.) is not intended to mean that the polymer cannot be detected outside of the gastrointestinal tract. It is anticipated that certain amounts of the polymer may be absorbed. For example, about 90% or more of the polymer is not absorbed, more particularly, about 95% of the polymer is not absorbed, and more particularly still about 98% or more of the polymer is not absorbed. In some embodiments, the potassium-binding polymers described herein are crosslinked cation exchange polymers (or “resins”) derived from at least one crosslinker and at least one monomer. The monomer (or crosslinker) can contain an acid group in several forms, including protonated or ionized forms, or in a chemically protected form that can be liberated (“deprotected”) later in the synthesis of the polymer. Alternatively, the acid group can be chemically installed after first polymerizing the crosslinker and monomer groups. Acid groups can include sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof. In general, the acidity of the group should be such that, at physiological pH in the gastrointestinal tract of the subject in need, the conjugate base is available to interact favorably with potassium ions. The polymer of the present invention can be characterized by a crosslinking of between about 0.5% to about 6%. In some embodiments, the polymer is characterized by a crosslinking of less than 6%. In another embodiment, the polymer is characterized by a crosslinking of less than 5%. In yet another embodiment, the polymer is characterized by a crosslinking of less than 3%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±20%. In yet another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±10%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±5%. In other embodiments, the polymer is characterized by a crosslinking of 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, or 5.0%. The ratio of monomer(s) to crosslinker(s) can be chosen to affect the physical properties of the polymer. Additional factors include the time of addition of the crosslinker, the time and temperature of the polymerization reaction, the nature of the polymerization initiator, the use of different additives to help modulate agglomeration of the growing polymer or otherwise stabilize reactants prior to, or during, the polymerization process. The ratio of the monomer(s) and crosslinker(s), or the “repeat units,” can be chosen by those of skill in the art based on the desired physical properties of the polymer particles. For example, the swelling ratio can be used to determine the amount of crosslinking based on general principles that indicate that as crosslinking increases, the selling ratio in water generally decreases. In one specific embodiment, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 wt. % to 10 wt. %, more specifically in the range of 1 wt. % to 8 wt. %, and even more specifically in the range of 1.8 wt. % to 2.5 wt. %. To one skilled in the art, these weight ratios can be converted to mole ratios—based on the molecular weights of said monomers—and these mole-based calculations can be used to assign numerical values to “m” and “n” in (Formula I). It is also noted that to one skilled in the art that in practice, individual monomers can react at different rates and hence their incorporation into the polymer is not necessarily quantitative. With this in mind, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 mole % to 8 mole %, more specifically in the range of 1 mole % to 7 mole %, and even more specifically in the range of 1.5 mole % to 2 mole %. In another aspect of the invention, the polymers of the invention have a mouth feel score greater than 3. In some embodiments, the polymers have a mouth feel score greater than 3.5. In another embodiment, the polymers have a mouth feel score greater than 4.0. In yet another embodiment, the polymers have a mouth feel score greater than 5.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 3.0 to about 6.0. In yet another embodiment, the polymers of the invention have a mouth feel score of between about 4.0 to about 6.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 5.0 to about 6.0. The polymers of the invention can also have a grittiness score that is greater than 3. In some embodiments, the polymers have a grittiness score greater than 3. In another embodiment, the polymers have a grittiness score greater than 4. In yet another embodiment, the polymers have a grittiness score greater than 4.5. In another embodiment, the polymers have a grittiness score greater than 5. In another embodiment, the polymers have a grittiness score greater than 5.5. In yet another embodiment, the polymers have a grittiness score of between about 3.0 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 3.5 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 4.5 to about 6.0 DEFINITIONS “Amino” refers to the —NH2 radical. “Aminocarbonyl” refers to the —C(═O)NH2 radical. “Carboxy” refers to the —CO2H radical. “Carboxylate” refers to a salt or ester thereof. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH radical. “Nitro” refers to the —NO2 radical. “Oxo” or “carbonyl” refers to the ═O radical. “Thioxo” refers to the ═S radical. “Guanidinyl” (or “guanidine”) refers to the —NHC(═NH)NH2 radical. “Amidinyl” (or “amidine”) refers to the —C(═NH)NH2 radical. “Phosphate” refers to the —OP(═O)(OH)2 radical. “Phosphonate” refers to the —P(═O)(OH)2 radical. “Phosphinate” refers to the —PH(═O)OH radical, wherein each Ra is independently an alkyl group as defined herein. “Sulfate” refers to the —OS(═O)2OH radical. “Sulfonate” or “hydroxysulfonyl” refers to the —S(═O)2OH radical. “Sulfinate” refers to the —S(═O)OH radical. “Sulfonyl” refers to a moiety comprising a —SO2— group. For example, “alkysulfonyl” or “alkylsulfone” refers to the —SO2—Ra group, wherein Ra is an alkyl group as defined herein. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above that is substituted by one or more halo radicals, as defined above. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, carboxyl groups, phosphate groups, sulfate groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfinate groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a phosphorus atom in groups such as phosphinate groups and phosphonate groups; a nitrogen atom in groups such as guanidine groups, amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)1-10Rg, —(CH2CH2O)2-10Rg, —(OCH2CH2)1-10Rg and —(OCH2CH2)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. The above non-hydrogen groups are generally referred to herein as “substituents” or “non-hydrogen substituents”. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. By “crosslink” and “crosslinking” is meant a bond or chain of atoms attached between and linking two different polymer chains. The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. Unless specifically stated, as used herein, the term “about” refers to a range of values±10% of a specified value. For example, the phrase “about 200” includes ±10% of 200, or from 180 to 220. When stated otherwise the term about will refer to a range of values that include ±20%, ±10%, or ±5%, etc. The term “activate” refers to the application of physical, chemical, or biochemical conditions, substances or processes that a receptor (e.g., pore receptor) to structurally change in a way that allows passage of ions, molecules, or other substances. The term “active state” refers to the state or condition of a receptor in its non-resting condition. “Efflux” refers to the movement or flux of ions, molecules, or other substances from an intracellular space to an extracellular space. “Enteral” or “enteric” administration refers to administration via the gastrointestinal tract, including oral, sublingual, sublabial, buccal, and rectal administration, and including administration via a gastric or duodenal feeding tube. The term “inactive state” refers to the state of a receptor in its original endogenous state, that is, its resting state. The term “modulating” includes “increasing” or “enhancing,” as well as “decreasing” or “reducing,” typically in a statistically significant or a physiologically significant amount as compared to a control. An “increased” or “enhanced” amount is typically a “statistically significant” amount, and may include an increase that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.3, 4.4, 4.6, 4.8, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or more times (e.g., 100, 200, 500, 1000 times) (including all integers and decimal points and ranges in between and above 1, e.g., 5.5, 5.6, 5.7. 5.8, etc.) the amount produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). A “decreased” or “reduced” amount is typically a “statistically significant” amount, and may include a 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% decrease (including all integers and decimal points and ranges in between) in the amount or activity produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like. The term “mouthfeel” of a substance according to the present invention is the tactile sensations perceived at the lining of the mouth, including the tongue, gums and teeth. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. By “statistically significant,” it is meant that the result was unlikely to have occurred by chance. Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which is the frequency or probability with which the observed event would occur, if the null hypothesis were true. If the obtained p-value is smaller than the significance level, then the null hypothesis is rejected. In simple cases, the significance level is defined at a p-value of 0.05 or less. “Substantially” or “essentially” includes nearly totally or completely, for instance, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater of some given quantity. The term “secondary” refers to a condition or state that can occur with another disease state, condition, or treatment, can follow on from another disease state, condition, or treatment, or can result from another disease state, condition or treatment. The term also refers to situations where a disease state, condition, or treatment can play only a minor role in creating symptoms or a response in a patient's final diseased state, symptoms or condition. “Subjects” or “patients” (the terms are used interchangeably herein) in need of treatment with a compound of the present disclosure include, for instance, subjects “in need of potassium lowering.” Included are mammals with diseases and/or conditions described herein, particularly diseases and/or conditions that can be treated with the compounds of the invention, with or without other active agents, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, modulation of one or more indications described herein (e.g., reduced potassium ion levels in serum or blood of patients with or at risk for hyperkalemia, increased fecal output of potassium ions in patients with or at risk for hyperkalemia), increased longevity, and/or more rapid or more complete resolution of the disease or condition. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. A “therapeutically effective amount” or “effective amount” includes an amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to increase fecal output of potassium ions, reduce serum levels of potassium ions, treat hyperkalemia in the mammal, preferably a human, and/or treat any one or more other conditions described herein. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure. “Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes: (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it; (ii) inhibiting the disease or condition, i.e., arresting its development; (iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or (iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians. Methods of Making the Potassium Binding Crosslinked Polymers Copolymerization of an Organic Monomer “R1—X” Displaying a Single Olefin with a “Crosslinker” Organic Monomer “R2—Y” that Displays Two Olefins. Scheme 1 illustrates the copolymerization of an organic monomer displaying a single olefin (R1—X—CH═CH—R3) with a second organic monomer displaying two olefin groups (R2—Y—(CH═CH—R3)2; a crosslinker). R1 and R2 can be —H, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. R3 can be —H, halogen, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. X and Y can be the same or different, and can be substituted or unsubstituted alkyl or aryl radicals. More preferably, R1—X represents an aromatic group, and R2—Y represents an aromatic group. Most preferably, R1—X is phenyl and R2—Y is phenyl and R3 is —H—hence R1—X—CH═CH—R3 is styrene and R2—Y—(CH═CH—R3)2 is divinylbenzene. Divinylbenzene can be ortho-, meta- or para-divinylbenzene, and is most commonly a mixture of two or three of these isomers. When R1—X is phenyl, R2—Y is phenyl and R3 is —H, the resulting polymer is further modified to display acidic functionality capable of binding to potassium ions. In a preferred embodiment, the polymer is sulfonated by treatment with concentrated sulfuric acid, optionally using a catalyst such as silver sulfate. The resulting sulfonylated material can be retained in its acid form, or alternatively treated with base and converted to a salt form. This salt form can include metal salts such as sodium, calcium, magnesium or iron salts. These can also be organic salts, including salts of amines or amino acids and the like. In a preferred embodiment, the calcium salt is formed. In this preferred embodiment, (I) in Scheme 1 consists of X═Y=phenyl (Ph), R1═R2═—SO3−[0.5 Ca2+], and R3 is —H. In this preferred embodiment, the ratio of m to n (m:n) is about: 11:1 to about 120:1, more preferably about 14:1, more preferably still about 40:1, and most preferably about 50:1, about 60:1, and about 70:1. In one embodiment, the polymer is prepared from structural units of Formula 1 (e.g. styrene) and Formula 2 (e.g., divinylbenzene), which afford a polystyrene divinylbenzene copolymer intermediate. The weight ratio of the structural units of Formula 1 to Formula 2 is such that the polymer consists of about 90% Formula 1 and 10% of Formula 2. It should be noted, that in most cases, Formula 2 can be a mixture. In the case of divinylbenzene, the ortho, meta, and para positional isomers can be present Most preferable compositions include about 97.5% Formula 1 and 2.5% Formula 2, 98% Formula 1 and 2% Formula 2, and 98.2% Formula 1 and 1.8% Formula 2, by weight. Scheme 2 illustrates a copolymerization of this description, where “m” and “n” in the product reflect the varying amounts of styrene (m) and divinylbenzene (n). In one embodiment, the polymerization initiator used in the suspension polymerization plays a role in the quality of the polymer particles, including yield, shape and other physical attributes. Without being bound to a particular theory, the use of water-insoluble free radical initiators, such as benzoyl peroxide, initiates polymerization primarily within the phase containing the monomers. Such a reaction strategy provides polymer particles rather than a bulk polymer gel. Other suitable free radical initiators include other peroxides such as lauroyl peroxide (LPO), tert-butyl hydro peroxide, and the like. Azo type initiators commonly include azobisisobutyronitrile (AIBN), but also used are dimethyl-2,2′-azobis(2-methyl-proprionate), 2,2″-azo bis(2,4-dimethylvaleronitrile) and the like. These agents initiate the polymerization process. Additional polymerization components that are not intended to be incorporated into the polymer include additives such as surfactants, solvents, salts, buffers, aqueous phase polymerization inhibitors and/or other components known to those of skill in the art. When the polymerization is carried out in a suspension mode, the additional components may be contained in an aqueous phase while the monomers and initiator may be contained in an organic phase. A surfactant may be selected from the group consisting of anionic, cationic, nonionic, amphoteric or zwitterionic, or a combination thereof. Anionic surfactants are typically based on sulfate, sulfonate or carboxylate anions and include sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, other alkyl sulfate salts, sodium laureth sulfate (or sodium lauryl ether sulfate (SLES)), N-lauroylsarcosine sodium salt, lauryldimethylamine-oxide (LDAO), ethyltrimethylammoniumbromide (CTAB), bis(2-ethylhexyl)sulfosuccinate sodium salt, alkyl benzene sulfonate, soaps, fatty acid salts, or a combination thereof. Cationic surfactants, for example, contain quaternary ammonium cations. These surfactants are cetyl trimethylammonium bromide (CTAB or hexadecyl trimethyl ammonium bromide), cetylpyridinium chloride (CPC), polyethoxylated tallow amine (POEA), benzalkonium chloride (BAC), benzethonium chloride (BZT), or a combination thereof. Zwitterionic or amphoteric surfactants include dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, or a combination thereof. Nonionic surfactants include alkyl poly(ethylene oxide), copolymers of poly(ethylene oxide) and poly(propylene oxide) (commercially called Poloxamers or Poloxamines), alkyl polyglucosides (including octyl glucoside, decyl maltoside), fatty alcohols, cetyl alcohol, oleyl alcohol, cocamide MEA, cocamide DEA, or a combination thereof. Other pharmaceutically acceptable surfactants are well known in the art and are described in McCutcheon's Emulsifiers and Detergents, N. American Edition (2007). Polymerization reaction stabilizers may be selected from the group consisting of organic polymers and inorganic particulate stabilizers. Examples include polyvinyl alcohol-co-vinyl acetate and its range of hydrolyzed products, polyvinylacetate, polyvinylpyrrolidinone, salts of polyacrylic acid, cellulose ethers, natural gums, or a combination thereof. Buffers may be selected from the group consisting of 4-2-hydroxyethyl-1-piperazineethanesulfonic acid, 2-{[tris(hydroxymethyl)methyl]amino}ethanesulfonic acid, 3-(N-morpholino)propanesulfonic acid, piperazine-N,N′-bis(2-ethanesulfonic acid), sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate or a combination thereof. Generally, the mixture of monomers and additives are subjected to polymerization conditions. These can include suspension polymerization conditions as well as bulk, solution or emulsion polymerization processes. The polymerization conditions typically include polymerization reaction temperatures, pressures, mixing and reactor geometry, sequence and rate of addition of polymerization mixtures and the like. Polymerization temperatures are typically in the range of about 50° C. to 100° C. Polymerizations are typically performed at atmospheric pressures, but can be run at higher pressures (for example 130 PSI of nitrogen). Mixing depends upon the scale of the polymerization and the equipment used, but can include agitation with the impeller of a reactor to the use of immersion or in-line homogenizers capable of creating smaller droplets under certain conditions. In one embodiment, polymerization can be achieved using a suspension polymerization approach. Suspension polymerization is a heterogeneous radical polymerization process. In this approach, mechanical agitation is used to mix a monomer or mixture of monomers in an immiscible liquid phase, such as water. While the monomers polymerize, they retain their nearly spherical suspension shape, forming spheres of polymer. Polymerization suspension stabilizers, such as polyvinyl alcohol, can be used to prevent coalescence of particles during the polymerization process. Factors such as the ratio of monomers to cross linker, agitation speed, ionic strength of the liquid phase, the nature of the suspension stabilizer, etc., contribute to the yield, shape, size and other physical properties of the polymer. In one embodiment, highly uniform sized particles can be produced via a multi-step approach inspired by Ugelstad (Ugelstad_1979). In this approach, “seeds” are first prepared by dispersion polymerization of styrene in the presence of a steric stabilizer such as polyvinylpyrrolidone, using an initiator such as AIBN, and using a water/alcohol polymerization medium. The seeds are isolated, and then swollen with a monomer-initiator solution containing additional styrene as well as divinylbenzene and BPO, and then polymerized to give highly uniform styrene-divinylbenzene beads. Alternatively, a jetting process using vibrating nozzles can also be used to create microdispersed droplets of monomers, and in this fashion permit the synthesis of highly uniform crosslinked polymer beads (Dow Chemical, U.S. Pat. No. 4,444,961.) In another embodiment, the crosslinked styrene-sulfonate particles of the invention can be produced by an inverse suspension process, wherein a solution of styrene-sulfonate, a water soluble crosslinker and a free-radical initiator are dispersed in an organic solvent and converted to crosslinked beads. The polymers illustrated in Scheme 1 and Scheme 2 are most preferably sulfonylated, and the resulting sulfonic acid converted to a pharmaceutically acceptable salt. Scheme 3 illustrates the sulfonation of a preferred embodiment. The resulting sulfonic acid can be further treated with calcium acetate to afford the calcium salt. At the physiological pH within the gastrointestinal tract of a subject in need, the conjugate base of the sulfonic acid is available to interact favorably with potassium ions. By interacting favorably, this means binding to or otherwise sequestering potassium cations for subsequent fecal elimination. Polymer Sulfonylation Resins comprising the general structure of polystyrene sulfonate cross linked with divinylbenzene are available and used clinically, e.g., Kayexalate®, Argamate®, Kionex® and Resonium®. However, these resins do not possess the optimized cross-linking, particle shape, particle size distribution, and swelling properties as do the novel polymers described herein. For example, the crosslinked cation exchange polymers described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. When healthy rodents are administered the polymers of the present invention, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium is similarly dosed (same dosing and fecal collection conditions). In some embodiments, approximately 2.0-fold more potassium is excreted fecally than is achieved when, for example, Na-PSS, USP (e.g. Kayexylate) is similarly dosed (same dosing and fecal collection conditions). The higher capacity of the polymers of this invention may enable the administration of a lower dose of the polymer. Typically, the dose of Na-PSS or Ca-PSS used clinically to obtain the desired therapeutic and/or prophylactic benefits is about 10 to 60 grams/day and can be as high as 120 g/day. A typical dose range is 10-20 g, 30-40 g and 45-120 g, which can be divided into one, two or three doses/day (Fordjour, Am. J. Med. Sci. 2014). The polymers of the current invention could permit a significant reduction in drug load for the patient. Methods of Using Potassium Binding Crosslinked Polymers Patients suffering from CKD and/or CHF can be particularly in need of potassium removal because agents used to treat these conditions may cause potassium retention. Many of these subjects are also taking medications that interfere with potassium excretion, e.g., potassium-sparing diuretics, RAAS inhibitors, beta blockers, aldosterone synthase inhibitors, non-steroidal anti-inflammatory drugs, heparin, or trimethoprim. In certain particular embodiments, the polymers of the present invention can be administered on a periodic basis to treat chronic hyperkalemia. Such a treatment would enable patients to continue using drugs that may cause hyperkalemia. Also, use of the polymer compositions described herein will enable patient populations, who were previously unable to use the above-listed medications, to being treatable with these beneficial therapeutics. The cation exchange polymers described herein can be delivered to the patient using a wide variety of routes or modes of administration. The most preferred routes are oral, intestinal (e.g., via gastrointestinal tube) or rectal. Rectal routes of administration are known to those of skill in the art. The most preferred route for administration is oral. The polymers described herein can be administered as neat, dry powders or in the form of a pharmaceutical composition wherein the polymer is in admixture with one or more pharmaceutically acceptable excipients. These can include carriers, diluents, binder, disintegrants and other such generally-recognized-as-safe (GRAS) excipients designed to present the active ingredient in a form convenient for consumption by the patient. The nature and composition of these excipients are dependent upon the chosen route of administration. For oral administration, the polymer can be formulated by combining the polymer particles with pharmaceutically acceptable excipients well known in the art. These excipients can enable the polymer to be formulated as a suspension (including thixotropic suspensions), tablets, capsules, dragees, gels (including gummies or candies), syrups, slurries, wafers, liquids, and the like, for oral ingestion by a patient. In one embodiment, the oral composition does not have an enteric coating. Pharmaceutical preparations for oral use can be obtained as a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose or sucrose; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone (PVP); and various flavoring agents known in the art. If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. In various embodiments, the active ingredient (e.g., the polymer) constitutes over about 10%, more particularly over about 30%, even more particularly over about 60%, and most particularly more than about 80% by weight of the oral dosage form, the remainder comprising suitable excipient(s). In a certain formulation, the excipients would be chosen such that the polymers of the herein invention are well dispersed and suspended, such that any sensation of particulate matter on the palate is significantly blunted or eliminated. Such formulations could include, for example, suspension as a gel or paste in an aqueous matrix of agar, or gelatin, or pectin, or carrageenan, or a mixture of such agents. Such a formulation would be of a sufficient density to suspend the polymer particles in a non-settling matrix. Flavorings, such as sweeteners can be added, and these sweeteners can include both nutritive (malt extract, high-fructose corn syrup, and the like) and non-nutritive (e.g., aspartame, nutrasweet, and the like) agents, which can create a pleasant taste. Lipids such as tripalmitin, castor oil, sterotex, and the like, can be used to suspend particles in a way that avoids a foreign sensation on the palate, and can also lead to favorable flavor properties. Milk solids, cocoa butter and chocolate products can be combined to create a pudding or custard type mixture that both suspend the polymers of the invention, and also mask their contact on the palate. Formulations of the type described herein should be readily ingested presentations for the patient. EXAMPLES The disclosure is further illustrated by the following examples, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims. Example 1 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Crosslinked (8%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Adrich (Catalog #217514). The beads (100 g, wet weight) were suspended in aqueous NaOH (1M, 300 mL) and shaken for 20 hours at 27° C., then the mixture was filtered, and the wet beads washed with water (2×300 mL). The beads were suspended in aqueous CaCl2 (0.5M, 700 mL) and shaken for 2 days at 37° C. The beads were then filtered, and suspended in fresh CaCl2 (0.5M, 700 mL), and shaken for 2 days at 37° C. The beads were then filtered, washed successively with water (3×400 mL), and dried under reduced pressure to give 56.9 g of Example 1 as a fine light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 2 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 2 was prepared from 100 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Adrich (Catalog #217484) using the procedures described in Example 1 to give 37.1 g of Example 2 as a fine light brown powder. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 3 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Example 3 was prepared from 100 g crosslinked (2%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217476) using the procedures described in Example 1 to give 21.8 g of Example 3 as a light brown sand: Particle size: dv(0.1)=90 μm; dv(0.5)=120 μm; dv(0.9)=170 μm. Example 4 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Crosslinked (2%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Aldrich (Catalog #217476). The beads (400 g, wet weight) were suspended in aqueous CaCl2 (200 g CaCl2, 1.8 L water) and shaken for 24 hours at 38° C., then the mixture was filtered. The beads were suspended in aqueous Ca(OAc)2 (166 g, 2 L water) and shaken for 2 days at 37° C. The beads were then filtered, washed with water (1 L), and dried under reduced pressure to give Example 4 as a light brown sand. Approximate particle size range of 40-160 μm determined by digital visual microscopy. Example 5 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 5 was prepared from 400 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217484) using the procedures described in Example 4 to give Example 5 as a light brown sand. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 6 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Example 6 was prepared from 400 g crosslinked (8%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217514) using the procedures described in Example 4 to give Example 6 as a light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 7 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 0.96% Divinylbenzene (DVB) Intermediate Polystyrene beads at 0.96% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (0.94 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 mL), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (700 mL), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size estimated by visual microscopy d(50)=40 μm. Example 7: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), and dried under reduced pressure at 50° C. to give 27.4 g of Example 7 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 9.1 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm). Example 8 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.12% Divinylbenzene (DVB) Example 8 was prepared from styrene (75 mL), and divinylbenzene (1.1 mL, 80% Technical Grade) using the procedure described in Example 7 to give approximately 25 g of Example 8 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 7.9 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm) Example 9 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.6% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.5 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size: d(0.1)=27 μm; d(0.5)=40 μm; d(0.9)=60 μm. Example 9: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. A sample of wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 31 g of Example 9 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=51 μm; d(0.5)=75 μm; d(0.9)=105 μm. Ca-salt (8.53 wt % by titration); Residual Styrene: Not Detected (<0.1 ppm). Example 10 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in isopropanol (“IPA”) (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 10: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.44 g) and sulfuric acid (98%, 330 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (22 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 2 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (2×1 L), 50% ethanol-water (“EtOH-water”) (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.5 g of Example 10 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=78 μm; d(0.9)=114 μm. Ca-salt (7.80 wt % by titration); K+ exchange capacity 1.6 mEq/g (per BP); Residual Styrene (2.1 ppm). Example 11 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.9 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 24 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 ml), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (700 ml), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 41.9 g of polystyrene beads as a white powder. Example 11: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 h, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous calcium acetate (“Ca(OAc)2”) (20% wt, 2 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), and 100% MeOH (2×1500 mL), and dried under reduced pressure at 50° C. to give 29.8 g of Example 11 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=32 μm; dv(0.5)=49 μm; dv(0.9)=69 μm (visual microscopy). Ca-salt (8.6% wt/wt by titration); K+ exchange capacity (1.4 mE/g, per BP). Example 12 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.2% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.2% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 h to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 h, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 h. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=45 μm; dv(0.9)=70 μm. Example 12: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 90° C. for 1.5 h, then 100° C. for 1 h, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 h at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 h at 37° C. The beads were then washed successively with water (2×1 L), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH 2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 12 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=76 μm; d(0.9)=108 μm; Ca-salt (8.3% wt/wt by titration); K+ exchange capacity (1.3 meq/g per BP); Residual Styrene (6 ppm). Example 13 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.08% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.08% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (147 g), divinylbenzene (3.9 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 135 g of polystyrene beads as a white powder. Particle size: d(0.1)=6.17 μm; d(0.5)=10.1 μm; d(0.9)=17.1 μm. Example 13: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (700 mL). The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 28.6 g of Example 13 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm sieve to give a powder with Particle Size: dv(0.1)=2 μm; dv(0.5)=15 μm; dv(0.9)=30 μm. Ca-salt (9.1 wt % by titration); K+ exchange capacity (1.46 mE/g, per BP); Residual Styrene: Not Detected (<0.1 ppm). Example 14 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.5% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene, DVB and (147 g), divinylbenzene (4.7 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 133 g of polystyrene beads as a white powder. Particle size: d(0.1)=4 μm; d(0.5)=8 μm; d(0.9)=15 μm. Example 14: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (800 mL) The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 30 g of Example 14 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm) sieve to give a powder with Particle Size: d(0.1)=3 μm; d(0.5)=15 μm; d(0.9)=27 μm; Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.41 mE/g, per BP); Residual Styrene: Not Detected. Example 15 Preparation of Calcium Polystyrene Sulfonate (Ca-PS S) with 4% Divinylbenzene (DVB) Intermediate Polystyrene beads at 4% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (143.4 g), divinylbenzene (7.5 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 132 g of polystyrene beads as a white powder. Particle size: dv(0.1)=2 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 15: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 34 g of Example 15 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=3 μm; d(0.5)=12 μm; d(0.9)=21 μm. Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.32 mE/g, per BP); Residual Styrene (0.1 ppm). Example 16 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 8% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (98 g), divinylbenzene (10.7 g, 80% Technical Grade), and benzoyl peroxide (4.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 4 hours, then 85° C. overnight. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 91 g of polystyrene beads as a white powder. Particle size: dv(0.1)=3 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 16: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 32.4 g of Example 16 Ca-PSS resin as a light brown powder. Particle Size: dv(0.1)=2 μm; dv(0.5)=11 μm; dv(0.9)=17 μm. Ca-salt (8.58 wt % by titration); K+ exchange capacity (1.43 mE/g, per BP). Example 17 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (2 μm) by dispersion polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (136 mL, used as is), polyvinylpyrrolidone (“PVP”) (12 g, MW 40,000), and anhydrous EtOH (784 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 min, AIBN (1.2 g) dissolved in anhydrous EtOH (224 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (2×150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 73.9 g of seed particles as a white powder. dv(0.1)=0.6 μm; dv(0.5)=2 μm; dv(0.9)=3 μm. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g) and sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL) and the mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (3.62 g, 6.4% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (VWR homogenizer, model VDI 25) at 17500 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again (VWR homogenizer, model VDI 25). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 min. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes. the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 32.1 g of bead particles as a white powder. Example 17: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 17 Ca-PSS resin. A portion of the beads (19 g) was further washed by successive suspension and centrifugation at 3400×g with water (700 mL), 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL). The isolated solid was then dried under reduced pressure at 50° C. to give 18.8 g of Example 17 as a light brown powder. Particle Size: dv(0.1)=1 μm; dv(0.5)=6 μm; dv(0.9)=10 μm. Ca-salt (7.55 wt % by titration); K+ exchange capacity 1.0 mEq/g (per BP); Residual Styrene 0.4 ppm. Example 18 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.8 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 136 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 18: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.7 g of Example 18 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=57 μm; dv(0.5)=80 μm; dv(0.9)=110 μm. Example 19 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 19 was prepared from 40 g crosslinked (1.8%) polystyrene sulfonate beads using the procedures described in Example 10 to give 69.4 g of Example 19 as a light brown powder: particle size 30-130 μm (visual microscopy). Residual Styrene: Not Detected. Example 20 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (2 μm) by dispersion polymerization: Seeds were prepared following the procedures described in Example 17. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (0.91 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again at 2000 rpm for 30 minutes (IKA homogenizer, model T50 Digital). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in MeOH (200 mL) for 15 min by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 27.74 g of bead particles as a white powder. Approximate particle size range 6-8 μm by visual microscopy. Example 20: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with water (200 mL) and 70% MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 33.2 g of Example 20 Ca-PSS resin as a dark brown chunks. The beads were suspended and centrifuged successively with water (700 mL), 70% EtOH (500 mL), and 100% IPA (200 mL) and dried under reduced pressure at 50° C. to give 27.8 g of Example 20 Ca-PSS resin as a dark brown chunks. A portion of the beads were suspended and centrifuged successively with water (2×2 L), followed by 70% EtOH (500 mL) and 100% EtOH (500 mL). The material was dried under reduced pressure (50° C.) to give 16.3 g of Example 20 Ca-PSS resin as a light brown powder: particle size dv(0.1)=4 μm; dv(0.5)=7 μm; dv(0.9)=12 μm; Ca-salt (7.53 wt % by titration); K+ exchange capacity 1.4 mEq/g (per BP); Residual Styrene 0.09 ppm. Example 21 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (4 μm) by dispersion polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (68 mL, used as is), Polyvinylpyrrolidone, PVP, (6 g, MW 40,000), and IPA (392 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 minutes, Azobisisobutyronitrile (“AIBN”) (0.6 g) dissolved in IPA (112 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 55.28 g of seed particles as a white powder. Particle size dv(0.1)=2 μm; dv(0.5)=4 μm; dv(0.9)=6 μm. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (3 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 300 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (30 mL), divinylbenzene (0.54 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. Separately, PVP (1.5 g, MW 350,000) was dissolved in deionized water (150 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes. Then the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 16 g of bead particles as a white powder. Example 21: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.32 g) and sulfuric acid (98%, 240 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (16 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400×g for 10 min. The beads were suspended and centrifuged successively with water (200 mL), 70% EtOH (350 mL), 100% EtOH (350 mL), and dried under reduced pressure. A portion of material (19.5 g) was suspended in water (2000 mL) by shaking at 150 rpm overnight, and isolated by centrifugation at 3400 G for 10 min. The beads were washed again with water (2000 mL) and centrifuged successively with 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL), dried under reduced pressure at 50° C. to give Example 21 as a light brown powder. Ca-salt (8.56 wt % by titration); Residual Styrene 0.21 ppm. Example 22 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS), ≦43 μm Particle Size, 8% Divinylbenzene (DVB) Approximately 15 g of Ionex Ca-PSS (Phaex Polymers, India), British Pharmacopeia (BP) grade, was deposited onto a 320 mesh sieve (43 μm pore size) and mechanically agitated on an orbital shaker for approximately 30 minutes, and the sieved fraction (solids≦43 μm) was collected (approximately 3 g). Particle size dv(0.1)=9 μm; dv(0.5)=30 μm; dv(0.9)=60 μm; Ca-salt (8.69 wt % by titration); K+ exchange capacity 1.35 mEq/g (per BP); Residual Styrene 0.2 ppm. Example 23 Preparation of Sodium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Approximately 20 g of an aqueous suspension of Na SPS (8% DVB) in a water/sorbitol suspension (Carolina Medical Products) was deposited onto a sintered glass funnel and washed several times with DI water to remove sorbitol, and then dried to afford a tan-colored solid. Example 24 Preparation of Insoluble Cross-Linked (Calcium 2-Fluoroacrylate)-Divinylbenzene-1,7-Octadiene Copolymer In an appropriately sized reactor with appropriate stirring and other equipment, a mixture of organic phase of monomers is prepared by mixing methyl 2-fluoroacrylate, 1,7-octadiene, and divinylbenzene in a mole ratio of about 120:1:1, respectively. Approximately one part of lauroyl peroxide is added as an initiator of the polymerization reaction. A stabilizing aqueous phase is prepared from water, polyvinyl alcohol, phosphates, sodium chloride, and sodium nitrite. The aqueous and monomer phases are mixed together under nitrogen at atmospheric pressure, while maintaining the temperature below 30° C. The reaction mixture is gradually heated while stirring continuously. Once the polymerization reaction starts, the temperature of the reaction mixture is allowed to rise to a maximum of 95° C. After completion of the polymerization reaction, the reaction mixture is cooled and the aqueous phase is removed. Water is added, the mixture is stirred, and the solid material is isolated by filtration. The solid is then washed with water to yield a crosslinked (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. The (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is hydrolyzed with an excess of aqueous sodium hydroxide solution at 90° C. for 24 hours to yield (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After hydrolysis, the solid is filtered and washed with water. The (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is exposed at room temperature to an excess of aqueous calcium chloride solution to yield insoluble cross-linked (calcium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After the calcium ion exchange, the product is washed with water and dried. Example 25 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) from 30 Micron Monodisperse Polystyrene Beads Example 25 was prepared from 20 g polystyrene beads (Amberchrom™ XT30; obtained from Octochemstore.com), using the procedures described in Example 7 to give Example 25 (29.6 g) as a brown powder. Particle size: dv(0.1)=25 μm; dv(0.5)=34 μm; dv(0.9)=48 μm. Example 26 Procedure for Tactile Testing Tactile testing experiment #1. Tactile testing samples were prepared by suspending 2.1 g of dry polystyrene sulfonate resin powder (calcium and or sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 min by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 1), and tackiness (Table 2). Sensations were rated from 1-5 with 1=no sensation and 5=strong sensation. After each sample, test subjects washed their hands with soap and water. TABLE 1 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A 1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A   76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) morphology Shard Shard Sphere Sphere Sphere Sphere Sphere Shard Subject ID Grittiness Subject 1 4 5 4 2 1 3 5 5 Subject 2 3 2 2 1 1 2 3 3 Subject 3 5 4 2 1 2 2 4 5 Subject 4 3 3 3 1 2 2 4 4 Subject 5 4 4 1 1 2 1 2 4 Subject 6 4 3 3 1 2 2 4 4 Subject 7 3 3 1 1 1 1 3 2 Subject 8 2 3 2 1 1 2 2 3 Subject 9 4 4 4 1 1 1 3 4 Subject 10 3 3 2 1 1 2 4 5 Subject 11 5 2 1 1 2 2 3 3 Subject 12 4 2 1 1 1 2 3 3 Subject 13 5 4 3 2 1 1 1 5 Subject 14 5 4 2 2 1 1 3 4 Subject 15 5 4 2 2 1 1 4 5 Subject 16 3 3 2 1 2 1 3 4 Subject 17 5 2 2 1 1 2 3 5 Subject 18 5 4 3 2 1 2 4 5 Average   4.0   3.3   2.2   1.3   1.3   1.7   3.2   4.1 Std Dev   1.0   0.9   0.9   0.5   0.5   0.6   0.9   0.9 total 72  59  40  23  24  30  58  73  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 2 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A 1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A   76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) Morphology Shard Shard Sphere Sphere Sphere Sphere Sphere shard Subject ID Tackiness Subject 1 1 1 1 1 1 1 1 1 Subject 2 1 1 1 1 1 2 3 1 Subject 3 1 2 1 1 2 2 1 1 Subject 4 1 1 1 2 1 1 1 1 Subject 5 1 1 1 1 1 2 1 1 Subject 6 1 1 1 1 1 2 1 1 Subject 7 2 1 2 2 3 3 2 2 Subject 8 1 1 2 3 4 3 2 1 Subject 9 1 1 1 2 3 4 3 1 Subject 10 1 2 1 3 2 3 1 2 Subject 11 1 1 1 1 1 1 1 1 Subject 12 1 1 2 2 1 3 1 2 Subject 13 1 1 1 2 3 3 3 1 Subject 14 3 2 2 3 2 1 2 3 Subject 15 1 1 1 1 5 5 1 1 Subject 16 1 1 1 1 1 2 1 1 Subject 17 3 2 2 1 2 3 3 3 Subject 18 1 1 1 1 3 3 2 2 Average   1.3   1.2   1.3   1.6   2.1   2.4   1.7   1.4 Std Dev   0.7   0.4   0.4   0.8   1.2   1.1   0.8   0.7 total 23  22  23  29  37  44  30  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Tactile testing experiment #2. Tactile testing samples were prepared by suspending 3 g of dry polystyrene sulfonate resin powder (Calcium and or Sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 minute by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub the test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 3) and tackiness (Table 4). Sensations were rated from 1-5 with 1=low sensation and 5=high sensation. After each sample, test subjects washed their hands with soap and water. TABLE 3 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example #   N/A 1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 5 5 2 3 3 2 1 4 3 4 4 4 Subject 2 2 3 1 1 1 2 1 2 3 1 2 1 Subject 3 2 1 1 1 2 1 2 1 1 3 2 1 Subject 4 4 3 2 3 2 1 2 1 3 1 2 1 Subject 5 4 3 1 1 2 2 2 1 3 1 2 2 Subject 6 5 3 1 2 2 2 1 1 1 3 1 3 Subject 7 4 5 1 1 2 3 1 1 2 3 2 1 Subject 8 4 5 1 2 5 3 3 4 2 2 2 2 Subject 9 4 2 2 2 1 1 1 1 1 3 3 2 Subject 10 4 3 1 3 2 2 3 1 4 1 1 3 Subject 11 3 2 1 2 1 1 1 1 1 1 1 2 Subject 12 4 3 1 1 2 2 3 1 3 3 3 2 Subject 13 5 4 2 2 1 2 3 3 3 4 4 2 Average   3.8   3.2   1.3   1.8   2.0   1.8   1.8   1.7   2.3   2.3   2.2   2.0 Std Dev   1.0   1.2   0.5   0.8   1.1   0.7   0.9   1.2   1.0   1.2   1.0   0.9 total 50  42  17  24  26  24  24  22  30  30  29  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 4 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example #   N/A 1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 1 1 1 1 1 1 1 1 1 1 1 1 Subject 2 1 1 2 1 1 1 2 2 1 1 1 2 Subject 3 1 3 3 3 2 1 1 5 2 1 1 2 Subject 4 1 4 2 1 1 1 1 2 4 1 2 1 Subject 5 1 1 2 2 2 1 2 2 2 1 2 2 Subject 6 1 1 4 3 3 2 4 4 5 1 4 3 Subject 7 1 1 2 1 1 1 1 2 2 1 1 1 Subject 8 1 1 3 3 1 2 2 2 2 1 3 3 Subject 9 1 2 3 2 2 1 2 3 4 1 2 3 Subject 10 1 2 3 4 1 1 2 3 4 1 1 2 Subject 11 1 1 1 1 1 1 1 2 3 1 1 1 Subject 12 2 1 2 3 3 2 2 3 2 1 4 3 Subject 13 1 2 2 2 1 1 2 3 3 2 1 2 Average   1.1   1.6   2.3   2.1   1.5   1.2   1.8   2.6   2.7   1.1   1.8   2.0 Std Dev   0.3   0.9   0.8   1.0   0.7   0.4   0.8   1.0   1.2   0.3   1.1   0.8 total 14  21  30  27  20  16  23  34  35  14  24  26  1 RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Example 27 Measurements of Swelling Ratio of the Calcium Polystyrene Sulfonate Resin The swelling ratio was measured by centrifugation method using the following procedure: accurately weigh approximately 1 g of calcium polystyrene sulfonate (Ca-PSS) resin into a 50 mL pre-weighed centrifuge tube. Add approximately 10-15 mL of deionized water (or 0.9% saline solution) to immerse the resin, and shake for a minimum of 30 minutes. Centrifuge at relative centrifuge force (RCF) of 2000×g or 2500×g for 30 minutes and carefully remove the supernatant. Determine the wet sample weight and calculate the ratio between the wet sample weight versus the dry sample weight. The swelling ratio of Ca-PSS is correlated to the percentage of DVB cross-linking. There was no significant difference between swelling ratios measured in water versus those determined in 0.9% saline when the % DVB cross-linking was above 1.0% (FIG. 1 and Table 1). Example 28 Particle Size Analysis of Calcium and Sodium Polystyrene Sulfonate Resin Particle size was measured by laser diffraction using a Malvern Mastersizer 2000. Samples were introduced as suspensions in DI water into a hydro2000S sampler, sonicated if necessary to break down agglomeration, and allowed 5-10 minutes circulation for equilibration prior to measurements. Results are presented in FIG. 11 (FIG. 11). TABLE 5 SWELLING RATIO COMPARISON IN WATER AND 0.9% SALINE Swelling ratio Swelling ratio in Water in 0.9% Saline CA-PSS resin (RCF = 2000 × g) (RCF = 2000 × g) Phaex SC40, BP grade; 8% DVB 2.18 2.26 cross-linking 1 Phaex SC47, JP grade; 8% cross- 2.25 2.27 linking 2 SKK Argamate 89.29% powder; 2.11 2.11 8% cross-linking 3 Example 1; 8% DVB cross-linking 2.10 2.08 Example 2; 4% DVB cross-linking 2.92 2.82 Example 3; 2% DVB cross-linking 4.03 3.72 Example 8; 1.12% DVB cross- 7.87 7.80 linking Example 7; 0.96% DVB cross- 9.08 8.11 linking 1 Ca-PSS, British Pharmacopeia (BP) grade, manufactured by Phaex Polymers PVT LTD, Maharashtra, India; 2 Ca-PSS, Japanese Pharmacopeia (JP) grade, Phaex Polymers PVT LTD, Maharashtra, India; 3 Ca-PSS, JP grade, manufactured by Sanwa Kagaku Kenkyusho Co., Ltd., Japan. Example 29 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.1 kg), NaCl (1.0 kg), NaNO2 (0.02 kg) and water (100 kg). The mixture was stirred and heated to 85° C. to dissolve solids, then cooled to 25° C. To a separate vessel equipped with an overhead stirrer and N2 inlet was added styrene (14.7 kg), divinylbenzene (0.34 kg, 80% Technical Grade), and benzoyl peroxide (0.85 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The aqueous and monomer liquids were then mixed in 4 portions (˜25-30 L aqueous, ˜5 L monomer) and homogenized using both a steel pitched blade agitator (600-800 RPM), and by a high mixer (IKA T-50 Ultra Turrax, 3000 RPM). The resulting mixtures were transferred to a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, and heated to 92° C. for 16 hours, and then cooled to 45° C. for isolation. The suspension of polystyrene beads was filtered, and the beads were re-suspended in water (70 kg), agitated and heated to 80° C. for 20 minutes, then filtered. The beads were re-suspended in 2-propanol (55 kg), agitated and heated to 75° C. for 20 minutes, then filtered, and dried under vacuum to give 11 kg of polystyrene beads as a white powder which was used in the next step without further purification. Example 29: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple and N2 inlet, was added Polystyrene beads (7 kg) and sulfuric acid (98%, 156 kg). The mixture was agitated to form a suspension and warmed to 100-105° C. for 16 hours. The dark mixture was cooled to 45° C., and transferred slowly into cold water (90 kg). The mixture was filtered, and the sulfonated beads were repeatedly washed as a slurry with water at ˜50° C., and filtered until the effluent contained <0.05 M sulfuric acid. The beads were washed with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, then filtered. The beads were washed again with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, and filtered. The beads were washed with water until the calcium content in the effluent was <1000 ppm. The filter cake was then dried under vacuum to give 12.76 kg of Example 29 as a brown solid. Particle Size: d(0.1)=13 μm; d(0.5)=29 μm; d(0.9)=52 μm. Ca-salt 8.8 wt % (dry basis, by titration); K+ exchange capacity 1.3 mEq/g (per BP, dry basis); residual styrene <1 ppm; water content 5.6% (Karl Fisher); swelling ratio 5.7 (dry basis). Example 30 Preparation of Sodium Polystyrene Sulfonate (Na-PSS) with 1.8% Divinylbenzene (DVB) To a jacketed vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Ag2SO4 (2 g) and conc. H2SO4 (1050 mL). The mixture was warmed to 80° C. to dissolve. Intermediate polystyrene beads, prepared according to Example 29 (100 g), were added and the suspension warmed to 100° C. for 4 hours. The mixture was cooled to 60° C., and an equal volume of 30% aqueous H2SO4 (1050 mL) was slowly added to the mixture keeping the temperature below 85° C. The mixture was then filtered. A portion (approximately ⅓) of this filter cake was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH>4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were suspended in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then suspended again in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then washed successively with hot water (3×250 mL), IPA (2×75 mL), and Ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 17.2 g Example 30 as a brown solid. Na-salt 8.9% by weight; particle size in water 20-135 μm (visual microscopy). Example 31 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) A portion (approximately ⅓) of sulfonated resin from Example 30, was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH>4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were then suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were again suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were washed repeatedly with water to remove soluble calcium. The beads were then washed with IPA (2×75 mL), and ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 16.7 g of Example 31 as a brown solid. Ca-salt 7.45% by weight; particle size in water 12-94 μm (visual microscopy). Example 32 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.51 kg), NaCl (5.1 kg), NaNO2 (0.10 kg) and water (470 kg). The mixture was stirred and heated to 75° C. to form a slightly turbid solution, then cooled to 25° C. To a separate jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added styrene (75 kg), divinylbenzene (1.8 kg, 80% Technical Grade), and benzoyl peroxide (4.3 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The monomer-initiator mixture was added to the vessel containing the aqueous solution and agitated for 0.5 hours to form a coarse suspension. This coarse suspension was then homogenized by pumping the liquid twice through a high shear mixer. The resulting homogenized mixture was heated to 92° C. for 5 hours, and then cooled to 20-30° C. for isolation. The suspension of polystyrene beads was partitioned by centrifugation-decantation to remove small particles, and to wash the beads. The final slurry was isolated by filtration, or centrifugation, and dried under vacuum to give 55 kg of polystyrene beads as a white powder. Particle size: d(0.1)>5 μm; d(0.9)=<40 μm. Example 32: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Polystyrene beads (15 kg), and sulfuric acid (98%, 345 kg). The mixture was stirred to form a suspension then warmed to 100-105° C. for 3.5-4 hours. The dark mixture was cooled to 35° C., and diluted slowly with cold water (150 kg). The mixture was filtered on an agitated Neutsche type filter, and the sulfonated beads were washed with water. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. The beads were washed with water. The filter cake was washed with acetone and then dried under vacuum to give 25 kg of Example 32 as a light brown powder. Particle Size: d(0.1)=19 μm; d(0.5)=35 μm; d(0.9)=54 μm. Ca-salt 9.5 wt % (dry basis, by titration); K+ exchange capacity 1.5 mEq/g (per BP, dry basis); residual styrene <1 ppm; swelling ratio 5.6 (as is). Example 33 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 33 was prepared on 10 kg scale using methods analogous to those described for Example 32 with the following modifications: polymerization initiator was tert-butyl-peroxy-ethyl-hexanoate; a particle size control (Dv0.5) of 50 microns was achieved via a jetting process (See e.g., Dow Chemical, U.S. Pat. No. 4,444,961). After sulfonation and calcium exchange; drying of the Ca-PSS was achieved via a fluidized bed dryer. Particle Size (dry): d(0.1)=38; d(0.5)=51; d(0.9)=62. Ca-salt 9.7 wt % (by titration); K+ exchange capacity 1.5 mEq/g (per BP). Example 34 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Example 34 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 2.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=75 μm; d(0.9)=104 μm. K+ exchange capacity 1.7 mEq/g (per BP); swelling ratio 3.7. Example 35 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.5% Divinylbenzene (DVB) Example 35 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=78 μm; d(0.9)=114 μm. K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 4.5. Example 36 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Example 36 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.6% divinylbenzene. Particle Size: d(0.1)=53 μm; d(0.5)=75 μm; d(0.9)=106 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.5. Example 37 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.7% Divinylbenzene (DVB) Example 37 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.7% divinylbenzene. Particle Size: d(0.1)=53 μm; d(0.5)=74 μm; d(0.9)=105 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.3. Example 38 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 38 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.8% divinylbenzene. Particle Size: d(0.1)=51 μm; d(0.5)=77 μm; d(0.9)=114 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.1. Example 39 Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 39 was prepared on 5.6 kg scale using methods analogous to those described for Example 29. Particle Size: d(0.1)=30 μm; d(0.5)=56 μm; d(0.9)=91 μm. K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 5.1. Example 40 Powder for Oral Suspension (POS), “Strawberry Smoothie” Flavor and Consistency, Sodium Free Without a suspending agent, some Examples of the instant disclosure settle out from water in a few minutes, highlighting the need for a viscosifying system. Hydrocolloids retard particle sedimentation by increasing viscosity; however, at too high a viscosity, the formulation becomes un-drinkable. To determine a maximum viscosity for a drinkable liquid, the viscosity of commercial liquid products were measured (Table 6, below). Data were generated using a Brookfield EV-I viscometer using a small sample size adapter with spindle 18, starting at 60 RPM and decreasing speed as necessary to obtain an in-range reading. A target viscosity of less than 400 cps was selected for a drinkable product, similar to a fruit-based blended smoothie. TABLE 6 Viscosity of commercial liquid products Product Viscosity (cps)* Product Viscosity (cps)* Hershey's Chocolate Syrup 7528 Vermont Maid Syrup 635 Odwalla Strawberry Banana Smoothie 302 Pepto Bismol 195 Syrpalta (Oral Dosing Vehicle) 86 Heavy Cream 18 Light Cream 7 *Note: it is understood to one skilled in the art that viscosity measurement is a complicated field of science, and a single number may be an oversimplification of the system. Additional criteria included a formulation that could readily disperse ˜5 g of polymer in less than 35 mL water, and creation of a stable suspension for the anticipated duration of consumption (approximately 5 minutes). Last, it was desired to eliminate sodium from the formulation since excess consumption of this electrolyte is contraindicated in kidney failure patients. In addition, a pH of ˜3-3.5 was chosen to be compatible with the stability and flavor properties of a fruit-themed formulation. The composition in Table 7, prepared from Example 39, achieves the above design considerations, and when added to ˜28-30 mL of water readily wets and suspends after brief and gentle mixing (inverting 4-5 times in a closed container). TABLE 7 Composition of Example 40 “strawberry smoothie” powder-for-oral-suspension Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.049 Citric acid, anhydrous 0.150 Sucralose 0.030 Michaelock N&A Strawberry Flavor #2342 0.075 Methylcellulose A4C 0.150 FD&C Red 3 (0.1% solution) 0.430 Titanium Dioxide 0.060 Example 39 5.00 Water Qs to 30 mL (Resulting pH: 3.41 Example 41 Ready-to-Use (RTU) “Strawberry Smoothie” Drinkable Suspension Example 41, a ready-to-use variant of Example 40, was prepared from Example 39 by including a preservative system in the reconstituted formulation, replacing anhydrous citric acid with benzoic acid (0.030 g). This formulation is also sodium-free. Example 42 Ready-to-Use (RTU) Spoonable Formulation, Chocolate Flavored, Sodium Free Higher viscosity formulations were found to attenuate the sensation of grittiness and improve the mouth feel characteristics of some Examples disclosed herein (see Biological Example 14). Example 42 is a “spoonable” yogurt/gel based formulation that was developed with a chocolate “indulgent” flavor theme (Table 8). This formulation also avoids sodium-containing excipients and has a near neutral pH (5.0), consistent with the flavor and stability requirements of the flavoring agent. TABLE 8 Composition of Example 42, a “spoonable” chocolate-themed formulation Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.003 Citric acid, anhydrous 0.004 Sucralose 0.030 Xanthan gum 0.165 Natural Chocolate Flavor #37620 0.120 Sorbic acid 0.015 Example 39 5.00 Water 25 g (Resulting pH: 5.0 Example 43 Ready-to-Use (RTU) “Spoonable” Formulation, Strawberry Flavored, Sodium Free Example 43 was prepared applying the principles described in Examples 40-42 and Biological Example 14 to afford a fruit-themed, lower pH spoonable formulation (Table 9). TABLE 9 Composition of Example 43, a “spoonable,” strawberry flavored sodium free formulation Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.042 Citric acid, anhydrous 0.130 Sucralose 0.030 Xanthan gum 0.135 Michaelock N&A strawberry flavor #2342 0.075 FD&C Red 3 (0.1% solution) 0.430 Titanium dioxide 0.060 Benzoic acid 0.025 Example 39 5.00 Water 25 g (Resulting pH: 3.3) Example 44 Chewable Tablet Formulation, Citrus Flavored A chewable tablet was designed by first determining an appropriate tablet hardness for a chewable dosage form: the tablets must be hard enough to hold together through processing and shipping, while still maintaining a chewable texture. Accordingly, the hardness of several commercially available chewable OTC products were measured (Table 10), after which a tablet hardness target of approximately 9-15 kp was set. TABLE 10 Hardness of OTC chewable tablets Product Hardness (kp) Tums Kids Antacid 7.4 Tums Smoothies 10.4 Spectravite Senior Chewable 11.9 Tums Regular 12.4 Centrum Children's Chewable Vitamins 12.9 CVS Children's Complete Chewable Vitamins 15.7 Flintstones Chewable Vitamins with Iron 16.4 Apart from the active ingredient, a chewable tablet is composed primarily (but not exclusively) of a tablet binder, hence multiple tablet binders were explored in pilot tableting exercises. These included direct compression Lactose (Supertab 11SD—DSM), direct compression Mannitol (Pearlitol 100SD—Roquette), sucrose (Di-Pac—Domino),—sodium starch glycolate All-in-One (ProSolv Easytab SP—JRS) and a mannitol based All-in-One (ProSolv ODT G2—JRS). Drug load was explored with the goal of achieving a high percentage. Example 39 was subjected to iterative screening in a number of the binder systems listed above, and an approximately 30% loading was achieved in a chewable tablet format. Tablets were created based on a 3 g gross tablet weight, with 900 mg Example 39 per tablet. Blends were loaded into a 25 mm diameter tablet die and a Carver hydraulic hand press (Model 3912) was used to compress the blends to a maximum force of 15,000 lbs to afford tablets. ProSolv Easytab SP had an extremely chalky mouth feel and was dropped from consideration, whereas both ProSolv ODT G2 and Pearlitol 100SD had similar, smooth mouth feels and were advanced. Active ingredient loading was re-explored, and while a 41.66% drug load could not afford sufficiently hard tablets, a load of 33.3% was acceptable. Next, the sweet/sour properties of the tablets were determined. As sucralose and citric acid had proven to be an effective pairing in the suspension formulations, varying levels of these were evaluated in both binder systems (Pearlitol 100SD w/ additives and ProSolv ODT G2). A final sucralose level of 0.15% and citric acid of 1.5% provided the desired sweet/sour balance. Finally, flavor candidates were screened in both leading base binder systems, and included fruit flavored themes such as citrus, orange, mixed berry, strawberry and punch. These were incorporated into the mimetic (excipient) base starting at 0.25%, and adjusting up or down as appropriate. When the final mimetic (excipient) flavor systems (Pearlitol 100 SD with additives and ProSolv) were compared side-by-side, it was apparent that the Pearlitol (mannitol-based) system had a better mouth feel overall, and was selected as a preferred system. This formulation, Example 44, is shown below in Table 11. TABLE 11 Composition of Example 44, a chewable tablet formulation Mannitol based formulation Ingredient g/100 g Example 39 33.33 Colloidal Silicon Dioxide, NF-M-5P 0.85 Sucralose, NF 0.15 Magnesium Stearate, NF 1.35 Croscarmellose Sodium, NF Ac-DI-Sol SD-711 NF 2.80 Avicel CE-15 5.30 Citric Acid, Anhydrous 1.50 Natural Orange Flavor #SC356177 0.45 Mannitol, USP Pearlitol 100 SD 54.27 Example 45 Ready-to-Use (RTU) “Smoothie” Drinkable Suspension, Orange and Vanilla Flavors Example 37 was formulated into both an orange- and vanilla-flavored ready-to-use drinkable “smoothie” using the procedures and concepts described in Example 40 and Example 41. Both formulations are sodium-free. TABLE 12 Compositions of Example 45, drinkable “smoothie” in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 5.624 5.624 Water 25.72  25.68  Example 46 Powder for Oral Suspension (POS), “Smoothie” Consistency, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into both an orange- and vanilla-flavored powder-for-oral-suspension using the procedures and concepts described in Example 40. Both formulations are sodium-free, and reconstitute to a drinkable suspension with the consistency of a fruit-based “smoothie” upon addition to one ounce of water and brief agitation. TABLE 13 Compositions of Example 46, powders for oral suspension in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Citric Acid Anhydrous 0.150 0.013 Sucralose 0.030 0.030 Artificial orange flavored powder FV653 0.150 — Vanillin powder — 0.060 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Example 47 “Spoonable” Formulation, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into ready-to-use “spoonable” orange- and vanilla-flavored formulations using the procedures and concepts described in Example 42 and Example 43. Both formulations are sodium-free, and their composition is illustrated in Table 14. TABLE 14 Compositions of Example 47, RTU orange- and vanilla- flavored “spoonable” suspensions Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Xanthan Gum CP 0.210 0.180 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Water 25.0   25.0   Biological Example 1 Preparation of Mice for In Vivo Animal Studies Study Preparation: Male CD-1 mice ˜25-35 grams (Charles River) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow before study initiation. The day of diet acclimation initiation, body weights were obtained and mice were placed in metabolic cages. The animals were fed ad libitum during the study. Mice were provided normal powdered chow or study compound mixed in powdered chow at the designated percentage for a period of 48 hours (to ensure the study diet has passed the length of the GI and animals achieve “steady state.”). Food and water measurements were recorded upon placement of animals in metabolic cages, and every 24 hours until study completion. After 48 hours of acclimation, the 24 hour collection period began. Clean collection tubes were placed on the cage. Mice were provided their designated study diet during the collection period. Urine and feces were collected at the end of this 24 hour period. Food and water was weighed again to determine the amount consumed over the study period. Sample Processing and Analysis: Urine and feces were collected directly into pre-weighed tubes placed on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96 well-plates with 0.2 ml of each urine sample added to each plate. One plate was acidified (20 μl of 6 N HCl per sample). Plates were stored frozen until analysis. The feces were removed from the metabolic cages, the jars were capped, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were then dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content was calculated. Feces and urine were analyzed by microwave plasma-atomic emission spectroscopy (MP-AES) or ion chromatography (IC) for ion content. Biological Example 2 Preparation of Rats for In Vivo Animal Studies Study Preparation: Male Sprague Dawley (Charles River) rats (˜200-250 gm) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow, for at least 2 days prior to study initiation. The day prior to being placed in metabolic cages, body weights were obtained and rats were provided normal powdered chow or study compound in powder chow, via a J-Feeder, beginning at ˜1:00 pm (to ensure the study diet has passed the length of the GI). The day of the study, rats were transferred to metabolic cages at ˜3:30 pm, where they were provided their designated study diet for 16 hours. Tare weights of food and water were obtained prior to animals being placed in the cages. Urine and feces were collected ˜16 hours later. Food and water was weighed again to determine the amount consumed over the study period. Chow Formulation: Chow meal (Standard rodent chow, 2018C) was weighed out into a mixing bowl and placed on a stand mixer (KitchenAid). PSS was weighed out and added to the chow to achieve the desired final concentration (2-8% polymer in chow by weight). The mixer was set to stir on low for at least 10 minutes to evenly distribute the polymer in the chow. The chow was then transferred to a labeled zip-lock storage bag. Sample Processing and Analysis: Urine was collected directly into pre-weighed 50 ml conical tubes placed inside the urine collectors on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96-well plates with 0.5 ml of each urine sample added to each plate. One plate was acidified (50 μl of 6 N HCl per sample). Both plates were submitted on the same day for bioanalytical analysis (or were placed in a −20 freezer). The feces were transferred from the metabolic collectors to pre-weighed capped jars, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content calculated. The feces were then placed on a homogenizer and ground to a fine powder. For each sample, two aliquots were weighed out. 500 mg was weighed into a 50 ml conical tube, and 50 mg into an eppindorf tube. Feces and urine were analyzed by MP-AES or IC for ion content. Biological Example 3 Effects on Fecal Potassium Levels in Rats Upon Dosing with Ca-PSS Using the methods described in Biological Example 2, rats were dosed Ca-PSS blended into chow at 4% or 8% wt/wt. These polymers had differing levels of crosslinking (2%, 4% and 8% DVB crosslinking). In this experiment, all rats dosed with Ca-PSS blended into the diet at 8% wt/wt had significant increases in K excretion. The highest fecal K was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. This increase was significantly higher than that observed for the other polymers that were similarly dosed as 8% wt/wt blends in chow (FIG. 2). Biological Example 4 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 5, 6, Ca-PSS and BP Using the methods described in Biological Example 1, mice were dose Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow (Standard 2018 chow) at 8% wt/wt. The polymers had differing levels of crosslinking: 2% DVB, (Example 4); 4% DVB, (Example 5); 8% DVB (Example 6); and Ca-PSS, BP (Ca-PSS, BP with 8% DVB crosslinking) was used as a control. All mice dosed with Ca-PSS blended in the diet at 8% wt/wt had significant increases in K excretion. The highest level of K secretion was seen with the 2% DVB material (Example 4, FIG. 3). Biological Example 5 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 6, 9 and 10 Using the methods in Biological Example 1, mice were dosed Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow at 8% wt/wt. The test articles included the following: Vehicle (2018 chow); 200-400 mesh Ca-PSS with 2% DVB crosslinking (Example 4); 200-400 mesh Ca-PSS with 8% DVB crosslinking (Example 6), Ca-PSS polymer with 1.6% DVB cross-linking (Example 9), and Ca-PSS material with 1.8% DVB cross-linking (Example 10). All mice dosed with 8% wt/wt Ca-PSS in their diet had significant increases in K excretion. The highest levels of K secretion were seen with polymers possessing DVB levels of 2% or less (FIG. 4). The level of K in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to vehicle or 8% DVB (Example 6). Biological Example 6 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10, Na-PSS, USP, CA-PSS, and/or BP Using the methods in Biological Example 1, mice were dosed Na-PSS, USP, Ca-PSS, BP and Example 10 blended into chow at 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Ca-PSS, BP or Example 10, with the highest fecal potassium seen in Example 10 (FIG. 5). Biological Example 7 Effects on Fecal and Urinary Phosphate Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were dosed with Na-PSS, USP and Example 10, blended into chow at 4% and 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Na-PSS, USP or Example 10 when present at 8% w/w in chow, but only Example 10 showed a significant increase in fecal potassium at 4% wt/wt in chow. In addition there was significantly more K in the feces of mice fed Example 10 versus Na-PSS, USP when these test articles were present at 8% wt/wt in chow (FIG. 6). In addition, the group treated with Example 10 blended into chow at 8% wt/wt had higher levels of fecal phosphate compared to those mice identically dosed with Na-PSS, and lower levels of urinary phosphate compared to groups treated with both Na-PSS or vehicle (FIG. 13). Biological Example 8 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were fed increasing amounts of Example 10 blended in chow a 2, 4, 6 and 8% wt/wt. The control group was fed standard rodent chow (Harlan Teklad 2018). There was a dose dependent increase in fecal potassium content with the addition of Example 10 to the chow, with the highest fecal potassium seen in the 8% wt/wt group (FIG. 7). Biological Example 9 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 10, 13, and 18 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt/wt. The test articles included Example 10, Example 13 and Example 18; Example 6 served as a control. The level of K+ in the feces was significantly higher for Examples 32, 35, and 41 compared to Example 6. (FIG. 8). Biological Example 10 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 20 and 21 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt/wt. The test articles included Ca-PSS, BP as a control as well as Example 20 and Example 21, all of which were blended into chow at 8% wt/wt (FIG. 9). The highest level of fecal potassium was seen with Example 21. Biological Example 11 Effects on Potassium Output in Mice Upon Dosing with Examples 30 and 31 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP (US Pharmacopeia grade; Purolite, Inc.), Ca-PSS, BP (British Pharmacopeia grade; Purolite, Inc.), Example 30, and Example 31. Groups dosed with Na-PSS, USP and Example 30 had significantly lower fecal ion output, and had a mean K+ output of ˜8 mg/24 h. Ca-PSS, BP showed a mean K+ output of 15 mg/24 h. Example 31 had the highest K+ output in this example at 23 mg/24 h. Examples 30 and 31 were prepared from the same batch of sulfonated resin, and differ only in salt form. (FIG. 14 Biological Example 12 Effects on Fecal Potassium and Phosphorus Levels and Urinary Sodium and Potassium Levels in Mice Upon Dosing with Examples 32 and 33 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included vehicle (normal chow without any drug), Na-PSS, USP, Example 32 and Example 33. Compared to Na-PSS, USP, both Example 32 and Example 33 resulted in 1) significantly higher amounts of fecal potassium, 2) significantly higher amounts of fecal phosphorus, and 3) significantly lower amounts of urine sodium and potassium. (FIG. 15 and FIG. 16) Biological Example 13 Effects on Fecal Output in Mice Upon Dosing with Examples 34, 36, 37 and 37 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP, Example 34, Example 36, Example 37 and Example 38. Fecal outputs of potassium are significantly elevated for all Examples relative to Na-PSS, USP, while Examples 36, 37, and 38 cause higher fecal potassium than Example 34. (FIG. 13) Biological Example 14 A Phase I Randomized Study to Evaluate the Overall Consumer Acceptability of Taste and Mouth Feel of Example 29 and Formulations Thereof in Healthy Subjects The primary objective of the study was to evaluate the overall acceptability, as well as the acceptability of specific attributes, of taste and mouth feel of different oral formulations of Example 29 in comparison to a reference formulation (Resonium A; sodium polystyrene sulfonate [Na PSS], Sanofi-Aventis). This was a single center, randomized, crossover study to evaluate the taste of different oral formulations of Example 29 in healthy subjects. Visit 1 was open-label and Visit 2 was single-blind for Regimens E to I and open-label for Regimen J which was tested last. Formulation regimens are shown in Table 15, and include a systematic exploration of viscosity (by varying the amount of xanthan gum) and flavor (vanilla, citrus and mint). Subjects were screened for inclusion in the study up to 28 days before dosing. Eligible subjects were admitted to the unit at approximately 21:00 on the evening before administration of the first regimen (Day-1) and were either discharged following the last taste test or remained on site until approximately 24 hours post-initial tasting, depending on whichever was most convenient for the subject. TABLE 15 Formulations for Biological Example 14 Regimen Description Formulation A Resonium A reconstituted in water Resonium A contains saccharine per patient instructions (3 mL-4 mL (sweetener) and vanillin (flavouring agent) of water/g) B Example 29 reconstituted (in water) Identical excipients and equivalent with saccharine and vanillin formulation as Regimen A C Example 29 suspension formulation Water-based suspension containing in vanilla flavour Example 29 (16.5%), vanillin (0.17%), methylparaben (0.18%) propylparaben (0.02%), sucralose powder (0.02%) and xanthan gum (0.67%) D Example 29 jelly formulations in Same as Regimen C except xanthan gum vanilla flavour was present at 1.00% E Example 29 jelly formulation in Identical to Regimen D vanilla flavour F Example 29 jelly formulation in Same as Regiment D except vanillin was citrus flavour replaced with N&A Orange Flavor Powder, Flavor Producers item No. M680957M G Example 29 jelly formulation in Equivalent to Regimen D except vanillin wintergreen garden mint flavour was replaced with Wintergreen Garden Mint (FL Emul. N&A WS), Sensient item No. SN2000016303 H Example 29 suspension low viscosity Same as Regimen F except xanthan gum formulation in citrus yoghurt flavour was present at 0.37% I Example 29 intermediate viscosity Same as Regimen F except xanthan gum formulation in citrus flavour was present at 0.67% J Example 29 reconstituted Same as Regimen B except vanillin was formulation in citrus flavour replaced with N&A Orange Flavor Powder, Flavor Producers item No. M680957M Taste testing occurred over two visits. During Visit 1, each subject received 1 g each of regimen A, B, C and D in a randomized order using a Latin square design. Each regimen was administered as 4 to 6 mL of formulation, and each subject tasted all 4 regimens. During Visit 2, each subject received approximately 5 mL each of regimen E, F, G, H, I and J. All formulations were administered orally. Taste was assessed using a questionnaire designed by Sensory Research Ltd (Cork, Ireland). The questionnaire asked subjects to rate the acceptability of several parameters (including smell, sweetness, flavor, mouth feel/texture and grittiness), as well as overall acceptability, on a 9 point scale (from 1—dislike everything to 9—like extremely). No formal statistical testing was performed on screening or baseline data. The data from the results of the taste test were summarized (mean, median, SD, CV (%), minimum, maximum and N) by regimen for Visit 1 and Visit 2 separately. The number and percentage of subjects assigned to each grade of the acceptability categories on the taste questionnaire were also summarized by regimen for Visit 1 and Visit 2 separately. The formulation with the highest median score on overall acceptability was considered the formulation with the most acceptable taste profile and mouth feel. Visit 1. Regimen A (Resonium A) was consistently the poorest performing formulation throughout the taste assessment illustrating that Example 29, and formulations of Example 29, provide superior acceptability to Resonium A (Table 16). For Visit 1, although Regimen D (“jelly formulation” flavored by vanillin) had the highest overall median score, Regimen C (suspension formulation flavored by vanillin) produced similar results (Table 16). It was concluded that Regimen D would be reassessed at Visit 2, including favor variants. TABLE 16 Taste Testing Results from Visit 1 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen A 5.0 (5.5) 5.0 (5.9) 5.0 (5.4) 3.0 (3.4) 3.0 (2.8) 4.0 (4.3) Regimen B 5.5 (6.1) 6.0 (6.1) 5.5 (5.6) 4.5 (4.9) 3.5 (4.3) 5.0 (5.1) Regimen C 7.0 (7.0) 7.0 (7.0) 7.0 (6.6) 6.0 (5.4) 5.5 (5.9) 6.0 (6.2) Regimen D 7.5 (7.2) 7.0 (6.5) 7.0 (6.1) 6.0 (5.3) 6.0 (6.3) 7.0 (6.2) Highest scores per assessment are shown in bold Visit 2. Regimen E (jelly formulation in vanilla flavor, identical to Regimen D) had the joint highest median and highest mean scores for overall taste assessment, as well as scoring highest in most of the other taste assessments (Table 17). Regimen F afforded responses similar to Regimen E but scored higher for grittiness. Regimens E, F and G were all jelly formulations investigating different flavor options: vanilla, citrus and wintergreen garden mint, respectively. The vanilla and citrus scored the same median score for flavor, with vanilla scoring more consistently across subjects, suggesting this is the preferred flavor. Wintergreen mint had the lowest median scores for flavor. Regimens F, H, I and J were formulations of differing viscosity with the same citrus flavor. Regimen F (jelly formulation; 1% xanthan gum) had the highest median score compared to the other citrus formulations, confirming the results from the Visit 1 assessments (i.e. a “jelly” formulation is the preferred viscosity) (Table 17). Example 29 consistently outperformed Resonium A in all aspects of the taste assessments. The jelly formulation was the preferred viscosity and vanilla (flavored by vanillin) and citrus were comparable for flavor; however, vanilla (flavored by vanillin) scored more consistently than citrus, suggesting it was the preferred flavor. TABLE 17 Taste Testing Results from Visit 2 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen E 7.0 (6.9) 7.0 (7.0) 7.0 (6.9) 7.0 (6.5) 6.0 (6.2) 7.0 (6.8) Regimen F 6.5 (6.4) 7.0 (6.8) 7.0 (6.5) 6.5 (6.4) 6.5 (6.3) 7.0 (6.4) Regimen G 5.0 (5.5) 6.0 (5.5) 6.0 (5.4) 5.0 (5.3) 5.5 (5.7) 5.0 (5.3) Regimen H 6.0 (5.7) 6.5 (6.1) 6.0 (5.9) 6.0 (5.8) 5.5 (5.7) 6.0 (5.7) Regimen I 6.0 (5.9 6.0 (6.2) 6.0 (6.1) 6.0 (5.8) 5.0 (5.7) 6.0 (6.0) Regimen J 5.0 (4.9) 5.5 (5.2) 4.5 (4.6) 4.0 (4.1) 4.0 (4.0) 4.0 (4.1) Highest scores per assessment are shown in bold and lowest scores in italics EQUIVALENTS Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims. 15052193 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx May 23rd, 2017 12:00AM Dec 22nd, 2015 12:00AM https://www.uspto.gov?id=US09655921-20170523 Compositions and methods for treating hyperkalemia The present invention is directed to compositions and methods of removing potassium or treating hyperkalemia by administering pharmaceutical compositions of cation exchange polymers with low crosslinking for improved potassium excretion and for beneficial physical properties to increase patient compliance. 9655921 1. A method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia, comprising administering of a calcium salt of a potassium binding polymer, to the patient, wherein the crosslinked potassium binding polymer has the following structure: wherein the ratio of “m” and “n” provides a polymer having 1.6% to 1.9% cross-linking. 2. The method of claim 1, wherein the ratio of m to n is 68:1. 3. The method of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. 4. The method of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5grams of water per gram of polymer. 5. The method of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. 6. The method of claim 1, wherein the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. 7. The method of claim 1, wherein the potassium binding polymer further comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm. 8. The method of claim 7, wherein the particles have an average particle size Dv(0.9) between about 80 μm to about 130 μm. 9. The method of claim 7, wherein the particles have an average particle size Dv(0.9) between about 90μm to about 120 μm. 10. The method of claim 7, wherein the particles have an average particle size Dv(0.9) between about 40 μm to about 70 μm. 11. The method of claim 7, wherein the particles have an average particle size Dv(0.9) between about 50μm to about 60 μm. 12. The method of claim 7, wherein the particles have an average particle size Dv(0.5) between about 60 μm to about 90 μm. 13. The method of claim 7, wherein the particles have an average particle size Dv(0.5) between about 70 μm to about 80 μm. 14. The method of claim 7, wherein the particles have an average particle size Dv(0.5) between about 20 μm to about 50 μm. 15. The method of claim 14, wherein the particles have an average particle size Dv(0.5) between about 30 μm to about 40 μm. 16. The method of claim 7, wherein the particles have an average particle size Dv(0.1) between about 20 μm to about 70 μm. 17. The method of claim 7, wherein the particles have an average particle size Dv(0.1) between about 30 μm to about 60 μm. 18. The method of claim 7, wherein the particles have an average particle size Dv(0.1) between about 5 μm to about 30 μm. 19. The method of claim 7, wherein the particles have an average particle size Dv(0.1) between about 6 μm to about 23 μm. 20. The method of claim 7, wherein ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. 21. The method of claim 7, wherein the ratio of Dv(0.9):Dv(0.5) and the ratio of Dv(0.5):Dv(0.1) are each independently about two or less. 22. The method of claim 1; wherein the potassium binding polymer has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer. 23. The method of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means ±5% of the specified value. 24. The method of claim 1, wherein the potassium binding polymer is characterized by a crosslinking of 1.8%. 24 RELATED APPLICATIONS This application is a U.S. National Phase application, filed under 35 U.S.C. §371,of International Application No. PCT/US2015/067460, filed Dec. 22, 2015, which claims the benefit of and priority to U.S. provisional application No. 62/096,447, filed Dec. 23, 2014, the entire contents of each of which are incorporated herein by reference in their entireties. FIELD OF INVENTION The present invention relates to compositions and methods of removing potassium from the gastrointestinal track, including methods of treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking for improved potassium excretion and for improved patient tolerance and compliance. BACKGROUND OF THE INVENTION Potassium is the most abundant cation in the intracellular fluid and plays an important role in normal human physiology, especially with regard to the firing of action potential in nerve and muscle cells (Giebisch G. Am J Physiol. 1998, 274(5), F817-33). Total body potassium content is about 50 mmol/kg of body weight, which translates to approximately 3500 mmols of potassium in a 70 kg adult (Ahmed, J. and Weisberg, L. S. Seminars in Dialysis 2001, 14(5), 348-356). The bulk of total body potassium is intracellular (˜98%), with only approximately 70 mmol (˜2%) in the extracellular space (Giebisch, G. H., Kidney Int. 2002 62(5), 1498-512). This large differential between intracellular potassium (˜120-140 mmol/L) and extracellular potassium (˜4 mmol/L) largely determines the resting membrane potential of cells. As a consequence, very small absolute changes in the extracellular potassium concentration will have a major effect on this ratio and consequently on the function of excitable tissues (muscle and nerve) (Weiner, I. D. and Wingo, C. S., J. Am. Soc. Nephrol. 1998, 9, 1535-1543). Extracellular potassium levels are therefore tightly regulated. Two separate and cooperative systems participate in potassium homeostasis, one regulating external potassium balance (the body parity of potassium intake vs. potassium elimination) while the other regulates internal potassium balance (distribution between intracellular and extracellular fluid compartments) (Giebisch, Kidney Int. 2002). Intracellular extracellular balance provides short-term management of changes in serum potassium, and is primarily driven physiologically by the action of Na+, K+-ATPase “pumps,” which use the energy of ATP hydrolysis to pump Na and K against their concentration gradients (Giebisch, Kidney Int. 2002). Almost all cells possess an Na+, K+-ATPase (Palmer, B. F., Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). Body parity is managed by elimination mechanisms via the kidney and gastrointestinal tract: in healthy kidneys, 90-95% of the daily potassium load is excreted through the kidneys with the balance eliminated in the feces (Ahmed, Seminars in Dialysis 2001). Due to the fact that intracellular/extracellular potassium ratio (Ki:Ke ratio) is the major determinant of the resting membrane potential of cells, small changes in Ke (i.e., serum [K]) have profound effects on the function of electrically active tissues, such as muscle and nerve. Potassium and sodium ions drive action potentials in nerve and muscle cells by actively crossing the cell membrane and shifting the membrane potential, which is the difference in electrical potential between the exterior and interior of the cell. In addition to active transport, K+ can also move passively between the extracellular and intracellular compartments. An overload of passive K+ transport, caused by higher levels of blood potassium, depolarizes the membrane in the absence of a stimulus. Excess serum potassium, known as hyperkalemia, can disrupt the membrane potential in cardiac cells that regulate ventricular conduction and contraction. Clinically, the effects of hyperkalemia on cardiac electrophysiology are of greatest concern because they can cause arrhythmias and death (Kovesdy, C. P., Nat. Rev. Nephrol. 2014, 10(11), 653-62). Since the bulk of body parity is maintained by renal excretion, it is therefore to be expected that as kidney function declines, the ability to manage total body potassium becomes impaired. The balance and regulation of potassium in the blood requires an appropriate level of intake through food and the effective elimination via the kidneys and digestive tract. Under non-disease conditions, the amount of potassium intake equals the amount of elimination, and hormones such as aldosterone act in the kidneys to stimulate the removal of excess potassium (Palmer, B. F. Clin. J. Am. Soc. Nephrol. 2015, 10(6), 1050-60). The principal mechanism through which the kidneys maintain potassium homeostasis is the secretion of potassium into the distal convoluted tubule and the proximal collecting duct. In healthy humans, serum potassium levels are tightly controlled within the narrow range of 3.5 to 5.0 mEq/L (Macdonald, J. E. and Struthers. A. D. J. Am. Coll. of Cardiol. 2004, 43(2), 155-61). As glomerular filtration rate (GFR) decreases, the ability of the kidneys to maintain serum potassium levels in a physiologically normal range is increasingly jeopardized. Studies suggest that the kidneys can adjust to a decrease in the number of nephrons by increasing potassium secretion by the surviving nephrons, and remain able to maintain normokalemia. However, as kidney function continues to decline these compensatory mechanisms cannot respond to potassium load and serum K increases (Kovesdy, Nat. Rev. Nephrol. 2014). Potassium homeostasis is generally maintained in patients with advanced CKD until the glomerular filtration rate (GFR; a measure of kidney function) falls below 10-15 mL/min. At this point, compensatory increases in the secretory rate of K+ in remaining nephrons cannot keep up with potassium load (Palmer, J. Am. Soc. Nephrol. 2015). Excessive levels of potassium build up in the extracellular fluid, hence leading to hyperkalemia. Hyperkalemia is a clinically significant electrolyte abnormality that can cause severe electrophysiological disturbances, including cardiac arrhythmias and death. Hyperkalemia is defined as a serum potassium level above the normal range, typically >5.0 mmol/L (Kovesdy, Nat. Rev. Nephrol. 2014). Moderate hyperkalemia (serum potassium above 6.0 mEq/L) has been reported to have a 1-day mortality rate up to 30 times higher than that of patients with serum potassium less than 5.5 mEq/L (Einhorn, L. M., et als. Arch Intern Med. 2009, 169(12), 1156-1162). Severe hyperkalemia (serum K+ of at least 6.5 mmol/L) is a potentially life-threatening electrolyte disorder that has been reported to occur in 1% to 10% of all hospitalized patients and constitutes a medical emergency requiring immediate treatment (An, J. N. et al., Critical Care 2012, 16, R225). Hyperkalemia is caused by deficiencies in potassium excretion, and since the kidney is the primary mechanism of potassium removal, hyperkalemia commonly affects patients with kidney diseases such as chronic kidney disease (CKD; Einhorn, Arch Intern Med. 2009) or end-stage renal disease (ESRD; Ahmed, Seminars in Dialysis 2001). However, episodes of hyperkalemia can occur in patients with normal kidney function, where it is still a life-threatening condition. For example, in hospitalized patients, hyperkalemia has been associated with increased mortality in patients both with and without CKD (Fordjour, K. N., et al Am. J. Med. Sci. 2014, 347(2), 93-100). While CKD is the most common predisposing condition for hyperkalemia, the mechanisms driving hyperkalemia typically involve a combination of factors, such as increased dietary potassium intake, disordered distribution of potassium between intracellular and extracellular compartments and abnormalities in potassium excretion. These mechanisms can be modulated by a variety of factors with causality outside of CKD. These include the presence of other comorbidities, such as type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) of the use of co-medications that can disrupt potassium homeostasis as side effects, such as blockade of the renin-angiotensin-aldosterone system (RAAS). These contributing factors to hyperkalemia are described below. In clinical practice, CKD is the most common predisposing condition for hyperkalemia (Kovesdy, Nat. Rev. Nephrol. 2014). Other common predisposing conditions, often comorbidities with CKD, include both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), both of which are linked to the development of hyperkalemia through different mechanisms. Insulin deficiency and hypertonicity caused by hyperglycemia in patients with diabetes contributes to an inability to disperse high acute potassium loads into the intracellular space. Furthermore, diabetes mellitus is associated with hyporeninemic hypoaldosteronism and the resultant inability to upregulate tubular potassium secretion (Kovesdy, Nat. Rev. Nephrol. 2014). Cardiovascular disease (CVD) and other associated conditions, such as acute myocardial ischaemia, left ventricular hypertrophy and congestive heart failure (CHF), require various medical treatments that have been linked to hyperkalaemia. For example, β2-adrenergic-receptor blockers, which have beneficial antihypertensive effects via modulation of heart rate and cardiac contractility, contribute to hyperkalemia through inhibition of cellular adrenergic receptor-dependent potassium translocation, causing a decreased ability to redistribute potassium to the intracellular space (Weir, M. A., et al., Clin. J. Am. Soc. Nephrol. 2010, 5, 1544-15515). Heparin treatment, used to manage or prevent blood clots in CVD, has also been linked to hyperkalemia through decreased production of aldosterone (Edes, T. E., et al., Arch. Intern. Med. 1985, 145, 1070-72)). Cardiac glycosides such as digoxin—used to help control atrial fibrillation and atrial flutter—inhibit cardiac Na+/K+-ATPase, but also modulate the related Na+/K+-APTases in the nephrons. This can inhibit the ability of the kidney to secrete potassium into the collecting duct and can also cause hyperkalemia. Hyperkalemia occurs especially frequently in patients with CKD who are treated with certain classes of medications, such as angiotensin-converting-enzyme (ACE) inhibitors, angiotensin-receptor blockers (ARBs) or other inhibitors of the renin-angiotensin-aldosterone system (RAAS) (Kovesdy, Nat. Rev. Nephrol. 2014). The RAAS is important for the regulation of blood pressure, and the maximum doses of RAAS inhibitors are widely recommended for patients with hypertension, heart failure (HF), chronic kidney disease (CKD), and diabetes. Large outcome studies have shown that RAAS inhibitors can significantly decrease hospitalization, morbidity, and mortality in these patients. In patients with CKD, RAAS inhibition is beneficial for some of the common comorbidities, such as congestive heart failure (CHF). However, inhibition of the RAAS pathway also promotes potassium retention and is a major cause of hyperkalemia. Even in populations without CKD, RAAS inhibitor monotherapy (treatment with a single agent) has an incidence of hyperkalemia of <2%, but this increased to ˜5% in patients receiving dual-agent RAAS inhibitor therapy. This is further exacerbated in CKD patients, where the incidence of hyperkalemia rises to 5-10% when dual therapy is administered (Bakris, G. L., et al., Kid. Int. 2000, 58, 2084-92, Weir, Clin. J. Am. Soc. Nephrol. 2010). It is therefore often difficult or impossible to continue RAAS inhibitor therapy over extended periods of time. Hyperkalemia is perhaps the most important cause of the intolerance to RAAS inhibitors observed in patients with CKD. As a consequence, hyperkalemia has led to the suboptimal use of RAAS inhibitors in the treatment of serious diseases such as CKD and heart failure (Kovesdy, Nat. Rev. Nephrol. 2014). Congestive heart failure patients, especially those taking RAAS inhibitors, are another large group that is at risk of developing life-threatening levels of serum potassium. The decreased heart output and corresponding low blood flow through the kidneys, coupled with inhibition of aldosterone, can lead to chronic hyperkalemia. Approximately 5.7 million individuals in the US have congestive heart failure (Roger, V. L., et al., Circulation. 2012, 125, 188-197). Most of these are taking at least one RAAS inhibitor, and studies show that many are taking a suboptimal dose, often due to hyperkalemia (Choudhry, N. K. et al, Pharmacoepidem. Dr. S. 2008, 17, 1189-1196). In summary, hyperkalemia is a proven risk factor for adverse cardiac events, including arrhythmias and death. Hyperkalemia has multiple causalities, the most common of which is chronic or end-stage kidney disease (CKD; ESRD); however, patients with T2DM and CVD are also at risk for hyperkalemia, especially if CKD is present as a comorbidity. Treatment of these conditions with commonly prescribed agents, including RAAS inhibitors, can exacerbate hyperkalemia, which often leads to dosing limitations of these otherwise proven beneficial agents. There is therefore a clear need for a potassium control regimen to not only control serum K in the CKD/ESRD population, but also permit the administration of therapeutic doses of cardio-protective RAAS inhibitor therapy. Dietary intervention is one possible point of control for managing potassium burden, but is difficult to manage. Furthermore, in the patient population susceptible to hyperkalemia, dietary modifications often involve an emphasis on sodium restriction, and some patients switch to salt substitutes, not realizing that these can contain potassium salts (Kovesdy, Nat. Rev. Nephrol. 2014). Finally, “heart-healthy” diets are inherently rich in potassium. Ingested potassium is also readily bioavailable, and rapidly partitions into extracellular fluid. For example, the typical daily potassium intake in healthy individuals in the United States is approximately 70 mmol/d, or ˜1 mmol/kg of body weight for a 70 kg individual (Holbrook, J. T., et al., Am. J. of Clin. Nutrition. 1984, 40, 786-793). Since absorption of ingested potassium from the gut into the extracellular fluid is nearly complete, and assuming ˜17 l of extracellular fluid in a 70 kg adult, this potassium burden would essentially double serum K (70 mmol/17 L=˜4 mmol/L increase). Such an increase would be lethal in the absence of compensatory mechanisms, and the fact that ESRD patients on dialysis do not die during the interdialytic interval is a testament to the integrity of the extrarenal potassium disposal mechanisms that get upregulated in ESRD (Ahmed, Seminars in Dialysis 2001). Patients with normal renal function eliminate ˜5-10% of their daily potassium load through the gut (feces). In patients with chronic renal failure, fecal excretion can account for as much as 25% of daily potassium elimination. This adaptation is mediated by increased colonic secretion, which is 2- to 3-fold higher in dialysis patients than in normal volunteers (Sandle, G. I. and McGlone, F., Pflugers Arch 1987, 410, 173-180). This increase in fecal excretion appears due to the upregulation of the amount and location of so-called “big potassium” channels (BK channels; KCNMA1) present in the colonic epithelia cells, as well as an alteration in the regulatory signals that promote potassium secretion through these channels (Sandle, G. I. and Hunter, M. Q., J Med 2010, 103, 85-89; Sorensen, M. V. Pflugers Arch—Eur J. Physiol 2011, 462, 745-752). Additional compensation is also provided by cellular uptake of potassium (Tzamaloukas, A. H. and Avasthi, P. S., Am. J. Nephrol. 1987, 7, 101-109). Despite these compensatory mechanisms, ˜15-20% of the ingested potassium accumulates in the extracellular space and must be removed by dialysis. Interdialytic increases that occur over the weekend can lead to serious cardiovascular events, including sudden death. In summary, dietary intervention is both impractical and insufficient. Serum potassium can be lowered by two general mechanisms: the first is by shifting potassium intracellularly using agents such as insulin, albuterol or sodium bicarbonate (Fordjour, Am. J. Med. Sci. 2014). The second is by excreting it from the body using 1 of 4 routes: the stool with K binding resins such as sodium polystyrene sulfonate (Na-PSS), the urine with diuretics, the blood with hemodialysis or the peritoneal fluid with peritoneal dialysis (Fordjour, Am. J. Med. Sci. 2014). Other than Na-PSS, the medications that treat hyperkalemia, such as insulin, diuretics, beta agonists and sodium bicarbonate, simply cause hypokalemia as a side effect and are not suitable as chronic treatments. Definitive therapy necessitates the removal of potassium from the body. Studies have confirmed that reducing serum potassium levels in hyperkalemia patients actually reduces the mortality risk, further solidifying the role of excess potassium in the risk of death. One study found that treatment of hyperkalemia with common therapies both improved serum potassium levels and resulted in a statistically significant increase in survival (An, Critical Care 2012). Another study, in hospitalized patients receiving critical care, showed that the reduction of serum potassium by ≧1 mEq/L 48 hours after hospitalization also decreased the mortality risk (McMahon, G. M., et al., Intensive Care Med, 2012, 38, 1834-1842). These studies suggest that treating hyperkalemia in the acute and chronic settings can have a real impact on patient outcomes by reducing the risk of death The potassium binder sodium polystyrene sulfonate (Na-PSS; Kayexalate) is the most common agent used in the management of hyperkalemia in hospitalized patients (Fordjour, Am. J. Med. Sci. 2014). Polystyrene sulfonate (PSS) is typically provided as a sodium salt (Na-PSS), and in the lumen of the intestine it exchanges sodium for secreted potassium. Most of this takes place in the colon, the site of most potassium secretion in the gut (and the region where K secretion appears to be upregulated in CKD). Each gram of Na-PSS can theoretically bind ˜4 mEq of cation; however, approximately 0.65 mmol of potassium is sequestered in vivo due to competing cations (e.g., hydrogen ion, sodium, calcium and magnesium). Sodium is concomitantly released. This may lead to sodium retention, which can lead to hypernatremia, edema, and possible worsening of hypertension or acute HF (Chernin, G. et al., Clin. Cardiol. 2012, 35(1), 32-36). Na-PSS was approved in 1958 by the US FDA, as a potassium-binding resin in the colon for the management of hyperkalemia. This approval was based on a clinical trial performed in 32 hyperkalemic patients, who showed a decrease in serum potassium of 0.9 mmol/l in the first 24 h following treatment with Na-PSS (Scherr, L. et al., NEJM 1961, 264(3), 115-119). Such acute use of Na-PSS has become common. For example, the use of potassium-binding resins has proven to be of value in the pre-dialysis CKD setting and in the management of emergency hyperkalemia, and is reportedly used in >95% of hyperkalemic episodes in the hospital setting (Fordjour, Am. J. Med. Sci. 2014). Na-PSS can be given orally or rectally. When given orally, it is commonly administered with sorbitol to promote diarrhea/prevent constipation. The onset of action is within 1-2 h and lasts approximately 4-6 hours. The recommended average daily dose is 15-60 g given singly or in divided doses (Kessler, C. et al., J. Hosp. Med 2011, 6(3), 136-140). Kayexalate has been shown to be active in broad populations of hyperkalemic patients, including subjects both with and without chronic kidney disease (Fordjour, Am. J. Med. Sci. 2014). There are fewer reports of the use of Na-PSS in chronic hyperkalemia, but chronic treatment is not uncommon. Chernin et al. report a retrospective study of patients on RAAS inhibition therapy that were treated chronically with Na-PSS as a secondary prevention of hyperkalemia (Chernin, Clin. Cardiol. 2012). Each patient began chronic treatment after being first treated for an acute episode of hyperkalemia (K+ levels ≧6.0 mmol/L). Fourteen patients were treated with low-dose Na-PSS (15 g once-daily) for a total of 289 months, and this regimen was found to be safe and effective. No episodes of hyperkalemia were recorded while patients were on therapy, but two subjects experienced hypokalemia which resolved when the dose of Na-PSS was reduced. Last, none of the patients developed colonic necrosis or any other life-threatening event that could be attributed to Na-PSS use (Chernin, Clin. Cardiol. 2012). Chronic treatment with once-daily Na-PSS was found safe and effective in this study. While Na-PSS is the current standard of care treatment for potassium reduction in the U.S., the calcium salt of PSS (Ca-PSS) is also commonly used in other parts of the world, including Europe (e.g., Resonium) and Japan. All salt forms of these polymers are poorly tolerated by patients due to a number of compliance-limiting properties, including both GI side effects such as constipation, as well as dosing complexities due to dosing size and frequency, taste and/or texture which contribute to an overall low palatability. The safety and efficacy of PSS has been underexplored (by modern standards) in randomized and controlled clinical trials. Kayexalate/Na-PSS is also poorly tolerated causing a high incidence of GI side effects including nausea, vomiting, constipation and diarrhea. In addition, Kayexalate is a milled product and consists of irregularly shaped particles ranging in size from about 1-150 μm in size, and has sand-like properties in the human mouth: on ingestion, it gives a strong sensation of foreign matter on the palate and this sensation contributes negatively to patient compliance (Schroder, C. H., Eur. J. Pediatr. 1993, 152, 263-264). In total, the physical properties and associated side-effects of Kayexalate lead to poor compliance and render the drug suboptimal for chronic use. Due to these properties, there has been a long felt need to provide an optimal drug for chronic use. In summary, hyperkalemia is a serious medical condition that can lead to life-threatening arrhythmias and sudden death. Individuals with CKD are at particular risk; however, hyperkalemia can be a comorbidity for individuals with T2DM and CVD, and can also be exacerbated by common medications, especially RAAS inhibitors. The management of hyperkalemia involves the treatment of both acute and chronic increases in serum K+. For example, in an emergency medicine environment, patients can present with significant increases in serum K+ due to comorbidities that cause an acute impairment in the renal excretion of potassium. Examples of chronic hyperkalemia include the recurrent elevations in serum K+ that can occur during the interdialytic interval for patients with ESRD, or the persistent elevations in serum K+ that can occur in CKD patients taking dual RAAS blockade. There is thus a clear need for agents that can be used to treat hyperkalemia. Such agents, suitable for treatment of both acute and chronic hyperkalemia, while being palatable and well-tolerated by the patient, would be advantageous. SUMMARY OF THE INVENTION The present invention solves these problems by providing a polymeric binder or a composition containing a polymeric binder than can be given once, twice or three times a day, possesses equivalent or significantly better efficacy, and has physical properties that include a spherical morphology, smaller and more uniform particle size distribution and significantly improved texture-factors that contribute dramatically to improved palatability. These improvements in efficacy (potentially lower doses and/or less frequent dosing) and palatability (better mouth feel, taste, etc.) should increase tolerance, which will improve patient compliance, and hence potassium binding effectiveness. The cation exchange polymers with low levels of crosslinking described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. Surprisingly, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium, with a high level of crosslinking, is similarly dosed (same dosing and fecal collection conditions). The higher potassium capacity of the polymers of this invention may enable the administration of a lower dose of the polymer and meet the long felt need to provide an optimal drug for chronic use in treating hyperkalemia. In brief, the present invention is directed to compositions and methods for removing potassium from the gastrointestinal track, including methods for treating hyperkalemia, by administration of crosslinked cation exchange polymers with a low level of crosslinking, and a spherical and better controlled particle size distribution, for improved patient tolerance and compliance. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 25 μm to about 125 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm, wherein the potassium binding polymer has a Mouth Feel score greater than 3.5, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 20 μm to about 130 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is H; each X is either absent or substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer comprises substantially spherical particles having a median diameter from about 5 μm to about 70 μm and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of about 1.8%, wherein the term about means±10%. Another aspect of the invention relates to a pharmaceutical composition comprising a crosslinked potassium binding polymer of Formula (I) and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 mole % to about 3 mole % of the potassium binding polymer and wherein the potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering a calcium salt of a crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises at least one monomer and one crosslinker, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 25 μm, and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia. The method comprises administering of a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer comprises at least one monomer and one crosslinker, the crosslinker comprising from about 1 wt. % to about 3 wt. % of the potassium binding polymer. In some embodiments, the crosslinker comprises from about 1 mole % to about 4 mole % of the potassium binding polymer. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the potassium binding polymer comprises substantially spherical particles having a median diameter from about 1 μm to about 200 μm. Another aspect of the invention relates to a method for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia is provided, the method comprising administering a calcium salt of crosslinked potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1 wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is a divalent group; and the ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a calcium salt of crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1.0% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 2.0% to about 3.0% of calcium citrate tetrahydrate; iii) about 2.0% to about 3.0% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 2.0% to about 3.0% of artificial orange flavored powder; and vi) about 2.5% to about 3.5% of methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.6% to about 1.6% of calcium citrate tetrahydrate; iii) about 0.02% to about 0.5% of anhydrous citric acid; iv) about 0.1% to about 1% of sucralose; v) about 0.6% to about 1.6% of vanillin powder; vi) about 2.5% to about 3.5% of methyl cellulose A4C; and vii) about 1.6% to about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.1% to about 1.0% of calcium citrate tetrahydrate; iii) about 0.015% to about 0.15% of benzoic acid; iv) about 0.1% to about 1% of anhydrous citric acid; v) about 0.015% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of natural orange WONF FV7466; vii) about 0.1% to about 1.0% of xanthan gum cp; and viii) about 73.7% to about 85.57% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer having the following structure: and pharmaceutically acceptable salts thereof, wherein the mole ratio of m to n is from about 120:1 to about 40:1; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) about 0.01% to about 0.5% of calcium citrate tetrahydrate; iii) about 0.01% to about 0.1% of sorbic acid; iv) about 0.001% to about 0.1% of anhydrous citric acid; v) about 0.05% to about 0.15% of sucralose; vi) about 0.1% to about 1.0% of SuperVan art vanilla VM36; vii) about 0.1% to about 1.0% of xanthan gum cp; viii) about 0.1% to about 1.0% of titanium dioxide; and ix) about 73.2% to about 86.65% of water. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: shows the swelling ratio of calcium polystyrene sulfonate resins in water as well as the observed fecal potassium excretion from rodents orally dosed with selected resins. FIG. 2: shows the fecal K+ excretion of rats dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 4% or 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. FIG. 3: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (2%, 4% and 8% DVB crosslinking) blended into chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed a 2% DVB crosslinked polymer. FIG. 4: shows the fecal K+ excretion of mice dosed with Ca-PSS polymers with differing levels of crosslinking (1.6%, 1.8%, 2%, and 8% DVB crosslinking) blended into chow at 8% wt/wt. The level of K+ in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to the vehicle or 8% DVB (Example 6). FIG. 5: shows the fecal K+ excretion of mice dosed with Na-PSS, USP, Ca-PSS, BP and Example 10, all blended into chow at 8% wt/wt compared to a vehicle control. Only Ca-PSS, BP and Example 10 afforded significant levels of fecal K+ excretion, and the highest fecal K+ was seen in the group that was fed Example 10. FIG. 6: shows the fecal K+ excretion of mice dosed with Na-PSS, USP and Example 10, both blended into chow at 4% and 8% wt/wt, and compared to a vehicle control. The level of K+ in the feces was significantly higher with Example 10, when present in chow at either 4% or 8% wt/wt, compared to vehicle. Na-PSS, USP afforded significant fecal K+ excretion only when present in chow at 8% wt/wt. The highest fecal K+ was seen in the group that was fed Example 10. FIG. 7: shows dose-response data for mice fed Example 10 blended into chow at 2%, 4%, 6% and 8%, wt/wt, compared to a vehicle control. The level of K+ in the feces was significantly higher for Example 10 when present in chow at 4%, 6% and 8%, wt/wt, while 2% in chow afforded a trend but was not significant. Increasing amounts of Example 10 blended in chow afford increasing amounts of K+ in the feces. FIG. 8: shows fecal K+ excretion of mice dosed with several Examples from the invention, blended in chow at 8%, wt/wt, and compared to Example 6 as a control. Examples 10, 13 and 18 afforded significant amounts of K+ in the feces. FIG. 9: shows fecal K+ secretion of mice dosed with two Examples from the invention, blended in chow at 8%, wt/wt, and compared to Ca-PSS, BP as a control. Example 20 afforded the highest level of fecal potassium in this experiment. FIG. 10: shows scanning electron micrograph (SEM) images for Na-PSS, USP, Ca-PSS, USP, Example 13 and Example 10. FIG. 11: shows particle size analysis data (laser diffraction) for samples of Na-PSS, USP and Ca-PSS, BP obtained from several different manufacturers compared to Example 10 of the present invention. FIG. 12: shows the relationship between DVB weight percent, DVB mole percent, and styrene:DVB ratio for crosslinked polystyrene. FIG. 13: shows the fecal and urinary excretion of phosphate in mice treated with Example 10 compared to Na-PSS, USP as a control. FIG. 14: shows the fecal K+ excretion in mice treated with Examples 30 and 31 compared to Na-PSS, USP and Ca-PSS, BP as controls. FIG. 15: shows the fecal and urinary K+ excretion in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 16: shows the fecal excretion of phosphate and urinary excretion of sodium in mice treated with Examples 32 and 33 compared to Na-PSS, USP as a control and vehicle. FIG. 17: shows the fecal K+ excretion of mice dosed with Examples 36, 37, 38 and 34 compared to Na-PSS, USP as a control. DETAILED DESCRIPTION OF THE INVENTION The details of the invention are set forth in the accompanying description below. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Throughout this disclosure, various patents, patent applications and publications are referenced. The disclosures of these patents, patent applications and publications in their entireties are incorporated into this disclosure by reference in order to more fully describe the state of the art as known to those skilled therein as of the date of this disclosure. This disclosure will govern in the instance that there is any inconsistency between the patents, patent applications and publications and this disclosure. For convenience, certain terms employed in the specification, examples and claims are collected here. Unless defined otherwise, all technical and scientific terms used in this disclosure have the same meanings as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The initial definition provided for a group or term provided in this disclosure applies to that group or term throughout the present disclosure individually or as part of another group, unless otherwise indicated. A first aspect of the invention relates to a calcium salt of a crosslinked potassium binding polymer having the structure of Formula (I): and pharmaceutically acceptable salts thereof, wherein: R1, R2, R3, X, Y, m, and n are as defined above; and wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%. In some embodiments, R1 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R1 is H and —S(O)2OH. In some embodiments, R2 is selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, or —S(O)2OH. In another embodiment, R2 is H or —S(O)2OH. In some embodiments, R3 is selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, and —S(O)2OH. In another embodiment, R3 is H or phenyl. In yet another embodiment, R3 is H. In some embodiments, X is either absent. In another embodiment, X is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or substituted or unsubstituted (C6-C18)aryl. In yet another embodiment, X is absent or unsubstituted (C6-C18)aryl. In another embodiment, X is absent or phenyl. In yet another embodiment, X is absent and R1 is H when XR1 is attached to the carbon atom substituted with Y. In some embodiments, Y is selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is substituted or unsubstituted (C6-C18)aryl. In another embodiment, Y is unsubstituted (C6-C18)aryl. In yet another embodiment, Y is phenyl. In some embodiments, the mole ratio of m to n is from about 120:1 to about 40:1. In another embodiment, the ratio of m to n is from about 70:1 to about 50:1. In yet another embodiment, the ratio of m to n is from about 70:1 to about 60:1. In another embodiment, the ratio of m to n is about 68:1. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5% and wherein the polymer comprises substantially spherical particles and is substantially endotoxin free. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer and a crosslinking of less than 5%. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer that has a potassium exchange capacity from about 1 mEq to about 4 mEq per gram of potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. In another aspect, the present invention relates to a pharmaceutical composition comprising a calcium salt of a crosslinked potassium binding polymer and a pharmaceutically acceptable carrier, diluent, or excipient, wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5% and wherein median diameter is from about 1 μm to about 130 μm when said particles are in their calcium salt form and swollen in water. In some embodiments, the polymer is a styrene polymer. In another embodiment, the polymer is crosslinked with divinyl benzene. In yet another embodiment, the divinyl benzene is divinyl benzene sulfonate. In another embodiment, the polymer is a salt of crosslinked polystyrene sulfonate. In yet another embodiment, the composition is further substantially active as a phosphate binder. In another embodiment, the patient is experiencing hyperkalemia. In yet another embodiment, the polymer has a capacity to increase fecal phosphorous output in a subject. In another embodiment, the polymer has a capacity to decrease urinary phosphorous output in a subject. Another aspect of the invention relates to a composition for removing potassium from the gastrointestinal tract of a patient showing clinical signs of hyperkalemia or suspected of having hyperkalemia, comprising a calcium salt of a potassium binding polymer, or salt thereof, to the patient, wherein the crosslinked potassium binding polymer has a structure of Formula (I): and pharmaceutically acceptable salts thereof wherein: each R1 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6) alkyl, substituted or unsubstituted (C6-C18) aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R2 is independently selected from the group consisting of H, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each R3 is independently selected from the group consisting of H, halogen, substituted or unsubstituted (C1-C6)alkyl, substituted or unsubstituted (C6-C18)aryl, —S(O)2OH, —OS(O)2OH, —C(O)OH, —PO(OH)2, —OP(OH)3, and —NHS(O)2OH; each X is either absent or independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; each Y is independently selected from the group consisting of substituted or unsubstituted (C1-C6)alkyl and substituted or unsubstituted (C6-C18)aryl; and the mole ratio of m to n is from about 120:1 to about 40:1; wherein the crosslinked potassium binding polymer is characterized by a crosslinking of less than 5%; and a pharmaceutically acceptable carrier, diluent, or excipient. Another aspect of the invention relates to a pharmaceutical composition comprising: a i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) artificial orange flavored powder; and vi) methyl cellulose. In some embodiments, the pharmaceutical composition comprises about 86.5% to about 91% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 87% to about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88% to about 89% of the calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 86%, about 87%, about 88%, about 89%, or about 90% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 88.6% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.8%, about 2.9%, or about 3.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 2.64% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 2.66% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.53% of sucralose. In some embodiments, the pharmaceutical composition comprises about 2.0% to about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.1% to about 2.9% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.2% to about 2.8% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.3% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.4% to about 2.6% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.5% to about 2.7% of artificial orange flavored powder. In yet another embodiment, the pharmaceutical composition comprises about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, or about 3.0% of artificial orange flavored powder. In another embodiment, the pharmaceutical composition comprises about 2.66% of artificial orange flavored powder. Ine one embodiment, the artificial orange flavored powder is artificial orange flavored powder FV633. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.0% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.92% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) anhydrous citric acid; iv) sucralose; v) vanillin powder; vi) methyl cellulose; and vii) titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 89% to about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 90% to about 93.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91% to about 92.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 89%, about 89.5%, about 90%, about 90.5%, about 91%, about 91.5%, about 92%, about 92.5%, about 93%, about 93.5%, about 94%, about 94.5% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 91.7% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.2% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 1.21% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.02% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.4% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.2% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.1% to about 0.3% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.3% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.24% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.55% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.6% to about 1.6% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.7% to about 1.5% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 0.8% to about 1.4% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.9% to about 1.3% of vanillin powder. In yet another embodiment, the pharmaceutical composition comprises about 1.0% to about 1.2% of vanillin powder. In another embodiment, the pharmaceutical composition comprises about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.1%, about 1.2%, about 1.3%, about 1.4%, about 1.5%, or about 1.6% of vanillin powder. In some embodiments, the pharmaceutical composition comprises about 2.5% to about 3.5% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.6% to about 3.4% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.7% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.8% to about 3.3% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.3% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 3.0% to about 3.2% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 2.9% to about 3.1% of methyl cellulose. In another embodiment, the pharmaceutical composition comprises about 2.5%, about 2.6%, about 2.7%, about 2.8%, about 2.9%, about 3.0%, about 3.1%, about 3.2%, about 3.3%, about 3.4%, or about 3.5% of methyl cellulose. In yet another embodiment, the pharmaceutical composition comprises about 3.03% of methyl cellulose. In one embodiment, the methyl cellulose is methyl cellulose A4C. In some embodiments, the pharmaceutical composition comprises about 1.6% to about 2.6% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.7% to about 2.5% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 1.8% to about 2.4% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.9% to about 2.3% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 2.0% to about 2.3% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 1.6%, about 1.7%, about 1.8%, about 1.9%, about 2.0%, about 2.1%, about 2.2%, about 2.3%, about 2.4%, about 2.5%, or about 2.6% of titanium dioxide. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof; ii) calcium citrate tetrahydrate; iii) benzoic acid; iv) anhydrous citric acid; v) sucralose; vi) of natural orange WONF FV7466; vii) xanthan gum; and viii) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.28% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.7% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.6% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1.0% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of benzoic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.090% to about 0.11% of benzoic acid. In another embodiment, the pharmaceutical composition comprises about 0.015%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14%, or about 0.15% of benzoic acid. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of anhydrous citric acid. In some embodiments, the pharmaceutical composition comprises about 0.015% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.12% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.10% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.10% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.015%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, about 0.14%, or about 0.15% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of natural orange WONF FV7466. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of natural orange WONF FV7466. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of natural orange WONF FV7466. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.68% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 73.7% to about 85.6% of water. In another embodiment, the pharmaceutical composition comprises about 74% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 81% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.7%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.4% of water. Another aspect of the invention relates to a pharmaceutical composition comprising: i) a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof, ii) calcium citrate tetrahydrate; iii) sorbic acid; iv) anhydrous citric acid; v) sucralose; vi) SuperVan art vanilla VM36; vii) xanthan gum cp; viii) titanium dioxide; and ix) water. In some embodiments, the pharmaceutical composition comprises about 10% to about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 11% to about 25% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 12% to about 24% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 13% to about 23% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 14% to about 22% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 21% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 20% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 19% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 16% to about 18% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 15% to about 17% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In yet another embodiment, the pharmaceutical composition comprises about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21%, about 22%, about 23%, about 24%, about 25%, or about 26% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In another embodiment, the pharmaceutical composition comprises about 16.36% of a calcium salt of a crosslinked potassium binding polymer of Formula (I) and pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.5% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.4% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.2% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.3% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.01% to about 0.3% of calcium citrate tetrahydrate. In another embodiment, the pharmaceutical composition comprises about 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% of calcium citrate tetrahydrate. In yet another embodiment, the pharmaceutical composition comprises about 0.22% of calcium citrate tetrahydrate. In some embodiments, the pharmaceutical composition comprises about 0.01% to about 0.1% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.02% to about 0.09% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.03% to about 0.08% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.07% of sorbic acid. In yet another embodiment, the pharmaceutical composition comprises about 0.04% to about 0.06% of sorbic acid. In another embodiment, the pharmaceutical composition comprises about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of sorbic acid. In some embodiments, the pharmaceutical composition comprises about 0.001% to about 0.1% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.002% to about 0.09% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.003% to about 0.08% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.004% to about 0.07% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.005% to about 0.06% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.006% to about 0.05% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.007% to about 0.04% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.008% to about 0.03% of anhydrous citric acid. In yet another embodiment, the pharmaceutical composition comprises about 0.009% to about 0.02% of anhydrous citric acid. In another embodiment, the pharmaceutical composition comprises about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% of anhydrous citric acid In some embodiments, the pharmaceutical composition comprises about 0.05% to about 0.15% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.06% to about 0.14% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.07% to about 0.13% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.08% to about 0.12% of sucralose. In yet another embodiment, the pharmaceutical composition comprises about 0.09% to about 0.11% of sucralose. In another embodiment, the pharmaceutical composition comprises about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.10%, about 0.11%, about 0.12%, about 0.13%, or about 0.14% of sucralose. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of SuperVan art vanilla VM36. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of SuperVan art vanilla VM36. In yet another embodiment, the pharmaceutical composition comprises about 0.49% of SuperVan art vanilla VM36. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.6% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.5% of xanthan gum. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of xanthan gum. In yet another embodiment, the pharmaceutical composition comprises about 0.59% of xanthan gum. In one embodiment, the xanthan gum is xanthan gum cp. In some embodiments, the pharmaceutical composition comprises about 0.1% to about 1.0% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.2% to about 0.9% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.8% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.4% to about 0.8% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.5% to about 0.7% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.6% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.3% to about 0.5% of titanium dioxide. In another embodiment, the pharmaceutical composition comprises about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% of titanium dioxide. In yet another embodiment, the pharmaceutical composition comprises about 0.39% of titanium dioxide. In some embodiments, the pharmaceutical composition comprises about 73.2% to about 86.65% water. In another embodiment, the pharmaceutical composition comprises about 74% to about 86% of water. In yet another embodiment, the pharmaceutical composition comprises about 75% to about 85% of water. In another embodiment, the pharmaceutical composition comprises about 76% to about 84% of water. In yet another embodiment, the pharmaceutical composition comprises about 77% to about 83% of water. In another embodiment, the pharmaceutical composition comprises about 78% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 79% to about 82% of water. In another embodiment, the pharmaceutical composition comprises about 80% to about 82% of water. In yet another embodiment, the pharmaceutical composition comprises about 73.2%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, or about 84% of water. In another embodiment, the pharmaceutical composition comprises about 81.8% of water. Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Among the various aspects of the invention are crosslinked cation exchange polymers having desirable particle size, particle shape, particle size distribution, swelling ratio, potassium binding capacity, and methods of removing potassium by administering the polymer—or a pharmaceutical composition including the polymer—to an animal subject in need thereof. Another aspect of the invention is a method for removing potassium and/or treating hyperkalemia from an animal subject in need thereof comprising administering a potassium binding polymer to the animal subject. The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a more controlled particle size distribution than Kayexylate, Kalimate and the like. Unless particles are perfectly monodisperse, i.e., all the particles have the same dimensions, polymer resins will typically consist of a statistical distribution of particles of different sizes. This distribution of particles can be represented in several ways. Without being bound to a particular theory, it is often convenient to assess particle size using both number weighted distributions and volume weighted distributions. Image analysis is a counting technique and can provide a number weighted distribution: each particle is given equal weighting irrespective of its size. Light scattering techniques such as laser diffraction give a volume weighted distribution: the contribution of each particle in the distribution relates to the volume of that particle, i.e. the relative contribution will be proportional to (size)3. When comparing particle size data for the same sample measured by different techniques, it is important to realize that the types of distribution being measured and reported can produce very different particle size results. For example, for a sample consisting of equal numbers of particles with diameters of 5 μm and 50 μm, an analytical method that provides a weighted distribution would give equal weighting to both types of particles and said sample would consist of 50% 5 μm particles and 50% 50 μm particles, by number. The same sample, analyzed using an analytical method that provides a volume weighted distribution, would represent the 50 μm samples as present at 1000× the intensity of the 5 μm particles (since volume is a (radius)3 function if assuming the particles are spheres). For volume weighted particle size distributions, such as those measured by laser diffraction, it is often convenient to report parameters based upon the maximum particle size for a given percentage volume of the sample. Percentiles are defined here using the nomenclature “Dv(B)” where “D”=diameter, “v”=volume, and “B”=is percentage written as a decimal fraction. For example, when expressing particle size for a given sample as “Dv(0.5)=50 μm,” 50% of the sample is below this particle size. Thus, the Dv(0.5) would be the maximum particle diameter below which 50% of the sample volume exists—also known as the median particle size by volume. For the scenario described earlier wherein a sample consists of equal numbers of particles with diameters of 5 μm and 50 μm, a volume analysis of this sample performed via laser diffraction could theoretically afford: Dv(0.999)=50 μm and Dv(0.001)=5 μm. In practice, samples are typically characterized by reporting a range of percentiles, typically the median, Dv(0.5), and values above and below the median (e.g., typically Dv(0.1) and Dv(0.9)). The potassium binding polymer is a crosslinked cation exchange polymer comprising acid groups in their acid or salt form and in the form of substantially spherical particles having a median diameter, when in their calcium salt form and swollen in water, of from about 1 μm to about 200 μm. In other embodiments, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 130 μm. In another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 1 μm to about 60 μm. In yet another embodiment, the substantially spherical particles have a median diameter, when in their calcium salt form and swollen in water, of about 60 μm to about 120 μm. In some embodiments, the Dv50—the median particle size by volume and defined as the maximum particle diameter below which 50% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In other embodiments, the Dv50 is between about 20 μm and about 50 μm. In another embodiment, Dv(0.5) is between about 40 μm and about 50 μm. In yet another embodiment, Dv(0.5) is between about 20 μm and about 30 μm. In another embodiment. Dv(0.5) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.5) is between about 35 μm and about 45 μm. In another embodiment, Dv(0.5) is between about 30 μm and about 40 μm. In yet another embodiment, Dv(0.5) is about 35 μm. In yet another embodiment, Dv(0.5) is about 30 μm. In another embodiment, Dv(0.5) is about 40 μm. In yet another embodiment, Dv(0.5) is about 45 μm. In another embodiment, Dv(0.5) is about 25 μm. In some embodiments, the Dv90—the median particle size by volume and defined as the maximum particle diameter below which 90% of the sample volume exists—is between about 40 μm and about 140 μm. In yet another embodiment, Dv(0.9) is between about 80 μm and about 130 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 120 μm. In another embodiment, Dv(0.9) is between about 90 μm and about 100 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In other embodiments, the Dv(0.9) is between about 85 μm and about 115 μm. In another embodiment, Dv(0.9) is between about 100 μm and about 120 μm. In yet another embodiment, Dv(0.9) is about 100 μm. In another embodiment, Dv(0.9) is about 105 μm. In yet another embodiment, Dv(0.9) is about 110 μm. In another embodiment, Dv(0.9) is about 90 μm. In yet another embodiment, Dv(0.9) is about 95 μm. In yet another embodiment, Dv(0.9) is about 85 μm. In other embodiments, the Dv90 is between about 20 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 20 μm and about 60 μm. In yet another embodiment, Dv(0.9) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.9) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.9) is between about 40 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 40 and about 70 μm. In yet another embodiment, Dv(0.9) is between about 50 μm and about 70 μm. In another embodiment, Dv(0.9) is between about 50 μm and about 60 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 50 μm. In yet another embodiment, Dv(0.9) is about 30 μm. In another embodiment, Dv(0.9) is about 35 μm. In yet another embodiment, Dv(0.9) is about 40 μm. In another embodiment, Dv(0.9) is about 45 μm. In yet another embodiment, Dv(0.9) is about 55 μm. In another embodiment, Dv(0.9) is about 60 μm. In yet another embodiment, Dv(0.9) is about 25 μm. In some embodiments, the Dv10—the median particle size by volume and defined as the maximum particle diameter below which 10% of the sample volume exists—is between about 20 μm and about 100 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 70 μm. In another embodiment, Dv(0.1) is between about 30 μm and about 60 μm. In yet another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In another embodiment, Dv(0.1) is between about 20 μm and about 40 μm. In yet another embodiment, Dv(0.1) is between about 40 μm and about 60 μm. In another embodiment. Dv(0.1) is between about 25 μm and about 35 μm. In yet another embodiment, Dv(0.1) is between about 45 μm and about 55 μm. In other embodiments, the Dv10 is between about 1 μm and about 60 μm. In another embodiment, Dv(0.1) is between about 5 μm and about 30 μm. In yet another embodiment, Dv(0.1) is between about 6 μm and about 23 μm. In another embodiment, Dv(0.1) is between about 15 μm and about 25 μm. In another embodiment, Dv(0.1) is between about 1 m and about 15 μm. In another embodiment, Dv(0.1) is between about 1 μm and about 10 μm. In another embodiment, Dv(0.1) is between about 10 μm and about 20 μm. In another embodiment, Dv(0.1) is about 15 μm. In another embodiment, Dv(0.1) is about 20 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In some embodiments, the Dv(0.5) is between 60 μm and about 90 μm and Dv(0.9) is between 80 μm and about 130 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 80 μm and about 130 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm and Dv(0.9) is between 90 μm and about 120 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 m and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 20 μm and about 70 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 80 μm and about 130 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 60 μm and about 90 μm, Dv(0.9) is between 90 μm and about 120 μm. Dv(0.1) is between 30 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 90 μm and about 120 μm, Dv(0.1) is between 30 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 5 μm and about 30 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 40 μm and about 70 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 20 μm and about 50 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In yet another embodiment, the Dv(0.5) is between 30 μm and about 40 μm, Dv(0.9) is between 50 μm and about 60 μm, Dv(0.1) is between 6 μm and about 23 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 110 μm and about 120 μm, Dv(0.1) is between 50 μm and about 60 μm. In yet another embodiment, the Dv(0.5) is between 50 μm and about 60 μm, Dv(0.9) is between 85 μm and about 95 μm, Dv(0.1) is between 25 μm and about 35 μm. In another embodiment, the Dv(0.5) is between 70 μm and about 80 μm, Dv(0.9) is between 100 μm and about 110 μm, Dv(0.1) is between 50 μm and about 60 μm. In another embodiment, the Dv(0.5) is between 25 μm and about 35 μm, Dv(0.9) is between 45 μm and about 55 μm, Dv(0.1) is between 10 μm and about 20 μm. In yet another embodiment, the Dv(0.5) is between 10 μm and about 20 μm, Dv(0.9) is between 25 μm and about 35 μm, Dv(0.1) is between 1 μm and about 10 μm. In another embodiment, the Dv(0.5) is <35 μm, Dv(0.9) is <55 μm, Dv(0.1) is >5 μm. In yet another embodiment, Dv(0.5) is between about 60 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 60 μm and about 70 μm. In another embodiment, Dv(0.5) is between about 80 μm and about 90 μm. In another embodiment, Dv(0.5) is between about 70 μm and about 80 μm. In some embodiments, the Dv(0.5) is about 75 μm. In some embodiments, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently <2. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 2.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is <2.0. In yet another embodiment, Dv(0.5):Dv(0.1) is <1.9. In another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 2.0. In yet another embodiment, the ratio of Dv(0.5):Dv(0.1) is about 1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is about 1.6. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <5.0 and the ratio of Dv(0.5):Dv(0.1) is <5.0. In yet another embodiment, the ratio of Dv(0.9):Dv(0.5) is <2.0 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.8 and the ratio of Dv(0.5):Dv(0.1) is <1.8. In another embodiment, the ratio of Dv(0.9):Dv(0.5) is <1.6 and the ratio of Dv(0.5):Dv(0.1) is <2.0. In some embodiments, the Dv50 is about 75 μm. In some embodiments, Dv(0.5) is between about 30 and 100 μm. More preferably, Dv(0.5) is between about 60 and 90 μm. In these embodiments, Dv(0.1) is between about 10 and 80 μm, more preferably between about 30 and 60 μm, and Dv(0.9) is between about 80 and 150 μm, more preferably between about 90 and 120 μm. In another embodiment, Dv(0.5) is between about 60 and 90 μm. In another embodiment, Dv(0.5) is between about 70 and 80 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In other embodiments, Dv(0.5) is between about 1 and 25 μm, more preferably between about 5 and 20 μm. In these embodiments, Dv(0.1) is between about 1 and 10 μm, more preferably between about 2 and 6 μm, and Dv(0.9) is between about 5 and 50 μm, more preferably between about 20 and 35 μm. In another embodiment, Dv(0.5) is between about 5 and 20 μm. In another embodiment, Dv(0.5) is between about 10 and 20 μm. In another embodiment, Dv(0.5) is about 15 μm. In one embodiment, the ratios of Dv(0.9):Dv(0.5) and Dv(0.5):Dv(0.1) are each independently less than about two. In one embodiment, the ratio of Dv(0.9):Dv(0.5) is about two or less and the ratio of Dv(0.5):Dv(0.1) is about five or less. In some embodiments, the particle size distribution is relatively narrow. For example, 90% of the particles are within the range of 10 μm to 25 μm. In some embodiments, particles are essentially monodisperse with controlled sized from about 5-10 μm. It has been theorized that small particles, less than 3 μm in diameter, could potentially be absorbed into a patient's bloodstream resulting in undesirable effects such as the accumulation of particles in the urinary tract of the patient, and particularly in the patient's kidneys. Following ingestion, translocation of particles into and across the gastrointestinal mucosa can occur via four different pathways: 1) endocytosis through epithelial cells; 2) transcytosis at the M-cells located in the Peyer's Patches (small intestinal lymphoid aggregates), persorption (passage through “gaps” at the villous tip) and 4) putative paracellular uptake (Powell, J. J. et al Journal of Autoimmunity 2010, 34, J226-J233). The most documented and common route of uptake for micro particles is via the M-cell rich layer of Peyer's Patches, especially for small microparticles on the order of 0.1 to 0.5 μm in size (Powell, Journal of Autoimmunity 2010). Thus, excessively small particles, often called the “fines,” should be controlled during the polymer manufacturing process. The presence of such fine particulate matter could present a safety challenge, and at minimum would impact the non-absorbed nature of the polymeric drug and associated safety advantages. In another aspect of the invention, the swelling ratios of the polymer particles have been optimized. In some embodiments, polymers have a swelling ratio of less than about 10 grams of water per gram of polymer and more than about 2 grams of water per gram of polymer. In another embodiment, the polymer particles have a swelling ratio of less than about 7 grams of water per gram of polymer, but greater than about 2 grams of water per gram of polymer. In yet another embodiment, the swelling ratio is less than about 4.5 grams of water per gram of polymer, and more than about 3 grams of water per gram of polymer. In some embodiments, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the polymers have a swelling ratio in water of about 4.3 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 3.5 to about 6.5 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 6.0 grams of water per gram of polymer. In another embodiment, the polymers have a swelling ratio in water of between about 4.0 to about 5.8 grams of water per gram of polymer. In some embodiments, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 8 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of between about 3 grams of water per gram of polymer to about 4.5 grams of water per gram of polymer. In yet another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 3.3 grams of water per gram of polymer. In another embodiment, the potassium binding polymer is characterized by a swelling ratio in water of about 4.3 grams of water per gram of polymer. The present invention provides a method of removing potassium and/or treating hyperkalemia in an animal subject in need thereof, comprising administering an effective amount once, twice or three times per day to the subject of a crosslinked cation exchange polymer in the form of substantially spherical particles having a well-defined particle size distribution and a preferred swelling ratio in water. The particle shape, size distribution and swelling ratio of the polymer is chosen to not only increase the amount of potassium that can be diverted into the feces in an animal subject consuming said polymer, but these physical properties also improve the palatability (mouth feel, taste, etc.) of the polymer when it is ingested by a subject in need thereof. Preferred physical properties include a generally spherical shape of the particles, a well-defined particle size distribution with the smallest particles typically no smaller than 1-2 μm and the largest particles typically no larger than 100-120 μm, and a swelling ratio between about 2 grams of water per gram of polymer to 6 grams of water per gram of polymer when measured in water with the polymer in the calcium salt form. Generally, the potassium binding polymers described herein are not absorbed from the gastrointestinal tract. The term “non-absorbed” and its grammatical equivalents (such as “non-systemic,” “non-bioavailable,” etc.) is not intended to mean that the polymer cannot be detected outside of the gastrointestinal tract. It is anticipated that certain amounts of the polymer may be absorbed. For example, about 90% or more of the polymer is not absorbed, more particularly, about 95% of the polymer is not absorbed, and more particularly still about 98% or more of the polymer is not absorbed. In some embodiments, the potassium-binding polymers described herein are crosslinked cation exchange polymers (or “resins”) derived from at least one crosslinker and at least one monomer. The monomer (or crosslinker) can contain an acid group in several forms, including protonated or ionized forms, or in a chemically protected form that can be liberated (“deprotected”) later in the synthesis of the polymer. Alternatively, the acid group can be chemically installed after first polymerizing the crosslinker and monomer groups. Acid groups can include sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof. In general, the acidity of the group should be such that, at physiological pH in the gastrointestinal tract of the subject in need, the conjugate base is available to interact favorably with potassium ions. The polymer of the present invention can be characterized by a crosslinking of between about 0.5% to about 6%. In some embodiments, the polymer is characterized by a crosslinking of less than 6%. In another embodiment, the polymer is characterized by a crosslinking of less than 5%. In yet another embodiment, the polymer is characterized by a crosslinking of less than 3%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±20%. In yet another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±10%. In another embodiment, the polymer is characterized by a crosslinking of about 1.8%, wherein the term “about” means±5%. In other embodiments, the polymer is characterized by a crosslinking of 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, or 5.0%. The ratio of monomer(s) to crosslinker(s) can be chosen to affect the physical properties of the polymer. Additional factors include the time of addition of the crosslinker, the time and temperature of the polymerization reaction, the nature of the polymerization initiator, the use of different additives to help modulate agglomeration of the growing polymer or otherwise stabilize reactants prior to, or during, the polymerization process. The ratio of the monomer(s) and crosslinker(s), or the “repeat units,” can be chosen by those of skill in the art based on the desired physical properties of the polymer particles. For example, the swelling ratio can be used to determine the amount of crosslinking based on general principles that indicate that as crosslinking increases, the selling ratio in water generally decreases. In one specific embodiment, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 wt. % to 10 wt. %, more specifically in the range of 1 wt. % to 8 wt. %, and even more specifically in the range of 1.8 wt. % to 2.5 wt. %. To one skilled in the art, these weight ratios can be converted to mole ratios—based on the molecular weights of said monomers—and these mole-based calculations can be used to assign numerical values to “m” and “n” in (Formula I). It is also noted that to one skilled in the art that in practice, individual monomers can react at different rates and hence their incorporation into the polymer is not necessarily quantitative. With this in mind, the amount of crosslinker in the polymerization reaction mixture is in the range of 1 mole % to 8 mole %, more specifically in the range of 1 mole % to 7 mole %, and even more specifically in the range of 1.5 mole % to 2 mole %. In another aspect of the invention, the polymers of the invention have a mouth feel score greater than 3. In some embodiments, the polymers have a mouth feel score greater than 3.5. In another embodiment, the polymers have a mouth feel score greater than 4.0. In yet another embodiment, the polymers have a mouth feel score greater than 5.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 3.0 to about 6.0. In yet another embodiment, the polymers of the invention have a mouth feel score of between about 4.0 to about 6.0. In another embodiment, the polymers of the invention have a mouth feel score of between about 5.0 to about 6.0. The polymers of the invention can also have a grittiness score that is greater than 3. In some embodiments, the polymers have a grittiness score greater than 3. In another embodiment, the polymers have a grittiness score greater than 4. In yet another embodiment, the polymers have a grittiness score greater than 4.5. In another embodiment, the polymers have a grittiness score greater than 5. In another embodiment, the polymers have a grittiness score greater than 5.5. In yet another embodiment, the polymers have a grittiness score of between about 3.0 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 3.5 to about 6.0. In yet another embodiment, the polymers have a grittiness score of between about 4.5 to about 6.0 Definitions “Amino” refers to the —NH2 radical. “Aminocarbonyl” refers to the —C(═O)NH2 radical. “Carboxy” refers to the —CO2H radical. “Carboxylate” refers to a salt or ester thereof. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH radical. “Nitro” refers to the —NO2 radical. “Oxo” or “carbonyl” refers to the ═O radical. “Thioxo” refers to the ═S radical. “Guanidinyl” (or “guanidine”) refers to the —NHC(═NH)NH2 radical. “Amidinyl” (or “amidine”) refers to the —C(═NH)NH2 radical. “Phosphate” refers to the —OP(═O)(OH)2 radical. “Phosphonate” refers to the —P(═O)(OH)2 radical. “Phosphinate” refers to the —PH(═O)OH radical, wherein each Ra is independently an alkyl group as defined herein. “Sulfate” refers to the —OS(═O)2OH radical. “Sulfonate” or “hydroxysulfonyl” refers to the —S(═O)2OH radical. “Sulfinate” refers to the —S(═O)OH radical. “Sulfonyl” refers to a moiety comprising a —SO2— group. For example, “alkysulfonyl” or “alkylsulfone” refers to the —SO2—Ra group, wherein Ra is an alkyl group as defined herein. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above that is substituted by one or more halo radicals, as defined above. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems, and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, carboxyl groups, phosphate groups, sulfate groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfinate groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a phosphorus atom in groups such as phosphinate groups and phosphonate groups; a nitrogen atom in groups such as guanidine groups, amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)1-10Rg, —(CH2CH2O)2-10Rg, —(OCH2CH2)1-10Rg and —(OCH2CH2)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. The above non-hydrogen groups are generally referred to herein as “substituents” or “non-hydrogen substituents”. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. By “crosslink” and “crosslinking” is meant a bond or chain of atoms attached between and linking two different polymer chains. The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. Unless specifically stated, as used herein, the term “about” refers to a range of values ±10% of a specified value. For example, the phrase “about 200” includes ±10% of 200, or from 180 to 220. When stated otherwise the term about will refer to a range of values that include ±20%, ±10%, or ±5%, etc. The term “activate” refers to the application of physical, chemical, or biochemical conditions, substances or processes that a receptor (e.g., pore receptor) to structurally change in a way that allows passage of ions, molecules, or other substances. The term “active state” refers to the state or condition of a receptor in its non-resting condition. “Efflux” refers to the movement or flux of ions, molecules, or other substances from an intracellular space to an extracellular space. “Enteral” or “enteric” administration refers to administration via the gastrointestinal tract, including oral, sublingual, sublabial, buccal, and rectal administration, and including administration via a gastric or duodenal feeding tube. The term “inactive state” refers to the state of a receptor in its original endogenous state, that is, its resting state. The term “modulating” includes “increasing” or “enhancing,” as well as “decreasing” or “reducing,” typically in a statistically significant or a physiologically significant amount as compared to a control. An “increased” or “enhanced” amount is typically a “statistically significant” amount, and may include an increase that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.3, 4.4, 4.6, 4.8, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or more times (e.g., 100, 200, 500, 1000 times) (including all integers and decimal points and ranges in between and above 1, e.g., 5.5, 5.6, 5.7, 5.8, etc.) the amount produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). A “decreased” or “reduced” amount is typically a “statistically significant” amount, and may include a 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% decrease (including all integers and decimal points and ranges in between) in the amount or activity produced by a control (e.g., the absence or lesser amount of a compound, a different compound or treatment), or the amount of an earlier time-point (e.g., prior to treatment with a compound). “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like. The term “mouthfeel” of a substance according to the present invention is the tactile sensations perceived at the lining of the mouth, including the tongue, gums and teeth. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. By “statistically significant,” it is meant that the result was unlikely to have occurred by chance. Statistical significance can be determined by any method known in the art. Commonly used measures of significance include the p-value, which is the frequency or probability with which the observed event would occur, if the null hypothesis were true. If the obtained p-value is smaller than the significance level, then the null hypothesis is rejected. In simple cases, the significance level is defined at a p-value of 0.05 or less. “Substantially” or “essentially” includes nearly totally or completely, for instance, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater of some given quantity. The term “secondary” refers to a condition or state that can occur with another disease state, condition, or treatment, can follow on from another disease state, condition, or treatment, or can result from another disease state, condition or treatment. The term also refers to situations where a disease state, condition, or treatment can play only a minor role in creating symptoms or a response in a patient's final diseased state, symptoms or condition. “Subjects” or “patients” (the terms are used interchangeably herein) in need of treatment with a compound of the present disclosure include, for instance, subjects “in need of potassium lowering.” Included are mammals with diseases and/or conditions described herein, particularly diseases and/or conditions that can be treated with the compounds of the invention, with or without other active agents, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, modulation of one or more indications described herein (e.g., reduced potassium ion levels in serum or blood of patients with or at risk for hyperkalemia, increased fecal output of potassium ions in patients with or at risk for hyperkalemia), increased longevity, and/or more rapid or more complete resolution of the disease or condition. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. A “therapeutically effective amount” or “effective amount” includes an amount of a compound of the invention which, when administered to a mammal, preferably a human, is sufficient to increase fecal output of potassium ions, reduce serum levels of potassium ions, treat hyperkalemia in the mammal, preferably a human, and/or treat any one or more other conditions described herein. The amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure. “Treating” or “treatment” as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes: (i) preventing the disease or condition from occurring in a mammal, in particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it; (ii) inhibiting the disease or condition, i.e., arresting its development; (iii) relieving the disease or condition, i.e., causing regression of the disease or condition; or (iv) relieving the symptoms resulting from the disease or condition, i.e., relieving pain without addressing the underlying disease or condition. As used herein, the terms “disease” and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians. Methods of Making the Potassium Binding Crosslinked Polymers Copolymerization of an Organic Monomer “R1—X” Displaying a Single Olefin with a “Crosslinker” Organic Monomer “R2—Y” that Displays Two Olefins. Scheme 1 illustrates the copolymerization of an organic monomer displaying a single olefin (R1—X—CH═CH—R3) with a second organic monomer displaying two olefin groups (R2—Y—(CH═CH—R3)2; a crosslinker). R1 and R2 can be —H, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. R3 can be —H, halogen, acidic functional groups such as sulfonic, sulfuric, carboxylic, phosphonic, phosphoric or sulfamic groups, or combinations thereof, or substituted or unsubstituted alkyl or aryl radicals. X and Y can be the same or different, and can be substituted or unsubstituted alkyl or aryl radicals. More preferably, R1—X represents an aromatic group, and R2—Y represents an aromatic group. Most preferably, R1—X is phenyl and R2—Y is phenyl and R3 is —H—hence R1—X—CH═CH—R3 is styrene and R2—Y—(CH═CH—R3)2 is divinylbenzene. Divinylbenzene can be ortho-, meta- or para-divinylbenzene, and is most commonly a mixture of two or three of these isomers. When R1—X is phenyl, R2—Y is phenyl and R3 is —H, the resulting polymer is further modified to display acidic functionality capable of binding to potassium ions. In a preferred embodiment, the polymer is sulfonated by treatment with concentrated sulfuric acid, optionally using a catalyst such as silver sulfate. The resulting sulfonylated material can be retained in its acid form, or alternatively treated with base and converted to a salt form. This salt form can include metal salts such as sodium, calcium, magnesium or iron salts. These can also be organic salts, including salts of amines or amino acids and the like. In a preferred embodiment, the calcium salt is formed. In this preferred embodiment, (I) in Scheme 1 consists of X=Y=phenyl (Ph), R1=R2=—SO3−[0.5 Ca2+], and R3 is —H. In this preferred embodiment, the ratio of m to n (m:n) is about: 11:1 to about 120:1, more preferably about 14:1, more preferably still about 40:1, and most preferably about 50:1, about 60:1, and about 70:1. In one embodiment, the polymer is prepared from structural units of Formula 1 (e.g. styrene) and Formula 2 (e.g., divinylbenzene), which afford a polystyrene divinylbenzene copolymer intermediate. The weight ratio of the structural units of Formula 1 to Formula 2 is such that the polymer consists of about 90% Formula 1 and 10% of Formula 2. It should be noted, that in most cases, Formula 2 can be a mixture. In the case of divinylbenzene, the ortho, meta, and para positional isomers can be present Most preferable compositions include about 97.5% Formula 1 and 2.5% Formula 2, 98% Formula 1 and 2% Formula 2, and 98.2% Formula 1 and 1.8% Formula 2, by weight. Scheme 2 illustrates a copolymerization of this description, where “m” and “n” in the product reflect the varying amounts of styrene (m) and divinylbenzene (n). In one embodiment, the polymerization initiator used in the suspension polymerization plays a role in the quality of the polymer particles, including yield, shape and other physical attributes. Without being bound to a particular theory, the use of water-insoluble free radical initiators, such as benzoyl peroxide, initiates polymerization primarily within the phase containing the monomers. Such a reaction strategy provides polymer particles rather than a bulk polymer gel. Other suitable free radical initiators include other peroxides such as lauroyl peroxide (LPO), tert-butyl hydro peroxide, and the like. Azo type initiators commonly include azobisisobutyronitrile (AIBN), but also used are dimethyl-2,2′-azobis(2-methyl-proprionate), 2,2″-azo bis(2,4-dimethylvaleronitrile) and the like. These agents initiate the polymerization process. Additional polymerization components that are not intended to be incorporated into the polymer include additives such as surfactants, solvents, salts, buffers, aqueous phase polymerization inhibitors and/or other components known to those of skill in the art. When the polymerization is carried out in a suspension mode, the additional components may be contained in an aqueous phase while the monomers and initiator may be contained in an organic phase. A surfactant may be selected from the group consisting of anionic, cationic, nonionic, amphoteric or zwitterionic, or a combination thereof. Anionic surfactants are typically based on sulfate, sulfonate or carboxylate anions and include sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, other alkyl sulfate salts, sodium laureth sulfate (or sodium lauryl ether sulfate (SLES)), N-lauroylsarcosine sodium salt, lauryldimethylamine-oxide (LDAO), ethyltrimethylammoniumbromide (CTAB), bis(2-ethylhexyl)sulfosuccinate sodium salt, alkyl benzene sulfonate, soaps, fatty acid salts, or a combination thereof. Cationic surfactants, for example, contain quaternary ammonium cations. These surfactants are cetyl trimethylammonium bromide (CTAB or hexadecyl trimethyl ammonium bromide), cetylpyridinium chloride (CPC), polyethoxylated tallow amine (POEA), benzalkonium chloride (BAC), benzethonium chloride (BZT), or a combination thereof. Zwitterionic or amphoteric surfactants include dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, coco ampho glycinate, or a combination thereof. Nonionic surfactants include alkyl poly(ethylene oxide), copolymers of poly(ethylene oxide) and poly(propylene oxide) (commercially called Poloxamers or Poloxamines), alkyl polyglucosides (including octyl glucoside, decyl maltoside), fatty alcohols, cetyl alcohol, oleyl alcohol, cocamide MEA, cocamide DEA, or a combination thereof. Other pharmaceutically acceptable surfactants are well known in the art and are described in McCutcheon's Emulsifiers and Detergents, N. American Edition (2007). Polymerization reaction stabilizers may be selected from the group consisting of organic polymers and inorganic particulate stabilizers. Examples include polyvinyl alcohol-co-vinyl acetate and its range of hydrolyzed products, polyvinylacetate, polyvinylpyrrolidinone, salts of polyacrylic acid, cellulose ethers, natural gums, or a combination thereof. Buffers may be selected from the group consisting of 4-2-hydroxyethyl-1-piperazineethanesulfonic acid, 2-{[tris(hydroxymethyl)methyl]amino}ethanesulfonic acid, 3-(N-morpholino)propanesulfonic acid, piperazine-N,N′-bis(2-ethanesulfonic acid), sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate or a combination thereof. Generally, the mixture of monomers and additives are subjected to polymerization conditions. These can include suspension polymerization conditions as well as bulk, solution or emulsion polymerization processes. The polymerization conditions typically include polymerization reaction temperatures, pressures, mixing and reactor geometry, sequence and rate of addition of polymerization mixtures and the like. Polymerization temperatures are typically in the range of about 50° C. to 100° C. Polymerizations are typically performed at atmospheric pressures, but can be run at higher pressures (for example 130 PSI of nitrogen). Mixing depends upon the scale of the polymerization and the equipment used, but can include agitation with the impeller of a reactor to the use of immersion or in-line homogenizers capable of creating smaller droplets under certain conditions. In one embodiment, polymerization can be achieved using a suspension polymerization approach. Suspension polymerization is a heterogeneous radical polymerization process. In this approach, mechanical agitation is used to mix a monomer or mixture of monomers in an immiscible liquid phase, such as water. While the monomers polymerize, they retain their nearly spherical suspension shape, forming spheres of polymer. Polymerization suspension stabilizers, such as polyvinyl alcohol, can be used to prevent coalescence of particles during the polymerization process. Factors such as the ratio of monomers to cross linker, agitation speed, ionic strength of the liquid phase, the nature of the suspension stabilizer, etc., contribute to the yield, shape, size and other physical properties of the polymer. In one embodiment, highly uniform sized particles can be produced via a multi-step approach inspired by Ugelstad (Ugelstad_1979). In this approach, “seeds” are first prepared by dispersion polymerization of styrene in the presence of a steric stabilizer such as polyvinylpyrrolidone, using an initiator such as AIBN, and using a water/alcohol polymerization medium. The seeds are isolated, and then swollen with a monomer-initiator solution containing additional styrene as well as divinylbenzene and BPO, and then polymerized to give highly uniform styrene-divinylbenzene beads. Alternatively, a jetting process using vibrating nozzles can also be used to create microdispersed droplets of monomers, and in this fashion permit the synthesis of highly uniform crosslinked polymer beads (Dow Chemical, U.S. Pat. No. 4,444,961.) In another embodiment, the crosslinked styrene-sulfonate particles of the invention can be produced by an inverse suspension process, wherein a solution of styrene-sulfonate, a water soluble crosslinker and a free-radical initiator are dispersed in an organic solvent and converted to crosslinked beads. The polymers illustrated in Scheme 1 and Scheme 2 are most preferably sulfonylated, and the resulting sulfonic acid converted to a pharmaceutically acceptable salt. Scheme 3 illustrates the sulfonation of a preferred embodiment. The resulting sulfonic acid can be further treated with calcium acetate to afford the calcium salt. At the physiological pH within the gastrointestinal tract of a subject in need, the conjugate base of the sulfonic acid is available to interact favorably with potassium ions. By interacting favorably, this means binding to or otherwise sequestering potassium cations for subsequent fecal elimination. Polymer Sulfonylation Resins comprising the general structure of polystyrene sulfonate cross linked with divinylbenzene are available and used clinically, e.g., Kayexalate®, Argamate®, Kionex® and Resonium®. However, these resins do not possess the optimized cross-linking, particle shape, particle size distribution, and swelling properties as do the novel polymers described herein. For example, the crosslinked cation exchange polymers described in this invention generally have a higher efficacy for potassium in vivo than resins such as Kayexalate. When healthy rodents are administered the polymers of the present invention, approximately 1.4- to 1.5-fold more potassium is excreted fecally than is achieved when, for example, Resonium is similarly dosed (same dosing and fecal collection conditions). In some embodiments, approximately 2.0-fold more potassium is excreted fecally than is achieved when, for example, Na-PSS, USP (e.g. Kavexylate) is similarly dosed (same dosing and fecal collection conditions). The higher capacity of the polymers of this invention may enable the administration of a lower dose of the polymer. Typically, the dose of Na-PSS or Ca-PSS used clinically to obtain the desired therapeutic and/or prophylactic benefits is about 10 to 60 grams/day and can be as high as 120 g/day. A typical dose range is 10-20 g, 30-40 g and 45-120 g, which can be divided into one, two or three doses/day (Fordjour, Am. J. Med. Sci. 2014). The polymers of the current invention could permit a significant reduction in drug load for the patient. Methods of Using Potassium Binding Crosslinked Polymers Patients suffering from CKD and/or CHF can be particularly in need of potassium removal because agents used to treat these conditions may cause potassium retention. Many of these subjects are also taking medications that interfere with potassium excretion, e.g., potassium-sparing diuretics, RAAS inhibitors, beta blockers, aldosterone synthase inhibitors, non-steroidal anti-inflammatory drugs, heparin, or trimethoprim. In certain particular embodiments, the polymers of the present invention can be administered on a periodic basis to treat chronic hyperkalemia. Such a treatment would enable patients to continue using drugs that may cause hyperkalemia. Also, use of the polymer compositions described herein will enable patient populations, who were previously unable to use the above-listed medications, to being treatable with these beneficial therapeutics. The cation exchange polymers described herein can be delivered to the patient using a wide variety of routes or modes of administration. The most preferred routes are oral, intestinal (e.g., via gastrointestinal tube) or rectal. Rectal routes of administration are known to those of skill in the art. The most preferred route for administration is oral. The polymers described herein can be administered as neat, dry powders or in the form of a pharmaceutical composition wherein the polymer is in admixture with one or more pharmaceutically acceptable excipients. These can include carriers, diluents, binder, disintegrants and other such generally-recognized-as-safe (GRAS) excipients designed to present the active ingredient in a form convenient for consumption by the patient. The nature and composition of these excipients are dependent upon the chosen route of administration. For oral administration, the polymer can be formulated by combining the polymer particles with pharmaceutically acceptable excipients well known in the art. These excipients can enable the polymer to be formulated as a suspension (including thixotropic suspensions), tablets, capsules, dragees, gels (including gummies or candies), syrups, slurries, wafers, liquids, and the like, for oral ingestion by a patient. In one embodiment, the oral composition does not have an enteric coating. Pharmaceutical preparations for oral use can be obtained as a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose or sucrose; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone (PVP); and various flavoring agents known in the art. If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. In various embodiments, the active ingredient (e.g., the polymer) constitutes over about 10%, more particularly over about 30%, even more particularly over about 60%, and most particularly more than about 80% by weight of the oral dosage form, the remainder comprising suitable excipient(s). In a certain formulation, the excipients would be chosen such that the polymers of the herein invention are well dispersed and suspended, such that any sensation of particulate matter on the palate is significantly blunted or eliminated. Such formulations could include, for example, suspension as a gel or paste in an aqueous matrix of agar, or gelatin, or pectin, or carrageenan, or a mixture of such agents. Such a formulation would be of a sufficient density to suspend the polymer particles in a non-settling matrix. Flavorings, such as sweeteners can be added, and these sweeteners can include both nutritive (malt extract, high-fructose corn syrup, and the like) and non-nutritive (e.g., aspartame, nutrasweet, and the like) agents, which can create a pleasant taste. Lipids such as tripalmitin, castor oil, sterotex, and the like, can be used to suspend particles in a way that avoids a foreign sensation on the palate, and can also lead to favorable flavor properties. Milk solids, cocoa butter and chocolate products can be combined to create a pudding or custard type mixture that both suspend the polymers of the invention, and also mask their contact on the palate. Formulations of the type described herein should be readily ingested presentations for the patient. EXAMPLES The disclosure is further illustrated by the following examples, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims. Example 1 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Crosslinked (8%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Adrich (Catalog #217514). The beads (100 g, wet weight) were suspended in aqueous NaOH (1M, 300 mL) and shaken for 20 hours at 27° C., then the mixture was filtered, and the wet beads washed with water (2×300 mL). The beads were suspended in aqueous CaCl2 (0.5M, 700 mL) and shaken for 2 days at 37° C. The beads were then filtered, and suspended in fresh CaCl2 (0.5M, 700 mL), and shaken for 2 days at 37° C. The beads were then filtered, washed successively with water (3×400 mL), and dried under reduced pressure to give 56.9 g of Example 1 as a fine light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 2 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 2 was prepared from 100 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Adrich (Catalog #217484) using the procedures described in Example 1 to give 37.1 g of Example 2 as a fine light brown powder. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 3 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Example 3 was prepared from 100 g crosslinked (2%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217476) using the procedures described in Example 1 to give 21.8 g of Example 3 as a light brown sand: Particle size: dv(0.1)=90 μm; dv(0.5)=120 μm; dv(0.9)=170 μm. Example 4 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2% DVB, 200-400 Mesh Size Crosslinked (2%) Polystyrene sulfonate beads (200-400 mesh size) in the acid form (H+) were obtained from Sigma-Aldrich (Catalog #217476). The beads (400 g, wet weight) were suspended in aqueous CaCl2 (200 g CaCl2, 1.8 L water) and shaken for 24 hours at 38° C., then the mixture was filtered. The beads were suspended in aqueous Ca(OAc)2 (166 g, 2 L water) and shaken for 2 days at 37° C. The beads were then filtered, washed with water (1 L), and dried under reduced pressure to give Example 4 as a light brown sand. Approximate particle size range of 40-160 μm determined by digital visual microscopy. Example 5 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% DVB, 200-400 Mesh Size Example 5 was prepared from 400 g crosslinked (4%) polystyrene sulfonate beads (200-400 mesh). H+ form, obtained from Sigma-Aldrich (Catalog #217484) using the procedures described in Example 4 to give Example 5 as a light brown sand. Approximate particle size range of 30-130 μm determined by digital visual microscopy. Example 6 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% DVB, 200-400 Mesh Size Example 6 was prepared from 400 g crosslinked (8%) polystyrene sulfonate beads (200-400 mesh), H+ form, obtained from Sigma-Aldrich (Catalog #217514) using the procedures described in Example 4 to give Example 6 as a light brown sand. Approximate particle size range of 30-120 μm determined by digital visual microscopy. Example 7 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 0.96% Divinylbenzene (DVB) Intermediate Polystyrene beads at 0.96% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (0.94 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 mL), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (700 mL), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size estimated by visual microscopy d(50)=40 μm. Example 7: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 0.5 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), and dried under reduced pressure at 50° C. to give 27.4 g of Example 7 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 9.1 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm). Example 8 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.12% Divinylbenzene (DVB) Example 8 was prepared from styrene (75 mL), and divinylbenzene (1.1 mL, 80% Technical Grade) using the procedure described in Example 7 to give approximately 25 g of Example 8 Ca-PSS resin as a light brown sand. Swelling ratio in DI water: 7.9 g/g with relative centrifugal force of 2000×g; Residual Styrene: Not Detected (<0.1 ppm) Example 9 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Intermediate Polystyrene Beads at 1.6% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.5 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in methanol (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 61 g of polystyrene beads as a white powder. Particle size: d(0.1)=27 μm; d(0.5)=40 μm; d(0.9)=60 μm. Example 9: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. A sample of wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (3×150 mL), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 31 g of Example 9 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=51 μm; d(0.5)=75 μm; d(0.9)=105 μm. Ca-salt (8.53 wt % by titration); Residual Styrene: Not Detected (<0.1 ppm). Example 10 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in isopropanol (“IPA”) (1 L), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 10: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.44 g) and sulfuric acid (98%, 330 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (22 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 2 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (2×1 L), 50% ethanol-water (“EtOH-water”) (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.5 g of Example 10 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=78 μm; d(0.9)=114 μm. Ca-salt (7.80 wt % by titration); K+ exchange capacity 1.6 mEq/g (per BP); Residual Styrene (2.1 ppm). Example 11 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (75 mL), divinylbenzene (1.9 mL, 80% Technical Grade), and benzoyl peroxide (3 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 85° C. for 24 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (700 ml), and heated at 85° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (700 ml), and heated at reflux for 1 hour. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 41.9 g of polystyrene beads as a white powder. Example 11: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 h, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous calcium acetate (“Ca(OAc)2”) (20% wt, 2 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), and 100% MeOH (2×1500 mL), and dried under reduced pressure at 50° C. to give 29.8 g of Example 11 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=32 μm; dv(0.5)=49 μm; dv(0.9)=69 μm (visual microscopy). Ca-salt (8.6% wt/wt by titration); K+ exchange capacity (1.4 mE/g, per BP). Example 12 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.2% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.2% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 h to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.5 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 h, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 h. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 134 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=45 μm; dv(0.9)=70 μm. Example 12: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 90° C. for 1.5 h, then 100° C. for 1 h, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 h at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 h at 37° C. The beads were then washed successively with water (2×1 L), 50% EtOH-water (2×150 mL), 75% EtOH-water (2×150 mL), and 100% EtOH 2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 12 Ca-PSS resin as a fine light brown powder. Particle Size: d(0.1)=53 μm; d(0.5)=76 μm; d(0.9)=108 μm; Ca-salt (8.3% wt/wt by titration); K+ exchange capacity (1.3 meq/g per BP); Residual Styrene (6 ppm). Example 13 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.08% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.08% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (147 g), divinylbenzene (3.9 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 135 g of polystyrene beads as a white powder. Particle size: d(0.1)=6.17 μm; d(0.5)=10.1 μm; d(0.9)=17.1 μm. Example 13: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (700 mL). The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 28.6 g of Example 13 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm sieve to give a powder with Particle Size: dv(0.1)=2 μm; dv(0.5)=15 μm; dv(0.9)=30 μm. Ca-salt (9.1 wt % by titration); K+ exchange capacity (1.46 mE/g, per BP); Residual Styrene: Not Detected (<0.1 ppm). Example 14 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.5% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene. DVB and (147 g), divinylbenzene (4.7 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 6000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 133 g of polystyrene beads as a white powder. Particle size: d(0.1)=4 μm; d(0.5)=8 μm; d(0.9)=15 μm. Example 14: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 85° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (800 mL) The mixture was then diluted to a final volume of 3000 L with water and filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc), (20% wt, 1.4 L) and shaken again for 24 hours at 20° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 30 g of Example 14 Ca-PSS resin as a light brown powder. The material was sieved using a 270 mesh (53 μm) sieve to give a powder with Particle Size: d(0.1)=3 μm; d(0.5)=15 μm; d(0.9)=27 μm; Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.41 mE/g, per BP); Residual Styrene: Not Detected. Example 15 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 4% Divinylbenzene (DVB) Intermediate Polystyrene beads at 4% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (143.4 g), divinylbenzene (7.5 g, 80% Technical Grade), and benzoyl peroxide (6.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 minutes at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 21 hours. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 132 g of polystyrene beads as a white powder. Particle size: dv(0.1)=2 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 15: To a 1 L round bottom flask, equipped with overhead stirrer. N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 34 g of Example 15 Ca-PSS resin as a light brown powder. Particle Size: d(0.1)=3 μm; d(0.5)=12 μm; d(0.9)=21 μm. Ca-salt (9.05 wt % by titration); K+ exchange capacity (1.32 mE/g, per BP); Residual Styrene (0.1 ppm). Example 16 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 8% DVB: To round bottom flask equipped with a heating mantle, an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (1 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to dissolve, and then cooled to 20° C. In a separate container, styrene (98 g), divinylbenzene (10.7 g, 80% Technical Grade), and benzoyl peroxide (4.5 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the aqueous solution and homogenized for 5 min at 8000 rpm (IKA Ultra-Turrax T50 basic, S50N-G45F). The mixture was stirred at 300 rpm and heated to 92° C. for 4 hours, then 85° C. overnight. The suspension was cooled and filtered using a coarse fritted funnel. The solid polystyrene beads were washed successively with water (2×350 mL), acetone (2×350 mL), and IPA (2×350 mL), and dried in a vacuum oven to give 91 g of polystyrene beads as a white powder. Particle size: dv(0.1)=3 μm; dv(0.5)=7 μm; dv(0.9)=11 μm. Example 16: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (3 kg) The mixture was then diluted to a final volume of 4 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1.4 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 32.4 g of Example 16 Ca-PSS resin as a light brown powder. Particle Size: dv(0.1)=2 μm; dv(0.5)=11 μm; dv(0.9)=17 μm. Ca-salt (8.58 wt % by titration); K+ exchange capacity (1.43 mE/g, per BP). Example 17 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (2 μm) by dispersion polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (136 mL, used as is), polyvinylpyrrolidone (“PVP”) (12 g, MW 40,000), and anhydrous EtOH (784 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 min, AIBN (1.2 g) dissolved in anhydrous EtOH (224 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (2×150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 73.9 g of seed particles as a white powder. dv(0.1)=0.6 μm; dv(0.5)=2 μm; dv(0.9)=3 μm. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g) and sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL) and the mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (3.62 g, 6.4% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (VWR homogenizer, model VDI 25) at 17500 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again (VWR homogenizer, model VDI 25). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 min. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes, the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 32.1 g of bead particles as a white powder. Example 17: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 36.9 g of Example 17 Ca-PSS resin. A portion of the beads (19 g) was further washed by successive suspension and centrifugation at 3400×g with water (700 mL), 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL). The isolated solid was then dried under reduced pressure at 50° C. to give 18.8 g of Example 17 as a light brown powder. Particle Size: dv(0.1)=1 nm; dv(0.5)=6 μm; dv(0.9)=10 μm. Ca-salt (7.55 wt % by titration); K+ exchange capacity 1.0 mEq/g (per BP); Residual Styrene 0.4 ppm. Example 18 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.0% Divinylbenzene (DVB) Intermediate Polystyrene beads at 2.0% DVB: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added polyvinyl alcohol (10 g), NaCl (10 g), NaNO2 (0.2 g) and water (1 L). The mixture was stirred and heated to 70° C. for 1 hour to form a slightly turbid solution. In a separate container, styrene (150 mL), divinylbenzene (3.8 mL, 80% Technical Grade), and benzoyl peroxide (6 g, 98%) were mixed to form a homogeneous solution of monomers and initiator. The monomer-initiator solution was added to the hot aqueous solution and within 1-2 minutes a uniform white suspension was achieved with 600 RPM stirring. The mixture was heated to 91-94° C. for 18 hours, and then filtered while hot using a coarse fritted funnel. The solid polystyrene beads were suspended in water (1 L), and heated at 90° C. for 1 hour. The mixture was then filtered while hot using a coarse fritted funnel, and the polystyrene beads were suspended in IPA (1 L), and heated at reflux for 1 h. The mixture was then filtered while still hot using a coarse fritted funnel, and dried in a vacuum oven to give 136 g of polystyrene beads as a white powder. Particle Size: dv(0.1)=30 μm; dv(0.5)=40 μm; dv(0.9)=60 μm. Example 18: To a 1 L round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then polystyrene beads (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg) The mixture was then diluted to a final volume of 3.5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer filtered using a coarse fritted funnel. The beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the mixture was filtered, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were then washed successively with water (4×200 mL), 70% EtOH-water (2×150 mL), and 100% EtOH (2×150 mL), and dried under reduced pressure at 50° C. to give 35.7 g of Example 18 Ca-PSS resin as a fine light brown powder. Particle Size: dv(0.1)=57 μm; dv(0.5)=80 μm; dv(0.9)=110 μm. Example 19 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 19 was prepared from 40 g crosslinked (1.8%) polystyrene sulfonate beads using the procedures described in Example 10 to give 69.4 g of Example 19 as a light brown powder: particle size 30-130 μm (visual microscopy). Residual Styrene: Not Detected. Example 20 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (2 μm) by dispersion polymerization: Seeds were prepared following the procedures described in Example 17. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (5 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 500 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (50 mL), divinylbenzene (0.91 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. After 20 hours, the mixture was homogenized again at 2000 rpm for 30 minutes (IKA homogenizer, model T50 Digital). Separately, PVP (2.5 g, MW 350,000) was dissolved in deionized water (250 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in MeOH (200 mL) for 15 min by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 27.74 g of bead particles as a white powder. Approximate particle size range 6-8 μm by visual microscopy. Example 20: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.4 g) and sulfuric acid (98%, 300 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (20 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 2 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 2 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400 G for 10 minutes. The beads were washed and centrifuged successively with water (200 mL) and 70% MeOH (2×150 mL), and dried under reduced pressure at 50° C. to give 33.2 g of Example 20 Ca-PSS resin as a dark brown chunks. The beads were suspended and centrifuged successively with water (700 mL), 70% EtOH (500 mL), and 100% IPA (200 mL) and dried under reduced pressure at 50° C. to give 27.8 g of Example 20 Ca-PSS resin as a dark brown chunks. A portion of the beads were suspended and centrifuged successively with water (2×2 L), followed by 70% EtOH (500 mL) and 100% EtOH (500 mL). The material was dried under reduced pressure (50° C.) to give 16.3 g of Example 20 Ca-PSS resin as a light brown powder: particle size dv(0.1)=4 μm; dv(0.5)=7 μm; dv(0.9)=12 μm; Ca-salt (7.53 wt % by titration); K+ exchange capacity 1.4 mEq/g (per BP); Residual Styrene 0.09 ppm. Example 21 Preparation of Calcium Polystyrene Sulfonate from Seeded Polymerization Intermediate polystyrene seed particles (4 μm) by dispersion polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added styrene (68 mL, used as is), Polyvinylpyrrolidone, PVP, (6 g, MW 40,000), and IPA (392 mL). The mixture was stirred at 200 rpm and heated to 70° C. to achieve full solution. After 30 minutes, Azobisisobutyronitrile (“AIBN”) (0.6 g) dissolved in IPA (112 mL) was added to the solution. The mixture was stirred at 70° C. for 24 hours, then cooled to 20° C. The PS seed particles were isolated by centrifugation at 5300 G for 10 minutes, the supernatant was discarded and the solid suspended in EtOH (150 mL) by shaking for 15 minutes, and the solid isolated by centrifugation at 5300 G for 10 minutes. The solid was dried under reduced pressure at 50° C. to give 55.28 g of seed particles as a white powder. Particle size dv(0.1)=2 μm; dv(0.5)=4 μm; dv(0.9)=6 μm. Intermediate PS beads from seeded polymerization: To a jacketed Morton style cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet was added PS seed particles (3 g), sodium dodecyl sulfate aqueous solution (0.25% (w/w), 300 mL). The mixture was stirred overnight (35° C., 120 rpm). Then, a monomer-initiator solution containing BPO (1.5 g), styrene (30 mL), divinylbenzene (0.54 g, 1.8% based on styrene) (divinylbenzene was purified by passing 10 g of technical grade DVB through 10 g of basic alumina) was added to the mixture containing PS seeds. The mixture was homogenized (IKA homogenizer, model T50 Digital) at 2000 rpm for 30 minutes. The mixture was stirred overnight (35° C. at 120 rpm) to swell the seed particles. The swelling was monitored by optical microscopy. Separately. PVP (1.5 g. MW 350,000) was dissolved in deionized water (150 mL), and added to the swollen seed mixture. The mixture was stirred at 400 rpm and heated to 75° C. for 24 hours, then cooled to 20° C. The PS beads were isolated by centrifugation at 5300 G for 10 minutes. The solid was suspended in water (200 mL) for 10 minutes by shaking and isolated by centrifugation at 5300 G for 10 minutes. Then the solid was suspended in EtOH (2×150 mL) for 15 minutes by shaking, and isolated by centrifugation at 5300 G for 10 minutes, and the supernatant discarded. The solid was dried under reduced pressure at 50° C. to give 16 g of bead particles as a white powder. Example 21: To a round bottom flask, equipped with overhead stirrer, N2 inlet, and a thermocouple was added silver sulfate (0.32 g) and sulfuric acid (98%, 240 mL). The mixture was warmed to 80° C. to dissolve, and then intermediate PS beads from seeded polymerization (16 g) were added and the mixture stirred to form a suspension. The mixture was warmed to 100° C. for 3 hours, then poured into ice cold 50% aqueous H2SO4 (2 kg). The mixture was then diluted to a final volume of 5 L with water and allowed to stand overnight to settle. The dark supernatant was discarded, and the bead layer was isolated by centrifugation at 3400 G for 10 minutes; the supernatant was discarded and the beads were washed with water until the pH of the filtrate was >4, as measured by pH indicator strips. The wet beads were then suspended in aqueous Ca(OAc)2 (20% wt, 1 L) and shaken for 24 hours at 37° C., then the beads were isolated by centrifugation at 3400 G for 10 minutes. The supernatant was discarded, and the beads suspended in new aqueous Ca(OAc)2 (20% wt, 1 L) and shaken again for 24 hours at 37° C. The beads were isolated by centrifugation at 3400×g for 10 min. The beads were suspended and centrifuged successively with water (200 mL), 70% EtOH (350 mL), 100% EtOH (350 mL), and dried under reduced pressure. A portion of material (19.5 g) was suspended in water (2000 mL) by shaking at 150 rpm overnight, and isolated by centrifugation at 3400 G for 10 min. The beads were washed again with water (2000 mL) and centrifuged successively with 70% EtOH (2×250 mL), and 100% EtOH (2×250 mL), dried under reduced pressure at 50° C. to give Example 21 as a light brown powder. Ca-salt (8.56 wt % by titration); Residual Styrene 0.21 ppm. Example 22 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS), ≦43 μm Particle Size 8% Divinylbenzene (DVB) Approximately 15 g of Ionex Ca-PSS (Phaex Polymers, India), British Pharmacopeia (BP) grade, was deposited onto a 320 mesh sieve (43 μm pore size) and mechanically agitated on an orbital shaker for approximately 30 minutes, and the sieved fraction (solids ≦43 μm) was collected (approximately 3 g). Particle size dv(0.1)=9 μm; dv(0.5)=30 μm; dv(0.9)=60 μm; Ca-salt (8.69 wt % by titration); K+ exchange capacity 1.35 mEq/g (per BP); Residual Styrene 0.2 ppm. Example 23 Preparation of Sodium Polystyrene Sulfonate (Ca-PSS) with 8% Divinylbenzene (DVB) Approximately 20 g of an aqueous suspension of Na SPS (8% DVB) in a water/sorbitol suspension (Carolina Medical Products) was deposited onto a sintered glass funnel and washed several times with DI water to remove sorbitol, and then dried to afford a tan-colored solid. Example 24 Preparation of Insoluble Cross-Linked (Calcium 2-Fluoroacrylate)-Divinylbenzene-1,7-Octadiene Copolymer In an appropriately sized reactor with appropriate stirring and other equipment, a mixture of organic phase of monomers is prepared by mixing methyl 2-fluoroacrylate, 1,7-octadiene, and divinylbenzene in a mole ratio of about 120:1:1, respectively. Approximately one part of lauroyl peroxide is added as an initiator of the polymerization reaction. A stabilizing aqueous phase is prepared from water, polyvinyl alcohol, phosphates, sodium chloride, and sodium nitrite. The aqueous and monomer phases are mixed together under nitrogen at atmospheric pressure, while maintaining the temperature below 30° C. The reaction mixture is gradually heated while stirring continuously. Once the polymerization reaction starts, the temperature of the reaction mixture is allowed to rise to a maximum of 95° C. After completion of the polymerization reaction, the reaction mixture is cooled and the aqueous phase is removed. Water is added, the mixture is stirred, and the solid material is isolated by filtration. The solid is then washed with water to yield a crosslinked (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. The (methyl 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is hydrolyzed with an excess of aqueous sodium hydroxide solution at 90° C. for 24 hours to yield (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After hydrolysis, the solid is filtered and washed with water. The (sodium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer is exposed at room temperature to an excess of aqueous calcium chloride solution to yield insoluble cross-linked (calcium 2-fluoroacrylate)-divinylbenzene-1,7-octadiene copolymer. After the calcium ion exchange, the product is washed with water and dried. Example 25 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) from 30 Micron Monodisperse Polystyrene Beads Example 25 was prepared from 20 g polystyrene beads (Amberchrom™ XT30; obtained from Octochemstore.com), using the procedures described in Example 7 to give Example 25 (29.6 g) as a brown powder. Particle size: dv(0.1)=25 μm; dv(0.5)=34 μm; dv(0.9)=48 μm. Example 26 Procedure for Tactile Testing Tactile Testing Experiment #1. Tactile testing samples were prepared by suspending 2.1 g of dry polystyrene sulfonate resin powder (calcium and or sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 min by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 1), and tackiness (Table 2). Sensations were rated from 1-5 with 1=no sensation and 5=strong sensation. After each sample, test subjects washed their hands with soap and water. TABLE 1 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A 76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) morphology Shard Shard Sphere Sphere Sphere Sphere Sphere Shard Subject ID Grittiness Subject 1 4 5 4 2 1 3 5 5 Subject 2 3 2 2 1 1 2 3 3 Subject 3 5 4 2 1 2 2 4 5 Subject 4 3 3 3 1 2 2 4 4 Subject 5 4 4 1 1 2 1 2 4 Subject 6 4 3 3 1 2 2 4 4 Subject 7 3 3 1 1 1 1 3 2 Subject 8 2 3 2 1 1 2 2 3 Subject 9 4 4 4 1 1 1 3 4 Subject 10 3 3 2 1 1 2 4 5 Subject 11 5 2 1 1 2 2 3 3 Subject 12 4 2 1 1 1 2 3 3 Subject 13 5 4 3 2 1 1 1 5 Subject 14 5 4 2 2 1 1 3 4 Subject 15 5 4 2 2 1 1 4 5 Subject 16 3 3 2 1 2 1 3 4 Subject 17 5 2 2 1 1 2 3 5 Subject 18 5 4 3 2 1 2 4 5 Average 4.0 3.3 2.2 1.3 1.3 1.7 3.2 4.1 Std Dev 1.0 0.9 0.9 0.5 0.5 0.6 0.9 0.9 total 72 59 40 23 24 30 58 73 1RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 2 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #1. Example # 22 N/A1 12 11 10 9 4 23 Resin ID 1 2 3 4 5 6 7 8 Crosslinking ~8% ~8% 2.2% 2.0% 1.8% 1.6% 2.0% ~8% Particle size 45 μm N/A 76 μm 44 μm 77 μm 75 μm 120 μm 69 μm (Dv50) Morphology Shard Shard Sphere Sphere Sphere Sphere Sphere shard Subject ID Tackiness Subject 1 1 1 1 1 1 1 1 1 Subject 2 1 1 1 1 1 2 3 1 Subject 3 1 2 1 1 2 2 1 1 Subject 4 1 1 1 2 1 1 1 1 Subject 5 1 1 1 1 1 2 1 1 Subject 6 1 1 1 1 1 2 1 1 Subject 7 2 1 2 2 3 3 2 2 Subject 8 1 1 2 3 4 3 2 1 Subject 9 1 1 1 2 3 4 3 1 Subject 10 1 2 1 3 2 3 1 2 Subject 11 1 1 1 1 1 1 1 1 Subject 12 1 1 2 2 1 3 1 2 Subject 13 1 1 1 2 3 3 3 1 Subject 14 3 2 2 3 2 1 2 3 Subject 15 1 1 1 1 5 5 1 1 Subject 16 1 1 1 1 1 2 1 1 Subject 17 3 2 2 1 2 3 3 3 Subject 18 1 1 1 1 3 3 2 2 Average 1.3 1.2 1.3 1.6 2.1 2.4 1.7 1.4 Std Dev 0.7 0.4 0.4 0.8 1.2 1.1 0.8 0.7 total 23 22 23 29 37 44 30 26 1RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Tactile testing experiment #2. Tactile testing samples were prepared by suspending 3 g of dry polystyrene sulfonate resin powder (Calcium and or Sodium forms) in DI water (15 mL) at 20° C. in amber bottles. The mixtures were shaken vigorously for 1 minute by hand, and then allowed to stand overnight. Immediately prior to dispensing samples to test subjects, the vials were agitated using a bench top vortex mixer for approximately 20 seconds. Test subjects washed their hands with soap and water before beginning. A tactile test sample of 150 μL was dispensed onto the thenar eminence of one hand, and the test subjects were instructed to rub the test sample between the thenar eminence of both hands. Test subjects rated their experience on two sensations: grittiness (Table 3) and tackiness (Table 4). Sensations were rated from 1-5 with 1=low sensation and 5=high sensation. After each sample, test subjects washed their hands with soap and water. TABLE 3 GRITTINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example # N/A1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 5 5 2 3 3 2 1 4 3 4 4 4 Subject 2 2 3 1 1 1 2 1 2 3 1 2 1 Subject 3 2 1 1 1 2 1 2 1 1 3 2 1 Subject 4 4 3 2 3 2 1 2 1 3 1 2 1 Subject 5 4 3 1 1 2 2 2 1 3 1 2 2 Subject 6 5 3 1 2 2 2 1 1 1 3 1 3 Subject 7 4 5 1 1 2 3 1 1 2 3 2 1 Subject 8 4 5 1 2 5 3 3 4 2 2 2 2 Subject 9 4 2 2 2 1 1 1 1 1 3 3 2 Subject 10 4 3 1 3 2 2 3 1 4 1 1 3 Subject 11 3 2 1 2 1 1 1 1 1 1 1 2 Subject 12 4 3 1 1 2 2 3 1 3 3 3 2 Subject 13 5 4 2 2 1 2 3 3 3 4 4 2 Average 3.8 3.2 1.3 1.8 2.0 1.8 1.8 1.7 2.3 2.3 2.2 2.0 Std Dev 1.0 1.2 0.5 0.8 1.1 0.7 0.9 1.2 1.0 1.2 1.0 0.9 total 50 42 17 24 26 24 24 22 30 30 29 26 1RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis TABLE 4 TACKINESS DATA FROM TACTILE TESTING EXPERIMENT #2 Example # N/A1 4 13 14 15 16 17 18 19 22 25 11 Crosslinking N/A 2.0% 2.08% 2.5% 4.0% 8.0% 6.5% 2.0% 1.8% N/A N/A 2.0% Particle size N/A 120 μm 13 μm 14 μm 12 μm 11 μm 7 μm 81 μm N/A 31 μm N/A 44 μm (Dv50) Morphology Shards Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Shards Sphere Sphere Resin ID 1 2 3 4 5 6 7 8 9 10 11 12 Subject ID Grittiness Subject 1 1 1 1 1 1 1 1 1 1 1 1 1 Subject 2 1 1 2 1 1 1 2 2 1 1 1 2 Subject 3 1 3 3 3 2 1 1 5 2 1 1 2 Subject 4 1 4 2 1 1 1 1 2 4 1 2 1 Subject 5 1 1 2 2 2 1 2 2 2 1 2 2 Subject 6 1 1 4 3 3 2 4 4 5 1 4 3 Subject 7 1 1 2 1 1 1 1 2 2 1 1 1 Subject 8 1 1 3 3 1 2 2 2 2 1 3 3 Subject 9 1 2 3 2 2 1 2 3 4 1 2 3 Subject 10 1 2 3 4 1 1 2 3 4 1 1 2 Subject 11 1 1 1 1 1 1 1 2 3 1 1 1 Subject 12 2 1 2 3 3 2 2 3 2 1 4 3 Subject 13 1 2 2 2 1 1 2 3 3 2 1 2 Average 1.1 1.6 2.3 2.1 1.5 1.2 1.8 2.6 2.7 1.1 1.8 2.0 Std Dev 0.3 0.9 0.8 1.0 0.7 0.4 0.8 1.0 1.2 0.3 1.1 0.8 total 14 21 30 27 20 16 23 34 35 14 24 26 1RESONIUM CALCIUM ®, Ca-PSS, Sanofi-Aventis Example 27 Measurements of Swelling Ratio of the Calcium Polystyrene Sulfonate Resin The swelling ratio was measured by centrifugation method using the following procedure: accurately weigh approximately 1 g of calcium polystyrene sulfonate (Ca-PSS) resin into a 50 mL pre-weighed centrifuge tube. Add approximately 10-15 mL of deionized water (or 0.9% saline solution) to immerse the resin, and shake for a minimum of 30 minutes. Centrifuge at relative centrifuge force (RCF) of 2000×g or 2500×g for 30 minutes and carefully remove the supernatant. Determine the wet sample weight and calculate the ratio between the wet sample weight versus the dry sample weight. The swelling ratio of Ca-PSS is correlated to the percentage of DVB cross-linking. There was no significant difference between swelling ratios measured in water versus those determined in 0.9% saline when the % DVB cross-linking was above 1.0% (FIG. 1 and Table 1). Example 28 Particle Size Analysis of Calcium and Sodium Polystyrene Sulfonate Resin Particle size was measured by laser diffraction using a Malvern Mastersizer 2000. Samples were introduced as suspensions in DI water into a hydro2000S sampler, sonicated if necessary to break down agglomeration, and allowed 5-10 minutes circulation for equilibration prior to measurements. Results are presented in FIG. 11 (FIG. 11). TABLE 5 SWELLING RATIO COMPARISON IN WATER AND 0.9% SALINE Swelling ratio Swelling ratio in Water in 0.9% Saline CA-PSS resin (RCF = 2000 × g) (RCF = 2000 × g) Phaex SC40, BP grade; 8% DVB 2.18 2.26 cross-linking 1 Phaex SC47, JP grade; 8% cross- 2.25 2.27 linking 2 SKK Argamate 89.29% powder; 2.11 2.11 8% cross-linking 3 Example 1; 8% DVB cross-linking 2.10 2.08 Example 2; 4% DVB cross-linking 2.92 2.82 Example 3; 2% DVB cross-linking 4.03 3.72 Example 8; 1.12% DVB cross- 7.87 7.80 linking Example 7; 0.96% DVB cross- 9.08 8.11 linking 1 Ca-PSS, British Pharmacopeia (BP) grade, manufactured by Phaex Polymers PVT LTD, Maharashtra, India; 2 Ca-PSS, Japanese Pharmacopeia (JP) grade, Phaex Polymers PVT LTD, Maharashtra, India; 3 Ca-PSS, JP grade, manufactured by Sanwa Kagaku Kenkyusho Co., Ltd., Japan. Example 29 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.1 kg), NaCl (1.0 kg), NaNO2 (0.02 kg) and water (100 kg). The mixture was stirred and heated to 85° C. to dissolve solids, then cooled to 25° C. To a separate vessel equipped with an overhead stirrer and N2 inlet was added styrene (14.7 kg), divinylbenzene (0.34 kg, 80% Technical Grade), and benzoyl peroxide (0.85 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The aqueous and monomer liquids were then mixed in 4 portions (˜25-30 L aqueous, ˜5 L monomer) and homogenized using both a steel pitched blade agitator (600-800 RPM), and by a high mixer (IKA T-50 Ultra Turrax, 3000 RPM). The resulting mixtures were transferred to a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, and heated to 92° C. for 16 hours, and then cooled to 45° C. for isolation. The suspension of polystyrene beads was filtered, and the beads were re-suspended in water (70 kg), agitated and heated to 80° C. for 20 minutes, then filtered. The beads were re-suspended in 2-propanol (55 kg), agitated and heated to 75° C. for 20 minutes, then filtered, and dried under vacuum to give 11 kg of polystyrene beads as a white powder which was used in the next step without further purification. Example 29: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple and N2 inlet, was added Polystyrene beads (7 kg) and sulfuric acid (98%, 156 kg). The mixture was agitated to form a suspension and warmed to 100-105° C. for 16 hours. The dark mixture was cooled to 45° C., and transferred slowly into cold water (90 kg). The mixture was filtered, and the sulfonated beads were repeatedly washed as a slurry with water at ˜50° C., and filtered until the effluent contained <0.05 M sulfuric acid. The beads were washed with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, then filtered. The beads were washed again with aqueous calcium acetate solution (34 kg water, 8.4 kg Ca(OAc)2) at 50° C., agitated for 2 hours, and filtered. The beads were washed with water until the calcium content in the effluent was <1000 ppm. The filter cake was then dried under vacuum to give 12.76 kg of Example 29 as a brown solid. Particle Size: d(0.1)=13 μm; d(0.5)=29 μm; d(0.9)=52 μm. Ca-salt 8.8 wt % (dry basis, by titration); K+ exchange capacity 1.3 mEq/g (per BP, dry basis); residual styrene <1 ppm; water content 5.6% (Karl Fisher); swelling ratio 5.7 (dry basis). Example 30 Preparation of Sodium Polystyrene Sulfonate (Na-PSS) with 1.8% Divinylbenzene (DVB) To a jacketed vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Ag2SO4 (2 g) and conc. H2SO4 (1050 mL). The mixture was warmed to 80° C. to dissolve. Intermediate polystyrene beads, prepared according to Example 29 (100 g), were added and the suspension warmed to 100° C. for 4 hours. The mixture was cooled to 60° C., and an equal volume of 30% aqueous H2SO4 (1050 mL) was slowly added to the mixture keeping the temperature below 85° C. The mixture was then filtered. A portion (approximately ⅓) of this filter cake was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH >4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were suspended in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then suspended again in aqueous NaOH (200 mL water, 2 g NaOH) and agitated for 2 hours, then filtered. The material was then washed successively with hot water (3×250 mL), IPA (2×75 mL), and Ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 17.2 g Example 30 as a brown solid. Na-salt 8.9% by weight; particle size in water 20-135 μm (visual microscopy). Example 31 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) A portion (approximately ⅓) of sulfonated resin from Example 30, was repeatedly washed and filtered as a slurry with water at ˜50° C., until the effluent pH >4. Then, the filter cake was washed on the filter with IPA (2×150 mL). The beads were then suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were again suspended in aqueous calcium acetate solution (180 g water, 20 g Ca(OAc)2) at ambient temperature, agitated for 2 hours, then filtered. The beads were washed repeatedly with water to remove soluble calcium. The beads were then washed with IPA (2×75 mL), and ethanol (50 mL). The beads were then dried in a vacuum oven at 50° C. to give 16.7 g of Example 31 as a brown solid. Ca-salt 7.45% by weight; particle size in water 12-94 μm (visual microscopy). Example 32 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Intermediate Polystyrene beads at 1.8% DVB: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added polyvinyl alcohol (0.51 kg), NaCl (5.1 kg), NaNO2 (0.10 kg) and water (470 kg). The mixture was stirred and heated to 75° C. to form a slightly turbid solution, then cooled to 25° C. To a separate jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added styrene (75 kg), divinylbenzene (1.8 kg, 80% Technical Grade), and benzoyl peroxide (4.3 kg, 75%, stabilized with water), and the mixture was agitated to combine monomers and initiator. The monomer-initiator mixture was added to the vessel containing the aqueous solution and agitated for 0.5 hours to form a coarse suspension. This coarse suspension was then homogenized by pumping the liquid twice through a high shear mixer. The resulting homogenized mixture was heated to 92° C. for 5 hours, and then cooled to 20-30° C. for isolation. The suspension of polystyrene beads was partitioned by centrifugation-decantation to remove small particles, and to wash the beads. The final slurry was isolated by filtration, or centrifugation, and dried under vacuum to give 55 kg of polystyrene beads as a white powder. Particle size: d(0.1)>5 μm; d(0.9)=<40 μm. Example 32: To a jacketed cylindrical vessel equipped with an overhead stirrer, thermocouple, and N2 inlet, was added Polystyrene beads (15 kg), and sulfuric acid (98%, 345 kg). The mixture was stirred to form a suspension then warmed to 100-105° C. for 3.5-4 hours. The dark mixture was cooled to 35° C., and diluted slowly with cold water (150 kg). The mixture was filtered on an agitated Neutsche type filter, and the sulfonated beads were washed with water. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. Aqueous calcium acetate solution (180 kg, 10% wt) was added, the mixture was agitated for 2 hours, then filtered. The beads were washed with water. The filter cake was washed with acetone and then dried under vacuum to give 25 kg of Example 32 as a light brown powder. Particle Size: d(0.1)=19 μm; d(0.5)=35 μm; d(0.9)=54 μm. Ca-salt 9.5 wt % (dry basis, by titration); K+ exchange capacity 1.5 mEq/g (per BP, dry basis); residual styrene <1 ppm; swelling ratio 5.6 (as is). Example 33 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 33 was prepared on 10 kg scale using methods analogous to those described for Example 32 with the following modifications: polymerization initiator was tert-butyl-peroxy-ethyl-hexanoate; a particle size control (Dv0.5) of 50 microns was achieved via a jetting process (See e.g., Dow Chemical, U.S. Pat. No. 4,444,961). After sulfonation and calcium exchange; drying of the Ca-PSS was achieved via a fluidized bed dryer. Particle Size (dry): d(0.1)=38; d(0.5)=51; d(0.9)=62. Ca-salt 9.7 wt % (by titration); K+ exchange capacity 1.5 mEq/g (per BP). Example 34 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 2.5% Divinylbenzene (DVB) Example 34 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 2.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=75 μm; d(0.9)=104 μm. K+ exchange capacity 1.7 mEq/g (per BP); swelling ratio 3.7. Example 35 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.5% Divinylbenzene (DVB) Example 35 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.5% divinylbenzene. Particle Size: d(0.1)=54 μm; d(0.5)=78 μm; d(0.9)=114 μm. K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 4.5. Example 36 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.6% Divinylbenzene (DVB) Example 36 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.6% divinylbenzene. Particle Size: d(0.1)=53 μm; d(0.5)=75 μm; d(0.9)=106 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.5. Example 37 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.7% Divinylbenzene (DVB) Example 37 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.7% divinylbenzene. Particle Size: d(0.1)=53 μm; d(0.5)=74 μm; d(0.9)=105 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.3. Example 38 Preparation of Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 38 was prepared on 500 g scale using methods analogous to those described for Example 33, and incorporating 1.8% divinylbenzene. Particle Size: d(0.1)=51 μm; d(0.5)=77 μm; d(0.9)=114 μm. K+ exchange capacity 1.5 mEq/g (per BP); swelling ratio 4.1. Example 39 Calcium Polystyrene Sulfonate (Ca-PSS) with 1.8% Divinylbenzene (DVB) Example 39 was prepared on 5.6 kg scale using methods analogous to those described for Example 29. Particle Size: d(0.1)=30 μm; d(0.5)=56 μm; d(0.9)=91 μm. K+ exchange capacity 1.4 mEq/g (per BP); swelling ratio 5.1. Example 40 Powder for Oral Suspension (POS), “Strawberry Smoothie” Flavor and Consistency, Sodium Free Without a suspending agent, some Examples of the instant disclosure settle out from water in a few minutes, highlighting the need for a viscosifying system. Hydrocolloids retard particle sedimentation by increasing viscosity; however, at too high a viscosity, the formulation becomes un-drinkable. To determine a maximum viscosity for a drinkable liquid, the viscosity of commercial liquid products were measured (Table 6, below). Data were generated using a Brookfield EV-I viscometer using a small sample size adapter with spindle 18, starting at 60 RPM and decreasing speed as necessary to obtain an in-range reading. A target viscosity of less than 400 cps was selected for a drinkable product, similar to a fruit-based blended smoothie. TABLE 6 Viscosity of commercial liquid products Product Viscosity (cps)* Product Viscosity (cps)* Hershey's Chocolate Syrup 7528 Vermont Maid Syrup 635 Odwalla Strawberry Banana Smoothie 302 Pepto Bismol 195 Syrpalta (Oral Dosing Vehicle) 86 Heavy Cream 18 Light Cream 7 *Note: it is understood to one skilled in the art that viscosity measurement is a complicated field of science, and a single number may be an oversimplification of the system. Additional criteria included a formulation that could readily disperse ˜5 g of polymer in less than 35 mL water, and creation of a stable suspension for the anticipated duration of consumption (approximately 5 minutes). Last, it was desired to eliminate sodium from the formulation since excess consumption of this electrolyte is contraindicated in kidney failure patients. In addition, a pH of ˜3-3.5 was chosen to be compatible with the stability and flavor properties of a fruit-themed formulation. The composition in Table 7, prepared from Example 39, achieves the above design considerations, and when added to ˜28-30 mL of water readily wets and suspends after brief and gentle mixing (inverting 4-5 times in a closed container). TABLE 7 Composition of Example 40 “strawberry smoothie” powder-for-oral-suspension Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.049 Citric acid, anhydrous 0.150 Sucralose 0.030 Michaelock N&A Strawberry Flavor #2342 0.075 Methylcellulose A4C 0.150 FD&C Red 3 (0.1% solution) 0.430 Titanium Dioxide 0.060 Example 39 5.00 Water Qs to 30 mL (Resulting pH: 3.41 Example 41 Ready-To-Use (RTU) “Strawberry Smoothie” Drinkable Suspension Example 41, a ready-to-use variant of Example 40, was prepared from Example 39 by including a preservative system in the reconstituted formulation, replacing anhydrous citric acid with benzoic acid (0.030 g). This formulation is also sodium-free. Example 42 Read-To-Use (RTU) Spoonable Formulation, Chocolate Flavored, Sodium Free Higher viscosity formulations were found to attenuate the sensation of grittiness and improve the mouth feel characteristics of some Examples disclosed herein (see Biological Example 14). Example 42 is a “spoonable” yoghurt/gel based formulation that was developed with a chocolate “indulgent” flavor theme (Table 8). This formulation also avoids sodium-containing excipients and has a near neutral pH (5.0), consistent with the flavor and stability requirements of the flavoring agent. TABLE 8 Composition of Example 42, a “spoonable” chocolate-themed formulation Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.003 Citric acid, anhydrous 0.004 Sucralose 0.030 Xanthan gum 0.165 Natural Chocolate Flavor #37620 0.120 Sorbic acid 0.015 Example 39 5.00 Water 25 g (Resulting pH: 5.0 Example 43 Ready-To-Use (RTU) “Spoonable” Formulation, Strawberry Flavored, Sodium Free Example 43 was prepared applying the principles described in Examples 40-42 and Biological Example 14 to afford a fruit-themed, lower pH spoonable formulation (Table 9). TABLE 9 Composition of Example 43, a “spoonable,” strawberry flavored sodium free formulation Ingredient g/30 mL Suspension Calcium citrate tetrahydrate 0.042 Citric acid, anhydrous 0.130 Sucralose 0.030 Xanthan gum 0.135 Michaelock N&A strawberry flavor #2342 0.075 FD&C Red 3 (0.1% solution) 0.430 Titanium dioxide 0.060 Benzoic acid 0.025 Example 39 5.00 Water 25 g (Resulting pH: 3.3) Example 44 Chewable Tablet Formulation, Citrus Flavored A chewable tablet was designed by first determining an appropriate tablet hardness for a chewable dosage form: the tablets must be hard enough to hold together through processing and shipping, while still maintaining a chewable texture. Accordingly, the hardness of several commercially available chewable OTC products were measured (Table 10), after which a tablet hardness target of approximately 9-15 kp was set. TABLE 10 Hardness of OTC chewable tablets Product Hardness (kp) Tums Kids Antacid 7.4 Tums Smoothies 10.4 Spectravite Senior Chewable 11.9 Tums Regular 12.4 Centrum Children's Chewable Vitamins 12.9 CVS Children's Complete Chewable Vitamins 15.7 Flintstones Chewable Vitamins with Iron 16.4 Apart from the active ingredient, a chewable tablet is composed primarily (but not exclusively) of a tablet binder, hence multiple tablet binders were explored in pilot tableting exercises. These included direct compression Lactose (Supertab 11SD-DSM), direct compression Mannitol (Pearlitol 100SD-Roquette), sucrose (Di-Pac-Domino), -sodium starch glycolate All-in-One (ProSolv Easytab SP-JRS) and a mannitol based All-in-One (ProSolv ODT G2-JRS). Drug load was explored with the goal of achieving a high percentage. Example 39 was subjected to iterative screening in a number of the binder systems listed above, and an approximately 30% loading was achieved in a chewable tablet format. Tablets were created based on a 3 g gross tablet weight, with 900 mg Example 39 per tablet. Blends were loaded into a 25 mm diameter tablet die and a Carver hydraulic hand press (Model 3912) was used to compress the blends to a maximum force of 15,000 lbs to afford tablets. ProSolv Easytab SP had an extremely chalky mouth feel and was dropped from consideration, whereas both ProSolv ODT G2 and Pearlitol 100SD had similar, smooth mouth feels and were advanced. Active ingredient loading was re-explored, and while a 41.66% drug load could not afford sufficiently hard tablets, a load of 33.3% was acceptable. Next, the sweet/sour properties of the tablets were determined. As sucralose and citric acid had proven to be an effective pairing in the suspension formulations, varying levels of these were evaluated in both binder systems (Pearlitol 100SD w/ additives and ProSolv ODT G2). A final sucralose level of 0.15% and citric acid of 1.5% provided the desired sweet/sour balance. Finally, flavor candidates were screened in both leading base binder systems, and included fruit flavored themes such as citrus, orange, mixed berry, strawberry and punch. These were incorporated into the mimetic (excipient) base starting at 0.25%, and adjusting up or down as appropriate. When the final mimetic (excipient) flavor systems (Pearlitol 100 SD with additives and ProSolv) were compared side-by-side, it was apparent that the Pearlitol (mannitol-based) system had a better mouth feel overall, and was selected as a preferred system. This formulation, Example 44, is shown below in Table 11. TABLE 11 Composition of Example 44, a chewable tablet formulation Mannitol based formulation Ingredient g/100 g Example 39 33.33 Colloidal Silicon Dioxide, NF-M-5P 0.85 Sucralose, NF 0.15 Magnesium Stearate, NF 1.35 Croscarmellose Sodium, NF Ac-DI-Sol SD-711 NF 2.80 Avicel CE-15 5.30 Citric Acid, Anhydrous 1.50 Natural Orange Flavor #SC356177 0.45 Mannitol, USP Pearlitol 100 SD 54.27 Example 45 Ready-To-Use (RTU) “Smoothie” Drinkable Suspension, Orange and Vanilla Flavors Example 37 was formulated into both an orange- and vanilla-flavored ready-to-use drinkable “smoothie” using the procedures and concepts described in Example 40 and Example 41. Both formulations are sodium-free. TABLE 12 Compositions of Example 45, drinkable “smoothie” in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 5.624 5.624 Water 25.72  25.68  Example 46 Powder for Oral Suspension (POS), “Smoothie” Consistency, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into both an orange- and vanilla-flavored powder-for-oral-suspension using the procedures and concepts described in Example 40. Both formulations are sodium-free, and reconstitute to a drinkable suspension with the consistency of a fruit-based “smoothie” upon addition to one ounce of water and brief agitation. TABLE 13 Compositions of Example 46, powders for oral suspension in both orange and vanilla flavor Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Citric Acid Anhydrous 0.150 0.013 Sucralose 0.030 0.030 Artificial orange flavored powder FV653 0.150 — Vanillin powder — 0.060 Methylcellulose A4C 0.165 0.165 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Example 47 “Spoonable” Formulation, Orange- and Vanilla-Flavored, Sodium Free Example 37 was formulated into ready-to-use “spoonable” orange- and vanilla-flavored formulations using the procedures and concepts described in Example 42 and Example 43. Both formulations are sodium-free, and their composition is illustrated in Table 14. TABLE 14 Compositions of Example 47, RTU orange- and vanilla- flavored “spoonable” suspensions Orange Vanilla formulation formulation (g/30 mL (g/30 mL Ingredient suspension) suspension) Calcium Citrate Tetrahydrate 0.149 0.066 Benzoic Acid 0.030 — Sorbic Acid — 0.015 Citric Acid Anhydrous 0.150 0.004 Sucralose 0.030 0.030 Natural Orange WONF FV7466 0.150 — SuperVan Art Vanilla VM36 — 0.150 Xanthan Gum CP 0.210 0.180 Titanium Dioxide — 0.120 Example 37 (includes 11.1% water (KF)) 5.624 5.624 Water 25.0   25.0   Biological Example 1 Preparation of Mice for In Vivo Animal Studies Study Preparation: Male CD-1 mice ˜25-35 grams (Charles River) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow before study initiation. The day of diet acclimation initiation, body weights were obtained and mice were placed in metabolic cages. The animals were fed ad libitum during the study. Mice were provided normal powdered chow or study compound mixed in powdered chow at the designated percentage for a period of 48 hours (to ensure the study diet has passed the length of the GI and animals achieve “steady state”). Food and water measurements were recorded upon placement of animals in metabolic cages, and every 24 hours until study completion. After 48 hours of acclimation, the 24 hour collection period began. Clean collection tubes were placed on the cage. Mice were provided their designated study diet during the collection period. Urine and feces were collected at the end of this 24 hour period. Food and water was weighed again to determine the amount consumed over the study period. Sample Processing and Analysis: Urine and feces were collected directly into pre-weighed tubes placed on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96 well-plates with 0.2 ml of each urine sample added to each plate. One plate was acidified (20 μl of 6 N HCl per sample). Plates were stored frozen until analysis. The feces were removed from the metabolic cages, the jars were capped, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were then dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content was calculated. Feces and urine were analyzed by microwave plasma-atomic emission spectroscopy (MP-AES) or ion chromatography (IC) for ion content. Biological Example 2 Preparation of Rats for In Vivo Animal Studies Study Preparation: Male Sprague Dawley (Charles River) rats (˜200-250 gm) were used for these studies. Upon arrival animals were allowed to acclimate in standard cages, on standard chow, for at least 2 days prior to study initiation. The day prior to being placed in metabolic cages, body weights were obtained and rats were provided normal powdered chow or study compound in powder chow, via a J-Feeder, beginning at ˜1:00 pm (to ensure the study diet has passed the length of the GI). The day of the study, rats were transferred to metabolic cages at ˜3:30 pm, where they were provided their designated study diet for 16 hours. Tare weights of food and water were obtained prior to animals being placed in the cages. Urine and feces were collected ˜16 hours later. Food and water was weighed again to determine the amount consumed over the study period. Chow Formulation: Chow meal (Standard rodent chow, 2018C) was weighed out into a mixing bowl and placed on a stand mixer (KitchenAid). PSS was weighed out and added to the chow to achieve the desired final concentration (2-8% polymer in chow by weight). The mixer was set to stir on low for at least 10 minutes to evenly distribute the polymer in the chow. The chow was then transferred to a labeled zip-lock storage bag. Sample Processing and Analysis: Urine was collected directly into pre-weighed 50 ml conical tubes placed inside the urine collectors on the metabolic racks. At the collection time the urine tubes were capped and the urine was weighed. The urine was then pipetted into a pair of 96-well plates with 0.5 ml of each urine sample added to each plate. One plate was acidified (50 μl of 6 N HCl per sample). Both plates were submitted on the same day for bioanalytical analysis (or were placed in a −20 freezer). The feces were transferred from the metabolic collectors to pre-weighed capped jars, wet weights were recorded, and then the samples were frozen for ˜3-4 hours. The feces were dried on a lyophilizer for at least 3 days before a dry weight was taken and fecal fluid content calculated. The feces were then placed on a homogenizer and ground to a fine powder. For each sample, two aliquots were weighed out. 500 mg was weighed into a 50 ml conical tube, and 50 mg into an eppindorf tube. Feces and urine were analyzed by MP-AES or IC for ion content. Biological Example 3 Effects on Fecal Potassium Levels in Rats Upon Dosing with Ca-PSS Using the methods described in Biological Example 2, rats were dosed Ca-PSS blended into chow at 4% or 8% wt/wt. These polymers had differing levels of crosslinking (2%, 4% and 8% DVB crosslinking). In this experiment, all rats dosed with Ca-PSS blended into the diet at 8% wt/wt had significant increases in K excretion. The highest fecal K was seen in the group that was fed a 2% DVB crosslinked polymer, when said polymer was present at 8% wt/wt in chow. This increase was significantly higher than that observed for the other polymers that were similarly dosed as 8% wt/wt blends in chow (FIG. 2). Biological Example 4 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 5, 6, Ca-PSS and BP Using the methods described in Biological Example 1, mice were dose Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow (Standard 2018 chow) at 8% wt/wt. The polymers had differing levels of crosslinking: 2% DVB, (Example 4); 4% DVB, (Example 5); 8% DVB (Example 6); and Ca-PSS, BP (Ca-PSS, BP with 8% DVB crosslinking) was used as a control. All mice dosed with Ca-PSS blended in the diet at 8% wt/wt had significant increases in K excretion. The highest level of K secretion was seen with the 2% DVB material (Example 4, FIG. 3). Biological Example 5 Effects on Potassium Excretion in Mice Upon Dosing with Examples 4, 6, 9 and 10 Using the methods in Biological Example 1, mice were dosed Ca-PSS (i.e., polymers of Formula (I) or a pharmaceutically acceptable salt thereof) blended into chow at 8% wt/wt. The test articles included the following: Vehicle (2018 chow); 200-400 mesh Ca-PSS with 2% DVB crosslinking (Example 4); 200-400 mesh Ca-PSS with 8% DVB crosslinking (Example 6), Ca-PSS polymer with 1.6% DVB cross-linking (Example 9), and Ca-PSS material with 1.8% DVB cross-linking (Example 10). All mice dosed with 8% wt/wt Ca-PSS in their diet had significant increases in K excretion. The highest levels of K secretion were seen with polymers possessing DVB levels of 2% or less (FIG. 4). The level of K in the feces was significantly higher with 1.6%, 1.8% and 2% DVB (Examples 9, 10, and 4) compared to vehicle or 8% DVB (Example 6). Biological Example 6 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10, Na-PSS, USP, CA-PSS, and/or BP Using the methods in Biological Example 1, mice were dosed Na-PSS, USP, Ca-PSS, BP and Example 10 blended into chow at 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Ca-PSS, BP or Example 10, with the highest fecal potassium seen in Example 10 (FIG. 5). Biological Example 7 Effects on Fecal and Urinary Phosphate Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were dosed with Na-PSS, USP and Example 10, blended into chow at 4% and 8% wt/wt. There was a significant increase in fecal potassium in animals consuming either Na-PSS, USP or Example 10 when present at 8% w/w in chow, but only Example 10 showed a significant increase in fecal potassium at 4% wt/wt in chow. In addition there was significantly more K in the feces of mice fed Example 10 versus Na-PSS, USP when these test articles were present at 8% wt/wt in chow (FIG. 6). In addition, the group treated with Example 10 blended into chow at 8% wt/wt had higher levels of fecal phosphate compared to those mice identically dosed with Na-PSS, and lower levels of urinary phosphate compared to groups treated with both Na-PSS or vehicle (FIG. 13). Biological Example 8 Effects on Fecal Potassium Levels in Mice Upon Dosing with Example 10 Using the methods in Biological Example 1, mice were fed increasing amounts of Example 10 blended in chow a 2, 4, 6 and 8% wt/wt. The control group was fed standard rodent chow (Harlan Teklad 2018). There was a dose dependent increase in fecal potassium content with the addition of Example 10 to the chow, with the highest fecal potassium seen in the 8% wt/wt group (FIG. 7). Biological Example 9 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 10, 13, and 18 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt %1. The test articles included Example 10, Example 13 and Example 18; Example 6 served as a control. The level of K+ in the feces was significantly higher for Examples 32, 35, and 41 compared to Example 6. (FIG. 8). Biological Example 10 Effects on Fecal Potassium Levels in Mice Upon Dosing with Examples 20 and 21 Using the methods in Biological Example 1, mice were dosed Ca-PSS blended into chow at 8% wt/wt. The test articles included Ca-PSS, BP as a control as well as Example 20 and Example 21, all of which were blended into chow at 8% wt/wt (FIG. 9). The highest level of fecal potassium was seen with Example 21. Biological Example 11 Effects on Potassium Output in Mice Upon Dosing with Examples 30 and 31 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP (US Pharmacopeia grade; Purolite, Inc.), Ca-PSS, BP (British Pharmacopeia grade; Purolite, Inc.), Example 30, and Example 31. Groups dosed with Na-PSS, USP and Example 30 had significantly lower fecal ion output, and had a mean K+ output of ˜8 mg/24 h. Ca-PSS, BP showed a mean K+ output of 15 mg/24 h. Example 31 had the highest K+ output in this example at 23 mg/24 h. Examples 30 and 31 were prepared from the same batch of sulfonated resin, and differ only in salt form. (FIG. 14 Biological Example 12 Effects on Fecal Potassium and Phosphorus Levels and Urinary Sodium and Potassium Levels in Mice Upon Dosing with Examples 32 and 33 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included vehicle (normal chow without any drug), Na-PSS, USP, Example 32 and Example 33. Compared to Na-PSS, USP, both Example 32 and Example 33 resulted in 1) significantly higher amounts of fecal potassium, 2) significantly higher amounts of fecal phosphorus, and 3) significantly lower amounts of urine sodium and potassium. (FIG. 15 and FIG. 16) Biological Example 13 Effects on Fecal Output in Mice Upon Dosing with Examples 34, 36, 37 and 37 Using the methods in Biological Example 1, mice were dosed with resins blended into chow at 8% wt/wt. The test article groups included Na-PSS, USP, Example 34, Example 36, Example 37 and Example 38. Fecal outputs of potassium are significantly elevated for all Examples relative to Na-PSS, USP, while Examples 36, 37, and 38 cause higher fecal potassium than Example 34. (FIG. 13) Biological Example 14 A Phase I Randomized Study to Evaluate the Overall Consumer Acceptability of Taste and Mouth Feel of Example 29 and Formulations Thereof in Healthy Subjects The primary objective of the study was to evaluate the overall acceptability, as well as the acceptability of specific attributes, of taste and mouth feel of different oral formulations of Example 29 in comparison to a reference formulation (Resonium A; sodium polystyrene sulfonate [Na PSS], Sanofi-Aventis). This was a single center, randomized, crossover study to evaluate the taste of different oral formulations of Example 29 in healthy subjects. Visit 1 was open-label and Visit 2 was single-blind for Regimens E to I and open-label for Regimen J which was tested last. Formulation regimens are shown in Table 15, and include a systematic exploration of viscosity (by varying the amount of xanthan gum) and flavor (vanilla, citrus and mint). Subjects were screened for inclusion in the study up to 28 days before dosing. Eligible subjects were admitted to the unit at approximately 21:00 on the evening before administration of the first regimen (Day −1) and were either discharged following the last taste test or remained on site until approximately 24 hours post-initial tasting, depending on whichever was most convenient for the subject. TABLE 15 Formulations for Biological Example 14 Regimen Description Formulation A Resonium A reconstituted in water Resonium A contains saccharine per patient instructions (3 mL-4 mL (sweetener) and vanillin (flavouring agent) of water/g) B Example 29 reconstituted (in water) Identical excipients and equivalent with saccharine and vanillin formulation as Regimen A C Example 29 suspension formulation Water-based suspension containing in vanilla flavour Example 29 (16.5%), vanillin (0.17%), methylparaben (0.18%) propylparaben (0.02%), sucralose powder (0.02%) and xanthan gum (0.67%) D Example 29 jelly formulations in Same as Regimen C except xanthan gum vanilla flavour was present at 1.00% E Example 29 jelly formulation in Identical to Regimen D vanilla flavour F Example 29 jelly formulation in Same as Regiment D except vanillin was citrus flavour replaced with N&A Orange Flavor Powder, Flavor Producers item No. M680957M G Example 29 jelly formulation in Equivalent to Regimen D except vanillin wintergreen garden mint flavour was replaced with Wintergreen Garden Mint (FL Emul. N&A WS), Sensient item No. SN2000016303 H Example 29 suspension low viscosity Same as Regimen F except xanthan gum formulation in citrus yoghurt flavour was present at 0.37% I Example 29 intermediate viscosity Same as Regimen F except xanthan gum formulation in citrus flavour was present at 0.67% J Example 29 reconstituted Same as Regimen B except vanillin was formulation in citrus flavour replaced with N&A Orange Flavor Powder, Flavor Producers item No. M680957M Taste testing occurred over two visits. During Visit 1, each subject received 1 g each of regimen A, B, C and D in a randomized order using a Latin square design. Each regimen was administered as 4 to 6 mL of formulation, and each subject tasted all 4 regimens. During Visit 2, each subject received approximately 5 mL each of regimen E, F, G, H, I and J. All formulations were administered orally. Taste was assessed using a questionnaire designed by Sensory Research Ltd (Cork, Ireland). The questionnaire asked subjects to rate the acceptability of several parameters (including smell, sweetness, flavor, mouth feel/texture and grittiness), as well as overall acceptability, on a 9 point scale (from 1—dislike everything to 9—like extremely). No formal statistical testing was performed on screening or baseline data. The data from the results of the taste test were summarized (mean, median, SD, CV (%), minimum, maximum and N) by regimen for Visit 1 and Visit 2 separately. The number and percentage of subjects assigned to each grade of the acceptability categories on the taste questionnaire were also summarized by regimen for Visit 1 and Visit 2 separately. The formulation with the highest median score on overall acceptability was considered the formulation with the most acceptable taste profile and mouth feel. Visit 1. Regimen A (Resonium A) was consistently the poorest performing formulation throughout the taste assessment illustrating that Example 29, and formulations of Example 29, provide superior acceptability to Resonium A (Table 16). For Visit 1, although Regimen D (“jelly formulation” flavored by vanillin) had the highest overall median score, Regimen C (suspension formulation flavored by vanillin) produced similar results (Table 16). It was concluded that Regimen D would be reassessed at Visit 2, including favor variants. TABLE 16 Taste Testing Results from Visit 1 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen A 5.0 (5.5) 5.0 (5.9) 5.0 (5.4) 3.0 (3.4) 3.0 (2.8) 4.0 (4.3) Regimen B 5.5 (6.1) 6.0 (6.1) 5.5 (5.6) 4.5 (4.9) 3.5 (4.3) 5.0 (5.1) Regimen C 7.0 (7.0) 7.0 (7.0) 7.0 (6.6) 6.0 (5.4) 5.5 (5.9) 6.0 (6.2) Regimen D 7.5 (7.2) 7.0 (6.5) 7.0 (6.1) 6.0 (5.3) 6.0 (6.3) 7.0 (6.2) Highest scores per assessment are shown in bold Visit 2. Regimen E (jelly formulation in vanilla flavor, identical to Regimen D) had the joint highest median and highest mean scores for overall taste assessment, as well as scoring highest in most of the other taste assessments (Table 17). Regimen F afforded responses similar to Regimen E but scored higher for grittiness. Regimens E, F and G were all jelly formulations investigating different flavor options: vanilla, citrus and wintergreen garden mint, respectively. The vanilla and citrus scored the same median score for flavor, with vanilla scoring more consistently across subjects, suggesting this is the preferred flavor. Wintergreen mint had the lowest median scores for flavor. Regimens F, H, I and J were formulations of differing viscosity with the same citrus flavor. Regimen F (jelly formulation; 1% xanthan gum) had the highest median score compared to the other citrus formulations, confirming the results from the Visit 1 assessments (i.e. a “jelly” formulation is the preferred viscosity) (Table 17). Example 29 consistently outperformed Resonium A in all aspects of the taste assessments. The jelly formulation was the preferred viscosity and vanilla (flavored by vanillin) and citrus were comparable for flavor; however, vanilla (flavored by vanillin) scored more consistently than citrus, suggesting it was the preferred flavor. TABLE 17 Taste Testing Results from Visit 2 Median score (mean) Mouthfeel/ Regimen Smell Sweetness Flavor texture Grittiness Overall Regimen E 7.0 (6.9) 7.0 (7.0) 7.0 (6.9) 7.0 (6.5) 6.0 (6.2) 7.0 (6.8) Regimen F 6.5 (6.4) 7.0 (6.8) 7.0 (6.5) 6.5 (6.4) 6.5 (6.3) 7.0 (6.4) Regimen G 5.0 (5.5) 6.0 (5.5) 6.0 (5.4) 5.0 (5.3) 5.5 (5.7) 5.0 (5.3) Regimen H 6.0 (5.7) 6.5 (6.1) 6.0 (5.9) 6.0 (5.8) 5.5 (5.7) 6.0 (5.7) Regimen I 6.0 (5.9 6.0 (6.2) 6.0 (6.1) 6.0 (5.8) 5.0 (5.7) 6.0 (6.0) Regimen J 5.0 (4.9) 5.5 (5.2) 4.5 (4.6) 4.0 (4.1) 4.0 (4.0) 4.0 (4.1) Highest scores per assessment are shown in bold and lowest scores in italics EQUIVALENTS Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims. 14912682 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Aug 13th, 2019 12:00AM Jan 9th, 2017 12:00AM https://www.uspto.gov?id=US10376481-20190813 Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders The present disclosure is directed to compounds and methods for the treatment of disorders associated with fluid retention or salt overload, such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. The present disclosure is also directed to compounds and methods for the treatment of hypertension. The present disclosure is also directed to compounds and methods for the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders. 10376481 1. A method for inhibiting sodium absorption in the gastrointestinal tract of a mammal comprising administering to said mammal a pharmaceutically effective amount of a compound having the following structure: or a pharmaceutically acceptable salt thereof. 2. The method of claim 1, wherein the compound is administered orally, by rectal suppository, or enema. 3. The method of claim 1, comprising administering a pharmaceutically effective amount of the compound in combination with one or more vasodilators. 4. The method of claim 3, wherein the pharmaceutically effective amount of the compound, and the one or more vasodilators, are administered as individual pharmaceutical preparations. 5. The method of claim 4, wherein the individual pharmaceutical preparations are administered sequentially. 6. The method of claim 4, wherein the individual pharmaceutical preparations are administered simultaneously. 7. The method of claim 1, wherein said mammal has a disorder selected from the group consisting of heart failure, chronic kidney disease, end-stage renal disease, liver disease, gastrointestinal tract disorder, hypertension, edema, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. 8. The method of claim 7, wherein the heart failure is congestive heart failure. 9. The method of claim 7, wherein the hypertension is associated with dietary salt intake. 10. The method of claim 7, wherein the heart failure is associated with fluid overload. 11. The method of claim 10, wherein the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. 12. The method of claim 7, wherein the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. 13. The method of claim 1, wherein said mammal has a gastrointestinal tract disorder selected from the group consisting of constipation, chronic intestinal pseudo obstruction, colonic pseudo obstruction, Crohn's disease, ulcerative colitis, and inflammatory bowel disease. 14. The method of claim 13, wherein the constipation is chronic constipation. 15. The method of claim 13, wherein the constipation is chronic idiopathic constipation. 16. The method of claim 13, wherein the constipation is chronic constipation occurring in cystic fibrosis patients. 17. The method of claim 13, wherein the constipation is opioid-induced constipation. 18. The method of claim 13, wherein the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. 19. The method of claim 13, wherein the gastrointestinal tract disorder is Crohn's disease. 20. The method of claim 13, wherein the gastrointestinal tract disorder is ulcerative colitis. 21. The method of claim 13, wherein the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. 22. The method of claim 13, wherein the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). 23. The method of claim 13, wherein constipation is induced by calcium supplement. 24. The method of claim 13, wherein the constipation is associated with the use of a therapeutic agent. 25. The method of claim 13, wherein the constipation is associated with a neuropathic disorder. 26. The method of claim 13, wherein the constipation is post-surgical constipation. 27. The method of claim 13, wherein the constipation is associated with neuropathic, metabolic or an endocrine disorder. 28. The method of claim 13, wherein the constipation is due the use of drugs selected from analgesics, antihypertensives, anticonvulsants, antidepressants, antispasmodics or antipsychotics. 29. The method of claim 13, wherein the compound is administered to treat or reduce pain associated with a gastrointestinal tract disorder. 30. The method of claim 13, wherein the compound is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. 31. The method of claim 13, wherein the compound is administered to treat or reduce inflammation of the gastrointestinal tract. 32. The method of claim 13, wherein the compound is administered to reduce gastrointestinal transit time. 32 RELATED APPLICATIONS This application is a continuation-in-part of pending U.S. patent application Ser. No. 14/421,451, which is a National Stage application under 35 U.S.C. § 371 of International Application No. PCT/GB2013/052192, filed Aug. 20, 2013, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/691,635, filed Aug. 21, 2012. The contents of the foregoing applications are hereby incorporated by reference in their entirety. FIELD OF INVENTION The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. BACKGROUND Disorders Associated with Fluid Retention and Salt Overload According to the American Heart Association, more than 5 million Americans have suffered from heart failure, and an estimated 550,000 cases of congestive heart failure (CHF) occur each year (Schocken, D. D. et al., Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group: Circulation, v. 117, no. 19, p. 2544-2565 (2008)). The clinical syndrome of congestive heart failure occurs when cardiac dysfunction prevents adequate perfusion of peripheral tissues. The most common form of heart failure leading to CHF is systolic heart failure, caused by contractile failure of the myocardium. A main cause of CHF is due to ischemic coronary artery disease, with or without infarction. Long standing hypertension, particularly when it is poorly controlled, may lead to CHF. In patients with CHF, neurohumoral compensatory mechanisms (i.e., the sympathetic nervous system and the renin-angiotensin system) are activated in an effort to maintain normal circulation. The renin-angiotensin system is activated in response to decreased cardiac output, causing increased levels of plasma renin, angiotensin II, and aldosterone. As blood volume increases in the heart, cardiac output increases proportionally, to a point where the heart is unable to dilate further. In the failing heart, contractility is reduced, so the heart operates at higher volumes and higher filling pressures to maintain output. Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath). All of these symptoms are related to fluid volume and salt retention, and this chronic fluid and salt overload further contribute to disease progression. Compliance with the medication regimen and with dietary sodium restrictions is a critical component of self-management for patients with heart failure and may lengthen life, reduce hospitalizations and improve quality of life. Physicians often recommend keeping salt intake below 2.3 g per day and no more than 2 g per day for people with heart failure. Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt. A number of drug therapies currently exist for patients suffering from CHF. For example, diuretics may be used or administered to relieve congestion by decreasing volume and, consequently, filling pressures to below those that cause pulmonary edema. By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms. Among the classes or types of diuretics currently being used is thiazides. Thiazides inhibit NaCl transport in the kidney, thereby preventing reabsorption of Na in the cortical diluting segment at the ending portion of the loop of Henle and the proximal portion of the distal convoluted tubule. However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml/min. Additionally, thiazides, as well as other diuretics, may cause hypokalemia. Also among the classes or types of diuretics currently being used is loop diuretics (e.g., furosemide). These are the most potent diuretics and are particularly effective in treating pulmonary edema. Loop diuretics inhibit the NaKCl transport system, thus preventing reabsorption of Na in the loop of Henle. Patients that have persistent edema despite receiving high doses of diuretics may be or become diuretic-resistant. Diuretic resistance may be caused by poor availability of the drug. In patients with renal failure, which has a high occurrence in the CHF population, endogenous acids compete with loop diuretics such as furosemide for the organic acid secretory pathway in the tubular lumen of the nephron. Higher doses, or continuous infusion, are therefore needed to achieve entrance of an adequate amount of drug into the nephron. However, recent meta-analysis have raised awareness about the long-term risk of chronic use of diuretics in the treatment of CHF. For instance, in a recent study (Ahmed et al., Int J Cardiol. 2008 Apr. 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics. Angiotensin-converting enzyme (“ACE”) inhibitors are an example of another drug therapy that may be used to treat congestive heart failure. ACE inhibitors cause vasodilatation by blocking the renin-angiotensin-aldosterone system. Abnormally low cardiac output may cause the renal system to respond by releasing renin, which then converts angiotensinogen into angiotensin I. ACE converts angiotensin I into angiotensin II. Angiotensin II stimulates the thirst centers in the hypothalamus and causes vasoconstriction, thus increasing blood pressure and venous return. Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase. ACE inhibitors block this compensatory system and improve cardiac performance by decreasing systemic and pulmonary vascular resistance. ACE inhibitors have shown survival benefit and conventionally have been a treatment of choice for CHF. However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia. In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients. (See, e.g., C. S. Cruz et al., “Incidence and Predictors of Development of Acute Renal Failure Related to the Treatment of Congestive Heart Failure with ACE Inhibitors, Nephron Clin. Pract., v. 105, no. 2, pp c77-c83 (2007)). Patients with end stage renal disease (“ESRD”), i.e., stage 5 chronic kidney failure, must undergo hemodialysis three times per week. The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium/volume overload). The fluid overload is characterized as interdialytic weight gain. High fluid overload is also worsened by heart dysfunction, specifically CHF. Dialysis is used to remove uremic toxins and also adjust salt and fluid homeostasis. However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed. SIH is exhibited in about 15% to 25% of the ESRD population (Davenport, A., C. Cox, and R. Thuraisingham, Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey; Nephron Clin. Pract., v. 109, no. 2, p. c65-c71 (2008)). Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food The cause of primary or “essential” hypertension is elusive. However, several observations point to the kidney as a primary factor. The strongest data for excess salt intake and elevated blood pressure come from INTERSALT, a cross-sectional study of greater than 10,000 participants. For individuals, a significant, positive, independent linear relation between 24-hour sodium excretion and systolic blood pressure was found. Higher individual 24-hour urinary sodium excretions were found to be associated with higher systolic/diastolic blood pressure on average, by 6-3/3-0 mm Hg. Primary hypertension is a typical example of a complex, multifactorial, and polygenic trait. All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention. In a broad sense, these syndromes are characterized by increased renal sodium reabsorption arising through either primary defects in sodium transport systems or stimulation of mineralocorticoid receptor activity (Altun, B., and M. Arici, 2006, Salt and blood pressure: time to challenge; Cardiology, v. 105, no. 1, p. 9-16 (2006)). A much larger number of controlled studies have been performed on hypertensive subjects during the last three decades to determine whether sodium reduction will reduce established high blood pressure, Meta-analyses of these studies have clearly shown a large decrease in blood pressure in hypertensive patients. In end stage liver disease (ESLD), accumulation of fluid as ascites, edema or pleural effusion due to cirrhosis is common and results from a derangement in the extracellular fluid volume regulatory mechanisms. Fluid retention is the most frequent complication of ESLD and occurs in about 50% of patients within 10 years of the diagnosis of cirrhosis. This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis. The one-year and five-year survival rate is 85% and 56%, respectively (Kashani et al., Fluid retention in cirrhosis: pathophysiology and management; QJM, v. 101, no. 2, p. 71-85 (2008)). The most acceptable theories postulate that the initial event in ascites formation in the cirrhotic patient is sinusoidal hypertension. Portal hypertension due to an increase in sinusoidal pressure activates vasodilatory mechanisms. In advanced stages of cirrhosis, arteriolar vasodilation causes underfilling of systemic arterial vascular space. This event, through a decrease in effective blood volume, leads to a drop in arterial pressure. Consequently, baroreceptor-mediated activation of renin-angiotensin aldosterone system, sympathetic nervous system and nonosmotic release of antidiuretic hormone occur to restore the normal blood homeostasis. These events cause further retention of renal sodium and fluid. Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity. Persistent renal sodium and fluid retention, alongside increased splanchnic vascular permeability in addition to lymph leakage into the peritoneal cavity, play a major role in a sustained ascites formation. Thiazolidinediones (TZD's), such as rosiglitazone, are peroxisome proliferator-activated receptor (PPAR) gamma agonist agents used for the treatment of type-2 diabetes and are widely prescribed. Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy. The incidence of TZD-induced fluid retention ranges from 7% in monotherapy and to as high as 15% when combined with insulin (Yan, T., Soodvilai, S., PPAR Research volume 2008, article ID 943614). The mechanisms for such side-effects are not fully understood but may be related in Na and fluid re-absorption in the kidney. However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events. In view of the foregoing, it is recognized that salt and fluid accumulation contribute to the morbidity and mortality of many diseases, including heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and the like. It is also accepted that salt and fluid accumulation are risk factors for hypertension. Accordingly, there is a clear need for a medicament that, when administered to a patient in need, would result in a reduction in sodium retention, fluid retention, or preferably both. Such a medicament would more preferably also not involve or otherwise impair renal mechanisms of fluid/Na homeostasis. One option to consider for treating excessive fluid overload is to induce diarrhea. Diarrhea may be triggered by several agents including, for example, laxatives such as sorbitol, polyethyleneglycol, bisacodyl and phenolphthaleine. Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited. The mechanism of action of phenolphthalein is not clearly established, but is thought to be caused by inhibition of the Na/K ATPase and the Cl/HCO3 anion exchanger and stimulation of electrogenic anion secretion (see, e.g., Eherer, A. J., C. A. Santa Ana, J. Porter, and J. S. Fordtran, 1993, Gastroenterology, v. 104, no. 4, p. 1007-1012). However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans. Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage. Accordingly, it should also be recognized that the induction of chronic diarrhea as part of an effort to control salt and fluid overload would be an undesired treatment modality for most patients. Any medicament utilizing the GI tract for this purpose would therefore need to control diarrhea in order to be of practical benefit. One approach for the treatment of mild diarrhea is the administration of a fluid-absorbing polymer, such as the natural plant fiber psyllium. Polymeric materials, and more specifically hydrogel polymers, may also be used for the removal of fluid from the gastrointestinal (GI) tract. The use of such polymers is described in, for example, U.S. Pat. Nos. 4,470,975 and 6,908,609, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract. Many mammals, including humans, make a soft feces with a water content of about 70%, and do so by transporting fluid against the high hydraulic resistance imposed by the fecal mass. Several studies show that the pressure required to dehydrate feces from about 80% to about 60% is between about 500 kPa and about 1000 kPa (i.e., about 5 to about 10 atm). (See, e.g., McKie, A. T., W. Powrie, and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G391-G394; Bleakman, D., and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G377-G390; Zammit, P. S., M. Mendizabal, and R. J. Naftalin, 1994, J Physiol, v. 477 (Pt 3), p. 539-548.) However, the static pressure measured intraluminally is usually between about 6 kPa and about 15 kPa. The rather high pressure needed to dehydrate feces is essentially due to an osmotic process and not a mechanical process produced by muscular forces. The osmotic pressure arises from the active transport of salt across the colonic mucosa that ultimately produces a hypertonic fluid absorption. The osmotic gradient produced drives fluid from the lumen to the serosal side of the mucosa. Fluid-absorbing polymers, such as those described in for example U.S. Pat. Nos. 4,470,975 and 6,908,609, may not be able to sustain such pressure. Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt. Synthetic polymers that bind sodium have also been described. For example, ion-exchange polymeric resins, such as Dowex-type cation exchange resins, have been known since about the 1950's. However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity. Additionally, during the ion-exchange process, the resins may release a stochiometric amount of exogenous cations (e.g., H, K, Ca), which may in turn potentially cause acidosis (H), hyperkalemia (K) or contribute to vascular calcification (Ca). Such resins may also cause constipation. Gastrointestinal Tract Disorders Constipation is characterized by infrequent and difficult passage of stool and becomes chronic when a patient suffers specified symptoms for over 12 non-consecutive weeks within a 12-month period. Chronic constipation is idiopathic if it is not caused by other diseases or by use of medications. An evidence-based approach to the management of chronic constipation in North America (Brandt et al., 2005, Am. J. Gastroenterol. 100(Suppl. 1):S5-S21) revealed that prevalence is approximately 15% of the general population. Constipation is reported more commonly in women, the elderly, non-whites, and individuals from lower socioeconomic groups. Irritable bowel syndrome (IBS) is a common GI disorder associated with alterations in motility, secretion and visceral sensation. A range of clinical symptoms characterizes this disorder, including stool frequency and form, abdominal pain and bloating. The recognition of clinical symptoms of IBS are yet to be defined, but it is now common to refer to diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS), wherein D-IBS is defined as continuous passage of loose or watery stools and C-IBS as a group of functional disorders which present as difficult, infrequent or seemingly incomplete defecation. The pathophysiology of IBS is not fully understood, and a number of mechanisms have been suggested. Visceral hypersensitivity is often considered to play a major etiologic role and has been proposed to be a biological marker even useful to discriminate IBS from other causes of abdominal pain. In a recent clinical study (Posserud, I. et al, Gastroenterology, 2007; 133:1113-1123) IBS patients were submitted to a visceral sensitivity test (Balloon distention) and compared with healthy subjects. It revealed that 61% of the IBS patients had an altered visceral perception as measured by pain and discomfort threshold. Other reviews have documented the role of visceral hypersensitivity in abdominal pain symptomatic of various gastrointestinal tract disorders (Akbar, A, et al, Aliment. Pharmaco. Ther., 2009, 30, 423-435; Bueno et al., Neurogastroenterol Motility (2007) 19 (suppl. 1), 89-119). Colonic and rectal distention have been widely used as a tool to assess visceral sensitivity in animal and human studies. The type of stress used to induce visceral sensitivity varies upon the models (see for instance Eutamen, H Neurogastroenterol Motil. 2009 Aug. 25. [Epub ahead of print]), however stress such as Partial restraint stress (PRS) is a relatively mild, non-ulcerogenic model that is considered more representative of the IBS setting. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects. Opioid-induced constipation (OIC) (also referred to as opioid-induced bowel dysfunction or opioid bowel dysfunction (OBD)) is a common adverse effect associated with opioid therapy. OIC is commonly described as constipation; however, it is a constellation of adverse gastrointestinal (GI) effects, which also includes abdominal cramping, bloating, and gastroesophageal reflux. Patients with cancer may have disease-related constipation, which is usually worsened by opioid therapy. However, OIC is not limited to cancer patients. A recent survey of patients taking opioid therapy for pain of non-cancer origin found that approximately 40% of patients experienced constipation related to opioid therapy (<3 complete bowel movements per week) compared with 7.6% in a control group. Of subjects who required laxative therapy, only 46% of opioid-treated patients (control subjects, 84%) reported achieving the desired treatment results >50% of the time (Pappagallo, 2001, Am. J. Surg. 182(5A Suppl.):11S-18S). Some patients suffering from chronic idiopathic constipation can be successfully treated with lifestyle modification, dietary changes and increased fluid and fiber intake, and these treatments are generally tried first. For patients who fail to respond to these approaches, physicians typically recommend laxatives, most of which are available over-the-counter. Use of laxatives provided over-the-counter is judged inefficient by about half of the patients (Johanson and Kralstein, 2007, Aliment. Pharmacol. Ther. 25(5):599-608). Other therapeutic options currently prescribed or in clinical development for the treatment of IBS and chronic constipation including OIC are described in, for example: Chang et al., 2006, Curr. Teat. Options Gastroenterol. 9(4):314-323; Gershon and Tack, 2007, Gastroenterology 132(1):397-414; and, Hammerle and Surawicz, 2008, World J. Gastroenterol. 14(17):2639-2649. Such treatments include but are not limited to serotonin receptor ligands, chloride channel activators, opioid receptor antagonists, guanylate-cyclase receptor agonists and nucleotide P2Y(2) receptor agonists. Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal. Na+/H+ Exchanger (NHE) Inhibitors A major function of the GI tract is to maintain water/Na homeostasis by absorbing virtually all water and Na to which the GI tract is exposed. The epithelial layer covering the apical surface of the mammalian colon is a typical electrolyte-transporting epithelium, which is able to move large quantities of salt and water in both directions across the mucosa. For example, each day the GI tract processes about 9 liters of fluid and about 800 meq of Na. (See, e.g., Zachos et al., Molecular physiology of intestinal Na+/H+ exchange; Annu. Rev. Physiol., v. 67, p. 411-443 (2005).) Only about 1.5 liters of this fluid and about 150 meq of this sodium originates from ingestion; rather, the majority of the fluid (e.g., about 7.5 liters) and sodium (about 650 meq) is secreted via the GI organs as part of digestion. The GI tract therefore represents a viable target for modulating systemic sodium and fluid levels. Many reviews have been published on the physiology and secretory and/or absorption mechanisms of the GI tract (see, e.g., Kunzelmann et al., Electrolyte transport in the mammalian colon: mechanisms and implications for disease; Physiol. Rev., v. 82, no. 1, p. 245-289 (2002); Geibel, J. P.; Secretion and absorption by colonic crypts; Annu. Rev. Physiol, v. 67, p. 471-490 (2005); Zachos et al., supra; Kiela, P. R. et al., Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl. 7, p. 51-79 (2006)). The two main mechanisms of Na absorption are electroneutral and electrogenic transport. Electroneutral transport is essentially due to the Na+/H+ antiport NHE (e.g., NHE-3) and is responsible for the bulk of Na absorption. Electrogenic transport is provided by the epithelium sodium channel (“ENaC”). Electroneutral transport is located primarily in the ileal segment and proximal colon and electrogenic transport is located in the distal colon. Plasma membrane NHEs contribute to maintenance of intracellular pH and volume, transcellular absorption of NaCl and NaHCO3, and fluid balance carried out by epithelial cells, especially in the kidney, intestine, gallbladder, and salivary glands, as well as regulation of systemic pH. There exists a body of literature devoted to the role and clinical intervention on systemic NHEs to treat disorders related to ischemia and reperfusion for cardioprotection or renal protection. Nine isoforms of NHEs have been identified (Kiela, P. R., et al.; Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl 7, p. 51-79 (2006)), of which NHE-2, NHE-3 and NHE-8 are expressed on the apical side of the GI tract, with NHE-3 providing a larger contribution to transport. Another, yet to be identified, Cl-dependant NHE has been identified in the crypt of rat cells. In addition, much research has been devoted to identifying inhibitors of NHEs. The primary targets of such research have been NHE-1 and NHE-3 Small molecule NHE inhibitors are, for example, described in: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,736,705; 6,887,870; 6,737,423; 7,326,705; 5,824,691 (WO 94/026709); 6,399,824 (WO 02/024637); U.S. Pat. Pub. Nos. 2004/0039001 (WO 02/020496); 2005/0020612 (WO 03/055490); 2004/0113396 (WO 03/051866); 2005/0020612; 2005/0054705; 2008/0194621; 2007/0225323; 2004/0039001; 2004/0224965; 2005/0113396; 2007/0135383; 2007/0135385; 2005/0244367; 2007/0270414; International Publication Nos. WO 01/072742; WO 01/021582 (CA2387529); WO 97/024113 (CA02241531) and European Pat. No. EP0744397 (CA2177007); all of which are incorporated herein by reference in their entirety for all relevant and consistent purposes. However, such research failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract, as disclosed recently in WO 2010/078449. Such inhibitors can be utilized in the treatment of disorders associated with fluid retention and salt overload and in the treatment of GI tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. Such inhibitors are particular advantageous because they can be delivered with reduced fear of systemic on-target or off-target effects (e.g., little or no risk of renal involvement or other systemic effects. Accordingly, while progress has been made in the foregoing fields, there remains a need in the art for novel compounds for use in the disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY OF INVENTION In brief, the present invention is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. In one embodiment, a compound is provided having the following structure of Formula (I): CoreL-NHE)n  (I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (a) n is an integer of 2 or more; (b) Core is a Core moiety having two or more sites thereon for attachment to two or more NHE-inhibiting small molecule moieties; (c) L is a bond or linker connecting the Core moiety to the two or more NHE-inhibitory small molecule moieties; and (d) NHE is a NHE-inhibiting small molecule moiety having the following structure of Formula (XI): wherein: B is selected from the group consisting of aryl and heterocyclyl; each R5 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-4alkyl, optionally substituted C1-4alkoxy, optionally substituted C1-4thioalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxyl, oxo, cyano, nitro, —NR7R8, —NR7C(═O)R8, —NR7C(═O)OR8, —NR7C(═O)NR8R9, —NR7SO2R8, —NR7S(O)2NR8R9, —C(═O)OR7, —C(═O)R7, —C(═O)NR7R8, —S(O)1-2R7, and —SO2NR7R8, wherein R7, R8, and R9 are independently selected from the group consisting of hydrogen, C1-4alkyl, or a bond linking the NHE-inhibiting small molecule moiety to L, provided at least one is a bond linking the NHE-inhibiting small molecule moiety to L; R3 and R4 are independently selected from the group consisting of hydrogen, optionally substituted C1-4alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl and optionally substituted heteroaryl; or R3 and R4 form together with the nitrogen to which they are bonded an optionally substituted 4-8 membered heterocyclyl; and each R1 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-6alkyl and optionally substituted C1-6alkoxy. In more specific embodiments, n is 2. In other more specific embodiments, L is a polyalkylene glycol linker. For example, in certain embodiments, L is a polyethylene glycol linker. In other more specific embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. For example, in certain embodiments, the Core is selected from the group consisting of: In other more specific embodiments, the NHE-inhibiting small molecule moiety has the following structure of Formula (XII): wherein: each R3 and R4 are independently selected from the group consisting of hydrogen and optionally substituted C1-4alkyl, or R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 4-8 membered heterocyclyl; each R1 is independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, and C1-6haloalkyl; and R5 is selected from the group consisting of —SO2—NR7— and NHC(═O)NH—, wherein R7 is hydrogen or C1-4alkyl. In further more specific embodiments, R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 5 or 6 membered heterocyclyl. For example, in certain embodiments, (i) the optionally substituted 5 or 6 membered heterocyclyl is pyrrolidinyl or piperidinyl, or (ii) the optionally substituted 5 or 6 membered heterocyclyl is pyrrolidinyl or piperidinyl, each substituted with at least one amino or hydroxyl. In other further more specific embodiments, R3 and R4 are independently C1-4alkyl. For example, in certain embodiments, R3 and R4 are methyl. In other further more specific embodiments, each R1 is independently selected from the group consisting of hydrogen or halogen. For example, in certain embodiments, each R1 is independently selected from the group consisting of hydrogen, F and Cl. In another embodiment, a pharmaceutical composition is provided comprising a compound as set forth above, or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the composition further comprises a fluid-absorbing polymer. In further embodiments, the fluid-absorbing polymer is delivered directly to the colon. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 5 kPa. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 10 kPa. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 10 g/g. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 15 g/g. In further embodiments, the fluid-absorbing polymer is superabsorbent. In further embodiments, the fluid-absorbing polymer is a crosslinked, partially neutralized polyelectrolyte hydrogel. In further embodiments, the fluid-absorbing polymer is a crosslinked polyacrylate. In further embodiments, the fluid-absorbing polymer is a polyelectrolyte. In further embodiments, the fluid-absorbing polymer is calcium Carbophil. In further embodiments, the fluid-absorbing polymer is prepared by a high internal phase emulsion process. In further embodiments, the fluid-absorbing polymer is a foam. In further embodiments, the fluid-absorbing polymer is prepared by a aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker and a free radical initiator redox system in water. In further embodiments, the fluid-absorbing polymer is a hydrogel. In further embodiments, the fluid-absorbing polymer is an N-alkyl acrylamide. In further embodiments, the fluid-absorbing polymer is a superporous gel. In further embodiments, the fluid-absorbing polymer is naturally occurring. In further embodiments, the fluid-absorbing polymer is selected from the group consisting of xanthan, guar, wellan, hemicelluloses, alkyl-cellulose hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In further embodiments, the fluid-absorbing polymer is psyllium. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight. In further embodiments, the composition further comprises another pharmaceutically active agent or compound. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, aldosterone synthase inhibitor, renin inhibitor, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of an analgesic peptide or agent. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In another embodiment, a method for inhibiting NHE-mediated antiport of sodium and hydrogen ions is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder associated with fluid retention or salt overload is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder selected from the group consisting of heart failure (such as congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, the disorder is, but not limited to, a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, and chronic alcoholism, and the like. In another embodiment, a method for treating hypertension is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium and/or fluid. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium by at least about 30 mmol, and/or fluid by at least about 200 ml. In further embodiments, the mammal's fecal output of sodium and/or fluid is increased without introducing another type of cation in a stoichiometric or near stoichiometric fashion via an ion exchange process. In further embodiments, the method further comprises administering to the mammal a fluid-absorbing polymer to absorb fecal fluid resulting from the use of the compound that is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. In further embodiments, the compound or composition is administered to treat hypertension. In further embodiments, the compound or composition is administered to treat hypertension associated with dietary salt intake. In further embodiments, administration of the compound or composition allows the mammal to intake a more palatable diet. In further embodiments, the compound or composition is administered to treat fluid overload. In further embodiments, the fluid overload is associated with congestive heart failure. In further embodiments, the fluid overload is associated with end stage renal disease. In further embodiments, the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. In further embodiments, the compound or composition is administered to treat sodium overload. In further embodiments, the compound or composition is administered to reduce interdialytic weight gain in ESRD patients. In further embodiments, the compound or composition is administered to treat edema. In further embodiments, the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. In further embodiments, the compound or composition is administered to treat gastric ulcers. In further embodiments, the compound or composition is administered to treat infectious diarrhea. In further embodiments, the compound or composition is administered to treat cancer (colorectal). In further embodiments, the compound or composition is administered to treat “leaky gut syndrome”. In further embodiments, the compound or composition is administered to treat cystic fibrosis gastrointestinal disease. In further embodiments, the compound or composition is administered to treat multi-organ failure. In further embodiments, the compound or composition is administered to treat microscopic colitis. In further embodiments, the compound or composition is administered to treat necrotizing enterocolitis. In further embodiments, the compound or composition is administered to treat atopy. In further embodiments, the compound or composition is administered to treat food allergy. In further embodiments, the compound or composition is administered to treat respiratory infections. In further embodiments, the compound or composition is administered to treat acute inflammation (e.g., sepsis, systemic inflammatory response syndrome). In further embodiments, the compound or composition is administered to treat chronic inflammation (e.g., arthritis). In further embodiments, the compound or composition is administered to treat obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease). In further embodiments, the compound or composition is administered to treat kidney disease. In further embodiments, the compound or composition is administered to treat diabetic kidney disease. In further embodiments, the compound or composition is administered to treat cirrhosis. In further embodiments, the compound or composition is administered to treat steatohepatitis. In further embodiments, the compound or composition is administered to treat nonalcoholic fatty acid liver disease. In further embodiments, the compound or composition is administered to treat steatosis. In further embodiments, the compound or composition is administered to treat primary sclerosing cholangitis. In further embodiments, the compound or composition is administered to treat primary biliary cholangitis. In further embodiments, the compound or composition is administered to treat portal hypertension. In further embodiments, the compound or composition is administered to treat autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), or Raynaud's syndrome). In further embodiments, the compound or composition is administered to treat Schizophrenia. In further embodiments, the compound or composition is administered to treat autism spectrum disorders. In further embodiments, the compound or composition is administered to treat hepatic encephlopathy. In further embodiments, the compound or composition is administered to treat chronic alcoholism. In further embodiments, the compound or composition is administered orally, by rectal suppository, or enema. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, aldosterone synthase inhibitor, renin inhibitor, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. In another embodiment, a method for treating a gastrointestinal tract disorder is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the gastrointestinal tract disorder is a gastrointestinal motility disorder. In further embodiments, the gastrointestinal tract disorder is irritable bowel syndrome. In further embodiments, the gastrointestinal tract disorder is chronic constipation. In further embodiments, the gastrointestinal tract disorder is chronic idiopathic constipation. In further embodiments, the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. In further embodiments, the gastrointestinal tract disorder is opioid-induced constipation. In further embodiments, the gastrointestinal tract disorder is a functional gastrointestinal tract disorder. In further embodiments, the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. In further embodiments, the gastrointestinal tract disorder is Crohn's disease. In further embodiments, the gastrointestinal tract disorder is ulcerative colitis. In further embodiments, the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. In further embodiments, the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). In further embodiments, the gastrointestinal tract disorder is constipation induced by calcium supplement. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with the use of a therapeutic agent. In further embodiments, the gastrointestinal tract disorder is associated with disturbance of pH. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with a neuropathic disorder. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is post-surgical constipation (postoperative ileus). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is idiopathic (functional constipation or slow transit constipation). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is due the use of drugs selected from analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In other embodiments, the gastrointestinal tract disorder is associated with gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), or Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, or chronic alcoholism. In another embodiment, a method for treating irritable bowel syndrome is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments of the above embodiments, the compound or composition is administered to treat or reduce pain associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce inflammation of the gastrointestinal tract. In further embodiments, the compound or composition is administered to reduce gastrointestinal transit time. In further embodiments, the compound or composition is administered either orally or by rectal suppository. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition, in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. In further embodiments, the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), and a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-1D: Depicts NHE3-independent changes in intracellular pH (pHi) modulate trans-epithelial electrical resistance in intestinal ileum monolayer cultures. Changes in pHi and trans-epithelial electrical resistance (TEER) with (FIG. 1A, FIG. 1B) nigericin and (FIG. 1C, FIG. 1D) BAM15 (3 μM) and FCCP (3 μM) compared with the known NHE3 inhibitor tenapanor and vehicle (DMSO) control in monolayer cultures. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs DMSO. DETAILED DESCRIPTION OF THE INVENTION In accordance with the present disclosure, and as further detailed herein below, it has been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various disorders that may be associated with or caused by fluid retention and/or salt overload, and/or disorders such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from, for example, CHF, ESRD/CKD and/or liver disease. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE-inhibiting compound. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of hypertension, that may be associated with or caused by fluid retention and/or salt overload. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from hypertension. Such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE-inhibiting compound. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, and more particularly to the restoration of appropriate fluid secretion in the gut and the improvement of pathological conditions encountered in constipation states. Applicants have further recognized that by blocking sodium ion re-absorption, the compounds of the present disclosure restore fluid homeostasis in the GI tract, particularly in situations wherein fluid secretion/absorption is altered in such a way that it results in a high degree of feces dehydration, low gut motility, and/or a slow transit-time producing constipation states and GI discomfort generally. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE-inhibiting compound. Due to the presence of NHEs in other organs or tissues in the body, the method of the present disclosure employs the use of compounds and compositions that are desirably highly selective or localized, thus acting substantially in the gastrointestinal tract without exposure to other tissues or organs. In this way, any systemic effects can be minimized (whether they are on-target or off-target). Accordingly, it is to be noted that, as used herein, and as further detailed elsewhere herein, “substantially active in the gastrointestinal tract” generally refers to compounds that are substantially systemically non-bioavailable and/or substantially impermeable to the layer of epithelial cells, and more specifically epithelium of the GI tract. It is to be further noted that, as used herein, and as further detailed elsewhere herein, “substantially impermeable” more particularly encompasses compounds that are impermeable to the layer of epithelial cells, and more specifically the gastrointestinal epithelium (or epithelial layer). “Gastrointestinal epithelium” refers to the membranous tissue covering the internal surface of the gastrointestinal tract. Accordingly, by being substantially impermeable, a compound has very limited ability to be transferred across the gastrointestinal epithelium, and thus contact other internal organs (e.g., the brain, heart, liver, etc.). The typical mechanism by which a compound can be transferred across the gastrointestinal epithelium is by either transcellular transit (a substance travels through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes) and/or by paracellular transit, where a substance travels between cells of an epithelium, usually through highly restrictive structures known as “tight junctions”. Without wishing to be bound to any particular theory, it is believed that the NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure are believed to act via a distinct and unique mechanism, to decrease paracellular permeability of the intestine. NHE3 is expressed at high levels on the apical surface of the gastrointestinal tract and couples luminal Na absorption to the secretion of intracellular protons. Inhibition of NHE3, by the NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure, results in accumulation of intracellular protons. The intracellular proton retention accompanying NHE3 inhibition modulates the tight junction between cells to decrease paracellular permeability which can be measured by an increase in transepithelial electrical resistance. Since increased paracellular and/or transcellular permeability of the intestine is observed in many diseases including, but not limited to a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, multiple sclerosis-induced constipation, parkinson's disease-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel disease, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, and chronic alcoholism, and the like, it is anticipated that NHE inhibition could provide therapeutic benefit in these diseases by decreasing paracellular and/or transcellular permeability in the intestine. Thus in some embodiments, the present disclosure provides methods of decreasing paracellular permeability of the intestine. In some embodiments, the method of decreasing paracellular permeability of the intestine comprises administration of an NHE3 inhibitor. In some embodiments, the inhibition of NHE3 results in an accumulation of intracellular protons. In some embodiments, the decrease in paracellular permeability is due to an increase in intracellular protons independent of and without NHE3 inhibition. In other words, an increase in intracellular protons without NHE3 inhibition results in a decrease in paracellular permeability. Thus methods of decreasing paracellular permeability comprising increasing intracellular protons is provided. In some embodiments, methods of treating diseases associated with paracellular permeability are provided comprising administering an agent that increases intracellular protons at tight junctions thereby decreasing paracellular permeability and thus treating the disease. Non limiting examples of such diseases include, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrosis gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, allergy—atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, and chronic alcoholism, and the like. In some embodiments, the present disclosure provides methods of modulating transcellular permeability of the intestine. In some embodiments, the method of modulating transcellular permeability of the intestine comprises administration of an NHE3 inhibitor. In some embodiments, the inhibition of NHE3 results in a substance travelling through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes. Thus methods of modulating transcellular permeability comprising mediating either passive or active transport of a substance passing through both the apical and basolateral membranes is provided. In some embodiments, methods of treating diseases associated with transcellular permeability are provided comprising administering an agent that mediates either passive or active transport of a substance passing through both the apical and basolateral membranes of a cell, thereby modulating transcellular permeability and thus treating the disease. Non limiting examples of such diseases include a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, multiple sclerosis-induced constipation, parkinson's disease-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction. The compounds of the present disclosure may therefore not be absorbed, and are thus essentially not systemically bioavailable at all (e.g., impermeable to the gastrointestinal epithelium at all), or they show no detectable concentration of the compound in serum. Alternatively, the compounds may: (i) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the liver (i.e., hepatic extraction) via first-pass metabolism; and/or (ii) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the kidney (i.e., renal excretion). Compounds may also be cleared from circulation unchanged into the bile by biliary excretion. The compounds of the present disclosure may therefore not exhibit detectable concentrations in the bile. Alternatively, the compounds may exhibit some detectable concentration in the bile and more particularly the epithelium of the biliary tract and gallbladder of 10 μM, less than 1 μM, less than 0.1 μM, less than 0.01 μM or less than about 0.001 μM. In this regard it is to be still further noted that, as used herein, “substantially systemically non-bioavailable” generally refers to the inability to detect a compound in the systemic circulation of an animal or human following an oral dose of the compound. For a compound to be bioavailable, it must be transferred across the gastrointestinal epithelium (that is, substantially permeable as defined above), be transported via the portal circulation to the liver, avoid substantial metabolism in the liver, and then be transferred into systemic circulation. Without being held to any particular theory, the NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure are believed to act via a distinct and unique mechanism, causing the retention of fluid and ions in the GI tract (and stimulating fecal excretion) rather than stimulating increased secretion of said fluid and ions. For example, lubiprostone (Amitiza® Sucampo/Takeda) is a bicyclic fatty acid prostaglandin E1 analog that activates the Type 2 Chloride Channel (ClC-2) and increases chloride-rich fluid secretion from the serosal to the mucosal side of the GI tract (see, e.g., Pharmacological Reviews for Amitiza®, NDA package). Linaclotide (MD-1100 acetate, Microbia/Forest Labs) is a 14 amino acid peptide analogue of an endogenous hormone, guanylin, and indirectly activates the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) thereby inducing fluid and electrolyte secretion into the GI (see, e.g., Li et al., J. Exp. Med., vol. 202 (2005), pp. 975-986). The substantially impermeable NHE-inhibiting compounds of the present disclosure act to inhibit the reuptake of salt and fluid rather than promote secretion. Since the GI tract processes about 9 liters of fluid and about 800 meq of Na each day, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to resorb edema and resolve CHF symptoms. I. Substantially Impermeable or Substantially Systemically Non-Bioavailable NHE-Inhibiting Compounds In one embodiment, the compounds of the present disclosure may be generally represented by Formula (I): CoreL-NHE)n  (I) or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: (i) NHE represents a NHE-inhibiting small molecule moiety as set forth below, (ii) n is an integer of 2 or more, (iii) Core is a Core moiety having two or more sites thereon for attachment to two or more NHE-inhibiting small molecule moieties, and (iv) L is a bond or linker connecting the Core moiety to the two or more NHE-inhibitory small molecule moieties, the resulting NHE-inhibiting compound (i.e., a compound of Formula (I)) possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The Core moiety may be bound to essentially any position on, or within, the NHE-inhibiting small molecule moiety, provided that the installation thereof does not significantly adversely impact NHE-inhibiting activity. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-inhibiting small molecule moiety and the Core moiety is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-inhibiting small molecule moiety is bound or connected in some way (e.g., by a bond or linker of some kind) to the Core moiety, such that the resulting NHE-inhibiting compound is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). NHE-inhibiting small molecule moieties suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) in the preparation of the substantially impermeable or substantially systemically nonbioavailable NHE-inhibiting compounds of the present disclosure are disclosed in WO 2010/025856, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and have the following structure of Formula (X): The variables in the structure are defined in the cited references, the details of which are incorporated herein by reference. In more specific embodiments, the NHE-inhibiting small molecule moiety has the following structure of Formula (XI): wherein: B is selected from the group consisting of aryl and heterocyclyl; each R5 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-4alkyl, optionally substituted C1-4alkoxy, optionally substituted C1-4thioalkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted aryl, optionally substituted heteroaryl, hydroxyl, oxo, cyano, nitro, —NR7R8, —NR7C(═O)R8, —NR7C(═O)OR8, —NR7C(═O)NR8R9, —NR7SO2R8, —NR7S(O)2NR8R9, —C(═O)OR7, —C(═O)R7, —C(═O)NR7R8, —S(O)1-2R7, and —SO2NR7R8, wherein R7, R8, and R9 are independently selected from the group consisting of hydrogen, C1-4alkyl, or a bond linking the NHE-inhibiting small molecule moiety to L, provided at least one is a bond linking the NHE-inhibiting small molecule moiety to L; R3 and R4 are independently selected from the group consisting of hydrogen, optionally substituted C1-4alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl and optionally substituted heteroaryl; or R3 and R4 form together with the nitrogen to which they are bonded an optionally substituted 4-8 membered heterocyclyl; and each R1 is independently selected from the group consisting of hydrogen, halogen, optionally substituted C1-6alkyl and optionally substituted C1-6alkoxy. In yet further more specific embodiments, the NHE-inhibiting small molecule moiety has the following structure of Formula (XII): wherein: each R3 and R4 are independently selected from the group consisting of hydrogen and optionally substituted C1-4alkyl, or R3 and R4, taken together with the nitrogen to which they are bonded, form an optionally substituted 4-8 membered heterocyclyl; each R1 is independently selected from the group consisting of hydrogen, halogen, C1-6alkyl, and C1-6haloalkyl; and R5 is selected from the group consisting of —SO2—NR7— and NHC(═O)NH—, wherein R7 is hydrogen or C1-4alkyl. In various alternative embodiments, the NHE-inhibiting small molecule moiety may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-inhibiting small molecule moieties, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (II): wherein: NHE is as defined above; L is a bond or linker, as further defined elsewhere herein; and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-inhibiting small molecule moeity is modified (e.g., increased) by having a series of NHE-inhibiting small molecule moieties linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In yet additional alternative embodiments, the polyvalent NHE-inhibiting compound may be in oligomeric or polymeric form, wherein a backbone is bound (by means of a linker, for example) to multiple NHE-inhibiting small molecule moieties. Such compounds may have, for example, the structures of Formulas (IIIA) or (IIIB): wherein: NHE is as defined above; L is a bond or linker, as further defined elsewhere herein; and n is a non-zero integer (i.e., an integer of 1 or more). It is to be noted that the repeat unit in Formulas (IIIA) and (IIIB) generally encompasses repeating units of various polymeric embodiments, including linear, branched and dendritic structures, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-inhibiting small molecule moiety by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-inhibiting small molecule moieties therein. In the foregoing polyvalent embodiments, L may be a polyalkylene glycol linker, such as a polyethylene glycol linker; and/or the Core may have the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6- and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. For example, in more specific embodiments, the Core may be selected, for example, from the group consisting of: In other more specific embodiments, the Core may be selected, for example, from the group consisting of: The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each NHE-inhibiting small molecule moiety in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medical Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the molecule, allowing an increase in distance between the NHE-inhibiting small molecule moieties while minimally increasing rotational degrees of freedom. In an alternative embodiment, wherein m=0, the structure may be, for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, E, n and m may be within the range of from about 1 to about 50, or from about 1 to about 20. In designing and making the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a NHE-inhibiting small molecule moiety, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE-inhibiting small molecule moiety and then testing these adducts to determine whether the modified compound still retains desired biological properties (e.g., NHE-inhibiting activity). An understanding of the SAR of the compound also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. Another aspect to be considered in the design of cores and linkers is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-inhibiting compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of a NHE-inhibiting small molecule moiety to a core or linker. These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. NHE-inhibiting small molecule moieties may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE-inhibiting small molecule moiety may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3] cycloaddition. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the Examples and the following: The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-inhibiting small molecule moiety is linked to a Core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the NHE-inhibiting small molecule moieties), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either a NHE-inhibiting small molecule moiety or a linker moiety displaying a NHE-inhibiting small molecule moiety, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety may be a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001). In this approach, the NHE-inhibiting small molecule moiety is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE-inhibiting small molecule moiety is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as comonomers. For example, specific monomers or comonomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE-inhibiting small molecule moiety is attached, or otherwise a part of, is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE-inhibiting small molecule moiety is attached at one or both ends of the polymer chain More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures (wherein is a NHE-inhibiting small molecule moiety) may be designed and constructed as described herein: It is understood that any embodiment of the compounds of the present invention, as set forth above, and any specific substituent set forth herein in such compounds, as set forth above, may be independently combined with other embodiments and/or substituents of such compounds to form embodiments of the inventions not specifically set forth above. In addition, in the event that a list of substituents is listed for any particular substituent in a particular embodiment and/or claim, it is understood that each individual substituent may be deleted from the particular embodiment and/or claim and that the remaining list of substituents will be considered to be within the scope of the invention. Furthermore, it is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds. II. Terminology, Physical and Performance Properties A. Terminology Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-C12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure (which includes the NHE-inhibitor small molecule), remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.; stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelium layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). B. Permeability In this regard it is to be noted that, in various embodiments, the ability of a compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacodynamics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable NHE-inhibiting compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; and/or (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0). In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in Á2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is now available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 1, below): TABLE 1 name % FAa TPSAa metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some preferred embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. (As previously noted above, see for example U.S. Pat. No. 6,737,423, Example 31 for a description of the Caco-2 Model, which is incorporated herein by reference). A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa, may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, no AN1725EN00, and no AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, a NHE-inhibiting small molecule moiety is modified as described above to hinder the net absorption through a layer of gut epithelial cells, rendering the resulting compound substantially systemically non-bioavailable. In various embodiments, the compounds of the present disclosure comprise an NHE-inhibiting small molecule moiety linked, coupled or otherwise attached to a moiety which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. More specifically, the NHE-inhibiting small molecule moiety is coupled to a dimer, multimer or polymer moiety, such that the resulting compound is substantially impermeable or substantially systemically non-bioavailable. The dimer, multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. C. Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with the epithelial cell (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., sodium transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the NHE-inhibiting compounds to the NHE protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of sodium transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing NHE transporters are split in different vials and treated with a NHE-inhibiting compound and sodium solution to measure the rate of sodium uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and sodium uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of Na is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for sodium balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical NHE transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing NHE antiport inhibitors with several NHE-inhibiting small molecule moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, October 5(4), pp. 312-8.) D. GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds sustain the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to enzymatic metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. E. Sodium and/or Fluid Output It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may act to increase the patient's daily fecal output of sodium by at least about 20, about 30 mmol, about 40 mmol, about 50 mmol, about 60 mmol, about 70 mmol, about 80 mmol, about 90 mmol, about 100 mmol, about 125 mmol, about 150 mmol or more, the increase being for example within the range of from about 20 to about 150 mmol/day, or from about 25 to about 100 mmol/day, or from about 30 to about 60 mmol/day Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patent in need thereof, may act to increase the patient's daily fluid output by at least about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml or more, the increase being for example within the range of from about 100 to about 1000 ml/day, or from about 150 to about 750 ml/day, or from about 200 to about 500 ml/day (assuming isotonic fluid). F. Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 1 μM to about 10 μM, or about 2.5 μM to about 7.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-inhibiting compounds detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the NHE-inhibiting compounds as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as Cmax, is lower than the NHE inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NHE-mediated Na/H antiport activity in a cell based assay. III. Pharmaceutical Compositions and Methods of Treatment A. Compositions and Methods 1. Fluid Retention and/or Salt Overload Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various disorders associated with fluid retention and/or salt overload in the gastrointestinal tract (e.g., hypertension, heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention) comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” or “mammal” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment may be suffering from hypertension; from salt-sensitive hypertension which may result from dietary salt intake; from a risk of a cardiovascular disorder (e.g., myocardial infarction, congestive heart failure and the like) resulting from hypertension; from heart failure (e.g., congestive heart failure) resulting in fluid or salt overload; from chronic kidney disease resulting in fluid or salt overload, from end stage renal disease resulting in fluid or salt overload; from liver disease resulting in fluid or salt overload; from peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention; or from edema resulting from congestive heart failure or end stage renal disease. In various embodiments, a subject in need of treatment typically shows signs of hypervolemia resulting from salt and fluid retention that are common features of congestive heart failure, renal failure, liver alopeccia, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. Fluid retention and salt retention manifest themselves by the occurrence of shortness of breath, edema, ascites or interdialytic weight gain. Other examples of subjects that would benefit from the treatment are those suffering from congestive heart failure and hypertensive patients and, particularly, those who are resistant to treatment with diuretics, i.e., patients for whom very few therapeutic options are available. A subject “in need of treatment” also includes a subject with hypertension, salt-sensitive blood pressure and subjects with systolic/diastolic blood pressure greater than about 130-139/85-89 mm Hg. In yet other embodiments, the constipation is associated with gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. Administration of NHE-inhibiting compounds, with or without administration of fluid-absorbing polymers, may be beneficial for patients put on “non-added salt” dietary regimen (i.e., 60-100 mmol of Na per day), to liberalize their diet while keeping a neutral or slightly negative sodium balance (i.e., the overall uptake of salt would be equal of less than the secreted salt). In that context, “liberalize their diet” means that patients treated may add salt to their meals to make the meals more palatable, or/and diversify their diet with salt-containing foods, thus maintaining a good nutritional status while improving their quality of life. The treatment methods described herein may also help patients with edema associated with chemotherapy, pre-menstrual fluid overload and preeclampsia (pregnancy-induced hypertension). Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for treating hypertension, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with heart failure (in particular, congestive heart failure), the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with end stage renal disease, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. The method may be for reducing fluid overload associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. 2. Gastrointestinal Tract Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, comprises, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment is suffering from a gastrointestinal tract disorder; the patient is suffering from a disorder selected from the group consisting of: a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. In various preferred embodiments, the constipation to be treated is: associated with the use of a therapeutic agent; associated with a neuropathic disorder; post-surgical constipation (postoperative ileus); associated with a gastrointestinal tract disorder; idiopathic (functional constipation or slow transit constipation); associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). Constipation may also be the result of surgery (postoperative ileus) or due the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In yet other embodiments, the constipation is associated with gastric ulcers, infectious diarrhea, cancer (colorectal), “leaky gut syndrome”, cystic fibrossi gastrointestinal disease, multi-organ failure, microscopic colitis, necrotizing enterocolitis, atopy, food allergy, infections (respiratory), acute inflammation (e.g., sepsis, systemic inflammatory response syndrome), chronic inflammation (e.g., arthritis), obesity-induced metabolic diseases (e.g., nonalcoholic steatohepatitis, Type I diabetes, Type II diabetes, cardiovascular disease), kidney disease, diabetic kidney disease, cirrhosis, nonalcoholic steatohepatitis, nonalcoholic fatty acid liver disease, Steatosis, primary sclerosing cholangitis, primary biliary cholangitis, portal hypertension, autoimmune disease (e.g., Type 1 diabetes, ankylosing spondylitis, lupus, alopecia areata, rheumatoid arthritis, polymyalgia rheumatica, fibromyalgia, chronic fatigue syndrome, Sjogren's syndrome, vitiligo, thyroiditis, vasculitis, urticarial (hives), Raynaud's syndrome), Schizophrenia, autism spectrum disorders, hepatic encephlopathy, small intestinal bacterial overgrowth, chronic alcoholism, and the like. Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for increasing gastrointestinal motility in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. Additionally, or alternatively, the method may be for treating a gastrointestinal tract disorder, a gastrointestinal motility disorder, irritable bowel syndrome, chronic calcium-induced constipation in osteoporotic patients, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, Crohn's disease, ulcerative colitis, inflammatory bowel disease, the method comprising administering an antagonist of the intestinal NHE, and more specifically, a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it, either orally or by rectal suppository. Additionally, or alternatively, the method may be for treating or reducing pain, including visceral pain, pain associated with a gastrointestinal tract disorder or pain associated with some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. Additionally, or alternatively, the method may be for treating inflammation, including inflammation of the gastrointestinal tract, e.g., inflammation associated with a gastrointestinal tract disorder or infection or some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. 3. Metabolic Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various metabolic disorders including the treatment or reduction of type II diabetes mellitus (T2DM), metabolic syndrome, and/or symptoms associated with such disorders comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). Obesity is becoming a worldwide epidemic. In the United States, approximately ⅔rds of the population is either overweight (body mass index [BMI] 25 to 29.9) or obese (BMI≥30) (Ogden, C L et al, “Prevalence of overweight and obesity in the united states, 1999-2004” JAMA 2006, 295, 1549-1555). Obesity is a major risk factor for the development of diabetes and related complications, including cardiovascular disease and chronic kidney disease (CKD). The prevalence of T2DM has increased alarmingly in the United States. The American Diabetes Associated (ADA) estimates that more than 23 million U.S. adults aged 20 years or older have diabetes, with T2DM accounting for approximately 95% of these cases. The World Health Organization (WHO) has put the number of persons with diabetes worldwide at approximately 170 million (Campbell, R. K. “Type 2 diabetes: where we are today: an overview of disease burden, current treatments, and treatment strategies” Journal of the American Pharmacists Association 2009, 49(5), S3-S9). Obesity is also a major risk factor for the development of metabolic syndrome, and subsequently the development of CKD. Metabolic syndrome, previously known as Syndrome X, the plurimetabolic syndrome, the dysmetabolic syndrome, and other names, consists of a clustering of metabolic abnormalities including abdominal obesity, hypertriglyceridemia, low levels of high-density lipoprotein (HDL) cholesterol, elevated blood pressure (BP), and elevations in fasting glucose or diabetes (Townsend, R. R. et al “Metabolic Syndrome, Components, and Cardiovascular Disease Prevalence in Chronic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study” American Journal of Nephrology 2011, 33, 477-484). Metabolic syndrome is common in patients with CKD and an important risk factor for the development and progression of CKD. Hemodynamic factors appear to play a significant role in obesity-induced renal dysfunction. Hypertension, which is closely linked to obesity, appears to be a major cause of renal dysfunction in obese patients (Wahba, I. M. et al “Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease” Clinical Journal of the American Society of Nephrology 2007, 2, 550-562). Studies in animals and in humans have shown that obesity is associated with elevated glomerular filtration rate (GFR) and increased renal blood flow. This likely occurs because of afferent arteriolar dilation as a result of proximal salt reabsorption, coupled with efferent renal arteriolar vasoconstriction as a result of elevated angiotensin II levels. These effects may contribute to hyperfiltration, glomerulomegaly, and later focal glomerulosclerosis. Even though GFR is increased in obesity, urinary sodium excretion in response to a saline load is often delayed, and individuals exhibit an abnormal pressure natriuresis, indicating avid proximal tubular sodium reabsorption. In addition, increased fat distribution can cause increased intra-abdominal pressure, leading to renal vein compression, thus raising renal venous pressure and diminishing renal perfusion. In creased fat, through a variety of mechanisms, can cause elevated renal interstitial fluid hydrostatic fluid and may stimulate renal sodium retention the thereby contribute to hypertension (Wahba_2007). In view of the above, there exists a need in the art for agents that can divert sodium and fluid from a subject via mechanisms that either avoid the kidney, or do not depend upon normal kidney function. A “subject” with metabolic disease, including T2DM, metabolic syndrome, and the like, is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject with a metabolic disorder causing or exacerbating chronic kidney disease would benefit from a treatment modality that could divert excess sodium and fluid from the body by a method that does not require normally functionaling kidneys. Such a treatment would include the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a pharmaceutical composition comprising it. The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a combination therapy or regimen that includes the administration or use of other therapeutic compounds related to the treatment of metabolic disorders such as T2DM and metabolic syndrome. In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid absorbing polymer. B. Combination Therapies 1. Fluid Retention and/or Salt Overload Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with a diuretic (i.e., High Ceiling Loop Diuretics, Benzothiadiazide Diuretics, Potassium Sparing Diuretics, Osmotic Diuretics), cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, aldosterone synthase inhibitor, renin inhibitor, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, peroxisome proliferator-activated receptor (PPAR) gamma agonist agent or compound or with a fluid-absorbing polymer as more fully described below. The agent can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially systemically non-bioavailable NHE-inhibiting compound described herein and a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, aldosterone synthase inhibitor, renin inhibitor, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with a diuretic. Among the useful diuretic agents are, for example: High Ceiling Loop Diuretics [Furosemide (Lasix), Ethacrynic Acid (Edecrin), Bumetanide (Bumex)], Benzothiadiazide Diuretics [Hydrochlorothiazide (Hydrodiuril), Chlorothiazide (Diuril), Clorthalidone (Hygroton), Benzthiazide (Aguapres), Bendroflumethiazide (Naturetin), Methyclothiazide (Aguatensen), Polythiazide (Renese), Indapamide (Lozol), Cyclothiazide (Anhydron), Hydroflumethiazide (Diucardin), Metolazone (Diulo), Quinethazone (Hydromox), Trichlormethiazide (Naqua)], Potassium Sparing Diuretics [Spironolactone (Aldactone), Triamterene (Dyrenium), Amiloride (Midamor)], and Osmotic Diuretics [Mannitol (Osmitrol)]. Diuretic agents in the various classes are known and described in the literature. Cardiac glycosides (cardenolides) or other digitalis preparations can be administered with the compounds of the disclosure in co-therapy. Among the useful cardiac glycosides are, for example: Digitoxin (Crystodigin), Digoxin (Lanoxin) or Deslanoside (Cedilanid-D). Cardiac glycosides in the various classes are described in the literature. Angiotensin Converting Enzyme Inhibitors (ACE Inhibitors) can be administered with the compounds of the disclosure in co-therapy. Among the useful ACE inhibitors are, for example: Captopril (Capoten), Enalapril (Vasotec), Lisinopril (Prinivil). ACE inhibitors in the various classes are described in the literature. Angiotensin-2 Receptor Antagonists (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's) can be administered with the compounds of the disclosure in co-therapy. Among the useful Angiotensin-2 Receptor Antagonists are, for example: Candesartan (Atacand), Eprosartan (Teveten), Irbesartan (Avapro), Losartan (Cozaar), Telmisartan (Micardis), Valsartan (Diovan). Angiotensin-2 Receptor Antagonists in the various classes are described in the literature. Calcium channel blockers such as Amlodipine (Norvasc, Lotrel), Bepridil (Vascor), Diltiazem (Cardizem, Tiazac), Felodipine (Plendil), Nifedipine (Adalat, Procardia), Nimodipine (Nimotop), Nisoldipine (Sular), Verapamil (Calan, Isoptin, Verelan) and related compounds described in, for example, EP 625162B1, U.S. Pat. Nos. 5,364,842, 5,587,454, 5,824,645, 5,859,186, 5,994,305, 6,087,091, 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. Nos. 5,795,864, 5,891,849, 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with the compounds of the disclosure. Beta blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful beta blockers are, for example: Acebutolol (Sectral), Atenolol (Tenormin), Betaxolol (Kerlone), Bisoprolol/hydrochlorothiazide (Ziac), Bisoprolol (Zebeta), Carteolol (Cartrol), Metoprolol (Lopressor, Toprol XL), Nadolol (Corgard), Propranolol (Inderal), Sotalol (Betapace), Timolol (Blocadren). Beta blockers in the various classes are described in the literature. PPAR gamma agonists such as thiazolidinediones (also called glitazones) can be administered with the compounds of the disclosure in co-therapy. Among the useful PPAR agonists are, for example: rosiglitazone (Avandia), pioglitazone (Actos) and rivoglitazone. Aldosterone antagonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Aldosterone antagonists are, for example: eplerenone, spironolactone, and canrenone. Renin inhibitor can be administered with the compounds of the disclosure in co-therapy. Among the useful Renin inhibitors is, for example: aliskiren. Alpha blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful Alpha blockers are, for example: Doxazosin mesylate (Cardura), Prazosin hydrochloride (Minipress). Prazosin and polythiazide (Minizide), Terazosin hydrochloride (Hytrin). Alpha blockers in the various classes are described in the literature. Central alpha agonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Central alpha agonists are, for example: Clonidine hydrochloride (Catapres), Clonidine hydrochloride and chlorthalidone (Clorpres, Combipres), Guanabenz Acetate (Wytensin), Guanfacine hydrochloride (Tenex), Methyldopa (Aldomet), Methyldopa and chlorothiazide (Aldochlor), Methyldopa and hydrochlorothiazide (Aldoril). Central alpha agonists in the various classes are described in the literature. Vasodilators can be administered with the compounds of the disclosure in co-therapy. Among the useful vasodilators are, for example: Isosorbide dinitrate (Isordil), Nesiritide (Natrecor), Hydralazine (Apresoline), Nitrates/nitroglycerin, Minoxidil (Loniten). Vasodilators in the various classes are described in the literature. Blood thinners can be administered with the compounds of the disclosure in co-therapy. Among the useful blood thinners are, for example: Warfarin (Coumadin) and Heparin. Blood thinners in the various classes are described in the literature. Anti-platelet agents can be administered with the compounds of the disclosure in co-therapy. Among the useful anti-platelet agents are, for example: Cyclooxygenase inhibitors (Aspirin), Adenosine diphosphate (ADP) receptor inhibitors [Clopidogrel (Plavix), Ticlopidine (Ticlid)], Phosphodiesterase inhibitors [Cilostazol (Pletal)], Glycoprotein IIB/IIIA inhibitors [Abciximab (ReoPro), Eptifibatide (Integrilin), Tirofiban (Aggrastat), Defibrotide], Adenosine reuptake inhibitors [Dipyridamole (Persantine)]. Anti-platelet agents in the various classes are described in the literature. Lipid-lowering agents can be administered with the compounds of the disclosure in co-therapy. Among the useful lipid-lowering agents are, for example: Statins (HMG CoA reductase inhibitors), [Atorvastatin (Lipitor), Fluvastatin (Lescol), Lovastatin (Mevacor, Altoprev), Pravastatin (Pravachol), Rosuvastatin Calcium (Crestor), Simvastatin (Zocor)], Selective cholesterol absorption inhibitors [ezetimibe (Zetia)], Resins (bile acid sequestrant or bile acid-binding drugs) [Cholestyramine (Questran, Questran Light, Prevalite, Locholest, Locholest Light), Colestipol (Colestid), Colesevelam Hcl (WelChol)], Fibrates (Fibric acid derivatives) [Gemfibrozil (Lopid), Fenofibrate (Antara, Lofibra, Tricor, and Triglide), Clofibrate (Atromid-S)], Niacin (Nicotinic acid). Lipid-lowering agents in the various classes are described in the literature. The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. Nos. 5,140,102, 5,489,670, 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds described herein can be used in combination therapy with agents used for the treatment of obesity, T2DM, metabolic syndrome and the like. Among the useful agents include: insulin; insulin secretagogues, such as sulphonylureas; glucose-lowering effectors, such as metformin; activators of the peroxisome proliferator-activated receptor γ (PPARγ), such as the thiazolidinediones; incretin-based agents including dipeptidyl peptidase-4 inhibitors such as sitagliptin, and synthetic incretin mimetics such as liraglutide and exenatide; alpha-glucosidase inhibitors, such as acarbose; glinides, such as repaglinide and nateglinide, and the like. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Other agents include natriuretic peptides such as nesiritide, a recombinant form of brain-natriuretic peptide (BNP) and an atrial-natriuretic peptide (ANP). Vasopressin receptor antagonists such as tolvaptan and conivaptan may be co-administered as well as phosphate binders such as renagel, renleva, phoslo and fosrenol. Other agents include phosphate transport inhibitors (as described in U.S. Pat. Nos. 4,806,532; 6,355,823; 6,787,528; 7,119,120; 7,109,184; U.S. Pat. Pub. No. 2007/021509; 2006/0280719; 2006/0217426; International Pat. Pubs. WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, WO2003/080630, WO 2004/085448, WO 2004/085382; European Pat. Nos. 1465638 and 1485391; and JP Patent No. 2007131532, or phosphate transport antagonists such as Nicotinamide. 2. Gastrointestinal Tract Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with an analgesic peptide or compound. The analgesic peptide or compound can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound described herein and an analgesic peptide or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic peptide. The analgesic agent can optionally be covalently attached to a compound described herein. Among the useful analgesic agents are, for example: Ca channel blockers, 5HT3 agonists (e.g., MCK-733), 5HT4 agonists (e.g., tegaserod, prucalopride), and 5HT1 receptor antagonists, opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSR1), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Opioid receptor antagonists and agonists can be administered with the compounds of the disclosure in co-therapy or linked to the compound of the disclosure, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of opioid-induced constipaption (OIC). It can be useful to formulate opioid antagonists of this type in a delayed or sustained release formulation, such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in U.S. Pat. No. 6,734,188 (WO 01/32180 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine) is an agonist of the μ- and γ-opioid receptors and is thought to be useful for increasing intestinal motility (Eur. J. Pharm., 219:445, 1992), and this peptide can be used in conjunction with the compounds of the disclosure. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal peptide, gastrin and glucagons. K-opioid receptor agonists such as fedotozine, ketocyclazocine, and compounds described in US 2005/0176746 (WO 03/097051 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. In addition, μ-opioid receptor agonists, such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH2; disclosed in WO 01/019849 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of met-enkephalins to elicit an analgesic effect (J. Biol. Chem. 262:8165, 1987). Kyotorphin can be used with or linked to the compounds of the disclosure. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the compounds of the disclosure. Conotoxin peptides represent a large class of analgesic peptides that act at voltage gated Ca channels, NMDA receptors or nicotinic receptors. These peptides can be used with or linked to the compounds of the disclosure. Peptide analogs of thymulin (U.S. Pat. No. 7,309,690 or FR 2830451, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (U.S. Pat. No. 5,130,474 or WO 88/05774, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. Other useful analgesic agents include 5-HT4 agonists such as tegaserod/zelnorm and lirexapride. Such agonists are described in: EP1321142 A1, WO 03/053432A1, EP 505322 A1, EP 505322 B1, EP 507672 A1, EP 507672 B1, U.S. Pat. Nos. 5,510,353 and 5,273,983, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Calcium channel blockers such as ziconotide and related compounds described in, for example, EP 625162B1, U.S. Pat. Nos. 5,364,842, 5,587,454, 5,824,645, 5,859,186, 5,994,305, 6,087,091, 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. Nos. 5,795,864, 5,891,849, 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Various antagonists of the NK-1, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003 Drugs 6:758) can be can be used with or linked to the compounds of the disclosure. NK1 receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-14033 and related compounds described in, for example, EP 873753 A1, U.S. 20010006972 A1, U.S. 20030109417 A1, WO 01/52844 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the compounds of the disclosure. NK3 receptor antagonists such as osanetant (Sanofi-Synthelabo), talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 A1, WO 97/21680 A1, U.S. Pat. No. 6,277,862, WO 98/11090, WO 95/28418, WO 97/19927, and Boden et al. (J Med. Chem. 39:1664-75, 1996), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Norepinephrine-serotonin reuptake inhibitors such as milnacipran and related compounds described in WO 03/077897 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. The compounds can be used in combination therapy with a phosphodiesterase inhibitor (examples of such inhibitors can be found in U.S. Pat. No. 6,333,354, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes). The compounds can be used alone or in combination therapy to treat disorders associated with chloride or bicarbonate secretion that may lead to constipation, e.g., Cystic Fibrosis. The compounds can also or alternatively be used alone or in combination therapy to treat calcium-induced constipation effects. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of constipation effects associated therewith. The compounds of the current disclosure have can be used in combination with an opioid. Opioid use is mainly directed to pain relief, with a notable side-effect being GI disorder, e.g. constipation. These agents work by binding to opioid receptors, which are found principally in the central nervous system and the gastrointestinal tract. The receptors in these two organ systems mediate both the beneficial effects, and the undesirable side effects (e.g. decrease of gut motility and ensuing constipation). Opioids suitable for use typically belong to one of the following exemplary classes: natural opiates, alkaloids contained in the resin of the opium poppy including morphine, codeine and thebaine; semi-synthetic opiates, created from the natural opioids, such as hydromorphone, hydrocodone, oxycodone, oxymorphone, desomorphine, diacetylmorphine (Heroin), nicomorphine, dipropanoylmorphine, benzylmorphine and ethylmorphine; fully synthetic opioids, such as fentanyl, pethidine, methadone, tramadol and propoxyphene; endogenous opioid peptides, produced naturally in the body, such as endorphins, enkephalins, dynorphins, and endomorphins. The compound of the disclosure can be used alone or in combination therapy to alleviate GI disorders encountered with patients with renal failure (stage 3-5). Constipation is the second most reported symptom in that category of patients (Murtagh et al., 2006; Murtagh et al., 2007a; Murtagh et al., 2007b). Without being held by theory, it is believed that kidney failure is accompanied by a stimulation of intestinal Na re-absorption (Hatch and Freel, 2008). A total or partial inhibition of such transport by administration of the compounds of the disclosure can have a therapeutic benefit to improve GI transit and relieve abdominal pain. In that context, the compounds of the disclosure can be used in combination with Angiotensin-modulating agents: Angiotensin Converting Enzyme (ACE) inhibitors (e.g. captopril, enalopril, lisinopril, ramipril) and Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's); diuretics such as loop diuretics (e.g. furosemide, bumetanide), Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) and potassium-sparing diuretics: amiloride; beta blockers: bisoprolol, carvedilol, nebivolol and extended-release metoprolol; positive inotropes: Digoxin, dobutamine; phosphodiesterase inhibitors such as milrinone; alternative vasodilators: combination of isosorbide dinitrate/hydralazine; aldosterone receptor antagonists: spironolactone, eplerenone; natriuretic peptides: Nesiritide, a recombinant form of brain-natriuretic peptide (BNP), atrial-natriuretic peptide (ANP); vasopressin receptor antagonists: Tolvaptan and conivaptan; phosphate binder (Renagel, Renleva, Phoslo, Fosrenol); phosphate transport inhibitor such as those described in U.S. Pat. Nos. 4,806,532, 6,355,823, 6,787,528, WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, U.S. Pat. No. 7,119,120, EP 1465638, US Appl. 2007/021509, WO 2003/080630, U.S. Pat. No. 7,109,184, US Appl. 2006/0280719, EP 1485391, WO 2004/085448, WO 2004/085382, US Appl. 2006/0217426, JP 2007/131532, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, or phosphate transport antagonist (Nicotinamide). The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. Nos. 5,140,102, 5,489,670, 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with laxative agents such as bulk-producing agents, e.g. psyllium husk (Metamucil), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant such as docusate (Colace, Diocto); hydrating agents (osmotics), such as dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate; hyperosmotic agents: glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG). The compounds of the disclosure can be also be used in combination with agents that stimulate gut peristalsis, such as Bisacodyl tablets (Dulcolax), Casanthranol, Senna and Aloin, from Aloe Vera. In one embodiment, the compounds of the disclosure accelerate gastrointestinal transit, and more specifically in the colon, without substantially affecting the residence time in the stomach, i.e. with no significant effect on the gastric emptying time. Even more specifically the compounds of the invention restore colonic transit without the side-effects associated with delayed gastric emptying time, such as nausea. The GI and colonic transit are measured in patients using methods reported in, for example: Burton D D, Camilleri M, Mullan B P, et al., J. Nucl. Med., 1997; 38:1807-1810; Cremonini F, Mullan B P, Camilleri M, et al., Aliment. Pharmacol. Ther., 2002; 16:1781-1790; Camilleri M, Zinsmeister A R, Gastroenterology, 1992; 103:36-42; Bouras E P, Camilleri M, Burton D D, et al., Gastroenterology, 2001; 120:354-360; Coulie B, Szarka L A, Camilleri M, et al., Gastroenterology, 2000; 119:41-50; Prather C M, Camilleri M, Zinsmeister A R, et al., Gastroenterology, 2000; 118:463-468; and, Camilleri M, McKinzie S, Fox J, et al., Clin. Gastroenterol. Hepatol., 2004; 2:895-904. C. Polymer Combination Therapy The NHE-inhibiting compounds described therein may be administered to patients in need thereof in combination with a fluid-absorbing polymer (“FAP”). The intestinal fluid-absorbing polymers useful for administration in accordance with embodiments of the present disclosure may be administered orally in combination with non-absorbable NHE-inhibiting compounds (e.g., a NHE-3 inhibitor) to absorb the intestinal fluid resulting from the action of the sodium transport inhibitors. Such polymers swell in the colon and bind fluid to impart a consistency to stools that is acceptable for patients. The fluid-absorbing polymers described herein may be selected from polymers with laxative properties, also referred to as bulking agents (i.e., polymers that retain some of the intestinal fluid in the stools and impart a higher degree of hydration in the stools and facilitate transit). The fluid-absorbing polymers may also be optionally selected from pharmaceutical polymers with anti-diarrhea function, i.e., agents that maintain some consistency to the stools to avoid watery stools and potential incontinence. The ability of the polymer to maintain a certain consistency in stools with a high content of fluid can be characterized by its “water holding power.” Wenzl et al. (in Determinants of decreased fecal consistency in patients with diarrhea; Gastroenterology, v. 108, no. 6, p. 1729-1738 (1995)) studied the determinants that control the consistency of stools of patients with diarrhea and found that they were narrowly correlated with the water holding power of the feces. The water holding power is determined as the water content of given stools to achieve a certain level of consistency (corresponding to “formed stool” consistency) after the reconstituted fecal matter has been centrifuged at a certain g number. Without being held to any particular theory, has been found that the water holding power of the feces is increased by ingestion of certain polymers with a given fluid absorbing profile. More specifically, it has been found that the water-holding power of said polymers is correlated with their fluid absorbancy under load (AUL); even more specifically the AUL of said polymers is greater than 15 g of isotonic fluid/g of polymer under a static pressure of 5 kPa, even more preferably under a static pressure of 10 kPa. The FAP utilized in the treatment method of the present disclosure preferably has a AUL of at least about 10 g, about 15 g, about 20 g, about 25 g or more of isotonic fluid/g of polymer under a static pressure of about 5 kPa, and preferably about 10 kPA, and may have a fluid absorbency of about 20 g, about 25 g or more, as determined using means generally known in the art. Additionally or alternatively, the FAP may impart a minimum consistency to fecal matter and, in some embodiments, a consistency graded as “soft” in the scale described in the test method below, when fecal non water-soluble solid fraction is from 10% to 20%, and the polymer concentration is from 1% to 5% of the weight of stool. The determination of the fecal non water-soluble solid fraction of stools is described in Wenz et al. The polymer may be uncharged or may have a low charge density (e.g., 1-2 meq/gr). Alternatively or in addition, the polymer may be delivered directly to the colon using known delivery methods to avoid premature swelling in the esophagus. In one embodiment of the present disclosure, the FAP is a “superabsorbent” polymer (i.e., a lightly crosslinked, partially neutralized polyelectrolyte hydrogel similar to those used in baby diapers, feminine hygiene products, agriculture additives, etc.). Superabsorbent polymers may be made of a lightly crosslinked polyacrylate hydrogel. The swelling of the polymer is driven essentially by two effects: (i) the hydration of the polymer backbone and entropy of mixing and (ii) the osmotic pressure arising from the counter-ions (e.g., Na ions) within the gel. The gel swelling ratio at equilibrium is controlled by the elastic resistance inherent to the polymer network and by the chemical potential of the bathing fluid, i.e., the gel will de-swell at higher salt concentration because the background electrolyte will reduce the apparent charge density on the polymer and will reduce the difference of free ion concentrations inside and outside the gel that drives osmotic pressure. The swelling ratio SR (g of fluid per g of dry polymer and synonymously “fluid absorbency”) may vary from 1000 in pure water down to 30 in 0.9% NaCl solution representative of physiological saline (i.e., isotonic). SR may increase with the degree of neutralization and may decrease with the crosslinking density. SR generally decreases with an applied load with the extent of reduction dependent on the strength of the gel, i.e., the crosslinking density. The salt concentration within the gel, as compared with the external solution, may be lower as a result of the Donnan effect due to the internal electrical potential. The fluid-absorbing polymer may include crosslinked polyacrylates which are fluid absorbent such as those prepared from α,β-ethylenically unsaturated monomers, such as monocarboxylic acids, polycarboxylic acids, acrylamide and their derivatives. These polymers may have repeating units of acrylic acid, methacrylic acid, metal salts of acrylic acid, acrylamide, and acrylamide derivatives (such as 2-acrylamido-2-methylpropanesulfonic acid) along with various combinations of such repeating units as copolymers. Such derivatives include acrylic polymers which include hydrophilic grafts of polymers such as polyvinyl alcohol. Examples of suitable polymers and processes, including gel polymerization processes, for preparing such polymers are disclosed in U.S. Pat. Nos. 3,997,484; 3,926,891; 3,935,099; 4,090,013; 4,093,776; 4,340,706; 4,446,261; 4,683,274; 4,459,396; 4,708,997; 4,076,663; 4,190,562; 4,286,082; 4,857,610; 4,985,518; 5,145,906; 5,629,377 and 6,908,609 which are incorporated herein by reference for all relevant and consistent purposes (in addition, see Buchholz, F. L. and Graham, A. T., “Modern Superabsorbent Polymer Technology,” John Wiley & Sons (1998), which is also incorporated herein by reference for all relevant and consistent purposes). A class of preferred polymers for treatment in combination with NHE-inhibitors is polyelectrolytes. The degree of crosslinking can vary greatly depending upon the specific polymer material; however, in most applications the subject superabsorbent polymers are only lightly crosslinked, that is, the degree of crosslinking is such that the polymer can still absorb over 10 times its weight in physiological saline (i.e., 0.9% saline). For example, such polymers typically include less than about 0.2 mole % crosslinking agent. In some embodiments, the FAP's utilized for treatment are Calcium Carbophil (Registry Number: 9003-97-8, also referred as Carbopol EX-83), and Carpopol 934P. In some embodiments, the fluid-absorbing polymer is prepared by high internal phase emulsion (“HIPE”) processes. The HIPE process leads to polymeric foam slabs with a very large porous fraction of interconnected large voids (about 100 microns) (i.e., open-cell structures). This technique produces flexible and collapsible foam materials with exceptional suction pressure and fluid absorbency (see U.S. Pat. Nos. 5,650,222; 5,763,499 and 6,107,356, which are incorporated herein for all relevant and consistent purposes). The polymer is hydrophobic and, therefore, the surface should be modified so as to be wetted by the aqueous fluid. This is accomplished by post-treating the foam material by a surfactant in order to reduce the interfacial tension. These materials are claimed to be less compliant to loads, i.e., less prone to de-swelling under static pressure. In some embodiments, fluid-absorbing gels are prepared by aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker (e.g., methylene-bis-acrylamide) and a free radical initiator redox system in water. The material is obtained as a slab. Typically the swelling ratio of crosslinked polyacrylamide at low crosslinking density (e.g., 2%-4% expressed as weight % of methylene-bis-acrylamide) is between 25 and 40 (F. Horkay, Macromolecules, 22, pp. 2007-09 (1989)). The swelling properties of these polymers have been extensively studied and are essentially the same of those of crosslinked polyacrylic acids at high salt concentration. Under those conditions, the osmotic pressure is null due to the presence of counter-ions and the swelling is controlled by the free energy of mixing and the network elastic energy. Stated differently, a crosslinked polyacrylamide gel of same crosslink density as a neutralized polyacrylic acid will exhibit the same swelling ratio (i.e., fluid absorbing properties) and it is believed the same degree of deswelling under pressure, as the crosslinked polyelectrolyte at high salt content (e.g., 1 M). The properties (e.g., swelling) of neutral hydrogels will not be sensitive to the salt environment as long as the polymer remains in good solvent conditions. Without being held to any particular theory, it is believed that the fluid contained within the gel has the same salt composition than the surrounding fluid (i.e., there is no salt partitioning due to Donnan effect). Another subclass of fluid-absorbing polymers that may be utilized is hydrogel materials that include N-alkyl acrylamide polymers (e.g., N-isopropylacrylamide (NIPAM)). The corresponding aqueous polyNIPAM hydrogel shows a temperature transition at about 35° C. Above this temperature the hydrogel may collapse. The mechanism is generally reversible and the gel re-swells to its original swelling ratio when the temperature reverts to room temperature. This allows production of nanoparticles by emulsion polymerization (R. Pelton, Advances in Colloid and Interface Science, 85, pp. 1-33, (2000)). The swelling characteristics of poly-NIPAM nanoparticles below the transition temperature have been reported and are similar to those reported for bulk gel of polyNIPAM and equivalent to those found for polyacrylamide (i.e. 30-50 g/g) (W. McPhee, Journal of Colloid and Interface Science, 156, pp. 24-30 (1993); and, K. Oh, Journal of Applied Polymer Science, 69, pp. 109-114 (1997)). In some embodiments, the FAP utilized for treatment in combination with a NHE-inhibitor is a superporous gel that may delay the emptying of the stomach for the treatment of obesity (J. Chen, Journal of Controlled Release, 65, pp. 73-82 (2000), or to deliver proteins. Polyacrylate-based SAP's with a macroporous structure may also be used. Macroporous SAP and superporous gels differ in that the porous structure remains almost intact in the dry state for superporous gels, but disappears upon drying for macroporous SAP's. The method of preparation is different although both methods use a foaming agent (e.g., carbonate salt that generates CO2 bubbles during polymerization). Typical swelling ratios, SR, of superporous materials are around 10. Superporous gels keep a large internal pore volume in the dry state. Macroporous hydrogels may also be formed using a method whereby polymer phase separation in induced by a non-solvent. The polymer may be poly-NIPAM and the non-solvent utilized may be glucose (see, e.g., Z. Zhang, J. Org. Chem., 69, 23 (2004)) or NaCl (see, e.g., Cheng et al., Journal of Biomedical Materials Research—Part A, Vol. 67, Issue 1, 1 Oct. 2003, Pages 96-103). The phase separation induced by the presence of NaCl leads to an increase in swelling ratio. These materials are preferred if the swelling ratio of the material, SR, is maintained in salt isotonic solution and if the gels do not collapse under load. The temperature of “service” should be shifted beyond body temperature, e.g. by diluting NIPAM in the polymer with monomer devoid of transition temperature phenomenon. In some embodiments, the fluid-absorbing polymer may be selected from certain naturally-occurring polymers such as those containing carbohydrate moieties. In a preferred embodiment, such carbohydrate-containing hydrogels are non-digestible, have a low fraction of soluble material and a high fraction of gel-forming materials. In some embodiments, the fluid-absorbing polymer is selected from xanthan, guar, wellan, hemicelluloses, alkyl-cellulose, hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In a preferred embodiment, the gel forming polymer is psyllium. Psyllium (or “ispaghula”) is the common name used for several members of the plant genus Plantago whose seeds are used commercially for the production of mucilage. Most preferably, the fluid-absorbing polymer is in the gel-forming fraction of psyllium, i.e., a neutral saccharide copolymer of arabinose (25%) and xylose (75%) as characterized in (J. Marlett, Proceedings of the Nutrition Society, 62, pp. 2-7-209 (2003); and, M. Fischer, Carbohydrate Research, 339, 2009-2012 (2004)), and further described in U.S. Pat. Nos. 6,287,609; 7,026,303; 5,126,150; 5,445,831; 7,014,862; 4,766,004; 4,999,200, each of which is incorporated herein for all relevant and consistent purposes, and over-the-counter psyllium-containing agents such as those marketed under the name Metamucil (The Procter and Gamble company). Preferably the a psyllium-containing dosage form is suitable for chewing, where the chewing action disintegrates the tablet into smaller, discrete particles prior to swallowing but which undergoes minimal gelling in the mouth, and has acceptable mouthfeel and good aesthetics as perceived by the patient. The psyllium-containing dosage form includes physically discrete unit suitable as a unitary dosage for human subjects and other mammals, each containing a predetermined quantity of active material (e.g. the gel-forming polysaccharide) calculated to produce the desired therapeutic effect. Solid oral dosage forms that are suitable for the present compositions include tablets, pills, capsules, lozenges, chewable tablets, troches, cachets, pellets, wafer and the like. In some embodiments, the FAP is a polysaccharide particle wherein the polysaccharide component includes xylose and arabinose. The ratio of the xylose to the arabinose may be at least about 3:1 by weight, as described in U.S. Pat. Nos. 6,287,609; 7,026,303 and 7,014,862, each of which is incorporated herein for all relevant and consistent purposes. The fluid-absorbing polymers described herein may be used in combination with the NHE-inhibiting compound or a pharmaceutical composition containing it. The NHE-inhibiting compound and the FAP may also be administered with other agents including those described under the heading “Combination Therapies” without departing from the scope of the present disclosure. As described above, the NHE-inhibiting compound may be administered alone without use of a fluid-absorbing polymer to resolve symptoms without eliciting significant diarrhea or fecal fluid secretion that would require the co-administration of a fluid-absorbing polymer. The fluid-absorbing polymers described herein may be selected so as to not induce any substantial interaction with the NHE-inhibiting compound or a pharmaceutical composition containing it. As used herein, “no substantial interaction” generally means that the co-administration of the FAP polymer would not substantially alter (i.e., neither substantially decrease nor substantially increase) the pharmacological property of the NHE-inhibiting compounds administered alone. For example, FAPs containing negatively charged functionality, such as carboxylates, sulfonates, and the like, may potentially interact ionically with positively charged NHE-inhibiting compounds, preventing the inhibitor from reaching its pharmacological target. In addition, it may be possible that the shape and arrangement of functionality in a FAP could act as a molecular recognition element, and sequestor NHE-inhibiting compounds via “host-guest” interactions via the recognition of specific hydrogen bonds and/or hydrophobic regions of a given inhibitor. Accordingly, in various embodiments of the present disclosure, the FAP polymer may be selected, for co-administration or use with a compound of the present disclosure, to ensure that (i) it does not ionically interact with or bind with the compound of the present disclosure (by means of, for example, a moiety present therein possessing a charge opposite that of a moiety in the compound itself), and/or (ii) it does not possess a charge and/or structural conformation (or shape or arrangement) that enables it to establish a “host-guest” interaction with the compound of the present disclosure (by means of, for example, a moiety present therein that may act as a molecular recognition element and sequester the NHE inhibitor or inhibiting moiety of the compound). D. Dosage It is to be noted that, as used herein, an “effective amount” (or “pharmaceutically effective amount”) of a compound disclosed herein, is a quantity that results in a beneficial clinical outcome of the condition being treated with the compound compared with the absence of treatment. The amount of the compound or compounds administered will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical formulation. It will also depend on the subject's health, size, weight, age, sex and tolerance to drugs. Typically, the compound is administered for a sufficient period of time to achieve the desired therapeutic effect. In embodiments wherein both an NHE-inhibitor compound and a fluid-absorbing polymer are used in the treatment protocol, the NHE-inhibiting compound and FAP may be administered together or in a “dual-regimen” wherein the two therapeutics are dosed and administered separately. When the NHE-inhibiting compound and the fluid-absorbing polymer are dosed separately, the typical dosage administered to the subject in need of the NHE-inhibiting compound is typically from about 5 mg per day and about 5000 mg per day and, in other embodiments, from about 50 mg per day and about 1000 mg per day. Such dosages may induce fecal excretion of sodium (and its accompanying anions), from about 10 mmol up to about 250 mmol per day, from about 20 mmol to about 70 mmol per day or even from about 30 mmol to about 60 mmol per day. The typical dose of the fluid-absorbing polymer is a function of the extent of fecal secretion induced by the non-absorbable NHE-inhibiting compound. Typically the dose is adjusted according to the frequency of bowel movements and consistency of the stools. More specifically the dose is adjusted so as to avoid liquid stools and maintain stool consistency as “soft” or semi-formed, or formed. To achieve the desired stool consistency and provide abdominal relief to patients, typical dosage ranges of the fluid-absorbing polymer to be administered in combination with the NHE-inhibiting compound, are from about 2 g to about 50 g per day, from about 5 g to about 25 g per day or even from about 10 g to about 20 g per day. When the NHE-inhibiting compound and the FAP are administered as a single dosage regimen, the daily uptake may be from about 2 g to about 50 g per day, from about 5 g to about 25 g per day, or from about 10 g to about 20 g per day, with a weight ratio of NHE-inhibiting compound to fluid-absorbing polymer being from about 1:1000 to 1:10 or even from about 1:500 to 1:5 or about 1:100 to 1:5. A typical dosage of the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound when used alone without a FAP may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of therapeutics described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. For example, in the case of a dual-regimen, the NHE-inhibiting compound could be taken once-a-day while the fluid-absorbing polymer could be taken at each meal (TID). Furthermore, as disclosed in U.S. Application No. 61/584,753 filed Jan. 9, 2012, the NHE-inhibiting compound is administered twice-a-day (BID), or thrice-a-day (TID), and in a more specific embodiment, the NHE-inhibiting compound is administered in an amount ranging from 2-200 mg per dose BID, or 2-100 mg per dose TID. In more specific embodiments, the NHE-inhibiting compound is administered in an amount of about 15 mg per dose, about 30 mg per dose, or about 45 mg per dose, and in a more specific embodiment, in an amount of 15 mg per dose, 30 mg per dose, or 45 mg per dose. E. Modes of Administration The substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure with or without the fluid-absorbing polymers described herein may be administered by any suitable route. The compound is preferably administrated orally (e.g., dietary) in capsules, suspensions, tablets, pills, dragees, liquids, gels, syrups, slurries, and the like. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986). The compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. The formulation of the pharmaceutical composition will vary according to the route of administration selected. Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. The carriers are biocompatible, i.e., non-toxic, non-inflammatory, non-immunogenic and devoid of other undesired reactions at the administration site. Examples of pharmaceutically acceptable carriers include, for example, saline, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or a collagen matrix. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. In other embodiments, the NHE-3 inhibiting compounds may be systemically administered. In one embodiment, the compounds of the present invention are administered systemically to inhibit NHE-3 in the kidney. Without being held to any particular theory, the impermeable NHE-inhibiting compounds (e.g., NHE-3, -2 and/or -8 inhibitors) of the present disclosure can also be administered parenterally, by intravenous, subcutaneous or intramuscular injection or infusion to inhibit NHE3 in the kidney. NHE3 is expressed at high levels on the apical surface of the proximal tubule of the kidney and couples luminal Na reabsorption to the secretion of intracellular protons. Since NHE3 accounts for approximately 60-80% of sodium reabsorption in the kidney, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to prevent edema and resolve congestive heart failure symptoms. This effect could be achieved by NHE inhibition in combination with other diuretics, specifically loop diuretics, like furosemide, to inhibit tubuloglomerular feedback. In addition, since sodium reabsorption via NHE3 in the proximal tubule is responsible for a large proportion of the energy requirement of the proximal tubule cell, it is anticipated that NHE inhibition in the kidney could be beneficial by reducing the energy requirement and protecting the proximal tubule cell in settings of decreased energy availability to the proximal tubule, such as those that occur as a result of kidney hypoxia such as in kidney ischemia reperfusion injury resulting in acute kidney injury. Pharmaceutical preparations for oral use can be obtained by combining a compound of the present disclosure with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as crosslinked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical preparations which can be used orally include push-fit capsules made of a suitable material, such as gelatin, as well as soft, sealed capsules made of a suitable material, for example, gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. It will be understood that, certain compounds of the disclosure may be obtained as different stereoisomers (e.g., diastereomers and enantiomers) or as isotopes and that the disclosure includes all isomeric forms, racemic mixtures and isotopes of the disclosed compounds and a method of treating a subject with both pure isomers and mixtures thereof, including racemic mixtures, as well as isotopes. Stereoisomers can be separated and isolated using any suitable method, such as chromatography. F. Delayed Release NHE proteins show considerable diversity in their patterns of tissue expression, membrane localization and functional roles. (See, e.g., The sodium-hydrogen exchanger—From molecule To Its Role In Disease, Karmazyn, M., Avkiran, M., and Fliegel, L., eds., Kluwer Academics (2003).) In mammals, nine distinct NHE genes (NHE-1 through -9) have been described. Of these nine, five (NHE-1 through -5) are principally active at the plasma membrane, whereas NHE-6, -7 and -9 reside predominantly within intracellular compartments. NHE-1 is ubiquitously expressed and is chiefly responsible for restoration of steady state intracellular pH following cytosolic acidification and for maintenance of cell volume. Recent findings show that NHE-1 is crucial for organ function and survival (e.g., NHE-1-null mice exhibit locomotor abnormalities, epileptic-like seizures and considerable mortality before weaning). In contrast with NHE-1 expressed at the basolateral side of the nephrons and gut epithelial cells, NHE-2 through -4 are predominantly expressed on the apical side of epithelia of the kidney and the gastrointestinal tract. Several lines of evidence show that NHE-3 is the major contributor of renal bulk Na+ and fluid re-absorption by the proximal tubule. The associated secretion of H+ by NHE-3 into the lumen of renal tubules is also essential for about ⅔ of renal HCO3− re-absorption. Complete disruption of NHE-3 function in mice causes a sharp reduction in HCO3−, Na+ and fluid re-absorption in the kidney, which is consistently associated with hypovolemia and acidosis. In one embodiment, the compounds of the disclosure are intended to target the apical NHE antiporters (e.g. NHE-3, NHE-2 and NHE-8) without substantial permeability across the layer of gut epithelial cells, and/or without substantial activity towards NHEs that do not reside predominantly in the GI tract. This invention provides a method to selectively inhibit GI apical NHE antiporters and provide the desired effect of salt and fluid absorption inhibition to correct abnormal fluid homeostasis leading to constipations states. Because of their absence of systemic exposure, said compounds do not interfere with other key physiological roles of NHEs highlighted above. For instance, the compounds of the disclosure are expected to treat constipation in patients in need thereof, without eliciting undesired systemic effects, such as for example salt wasting or bicarbonate loss leading to hyponatriemia and acidosis among other disorders. In another embodiment, the compounds of the disclosure are delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The applicant found that an early release of the compounds in the stomach or the duodenum can have an untoward effect on gastric secretion or bicarbonate secretion (also referred to as “bicarbonate dump”). In this embodiment the compounds are designed so as to be released in an active form past the duodenum. This can be accomplished by either a prodrug approach or by specific drug delivery systems. As used herein, “prodrug” is to be understood to refer to a modified form of the compounds detailed herein that is inactive (or significantly less active) in the upper GI, but once administered is metabolised in vivo into an active metabolite after getting past, for example, the duodenum. Thus, in a prodrug approach, the activity of the NHE-inhibiting compound can be masked with a transient protecting group that is liberated after compound passage through the desired gastric compartment. For example, acylation or alkylation of the essential guanidinyl functionality of the NHE-inhibiting compound would render it biochemically inactive; however, cleavage of these functional groups by intestinal amidases, esterases, phosphatases, and the like, as well enzymes present in the colonic flora, would liberate the active parent compound. Prodrugs can be designed to exploit the relative expression and localization of such phase I metabolic enzymes by carefully optimizing the structure of the prodrug for recognition by specific enzymes. As an example, the anti-inflammatory agent sulfasalazine is converted to 5-aminosalicylate in the colon by reduction of the diazo bond by intestinal bacteria. In a drug delivery approach the NHE-inhibiting compounds of the disclosure are formulated in certain pharmaceutical compositions for oral administration that release the active in the targeted areas of the GI, i.e., jejunum, ileum or colon, or preferably the distal ileum and colon, or even more preferably the colon. Methods known from the skilled-in-the-art are applicable. (See, e.g., Kumar, P. and Mishra, B., Colon Targeted Drug Delivery Systems—An Overview, Curr. Drug Deliv., 2008, 5 (3), 186-198; Jain, S. K. and Jain, A., Target-specific Drug Release to the Colon., Expert Opin. Drug Deliv., 2008, 5 (5), 483-498; Yang, L., Biorelevant Dissolution Testing of Colon-Specific Delivery Systems Activated by Colonic Microflora, J. Control Release, 2008, 125 (2), 77-86; Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; and Bodmeier, R., Polymer Blends for Controlled Release Coatings, J. Control Release 2008, 125 (1), 1-15; Patel, M.; Shah, T.; and Amin, A., Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems, Crit. Rev. Ther. Drug Carrier Syst., 2007, 24 (2), 147-202; Jain, A.; Gupta, Y.; Jain, S. K., Perspectives of Biodegradable Natural Polysaccharides for Site-specific Drug Delivery to the Colon., J. Pharm. Sci., 2007, 10 (1), 86-128; Van den, M. G., Colon Drug Delivery, Expert Opin. Drug Deliv., 2006, 3 (1), 111-125; Basit, A. W., Advances in Colonic Drug Delivery, Drugs 2005, 65 (14), 1991-2007; Chourasia, M. K.; Jain, S. K., Polysaccharides for Colon-Targeted Drug Delivery, Drug Deliv. 2004, 11 (2), 129-148; Shareef, M. A.; Khar, R. K.; Ahuja, A.; Ahmad, F. J.; and Raghava, S., Colonic Drug Delivery: An Updated Review, AAPS Pharm. Sci. 2003, 5 (2), E17; Chourasia, M. K.; Jain, S. K., Pharmaceutical Approaches to Colon Targeted Drug Delivery Systems, J. Pharm. Sci. 2003, 6 (1), 33-66; and, Sinha, V. R.; Kumria, R., Colonic Drug Delivery: Prodrug Approach, Pharm. Res. 2001, 18 (5), 557-564. Typically the active pharmaceutical ingredient (API) is contained in a tablet/capsule designed to release said API as a function of the environment (e.g., pH, enzymatic activity, temperature, etc.), or as a function of time. One example of this approach is Eudracol™ (Pharma Polymers Business Line of Degussa's Specialty Acrylics Business Unit), where the API-containing core tablet is layered with various polymeric coatings with specific dissolution profiles. The first layer ensures that the tablet passes through the stomach intact so it can continue through the small intestine. The change from an acidic environment in the stomach to an alkaline environment in the small intestine initiates the release of the protective outer layer. As it travels through the colon, the next layer is made permeable by the alkalinity and intestinal fluid. This allows fluid to penetrate to the interior layer and release the active ingredient, which diffuses from the core to the outside, where it can be absorbed by the intestinal wall. Other methods are contemplated without departing from the scope of the present disclosure. In another example, the pharmaceutical compositions of the invention can be used with drug carriers including pectin and galactomannan, polysaccharides that are both degradable by colonic bacterial enzymes. (See, e.g., U.S. Pat. No. 6,413,494, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes.) While pectin or galactomannan, if used alone as a drug carrier, are easily dissolved in simulated gastric fluid and simulated intestinal fluid, a mixture of these two polysaccharides prepared at a pH of about 7 or above produces a strong, elastic, and insoluble gel that is not dissolved or disintegrated in the simulated gastric and intestinal fluids, thus protecting drugs coated with the mixture from being released in the upper GI tract. When the mixture of pectin and galactomannan arrives in the colon, it is rapidly degraded by the synergic action of colonic bacterial enzymes. In yet another aspect, the compositions of the invention may be used with the pharmaceutical matrix of a complex of gelatin and an anionic polysaccharide (e.g., pectinate, pectate, alginate, chondroitin sulfate, polygalacturonic acid, tragacanth gum, arabic gum, and a mixture thereof), which is degradable by colonic enzymes (U.S. Pat. No. 6,319,518). In yet other embodiments, fluid-absorbing polymers that are administered in accordance with treatment methods of the present disclosure are formulated to provide acceptable/pleasant organoleptic properties such as mouthfeel, taste, and/or to avoid premature swelling/gelation in the mouth and in the esophagus and provoke choking or obstruction. The formulation may be designed in such a way so as to ensure the full hydration and swelling of the FAP in the GI tract and avoid the formation of lumps. The oral dosages for the FAP may take various forms including, for example, powder, granulates, tablets, wafer, cookie and the like, and are most preferably delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The above-described approaches or methods are only some of the many methods reported to selectively deliver an active in the lower part of the intestine, and therefore should not be viewed to restrain or limit the scope of the disclosure. IV. Preparation of Compounds The following Reaction Schemes I-IV illustrate methods for making compounds of this invention, i.e., compounds of Formula (I): CoreL-NHE)n  (I) or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, wherein Core, L and NHE are as defined above. In general reaction schemes I-IV, R1, R2, R3, R4 and R5 are as defined above, PG is defined as a protecting group and LG is a leaving group. It is understood that one skilled in the art may be able to make these compounds by similar methods or by combining other methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make, in a similar manner as described below, other compounds of Formula (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, for example, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) or prepared as described in this invention. Referring to General Reaction Scheme I, an appropriate indene oxide of structure A can be purchased or prepared according to methods known in the art and combined with an amine (B) to form compounds of the structure C. Compounds of the structure A are chiral and the structures drawn reflect the absolute configuration. Either enantiomer, or a mixture can be used. C may then be reacted with a phenol of structure D in the presence of triphenylphosphine and an azodicarboxylate such as diisopropylazodicarboxylate, diethylazodicarboxylate or di-tert-butylazodicarboxylate. After removal of the protecting group, compounds of the structure E are reacted with a poly carboxylate or poly isocyanate to give compounds of structure (Ia). Compounds of Formula (I) may also be prepared according to General Reaction Scheme II. A diacid of the structure F may be reacted with a a compound of the structure E in the presence of a carboxylate activation reagent to give a a dimer of structure G. Reduction of the nitro group of compound G to a compound of structure (Ib) may be accomplished with hydrogen and a suitable catalyst such as palladium on carbon or Raney nickel and the like. Compounds of structure (Ib) may be converted to compounds of structure (Ic) with an activated carboxylic acid or anhydride. Alternatively, compounds of Formula (I) may be prepared according to General Reaction Scheme III. A compound of structure E may be reacted with a polycarboxylic acid such as 4-(2-carboxyethyl)-4-nitroheptanedioic acid in the presence of a carboxylate activation reagent to give a trimeric nitro compound of structure H. Reduction of the nitro compound H to a compound of structure (Id) may be accomplished with hydrogen and a suitable catalyst such as palladium on carbon or Raney nickel and the like. In another embodiment, compounds of Formula (I) are prepared according to General Reaction Scheme IV. An appropriate phenol of structure K is reacted with a compound of structure C in the presence of triphenylphosphine and an azodicarboxylate such as diisopropylazodicarboxylate, diethylazodicarboxylate or di-tert-butylazodicarboxylate to form compounds of structure L, wherein PG is a suitable protecting group. Removal of the protecting group under appropriate conditions gives anilines of the structure M. M is then treated with a compound of the structure N, which has both the core and linking groups present, wherein LG is a leaving group, and an appropriate base to produce compounds of the structure (Ie). With regard to General Reaction Schemes I-IV, typical carboxylate activation reagents include DCC, EDCI, HATU, oxalyl chloride, thionyl chloride and the like. Typical bases include TEA, DIEA, pyridine, K2CO3, NaH and the like. Typical acylation catalysts include HOBt, HOAt, 4-dimethylaminopyridine and the like. Typical catalysts for hydrogenation include palladium on carbon, rhodium on carbon, platinum on carbon, raney nickel and the like. One skilled in the art will recognize that variations to the order of the steps and reagents discussed in reference to the Reaction Schemes are possible. Methodologies for preparation of compounds of Formula (I) are described in more detail in the following non-limiting exemplary schemes. It will also be appreciated by those skilled in the art that in the process described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, trifluoroacetyl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T. W. and P. G. M. Wutz, Protective Groups in Organic Synthesis (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotrityl-chloride resin. It will also be appreciated by those skilled in the art, although such protected derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as “prodrugs”. All prodrugs of compounds of this invention are included within the scope of the invention. The following non-limiting examples are provided to further illustrate the present disclosure. EXAMPLES Exemplary Compound Synthesis Intermediate A1 2(R),3(S)-5,7-dichloro-1H-indene-2,3-oxide Intermediate A1 2(R),3(S)-5,7-dichloro-1H-indene-2,3-oxide: 4-(3-Phenylpropyl)pyridine N-oxide (47 mg, 0.22 mmol) was added to a mixture of 5,7-dichloro-1H-indene (1.00 g, 5.40 mmol) and (S,S)-(+) N,N′-bis(3,5-di-tert-butylsalicylidine)-1,2-cyclohexanediaminomanganese (III) chloride (34 mg, 0.054 mmol) in DCM and stirred for 10 minutes. The reaction mixture was cooled to −3° C. and water (1.25 mL) followed by saturated aqueous K2CO3 (1.25 mL) was added. Aqueous NaOCl (˜5.7% free chlorine, 14.0 mL) was added dropwise over 5 minutes, and then the pH was adjusted to 11-12 by the addition of pH 7.0 phosphate buffer (0.1 M). The mixture was vigorously stirred and warmed from −3° C. to 2° C. over 4 hours. The reaction mixture was extracted with DCM (3×25 mL) and the combined organic extracts were washed with 15% Na2S2O3 (20 mL), dried (Na2SO4) and concentrated. The residue was purified by flash chromatography on silica gel (20-30% DCM/hexanes) to give the title compound (895 mg) as a light yellow solid. The product was further purified by recrystallization from n-heptane (5 mL) to give the title compound (692 mg) as a white powder. See Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063-7064 for Jacobsen epoxidation of indene. The following intermediates were prepared using the procedure used to make Intermediate A1, substituting the appropriate indene for 5,7-dichloro-1H-indene: The required indenes were made by known methods: Chiba, Shunsuke; Xu, Yan-Jun; Wang, Yi-Feng; J. Am. Chem. Soc. 2009, 131, (36), 12886-12887. Musso, David L.; Orr, G. Faye; Cochran, Felicia R.; Kelley, James L.; Selph, Jeffrey L.; Rigdon, Greg C.; Cooper, Barrett R.; Jones, Michael L. J. Med. Chem. 2003, 46, (3), 409-416. Intermediate B1 (R)-3-(tert-butyldiphenylsilyloxy)pyrrolidine Intermediate B1 (R)-3-(tert-butyldiphenylsilyloxy)pyrrolidine: To a solution of R-3-pyrrolidinol (815 mg, 9.35 mmol) and imidazole (640 mg, 9.40 mmol) in DCM (20 mL) at 0° C. was added TBDPS-chloride (2.58 g, 9.40 mmol) over 5 minutes. After 1 hour the reaction was warmed to RT and stirred for 3 days. The solvent was removed at reduced pressure, the residue was dissolved in EtOAc (150 mL) and washed with saturated NaHCO3 (50 mL), water (50 mL) and brine (50 mL), then dried (Na2SO4) and concentrated to dryness under vacuum to give the title compound (3.3 g) which was used without further purification. MS (m/z): 326.0 (M+H)+. Intermediate C1 Tert-butyl (R)-1-((1R,2R)-4,6-dichloro-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-3-ylcarbamate Intermediate C1 tert-butyl (R)-1-((1R,2R)-4,6-dichloro-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-3-ylcarbamate: A mixture of 2(R),3(S)-5,7-dichloro-1H-indene-2,3-oxide (165 mg, 0.82 mmol) and (R)-tert-butyl piperidin-3-ylcarbamate (165 mg, 0.082 mmol) in ACN (0.55 mL) was heated at 70° C. After 15 hours, the solvent was removed under vacuum to give the title compound (330 mg) which was used without further purification. MS (m/z): 401.1 (M+H)+. Intermediate C2 (1R,2R)-4,6-dichloro-1-(pyrrolidin-1-yl)-2,3-dihydro-1H-inden-2-ol Intermediate C2 (1R,2R)-4,6-dichloro-1-(pyrrolidin-1-yl)-2,3-dihydro-1H-inden-2-ol: A mixture of 2(R),3(S)-5,7-dichloro-1H-indene-2,3-oxide (130 mg, 0.65 mmol) and pyrrolidine (69 mg, 0.97 mmol) was heated at 70° C. After 22 hours, additional pyrrolidine (69 mg, 0.97 mmol) was added and heating at 70° C. was resumed. After 5 hours, the solvent was removed at reduced pressure and the residue was purified by flash chromatography on silica gel (0-100% EtOAc/DCM) to give the title compound (139 mg). MS (m/z): 272.5 (M+H)+. Intermediate C3 (1R,2R)-1-(dimethylamino)-2,3-dihydro-1H-inden-2-ol Intermediate C3 (1R,2R)-1-(dimethylamino)-2,3-dihydro-1H-inden-2-ol: A mixture of indene oxide (58 mg, 0.44 mmol) and 40% aqueous dimethylamine (0.28 mL) was heated at 50° C. for 90 minutes. After cooling, DCM (5 mL) was added and the mixture was dried (Na2SO4) and concentrated. The residue was purified by flash chromatography on silica gel (0-15% MeOH/EtOAc) to give the title compound (71 mg). MS (m/z): 178.0 (M+H)+. Intermediate C4 (1R,2R)-1-((R)-3-(tert-butyldiphenylsilyloxy)pyrrolidin-1-yl)-6-chloro-4-fluoro-2,3-dihydro-1H-inden-2-ol Intermediate C4 (1R,2R)-1-((R)-3-(tert-butyldiphenylsilyloxy)pyrrolidin-1-yl)-6-chloro-4-fluoro-2,3-dihydro-1H-inden-2-ol: A mixture of 2(R),3(S)-5-chloro-7 fluoro-1H-indene-2,3-oxide (185 mg, 1.0 mmol) and (R)-3-(tert-butyldiphenylsilyloxy)pyrrolidine (325 mg, 1.0 mmol) in ACN (2.0 mL) was heated at 70° C. After 5 hours, the mixture was cooled and concentrated at reduced pressure. The residue was purified by flash chromatography on silica gel (25-60% EtOAc/DCM) to give the title compound (202 mg). MS (m/z): 510.4 (M+H)+. The following intermediates were made by applying the above procedures to the appropriate epoxide and amine: Intermediate D1 Tert-butyl 2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethylcarbamate Sodium 4-Phenoxybenzenesulfonate: A mixture of sodium 4-hydroxybenzenesulfonate dihydrate (10.1 g, 43.5 mmol) and sodium hydroxide (1.77 g, 44.3 mmol) in water (22.5 mL) was heated at 50° C. until a clear solution was obtained. A solution of benzyl bromide (7.35 g, 43.0 mmol) in EtOH (18.0 mL) was then added dropwise over 5 minutes. The reaction was heated at 80° C. overnight. The product was collected on a Buchner funnel, washed sequentially with ice water (25 mL), EtOH (25 mL) and MTBE (25 ml) and then dried under vacuum to give the title compound (10.6 g) as a white powder. 4-Phenoxybenzenesulfonyl chloride: A mixture of sodium 4-phenoxybenzenesulfonate (1.00 g, 3.5 mmol), thionyl chloride (6.54 g, 55 mmol) and DMF (50 μL) was heated at 70° C. for 2 hours. The reaction was cooled and concentrated at reduced pressure. The residue was dissolved in ethyl acetate (75 mL) and washed with water (3×25 mL), saturated aqueous NaHCO3 (3×25 mL) and brine (25 mL). The organic layer was dried (Na2SO4) and concentrated to give the title compound (0.98 g) as a white powder. tert-Butyl 2-(2-(2-(4-(benzyloxy)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamate: A solution of 4-phenoxybenzenesulfonyl chloride (500 mg, 1.77 mmol) in DCM (5.0 mL) was added dropwise to a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (1.31 g, 8.84 mmol) and triethylamine (179 mg, 1.77 mmol) in DCM at 0° C. The ice bath was removed and the reaction stirred at RT for 1 hour. DCM (25 mL) was added and the reaction was washed with water (3×25 mL) and brine (25 mL). The organic layer was concentrated and the residue was dissolved in DCM (10 mL). A solution of di-tert-butyl dicarbonate (5.45 g, 2.5 mmol) was added and the reaction was stirred for 30 minutes. The reaction mixture was concentrated at reduced pressure and the residue was purified by flash chromatography (50-75% EtOAc/Hexane) to give the title compound (790 mg). Intermediate D1 tert-Butyl 2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethylcarbamate: A mixture of tert-butyl 2-(2-(2-(4-(benzyloxy)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamate (790 mg, 1.60 mmol) and 10% Pd/C (160 mg, containing 50% water, 80 mg dry weight) in MeOH (15 mL) was stirred under one atm of H2 for 1 hour. The reaction mixture was filtered, concentrated and purified by flash chromatography on silica gel (50-80% EtOAc/hexanes) to give the title compound (660 mg) as a thick oil that solidified on standing. MS (m/z): 404.7 (M+H)+. Intermediate D2 Tert-butyl 2-(2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethoxy)ethylcarbamate N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(benzyloxy) benzenesulfonamide: A solution of 4-phenoxybenzenesulfonyl chloride (480 mg, 1.70 mmol) in DCM (5.0 mL) was added dropwise to a solution of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (414 mg, 1.90 mmol) and triethylamine (179 mg, 1.77 mmol) in DCM (5 mL). After 15 minutes, DCM (25 mL) was added and the reaction was washed with water (25 mL) and brine (25 mL), dried (Na2SO4) and concentrated. The residue was purified by flash chromatography on silica gel (50-80% EtOAc/hexanes) to give the title compound (625 mg). Intermediate D2 tert-Butyl 2-(2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethoxy)ethylcarbamate: A mixture of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(benzyloxy)benzenesulfonamide (625 mg, 1.34 mmol) and 10% Pd/C (150 mg, containing 50% water, 75 mg dry weight) in MeOH (13 mL) was stirred under one atm of H2 for 4 hour. The reaction mixture was filtered and concentrated at reduced pressure. The residue was dissolved in DCM (5 mL) and a solution of di-tert-butyl dicarbonate (305 mg, 1.4 mmol) in DCM (5 mL) was added slowly. After 90 minutes, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (50-100% EtOAc/DCM) to give the title compound (378 mg). MS (m/z): 448.7 (M+H)+. Intermediate D3 Phenol-3 2,2,2-trifluoro-N-(2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide N-(2-(2-(2-(4-(benzyloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2,2-trifluoroacetamide: A solution of 4-phenoxybenzenesulfonyl chloride (282 mg, 1.0 mmol) in DCM (5 mL) was added dropwise to a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (740 mg, 5.0 mmol) in DCM (5 mL). After 30 minutes, the reaction mixture was concentrated at reduced pressure, dissolved in EtOAc (50 mL) and washed with water (4×10 mL). The organic layer was dried (Na2SO4) and concentrated. The resulting oil was dissolved in DCM (10 mL) and triethylamine (131 mg, 1.30 mmol) at 0° C. Trifluoroacetic anhydride (252 mg, 1.20 mmol) was added dropwise and the reaction was stirred at 0° C. After 30 minutes, the reaction mixture was concentrated and purified by flash chromatography on silica gel (50-75% EtOAc/hexanes) to give the title compound (501 mg). Intermediate D3 2,2,2-trifluoro-N-(2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide: A mixture of N-(2-(2-(2-(4-(benzyloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2,2-trifluoroacetamide (501 mg, 1.0 mmol) and 10% Pd/C (100 mg, containing 50% water, 50 mg dry weight) in MeOH (7 mL) was stirred under one atm of H2 for 1 hour. The reaction mixture was then filtered and concentrated at reduced pressure. The residue was purified by flash chromatography (50-100% EtOAc/hexanes) to give the title compound (320 mg). MS (m/z): 400.9 (M+H)+. Intermediate E1 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide: A solution of diisopropylazodicarboxylate (210 mg, 1.04 mmol) in THF (0.60 mL) was added over 45 minutes to a solution of (1R,2R)-4,6-dichloro-1-(dimethylamino)-2,3-dihydro-1H-inden-2-ol (236 mg, 0.96 mmol), tert-butyl 2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethylcarbamate (360 mmol, 0.90 mmol) and PPh3 (272 mg, 1.04 mmol) in THF (1.00 mL). After 16 hours, the solvent was removed at reduced pressure and the residue was purified by flash chromatography on silica gel (50-100% EtOAc/hexanes then 2-10% MeOH/EtOAc to give the title compound (510 mg). Intermediate E1 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide: N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (510 mg, 0.81 mmol) was dissolved in DCM (1.0 mL) and TFA (1.0 mL) was added. After 30 minutes, the solvents were removed at reduced pressure and the residue was purified by reverse phase HPLC (ACN/water/0.1% TFA). The resulting TFA salt was added to 10% Na2CO3 (5 mL) and extracted with DCM (4×25 mL). The combined organic extracts were dried and concentrated to give the title compound (295 mg). MS (m/z): 532.1 (M+H)+. The following intermediates were prepared from the appropriate intermediates C and D using the route shown to make intermediate E1: Intermediate E17 Tert-butyl (R)-1-((1S,2S)-1-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-4,6-dichloro-2,3-dihydro-1H-inden-2-yl)piperidin-3-ylcarbamate tert-butyl (R)-1-((1S,2S)-4,6-dichloro-1-(4-(N-(2-(2-(2-(2,2,2-trifluoroacetamido)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-2,3-dihydro-1H-inden-2-yl)piperidin-3-ylcarbamate: A solution of diisopropylazodicarboxylate (73 mg, 0.36 mmol) in THF (0.30 mL) was added over 30 minutes to a solution of tert-butyl (R)-1-((1R,2R)-4,6-dichloro-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-3-ylcarbamate (120 mg, 0.30 mmol), 2,2,2-trifluoro-N-(2-(2-(2-(4-hydroxyphenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide (120 mg, 0.30 mmol) and PPh3 (94 mg, 0.36 mmol) in THF (0.60 mL). After stirring 30 minutes, the solvent was removed at reduced pressure and the residue was purified by flash chromatography on silica gel (50-100% EtOAc/hexanes) to give the title compound (285 mg). Intermediate E17 tert-butyl (R)-1-((1S,2S)-1-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-4,6-dichloro-2,3-dihydro-1H-inden-2-yl)piperidin-3-ylcarbamate: tert-Butyl (R)-1-((1S,2S)-4,6-dichloro-1-(4-(N-(2-(2-(2-(2,2,2-trifluoroacetamido)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-2,3-dihydro-1H-inden-2-yl)piperidin-3-ylcarbamate (285 mg, 0.3 mmol) was dissolved in MeOH (0.9 mL) and 3N NaOH (0.3 mL. 0.9 mmol) was added. After stirring for 1 hour, the solvent was removed at reduced pressure and the residue was purified by reverse phase HPLC (ACN/water/0.1% TFA). The resulting TFA salt was added to 10% Na2CO3 (5 mL) and extracted with DCM (3×10 mL). The combined organic extracts were dried and concentrated to give the title compound (132 mg). MS (m/z): 687.1 (M+H)+. The following intermediates were prepared from the intermediate D3 using the route shown to make Intermediate E17: Intermediate E20 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)-N-methylbenzenesulfonamide Intermediate E20 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)-N-methylbenzenesulfonamide: A solution of DIAD (50 mg, 0.25 mmol) in THF (0.15 mL) was added over 30 minutes to a solution of tert-butyl 2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamate (286 mg, 1.32 mmol), MeOH (7.3 mg, 0.23 mmol) and PPh3 (70 mg, 0.27 mmol) in THF (0.4 mL). After 4 hours additional DIAD (21 mg) was added. After a further 1 hour the reaction mixture was concentrated under vacuum and purified by flash chromatography (12 g SiO2, 0→100% EtOAc in DCM over 20 minutes) to give the Boc-protected title compound (99 mg). Trifluoroacetic acid (1 mL) was added to a solution of the Boc-protected material in DCM (1.5 mL). After 10 minutes the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (77.2 mg). This salt was diluted in DCM (2 mL) and neutralized with aqueous Na2CO3. The aqueous layer was extracted with DCM (8×5 mL) and dried over Na2SO4 to give the free base of the title compound (60.5 mg). MS: 546.31 (M+H)+. Example 1 (S,S)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide) Example 1 (S,S)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide): 1,4-Diisocyanatobutane (5.6 mg, 0.040 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (43 mg, 0.080 mmol) in DMF (0.80 mL). After 3 hours, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (44 mg). 1H-NMR (400 MHz, CD3OD): δ 7.91 (d, J=9.0 Hz, 4H), 7.51 (d, J=1.4 Hz, 2H), 7.35 (d, J=9.0 Hz, 4H), 7.10 (d, J=1 Hz, 2H), 6.45 (d, J=6.6 Hz), 4.41 (dd, J1,2=15.5 Hz, J1,3=8.6 Hz, 2H), 6.65 (dd, J1,2=16.7 Hz, J1,3=8.7 Hz, 2H), 3.57-3.50 (m, 8H), 3.48 (t, J=5.3 Hz, 8H), 3.27-3.19 (m, 6H), 3.07 (m, 8H), 3.02 (s, 12H), 1.44 (m, 4H). MS (m/z): 1203.0 (M+H)+. Example 2 (S,S)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide) Example 2 (S,S)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide): 1,4-Diisocyanatobenzene (5.9 mg, 0.037 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (39 mg, 0.073 mmol) in DMF (0.40 mL). After 40 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (29 mg). 1H NMR (400 MHz, CD3OD) δ 7.87 (d, J=8.4 Hz, 2H), 7.44-7.32 (m, 3H), 7.29 (d, J=8.7 Hz, 2H), 7.26-7.12 (m, 5H), 6.34 (d, J=6.3 Hz, 1H), 4.26 (dd, J=15.0, 8.2 Hz, 2H), 3.67-3.57 (m, 10H), 3.57-3.49 (m, 6H), 3.46 (t, J=5.4 Hz, 4H), 3.33 (t, J=5.2 Hz, 3H), 3.26-3.17 (m, 2H), 3.16-3.09 (m, 2H), 3.05 (t, J=5.4 Hz, 3H), 2.04-1.64 (m, 7H), 1.53 (s, 2H). MS 1255.21 (M+H)+. Example 3 (S,S,R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-2-((R)-3-aminopiperidin-1-yl)-4,6-dichloro-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide) Example 3 (S,S,R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-2-((R)-3-aminopiperidin-1-yl)-4,6-dichloro-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide): 1,4-Diisocyanatobutane (6.7 mg, 0.048 mmol) was added to a solution of tert-butyl (R)-1-((1S,2S)-1-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-4,6-dichloro-2,3-dihydro-1H-inden-2-yl)piperidin-3-ylcarbamate (66 mg, 0.096 mmol) in DMF (0.90 mL). After 30 minutes, the solvent was concentrated under vacuum. The residue was dissolved in DCM (0.5 mL) and TFA (0.5 mL) was added. After 30 minutes, the solvents were removed under reduced pressure and the residue was purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (55 mg). 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, J=9.0 Hz, 4H), 7.42 (d, J=1.8 Hz, 2H), 7.29 (d, J=9.0 Hz, 4H), 7.12 (d, J=1.2 Hz, 2H), 6.12 (d, J=5.7 Hz), 3.80 (dd, J1,2=13.5 Hz, J1,3=7.6 Hz, 2H), 3.57-3.51 (m, 8H), 3.48 (t, J=5.7 Hz, 8H), 3.39 (m, 2H), 3.31 (m, 2H), 3.28-3.25 (m, 4H), 3.09-3.00 (m, 12H), 2.84 (m, 2H), 2.73-2.66 (m, 4H), 1.96-1.86 (m, 4H), 1.72-1.68 (m, 4H), 1.60-1.57 (m, 4H), 1.44 (m, 4H). MS (m/z): 1313.3 (M+H)+. Example 4 (S,S,R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-6-chloro-4-fluoro-2-((R)-3-hydroxypyrrolidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide) Example 4 (S,S,R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-((1S,2S)-6-chloro-4-fluoro-2-((R)-3-hydroxypyrrolidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide): 1,4-Diisocyanatobutane (11 mg, 0.080 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-2-((R)-3-(tert-butyldiphenylsilyloxy)pyrrolidin-1-yl)-6-chloro-4-fluoro-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (249 mg, 0.31 mmol) in DMF (2.0 mL). After 2 hours, the reaction was concentrated under vacuum and the residue was purified by reverse phase HPLC (ACN/water/0.1% TFA). The resulting TFA salt was added to 10% Na2CO3 (10 mL) and extracted with DCM (3×15 mL). The combined organic phases were dried (Na2SO4) and concentrated to give the intermediate free base (105 mg). The free base was dissolved in THF (0.6 mL) and 1M Bu4NF in THF (0.3 mL, 0.3 mmol) was added. After stirring for 3 hours, the reaction mixture was added to DCM (50 mL), washed with saturated Na2CO3 (25 mL) and water (2×25 mL), dried (Na2SO4) and concentrated. The residue was purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (64 mg). 1H-NMR (400 MHz, CD3OD): δ 7.91 (d, J=9.0 Hz, 4H), 7.34 (d, J=9.0 Hz, 4H), 7.26 (dd, J1,2=8.6 Hz, J1,3=1.4 Hz, 2H), 7.00 (s, 2H), 6.40 (d, J=6.8 Hz, 2H), 4.56 (s, 2H), 4.44 (m, 2H), 3.71-3.65 (m, 6H), 3.57-3.50 (m, 10H), 3.49-3.44 (m, 10H), 3.28-3.24 (m, 4H), 3.21-3.13 (m, 2H), 3.11-3.05 (m, 8H), 2.30 (br s, 2H), 2.09-2.04 (m, 2H), 1.44 (m, 4H). MS (m/z): 1255.4 (M+H)+. Example 5 (2R,3R)—N1,N4-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 5 ((2R,3R)—N1,N4-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide: L-Disuccinimidyl tartrate (12.7 mg, 0.037 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (39 mg, 0.073 mmol) in DMF (0.40 mL). After 1 hour a second portion of L-disuccinimidyl tartrate (5.6 mg) was added, followed by a third portion of L-DST (2.0 mg). After an additional 30 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (26 mg). NMR (400 MHz, CD3OD) δ 7.91 (d, J=8.7 Hz, 2H), 7.50 (s, 1H), 7.34 (d, J=8.8 Hz, 2H), 7.09 (s, 1H), 6.43-6.37 (m, 1H), 4.44 (s, 1H), 4.37-4.27 (m, 1H), 3.66-3.58 (m, 1H), 3.58-3.51 (m, 4H), 3.47 (dd, J=10.9, 5.7 Hz, 4H), 3.40 (s, 1H), 3.22-3.16 (m, 1H), 3.09 (dd, J=11.1, 5.6 Hz, 3H), 2.96 (s, 6H), 2.01 (s, 1H). MS 1177.3 (M+H)+. Example 6 N1,N4-bis(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Example 6 N1,N4-bis(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide: HATU (24.7 mg, 0.065 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (30 mg, 0.059 mmol), terephthalic acid (5.0 mg, 0.030 mmol), and DIEA (8.4 mg, 0.065 mmol) in DMF (0.3 mL). After 45 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (21 mg). 1H NMR (400 MHz, CD3OD) δ 8.54 (t, J=6.3 Hz, 1H), 7.85 (t, J=4.5 Hz, 4H), 7.40-7.34 (m, 2H), 7.29 (d, J=9.0 Hz, 2H), 7.28-7.13 (m, 2H), 6.34 (d, J=6.3 Hz, 1H), 4.31 (dd, J=14.8, 8.3 Hz, 1H), 3.73-3.62 (m, 4H), 3.62-3.50 (m, 7H), 3.47 (t, J=5.5 Hz, 3H), 3.28-3.19 (m, 2H), 3.19-3.08 (m, 2H), 3.02 (t, J=5.5 Hz, 2H), 2.08-1.89 (m, 2H), 1.89-1.64 (m, 3H), 1.64-1.45 (m, 1H). MS 1137.2 (M+H)+. Example 7 2,2-dimethyl-N1,N3-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)malonamide Example 7 2,2-dimethyl-N1,N3-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)malonamide: HATU (35.1 mg, 0.092 mmol) was added to a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (46 mg, 0.84 mmol), 2,2-dimethylmalonic acid (5.5 mg, 0.042 mmol), and DIEA (11.9 mg, 0.092 mmol) in DMF (0.2 mL). After 105 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (19.5 mg). 1H NMR (400 MHz, CD3OD) δ 7.92-7.84 (m, 2H), 7.33 (d, J=9.1 Hz, 4H), 7.25-7.15 (m, 2H), 6.35-6.29 (m, 1H), 3.59 (s, 7H), 3.55-3.41 (m, 8H), 3.34 (s, H), 3.11 (s, 1H), 3.08-3.03 (m, 1H), 1.92-1.74 (m, 1H), 1.37 (s, 3H). MS 1191.2 (M+H)+. Example 8 N1,N4-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Example 8 N1,N4-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide: Succinic anhydride (3.6 mg, 0.0.037 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (39 mg, 0.73 mmol) in DMF (0.4 mL). After 30 minutes, DIEA (9.4 mg, 0.073 mmol) and HATU (14 mg, 0.037 mmol) were added. After an additional 15 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (18.3 mg). 1H NMR (400 MHz, CD3OD) δ 7.91 (d, 8.9 Hz, 2H), 7.52 (d, J=1.6 Hz, 1H), 7.35 (d, 8.9 Hz, 2H), 7.11 (s, 6.41 (s, 1H), 4.41 (dd, J=15.1, 8.3 Hz, 2H), 3.65 (dd, J=16.6, 8.7 Hz, 1H), 3.57-3.46 (m, 9H), 3.34-3.31 (m, 3H), 3.20 (dd, J=16.6, 9.4 Hz, 2H), 3.07 (t, J=5.5 Hz, 2H), 3.02 (s, 6H), 2.46 (s, 2H). MS 1145.1 (M+H)+. Example 9 2,2′-oxybis(N-(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Example 9 2,2′-oxybis(N-(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide): Diglycolic anhydride (4.3 mg, 0.0.037 mmol) was added to a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (39 mg, 0.73 mmol) in DMF (0.4 mL). After 30 minutes, DIEA (9.4 mg, 0.073 mmol) and HATU (14 mg, 0.037 mmol) were added. After an additional 45 minutes, the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (11.3 mg). 1H NMR (400 MHz, CD3OD) δ 7.90 (d, J=8.9 Hz, 2H), 7.51 (d, J=1.6 Hz, 1H), 7.34 (d, J=9.0 Hz, 2H), 7.11 (d, J=0.7 Hz, 1H), 6.38 (d, J=7.4 Hz, 1H), 4.42-4.34 (m, 1H), 4.03 (s, 2H), 3.63 (dd, J=15.7, 8.2 Hz, 1H), 3.59-3.55 (m, 4H), 3.55-3.50 (m, 3H), 3.50-3.45 (m, 3H), 3.45-3.39 (m, 2H), 3.19 (dd, J=16.3, 8.8 Hz, 1H), 3.06 (t, J=5.6 Hz, 2H), 2.99 (s, 6H), 2.01 (s, 1H). MS 1161.4 (M+H)+. Example 10 4-amino-4-(13-oxo-1-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)-3,6,9-trioxa-12-azapentadecan-15-yl)-N1,N7-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)heptanediamide Intermediate 10a bis(perfluorophenyl) 4-nitro-4-(3-oxo-3-(perfluorophenoxy)propyl)heptanedioate: A solution of 4-(2-carboxyethyl)-4-nitroheptanedioic acid (3.00 g, 10.8 mmol) in DCM (54 mL) was charged in an additional funnel and added dropwise to a solution of perfluorophenyl 2,2,2-trifluoroacetate (6.15 mL, 35.7 mmol) and TEA (9.0 mL, 65 mmol) in DCM (54 mL). Upon completion of addition, the solution was stirred an additional 20 min at room temperature, during which time a white precipitate formed. The precipitate was filtered and washed with 3:7 DCM:hexanes and then washed with hexanes to give the title compound (6.87 g, 82%) as a white solid. Intermediate 10b 4-nitro-4-(3-oxo-6-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)hexyl)-N1,N7-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)heptanediamide: Bis(perfluorophenyl) 4-nitro-4-(3-oxo-3-(perfluorophenoxy)propyl)heptanedioate (39.2 mg, 0.051 mmol) was added to a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (84.1 mg, 0.154 mmol) and triethylamine (17.1 mg, 0.169 mmol) in acetonitrile (0.3 mL). After 50 minutes the reaction mixture was diluted with water and purified by reverse phase HPLC to give a TFA salt of the title compound (16.8 mg). MS 1865.5 (M+H)+. Example 10 4-amino-4-(3-oxo-6-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)hexyl)-N1,N7-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)heptanediamide: Raney Nickel (˜30 mg, washed with water (4 mL) and MeOH (2 mL)) was added to a solution of 4-nitro-4-(3-oxo-6-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)hexyl)-N1,N7-bis(2-(2-(2-(2-(4-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)heptanediamide (16.8 mg) in MeOH (1 mL). The vigorously stirred suspension was placed under an atmosphere of hydrogen and heated to 50° C. After 5 hours the mixture was purged with N2, cooled and filtered. The solvent was removed and the residue purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (7.0 mg). 1H NMR (400 MHz, DMSO-d6) δ 9.94 (s, 1H), 7.98 (t, J=5.3 Hz, 1H), 7.88 (s, 1H), 7.78 (d, J=8.6 Hz, 2H), 7.61 (t, J=5.7 Hz, 1H), 7.41-7.29 (m, 4H), 7.25-7.17 (m, 1H), 7.13 (d, J=7.8 Hz, 1H), 6.45 (s, 1H), 4.32 (s, 1H), 3.56-3.20 (m, 40H), 3.16 (dd, J=11.5, 5.8 Hz, 3H), 3.04 (s, 3H), 2.88 (q, J=5.8 Hz, 2H), 2.22-2.07 (m, 2H), 1.84 (s, 2H), 1.76-1.50 (m, 5H), 1.50-1.31 (m, 1H). MS 1835.7 (M+H)+. Example 11 4-amino-N1,N7-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-methylheptanediamide Intermediate 11a 4-methyl-4-nitroheptanedioic acid: A solution of dimethyl 4-methyl-4-nitroheptanedioate (51.7 mg, 0.207 mmol) in MeOH (1 mL) with NaOH (0.345 mL, 3M) was stirred at 50° C. for 3 hours. The reaction mixture was neutralized with 2M HCl and the solvent removed. The crude material was then suspended in DMF and used directly without further purification. Intermediate 11a: N1,N7-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-methyl-4-nitroheptanediamide: To a suspension of 4-methyl-4-nitroheptanedioic acid (0.207 mmol) in DMF (2 mL) was added N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)benzenesulfonamide (220 mg, 0.414 mmol), DIEA (78.0 μl, 0.45 mmol) and HATU (171 mg, 0.45 mmol). After 16 hours the solvent was removed and crude residue was diluted with EtOAc (75 mL), washed with saturated NaHCO3 (10 mL), water (2×10 mL) and dried over Na2SO4. The crude material was purified by flash chromatography (12 g SiO2, 0-5% MeOH in DCM with 0.5% TEA over 15 minutes). The excess TEA was removed by diluting the resulting material in DCM (40 mL) and washing with 1N HCl (10 mL) and saturated aqueous NaHCO3 (10 mL) to give the free base of the title compound (153 mg). MS 1246.2 (M+H)+. Example 11 4-amino-N1,N7-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-methylheptanediamide: Raney Nickel (˜400 mg, washed with water (2×4 mL) and MeOH (4 mL)) was added to a solution of N1,N7-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-methyl-4-nitroheptanediamide (153 mg) in MeOH (2 mL). The resulting suspension was stirred vigorously under an atmosphere of H2 and heated to 50° C. After 7 hours the reaction was filtered and the filter washed with MeOH (˜10 mL) and DMF (˜2 mL). The mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (106.8 mg). 1H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.91 (d, J=8.7 Hz, 2H), 7.56 (s, 1H), 7.36 (s, 1H), 7.22-7.18 (m, 1H), 7.03 (s, 1H), 6.72 (d, 7.4 Hz, 1H), 4.00 (q, J=8.6 Hz, 1H), 3.67-3.45 (m, 11H), 3.45-3.34 (m, 4H), 3.19-3.09 (m, 2H), 2.94 (s, 7H), 2.55-2.38 (m, 3H), 2.28 (s, 21H), 2.08-1.81 (m, 4H), 1.30 (s, 2H). MS 1216.2 (M+H)+. Example 12 1-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)-13-(3-(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethylamino)-3-oxopropyl)-13-methyl-10,15-dioxo-3,6-dioxa-9,14-diazaoctadecan-18-oic Acid Example 12 1-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)-13-(3-(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethylamino)-3-oxopropyl)-13-methyl-10,15-dioxo-3,6-dioxa-9,14-diazaoctadecan-18-oic acid: Succinic anhydride (3.3 mg, 0.033 mmol) was added to a solution of 4-amino-N1,N7-bis(2-(2-(2-(4-((1S,2S)-4,6-dichloro-2-(dimethylamino)-2,3-dihydro-1H-inden-1-yloxy)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-methylheptanediamide (27 mg, 0.022 mmol) in DCM (0.1 mL). After 4 hours the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (8.5 mg). 1H NMR (400 MHz, DMSO-d6) δ 10.50-10.23 (m, 1H), 7.80 (d, J=8.9 Hz, 2H), 7.77-7.72 (m, 1H), 7.68 (d, J=1.5 Hz, 1H), 7.63 (t, J=6.0 Hz, 1H), 7.35 (d, J=8.9 Hz, 2H), 7.25 (s, 1H), 7.12 (d, J=1.5 Hz, 1H), 6.40 (s, 1H), 4.43-4.27 (m, 1H), 3.61-3.29 (m, 22H), 3.23-3.16 (m, 1H), 3.12 (dd, J=11.5, 5.6 Hz, 3H), 2.92-2.75 (m, 9H), 2.35 (t, J=7.1 Hz, 1H), 2.25 (t, J=6.7 Hz, 1H), 2.01-1.94 (m, 2H), 1.94-1.82 (m, 1H), 1.68-1.58 (m, 1H), 1.05 (s, 2H). MS 1316.3 (M+H)+. Example 13 1-{2-[2-(2-{[(3-{[(1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)carbamoyl]amino}ethoxy)ethoxy]ethyl}-3-{4-[({2-[2-(2-{[(3-{[(1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)carbamoyl]amino}ethoxy)ethoxy]ethyl}carbamoyl)amino]butyl}urea Intermediate 13a tert-butyl 10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyldicarbamate. tert-Butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate: (2.5 g, 10.1 mmol) was dissolved in ACN (8 mL). The solution was added to a mixture of carbonyldiimidazole (CDI) (1.65 g, 10.2 mmol), and ACN (15 mL). The resulting mixture was stirred for 1 h and analyzed by HPLC for conversion to the intermediate tert-butyl (2-(2-(2-(1H-imidazole-1-carboxamido)ethoxy)ethoxy)ethyl)carbamate. Upon completion, 1,4-diaminobutane (0.44 g, 5.0 mmol) was added as a solution in ACN (5.5 mL). The mixture was warmed to 40° C., and stirred for 2 h. The solvent was removed under reduced pressure. The resulting residue was dissolved in EtOAc (20 mL), and washed twice with 10% NaCl in water (10 mL) followed by 20% aqueous citric acid (10 mL), then finally washed with 25% aqueous NaCl. The organic solution was dried (Na2SO4) and the solvent evaporated under reduced pressure to give the title compound (1.17 g) as an oil. 1H NMR (400 MHz, DMSO-d6) 6.78 (t, J=5.5 Hz, 2H), 5.93 (t, J=5.8 Hz, 2H), 5.81 (t, J=5.3 Hz, 2H), 3.49 (s, 16H), 3.39-3.35 (m, 4H), 3.15-3.11 (m, 4H), 3.08-3.04 (m, 4H), 2.96-2.94 (m, 4H), 2.74 (d, J=15.3 Hz, 2H), 2.63 (d, J=15.3 Hz, 2H), 1.37 (s, 18H). Intermediate 13b 1,1′-(butane-1,4-diyl)bis(3-(2-(2-(2-aminoethoxy)ethoxy)ethyl)urea) dihydrochloride: To a solution of tert-butyl 10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyldicarbamate (1.17 g) in IPA (12 mL) was added 4M HCl in dioxane (10 mL) keeping the temperature under 30° C. The mixture was stirred overnight during which time the product precipitated. The product was then filtered, washed with IPA, and dried in a vacuum oven 40° C. to give the title compound as a white solid (930 mg, mp 130° C.) that can be recrystallized from 95% isopropanol, 5% water to give the title compound as fine needles (mp 165-168° C.). 1H NMR (400 MHz, DMSO-d6) 7.16 (d, J=11.3 Hz, 4H), 6.86 (d, J=8.6 Hz, 4H), 6.29 (t, J=5.9 Hz, 2H), 4.15 (d, J=6.0 Hz, 4H), 3.72 (s, 12H), 3.35 (s, 16H). Intermediate 13c N-(3-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenyl)acetamide: A solution of DIAD (318 mg, 1.58 mmol) in THF (0.5 mL) was added over 30 minutes to a solution of (1R,2R)-1-(piperidin-1-yl)-2,3-dihydro-1H-inden-2-ol (286 mg, 1.32 mmol), N-(3-hydroxyphenyl)acetamide (199 mg, 1.32 mmol), and PPh3 (449 mg, 1.72 mmol) in THF (2.6 mL). After 1 hour additional N-(3-hydroxyphenyl)acetamide (79 mg), PPh3 (138 mg), and DIAD (105 mg) was added. After a further 2 hours the reaction mixture was concentrated under vacuum and purified by flash chromatography (12 g SiO2, 0-100% EtOAc in DCM over 20 minutes) to give the title compound (450 mg). Intermediate 13d 3-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)aniline: Aqueous HCl (3.8 mL, 2N) was added to a solution of N-(3-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)phenyl)acetamide (450 mg, 1.28 mmol) in EtOH (3.8 mL). After 4 hours the reaction mixture was concentrated under vacuum and diluted with DCM (5 mL). The resulting solution was neutralized with NaOH (7.7 mL, 1N), extracted with DCM (3×5 mL), and dried over Na2SO4 to give the title compound (332 mg). Example 13 1-{2-[2-(2-{[(3-{[(1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)carbamoyl]amino}ethoxy)ethoxy]ethyl}-3-{4-[({2-[2-(2-{[(3-{[(1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)carbamoyl]amino}ethoxy)ethoxy]ethyl}carbamoyl)amino]butyl}urea: 2 3-((1S,2S)-2-(piperidin-1-yl)-2,3-dihydro-1H-inden-1-yloxy)aniline (50 mg, 0.162 mmol) in acetonitrile (0.3 mL) was added to a solution of N,N′-disuccinimidyl carbonate (41.4 mg, 0.162 mmol) in acetonitrile (0.3 mL). After 30 minutes 1,1′-(butane-1,4-diyl)bis(3-(2-(2-(2-aminoethoxy)ethoxy)ethyl)urea) dihydrochloride (41 mg, 0.08 mmol) and TEA (16.3 mg, 0.162 mmol) in water (0.2 mL) were added. After 20 minutes the reaction mixture was concentrated under vacuum and purified by reverse phase HPLC (ACN/water/0.1% TFA) to give a TFA salt of the title compound (30.7 mg). 1H NMR (400 MHz, CD3OD) δ 7.53 (t, J=2.2 Hz, 1H), 7.39-7.30 (m, 2H), 7.29-7.20 (m, 3H), 6.82 (dd, J=8.3, 1.5 Hz, 1H), 6.75 (dd, J=8.3, 2.4 Hz, 1H), 6.14 (d, J=6.8 Hz, 1H), 4.23 (dd, J=15.6, 9.3 Hz, 1H), 3.71-3.63 (m, 1H), 3.63-3.58 (m, 5H), 3.55 (t, J=5.4 Hz, 3H), 3.49 (t, J=5.5 Hz, 3H), 3.35 (t, J=5.3 Hz, 3H), 3.25 (t, J=5.4 Hz, 2H), 3.22-3.08 (m, 3H), 3.08-3.02 (m, 2H), 2.05-1.88 (m, 2H), 1.88-1.64 (m, 3H), 1.64-1.48 (m, 1H), 1.45-1.38 (m, 2H). MS 1105.5 (M+H)+. The following examples were prepared using methods specified in Table 2: TABLE 2 Example Synthetic Method [M] Calc'd [M + H] Observed Example 14 Example 1 1146.55 1147.3 Example 15 Example 1 1282.39 1283.1 Example 16 Example 1 1234.6 1235.2 Example 17 Example 1 1254.36 1255.1 Example 18 Example 1 1214.47 1215.1 Example 18 Example 1 1118.52 119.2 Example 20 Example 1 1066.49 1067.2 Example 21 Example 1 1134.41 1135.1 Example 22 Example 1 1102.47 1103.8 Example 23 Example 1 1182.53 1183.5 Example 24 Example 1 1250.45 1251.4 Example 25 Example 1 1170.39 1171.5 Example 26 Example 1 1230.36 1231.1 Example 27 Example 2 1222.3 1223.1 Example 28 Example 3 1176.57 1177.3 Example 29 Example 3 1280.47 1281.2 Example 30 Example 4 1286.35 1287.1 Example 31 Example 4 1150.51 1151.3 Example 32 Example 5 1120.49 1121.3 Example 33 Example 6 1136.5 1137.3 Example 34 Example 6 1224.55 1225.2 Example 35 Example 6 1224.55 1225.2 Example 36 Example 7 1158.29 1159.3 Example 37 Example 11 1159.57 1160.3 Example 38 Example 13 1104.64 1105.5 Pharmacological Data Example 39: Cell-Based Assay of NHE-3 Activity Rat or human NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Paradiso (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene (GenBank M85300) or the human NHE-3 gene (GenBank NM_004174.1) was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM bis(acetoxymethyl) 3,3′-(3′,6′-bis(acetoxymethoxy)-5-((acetoxymethoxy)carbonyl)-3-oxo-3H-spiro[isobenzofuran-1,9′-xanthene]-2′,7′-diyl)dipropanoate (BCECF-AM). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3 mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 0.4 μM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3) and 0-30 μM test compound, and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem 538 nm). Initial rates were plotted as the average 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. TABLE 3 Data for examples in human NHE3 inhibition assay Result pIC50 Range A NHE3 pIC50 <5 B NHE3 pIC50 5-7 C NHE3 pIC50 >7 Example # Human NHE3 pIC50  1 C  2 C  3 C  4 C  5 C  6 C  7 C  8 C  9 C 10 C 11 C 12 C 13 B 14 C 15 A 16 C 17 C 18 C 19 A 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 28 B 29 C 30 C 31 C 32 C 33 C 34 C 35 C 36 C 37 C 38 C Example 40: Inhibition of Intestinal Sodium Absorption Urinary sodium concentration and fecal form were measured to assess the ability of selected example compounds to inhibit the absorption of sodium from the intestinal lumen. Eight-week old Sprague-Dawley rats were purchased from Charles River Laboratories (Hollister, Calif.), were housed 2 per cage, and acclimated for at least 3 days before study initiation. Animals were fed Harlan Teklad Global 2018 rodent chow (Indianapolis, Ind.) and water ad libitum throughout the study and maintained in a standard light/dark cycle of 6 AM to 6 PM. On the day of the study, between 4 PM and 5 PM, a group of rats (n=6) were dosed via oral gavage with test compound or vehicle (water) at a volume of 10 mL/kg. After dose administration animals were placed in individual metabolic cages where they were also fed the same chow in meal form and watered ad libitum. At 16 h post-dose, the urine samples were collected and fecal form was assessed by two independent observations. Fecal forms were scored according to a common scale associated with increasing fecal water to the wettest observation in the cage's collection funnel (1, normal pellet; 2, pellet adhering to sides of collection funnel due to moisture; 3, loss of normal pellet shape; 4, complete loss of shape with a blotting pattern; 5, liquid fecal streams evident). A rat's fecal form score (FFS) was determined by averaging both observational scores for all rats within a group (n=6). The vehicle group average was 1. These averages are reported in Table 4. For urine samples, the volumes were determined gravimetrically and centrifuged at 3,600×g. The supernatants were diluted 100-fold in deionized Milli-Q water then filtered through a 0.2 μm GHP Pall AcroPrep filter plate (Pall Life Sciences, Ann Arbor, Mich.) prior to analysis by ion chromatography. Ten microliters of each filtered extract was injected onto a Dionex ICS-3000 ion chromatograph system (Dionex, Sunnyvale, Calif.). Cations were separated by an isocratic method using 25 mM methanesulfonic acid as the eluent on an IonPac CS12A 2 mm i.d.×250 mm, 8 μm particle size cation exchange column (Dionex). Sodium was quantified using standards prepared from a cation standard mix containing Li+, Na+, NH4+, K+, Mg2+, and Ca2+ (Dionex). The mean mass of sodium urinated for every group in the 16 h period was determined with the vehicle group usually urinating approximately 21 mg sodium. The urine Na (uNa) for rats in the test groups were expressed as a percentage of the vehicle mean and the means were compared to that of the vehicle group by utilizing a one-way analysis of variance coupled with a Dunnett's post hoc test. TABLE 4 Rat urinary sodium and fecal form 16 h post-dose of test compound at 10 mg/kg uNa Result uNa (% of vehicle) A >75% B 35-75%   C <35% Example # Dose uNa Result FFS  1 10 mg/kg C 1  3 10 mg/kg B 2  4 10 mg/kg A 1  5 10 mg/kg C 1  6 10 mg/kg B 1  7 10 mg/kg B 1  8  3 mg/kg B 1  9  3 mg/kg B 2 11 10 mg/kg B 1 12  3 mg/kg B 1 13 10 mg/kg A 1 14 10 mg/kg B 1 15 10 mg/kg B 1 16 10 mg/kg C 1 19 10 mg/kg B 1 20 10 mg/kg B 1 21 10 mg/kg A 1 22 10 mg/kg A 1 23 10 mg/kg A 1 24 10 mg/kg A 1 25 10 mg/kg A 1 26 10 mg/kg B 1 27 10 mg/kg C 1 30  3 mg/kg B 1 32 10 mg/kg A 1 33 10 mg/kg B 1 34 10 mg/kg A 1 35 10 mg/kg A 1 36 10 mg/kg B 2 37 10 mg/kg B 1 38  3 mg/kg A 1 Example 41: Plasma PK Sprague-Dawley rats (n=3) were dosed with test compound by oral gavage. Blood samples were collected at 0.5, 1, 2 and 4 h by retro-orbital bleeds and processed to plasma using K2EDTA as an anticoagulant. Plasma samples were treated with acetonitrile containing an internal standard and precipitated proteins were removed by centrifugation. Supernatants were analyzed by LC-MS/MS and compound concentrations were determined by interpolation from a standard calibration curve prepared in plasma. Accurate recovery of quality control samples was confirmed to accept each analytical run. Table 5 illustrates data from the pharmacokinetic profiling of an example compound, for which pharmacokinetic parameters were determined. From studies in which one or more rats had samples with test compound levels below the quantitative limit, Cmax and AUC (reported as the mean of n=3) may be reported as “<X” to indicate an upper bound. TABLE 5 Plasma pharmacokinetics of example compounds Nominal AUC Dose LLOQ Cmax (ng × Example (mg/kg) (ng/mL) (ng/mL) hr/mL) 1 15 0.2 1.0 <3.0 Example 42: Fecal Recovery Three male Sprague Dawley rats were administered 1 mg/kg test compound by oral gavage. Feces were collected from study animals from 0-48 or 0-72 hours after dosing, dried by lyophilization, and homogenized. Replicate aliquots of 40-60 mg each were subjected to extraction/protein precipitation with 7:1 acetonitrile:water and centrifuged. Supernatants were diluted 1:10 in 50:50 acetonitrile:water prior to analysis by LC-MS/MS. Compound concentrations, determined by interpolation from a standard calibration curve prepared in blank feces matrix, were converted to the percentage of dosed material recovered by taking into account the total collected fecal matter. The percent recovery for each rat was reported as the mean of the calculations from replicate samples. The overall percent recovery (Fecal Recovery [%]) was reported as the mean percent recovery from three rats. Accurate quality control sample recoveries were confirmed in each run and extraction efficiency was periodically verified. Table 6 illustrates fecal recovery data for selected example compounds. TABLE 6 Fecal recovery of example compounds Nominal Fecal Dose Collection Recovery Example # (mg/kg) Time (h) (%) 1 1 48 87.7 3 1 48 69.2 9 1 48 65.7 11 1 48 82.1 30 1 48 66.8 Example 43: Cell-Based Assay of NHE-3 Activity (Pre-Incubation Inhibition) Rat and human NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Paradiso (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440, which is hereby incorporated by reference in its entirety). PS120 fibroblasts stably expressing human NHE3 were obtained from Mark Donowitz (Baltimore, Md.). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene (GenBank M85300) was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells then incubated for 30 min at 37° C. with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM BCECF-AM. Cells were washed once with Ammonium free, Nat-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH with 0-30 μM test compound. After incubation, NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 0.4 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3). Changes in intracellular pH were monitored using a FLIPR Tetra® (Molecular Devices, Sunnyvale, Calif.) by excitation at λex 439 to 505 nm, and measuring BCECF fluorescence at λem 538 nm. The initial rate of the fluorescence ratio change was used as a measure of NHE-mediated Na+/H+ activity, and reported as the change in fluorescence ratio per minute. Initial rates were plotted as the average 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. TABLE 7 Data for example in human Preincubation assay: % inhibition Result pIC50 Range range A NHE3 pIC50 <6 NHE3 <40% B NHE3 pIC50 6-7 40-70% C NHE3 pIC50 >7 >70% % Example pIC50 inhibition  1 C C  3 C C  4 C C  5 C C  9 C C 11 C C 13 A C 14 C C 15 C B 16 C C 17 C C 20 C C 21 C C 22 C C 23 C C 24 C C 25 C C 29 C C 30 C C 36 B C Example 44: Cell-Based Assay of NHE-3 Activity (Persistent Inhibition) The ability of compounds to inhibit human and rat NHE-3-mediated Na+-dependent H+ antiport after application and washout was measured using a modification of the pH sensitive dye method described above. PS120 fibroblasts stably expressing human NHE3 were obtained from Mark Donowitz (Baltimore, Md.). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, and cells were seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed once with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then overlayed with NaCl-HEPES buffer containing 0-30 μM test compound. After a 60 min incubation at room temperature, the test drug containing buffer was aspirated from the cells. Following aspiration, cells were washed once with NaCl-HEPES buffer without drug, then incubated for 30 min at 37° C. with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 μM BCECF-AM. Cells were washed once with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated (10 min after compound washout) by addition of Na-HEPES buffer. For the rat NHE3 assay, the Na-HEPES buffer contained 0.4 μM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3). Changes in intracellular pH were monitored using a FLIPR Tetra® (Molecular Devices, Sunnyvale, Calif.) by excitation at λex 439 to 505 nm, and measuring BCECF fluorescence at λem 538 nm. The initial rate of the fluorescence ratio change was used as a measure of NHE-mediated Na+/H+ activity, and reported as the change in fluorescence ratio per minute. Initial rates were plotted as the average 2 or more replicates, and pIC50 values were estimated using GraphPad Prism. TABLE 8 Data for example in human Persistence assay: % inhibition Result pIC50 Range range A NHE3 pIC50 <6 NHE3 <40% B NHE3 pIC50 6-7 40-70% C NHE3 pIC50 >7 >70% % Example pIC50 inhibition  1 C C  3 C C  4 C B  5 B C  9 B C 11 C B 13 A A 14 A C 15 A C 16 A B 17 C C 20 C B 21 C C 22 A A 23 B C 24 C C 25 C C 29 A B 30 C C 36 B C Example 45: Sustained Inhibition of Apical Acid Secretion in Human Organoid Monolayer Cell Cultures Basal media (BM) consisted of advanced DMEM/F12 containing 10 mM HEPES (Invitrogen, 15630-080), 1:100 Glutamax (Invitrogen, 35050-061), and 1:100 penicillin/streptomycin (Invitrogen, 15140-122). Supplemented basal media (SBM) contained 1:100 N2 (Invitrogen, 17502-048), 1:50 B27 (Invitrogen, 12587-010), 1 mM N-acetylcysteine (Sigma, A9165), and 10 nM [Leu15]-gastrin I (Sigma, G9145). Growth factors used included 50 ng per mL mouse EGF (Peprotech, 315-09), 100 ng per mL mouse noggin (Peprotech, 250-38), 500 ng per mL human R-spondin 1 (R&D, 4645-RS), 100 ng per mL mouse Wnt-3a (R&D, 1324-WN), 20 μM Y-27632 (Tocris, 1254), 10 mM nicotinamide (Sigma, N0636), 500 nM A83-01 (Tocris, 2939), 10 μM SB202190 (Tocris, 1264). Transwells were 0.4 μm pore polyester membrane 24-well Transwell inserts (Corning). Cultures were incubated at 37° C. in 5% CO2. Human ileum organoids were cultured in WENRNAS (Wnt, EGF, noggin, R-spondin1, Nicotinamide, A83-01, SB202190) and typically grown for 7-12 days before being used to plate monolayer cultures. On day 0, organoid cultures embedded in Matrigel were treated with TrypLE Express to break organoids into small pieces and/or single cells. The cells were resuspended to 0.5×106 cells/mL in SBM containing WENRAY (Wnt, EGF, noggin, R-spondin1, A83-01, Y-27632). Following this step, 200 μL of cell suspension was plated into the apical side of a 24-well Transwell (100,000 cells/well) and 600 μL of SBM with WENRAY was added to the basolateral side. Ileum cells were differentiated with ENRA (EGF, noggin, R-spondin 1, A83-01) on day 3. The color of apical compartment turns from pink or orange to yellow due to the increase in NHE3 expression after differentiation. Each human ileum monolayer culture well was washed twice with fresh SBM on the apical side on day 6 before compound dosing. All compound stocks were 10 mM dissolved in DMSO. Each compound stock was individually mixed with fresh SBM to reach final compound concentration 1 μM and dosed only on the apical side of the monolayer (total volume 200 μl). DMSO at the equivalent concentration was used as the vehicle control. Duplicate wells were dosed for each compound. On day 8, apical media pH was measured by pH meter, to determine the ability of example compounds to produce sustained inhibition of NHE3 activity in a human monolayer culture system by preventing proton secretion into the apical compartment. Each of the duplicate apical pH values for each example compound was compared to the average of the DMSO wells and expressed as a percent inhibition of apical acid secretion. TABLE 9 % Inhibition (GI Result Segment) A <50% B 50-70%   C >70% % inhibition % inhibition Example (ileum) (duodenum) 1 B C Example 46: Increased Trans-Epithelial Resistance in Human Organoid Monolayer Cell Cultures Basal media (BM) consisted of advanced DMEM/F12 containing 10 mM HEPES (Invitrogen, 15630-080), 1:100 Glutamax (Invitrogen, 35050-061), and 1:100 penicillin/streptomycin (Invitrogen, 15140-122). Supplemented basal media (SBM) contained 1:100 N2 (Invitrogen, 17502-048), 1:50 B27 (Invitrogen, 12587-010), 1 mM N-acetylcysteine (Sigma, A9165), and 10 nM [Leu15]-gastrin I (Sigma, G9145). Growth factors used included 50 ng per mL mouse EGF (Peprotech, 315-09), 100 ng per mL mouse noggin (Peprotech, 250-38), 500 ng per mL human R-spondin 1 (R&D, 4645-RS), 100 ng per mL mouse Wnt-3a (R&D, 1324-WN), 20 μM Y-27632 (Tocris, 1254), 10 mM nicotinamide (Sigma, N0636), 500 nM A83-01 (Tocris, 2939), 10 μM SB202190 (Tocris, 1264). Transwells were 0.4 μm pore polyester membrane 24-well Transwell inserts (Corning). Cultures were incubated at 37° C. in 5% CO2. Human duodenum organoids were cultured in WENRNAS (Wnt, EGF, noggin, R-spondin1, Nicotinamide, A83-01, SB202190) and typically grown for 7-12 days before being used to plate monolayer cultures. On day 0, organoid cultures embedded in Matrigel were treated with TrypLE Express to break organoids into small pieces and/or single cells. The cells were resuspended to 0.5×106 cells/mL in SBM containing WENRAY (Wnt, EGF, noggin, R-spondin1, A83-01, Y-27632). Following this step, 200 μL of cell suspension was plated into the apical side of a 24-well Transwell (100,000 cells/well) and 600 μL of SBM with WENRAY was added to the basolateral side. Duodenum cells were differentiated with ENA (EGF, noggin, A83-01) on day 3. The color of apical compartment turns from pink or orange to yellow due to the increase in NHE3 expression after differentiation. Each human duodenum monolayer culture well was washed twice with fresh SBM on the apical side on day 6 or day 7 before dosing. All compound stocks were 10 mM dissolved in DMSO. Each compound stock was individually mixed with fresh SBM to reach final compound concentration 1 μM and dosed only on the apical side of the monolayer (total volume 200 μl). DMSO at the equivalent concentration was used as the vehicle control. Duplicate wells were dosed for each compound. Transepithelial electrical resistance (TEER) was used as a quantitative technique to measure of tight junction permeability. TEER values were recorded (MERS00002, Millipore) before dosing and 30 mins and 1 hr after dosing for all wells. Each of the duplicate TEER values following treatment were corrected for the individual well baseline TEER. Baseline corrected TEER for each example compound was compared to the average of the DMSO wells and expressed as a percent TEER of vehicle control. TABLE 10 Result TEER (% of vehicle) A <100% B 100-130%   C >130% TEER at 60 TEER at 30 minutes minutes (% of Example (% of Vehicle) Vehicle) 1 B B Example 47: Inhibition of Intestinal Sodium Absorption in Mice Urinary and fecal sodium excretion are measured to assess the ability of selected example compounds to inhibit the absorption of sodium from the intestinal lumen. In addition, an assessment of the absence or presence of diarrhea in response to compound treatment is made. Approximately eight-week old, male, CD-1 mice are purchased from Envigo (Livermore, Calif.), are housed 6 per cage and acclimated for at least 48 hours before study initiation. Animals are fed Harlan Teklad Global TD.160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. To initiate the study, mice are weighed and then individually placed in metabolic cages. Following a 3-day acclimation period to the metabolic cage, a 24-hr baseline collection of urine and feces is performed. Mice (n=8/group) are then dosed by oral gavage with test compound (15 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily at 6 AM and 3 PM for 3 consecutive days. Each day, measurements of body weight, 24-hour food intake, water intake, urine volume and wet fecal weight are recorded, along with any observation of diarrhea. Fecal samples are dried using a lyophilizer for at least 3 days, following which dry weight is recorded and fecal fluid content is calculated based on the difference between the wet and dry stool weights. Fecal fluid content on day 3 of compound treatment is calculated as a change from the vehicle group mean. For urine samples, the volumes are determined gravimetrically. Feces and urine are analyzed for sodium content by microwave plasma-atomic emission spectroscopy or ion chromatography, respectively. Urine samples are analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations is performed using an IonPac CS12A (Dionex) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Concentrations are calculated relative to a standard curve (prepared in 10 mM HCl) for sodium ion based on retention time and peak area. Fecal sample analysis is performed by Microwave Plasma Atomic Emission Spectrometry (MP-AES). Dry fecal samples are ground into a fine powder on a homogenizer and the ground samples (400-600 mg aliquots weighed) are digested with nitric acid by microwave method (Mars 6). These digested samples are diluted with 1% nitric acid and analyzed on Agilent 4100 MP-AES. Concentrations are calculated relative to a standard curve (prepared in 1% nitric acid) for sodium based on the signal intensity. Sodium is detected at a wavelength of 588.995 nm. Twenty-four-hour urinary sodium excretion (mg/24-hours) is calculated by multiplying urinary sodium concentration by 24-hour urine volume. Twenty-four-hour fecal sodium excretion (mg/24-hours) is calculated by multiplying fecal sodium concentration by 24-hour dry fecal weight. The urinary and fecal sodium excretion on day 3 of compound treatment are normalized to dietary sodium intake and expressed as a percentage of the vehicle mean. Example 48: Inhibition of Intestinal Sodium Absorption in Rats Urinary sodium and phosphorous excretion and fecal form are measured to assess the ability of selected example compounds to inhibit the absorption of sodium and phosphorous from the intestinal lumen. Eight-week old, male, Sprague Dawley rats are purchased from Envigo (Livermore, Calif.), are housed 2 per cage and acclimated for at least 48 hours before study initiation. Animals are fed Harlan Teklad Global TD.160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals had ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a standard light/dark cycle of 6 AM to 6 PM. On the day of study initiation, rats (n=5/group) are dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Immediately after dose administration animals are placed in individual metabolic cages. At 13-16-hours post-dose, urine samples are collected and fecal form is assessed. In addition, the weight of food consumed over the 13-16-hour period is measured and recorded. Fecal forms are scored according to a common scale associated with increasing fecal water to the wettest observation in the cage's collection funnel (1, normal pellet; 2, pellet adhering to sides of collection funnel due to moisture; 3, loss of normal pellet shape; 4, complete loss of shape with a blotting pattern; 5, liquid fecal streams evident). Fecal form score (FFS) is calculated for each group as the average of each individual rat's FFS within the group and reported in Table 10. Fecal samples are dried using a lyophilizer for at least 3 days, following which dry weight is recorded and fecal fluid content is calculated based on the difference between the wet and dry stool weights. Fecal fluid content is calculated as a change from the vehicle group mean and reported in Table 10. For urine samples, the volumes are determined gravimetrically. Urine samples are analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations is performed using an IonPac CS12A (Dionex) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Chromatographic separation of anions is performed using an IonPac AS18 (Dionex) 2×250 mm analytical column with an isocratic elution using 35 mM potassium hydroxide. Concentrations are calculated relative to a standard curve (prepared in 10 mM HCl) for each ion based on retention time and peak area. Sixteen-hour urinary sodium and phosphorous excretion (mg/16-hours) is calculated by multiplying urinary sodium or phosphorous concentration, respectively, by 24-hour urine volume. The urinary sodium and phosphorous excretion of compound treatment is normalized to dietary sodium or phosphorous intake, respectively, and expressed as a percentage of the vehicle mean. Example 49: Inhibition of Intestinal Sodium and Phosphorous Absorption in the Rat Balance Model Urinary and fecal sodium excretion, along with urinary phosphorous excretion are measured to assess the ability of selected example compounds to inhibit the absorption of sodium and phosphorous from the intestinal lumen. In addition, an assessment of fecal form in response to compound treatment is made. Approximately eight-week old, male, Sprague Dawley rats are purchased from Envigo (Livermore, Calif.), are housed 2 per cage and acclimated for at least 48 hours before study initiation. Animals are fed Harlan Teklad Global TD.160470 rodent chow (Maddison, Wis.), standard laboratory rodent chow Harlan Teklad Global 2018 with the addition of 0.4% inorganic phosphorous. Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a reversed light/dark cycle of 6 PM to 6 AM. To initiate the study, rats are weighed and then individually placed in metabolic cages. Following a 2-day acclimation period to the metabolic cage, a 24-hr baseline collection of urine and feces is performed. Rats (n=6/group) are then dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily at 6 AM and 3 PM for 3 consecutive days. Each day, measurements of body weight, 24-hour food intake, water intake, urine volume and wet fecal weight are recorded, along with any observation of diarrhea. Fecal samples are dried using a lyophilizer for at least 3 days, following which dry weight is recorded and fecal fluid content is calculated based on the difference between the wet and dry stool weights. Fecal fluid content on day 3 of compound treatment is calculated as a change from the vehicle group mean. For urine samples, the volumes are determined gravimetrically. Feces and urine are analyzed for sodium and phosphorous content by microwave plasma-atomic emission spectroscopy or ion chromatography, respectively. Urine samples are analyzed on an ion chromatography system (Thermo Fisher ICS-3000 or ICS-5000+) coupled with conductivity detectors. Chromatographic separation of cations is performed using an IonPac CS12A (Dionex) 2×250 mm analytical column with an isocratic elution using 25 mM methanesulfonic acid. Chromatographic separation of anions is performed using an IonPac AS18 (Dionex) 2×250 mm analytical column with an isocratic elution using 35 mM potassium hydroxide. Concentrations are calculated relative to a standard curve (prepared in 10 mM HCl) for each ion based on retention time and peak area. Fecal sample analysis by Microwave Plasma Atomic Emission Spectrometry (MP-AES). Dry fecal samples are ground into a fine powder on a homogenizer and the ground samples (400-600 mg aliquots weighed) are digested with nitric acid by microwave method (Mars 6). These digested samples are diluted with 1% nitric acid and analyzed on Agilent 4100 MP-AES. Concentrations are calculated relative to a standard curve (prepared in 1% nitric acid) for sodium based on the signal intensity. Sodium is detected at a wavelength of 588.995 nm. Twenty-four-hour urinary sodium and phosphorous excretion (mg/24-hours) is calculated by multiplying urinary sodium or phosphorous concentration, respectively, by 24-hour urine volume. Twenty-four hour fecal sodium excretion (mg/24-hours) is calculated by multiplying fecal sodium concentration by 24-hour dry fecal weight. The urinary and fecal sodium excretion and urinary phosphorous excretion on day 3 of compound treatment are normalized to dietary sodium or phosphorous intake, respectively, and expressed as a percentage of the vehicle mean. Example 50: Restoration of Gastrointestinal Motility in Opioid Induced Constipation Gastrointestinal transit is measured in mice treated with the peripherally acting μ-opioid agonist loperamide to assess the ability of selected example compounds to restore gastrointestinal motility in a model of opioid induced constipation. Approximately eight-week old, female, CD1 rats are purchased from Envigo (Livermore, Calif.), are housed 4 per cage and acclimated for at least 48 hours before study initiation. Animals are fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals have ad libitum access to food and water for the duration of the acclimation period and are maintained in a temperature and humidity controlled room on a reversed light/dark cycle of 6 PM to 6 AM. Following an overnight fast, with free access to water, animals are dosed by oral gavage with varying doses of test compound or vehicle (3 mM HCl, 0.01% Tween80), at a dose volume of 5 mL/kg. Fifteen minutes following oral dosing of test compound or vehicle, animals are dosed by subcutaneous injection with loperamide (3 mg/kg) or vehicle (30:70 PG:0.9% NaCl) at a dose volume of 5 mL/kg. Fifteen minutes later, animals are dosed orally with Evans Blue Dye (6%) at a dose volume of 100 μL. 30 minutes later, animals are euthanized by carbon dioxide inhalation, and the length from the pylorus to cecum (whole length of the small intestine) and the length from the pylorus to the Evans Blue dye front are measured and recorded. For an individual animal, the length travelled by the Evans Blue dye front is divided by the length of the whole small intestine, measured from the pylorus to the cecum, and multiplied by 100, to provide the distance of the small intestine travelled by the dye as a percentage. In animals dosed orally with vehicle and injected subcutaneously with vehicle (vehicle/vehicle), the Evans Blue dye front travels approximately 70% of the length of the small intestine in the 30-minute period. In animals dosed orally with vehicle and injected subcutaneously with loperamide (vehicle/loperamide), the Evans Blue dye front travels approximately only 25% of the length of the small intestine in the 30-minute period, indicating decreased gastrointestinal motility in response to loperamide. The effect of example compounds on GIT motility in the presence of loperamide is calculated as the ability to restore vehicle/vehicle transit distance from the vehicle/loperamide transit, expressed as a percentage. Example 51: Restoration of Gastrointestinal Motility in Multiple Sclerosis Gastrointestinal transit time is measured to assess the ability of selected example compounds to restore gastrointestinal motility in a model of multiple sclerosis. Multiple sclerosis (MS) patients often experience constipation and other gastrointestinal manifestations related to disturbed gastrointestinal motility. The Experimental Autoimmune Encephalomyelitis (EAE) mouse model is one of the most frequently used animal models for studying multiple sclerosis (MS), in which immunization against CNS-specific antigen results in central nervous system inflammation. This model results in a spectrum of acute, chronic, and relapsing disease that results in varying degrees of progressive paralysis and gastrointestinal dysmotility. Animals are 8-16 weeks of age at study initiation, and are fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a reversed light/dark cycle of 6 PM to 6 AM. EAE is induced in female mice by injection of a combination of antigen (MOG35-55, S.C.) in complete Freund's adjuvant (CFA), and pertussis toxin (PTX, IP). After somatic motor symptoms develop, generally 10 or more days' post immunization, EAE mice are dosed by oral gavage with test compound at varying doses (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Test compound is administered once or for multiple doses. Fecal output is monitored for a standardized period of time (1-24 hours) and recorded as fecal pellet number, fecal mass and fecal dry weight. Whole gastrointestinal transit time is determined by oral gavage of carmine red or Evans Blue and calculating the latency for dye to appear in the feces. Small intestinal transit is measured by dosing carmine red or Evans Blue by oral gavage and measuring the distance of the leading edge of the dye from compared to the whole length of the small intestine 15 minutes to two hours following oral dosing of the dye. Colonic motility is assessed by measuring time to extrusion of a single glass bead inserted a standardized distance into the distal colon. The effect of example compounds on GIT motility in EAE mice is calculated as the ability to restore transit distance to those observed in control mice from those observed in EAE treated with vehicle, expressed as a percentage. Example 52: Restoration of Gastrointestinal Motility in Parkinson's Disease Gastrointestinal transit time is measured to assess the ability of selected example compounds to restore gastrointestinal motility in a model of Parkinson's Disease. Parkinson's Disease (PD) is a neurodegenerative disorder characterized by chronic and progressive motor impairment. PD patients also experience significant non-motor symptoms including constipation and other gastrointestinal manifestations related to disturbed gastrointestinal motility. The toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used to develop animal models for testing new therapies in the PD. This model results in motor changes and pathology that resemble PD and has also been reported to manifest gastrointestinal dysmotility (Scientific Reports, 2016 6:30269) Animals are 8-16 weeks of age at study initiation, and fed standard laboratory rodent chow Harlan Teklad Global 2018 (Maddison, Wis.). Animals have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a reversed light/dark cycle of 6 PM to 6 AM. PD is induced in mice by multiple, generally four, intraperitoneal injections of MPTP. After MPTP is injected, generally 4 to 20 days' post injection, PD mice are dosed by oral gavage with test compound at varying doses (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg. Test compound is administered once or for multiple doses. Fecal output is monitored for a standardized period of time (1-24 hours) and recorded as fecal pellet number, fecal mass and fecal dry weight. Whole gastrointestinal transit time is determined by oral gavage of carmine red or Evans Blue and calculating the latency for dye to appear in the feces. Small intestinal transit is measured by dosing carmine red or Evans Blue by oral gavage and measuring the distance of the leading edge of the dye from compared to the whole length of the small intestine 15 minutes to two hours following oral dosing of the dye. Colonic motility is assessed by measuring time to extrusion of a single glass bead inserted a standardized distance into the distal colon. The effect of example compounds on GIT motility in PD mice is calculated as the ability to restore transit distance to those observed in control mice from those observed in PD mice treated with vehicle, expressed as a percentage. Example 53: Effect on Blood Pressure in a Models of Salt-Sensitive Hypertension Arterial blood pressure is measured to assess the ability of selected example compounds to attenuate hypertension in a model of salt-sensitive hypertension. Dahl Salt Sensitive (DSS) rats are a well characterized model of salt-sensitive hypertension and end-organ injury. Salt-sensitive hypertension is established in DSS rats by increasing the NaCl content of the diet from 0.49% up to 4% NaCl for a period of 1 to 4-weeks. DSS rats maintained on 0.49% NaCl are used as a control group. Animals are 6-10 weeks of age at study initiation, and have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a 12-hr light/dark cycle. Rats (n=6-8/group) are dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for 1 to 3 weeks, while maintained on a 4% NaCl diet. Arterial blood pressure is measured weekly by tail cuff plethysmography. A 24-hr urine collection is also collected weekly by placing animals individually in metabolic cages. Example 54: Effect on Cardiac Function in Models of Heart Failure Serial echocardiography is used to measure cardiac function and morphology to assess the ability of selected example compounds to improve cardiac function, structure and neuro-humoral activation in a rat model of heart failure. Male Dahl Salt Sensitive (DSS) rats or male Lewis rats are used to induce heart failure by permanent left main coronary arterial ligation. Animals are 6-10 weeks of age at study initiation, and have ad libitum access to food and water for the duration of the study and are maintained in a temperature and humidity controlled room on a 12-hr light/dark cycle. Rats (n=6-10/group) are dosed by oral gavage with test compound or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for 1 to 8 weeks. Serial echocardiography is performed weekly to assess time-dependent cardiac remodeling (HWI, LVI, chamber size), time-dependent cardiac performance (EF, dP/dt, LVEDP) changes and time-dependent cardiac morphometry (HWI, LVI, LVEDV, LVESV) indices. Terminal assessment of load-dependent and load-independent left ventricular function are made using pressure-volume loop analysis. Extracellular volume expansion is assessed by measuring volume sensitive hormones ANP and BNP. Example 264: Pain Relief in IBS-C—Reduction of Visceral Hypersensitivity in Rats The ability of selected example compounds to reduce the hypersensitivty of the colon to balloon distension (CRD) in a rat model of visceral hypersensitivy is measured by grading the rat's abdominal withdrawal reflex (AWR) and by measuring electromyographic (EMG) responses. Visceral hypersensitivity is induced by injecting 10-day old male Sprague Dawley rat pups with a 0.2 mL infusion of 0.5% acetic acid solution in saline into the colon 2 cm from the anus. Control rats receive an equal volume of saline. Visceral hypersensitivity is then assessed in these rats as adults, between 8 and 12 weeks of age. Rats (n=4-10/group) are dosed by oral gavage with test compound (0.01 to 30 mg/kg) or vehicle (3 mM HCl, 0.01% Tween80) at a dose volume of 5 mL/kg, twice daily for up to 2 weeks prior to the assessment of visceral hypersensitivity. Visceral hypersensitivity is measured by grading the response to CRD. Under mild sedation with 1% methohexital sodium, a flexible balloon attached to Tygon tubing is inserted 8 cm into the descending colon and rectum via the anus and secured in place by taping the tube to the tail. Approximately 30 minutes later, CRD is performed by rapidly inflating the balloon to varying pressures (10 to 80 mmHg) measured by a sphygmomanometer connected to a pressure transducer for a 20 second period followed by a 2-minute rest period. Behavioral responses to CRD are measured by grading the AWR by blinded observer and assigning an AWR score as follows: 1, normal behavior without response; 2, contraction of abdominal muscles; 3, lifting of abdominal wall; 4, body arching and lifting of pelvic structures. EMG responses are measured continuously in response to CRD via two electrodes implanted at least one-week prior to in the external oblique muscle and calculated as the area under the curve of the EMG in response to CRD. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 15402213 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Apr 14th, 2015 12:00AM Mar 14th, 2013 12:00AM https://www.uspto.gov?id=US09006281-20150414 Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders The present disclosure is directed to compounds and methods for treating irritable bowel syndrome, chronic kidney disease and end stage renal disease by administering to a subject in need thereof a compound or a pharmaceutically acceptable salt thereof, wherein the compound has the structure 9006281 1. A method of treating irritable bowel syndrome in a subject in need thereof comprising administering to the subject in need thereof an effective amount of a compound or a pharmaceutically acceptable salt thereof, wherein the compound has the structure: 2. The method of claim 1, comprising administering the compound 3. The method of claim 1, comprising administering the pharmaceutically acceptable salt of the compound 4. The method of claim 3, wherein the pharmaceutically acceptable salt is 5. The method of claim 1, wherein the subject is human. 6. A method of treating chronic kidney disease in a subject in need thereof comprising administering to the subject in need thereof an effective amount of a compound or a pharmaceutically acceptable salt thereof, wherein the compound has the structure: 7. The method of claim 6, comprising administering the compound 8. The method of claim 6, comprising administering the pharmaceutically acceptable salt of the compound 9. The method of claim 8, wherein the pharmaceutically acceptable salt is 10. The method of claim 6, wherein the subject is human. 11. A method of treating end stage renal disease in a subject in need thereof comprising administering to the subject in need thereof an effective amount of a compound or a pharmaceutically acceptable salt thereof, wherein the compound has the structure: 12. The method of claim 11, comprising administering the compound 13. The method of claim 11, comprising administering the pharmaceutically acceptable salt of the compound 14. The method of claim 13, wherein the pharmaceutically acceptable salt is 15. The method of claim 11, wherein the subject is human. 15 CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional application of U.S. patent application Ser. No. 13/172,394, filed Jun. 29, 2011, issuing, which is a continuation of International PCT Patent Application No. PCT/US2009/069852, which was filed on Dec. 30, 2009, now pending, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/141,853, filed Dec. 31, 2008, U.S. Provisional Patent Application No. 61/169,509, filed Apr. 15, 2009, and U.S. Provisional Patent Application No. 61/237,842, filed Aug. 28, 2009, which applications are incorporated herein by reference in their entireties. BACKGROUND 1. Field The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. 2. Description of the Related Art Disorders Associated with Fluid Retention and Salt Overload According to the American Heart Association, more than 5 million Americans have suffered from heart failure, and an estimated 550,000 cases of congestive heart failure (CHF) occur each year (Schocken, D. D. et al., Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group: Circulation, v. 117, no. 19, p. 2544-2565 (2008)). The clinical syndrome of congestive heart failure occurs when cardiac dysfunction prevents adequate perfusion of peripheral tissues. The most common form of heart failure leading to CHF is systolic heart failure, caused by contractile failure of the myocardium. A main cause of CHF is due to ischemic coronary artery disease, with or without infarction. Long standing hypertension, particularly when it is poorly controlled, may lead to CHF. In patients with CHF, neurohumoral compensatory mechanisms (i.e., the sympathetic nervous system and the renin-angiotensin system) are activated in an effort to maintain normal circulation. The renin-angiotensin system is activated in response to decreased cardiac output, causing increased levels of plasma renin, angiotensin II, and aldosterone. As blood volume increases in the heart, cardiac output increases proportionally, to a point where the heart is unable to dilate further. In the failing heart, contractility is reduced, so the heart operates at higher volumes and higher filling pressures to maintain output. Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath). All of these symptoms are related to fluid volume and salt retention, and this chronic fluid and salt overload further contribute to disease progression. Compliance with the medication regimen and with dietary sodium restrictions is a critical component of self-management for patients with heart failure and may lengthen life, reduce hospitalizations and improve quality of life. Physicians often recommend keeping salt intake below 2.3 g per day and no more than 2 g per day for people with heart failure. Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt. A number of drug therapies currently exist for patients suffering from CHF. For example, diuretics may be used or administered to relieve congestion by decreasing volume and, consequently, filling pressures to below those that cause pulmonary edema. By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms. Among the classes or types of diuretics currently being used is thiazides. Thiazides inhibit NaCl transport in the kidney, thereby preventing reabsorption of Na in the cortical diluting segment at the ending portion of the loop of Henle and the proximal portion of the distal convoluted tubule. However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml/min. Additionally, thiazides, as well as other diuretics, may cause hypokalemia. Also among the classes or types of diuretics currently being used is loop diuretics (e.g., furosemide). These are the most potent diuretics and are particularly effective in treating pulmonary edema. Loop diuretics inhibit the NaKCl transport system, thus preventing reabsorption of Na in the loop of Henle. Patients that have persistent edema despite receiving high doses of diuretics may be or become diuretic-resistant. Diuretic resistance may be caused by poor availability of the drug. In patients with renal failure, which has a high occurrence in the CHF population, endogenous acids compete with loop diuretics such as furosemide for the organic acid secretory pathway in the tubular lumen of the nephron. Higher doses, or continuous infusion, are therefore needed to achieve entrance of an adequate amount of drug into the nephron. However, recent meta-analysis have raised awareness about the long-term risk of chronic use of diuretics in the treatment of CHF. For instance, in a recent study (Ahmed et al., Int J Cardiol. 2008 Apr. 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics. Angiotensin-converting enzyme (“ACE”) inhibitors are an example of another drug therapy that may be used to treat congestive heart failure. ACE inhibitors cause vasodilatation by blocking the renin-angiotensin-aldosterone system. Abnormally low cardiac output may cause the renal system to respond by releasing renin, which then converts angiotensinogen into angiotensin I. ACE converts angiotensin I into angiotensin II. Angiotensin II stimulates the thirst centers in the hypothalamus and causes vasoconstriction, thus increasing blood pressure and venous return. Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase. ACE inhibitors block this compensatory system and improve cardiac performance by decreasing systemic and pulmonary vascular resistance. ACE inhibitors have shown survival benefit and conventionally have been a treatment of choice for CHF. However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia. In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients. (See, e.g., C. S. Cruz et al., “Incidence and Predictors of Development of Acute Renal Failure Related to the Treatment of Congestive Heart Failure with ACE Inhibitors, Nephron Clin. Pract., v. 105, no. 2, pp c77-c83 (2007)). Patients with end stage renal disease (“ESRD”), i.e., stage 5 chronic kidney failure, must undergo hemodialysis three times per week. The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium/volume overload). The fluid overload is characterized as interdialytic weight gain. High fluid overload is also worsened by heart dysfunction, specifically CHF. Dialysis is used to remove uremic toxins and also adjust salt and fluid homeostasis. However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed. SIH is exhibited in about 15% to 25% of the ESRD population (Davenport, A., C. Cox, and R. Thuraisingham, Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey; Nephron Clin. Pract., v. 109, no. 2, p. c65-c71 (2008)). Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food The cause of primary or “essential” hypertension is elusive. However, several observations point to the kidney as a primary factor. The strongest data for excess salt intake and elevated blood pressure come from INTERSALT, a cross-sectional study of greater than 10,000 participants. For individuals, a significant, positive, independent linear relation between 24-hour sodium excretion and systolic blood pressure was found. Higher individual 24-hour urinary sodium excretions were found to be associated with higher systolic/diastolic blood pressure on average, by 6-3/3-0 mm Hg. Primary hypertension is a typical example of a complex, multifactorial, and polygenic trait. All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention. In a broad sense, these syndromes are characterized by increased renal sodium reabsorption arising through either primary defects in sodium transport systems or stimulation of mineralocorticoid receptor activity (Altun, B., and M. Arici, 2006, Salt and blood pressure: time to challenge; Cardiology, v. 105, no. 1, p. 9-16 (2006)). A much larger number of controlled studies have been performed on hypertensive subjects during the last three decades to determine whether sodium reduction will reduce established high blood pressure. Meta-analyses of these studies have clearly shown a large decrease in blood pressure in hypertensive patients. In end stage liver disease (ESLD), accumulation of fluid as ascites, edema or pleural effusion due to cirrhosis is common and results from a derangement in the extracellular fluid volume regulatory mechanisms. Fluid retention is the most frequent complication of ESLD and occurs in about 50% of patients within 10 years of the diagnosis of cirrhosis. This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis. The one-year and five-year survival rate is 85% and 56%, respectively (Kashani et al., Fluid retention in cirrhosis: pathophysiology and management; QJM, v. 101, no. 2, p. 71-85 (2008)). The most acceptable theories postulate that the initial event in ascites formation in the cirrhotic patient is sinusoidal hypertension. Portal hypertension due to an increase in sinusoidal pressure activates vasodilatory mechanisms. In advanced stages of cirrhosis, arteriolar vasodilation causes underfilling of systemic arterial vascular space. This event, through a decrease in effective blood volume, leads to a drop in arterial pressure. Consequently, baroreceptor-mediated activation of renin-angiotensin aldosterone system, sympathetic nervous system and nonosmotic release of antidiuretic hormone occur to restore the normal blood homeostasis. These events cause further retention of renal sodium and fluid. Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity. Persistent renal sodium and fluid retention, alongside increased splanchnic vascular permeability in addition to lymph leakage into the peritoneal cavity, play a major role in a sustained ascites formation. Thiazolidinediones (TZD's), such as rosiglitazone, are peroxisome proliferator-activated receptor (PPAR) gamma agonist agents used for the treatment of type-2 diabetes and are widely prescribed. Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy. The incidence of TZD-induced fluid retention ranges from 7% in monotherapy and to as high as 15% when combined with insulin (Yan, T., Soodvilai, S., PPAR Research volume 2008, article ID 943614). The mechanisms for such side-effects are not fully understood but may be related in Na and fluid re-absorption in the kidney. However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events. In view of the foregoing, it is recognized that salt and fluid accumulation contribute to the morbidity and mortality of many diseases, including heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and the like. It is also accepted that salt and fluid accumulation are risk factors for hypertension. Accordingly, there is a clear need for a medicament that, when administered to a patient in need, would result in a reduction in sodium retention, fluid retention, or preferably both. Such a medicament would more preferably also not involve or otherwise impair renal mechanisms of fluid/Na homeostasis. One option to consider for treating excessive fluid overload is to induce diarrhea. Diarrhea may be triggered by several agents including, for example, laxatives such as sorbitol, polyethyleneglycol, bisacodyl and phenolphthalein. Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited. The mechanism of action of phenolphthalein is not clearly established, but is thought to be caused by inhibition of the Na/K ATPase and the Cl/HCO3 anion exchanger and stimulation of electrogenic anion secretion (see, e.g., Eherer, A. J., C. A. Santa Ana, J. Porter, and J. S. Fordtran, 1993, Gastroenterology, v. 104, no. 4, p. 1007-1012). However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans. Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage. Accordingly, it should also be recognized that the induction of chronic diarrhea as part of an effort to control salt and fluid overload would be an undesired treatment modality for most patients. Any medicament utilizing the GI tract for this purpose would therefore need to control diarrhea in order to be of practical benefit. One approach for the treatment of mild diarrhea is the administration of a fluid-absorbing polymer, such as the natural plant fiber psyllium. Polymeric materials, and more specifically hydrogel polymers, may also be used for the removal of fluid from the gastrointestinal (GI) tract. The use of such polymers is described in, for example, U.S. Pat. No. 4,470,975 and No. 6,908,609, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract. Many mammals, including humans, make a soft feces with a water content of about 70%, and do so by transporting fluid against the high hydraulic resistance imposed by the fecal mass. Several studies show that the pressure required to dehydrate feces from about 80% to about 60% is between about 500 kPa and about 1000 kPa (i.e., about 5 to about 10 atm). (See, e.g., McKie, A. T., W. Powrie, and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G391-G394; Bleakman, D., and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G377-G390; Zammit, P. S., M. Mendizabal, and R. J. Naftalin, 1994, J Physiol, v. 477 (Pt 3), p. 539-548.) However, the static pressure measured intraluminally is usually between about 6 kPa and about 15 kPa. The rather high pressure needed to dehydrate feces is essentially due to an osmotic process and not a mechanical process produced by muscular forces. The osmotic pressure arises from the active transport of salt across the colonic mucosa that ultimately produces a hypertonic fluid absorption. The osmotic gradient produced drives fluid from the lumen to the serosal side of the mucosa. Fluid-absorbing polymers, such as those described in for example U.S. Pat. Nos. 4,470,975 and 6,908,609, may not be able to sustain such pressure. Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt. Synthetic polymers that bind sodium have also been described. For example, ion-exchange polymeric resins, such as Dowex-type cation exchange resins, have been known since about the 1950's. However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity. Additionally, during the ion-exchange process, the resins may release a stoichiometric amount of exogenous cations (e.g., H, K, Ca), which may in turn potentially cause acidosis (H), hyperkalemia (K) or contribute to vascular calcification (Ca). Such resins may also cause constipation. Gastrointestinal Tract Disorders Constipation is characterized by infrequent and difficult passage of stool and becomes chronic when a patient suffers specified symptoms for over 12 non-consecutive weeks within a 12-month period. Chronic constipation is idiopathic if it is not caused by other diseases or by use of medications. An evidence-based approach to the management of chronic constipation in North America (Brandt et al., 2005, Am. J. Gastroenterol. 100(Suppl.1):S5-S21) revealed that prevalence is approximately 15% of the general population. Constipation is reported more commonly in women, the elderly, non-whites, and individuals from lower socioeconomic groups. Irritable bowel syndrome (IBS) is a common GI disorder associated with alterations in motility, secretion and visceral sensation. A range of clinical symptoms characterizes this disorder, including stool frequency and form, abdominal pain and bloating. The recognition of clinical symptoms of IBS are yet to be defined, but it is now common to refer to diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS), wherein D-IBS is defined as continuous passage of loose or watery stools and C-IBS as a group of functional disorders which present as difficult, infrequent or seemingly incomplete defecation. The pathophysiology of IBS is not fully understood, and a number of mechanisms have been suggested. Visceral hypersensitivity is often considered to play a major etiologic role and has been proposed to be a biological marker even useful to discriminate IBS from other causes of abdominal pain. In a recent clinical study (Posserud, I. et al, Gastroenterology, 2007; 133:1113-1123) IBS patients were submitted to a visceral sensitivity test (Balloon distention) and compared with healthy subjects. It revealed that 61% of the IBS patients had an altered visceral perception as measured by pain and discomfort threshold. Other reviews have documented the role of visceral hypersensitivity in abdominal pain symptomatic of various gastrointestinal tract disorders (Akbar, A, et al, Aliment. Pharmaco. Ther., 2009, 30, 423-435; Bueno et al., Neurogastroenterol Motility (2007) 19 (suppl.1), 89-119). Colonic and rectal distention have been widely used as a tool to assess visceral sensitivity in animal and human studies. The type of stress used to induce visceral sensitivity varies upon the models (see for instance Eutamen, H Neurogastroenterol Motil. 2009 Aug. 25. [Epub ahead of print]), however stress such as Partial restraint stress (PRS) is a relatively mild, non-ulcerogenic model that is considered more representative of the IBS setting. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects. Opioid-induced constipation (OIC) (also referred to as opioid-induced bowel dysfunction or opioid bowel dysfunction (OBD)) is a common adverse effect associated with opioid therapy. OIC is commonly described as constipation; however, it is a constellation of adverse gastrointestinal (GI) effects, which also includes abdominal cramping, bloating, and gastroesophageal reflux. Patients with cancer may have disease-related constipation, which is usually worsened by opioid therapy. However, OIC is not limited to cancer patients. A recent survey of patients taking opioid therapy for pain of non-cancer origin found that approximately 40% of patients experienced constipation related to opioid therapy (<3 complete bowel movements per week) compared with 7.6% in a control group. Of subjects who required laxative therapy, only 46% of opioid-treated patients (control subjects, 84%) reported achieving the desired treatment results >50% of the time (Pappagallo, 2001, Am. J. Surg. 182(5A Suppl.):11S-18S). Some patients suffering from chronic idiopathic constipation can be successfully treated with lifestyle modification, dietary changes and increased fluid and fiber intake, and these treatments are generally tried first. For patients who fail to respond to these approaches, physicians typically recommend laxatives, most of which are available over-the-counter. Use of laxatives provided over-the-counter is judged inefficient by about half of the patients (Johanson and Kralstein, 2007, Aliment. Pharmacol. Ther. 25(5):599-608). Other therapeutic options currently prescribed or in clinical development for the treatment of IBS and chronic constipation including OIC are described in, for example: Chang et al., 2006, Curr. Teat. Options Gastroenterol. 9(4):314-323; Gershon and Tack, 2007, Gastroenterology 132(1):397-414; and, Hammerle and Surawicz, 2008, World J. Gastroenterol. 14(17):2639-2649. Such treatments include but are not limited to serotonin receptor ligands, chloride channel activators, opioid receptor antagonists, guanylate-cyclase receptor agonists and nucleotide P2Y(2) receptor agonists. Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal. Na+/H+ Exchanger (NHE) Inhibitors A major function of the GI tract is to maintain water/Na homeostasis by absorbing virtually all water and Na to which the GI tract is exposed. The epithelial layer covering the apical surface of the mammalian colon is a typical electrolyte-transporting epithelium, which is able to move large quantities of salt and water in both directions across the mucosa. For example, each day the GI tract processes about 9 liters of fluid and about 800 meq of Na. (See, e.g., Zachos et al., Molecular physiology of intestinal Na+/H+ exchange; Annu. Rev. Physiol., v. 67, p. 411-443 (2005).) Only about 1.5 liters of this fluid and about 150 meq of this sodium originates from ingestion; rather, the majority of the fluid (e.g., about 7.5 liters) and sodium (about 650 meq) is secreted via the GI organs as part of digestion. The GI tract therefore represents a viable target for modulating systemic sodium and fluid levels. Many reviews have been published on the physiology and secretory and/or absorption mechanisms of the GI tract (see, e.g., Kunzelmann et al., Electrolyte transport in the mammalian colon: mechanisms and implications for disease; Physiol. Rev., v. 82, no. 1, p. 245-289 (2002); Geibel, J. P.; Secretion and absorption by colonic crypts; Annu. Rev. Physiol, v. 67, p. 471-490 (2005); Zachos et al., supra; Kiela, P. R. et al., Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl. 7, p. 51-79 (2006)). The two main mechanisms of Na absorption are electroneutral and electrogenic transport. Electroneutral transport is essentially due to the Na+/H+ antiport NHE (e.g., NHE-3) and is responsible for the bulk of Na absorption. Electrogenic transport is provided by the epithelium sodium channel (“ENaC”). Electroneutral transport is located primarily in the ileal segment and proximal colon and electrogenic transport is located in the distal colon. Plasma membrane NHEs contribute to maintenance of intracellular pH and volume, transcellular absorption of NaCl and NaHCO3, and fluid balance carried out by epithelial cells, especially in the kidney, intestine, gallbladder, and salivary glands, as well as regulation of systemic pH. There exists a body of literature devoted to the role and clinical intervention on systemic NHEs to treat disorders related to ischemia and reperfusion for cardioprotection or renal protection. Nine isoforms of NHEs have been identified (Kiela, P. R., et al.; Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl 7, p. 51-79 (2006)), of which NHE-2, NHE-3 and NHE-8 are expressed on the apical side of the GI tract, with NHE-3 providing a larger contribution to transport. Another, yet to be identified, Cl-dependant NHE has been identified in the crypt of rat cells. In addition, much research has been devoted to identifying inhibitors of NHEs. The primary targets of such research have been NHE-1 and NHE-3. Small molecule NHE inhibitors are, for example, described in: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,736,705; 6,887,870; 6,737,423; 7,326,705; 5,824,691 (WO 94/026709); U.S. Pat. No. 6,399,824 (WO 02/024637); U.S. Pat. Pub. Nos. 2004/0039001 (WO 02/020496); 2005/0020612 (WO 03/055490); 2004/0113396 (WO 03/051866); 2005/0020612; 2005/0054705; 2008/0194621; 2007/0225323; 2004/0039001; 2004/0224965; 2005/0113396; 2007/0135383; 2007/0135385; 2005/0244367; 2007/0270414; International Publication Nos. WO 01/072742; WO 01021582 (CA2387529); WO 97/024113 (CA02241531) and European Pat. No. EP0744397 (CA2177007); all of which are incorporated herein by reference in their entirety for all relevant and consistent purposes. However, to-date, such research has failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract. Such inhibitors could be utilized in the treatment of disorders associated with fluid retention and salt overload and in the treatment of GI tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. Such inhibitors would be particular advantageous because they could be delivered with reduced fear of systemic on-target or off-target effects (e.g., little or no risk of renal involvement or other systemic effects. Accordingly, while progress has been made in the foregoing fields, there remains a need in the art for novel compounds for use in the disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY In brief, the present invention is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. In one embodiment, a compound is provided having: (i) a topological Polar Surface Area (tPSA) of at least about 200 Å2 and a molecular weight of at least about 710 Daltons in the non-salt form; or (ii) a tPSA of at least about 270 Å2, wherein the compound is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein upon administration to a patient in need thereof. In further embodiments, the compound has a molecular weight of at least about 500 Da, at least about 1000 Da, at least about 2500 Da, or at least about 5000 Da. In further embodiments, the compound has a tPSA of at least about 250 Å2, at least about 270 Å2, at least about 300 Å2, at least about 350 Å2, at least about 400 Å2, or at least about 500 Å2. In further embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit antiport of sodium ions and hydrogen ions mediated by NHE-3, NHE-2, NHE-8, or a combination thereof. In further embodiments, the compound is substantially systemically non-bioavailable and/or substantially impermeable to the epithelium of the gastrointestinal tract. In further embodiments, the compound is substantially active in the lower gastrointestinal tract. In further embodiments, the compound has (i) a total number of NH and/or OH and/or other potential hydrogen bond donor moieties greater than about 5; (ii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 10; and/or (iii) a Moriguchi partition coefficient greater than about 105 or less than about 10. In further embodiments, the compound has a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s. In further embodiments, the compound is substantially localized in the gastrointestinal tract or lumen. In further embodiments, the compound inhibits NHE irreversibly. In further embodiments, the compound is capable of providing a substantially persistent inhibitory action and wherein the compound is orally administered once-a-day. In further embodiments, the compound is substantially stable under physiological conditions in the gastrointestinal tract. In further embodiments, the compound is inert with regard to gastrointestinal flora. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract past the duodenum. In further embodiments, the compound, when administered at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, less than about 10× the IC50, or less than about 100× the IC50. In further embodiments, upon administration of the compound to a patient in need thereof, the compound exhibits a maximum concentration detected in the serum, defined as Cmax, that is lower than the NHE inhibitory concentration IC50 of the compound. In further embodiments, upon administration of the compound to a patient in need thereof, greater than about 80%, greater than about 90% or greater than about 95% of the amount of compound administered is present in the patient's feces. In further embodiments, the compound has a structure of Formula (I) or (IX): wherein: NHE is a NHE-inhibiting small molecule that comprises (i) a hetero-atom containing moiety, and (ii) a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto, the heteroatom-containing moiety being selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the scaffold or support moiety to form a fused bicyclic structure; and, Z is a moiety having at least one site thereon for attachment to the NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; and, E is an integer having a value of 1 or more. In further embodiments, the total number of freely rotatable bonds in the NHE-Z molecule is at least about 10. In further embodiments, the total number hydrogen bond donors in the NHE-Z molecule is at least about 5. In further embodiments, the total number of hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the total number of hydrogen bond donors and hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the Log P of the NHE-Z inhibiting compound is at least about 5. In further embodiments, the log P of the NHE-Z inhibiting compound is less than about 1, or less than about 0. In further embodiments, the scaffold is a 5-member or 6-member cyclic or heterocyclic moiety. In further embodiments, the scaffold is aromatic. In further embodiments, the scaffold of the NHE-inhibiting small molecule is bound to the moiety, Z, and the compound has the structure of Formula (II): wherein: Z is a Core having one or more sites thereon for attachment to one or more NHE-inhibiting small molecules, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; Scaffold is the cyclic or heterocyclic scaffold or support moiety of the NHE-inhibiting small molecule, which is bound directly or indirectly to heteroatom-containing moiety, B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl, and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties, which links B and the Scaffold; and, D and E are integers, each independently having a value of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a Core moiety having two or more sites thereon for attachment to multiple NHE-inhibiting small molecules, either directly or indirectly through a linking moiety, L, and the compound has the structure of Formula (X): CoreL-NHE)n  (X) wherein L is a bond or linker connecting the Core to the NHE-inhibiting small molecule, and n is an integer of 2 or more, and further wherein each NHE-inhibiting small molecule may be the same or differ from the others. In further embodiments, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further embodiments, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further embodiments, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further embodiments, L is a polyalkylene glycol linker. In further embodiments, L is a polyethylene glycol linker. In further embodiments, n is 2. In further embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further embodiments, the Core is selected from the group consisting of: In further embodiments, the compound is an oligomer, and Z is a linking moiety, L, that links two or more NHE-inhibiting small molecules together, when the two or more NHE-inhibiting small molecules may be the same or different, and the compound has the structure of Formula (XI): wherein L is a bond or linker connecting one NHE-inhibiting small molecule to another, and m is 0 or an integer of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a backbone, denoted Repeat Unit, to which is bound multiple NHE-inhibiting moieties, and the compound has the structure of Formula (XIIB): wherein: L is a bond or a linking moiety; NHE is a NHE-inhibiting small molecule; and n is a non-zero integer. In another embodiment, a pharmaceutical composition is provided comprising a compound as set forth above, or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the composition further comprises a fluid-absorbing polymer. In further embodiments, the fluid-absorbing polymer is delivered directly to the colon. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 5 kPa. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 10 kPa. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 10 g/g. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 15 g/g. In further embodiments, the fluid-absorbing polymer is superabsorbent. In further embodiments, the fluid-absorbing polymer is a crosslinked, partially neutralized polyelectrolyte hydrogel. In further embodiments, the fluid-absorbing polymer is a crosslinked polyacrylate. In further embodiments, the fluid-absorbing polymer is a polyelectrolyte. In further embodiments, the fluid-absorbing polymer is calcium Carbophil. In further embodiments, the fluid-absorbing polymer is prepared by a high internal phase emulsion process. In further embodiments, the fluid-absorbing polymer is a foam. In further embodiments, the fluid-absorbing polymer is prepared by a aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker and a free radical initiator redox system in water. In further embodiments, the fluid-absorbing polymer is a hydrogel. In further embodiments, the fluid-absorbing polymer is an N-alkyl acrylamide. In further embodiments, the fluid-absorbing polymer is a superporous gel. In further embodiments, the fluid-absorbing polymer is naturally occurring. In further embodiments, the fluid-absorbing polymer is selected from the group consisting of xanthan, guar, wellan, hemicelluloses, alkyl-cellulose hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In further embodiments, the fluid-absorbing polymer is psyllium. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight. In further embodiments, the composition further comprises another pharmaceutically active agent or compound. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of an analgesic peptide or agent. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In another embodiment, a method for inhibiting NHE-mediated antiport of sodium and hydrogen ions is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder associated with fluid retention or salt overload is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder selected from the group consisting of heart failure (such as congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating hypertension is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium and/or fluid. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium by at least about 30 mmol, and/or fluid by at least about 200 ml. In further embodiments, the mammal's fecal output of sodium and/or fluid is increased without introducing another type of cation in a stoichiometric or near stoichiometric fashion via an ion exchange process. In further embodiments, the method further comprises administering to the mammal a fluid-absorbing polymer to absorb fecal fluid resulting from the use of the compound that is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. In further embodiments, the compound or composition is administered to treat hypertension. In further embodiments, the compound or composition is administered to treat hypertension associated with dietary salt intake. In further embodiments, administration of the compound or composition allows the mammal to intake a more palatable diet. In further embodiments, the compound or composition is administered to treat fluid overload. In further embodiments, the fluid overload is associated with congestive heart failure. In further embodiments, the fluid overload is associated with end stage renal disease. In further embodiments, the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. In further embodiments, the compound or composition is administered to treat sodium overload. In further embodiments, the compound or composition is administered to reduce interdialytic weight gain in ESRD patients. In further embodiments, the compound or composition is administered to treat edema. In further embodiments, the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. In further embodiments, the compound or composition is administered orally, by rectal suppository, or enema. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. In another embodiment, a method for treating a gastrointestinal tract disorder is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the gastrointestinal tract disorder is a gastrointestinal motility disorder. In further embodiments, the gastrointestinal tract disorder is irritable bowel syndrome. In further embodiments, the gastrointestinal tract disorder is chronic constipation. In further embodiments, the gastrointestinal tract disorder is chronic idiopathic constipation. In further embodiments, the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. In further embodiments, the gastrointestinal tract disorder is opioid-induced constipation. In further embodiments, the gastrointestinal tract disorder is a functional gastrointestinal tract disorder. In further embodiments, the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. In further embodiments, the gastrointestinal tract disorder is Crohn's disease. In further embodiments, the gastrointestinal tract disorder is ulcerative colitis. In further embodiments, the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. In further embodiments, the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). In further embodiments, the gastrointestinal tract disorder is constipation induced by calcium supplement. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with the use of a therapeutic agent. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with a neuropathic disorder. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is post-surgical constipation (postoperative ileus). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is idiopathic (functional constipation or slow transit constipation). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is due the use of drugs selected from analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In another embodiment, a method for treating irritable bowel syndrome is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of an NHE-3 inhibitor compound or a pharmaceutical composition comprising an NHE-3 inhibitor compound. In further embodiments, the NHE-3 inhibitor compound or the pharmaceutical composition comprising an NHE-3 inhibitor compound is a compound or pharmaceutical composition as set forth above. In further embodiments of the above embodiments, the compound or composition is administered to treat or reduce pain associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce inflammation of the gastrointestinal tract. In further embodiments, the compound or composition is administered to reduce gastrointestinal transit time. In further embodiments, the compound or composition is administered either orally or by rectal suppository. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition, in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. In further embodiments, the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), and a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a graph that illustrates the relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of certain example compounds, as further discussed in the Examples (under the subheading “2. Pharmacological Test Example 2”). FIGS. 2A and 2B are graphs that illustrate the cecum and colon water content after oral administration of certain example compounds, as further discussed in the Examples (under the subheading “3. Pharmacological Test Example 3”). FIGS. 3A and 3B are graphs that illustrate the dose dependent decrease of urinary salt levels after administration of certain example compounds, as further discussed in the Examples (under the subheading “14. Pharmacological Test Example 14”). FIG. 4 is a graph that illustrates a dose dependent increase in fecal water content after administration of a certain example compound, as further discussed in the Examples (under the subheading “15. Pharmacological Test Example 15”). FIGS. 5A, 5B and 5C are graphs that illustrate that supplementing the diet with Psyllium results in a slight reduction of fecal stool form, but without impacting the ability of a certain example compound to increase fecal water content or decrease urinary sodium, as further discussed in the Examples (under the subheading “16. Pharmacological Test Example 16”). FIG. 6 is a graph that illustrates that inhibition of NHE-3 reduces hypersensitivity to distention, as further discussed in the Examples (under the subheading “17. Pharmacological Test Example 17”). FIGS. 7A and 7B are graphs that illustrate that inhibition of NHE-3 increases the amount of sodium excreted in feces, as further discussed in the Examples (under subheading “18. Pharmacological Test Example 18”). DETAILED DESCRIPTION In accordance with the present disclosure, and as further detailed herein below, it has been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various disorders that may be associated with or caused by fluid retention and/or salt overload, and/or disorders such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from, for example, CHF, ESRD/CKD and/or liver disease. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of hypertension, that may be associated with or caused by fluid retention and/or salt overload. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from hypertension. Such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. and/or hypertension. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, and more particularly to the restoration of appropriate fluid secretion in the gut and the improvement of pathological conditions encountered in constipation states. Applicants have further recognized that by blocking sodium ion re-absorption, the compound of the invention restore fluid homeostasis in the GI tract, particularly in situations wherein fluid secretion/absorption is altered in such a way that it results in a high degree of feces dehydration, low gut motility, and/or a slow transit-time producing constipation states and GI discomfort generally. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Due to the presence of NHEs in other organs or tissues in the body, the method of the present disclosure employs the use of compounds and compositions that are desirably highly selective or localized, thus acting substantially in the gastrointestinal tract without exposure to other tissues or organs. In this way, any systemic effects can be minimized (whether they are on-target or off-target). Accordingly, it is to be noted that, as used herein, and as further detailed elsewhere herein, “substantially active in the gastrointestinal tract” generally refers to compounds that are substantially systemically non-bioavailable and/or substantially impermeable to the layer of epithelial cells, and more specifically epithelium of the GI tract. It is to be further noted that, as used herein, and as further detailed elsewhere herein, “substantially impermeable” more particularly encompasses compounds that are impermeable to the layer of epithelial cells, and more specifically the gastrointestinal epithelium (or epithelial layer). “Gastrointestinal epithelium” refers to the membranous tissue covering the internal surface of the gastrointestinal tract. Accordingly, by being substantially impermeable, a compound has very limited ability to be transferred across the gastrointestinal epithelium, and thus contact other internal organs (e.g., the brain, heart, liver, etc.). The typical mechanism by which a compound can be transferred across the gastrointestinal epithelium is by either transcellular transit (a substance travels through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes) and/or by paracellular transit, where a substance travels between cells of an epithelium, usually through highly restrictive structures known as “tight junctions”. The compounds of the present disclosure may therefore not be absorbed, and are thus essentially not systemically bioavailable at all (e.g., impermeable to the gastrointestinal epithelium at all), or they show no detectable concentration of the compound in serum. Alternatively, the compounds may: (i) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the liver (i.e., hepatic extraction) via first-pass metabolism; and/or (ii) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the kidney (i.e., renal excretion). In this regard it is to be still further noted that, as used herein, “substantially systemically non-bioavailable” generally refers to the inability to detect a compound in the systemic circulation of an animal or human following an oral dose of the compound. For a compound to be bioavailable, it must be transferred across the gastrointestinal epithelium (that is, substantially permeable as defined above), be transported via the portal circulation to the liver, avoid substantial metabolism in the liver, and then be transferred into systemic circulation. As further detailed elsewhere herein, small molecules exhibiting an inhibitory effect on NHE-mediated antiport of sodium and hydrogen ions described herein may be modified or functionalized to render them “substantially active” in the GI tract (or “substantially impermeable” to the GI tract and/or “substantially systemically non-bioavailable”from the GI tract) by, for example, ensuring that the final compound has: (i) a molecular weight of greater than about 500 Daltons (Da) (e.g., greater than about 1000 Da, about 2500 Da, about 5000 Da, or even about 10000 Da) in its non-salt form; and/or (ii) at least about 10 freely rotatable bonds therein (e.g., about 10, about 15 or even about 20); and/or (iii) a Moriguchi Partition Coefficient of at least about 105 (or log P of at least about 5), by for example increasing the hydrophobicity of the compound (e.g., inserting or installing a hydrocarbon chain of a sufficient or suitable length therein), or alternatively a Moriguchi Partition Coefficient of less than 10 (or alternatively a log P of less than about 1, or less than about 0); and/or (iv) a number of hydrogen-bond donors therein greater than about 5, about 10, or about 15; and/or (v) a number of hydrogen-bond acceptors therein greater than about 5, about 10, or about 15; and/or (vi) a total number of hydrogen-bond donors and acceptors therein of greater than about 5, about 10, or about 15; and/or, (vii) a topological polar surface area (tPSA) therein of greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, by for example inserting or installing a sufficiently hydrophilic functional group therein (e.g., a polyalkylene ether or a polyol or an ionizable group, such as a phosphonate, sulfonate, carboxylate, amine, quaternary amine, etc.), the hydrogen-bond donors/acceptor groups also contributing to compound tPSA. One or more of the above-noted methods for structurally modifying or functionalizing the NHE-inhibiting small molecule may be utilized in order to prepare a compound suitable for use in the methods of the present disclosure, so as to render the compound substantially impermeable or substantially systemically non-bioavailable; that is, one or more of the noted exemplary physical properties may be “engineered” into the NHE-inhibiting small molecule to render the resulting compound substantially impermeable or substantially systemically non-bioavailable, or more generally substantially active, in the GI tract, while still possessing a region or moiety therein that is active to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. Without being held to any particular theory, the NHE-inhibitors (e.g., NHE-3, -2 and/or -8) of the instant disclosure are believed to act via a distinct and unique mechanism, causing the retention of fluid and ions in the GI tract (and stimulating fecal excretion) rather than stimulating increased secretion of said fluid and ions. For example, lubiprostone (Amitiza® Sucampo/Takeda) is a bicyclic fatty acid prostaglandin E1 analog that activates the Type 2 Chloride Channel (ClC-2) and increases chloride-rich fluid secretion from the serosal to the mucosal side of the GI tract (see, e.g., Pharmacological Reviews for Amitiza®, NDA package) Linaclotide (MD-1100 acetate, Microbia/Forest Labs) is a 14 amino acid peptide analogue of an endogenous hormone, guanylin, and indirectly activates the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) thereby inducing fluid and electrolyte secretion into the GI (see, e.g., Li et al., J. Exp. Med., vol. 202 (2005), pp. 975-986). The substantially impermeable NHE inhibitors described in the instant disclosure act to inhibit the reuptake of salt and fluid rather than promote secretion. Since the GI tract processes about 9 liters of fluid and about 800 meq of Na each day, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to resorb edema and resolve CHF symptoms. I. Substantially Impermeable or Substantially Systemically Non-Bioavailable NHE-Inhibiting Compounds A. General Structure Generally speaking, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that is effective or active as a NHE inhibitor and that is substantially active in the GI tract, and more particularly substantially impermeable or substantially systemically non-bioavalable therein, including known NHE inhibitors that may be modified or functionalized in accordance with the present disclosure to alter the physicochemical properties thereof so as to render the overall compound substantially active in the GI tract. In particular, however, the present disclosure encompasses monovalent or polyvalent compounds that are effective or active as NHE-3, NHE-2 and/or NHE-8 inhibitors. Accordingly, the compounds of the present disclosure may be generally represented by Formula (I): NHE-Z  (I) wherein: (i) NHE represents a NHE-inhibiting small molecule, and (ii) Z represents a moiety having at least one site thereon for attachment to an NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The NHE-inhibiting small molecule generally comprises a heteroatom-containing moiety and a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto. In particular, examination of the structures of small molecules reported to-date to be NHE inhibitors suggest, as further illustrated herein below, that most comprise a cyclic or heterocyclic support or scaffold bound directly or indirectly (by, for example, an acyl moiety or a hydrocabyl or heterohydrocarbyl moiety, such as an alkyl, an alkenyl, a heteroalkyl or a heteroalkenyl moiety) to a heteroatom-containing moiety that is capable of acting as a sodium atom or sodium ion mimic, which is typically selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety (e.g., a nitrogen-containing herocyclic moiety). Optionally, the heteroatom-containing moiety may be fused with the scaffold or support moiety to form a fused, bicyclic structure, and/or it may be capable of forming a positive charge at a physiological pH. In this regard it is to be noted that, while the heteroatom-containing moiety that is capable of acting as a sodium atom or ion mimic may optionally form a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein. Rather, in various embodiments, the compound may have no charged moieties, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof, the compound for example being a zwitterion). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge (e.g., +1, +2, +3, etc.), or a net negative charge (e.g., −1, −2, −3, etc.). The Z moiety may be bound to essentially any position on, or within, the NHE small molecule, and in particular may be: (i) bound to the scaffold or support moiety, (ii) bound to a position on, or within, the heteroatom-containing moiety, and/or (iii) bound to a position on, or within, a spacer moiety that links the scaffold to the heteroatom-containing moiety, provided that the installation of the Z moiety does not significantly adversely impact NHE-inhibiting activity. In one particular embodiment, Z may be in the form of an oligomer, dendrimer or polymer bound to the NHE small molecule (e.g., bound for example to the scaffold or the spacer moiety), or alternatively Z may be in the form of a linker that links multiple NHE small molecules together, and therefore that acts to increase: (i) the overall molecular weight and/or polar surface area of the NHE-Z molecule; and/or, (ii) the number of freely rotatable bonds in the NHE-Z molecule; and/or, (iii) the number of hydrogen-bond donors and/or acceptors in the NHE-Z molecule; and/or, (iv) the Log P value of the NHE-Z molecule to a value of at least about 5 (or alternatively less than 1, or even about 0), all as set forth herein; such that the overall NHE-inhibiting compound (I.e., the NHE-Z compound) is substantially impermeable or substantially systemically non-bioavailable. The present disclosure is more particularly directed to such a substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound, or a pharmaceutical salt thereof, wherein the compound has the structure of Formula (II): wherein: (i) Z, as previously defined above, is a moiety bound to or incorporated in the NHE-inhibiting small molecule, such that the resulting NHE-Z molecule possesses overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; (ii) B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and in one particular embodiment is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; (iii) Scaffold is the cyclic or heterocyclic moiety to which is bound directly or indirectly the hetero-atom containing moiety (e.g., the substituted guanidinyl moiety or a substituted heterocyclic moiety), B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; (iv) X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-C7 hydrocarbyl or heterohydrocarbyl (e.g., C1-C7 alkyl, alkenyl, heteroalkyl or heteroalkenyl), and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties (e.g., C4-C7 cyclic or heterocyclic moieties), which links B and the Scaffold; and, (v) D and E are integers, each independently having a value of 1, 2 or more. In one or more particular embodiments, as further illustrated herein below, B may be selected from a guanidinyl moiety or a moiety that is a guanidinyl bioisostere selected from the group consisting of substituted cyclobutenedione, substituted imidazole, substituted thiazole, substituted oxadiazole, substituted pyrazole, or a substituted amine. More particularly, B may be selected from guanidinyl, acylguanidinyl, sulfonylguanidinyl, or a guanidine bioisostere such as a cyclobutenedione, a substituted or unsubstituted 5- or 6-member heterocycle such as substituted or unsubstituted imidazole, aminoimidazole, alkylimidizole, thiazole, oxadiazole, pyrazole, alkylthioimidazole, or other functionality that may optionally become positively charged or function as a sodium mimetic, including amines (e.g., tertiary amines), alkylamines, and the like, at a physiological pH. In one particularly preferred embodiment, B is a substituted guanidinyl moiety or a substituted heterocyclic moiety that may optionally become positively charged at a physiological pH to function as a sodium mimetic. In one exemplary embodiment, the compound of the present disclosure (or more particularly the pharmaceutically acceptable HCl salt thereof, as illustrated) may have the structure of Formula (III): wherein Z may be optionally attached to any one of a number of sites on the NHE-inhibiting small molecule, and further wherein the R1, R2 and R3 substituents on the aromatic rings are as detailed elsewhere herein, and/or in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. In this regard it is to be noted, however, that the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may have a structure other than illustrated above, without departing from the scope of the present disclosure. For example, in various alternative embodiments, one or both of the terminal nitrogen atoms in the guanidine moiety may be substituted with one or more substituents, and/or the modifying or functionalizing moiety Z may be attached to the NHE-inhibiting compound by means of (i) the Scaffold, (ii) the spacer X, or (iii) the heteroatom-containing moiety, B, as further illustrated generally in the structures provided below: In this regard it is to be further noted that, as used herein, “bioisostere” generally refers to a moiety with similar physical and chemical properties to a guanidine moiety, which in turn imparts biological properties to that given moiety similar to, again, a guanidine moiety, in this instance. (See, for example, Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes.) As further detailed below, known NHE-inhibiting small molecules or chemotypes that may serve as suitable starting materials (for modification or functionalization, in order to render the small molecules substantially impermeable or substantially systemically non-bioavailable, and/or used in pharmaceutical preparations in combination with, for example, a fluid-absorbing polymer) may generally be organized into a number of subsets, such as for example: wherein: the terminal ring (or, in the case of the non-acyl guanidines, “R”), represent the scaffold or support moiety; the guanidine moiety (or the substituted heterocycle, and more specifically the piperidine ring, in the case of the non-guanidine inhibitors) represents B; and, X is the acyl moiety, or the -A-B-acyl- moiety (or a bond in the case of the non-acyl guanidines and the non-guanidine inhibitors). (See, e.g., Lang, H. J., “Chemistry of NHE Inhibitors” in The Sodium-Hydrogen Exchanger, Harmazyn, M., Avkiran, M. and Fliegel, L., Eds., Kluwer Academic Publishers 2003. See also B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Without being held to any particular theory, it has been proposed that a guanidine group, or an acylguanidine group, or a charged guanidine or acylguanidine group (or, in the case of non-guanidine inhibitors, a heterocycle or other functional group that can replicate the molecular interactions of a guanidinyl functionality including, but not limited to, a protonated nitrogen atom in a piperidine ring) at physiological pH may mimic a sodium ion at the binding site of the exchanger or antiporter (See, e.g., Vigne, P.; Frelin, C.; Lazdunski, M. J. Biol. Chem. 1982, 257, 9394). Although the heteroatom-containing moiety may be capable of forming a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein, or even that the heteroatom-containing moiety therein be capable of forming a positive charge in all instances. Rather, in various alternative embodiments, the compound may have no charged moieties therein, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge, or a net negative charge. In this regard it is to be noted that the U.S. patents and U.S. Published applications cited above, or elsewhere herein, are incorporated herein by reference in their entirety, for all relevant and consistent purposes. In addition to the structures illustrated above, and elsewhere herein, it is to be noted that bioisosteric replacements for guanidine or acylguanidine may also be used. Potentially viable bioisosteric “guanidine replacements” identified to-date have a five- or six-membered heterocyclic ring with donor/acceptor and pKa patterns similar to that of guanidine or acylguanidine (see for example Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes), and include those illustrated below: The above bioisosteric embodiments (i.e., the group of structures above) correspond to “B” in the structure of Formula (II), the broken bond therein being attached to “X” (e.g., the acyl moiety, or alternatively a bond linking the bioisostere to the scaffold), with bonds to Z in Formula (III) not shown here. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-inhibiting small molecule and the modifying or functionalizing moiety Z is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-inhibiting small molecule is bound or connected in some way (e.g., by a bond or linker of some kind) to Z, such that the resulting NHE-Z molecule is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). Alternatively, Z may be incorporated into the NHE-inhibiting small molecule, such as for example by positioning it between the guanidine moiety and scaffold. It is to be further noted that a number of structures are provided herein for substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, and/or for NHE-inhibiting small molecules suitable for modification or functionalization in accordance with the present disclosure so as to render them substantially impermeable or substantially systemically non-bioavailable. Due to the large number of structures, various identifiers (e.g., atom identifiers in a chain or ring, identifiers for substituents on a ring or chain, etc.) may be used more than once. An identifier in one structure should therefore not be assumed to have the same meaning in a different structure, unless specifically stated (e.g., “R1” in one structure may or may not be the same as “R1” in another structure). Additionally, it is to be noted that, in one or more of the structures further illustrated herein below, specific details of the structures, including one or more of the identifiers therein, may be provided in a cited reference, the contents of which are specifically incorporated herein by reference for all relevant and consistent purposes. B. Illustrative Small Molecule Embodiments The substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may in general be derived or prepared from essentially any small molecule possessing the ability to inhibit NHE activity, including small molecules that have already been reported or identified as inhibiting NHE activity but lack impermeability (i.e., are not substantially impermeable). In one particularly preferred embodiment, the compounds utilized in the various methods of the present disclosure are derived or prepared from small molecules that inhibit the NHE-3, -2, and/or -8 isoforms. To-date, a considerable amount of work has been devoted to the study of small molecules exhibiting NHE-1 inhibition, while less has been devoted for example to the study of small molecules exhibiting NHE-3 inhibition. Although the present disclosure is directed generally to substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, the substantially impermeable or substantially systemically non-bioavailable compounds exhibiting NHE-3, -2, and/or -8 inhibition are of particular interest. However, while it is envisioned that appropriate starting points may be the modification of known NHE-3, -2, and/or -8 inhibiting small molecules, small molecules identified for the inhibition of other NHE subtypes, including NHE-1, may also be of interest, and may be optimized for selectivity and potency for the NHE-3, -2, and/or -8 subtype antiporter. Small molecules suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) to prepare the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure include those illustrated below. In this regard it is to be noted a bond or link to Z (i.e., the modification or functionalization that renders the small molecules substantially impermeable or substantially systemically non-bioavailable) is not specifically shown. As previously noted, the Z moiety may be attached to, or included within, the small molecule at essentially any site or position that does not interfere (e.g., stericly interfere) with the ability of the resulting compound to effectively inhibit the NHE antiport of interest. More particularly, Z may be attached to essentially any site on the NHE-inhibiting small molecule, Z for example displacing all or a portion of a substituent initially or originally present thereon and as illustrated below, provided that the site of installation of the Z moiety does not have a substantially adversely impact on the NHE-inhibiting activity thereof. In one particular embodiment, however, a bond or link extends from Z to a site on the small molecule that effectively positions the point of attachment as far away (based, for example, on the number of intervening atoms or bonds) from the atom or atoms present in the resulting compound that effectively act as the sodium ion mimic (for example, the atom or atoms capable of forming a positive ion under physiological pH conditions). In a preferred embodiment, the bond or link will extend from Z to a site in a ring, and more preferably an aromatic ring, within the small molecule, which serves as the scaffold. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound I1 on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H —NH2 The variables (“R1”, “R2 and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In these structures, a bond or link (not shown) may extend, for example, between the Core and amine-substituted aromatic ring (first structure), the heterocyclic ring or the aromatic ring to which it is bound, or alternatively the chloro-substituted aromatic ring (second structure), or the difluoro-substituted aromatic ring or the sulfonamide-substituted aromatic ring (third structure). C. Exemplary Small Molecule Selectivity Shown below are examples of various NHE inhibiting small molecules and their selectivity across the NHE-1, -2 and -3 isoforms. (See, e.g., B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Most of these small molecules were optimized as NHE-1 inhibitors, and this is reflected in their selectivity with respect thereto (IC50's for subtype-1 are significantly more potent (numerically lower) than for subtype-3). However, the data in Table 1 indicates that NHE-3 activity may be engineered into an inhibitor series originally optimized against a different isoform. For example, amiloride is a poor NHE-3 inhibitor and was inactive against this antiporter at the highest concentration tested (IC50>100 μM); however, analogs of this compound, such as DMA and EIPA, have NHE-3 IC50's of 14 and 2.4 uM, respectively. The cinnamoylguanidine S-2120 is over 500-fold more active against NHE-1 than NHE-3; however, this selectivity is reversed in regioisomer S-3226. It is thus possible to engineer NHE-3 selectivity into a chemical series optimized for potency against another antiporter isoform; that is, the inhibitor classes exemplified in the art may be suitably modified for activity and selectivity against NHE-3 (or alternatively NHE-2 and/or NHE-8), as well as being modified to be rendered substantially impermeable or substantially systemically non-bioavailable. R1 R2 Amiloride —H —H DMA —CH3 —CH3 EIPA —C2H5 —CH(CH3)2 HMA —(CH2)6— TABLE 1 IC50 or Ki (μM)b Drug a NHE-1 NHE-2 NHE-3 NHE-5 Amiloride    1-1.6* 1.0**  >100* 21 EIPA 0.01*- 0.08*- 2.4* 0.42 0.02** 0.5** HMA 0.013* — 2.4* 0.37 DMA 0.023* 0.25* 14* — Cariporide 0.03-3.4  4.3-62     1->100 >30 Eniporide 0.005-0.38   2-17 100-460 >30 Zoniporide 0.059 12  >500* — BMS-284640 0.009 1800 >30  3.36 T-162559 (S) 0.001 0.43 11 — T-162559 (R) 35 0.31 >30  — S-3226 3.6 80** 0.02 S-2120 0.002 0.07 1.32 *= from rat, ** = from rabbit. NA = not active a Table adapted from Masereel, B. et al., European Journal of Medicinal Chemistry, 2003, 38,547-54. bKi values are in italic As previously noted above, the NHE inhibitor small molecules disclosed herein, including those noted above, may advantageously be modified to render them substantially impermeable or substantially systemically non-bioavailable. The compounds as described herein are, accordingly, effectively localized in the gastrointestinal tract or lumen, and in one particular embodiment the colon. Since the various NHE isomforms may be found in many different internal organs (e.g., brain, heart, liver, etc.), localization of the NHE inhibitors in the intestinal lumen is desirable in order to minimize or eliminate systemic effects (i.e., prevent or significantly limit exposure of such organs to these compounds). Accordingly, the present disclosure provides NHE inhibitors, and in particular NHE-3, -2 and/or -8 inhibitors, that are substantially systemically non-bioavailable in the GI tract, and more specifically substantially systemically impermeable to the gut epithelium, as further described below. D. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is monovalent; that is, the molecule contains one moiety that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following structures of Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen (e.g., Cl), —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R4 is selected from H, C1-C7 alkyl or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines, optionally linked to the ring Ar1 by a heterocyclic linker; R4 and R12 are independently selected from H and R7, where R7 is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R3 is selected from H or R7, where R7 is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or R7, wherein R7 is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In another particular embodiment, the NHE-Z molecule of the present disclosure may have the structure of Formula (IV): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted hydrocarbyl, heterohydrocarbyl, or polyols and/or substituted or unsubstituted polyalkylene glycol, wherein substituents thereon are selected from the group consisting of phosphinates, phosphonates, phosphonamidates, phosphates, phosphonthioates and phosphonodithioates; R4 is selected from H or Z, where Z is substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and a polyol, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is selected from —H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. Additionally, or alternatively, in one or more embodiments of the compounds illustrated above, the compound may optionally have a tPSA of at least about 100 Å2, about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, or more and/or a molecular weight of at least about 710 Da. II. Polyvalent Structures: Macromolecules and Oligomers A. General Structure As noted above, the compounds of the present disclosure comprise a NHE-inhibiting small molecule that has been modified or functionalized structurally to alter its physicochemical properties (by the attachment or inclusion of moiety Z), and more specifically the physicochemical properties of the NHE-Z molecule, thus rendering it substantially impermeable or substantially systemically non-bioavailable. In one particular embodiment, and as further detailed elsewhere herein, the NHE-Z compound may be polyvalent (i.e., an oligomer, dendrimer or polymer moiety), wherein Z may be referred to in this embodiment generally as a “Core” moiety, and the NHE-inhibiting small molecule may be bound, directly or indirectly (by means of a linking moiety) thereto, the polyvalent compounds having for example one of the following general structures of Formula (VIII), (IX) and (X): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and E and n are both an integer of 2 or more. In various alternative embodiments, however, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-inhibiting small molecules, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (XI): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-inhibiting small molecule is modified (e.g., increased) by having a series of NHE-inhibiting small molecules linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In these or yet additional alternative embodiments, the polyvalent compound may be in dimeric, oligomeric or polymeric form, wherein for example Z or the Core is a backbone to which is bound (by means of a linker, for example) multiple NHE-inhibiting small molecules. Such compounds may have, for example, the structures of Formulas (XIIA) or (XIIB): wherein: L is a linking moiety; NHE is a NHE-inhibiting small molecule, each NHE as described above and in further detail hereinafter; and n is a non-zero integer (i.e., an integer of 1 or more). The Core moiety has one or more attachment sites to which NHE-inhibiting small molecules are bound, and preferably covalently bound, via a bond or linker, L. The Core moiety may, in general, be anything that serves to enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable (e.g., an atom, a small molecule, etc.), but in one or more preferred embodiments is an oligomer, a dendrimer or a polymer moiety, in each case having more than one site of attachment for L (and thus for the NHE-inhibiting small molecule). The combination of the Core and NHE-inhibiting small molecule (i.e., the “NHE-Z” molecule) may have physicochemical properties that enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable. In this regard it is to be noted that the repeat unit in Formulas (XIIA) and (XIIB) generally encompasses repeating units of various polymeric embodiments, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-inhibiting small molecule by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-inhibiting moieties therein. In this regard it is to be still further noted that, as further illustrated elsewhere herein, certain polyvalent NHE-inhibiting compounds of the present disclosure show unexpectedly higher potency, as measured by inhibition assays (as further detailed elsewhere herein) and characterized by the concentration of said NHE inhibitor resulting in 50% inhibition (i.e., the IC50 values). It has been observed that certain multivalent structures, represented generally by Formula (X), above, have an IC50 value several fold lower in magnitude than the individual NHE, or L-NHE, structure (which may be referred to as the “monomer” or monovalent form). For example, in one embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 5 time lower (i.e. potency about 5 time higher) than the monomer (or monovalent) form (e.g. Examples 46 and 49). In another embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 10 time lower (i.e. potency about 10 time higher) than the monomer form (e.g. Examples 87 and 88). The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound corresponding to the structure of Formula (X) are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each “NHE” moiety (i.e., the NHE small molecule) in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medicai Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the Core-(L-NHE)n molecule, allowing an increase in distance between the NHE inhibitors while minimally increasing rotational degrees of freedom. In an alternative embodiment (e.g., Formula (XI), wherein m=0), the structure may be for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, n and m may both be within the range of from about 1 to about 50, or from about 1 to about 20. The structures provided above are illustrations of one embodiment of compounds utilized for administration wherein absorption is limited (i.e., the compound is rendered substantially impermeable or substantially systemically non-bioavailable) by means of increasing the molecular weight of the NHE-inhibiting small molecule. In an alternative approach, as noted elsewhere herein, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by means of altering, and more specifically increasing, the topological polar surface area, as further illustrated by the following structures, wherein a substituted aromatic ring is bound to the “scaffold” of the NHE-inhibition small molecule. The selection of ionizable groups such as phosphonates, sulfonates, guanidines and the like may be particularly advantageous at preventing paracellular permeability. Carbohydates are also advantageous, and though uncharged, significantly increase tPSA while minimally increasing molecular weight. It is to be noted, within one or more of the various embodiments illustrated herein, NHE-inhibiting small molecules suitable for use (i.e., suitable for modification or functionalization, in order to render them substantially impermeable or substantially systemically non-bioavailable) may, in particular, be selected independently from one or more of the small molecules described as benzoylguandines, heteroaroylguandines, “spacer-stretched” aroylguandines, non-acyl guanidines and acylguanidine isosteres, above, and as discussed in further detail hereinafter and/or to the small molecules detailed in, for example: U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 55,824,691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Again, it is to be noted that when it is said that NHE-inhibiting small molecule is selected independently, it is intended that, for example, the oligomeric structures represented in Formulas (X) and (XI) above can include different structures of the NHE small molecules, within the same oligomer or polymer. In other words, each “NHE” within a given polyvalent embodiment may independently be the same or different than other “NHE” moieties within the same polyvalent embodiment. In designing and making the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a small molecule NHE inhibitor, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE inhibitor small molecule and then testing these adducts to determine whether the modified inhibitor still retains desired biological properties (e.g., NHE inhibition). An understanding of the SAR of the inhibitor also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. For example, the SAR of an NHE inhibitor series may show that installation of an N-alkylated piperazine contributes positively to biochemical activity (increased potency) or pharmaceutical properties (increased solubility); the piperazine moiety may then be utilized as the point of attachment for the desired core or linker via N-alkylation. In this fashion, the resulting compound thereby retains the favorable biochemical or pharmaceutical properties of the parent small molecule. In another example, the SAR of an NHE inhibitor series might indicate that a hydrogen bond donor is important for activity or selectivity. Core or linker moieties may then be designed to ensure this H-bond donor is retained. These cores and/or linkers may be further designed to attenuate or potentiate the pKa of the H-bond donor, potentially allowing improvements in potency and selectivity. In another scenario, an aromatic ring in an inhibitor could be an important pharmacophore, interacting with the biological target via a pi-stacking effect or pi-cation interaction. Linker and core motifs may be similarly designed to be isosteric or otherwise synergize with the aromatic features of the small molecule. Accordingly, once the structure-activity relationships within a molecular series are understood, the molecules of interest can be broken down into key pharmacophores which act as essential molecular recognition elements. When considering the installation of a core or linker motif, said motifs can be designed to exploit this SAR and may be installed to be isosteric and isoelectronic with these motifs, resulting in compounds that retain biological activity but have significantly reduced permeability. Another way the SAR of an inhibitor series can be exploited in the installation of core or linker groups is to understand which regions of the molecule are insensitive to structural changes. For example, X-ray co-crystal structures of protein-bound inhibitors can reveal those portions of the inhibitor that are solvent exposed and not involved in productive interactions with the target. Such regions can also be identified empirically when chemical modifications in these regions result in a “flat SAR” (i.e., modifications appear to have minimal contribution to biochemical activity). Those skilled in the art have frequently exploited such regions to engineer in pharmaceutical properties into a compound, for example, by installing motifs that may improve solubility or potentiate ADME properties. In the same fashion, such regions are expected to be advantageous places to install core or linker groups to create compounds as described in the instant disclosure. These regions are also expected to be sites for adding, for example, highly polar functionality such as carboxylic acids, phosphonic acids, sulfonic acids, and the like in order to greatly increase tPSA. Another aspect to be considered in the design of cores and linkers displaying an NHE inhibitor is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-inhibiting compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. Specific examples of NHE-inhibiting small molecules modified consistent with the principles detailed above are illustrated below. These moieties display functional groups that facilitate their appendage to “Z” (e.g., a core group, Core, or linking group, L). These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. Small molecule NHE inhibitors may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE inhibitor may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3] cycloaddition. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of an NHE inhibiting small molecule to a desired core or linker. Exemplary functionalized derivatives of NHEs include but are not limited to the following: Scheme 1 Cinnamoylguanidine NHE-inhibiting Moiety Functionalized to Display Electrophilic or Nucleophilic Groups to Facilitate Reaction with Cores and Linkers wherein the variables in the above-noted structures (e.g., R, etc.) are as defined in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Scheme 2 Tetrahydroisoquinoline NHE-inhibiting Moiety Functionalized to Display Electrophilic or Nucleophilic Groups to Facilitate Reaction with Cores and Linkers wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. Scheme 3 Quinazoline NHE-inhibiting Moiety Functionalized to Display Electrophilic or Nucleophilic Groups to Facilitate Reaction with Cores and Linkers wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Patent Application No. 2005/0020612 and U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the Examples and the following: The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-inhibiting small molecule is linked to a core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the inhibitors), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, , through them) are points of connection to either an NHE inhibitor or a linker moiety displaying an NHE inhibitor, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety is a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001) and schematically represented below: In this approach, the NHE inhibiting small molecule is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE inhibitor group is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as comonomers. For example, specific monomers or comonomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobornyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobornyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE inhibitor small molecule, NHE, is attached or otherwise a part of is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE inhibiting small molecule, NHE, is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures may be designed and constructed as described herein: It is to be further noted that the repeat moiety in Formulas (XIIA) or (XIIB) generally encompasses repeating units of polymers and copolymers produced by methods referred to herein above. It is to be noted that the various properties of the oligomers and polymers that form the core moiety as disclosed herein above may be optimized for a given use or application using experimental means and principles generally known in the art. For example, the overall molecular weight of the compounds or structures presented herein above may be selected so as to achieve non-absorbability, inhibition persistence and/or potency. Additionally, with respect to those polymeric embodiments that encompass or include the compounds generally represented by the structure of Formula (I) herein, and/or those disclosed for example in the many patents and patent applications cited herein (see, e.g., U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 55,824,691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes), such as those wherein these compounds or structures are pendants off of a polymeric backbone or chain, the composition of the polymeric backbone or chain, as well as the overall size or molecular weight of the polymer, and/or the number of pendant molecules present thereon, may be selected according to various principles known in the art in view of the intended application or use. With respect to the polymer composition of the NHE inhibiting compound, it is to be noted that a number of polymers can be used including, for example, synthetic and/or naturally occurring aliphatic, alicyclic, and/or aromatic polymers. In preferred embodiments, the polymer moiety is stable under physiological conditions of the GI tract. By “stable” it is meant that the polymer moiety does not degrade or does not degrade significantly or essentially does not degrade under the physiological conditions of the GI tract. For instance, at least about 90%, preferably at least about 95%, and more preferably at least about 98%, and even more preferably at least about 99% of the polymer moiety remains un-degraded or intact after at least about 5 hours, at least about 12 hours, at least about 18 hours, at least about 24 hours, or at least about 48 hours of residence in a gastrointestinal tract. Stability in a gastrointestinal tract can be evaluated using gastrointestinal mimics, e.g., gastric mimics or intestinal mimics of the small intestine, which approximately model the physiological conditions at one or more locations therein. Polymer moieties detailed herein for use as the core moiety can be hydrophobic, hydrophilic, amphiphilic, uncharged or non-ionic, negatively or positively charged, or a combination thereof. Additionally, the polymer architecture of the polymer moiety can be linear, grafted, comb, block, star and/or dendritic, preferably selected to produce desired solubility and/or stability characteristics as described above. Additionally or alternatively, modifications may be made to NHE-inhibiting small molecules that increase tPSA, thus contributing to the impermeability of the resulting compounds. Such modifications preferably include addition of di-anions, such as phosphonates, malonates, sulfonates and the like, and polyols such as carbohydrates and the like. Exemplary derivatives of NHEs with increased tPSA include but are not limited to the following: B. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is polyvalent; that is, the molecule contains two or more moieties that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 is selected from H, C1-C7 alkyl or L, where L is as described above; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are optionally linked to the ring Ar1 by a heterocyclic linker, and further are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 and R12 are independently selected from H or L, where L is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R2 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R3 is selected from H or L, where L is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or L, wherein L is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In one particular embodiment, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R2 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further particular embodiments of the above embodiment, L is a polyalkylene glycol linker, such as a polyethylene glycol linker. In further particular embodiments of the above embodiment, n is 2. In further particular embodiments of the above embodiment, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further particular embodiments of the above embodiment, the Core is selected from the group consisting of: III. Terminology, Physical and Performance Properties A. Terminology Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-C12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb—Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORB, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)— or (S)— or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure (which includes the NHE-inhibitor small molecule), remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.; stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelium layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). B. Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacodynamics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable NHE inhibitor compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable NHE inhibitor compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; and/or (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0). In view of the foregoing, and as previously noted herein, essentially any known NHE inhibitor small molecule (described herein and/or in the art) can be used in designing a substantially systemically non-bioavailable NHE inhibitor molecular structure, in accordance with the present disclosure. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in {acute over (Å)}2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is now available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 2, below): TABLE 2 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some preferred embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. (As previously noted above, see for example U.S. Pat. No. 6,737,423, Example 31 for a description of the Caco-2 Model, which is incorporated herein by reference). A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa, may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, n° AN1725EN00, and n° AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, NHE inhibitor small molecules are modified as described above to hinder the net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise an NHE-inhibiting small molecule linked, coupled or otherwise attached to a moiety Z, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the NHE-inhibiting small molecule is coupled to a multimer or polymer portion or moiety, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. For example, an NHE-inhibiting small molecule may be linked to at least one repeat unit of a polymer portion or moiety according, for example, to the structure of Formula (XIIA) or Formula (XIIB), as illustrated herein. In these or other particular embodiments, the NHE-inhibiting small molecule is modified as described herein to substantially hinder its net absorption through a layer of gut epithelial cells and may comprise, for example, a NHE-inhibiting compound linked, coupled or otherwise attached to a substantially impermeable or substantially systemically non-bioavailable “Core” moiety, as described above. C. Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with the epithelial cell (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., sodium transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the NHE-inhibiting compounds to the NHE protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of sodium transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing NHE transporters are split in different vials and treated with a NHE-inhibiting compound and sodium solution to measure the rate of sodium uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and sodium uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of Na is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for sodium balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical NHE transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing NHE antiport inhibitors with several NHE inhibiting moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, Oct. 5(4), pp. 312-8.) D. GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds sustain the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to enzymatic metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. E. Sodium and/or Fluid Output It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may act to increase the patient's daily fecal output of sodium by at least about 20, about 30 mmol, about 40 mmol, about 50 mmol, about 60 mmol, about 70 mmol, about 80 mmol, about 90 mmol, about 100 mmol, about 125 mmol, about 150 mmol or more, the increase being for example within the range of from about 20 to about 150 mmol/day, or from about 25 to about 100 mmol/day, or from about 30 to about 60 mmol/day Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patent in need thereof, may act to increase the patient's daily fluid output by at least about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml or more, the increase being for example within the range of from about 100 to about 1000 ml/day, or from about 150 to about 750 ml/day, or from about 200 to about 500 ml/day (assuming isotonic fluid). F. Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 1 μM to about 10 μM, or about 2.5 μM to about 7.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the NHE-Z inhibiting compounds (monovalent or divalent) as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as Cmax, is lower than the NHE inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NHE-mediated Na/H antiport activity in a cell based assay. IV. Pharmaceutical Compositions and Methods of Treatment A. Compositions and Methods 1. Fluid Retention and/or Salt Overload Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various disorders associated with fluid retention and/or salt overload in the gastrointestinal tract (e.g., hypertension, heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention) comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” or “mammal” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment may be suffering from hypertension; from salt-sensitive hypertension which may result from dietary salt intake; from a risk of a cardiovascular disorder (e.g., myocardial infarction, congestive heart failure and the like) resulting from hypertension; from heart failure (e.g., congestive heart failure) resulting in fluid or salt overload; from chronic kidney disease resulting in fluid or salt overload, from end stage renal disease resulting in fluid or salt overload; from liver disease resulting in fluid or salt overload; from peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention; or from edema resulting from congestive heart failure or end stage renal disease. In various embodiments, a subject in need of treatment typically shows signs of hypervolemia resulting from salt and fluid retention that are common features of congestive heart failure, renal failure or liver cirrhosis. Fluid retention and salt retention manifest themselves by the occurrence of shortness of breath, edema, ascites or interdialytic weight gain. Other examples of subjects that would benefit from the treatment are those suffering from congestive heart failure and hypertensive patients and, particularly, those who are resistant to treatment with diuretics, i.e., patients for whom very few therapeutic options are available. A subject “in need of treatment” also includes a subject with hypertension, salt-sensitive blood pressure and subjects with systolic/diastolic blood pressure greater than about 130-139/85-89 mm Hg. Administration of NHE inhibitors, with or without administration of fluid-absorbing polymers, may be beneficial for patients put on “non-added salt” dietary regimen (i.e., 60-100 mmol of Na per day), to liberalize their diet while keeping a neutral or slightly negative sodium balance (i.e., the overall uptake of salt would be equal of less than the secreted salt). In that context, “liberalize their diet” means that patients treated may add salt to their meals to make the meals more palatable, or/and diversify their diet with salt-containing foods, thus maintaining a good nutritional status while improving their quality of life. The treatment methods described herein may also help patients with edema associated with chemotherapy, pre-menstrual fluid overload and preeclampsia (pregnancy-induced hypertension). Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for treating hypertension, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. The method may be for reducing fluid overload associated with heart failure (in particular, congestive heart failure), the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with end stage renal disease, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. The method may be for reducing fluid overload associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. 2. Gastrointestinal Tract Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, comprises, in general, any small molecule, which may be monovalent or polyvalent, that is effective or active as an NHE-inhibitor and that is substantially active in the GI tract, in particular, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment is suffering from a gastrointestinal tract disorder; the patient is suffering from a disorder selected from the group consisting of: a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, and the like. In various preferred embodiments, the constipation to be treated is: associated with the use of a therapeutic agent; associated with a neuropathic disorder; post-surgical constipation (postoperative ileus); associated with a gastrointestinal tract disorder; idiopathic (functional constipation or slow transit constipation); associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). Constipation may also be the result of surgery (postoperative ileus) or due the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for increasing gastrointestinal motility in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for treating a gastrointestinal tract disorder, a gastrointestinal motility disorder, irritable bowel syndrome, chronic calcium-induced constipation in osteoporotic patients, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, Crohn's disease, ulcerative colitis, inflammatory bowel disease, the method comprising administering an antagonist of the intestinal NHE, and more specifically a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition, either orally or by rectal suppository. Additionally, or alternatively, the method may be for treating or reducing pain, including visceral pain, pain associated with a gastrointestinal tract disorder or pain associated with some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. Additionally, or alternatively, the method may be for treating inflammation, including inflammation of the gastrointestinal tract, e.g., inflammation associated with a gastrointestinal tract disorder or infection or some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. B. Combination Therapies 1. Fluid Retention and/or Salt Overload Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with a diuretic (i.e., High Ceiling Loop Diuretics, Benzothiadiazide Diuretics, Potassium Sparing Diuretics, Osmotic Diuretics), cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, peroxisome proliferator-activated receptor (PPAR) gamma agonist agent or compound or with a fluid-absorbing polymer as more fully described below. The agent can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially systemically non-bioavailable NHE-inhibiting compound described herein and a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with a diuretic. Among the useful analgesic agents are, for example: High Ceiling Loop Diuretics [Furosemide (Lasix), Ethacrynic Acid (Edecrin), Bumetanide (Bumex)], Benzothiadiazide Diuretics [Hydrochlorothiazide (Hydrodiuril), Chlorothiazide (Diuril), Clorthalidone (Hygroton), Benzthiazide (Aguapres), Bendroflumethiazide (Naturetin), Methyclothiazide (Aguatensen), Polythiazide (Renese), Indapamide (Lozol), Cyclothiazide (Anhydron), Hydroflumethiazide (Diucardin), Metolazone (Diulo), Quinethazone (Hydromox), Trichlormethiazide (Naqua)], Potassium Sparing Diuretics [Spironolactone (Aldactone), Triamterene (Dyrenium), Amiloride (Midamor)], and Osmotic Diuretics [Mannitol (Osmitrol)]. Diuretic agents in the various classes are known and described in the literature. Cardiac glycosides (cardenolides) or other digitalis preparations can be administered with the compounds of the disclosure in co-therapy. Among the useful cardiac glycosides are, for example: Digitoxin (Crystodigin), Digoxin (Lanoxin) or Deslanoside (Cedilanid-D). Cardiac glycosides in the various classes are described in the literature. Angiotensin Converting Enzyme Inhibitors (ACE Inhibitors) can be administered with the compounds of the disclosure in co-therapy. Among the useful ACE inhibitors are, for example: Captopril (Capoten), Enalapril (Vasotec), Lisinopril (Prinivil). ACE inhibitors in the various classes are described in the literature. Angiotensin-2 Receptor Antagonists (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's) can be administered with the compounds of the disclosure in co-therapy. Among the useful Angiotensin-2 Receptor Antagonists are, for example: Candesartan (Atacand), Eprosartan (Teveten), Irbesartan (Avapro), Losartan (Cozaar), Telmisartan (Micardis), Valsartan (Diovan). Angiotensin-2 Receptor Antagonists in the various classes are described in the literature. Calcium channel blockers such as Amlodipine (Norvasc, Lotrel), Bepridil (Vascor), Diltiazem (Cardizem, Tiazac), Felodipine (Plendil), Nifedipine (Adalat, Procardia), Nimodipine (Nimotop), Nisoldipine (Sular), Verapamil (Calan, Isoptin, Verelan) and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with the compounds of the disclosure. Beta blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful beta blockers are, for example: Acebutolol (Sectral), Atenolol (Tenormin), Betaxolol (Kerlone), Bisoprolol/hydrochlorothiazide (Ziac), Bisoprolol (Zebeta), Carteolol (Cartrol), Metoprolol (Lopressor, Toprol XL), Nadolol (Corgard), Propranolol (Inderal), Sotalol (Betapace), Timolol (Blocadren). Beta blockers in the various classes are described in the literature. PPAR gamma agonists such as thiazolidinediones (also called glitazones) can be administered with the compounds of the disclosure in co-therapy. Among the useful PPAR agonists are, for example: rosiglitazone (Avandia), pioglitazone (Actos) and rivoglitazone. Aldosterone antagonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Aldosterone antagonists are, for example: eplerenone, spironolactone, and canrenone. Alpha blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful Alpha blockers are, for example: Doxazosin mesylate (Cardura), Prazosin hydrochloride (Minipress). Prazosin and polythiazide (Minizide), Terazosin hydrochloride (Hytrin). Alpha blockers in the various classes are described in the literature. Central alpha agonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Central alpha agonists are, for example: Clonidine hydrochloride (Catapres), Clonidine hydrochloride and chlorthalidone (Clorpres, Combipres), Guanabenz Acetate (Wytensin), Guanfacine hydrochloride (Tenex), Methyldopa (Aldomet), Methyldopa and chlorothiazide (Aldochlor), Methyldopa and hydrochlorothiazide (Aldoril). Central alpha agonists in the various classes are described in the literature. Vasodilators can be administered with the compounds of the disclosure in co-therapy. Among the useful vasodilators are, for example: Isosorbide dinitrate (Isordil), Nesiritide (Natrecor), Hydralazine (Apresoline), Nitrates/nitroglycerin, Minoxidil (Loniten). Vasodilators in the various classes are described in the literature. Blood thinners can be administered with the compounds of the disclosure in co-therapy. Among the useful blood thinners are, for example: Warfarin (Coumadin) and Heparin. Blood thinners in the various classes are described in the literature. Anti-platelet agents can be administered with the compounds of the disclosure in co-therapy. Among the useful anti-platelet agents are, for example: Cyclooxygenase inhibitors (Aspirin), Adenosine diphosphate (ADP) receptor inhibitors [Clopidogrel (Plavix), Ticlopidine (Ticlid)], Phosphodiesterase inhibitors [Cilostazol (Pletal)], Glycoprotein IIB/IIIA inhibitors [Abciximab (ReoPro), Eptifibatide (Integrilin), Tirofiban (Aggrastat), Defibrotide], Adenosine reuptake inhibitors [Dipyridamole (Persantine)]. Anti-platelet agents in the various classes are described in the literature. Lipid-lowering agents can be administered with the compounds of the disclosure in co-therapy. Among the useful lipid-lowering agents are, for example: Statins (HMG CoA reductase inhibitors), [Atorvastatin (Lipitor), Fluvastatin (Lescol), Lovastatin (Mevacor, Altoprev), Pravastatin (Pravachol), Rosuvastatin Calcium (Crestor), Simvastatin (Zocor)], Selective cholesterol absorption inhibitors [ezetimibe (Zetia)], Resins (bile acid sequestrant or bile acid-binding drugs) [Cholestyramine (Questran, Questran Light, Prevalite, Locholest, Locholest Light), Colestipol (Colestid), Colesevelam Hcl (WelChol)], Fibrates (Fibric acid derivatives) [Gemfibrozil (Lopid), Fenofibrate (Antara, Lofibra, Tricor, and Triglide), Clofibrate (Atromid-S)], Niacin (Nicotinic acid). Lipid-lowering agents in the various classes are described in the literature. The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Other agents include natriuretic peptides such as nesiritide, a recombinant form of brain-natriuretic peptide (BNP) and an atrial-natriuretic peptide (ANP). Vasopressin receptor antagonists such as tolvaptan and conivaptan may be co-administered as well as phosphate binders such as renagel, renleva, phoslo and fosrenol. Other agents include phosphate transport inhibitors (as described in U.S. Pat. Nos. 4,806,532; 6,355,823; 6,787,528; 7,119,120; 7,109,184; U.S. Pat. Pub. No. 2007/021509; 2006/0280719; 2006/0217426; International Pat. Pubs. WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, WO2003/080630, WO 2004/085448, WO 2004/085382; European Pat. Nos. 1465638 and 1485391; and JP Patent No. 2007131532, or phosphate transport antagonists such as Nicotinamide. 2. Gastrointestinal Tract Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with an analgesic peptide or compound. The analgesic peptide or compound can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound described herein and an analgesic peptide or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic peptide. The analgesic agent can optionally be covalently attached to a compound described herein. Among the useful analgesic agents are, for example: Ca channel blockers, 5HT3 agonists (e.g., MCK-733), 5HT4 agonists (e.g., tegaserod, prucalopride), and 5HT1 receptor antagonists, opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSR1), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Opioid receptor antagonists and agonists can be administered with the compounds of the disclosure in co-therapy or linked to the compound of the disclosure, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of opioid-induced constipaption (OIC). It can be useful to formulate opioid antagonists of this type in a delayed or sustained release formulation, such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in U.S. Pat. No. 6,734,188 (WO 01/32180 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine) is an agonist of the μ- and γ-opioid receptors and is thought to be useful for increasing intestinal motility (Eur. J. Pharm., 219:445, 1992), and this peptide can be used in conjunction with the compounds of the disclosure. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal peptide, gastrin and glucagons. K-opioid receptor agonists such as fedotozine, ketocyclazocine, and compounds described in US 2005/0176746 (WO 03/097051 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. In addition, μ-opioid receptor agonists, such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH2; disclosed in WO 01/019849 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of met-enkephalins to elicit an analgesic effect (J. Biol. Chem. 262:8165, 1987). Kyotorphin can be used with or linked to the compounds of the disclosure. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the compounds of the disclosure. Conotoxin peptides represent a large class of analgesic peptides that act at voltage gated Ca channels, NMDA receptors or nicotinic receptors. These peptides can be used with or linked to the compounds of the disclosure. Peptide analogs of thymulin (U.S. Pat. No. 7,309,690 or FR 2830451, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (U.S. Pat. No. 5,130,474 or WO 88/05774, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. Other useful analgesic agents include 5-HT4 agonists such as tegaserod/zelnorm and lirexapride. Such agonists are described in: EP1321142 A1, WO 03/053432A1, EP 505322 A1, EP 505322 B1, EP 507672 A1, EP 507672 B1, U.S. Pat. No. 5,510,353 and U.S. Pat. No. 5,273,983, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Calcium channel blockers such as ziconotide and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Various antagonists of the NK-1, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003 Drugs 6:758) can be can be used with or linked to the compounds of the disclosure. NK1 receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-14033 and related compounds described in, for example, EP 873753 A1, U.S. 20010006972 A1, U.S. 20030109417 A1, WO 01/52844 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the compounds of the disclosure. NK3 receptor antagonists such as osanetant (Sanofi-Synthelabo), talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 A1, WO 97/21680 A1, U.S. Pat. No. 6,277,862, WO 98/11090, WO 95/28418, WO 97/19927, and Boden et al. (J. Med. Chem. 39:1664-75, 1996), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Norepinephrine-serotonin reuptake inhibitors such as milnacipran and related compounds described in WO 03/077897 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. The compounds can be used in combination therapy with a phosphodiesterase inhibitor (examples of such inhibitors can be found in U.S. Pat. No. 6,333,354, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes). The compounds can be used alone or in combination therapy to treat disorders associated with chloride or bicarbonate secretion that may lead to constipation, e.g., Cystic Fibrosis. The compounds can also or alternatively be used alone or in combination therapy to treat calcium-induced constipation effects. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of constipation effects associated therewith. The compounds of the current disclosure have can be used in combination with an opioid. Opioid use is mainly directed to pain relief, with a notable side-effect being GI disorder, e.g. constipation. These agents work by binding to opioid receptors, which are found principally in the central nervous system and the gastrointestinal tract. The receptors in these two organ systems mediate both the beneficial effects, and the undesirable side effects (e.g. decrease of gut motility and ensuing constipation). Opioids suitable for use typically belong to one of the following exemplary classes: natural opiates, alkaloids contained in the resin of the opium poppy including morphine, codeine and thebaine; semi-synthetic opiates, created from the natural opioids, such as hydromorphone, hydrocodone, oxycodone, oxymorphone, desomorphine, diacetylmorphine (Heroin), nicomorphine, dipropanoylmorphine, benzylmorphine and ethylmorphine; fully synthetic opioids, such as fentanyl, pethidine, methadone, tramadol and propoxyphene; endogenous opioid peptides, produced naturally in the body, such as endorphins, enkephalins, dynorphins, and endomorphins. The compound of the disclosure can be used alone or in combination therapy to alleviate GI disorders encountered with patients with renal failure (stage 3-5). Constipation is the second most reported symptom in that category of patients (Murtagh et al., 2006; Murtagh et al., 2007a; Murtagh et al., 2007b). Without being held by theory, it is believed that kidney failure is accompanied by a stimulation of intestinal Na re-absorption (Hatch and Freel, 2008). A total or partial inhibition of such transport by administration of the compounds of the disclosure can have a therapeutic benefit to improve GI transit and relieve abdominal pain. In that context, the compounds of the disclosure can be used in combination with Angiotensin-modulating agents: Angiotensin Converting Enzyme (ACE) inhibitors (e.g. captopril, enalopril, lisinopril, ramipril) and Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's); diuretics such as loop diuretics (e.g. furosemide, bumetanide), Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) and potassium-sparing diuretics: amiloride; beta blockers: bisoprolol, carvedilol, nebivolol and extended-release metoprolol; positive inotropes: Digoxin, dobutamine; phosphodiesterase inhibitors such as milrinone; alternative vasodilators: combination of isosorbide dinitrate/hydralazine; aldosterone receptor antagonists: spironolactone, eplerenone; natriuretic peptides: Nesiritide, a recombinant form of brain-natriuretic peptide (BNP), atrial-natriuretic peptide (ANP); vasopressin receptor antagonists: Tolvaptan and conivaptan; phosphate binder (Renagel, Renleva, Phoslo, Fosrenol); phosphate transport inhibitor such as those described in U.S. Pat. No. 4,806,532, U.S. Pat. No. 6,355,823, U.S. Pat. No. 6,787,528, WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, U.S. Pat. No. 7,119,120, EP 1465638, US Appl. 2007/021509, WO 2003/080630, U.S. Pat. No. 7,109,184, US Appl. 2006/0280719, EP 1485391, WO 2004/085448, WO 2004/085382, US Appl. 2006/0217426, JP 2007/131532, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, or phosphate transport antagonist (Nicotinamide) The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with laxative agents such as bulk-producing agents, e.g. psyllium husk (Metamucil), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant such as docusate (Colace, Diocto); hydrating agents (osmotics), such as dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate; hyperosmotic agents: glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG). The compounds of the disclosure can be also be used in combination with agents that stimulate gut peristalsis, such as Bisacodyl tablets (Dulcolax), Casanthranol, Senna and Aloin, from Aloe Vera. In one embodiment, the compounds of the disclosure accelerate gastrointestinal transit, and more specifically in the colon, without substantially affecting the residence time in the stomach, i.e. with no significant effect on the gastric emptying time. Even more specifically the compounds of the invention restore colonic transit without the side-effects associated with delayed gastric emptying time, such as nausea. The GI and colonic transit are measured in patients using methods reported in, for example: Burton DD, Camilleri M, Mullan B P, et al., J. Nuci. Med., 1997; 38:1807-1810; Cremonini F, Mullan B P, Camilleri M, et al., Aliment. Pharmacol. Ther., 2002; 16:1781-1790; Camilleri M, Zinsmeister A R, Gastroenterology, 1992; 103:36-42; Bouras E P, Camilleri M, Burton D D, et al., Gastroenterology, 2001; 120:354-360; Coulie B, Szarka L A, Camilleri M, et al., Gastroenterology, 2000; 119:41-50; Prather C M, Camilleri M, Zinsmeister A R, et al., Gastroenterology, 2000; 118:463-468; and, Camilleri M, McKinzie S, Fox J, et al., Clin. Gastroenterol. Hepatol., 2004; 2:895-904. C. Polymer Combination Therapy The NHE-inhibiting compounds described therein may be administered to patients in need thereof in combination with a fluid-absorbing polymer (“FAP”). The intestinal fluid-absorbing polymers useful for administration in accordance with embodiments of the present disclosure may be administered orally in combination with non-absorbable NHE-inhibitors (e.g., a NHE-3 inhibitor) to absorb the intestinal fluid resulting from the action of the sodium transport inhibitors. Such polymers swell in the colon and bind fluid to impart a consistency to stools that is acceptable for patients. The fluid-absorbing polymers described herein may be selected from polymers with laxative properties, also referred to as bulking agents (i.e., polymers that retain some of the intestinal fluid in the stools and impart a higher degree of hydration in the stools and facilitate transit). The fluid-absorbing polymers may also be optionally selected from pharmaceutical polymers with anti-diarrhea function, i.e., agents that maintain some consistency to the stools to avoid watery stools and potential incontinence. The ability of the polymer to maintain a certain consistency in stools with a high content of fluid can be characterized by its “water holding power.” Wenzl et al. (in Determinants of decreased fecal consistency in patients with diarrhea; Gastroenterology, v. 108, no. 6, p. 1729-1738 (1995)) studied the determinants that control the consistency of stools of patients with diarrhea and found that they were narrowly correlated with the water holding power of the feces. The water holding power is determined as the water content of given stools to achieve a certain level of consistency (corresponding to “formed stool” consistency) after the reconstituted fecal matter has been centrifuged at a certain g number. Without being held to any particular theory, has been found that the water holding power of the feces is increased by ingestion of certain polymers with a given fluid absorbing profile. More specifically, it has been found that the water-holding power of said polymers is correlated with their fluid absorbancy under load (AUL); even more specifically the AUL of said polymers is greater than 15 g of isotonic fluid/g of polymer under a static pressure of 5 kPa, even more preferably under a static pressure of 10 kPa. The FAP utilized in the treatment method of the present disclosure preferably has a AUL of at least about 10 g, about 15 g, about 20 g, about 25 g or more of isotonic fluid/g of polymer under a static pressure of about 5 kPa, and preferably about 10 kPA, and may have a fluid absorbency of about 20 g, about 25 g or more, as determined using means generally known in the art. Additionally or alternatively, the FAP may impart a minimum consistency to fecal matter and, in some embodiments, a consistency graded as “soft” in the scale described in the test method below, when fecal non water-soluble solid fraction is from 10% to 20%, and the polymer concentration is from 1% to 5% of the weight of stool. The determination of the fecal non water-soluble solid fraction of stools is described in Wenz et al. The polymer may be uncharged or may have a low charge density (e.g., 1-2 meq/gr). Alternatively or in addition, the polymer may be delivered directly to the colon using known delivery methods to avoid premature swelling in the esophagus. In one embodiment of the present disclosure, the FAP is a “superabsorbent” polymer (i.e., a lightly crosslinked, partially neutralized polyelectrolyte hydrogel similar to those used in baby diapers, feminine hygiene products, agriculture additives, etc.). Superabsorbent polymers may be made of a lightly crosslinked polyacrylate hydrogel. The swelling of the polymer is driven essentially by two effects: (i) the hydration of the polymer backbone and entropy of mixing and (ii) the osmotic pressure arising from the counter-ions (e.g., Na ions) within the gel. The gel swelling ratio at equilibrium is controlled by the elastic resistance inherent to the polymer network and by the chemical potential of the bathing fluid, i.e., the gel will de-swell at higher salt concentration because the background electrolyte will reduce the apparent charge density on the polymer and will reduce the difference of free ion concentrations inside and outside the gel that drives osmotic pressure. The swelling ratio SR (g of fluid per g of dry polymer and synonymously “fluid absorbency”) may vary from 1000 in pure water down to 30 in 0.9% NaCl solution representative of physiological saline (i.e., isotonic). SR may increase with the degree of neutralization and may decrease with the crosslinking density. SR generally decreases with an applied load with the extent of reduction dependent on the strength of the gel, i.e., the crosslinking density. The salt concentration within the gel, as compared with the external solution, may be lower as a result of the Donnan effect due to the internal electrical potential. The fluid-absorbing polymer may include crosslinked polyacrylates which are fluid absorbent such as those prepared from α,β-ethylenically unsaturated monomers, such as monocarboxylic acids, polycarboxylic acids, acrylamide and their derivatives. These polymers may have repeating units of acrylic acid, methacrylic acid, metal salts of acrylic acid, acrylamide, and acrylamide derivatives (such as 2-acrylamido-2-methylpropanesulfonic acid) along with various combinations of such repeating units as copolymers. Such derivatives include acrylic polymers which include hydrophilic grafts of polymers such as polyvinyl alcohol. Examples of suitable polymers and processes, including gel polymerization processes, for preparing such polymers are disclosed in U.S. Pat. Nos. 3,997,484; 3,926,891; 3,935,099; 4,090,013; 4,093,776; 4,340,706; 4,446,261; 4,683,274; 4,459,396; 4,708,997; 4,076,663; 4,190,562; 4,286,082; 4,857,610; 4,985,518; 5,145,906; 5,629,377 and 6,908,609 which are incorporated herein by reference for all relevant and consistent purposes (in addition, see Buchholz, F. L. and Graham, A. T., “Modern Superabsorbent Polymer Technology,” John Wiley & Sons (1998), which is also incorporated herein by reference for all relevant and consistent purposes). A class of preferred polymers for treatment in combination with NHE-inhibitors is polyelectrolytes. The degree of crosslinking can vary greatly depending upon the specific polymer material; however, in most applications the subject superabsorbent polymers are only lightly crosslinked, that is, the degree of crosslinking is such that the polymer can still absorb over 10 times its weight in physiological saline (i.e., 0.9% saline). For example, such polymers typically include less than about 0.2 mole % crosslinking agent. In some embodiments, the FAP's utilized for treatment are Calcium Carbophil (Registry Number: 9003-97-8, also referred as Carbopol EX-83), and Carpopol 934P. In some embodiments, the fluid-absorbing polymer is prepared by high internal phase emulsion (“HIPE”) processes. The HIPE process leads to polymeric foam slabs with a very large porous fraction of interconnected large voids (about 100 microns) (i.e., open-cell structures). This technique produces flexible and collapsible foam materials with exceptional suction pressure and fluid absorbency (see U.S. Pat. Nos. 5,650,222; 5,763,499 and 6,107,356, which are incorporated herein for all relevant and consistent purposes). The polymer is hydrophobic and, therefore, the surface should be modified so as to be wetted by the aqueous fluid. This is accomplished by post-treating the foam material by a surfactant in order to reduce the interfacial tension. These materials are claimed to be less compliant to loads, i.e., less prone to de-swelling under static pressure. In some embodiments, fluid-absorbing gels are prepared by aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker (e.g., methylene-bis-acrylamide) and a free radical initiator redox system in water. The material is obtained as a slab. Typically the swelling ratio of crosslinked polyacrylamide at low crosslinking density (e.g., 2%-4% expressed as weight % of methylene-bis-acrylamide) is between 25 and 40 (F. Horkay, Macromolecules, 22, pp. 2007-09 (1989)). The swelling properties of these polymers have been extensively studied and are essentially the same of those of crosslinked polyacrylic acids at high salt concentration. Under those conditions, the osmotic pressure is null due to the presence of counter-ions and the swelling is controlled by the free energy of mixing and the network elastic energy. Stated differently, a crosslinked polyacrylamide gel of same crosslink density as a neutralized polyacrylic acid will exhibit the same swelling ratio (i.e., fluid absorbing properties) and it is believed the same degree of deswelling under pressure, as the crosslinked polyelectrolyte at high salt content (e.g., 1 M). The properties (e.g., swelling) of neutral hydrogels will not be sensitive to the salt environment as long as the polymer remains in good solvent conditions. Without being held to any particular theory, it is believed that the fluid contained within the gel has the same salt composition than the surrounding fluid (i.e., there is no salt partitioning due to Donnan effect). Another subclass of fluid-absorbing polymers that may be utilized is hydrogel materials that include N-alkyl acrylamide polymers (e.g., N-isopropylacrylamide (NIPAM)). The corresponding aqueous polyNIPAM hydrogel shows a temperature transition at about 35° C. Above this temperature the hydrogel may collapse. The mechanism is generally reversible and the gel re-swells to its original swelling ratio when the temperature reverts to room temperature. This allows production of nanoparticles by emulsion polymerization (R. Pelton, Advances in Colloid and Interface Science, 85, pp. 1-33, (2000)). The swelling characteristics of poly-NIPAM nanoparticles below the transition temperature have been reported and are similar to those reported for bulk gel of polyNIPAM and equivalent to those found for polyacrylamide (i.e. 30-50 g/g) (W. McPhee, Journal of Colloid and Interface Science, 156, pp. 24-30 (1993); and, K. Oh, Journal of Applied Polymer Science, 69, pp. 109-114 (1997)). In some embodiments, the FAP utilized for treatment in combination with a NHE-inhibitor is a superporous gel that may delay the emptying of the stomach for the treatment of obesity (J. Chen, Journal of Controlled Release, 65, pp. 73-82 (2000), or to deliver proteins. Polyacrylate-based SAP's with a macroporous structure may also be used. Macroporous SAP and superporous gels differ in that the porous structure remains almost intact in the dry state for superporous gels, but disappears upon drying for macroporous SAP's. The method of preparation is different although both methods use a foaming agent (e.g., carbonate salt that generates CO2 bubbles during polymerization). Typical swelling ratios, SR, of superporous materials are around 10. Superporous gels keep a large internal pore volume in the dry state. Macroporous hydrogels may also be formed using a method whereby polymer phase separation in induced by a non-solvent. The polymer may be poly-NIPAM and the non-solvent utilized may be glucose (see, e.g., Z. Zhang, J. Org. Chem., 69, 23 (2004)) or NaCl (see, e.g., Cheng et al., Journal of Biomedical Materials Research—Part A, Vol. 67, Issue 1, 1 Oct. 2003, Pages 96-103). The phase separation induced by the presence of NaCl leads to an increase in swelling ratio. These materials are preferred if the swelling ratio of the material, SR, is maintained in salt isotonic solution and if the gels do not collapse under load. The temperature of “service” should be shifted beyond body temperature, e.g. by diluting NIPAM in the polymer with monomer devoid of transition temperature phenomenon. In some embodiments, the fluid-absorbing polymer may be selected from certain naturally-occurring polymers such as those containing carbohydrate moieties. In a preferred embodiment, such carbohydrate-containing hydrogels are non-digestible, have a low fraction of soluble material and a high fraction of gel-forming materials. In some embodiments, the fluid-absorbing polymer is selected from xanthan, guar, wellan, hemicelluloses, alkyl-cellulose, hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In a preferred embodiment, the gel forming polymer is psyllium. Psyllium (or “ispaghula”) is the common name used for several members of the plant genus Plantago whose seeds are used commercially for the production of mucilage. Most preferably, the fluid-absorbing polymer is in the gel-forming fraction of psyllium, i.e., a neutral saccharide copolymer of arabinose (25%) and xylose (75%) as characterized in (J. Marlett, Proceedings of the Nutrition Society, 62, pp. 2-7-209 (2003); and, M. Fischer, Carbohydrate Research, 339, 2009-2012 (2004)), and further described in U.S. Pat. Nos. 6,287,609; 7,026,303; 5,126,150; 5,445,831; 7,014,862; 4,766,004; 4,999,200, each of which is incorporated herein for all relevant and consistent purposes, and over-the-counter psillium-containing agents such as those marketed under the name Metamucil (The Procter and Gamble company). Preferably the a psyllium-containing dosage form is suitable for chewing, where the chewing action disintegrates the tablet into smaller, discrete particles prior to swallowing but which undergoes minimal gelling in the mouth, and has acceptable mouthfeel and good aesthetics as perceived by the patient. The psyllium-containing dosage form includes physically discrete unit suitable as a unitary dosage for human subjects and other mammals, each containing a predetermined quantity of active material (e.g. the gel-forming polysaccharide) calculated to produce the desired therapeutic effect. Solid oral dosage forms that are suitable for the present compositions include tablets, pills, capsules, lozenges, chewable tablets, troches, cachets, pellets, wafer and the like. In some embodiments, the FAP is a polysaccharide particle wherein the polysaccharide component includes xylose and arabinose. The ratio of the xylose to the arabinose may be at least about 3:1 by weight, as described in U.S. Pat. Nos. 6,287,609; 7,026,303 and 7,014,862, each of which is incorporated herein for all relevant and consistent purposes. The fluid-absorbing polymers described herein may be used in combination with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. The NHE inhibitor and the FAP may also be administered with other agents including those described under the heading “Combination Therapies” without departing from the scope of the present disclosure. As described above, the NHE inhibitor may be administered alone without use of a fluid-absorbing polymer to resolve symptoms without eliciting significant diarrhea or fecal fluid secretion that would require the co-administration of a fluid-absorbing polymer. The fluid-absorbing polymers described herein may be selected so as to not induce any substantial interaction with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. As used herein, “no substantial interaction” generally means that the co-administration of the FAP polymer would not substantially alter (i.e., neither substantially decrease nor substantially increase) the pharmacological property of the NHE-inhibiting compounds administered alone. For example, FAPs containing negatively charged functionality, such as carboxylates, sulfonates, and the like, may potentially interact ionically with positively charged NHE inhibitors, preventing the inhibitor from reaching its pharmacological target. In addition, it may be possible that the shape and arrangement of functionality in a FAP could act as a molecular recognition element, and sequestor NHE inhibitors via “host-guest” interactions via the recognition of specific hydrogen bonds and/or hydrophobic regions of a given inhibitor. Accordingly, in various embodiments of the present disclosure, the FAP polymer may be selected, for co-administration or use with a compound of the present disclosure, to ensure that (i) it does not ionically interact with or bind with the compound of the present disclosure (by means of, for example, a moiety present therein possessing a charge opposite that of a moiety in the compound itself), and/or (ii) it does not possess a charge and/or structural conformation (or shape or arrangement) that enables it to establish a “host-guest” interaction with the compound of the present disclosure (by means of, for example, a moiety present therein that may act as a molecular recognition element and sequester the NHE inhibitor or inhibiting moiety of the compound). D. Dosage It is to be noted that, as used herein, an “effective amount” (or “pharmaceutically effective amount”) of a compound disclosed herein, is a quantity that results in a beneficial clinical outcome of the condition being treated with the compound compared with the absence of treatment. The amount of the compound or compounds administered will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical formulation. It will also depend on the subject's health, size, weight, age, sex and tolerance to drugs. Typically, the compound is administered for a sufficient period of time to achieve the desired therapeutic effect. In embodiments wherein both an NHE-inhibitor compound and a fluid-absorbing polymer are used in the treatment protocol, the NHE-inhibitor and FAP may be administered together or in a “dual-regimen” wherein the two therapeutics are dosed and administered separately. When the NHE inhibitor and the fluid-absorbing polymer are dosed separately, the typical dosage administered to the subject in need of the NHE inhibitor is typically from about 5 mg per day and about 5000 mg per day and, in other embodiments, from about 50 mg per day and about 1000 mg per day. Such dosages may induce fecal excretion of sodium (and its accompanying anions), from about 10 mmol up to about 250 mmol per day, from about 20 mmol to about 70 mmol per day or even from about 30 mmol to about 60 mmol per day. The typical dose of the fluid-absorbing polymer is a function of the extent of fecal secretion induced by the non-absorbable NHE inhibitor. Typically the dose is adjusted according to the frequency of bowel movements and consistency of the stools. More specifically the dose is adjusted so as to avoid liquid stools and maintain stool consistency as “soft” or semi-formed, or formed. To achieve the desired stool consistency and provide abdominal relief to patients, typical dosage ranges of the fluid-absorbing polymer to be administered in combination with the NHE inhibitor, are from about 2 g to about 50 g per day, from about 5 g to about 25 g per day or even from about 10 g to about 20 g per day. When the NHE-inhibitor and the FAP are administered as a single dosage regimen, the daily uptake may be from about 2 g to about 50 g per day, from about 5 g to about 25 g per day, or from about 10 g to about 20 g per day, with a weight ratio of NHE inhibitor to fluid-absorbing polymer being from about 1:1000 to 1:10 or even from about 1:500 to 1:5 or about 1:100 to 1:5. A typical dosage of the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound when used alone without a FAP may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of therapeutics described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. For example, in the case of a dual-regimen, the NHE-inhibitor could be taken once-a-day while the fluid-absorbing polymer could be taken at each meal (TID). E. Modes of Administration The substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds of the present disclosure with or without the fluid-absorbing polymers described herein may be administered by any suitable route. The compound is preferably administrated orally (e.g., dietary) in capsules, suspensions, tablets, pills, dragees, liquids, gels, syrups, slurries, and the like. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986). The compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. The formulation of the pharmaceutical composition will vary according to the route of administration selected. Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. The carriers are biocompatible, i.e., non-toxic, non-inflammatory, non-immunogenic and devoid of other undesired reactions at the administration site. Examples of pharmaceutically acceptable carriers include, for example, saline, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or a collagen matrix. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. Pharmaceutical preparations for oral use can be obtained by combining a compound of the present disclosure with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical preparations which can be used orally include push-fit capsules made of a suitable material, such as gelatin, as well as soft, sealed capsules made of a suitable material, for example, gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. It will be understood that, certain compounds of the disclosure may be obtained as different stereoisomers (e.g., diastereomers and enantiomers) or as isotopes and that the disclosure includes all isomeric forms, racemic mixtures and isotopes of the disclosed compounds and a method of treating a subject with both pure isomers and mixtures thereof, including racemic mixtures, as well as isotopes. Stereoisomers can be separated and isolated using any suitable method, such as chromatography. F. Delayed Release NHE proteins show considerable diversity in their patterns of tissue expression, membrane localization and functional roles. (See, e.g., The sodium-hydrogen exchanger—From molecule To Its Role In Disease, Karmazyn, M., Avkiran, M., and Fliegel, L., eds., Kluwer Academics (2003).) In mammals, nine distinct NHE genes (NHE-1 through -9) have been described. Of these nine, five (NHE-1 through -5) are principally active at the plasma membrane, whereas NHE-6, -7 and -9 reside predominantly within intracellular compartments. NHE-1 is ubiquitously expressed and is chiefly responsible for restoration of steady state intracellular pH following cytosolic acidification and for maintenance of cell volume. Recent findings show that NHE-1 is crucial for organ function and survival (e.g. NHE-1-null mice exhibit locomotor abnormalities, epileptic-like seizures and considerable mortality before weaning). In contrast with NHE-1 expressed at the basolateral side of the nephrons and gut epithelial cells, NHE-2 through -4 are predominantly expressed on the apical side of epithelia of the kidney and the gastrointestinal tract. Several lines of evidence show that NHE-3 is the major contributor of renal bulk Na+ and fluid re-absorption by the proximal tubule. The associated secretion of H+ by NHE-3 into the lumen of renal tubules is also essential for about ⅔ of renal HCO3− re-absorption. Complete disruption of NHE-3 function in mice causes a sharp reduction in HCO3−, Na+ and fluid re-absorption in the kidney, which is consistently associated with hypovolemia and acidosis. In one embodiment, the novel compounds of the invention are intended to target the apical NHE antiporters (e.g. NHE-3, NHE-2 and NHE-8) without substantial permeability across the layer of gut epithelial cells, and/or without substantial activity towards NHEs that do not reside predominantly in the GI tract. This invention provides a method to selectively inhibit GI apical NHE antiporters and provide the desired effect of salt and fluid absorption inhibition to correct abnormal fluid homeostasis leading to constipations states. Because of their absence of systemic exposure, said compounds do not interfere with other key physiological roles of NHEs highlighted above. For instance, the compounds of the invention are expected to treat constipation in patients in need thereof, without eliciting undesired systemic effects, such as for example salt wasting or bicarbonate loss leading to hyponatriemia and acidosis among other disorders. In another embodiment, the compounds of the invention are delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The applicant found that an early release of the compounds in the stomach or the duodenum can have an untoward effect on gastric secretion or bicarbonate secretion (also referred to as “bicarbonate dump”). In this embodiment the compounds are designed so as to be released in an active form past the duodenum. This can be accomplished by either a prodrug approach or by specific drug delivery systems. As used herein, “prodrug” is to be understood to refer to a modified form of the compounds detailed herein that is inactive (or significantly less active) in the upper GI, but once administered is metabolised in vivo into an active metabolite after getting past, for example, the duodenum. Thus, in a prodrug approach, the activity of the NHE inhibitor can be masked with a transient protecting group that is liberated after compound passage through the desired gastric compartment. For example, acylation or alkylation of the essential guanidinyl functionality of the NHE inhibitor would render it biochemically inactive; however, cleavage of these functional groups by intestinal amidases, esterases, phosphatases, and the like, as well enzymes present in the colonic flora, would liberate the active parent compound. Prodrugs can be designed to exploit the relative expression and localization of such phase I metabolic enzymes by carefully optimizing the structure of the prodrug for recognition by specific enzymes. As an example, the anti-inflammatory agent sulfasalazine is converted to 5-aminosalicylate in the colon by reduction of the diazo bond by intestinal bacteria. In a drug delivery approach the NHE-inhibitor compounds of the invention are formulated in certain pharmaceutical compositions for oral administration that release the active in the targeted areas of the GI, i.e., jejunum, ileum or colon, or preferably the distal ileum and colon, or even more preferably the colon. Methods known from the skilled-in-the-art are applicable. (See, e.g., Kumar, P. and Mishra, B., Colon Targeted Drug Delivery Systems—An Overview, Curr. Drug Deliv., 2008, 5 (3), 186-198; Jain, S. K. and Jain, A., Target-specific Drug Release to the Colon., Expert Opin. Drug Deliv., 2008, 5 (5), 483-498; Yang, L., Biorelevant Dissolution Testing of Colon-Specific Delivery Systems Activated by Colonic Microflora, J. Control Release, 2008, 125 (2), 77-86; Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; and Bodmeier, R., Polymer Blends for Controlled Release Coatings, J. Control Release 2008, 125 (1), 1-15; Patel, M.; Shah, T.; and Amin, A., Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems, Crit. Rev. Ther. Drug Carrier Syst., 2007, 24 (2), 147-202; Jain, A.; Gupta, Y.; Jain, S. K., Perspectives of Biodegradable Natural Polysaccharides for Site-specific Drug Delivery to the Colon., J. Pharm. Sci., 2007, 10 (1), 86-128; Van den, M. G., Colon Drug Delivery, Expert Opin. Drug Deliv., 2006, 3 (1), 111-125; Basit, A. W., Advances in Colonic Drug Delivery, Drugs 2005, 65 (14), 1991-2007; Chourasia, M. K.; Jain, S. K., Polysaccharides for Colon-Targeted Drug Delivery, Drug Deliv. 2004, 11 (2), 129-148; Shareef, M. A.; Khar, R. K.; Ahuja, A.; Ahmad, F. J.; and Raghava, S., Colonic Drug Delivery: An Updated Review, AAPS Pharm. Sci. 2003, 5 (2), E17; Chourasia, M. K.; Jain, S. K., Pharmaceutical Approaches to Colon Targeted Drug Delivery Systems, J. Pharm. Sci. 2003, 6 (1), 33-66; and, Sinha, V. R.; Kumria, R., Colonic Drug Delivery: Prodrug Approach, Pharm. Res. 2001, 18 (5), 557-564. Typically the active pharmaceutical ingredient (API) is contained in a tablet/capsule designed to release said API as a function of the environment (e.g., pH, enzymatic activity, temperature, etc.), or as a function of time. One example of this approach is Eudracol™ (Pharma Polymers Business Line of Degussa's Specialty Acrylics Business Unit), where the API-containing core tablet is layered with various polymeric coatings with specific dissolution profiles. The first layer ensures that the tablet passes through the stomach intact so it can continue through the small intestine. The change from an acidic environment in the stomach to an alkaline environment in the small intestine initiates the release of the protective outer layer. As it travels through the colon, the next layer is made permeable by the alkalinity and intestinal fluid. This allows fluid to penetrate to the interior layer and release the active ingredient, which diffuses from the core to the outside, where it can be absorbed by the intestinal wall. Other methods are contemplated without departing from the scope of the present disclosure. In another example, the pharmaceutical compositions of the invention can be used with drug carriers including pectin and galactomannan, polysaccharides that are both degradable by colonic bacterial enzymes. (See, e.g., U.S. Pat. No. 6,413,494, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes.) While pectin or galactomannan, if used alone as a drug carrier, are easily dissolved in simulated gastric fluid and simulated intestinal fluid, a mixture of these two polysaccharides prepared at a pH of about 7 or above produces a strong, elastic, and insoluble gel that is not dissolved or disintegrated in the simulated gastric and intestinal fluids, thus protecting drugs coated with the mixture from being released in the upper GI tract. When the mixture of pectin and galactomannan arrives in the colon, it is rapidly degraded by the synergic action of colonic bacterial enzymes. In yet another aspect, the compositions of the invention may be used with the pharmaceutical matrix of a complex of gelatin and an anionic polysaccharide (e.g., pectinate, pectate, alginate, chondroitin sulfate, polygalacturonic acid, tragacanth gum, arabic gum, and a mixture thereof), which is degradable by colonic enzymes (U.S. Pat. No. 6,319,518). In yet other embodiments, fluid-absorbing polymers that are administered in accordance with treatment methods of the present disclosure are formulated to provide acceptable/pleasant organoleptic properties such as mouthfeel, taste, and/or to avoid premature swelling/gelation in the mouth and in the esophagus and provoke choking or obstruction. The formulation may be designed in such a way so as to ensure the full hydration and swelling of the FAP in the GI tract and avoid the formation of lumps. The oral dosages for the FAP may take various forms including, for example, powder, granulates, tablets, wafer, cookie and the like, and are most preferably delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The above-described approaches or methods are only some of the many methods reported to selectively deliver an active in the lower part of the intestine, and therefore should not be viewed to restrain or limit the scope of the disclosure. The following non-limiting examples are provided to further illustrate the present disclosure. EXAMPLES Exemplary Compound Synthesis Example 1 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphasphonic acid Intermediate 1.1: 2-bromo-1-(3-bromophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-bromophenyl)ethanone (40 g, 202.02 mmol, 1.00 equiv) in acetic acid (200 mL). This was followed by the addition of a solution of Br2 (32 g, 200.00 mmol) in acetic acid (50 mL) dropwise with stirring at 60° C. The resulting solution was stirred for 3 h at 60° C. in an oil bath. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 24 g (43%) of 2-bromo-1-(3-bromophenyl)ethanone as a yellow solid. Intermediate 1.2: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-bromophenyl)ethanone (55 g, 199.28 mmol, 1.00 equiv) in 1,4-dioxane (300 mL), TEA (40 g, 396.04 mmol, 1.99 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (38 g, 201.06 mmol, 1.01 equiv). The resulting solution was stirred for 2 h at 25° C. in an oil bath. The solids were filtered out and the filtrate was used without any further purification. Intermediate 1.3: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanol Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanone (77 g, 198.97 mmol, 1.00 equiv, theoretical yield) in methanol (300 mL). This was followed by the addition of NaBH4 (15 g, 394.74 mmol, 1.98 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 100 mL of acetone. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100). This resulted in 50 g (65%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol as a yellow oil. Intermediate 1.4: 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol (25 g, 64.27 mmol, 1.00 equiv) in dichloromethane (100 mL). This was followed by the addition of sulfuric acid (100 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 4 h at room temperature. The resulting solution was diluted with of ice water. The pH value of the solution was adjusted to 8 with sodium hydroxide. The resulting solution was extracted with 3×300 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 15 g (63%) of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a white solid. Intermediate 1.5: 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of potassium carbonate (930 mg, 0.50 equiv) in xylene (50 mL). This was followed by the addition of phenylmethanethiol (2.5 g, 1.50 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at 25° C. Into another 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was added a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (5.0 g, 1 equiv) in xylene (50 mL), Pd2(dba)3 (300 mg), Xantphos (300 mg). The resulting solution was stirred for 30 min at 25° C. and then added to the above reaction solution. The mixture was stirred overnight at 140° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 2.5 g (45%) of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a yellow oil. Intermediate 1.6: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 250-mL 3-necked round-bottom flask, was placed a solution of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (8 g, 13.53 mmol, 1.00 equiv, 70%) in acetic acid/water (80/8 mL). Cl2(g) was introduced and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 5.0 g (90%) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride as a yellowish solid. Intermediate 1.7: 2-(2-bromoethyl)isoindoline-1,3-dione Into a 500-mL round-bottom flask, was placed a solution of 1,2-dibromoethane (30 g, 159.57 mmol, 2.95 equiv) in N,N-dimethylformamide (200 mL). This was followed by the addition of potassium phthalimide (10 g, 54.05 mmol, 1.00 equiv) in several batches. The resulting solution was stirred for 24 h at 60° C. The reaction was then quenched by the addition of 500 mL of water. The resulting solution was extracted with 2×200 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10). This resulted in 8 g (57%) of 2-(2-bromoethyl)isoindoline-1,3-dione as a white solid. Intermediate 1.8: diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 2-(2-bromoethyl)isoindoline-1,3-dione (8 g, 31.50 mmol, 1.00 equiv) and triethyl phosphite (6.2 g, 37.35 mmol, 1.19 equiv). The resulting solution was stirred for 18 h at 130° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ether:n-hexane (1:2). This resulted in 5 g (48%) of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate as a white solid. Intermediate 1.9: diethyl 2-aminoethylphosphonate Into a 500-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate (5 g, 16.08 mmol, 1.00 equiv) in ethanol (200 mL) and hydrazine hydrate (8 g, 160.00 mmol, 9.95 equiv). The resulting solution was stirred for 12 h at room temperature. The solids were filtered and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (9:1). This resulted in 1.5 g (51%) of diethyl 2-aminoethylphosphonate as colorless oil. Intermediate 1.10: Diethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 2-aminoethylphosphonate (100 mg, 0.55 mmol, 1.00 equiv) in dichloromethane (10 mL) with TEA (220 mg, 2.18 mmol, 3.94 equiv). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.60 mmol, 1.08 equiv, 78%) in several batches. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 0.07 g (24%) of the title compound as a colorless oil. Compound 1: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid To a solution of Intermediate 1.10 (70 mg, 0.13 mmol, 1.00 equiv) in dichloromethane (10 mL) was added bromotrimethylsilane (200 mg, 1.32 mmol, 10.04 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. To the above was added methanol. The resulting mixture was concentrated under vacuum. This was followed by the addition of a solution of sodium hydroxide (11 mg, 0.28 mmol, 2.10 equiv) in methanol (2 mL). The resulting solution was stirred for an additional 1 h at room temperature. The resulting mixture was concentrated under vacuum. The solid was dried in an oven under reduced pressure. This resulted in 52.3 mg (73%) of the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.82 (d, J=7.5 Hz, 1H), 7.73 (s, 1H), 7.56 (m, 1H), 7.48 (d, J=8.1 Hz, 1H), 7.41 (s, 1H), 6.88 (s, 1H), 4.54 (s, 1H), 3.97 (m, 2H), 3.17 (m, 3H), 2.97 (m, 1H), 2.67 (s, 3H), 1.68 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 2 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic acid Intermediate 2.1: diethyl 4-nitrophenylphosphonate Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl phosphonate (3.02 g, 21.88 mmol, 1.10 equiv) in toluene (10 mL), Pd(PPh3)4 (1.15 g, 1.00 mmol, 0.05 equiv), TEA (2.21 g, 21.88 mmol, 1.10 equiv), 1-bromo-4-nitrobenzene (4 g, 19.90 mmol, 1.00 equiv). The resulting solution was stirred for 15 h at 90° C. The solids were filtered out and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2). This resulted in 3.53 g (68%) of diethyl 4-nitrophenylphosphonate as a yellow liquid. Intermediate 2.2: diethyl 4-aminophenylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 4-nitrophenylphosphonate (1.07 g, 4.13 mmol, 1.00 equiv), TEA (3 mL), Palladium carbon (0.025 g). This was followed by the addition of formic acid (2 mL) dropwise with stirring at room temperature. The resulting solution was heated to reflux for 3 hr. The reaction was then quenched by the addition of 5 mL, of water and the solids were filtered out. The resulting filtrate was extracted with 5×10 mL, of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate. This resulted in 800 mg (85%) of diethyl 4-aminophenylphosphonate as a white solid. Compound 2: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl-sulfonamido)phenylphosphonic acid Compound 2 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminophenylphosphonate (Intermediate 2.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.86 (d, 1H), 7.69 (m, 3H), 7.55 (m, 3H), 7.21 (m, 2H), 6.73 (s, 1H), 4.70 (m, 2H), 4.48 (d, 1H), 3.79 (m, 1H), 3.46 (m, 1H), 3.09 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 3 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic acid Intermediate 3.1: diethyl 4-nitrobenzylphosphonate Into a 250-mL round-bottom flask, was placed 1-(bromomethyl)-4-nitrobenzene (15 g, 69.77 mmol, 1.00 equiv), triethyl phosphite (70 mL). The resulting solution was stirred for 2 h at 110° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:1). This resulted in 17 g (89%) of the title compound as a yellow oil. Intermediate 3.2: diethyl 4-aminobenzylphosphonate Into a 100-mL 3-necked round-bottom flask, was placed a solution of diethyl 4-nitrobenzylphosphonate (5 g, 18.32 mmol, 1.00 equiv) in ethanol (50 mL) and a solution of NH4Cl (2.9 g, 54.72 mmol, 2.99 equiv) in water (50 mL) was added. This was followed by the addition of Fe (4.1 g, 73.21 mmol, 4.00 equiv), while the temperature was maintained at reflux. The resulting solution was heated to reflux for 1 hr. The solids were filtered out. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:3). This resulted in 2.5 g (56%) of the title compound as a yellow solid. Compound 3: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic acid Compound 3 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminobenzylphosphonate (Intermediate 3.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.61˜7.66 (m, 1H), 7.52˜7.54 (m, 2H), 7.21˜7.20 (m, 2H), 7.11 (s, 1H), 6.95 (d, J=8.1 Hz, 2H), 6.73 (s, 1H), 4.51˜4.59 (m, 3H), 3.33 (s, 1H), 3.03˜2.89 (m, 6H). MS (ES, m/z): 541 [M+H]+. Example 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Intermediate 4.1: 3-diethyl 3-aminopropylphosphonate Following the procedures outlined in Example 1, substituting dibromopropane for dibromoethane gave the title compound. Compound 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Compound 4 was prepared in an analogous manner to that of Compound 1 using 3-diethyl 3-aminopropylphosphonate (Intermediate 4.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.87 (d, J=8.1 Hz, 1H), 7.77 (s, 1H), 7.61˜7.66 (m, 1H), 7.51˜7.54 (m, 2H), 6.88 (s, 1H), 4.77˜4.83 (m, 1H), 4.65 (d, J=16.2 Hz, 1H), 4.44 (d, J=15.6 Hz, 1H), 3.78˜3.84 (m, 1H), 3.50˜3.57 (m, 1H), 3.08 (s, 3H), 2.93˜2.97 (m, 2H), 1.61˜1.72 (m, 2H), 1.48˜1.59 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 5 (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Intermediate 5.1: 1,3,5-tribenzyl-1,3,5-triazinane Into a 100-mL 3-necked round-bottom flask was placed benzylamine (10 g, 93.46 mmol, 1.00 equiv), followed by the addition of formaldehyde (9.0 g, 1.20 equiv, 37%) dropwise with stirring at 0-10° C. To the precipitated gum was added 3M aqueous sodium hydroxide (20 mL), and the mixture was stirred. After standing in ice for 0.3 h, ether (30 mL) was added, and the mixture stirred until all precipitate dissolved. The aqueous phase was separated and extracted with ether. The solvents were removed under vacuum to afford 12 g (36%) of 1,3,5-tribenzyl-1,3,5-triazinane as colorless oil. Intermediate 5.2: diethyl (benzylamino)methylphosphonate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 1,3,5-tribenzyl-1,3,5-triazinane (3.0 g, 8.40 mmol, 1.00 equiv) and diethyl phosphite (3.5 g, 25.36 mmol, 3.00 equiv). The resulting solution was stirred for 3 h at 100° C. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:1). This resulted in 2.0 g (90%) of diethyl (benzylamino)methylphosphonate as a colorless oil. Intermediate 5.3: Diethyl aminomethylphosphonate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of diethyl (benzylamino)methylphosphonate (3.5 g, 13.62 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL) and Palladium carbon (0.2 g, 0.10 equiv). The resulting solution was stirred for 24 h at 50° C. under 20 atm pressure. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 2.0 g (crude) of the title compound as brown oil which was used without further purification. Compound 5: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Compound 5 was prepared in an analogous manner to that of Compound 1 using diethyl aminomethylphosphonate (Intermediate 5.3) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.74 (s, 1H), 7.63˜7.66 (m, 1H), 7.57˜7.61 (m, 2H), 6.97 (s, 1H), 4.80˜4.89 (m, 1H), 4.55˜4.67 (m, 2H), 3.83˜3.89 (m, 1H), 3.55˜3.66 (m, 1H), 3.02˜3.11 (m, 5H). MS (ES, m/z): 465 [M+H]+. Example 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic acid Intermediate 6.1: 4-diethyl 4-(aminomethyl)benzylphosphonate Following the procedures outlined in Example 1, substituting 1,4-bis(bromomethyl)benzene for dibromoethane gave the title compound. Compound 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic acid Compound 6 was prepared in an analogous manner to that of Compound 1 using 4-diethyl 4-(aminomethyl)benzylphosphonate (Intermediate 6.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.85˜7.88 (m, 1H), 7.54˜7.59 (m, 2H), 7.37˜7.42 (m, 2H), 7.198˜7.22 (m, 2H), 7.06˜7.09 (m, 1H), 6.77 (s, 1H), 4.64 (m, J=16.2 Hz, 1H), 4.49˜4.53 (m, 1H), 4.37 (m, J=16.5, 1H), 4.17 (s, 2H), 3.45˜3.56 (m, 1H), 3.11˜3.27 (m, 1H), 3.09˜3.10 (m, 4H), 2.96˜2.97 (m, 1H). MS (ES, m/z): 555 [M+H]+. Example 7 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Compound 7: 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Into a 50-mL round-bottom flask, was placed a solution of 3-aminopropane-1-sulfonic acid (180 mg, 1.29 mmol, 1.00 equiv) in tetrahydrofuran/water (10/10 mL) with sodium bicarbonate (430 mg, 5.12 mmol). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.29 mmol, 0.99 equiv) in several batches. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (500 mg) was purified by preparative HPLC to give 26.7 mg of the title compound (4%) as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): 10.28 (s, 1H), 7.53˜7.79 (m, 6H), 6.83 (s, 1H), 4.74 (s, 2H), 4.51 (s, 1H), 3.90 (s, 1H), 3.06 (s, 3H), 2.86˜2.93 (m, 2H), 2.33˜2.44 (m, 2H), 1.58˜1.63 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 8 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Intermediate 8.1: ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate Into a 500-mL 3-necked round-bottom flask, was placed a solution of diethyl (benzylamino)methylphosphonate (intermediate 5.2) (12 g, 46.69 mmol, 1.00 equiv) in acetonitrile (150 mL), DIEA (12 g, 2.00 equiv). This was followed by the addition of ethyl 2-bromoacetate (8.4 g, 50.30 mmol, 1.10 equiv) dropwise with stirring. The mixture was stirred for 30 min at room temperature. The resulting solution was heated to reflux for 6 hr. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:5). This resulted in 8.0 g (50%) of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate as yellow oil. Intermediate 8.2: ethyl 2-((diethoxyphosphoryl)methylamino)acetate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate (8.0 g, 23.32 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL), Pd/C (0.9 g). The resulting solution was stirred at 20 atm for 32 h at 50° C. The solids were filtered out, and the resulting mixture was concentrated under vacuum. This resulted in 6.0 g (82%) of the acetic acid salt of ethyl 2-((diethoxyphosphoryl)methylamino)acetate as a brown oil. Intermediate 8.3: ethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-((diethoxyphosphoryl)methyl)phenylsulfonamido)acetate Into a 50-mL round-bottom flask, was placed a solution of ethyl 2-((diethoxyphosphoryl)methylamino)acetate (320 mg, 1.26 mmol, 1.00 equiv) in pyridine (10 mL). 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.28 mmol, 1.01 equiv) was added and the resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product (400 mg) was purified by preparative HPLC to give 200 mg (24%) of the title compound as a TFA salt. Intermediate 8.4: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 8.3 (200 mg, 0.33 mmol, 1.00 equiv) in dichloromethane (6 mL). Bromotrimethylsilane (502 mg, 3.30 mmol, 10.01 equiv) was added and the resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was dissolved in 10 mL of methanol. The resulting mixture was concentrated under vacuum. This resulted in 180 mg (99%) of the title compound as a yellow solid. Compound 8: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Into a 50-mL round-bottom flask, was placed a solution of (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic acid (Intermediate 8.4) (180 mg, 0.33 mmol, 1.00 equiv) in tetrahydrofuran/water (5/5 mL). This was followed by the addition of lithium hydroxide (39 mg, 1.62 mmol, 4.97 equiv) in several batches at room temperature. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC giving 59.2 mg (35%) of the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.73˜7.74 (m, 1H), 7.67˜7.68 (m, 1H), 7.58˜7.62 (m, 2H), 7.49 (s, 1H), 7.00 (s, 1H), 4.71˜4.75 (m, 1H), 4.49 (d, J=16.2 Hz, 1H), 4.33 (d, J=15.9 Hz, 1H), 4.07 (s, 2H), 3.62˜3.64 (m, 1H), 3.45˜3.54 (m, 2H), 3.31˜3.40 (m, 1H), 2.88 (s, 3H). MS (ES, m/z): 523 [M+H]+. Example 9 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic acid Intermediate 9.1: Dimethyl 2-aminosuccinate hydrochloride Into a 100-mL round-bottom flask, was placed a solution of 2-aminosuccinic acid (3 g, 22.56 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of thionyl chloride (10 g, 84.75 mmol, 3.76 equiv) dropwise with stirring at 0-5° C. The resulting solution was heated to reflux for 2 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 4.2 g (95%) of the title compound as a white solid. Intermediate 9.2: Dimethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinate Into a 50-mL round-bottom flask, was placed a solution of dimethyl 2-aminosuccinate hydrochloride (107 mg, 0.54 mmol, 1.00 equiv) in pyridine (5 mL). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.69 mmol, 1.27 equiv, 90%) in several batches. The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 200 mg (72%) of the title compound as a colorless oil Compound 9: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 9.2 (100 mg, 0.19 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) and water (5 mL). This was followed by the addition of LiOH (23 mg, 0.96 mmol, 4.93 equiv) in several batches at room temperature. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with hydrogen chloride (1 mol/L). The solids were collected by filtration. The crude product (200 mg) was purified by preparative HPLC to give 12.1 mg (10%) the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.2 Hz, 1H), 7.80 (d, J=6.3 Hz, 1H), 7.64˜7.52 (m, 3H), 6.95 (s, 1H), 4.78-4.70 (m, 2H), 4.55˜4.50 (m, 1H), 4.23-4.17 (m, 1H), 3.87˜3.82 (m, 1H), 3.63˜3.57 (m, 1H), 3.12 (s, 3H), 2.79˜2.65 (m, 2H). MS (ES, m/z): 487 [M-CF3COOH+H]+. Example 10 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Intermediate 10.1: 2-bromo-1-(4-bromophenyl)ethanone Into a 250-mL 3-necked round-bottom flask, was placed a solution of 1-(4-bromophenyl)ethanone (10.0 g, 50.25 mmol, 1.00 equiv) in acetic acid (50 mL). This was followed by the addition of a solution of bromine (8.2 g, 1.05 equiv) in acetic acid (50 mL) dropwise with stirring at 60° C. over 90 min. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate in the ratio of 7:1. This resulted in 9.3 g (67%) of the title compound as a yellow solid. Intermediate 10.2: 1-(4-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(4-bromophenyl)ethanone (9.3 g, 33.45 mmol, 1.00 equiv) in dioxane (100 mL), triethylamine (5.0 g, 1.50 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (6.4 g, 33.68 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was used for next step directly. Intermediate 10.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of the crude Intermediate 10.2 in fresh methanol (100 mL). This was followed by the addition of sodium borohydride (2.5 g, 65.79 mmol, 2.00 equiv) in several batches at 0-5° C. The resulting solution was stirred for 1 h at 25° C. The reaction was then quenched by the addition of sat. NH4Cl. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with EtOAc (2×100 mL) and the organic layers combined and concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate (60 mL) in the ratio of 7:1. This resulted in 6.5 g (50%) of the title compound as a white solid. MS (ES, m/z): 390 [M+H]+. Intermediate 10.4: 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 50-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol (1.0 g, 2.57 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of conc.H2SO4 (2 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 3 h at 20° C. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 9 with sodium hydroxide. The resulting solution was extracted with dichloromethane (2×30 mL) and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.9 g of the title compound which was used without further purification. MS (ES, m/z): 372 [M+H]+. Intermediate 10.5: 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed K2CO3 (800 mg, 0.50 equiv) and xylene (50 mL). This was followed by the addition of phenylmethanethiol (1.75 g, 1.00 equiv) dropwise with stirring at 0° C. The resulting mixture was then allowed to warm to room temperature and stirred for 1 h. Into another 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (4.8 g, 0.80 equiv), Xantphos (200 mg, 0.08 equiv) and Pd2(dba)3 (200 mg, 0.08 equiv) in xylene (30 mL). The mixture was stirred at room temperature for 20 min and transferred to the previously formed potassium thiolate. The dark solution was then purged with nitrogen and heated to 130° C. for 15 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The crude product was then purified by silica gel chromatography with ethyl acetate/petroleum ether (1:80˜1:50) to afford 1.8 g (30%) of the title compound as yellow oil. MS (ES, m/z): 414 [M+H]+. Compound 10.6: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 50-mL 3-necked round-bottom flask, was placed a solution of 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (250 mg, 0.60 mmol, 1.00 equiv) in acetic acid (8 mL), water (1 mL). To the above Cl2(g) was introduced and the resulting solution was stirred for 30 min at 25° C. The resulting mixture was concentrated under vacuum. This resulted in 200 mg (85%) of the title compound as a yellow solid. MS (ES, m/z): 390 [M−HCl+H]+. Compound 10: 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Following the procedures outlined in Example 1, 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) was converted to compound 10. Purification by preparative HPLC gave a TFA salt of the title compound as a white solid. 1H-NMR (CD3OD, 300 MHz, ppm): 7.93 (d, J=8.4 Hz, 2H), 7.58˜7.51 (m, 3H), 6.89 (s, 1H), 4.89˜4.80 (m, 2H), 4.56˜4.51 (m, 1H), 3.95˜3.90 (m, 1H), 3.69˜3.65 (m, 1H), 3.21˜3.10 (m, 5H), 2.01˜1.89 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 11 (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Compound 11: (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Following the procedures outlined in Example 1, compound 11 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and diethyl aminomethylphosphonate (intermediate 5.3). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.87 (d, J=8.4 Hz, 2H), 7.68 (d, J=1.5 Hz, 1H), 7.48 (d, J=9.4 Hz, 2H), 6.80 (s, 1H), 4.74-4.66 (m, 1H), 4.46-4.40 (m, 1H), 3.82˜3.77 (m, 1H), 3.69˜3.39 (m, 1H), 3.01 (s, 3H), 2.91˜2.74 (m, 2H). MS 465 [M+H]+. Example 12 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Compound 12: 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Following the procedures outlined in Example 1, compound 12 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 3-diethyl 3-aminopropylphosphonate (intermediate 4.1). Purification by preparative HPLC gave a TFA salt of the title compound 1H-NMR (300 MHz, CD3OD, ppm): 7.90 (d, J=8.4, 2H), 7.55 (s, 1H), 7.46 (d, J=8.1 Hz, 2H), 6.88 (s, 1H), 4.77˜4.82 (m, 1H), 4.71 (d, J=16.2 Hz, 1H), 4.47 (d, J=15.9 Hz, 1H), 3.80˜3.86 (m, 1H), 3.54˜3.61 (m, 1H), 3.11 (s, 3H), 2.95˜2.99 (m, 2H), 1.53˜1.71 (m, 4H). MS 493 [M+H]+. Example 13 (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic acid Compound 13: (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic acid Following the procedures outlined in Example 1, compound 13 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-aminobenzylphosphonate (intermediate 3.2). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.69 (d, J=8.4 Hz, 2H), 7.46˜7.46 (m, 1H), 7.34 (d, J=8.4 Hz, 2H), 7.07 (d, J=7.8 Hz, 2H), 6.94 (d, J=8.1 Hz, 2H), 6.71˜6.71 (m, 1H), 4.36-4.40 (m, 1H), 3.65˜3.80 (m, 2H), 2.95˜3.01 (m, 1H), 2.72˜2.79 (m, 3H), 2.41 (s, 3H). MS (ES, m/z): 541 [M+H]+. Example 14 (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic acid Compound 14: (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic acid Following the procedures outlined in Example 1, compound 14 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-(aminomethyl)benzylphosphonate (intermediate 6.1). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.71 (d, J=8.4 Hz, 2H), 7.50 (m, 1H), 7.40 (d, J=8.4 Hz, 2H), 7.06-7.15 (m, 4H), 6.86˜6.87 (m, 1H), 4.38-4.40 (m, 1H), 3.95 (s, 2H), 3.75 (d, J=16.2 Hz, 1H), 3.53 (m, 1H), 2.85˜2.92 (m, 3H), 2.69˜2.75 (m, 1H), 2.41 (s, 3H). MS (ES, m/z): 555 [M+H]+. Example 15 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic acid Intermediate 15.1: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-phenylethanone (1 g, 5.05 mmol, 1.00 equiv) in 1,4-dioxane (20 mL) and (2,4-dichlorophenyl)-N-methylmethanamine (1.1 g, 5.82 mmol, 1.15 equiv). Triethylamine (2 g, 19.80 mmol, 3.92 equiv) was added dropwise with stirring at 20° C. The resulting solution was stirred for 1 h at 20° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.4 g (90%) of the title compound as a yellow oil. Intermediate 15.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol Into a 250 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone (4.3 g, 14.01 mmol, 1.00 equiv) in methanol (50 mL). This was followed by the addition of NaBH4 (1.5 g, 39.47 mmol, 2.82 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 20 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:80˜1:20). This resulted in 3.4 g (79%) of the title compound as a white solid. Intermediate 15.3: 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline Into a 100-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol (3.4 g, 11.00 mmol, 1.00 equiv) in dichloromethane (15 mL). This was followed by the addition of sulfuric acid (15 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. in a water/ice bath. The pH value of the solution was adjusted to 7 with 1M sodium hydroxide. The resulting solution was extracted with ethyl acetate (3×60 mL) and the combined organic layers dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether:ethyl acetate (80:1). This resulted in 1.6 g (50%) of the title compound as a colorless oil. Intermediate 15.4: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed chlorosulfonic acid (4 mL). This was followed by the dropwise addition of a solution of 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (1.6 g, 5.5 mmol, 1.00 equiv) in dichloromethane (30 mL) at 0° C. The resulting solution was stirred for 1 h at 0° C. in a water/ice bath and for an additional 1 h at 25° C. in an oil bath. To this was added chlorosulfonic acid (16 mL) dropwise at 25° C. The resulting solution was stirred for an additional 1 h at 25° C. To the resulting mixture was cooled to 0° C. and aqueous ammonia (120 mL) was added dropwise. The resulting solution was stirred for an additional 3 h 90° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was dissolved in 20 mL of water. The resulting solution was extracted with dichloromethane (3×30 mL) and the combined organic layers concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1). The crude product (0.5 g) was purified by preparative HPLC to give 53 mg (3%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CDCl3, ppm): 7.89 (1H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 7.30 (1H, m), 6.77 (1H, s), 4.87 (1H, s), 4.39 (1H, s), 3.69 (2H, m), 2.98 (1H, t), 2.67 (1H, dd), 2.55 (3H, s). MS (ES, m/z): 371 [M+H]+. Intermediate 15.5: dimethyl 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 15.4, 100 mg, 0.27 mmol, 1.00 equiv) in acetonitrile (5 mL). Methyl but-3-enoate (40 mg, 0.40 mmol, 1.48 equiv) was added, along with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 20 mg, 0.13 mmol, 0.49 equiv). The resulting solution was stirred overnight at 25° C. in an oil bath. Removing the solvent under vacuum gave the title compound which was used without further purification. Compound 15: 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic acid Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of Intermediate 15.5 (140 mg, 0.26 mmol, 1.00 equiv, theoretical yield) in tetrahydrofuran (5 mL) and water (5 mL). LiOH (20 mg, 0.83 mmol, 3.23 equiv) was added and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1˜20:1). This resulted in 0.015 g (11%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.84 (d, J=8.1 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.35 (s, 1H), 6.84 (s, 1H), 4.39 (t, 1H), 3.77 (d, 1H), 3.67 (d, 1H), 3.45 (m, 1H), 3.33 (m, 4H), 2.69 (d, 1H), 3.0 (m, 1H), 2.47 (m, 6H). MS (ES, m/z): 515 [M+H]+. Example 16 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 16: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.235 mmol) in DMF (1.5 mL) was added TEA (94.94 mg, 0.94 mmol) and a solution of N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (11.45 mg, 0.0783 mmol) in 0.1 mL DMF. The reaction was stirred for 40 minutes at which point LCMS indicated no starting material remained. The solvent was removed and the residue dissolved in 50% acetic acid in water and purified by preparative HPLC to yield the title compound (25.4 mg) as a TFA salt. 1H-NMR (400 MHz, d6-DMSO): δ7.77 (s, 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.59 (m, 3H), 6.76 (s, 1H), 4.70 (m, 1H), 4.38 (m, 1H), 3.90 (br m, 8H), 3.26 (m, 1H), 3.95 (s, 3H), 2.65 (m, 2H). MS (m/z): 1210.01 (M+H). Example 17 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 17: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (26.17 mg, 0.176 mmol) in chloroform (0.223 mL) at 0° C. was added diisopropylethylamine (DIEA, 182 mg, 1.412 mmol) and a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL). The resulting solution was stirred for 10 minutes at which point the solvent was removed and the residue taken up in 50% isopropanol/water mixture and purified by preparative HPLC. The title compound was obtained (44.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.87 (d, 1H), 7.78 (d, 1H), 7.64 (t, 1H), 7.55 (d, 1H), 7.51 (d, 1H), 6.81 (s, 1H), 4.47 (d, 1H), 3.83 (dd, 1H), 3.59 (t, 1H), 3.43 (m, 2H), 3.12 (s, 4H), 3.01 (q, 2H). MS (m/z): 857.17 (M+H). Example 18 N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 18: N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 18 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.67 (s, 2H), 7.52 (m, 4H), 7.49 (d, 2H), 7.09 (s, 4H), 6.82 (s, 2H), 4.78 (m, 7H), 4.43 (d, 2H), 4.00 (s, 4H), 3.82 (dd, 2H), 3.51 (t, 2H), 3.11 (s, 6H). MS (m/z): 845.03 (M+H). Example 19 N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 19: N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 19 was made using butane-1,4-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 2H), 7.80 (s, 2H), 7.63 (t, 2H), 7.54 (t, 4H), 6.82 (s, 2H), 4.49 (d, 1H), 3.88 (dd, 2H), 3.58 (t, 2H), 3.14 (s, 6H), 2.81 (m, 4H), 1.42 (m, 4H). MS (m/z): 797.19 (M+H). Example 20 N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 20: N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 20 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.71 (s, 2H), 7.63 (t, 2H), 7.54 (m, 4H), 6.81 (s, 2H), 4.74 (m, 2H), 4.51 (d, 2H), 3.86 (dd, 2H), 3.29 (t, 2H), 3.13 (s, 7H), 2.79 (t, 4H), 1.39 (m, 4H), 1.22 (m, 20H). MS (m/z): 909.28 (M+H). Example 21 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 21: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.352 mmol) in THF/H2O (0.704 mL, 50% v/v) was added DIEA (181.6 mg, 1.41 mmol) and finally N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) (27.94 mg, 0.08825 mmol). The reaction mixture was stirred vigorously for 1 hour at which point the solvent was removed. The resulting residue was brought up in 50% acetonitrile/water and purified by preparative HPLC to give the title compound (117 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.78 (s, 2H), 7.62 (t, 2H), 7.36 (m, 4H), 6.79 (s, 2H), 4.78 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.55 (t, 2H), 3.12 (s, 6H), 2.94 (m, 4H), 1.90 (m, 4H), 1.85 (m, 2H). MS (m/z): 1732.90 (M+H). Example 22 N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 22: N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL) was added DIEA (182 mg, 1.412 mmol) and a solution of butane-1,4-diamine (15.5 mg, 0.176 mmol) in chloroform (0.176 mL). The reaction was stirred overnight at which point the solvent was removed and the resulting residue brought up in 50% IPA/H2O. Purification by preparative HPLC gave the title compound (18.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.86 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.73 (m, 3H), 4.46 (d, 2H), 3.86 (dd, 2H), 3.57 (t, 2H), 3.12 (s, 6H), 2.84 (m, 4H), 1.41 (m, 4H). MS (m/z): 797.15 (M+H). Example 23 N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 23: N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 22, compound 23 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 4H), 7.54 (m, 2H), 7.42 (m, 4H), 6.82 (s, 2H), 4.85 (m, 3H), 4.72 (d, 2H), 3.85 (dd, 2H), 3.59 (t, 2H), 3.13 (m, 8H), 2.85 (m, 4H), 1.89 (m, 5H), 1.33 (m, 23H). MS (m/z): 909.21 (M+H). Example 24 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 24: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in THF/H2O solution (50% v/v, 0.704 mL) was added DIEA (182.2 mg, 1.412 mmol) and N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (17.0 mg, 0.116 mmol). The reaction was stirred vigorously at room temperature for 40 minutes at which point the solvent was removed. The resulting residue was dissolved in acetonitrile/water (50% v/v) and purified by preparative HPLC to give the title compound (57.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.94 (d, 6H), 7.51 (t, 9H), 6.83 (s, 3H), 4.78 (m, 6H), 4.45 (d, 3H), 3.83 (dd, 3H), 3.49 (t, 3H), 3.30 (m, 6H), 3.29 (m, 21H), 3.12 (s, 9H). MS (m/z): 1208.09 (M+H). Example 25 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 25: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, Compound 25 was made using N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.88 (d, 8H), 7.51 (s, 4H), 7.48 (d, 8H), 6.81 (s, 4H), 4.75 (m, 8H), 4.47 (d, 4H), 3.85 (dd, 4H), 3.58 (t, 4H), 3.13 (s, 12H), 2.98 (t, 8H), 1.97 (m, 8H), 1.88 (m, 4H). MS (m/z): 1733.02 (M+H). Example 26 N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 26: N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 26 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.76 (d, 4H), 7.54 (s, 2H), 7.39 (d, 4H), 7.08 (s, 4H), 6.82 (s, 2H), 4.72 (m, 3H), 4.47 (d, 2H), 4.07 (s, 4H), 3.88 (dd, 2H), 3.61 (t, 2H), 3.16 (s, 6H). MS (m/z): 845.07 (M+H). Example 27 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 27: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 27 was made using 2,2′-(ethane-1,2-diylbis(oxy))diethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d. 4H), 7.52 (s, 2H), 7.47 (d, 4H), 6.82 (s, 2H), 4.77 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.59 (t, 2H), 3.43 (t, 8H), 3.13 (s, 6H), 3.06 (t, 4H). MS (m/z): 857.15 (M+H). Example 28 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 28.1 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (600 mg, 1.41 mmol) in chloroform (2.82 mL) was added DIEA (545.7 mg, 4.24 mmol) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (616.3 mg, 2.82 mmol). The reaction was stirred overnight at which point the mixture was diluted with 50 mL DCM and washed with NaHCO3 (50 mL). The aqueous layer was extracted with DCM (2×50 mL) and the combined organic fractions washed with water (200 mL), brine (200 mL), and dried over Na2SO4. Removing the solvent gave the title compound as an oil which was used without further purification. Compound 28: N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1) (1.035 g, assume 1.41 mmol) was dissolved in a 10:1 THF:water solution (26.5 mL) and placed under N2. PMe3 (165 mg, 2.18 mmol) was added and the reaction stirred overnight. The solvent was removed and the resulting residue brought up in EtOAc (100 mL) and washed with NaHCO3 (100 mL) and brine (100 mL). After drying the organic layer over Na2SO4, the solvent was removed to give 446 mg of the title compound (58% over two steps) as an oil. A portion of the crude product was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (m, 1H), 7.73 (m, 1H), 7.67 (t, j=7.7 Hz, 1H), 7.54 (m, 2H), 6.82 (s, 1H), 4.8-4.6 (m, 4H), 4.46 (m, 1H), 3.86 (m, 1H), 3.69 (m, 2H), 3.66 (s, 3H), 3.61 (m, 2H), 3.55 (m, 2H), 3.12 (m, 4H), 3.03 (t, j=5.4 Hz, 1H). MS (m/z): 546.18 (M+H). Example 29 N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide Compound 29: N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (54.5 mg, 0.1 mmol) in DMF (0.20 mL) was added DIEA (15.5 mg, 0.12 mmol) and bis(2,5-dioxopyrrolidin-1-yl) octanedioate (18.4 mg, 0.05 mmol). The reaction was stirred at room temperature for 3 hours at which point an additional 0.03 mmol of compound 28 was added. After a further hour the solvent was removed and the resulting residue dissolved in acetonitrile/water (1:1) and purified by preparative HPLC to give the title compound (17.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 2H), 7.78 (s, 2H), 7.64 (t, 2H), 7.52 (m, 4H), 6.83 (s, 2H), 4.81 (m, 4H), 4.45 (d, 2H), 3.89 (dd, 2H), 3.61 (m, 18H), 3.55 (m, 10H), 3.47 (m, 5H), 3.33 (m, 5H), 3.14 (s, 7H), 3.04 (t, 4H), 2.16 (t, 4H), 1.55 (m, 4H), 1.29 (m, 4H). MS (m/z): 1231.87 (M+H). Example 30 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Intermediate 30.1: 1-(4-aminophenyl)ethanone Into a 100-mL 3-necked round-bottom flask, was placed a solution of 1-(4-nitrophenyl)ethanone (6 g, 36.36 mmol, 1.00 equiv) in ethanol (100 mL), water (15 mL). This was followed by the addition of NH4Cl (3.85 g, 72.64 mmol, 2.00 equiv) in several batches. To this was added Fe (10.18 g, 181.79 mmol, 5.00 equiv) in several batches, while the temperature was maintained at reflux. The resulting mixture was heated to reflux for 2 h. The solids were filtered out and the resulting filtrate was concentrated under vacuum. The residue was diluted with 50 mL of water. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.1 g (60%) of 1-(4-aminophenyl)ethanone as a yellow solid. Intermediate 30.2: N-(4-acetylphenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-aminophenyl)ethanone (3.1 g, 22.96 mmol, 1.00 equiv) in dichloromethane (30 mL), triethylamine (4.64 g, 45.94 mmol, 2.00 equiv). This was followed by the addition of acetyl chloride (1.79 g, 22.95 mmol, 1.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 30 min at 0° C. The reaction was then quenched by the addition of 2 mL of water. The resulting mixture was washed with 3×50 mL of saturated aqueous sodium chloride. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.0 g (74%) of N-(4-acetylphenyl)acetamide as a white solid. Intermediate 30.3: N-(4-(2-bromoacetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-acetylphenyl)acetamide (1 g, 5.65 mmol, 1.00 equiv) in acetic acid (10 mL). This was followed by the addition of a solution of bromine (910 mg, 5.69 mmol, 1.01 equiv) in acetic acid (2 mL) dropwise with stirring at 50° C. The resulting solution was stirred for 1.5 h at 50° C. The reaction was then quenched by the addition of 100 mL of water/ice. The solids were collected by filtration and dried under vacuum. This resulted in 0.5 g (33%) of N-(4-(2-bromoacetyl)phenyl)acetamide as a white solid. Intermediate 30.4: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-bromoacetyl)phenyl)acetamide (1 g, 3.91 mmol, 1.00 equiv) in 1,4-dioxane (40 mL). This was followed by the addition of triethylamine (1.58 g, 15.64 mmol, 4.00 equiv) dropwise with stirring at 20° C. To this was added (2,4-dichlorophenyl)-N-methylmethanamine (880 mg, 4.63 mmol, 1.19 equiv) dropwise with stirring at 20° C. The resulting solution was stirred for 4 h at 20° C. The solids were filtered out. The resulting mixture was concentrated under vacuum to give 1.5 g (84%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide as a white solid. Intermediate 30.5: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide (1.5 g, 4.11 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of NaBH4 (300 mg, 7.89 mmol, 2.06 equiv) in several batches at 0-5° C. The resulting solution was stirred for 2 h at 0-5° C. The reaction was then quenched by the addition of 5 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 1.2 g (76%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide as yellow oil. Intermediate 30.6: N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide (500 mg, 1.36 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of sulfuric acid (3 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 5 h at 0-5° C. The reaction was then quenched by the addition of 20 mL of water/ice. The pH value of the solution was adjusted to 7-8 with sodium hydroxide. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 25 mg (5%) of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide as a white solid. 1H-NMR (300 HMz, CDCl3, ppm): δ 7.46-7.49 (2H, d, J=8.4 Hz), 7.23-7.29 (1H, m), 7.12-7.15 (2H, d, J=8.4 Hz), 6.80 (1H, s), 4.314 (1H, s), 3.92 (1H, d), 3.58-3.63 (1H, d), 3.06 (1H, s), 2.61-2.68 (1H, m), 2.57 (3H, s), 2.20 (3H, s). MS (ES, m/z): 349 [M+H]+. Intermediate 30.7: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide (2 g, 5.73 mmol, 1.00 equiv) in ethanol (20 mL). This was followed by the addition of sodium methanolate (5 g, 92.59 mmol, 16.16 equiv) in several batches, while the temperature was maintained at reflux. The resulting solution was heated to reflux overnight. The reaction was then quenched by the addition of 50 mL of water/ice. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. This resulted in 1.5 g (85%) of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.42-7.42 (1H, d, J=1.5 Hz), 6.83-6.86 (2H, d, J=8.1 Hz), 6.78-6.78 (1H, d, J=1.2 Hz), 6.48-6.51 (2H, d, J=8.4 Hz), 4.98 (2H, s), 4.02-4.06 (1H, m), 3.62-3.67 (1H, d, J=16.2 Hz), 3.43-3.48 (1H, d, J=15.9 Hz), 2.80-2.86 (1H, m), 2.37 (3H, s). MS (ES, m/z):307 [M+H]+. Intermediate 30.8: diethyl 2-(chlorosulfonylamino)ethylphosphonate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of sulfuryl dichloride (1.1 g, 8.15 mmol, 1.47 equiv) in dichloromethane (10 mL). This was followed by the addition of a solution of diethyl 2-aminoethylphosphonate (intermediate 1.9) (1.0 g, 5.52 mmol, 1.00 equiv) and triethylamine (800 mg, 7.92 mmol, 1.43 equiv) in dichloromethane (20 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. The reaction was then quenched by the addition of ice water. The organic layer was washed with saturated sodium chloride (20 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.5 g (crude) of the title compound as a colorless oil. Intermediate 30.9: diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed diethyl 2-(chlorosulfonylamino)ethylphosphonate (intermediate 30.8) (670 mg, 2.40 mmol, 1.47 equiv), 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (500 mg, 1.63 mmol, 1.00 equiv), N-ethyl-N-isopropylpropan-2-amine (400 mg, 3.10 mmol, 1.91 equiv) in acetonitrile (20 mL). The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum and the residue was applied to a silica gel column and eluted with dichloromethane/methanol (20:1). This resulted in 150 mg (16%) of the title compound as a light yellow solid. Compound 30: 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate (100 mg, 0.18 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (275 mg, 1.80 mmol, 9.89 equiv). The resulting solution was stirred overnight at 39° C. The resulting mixture was concentrated under vacuum and the residue was dissolved in dichloromethane (5 mL). This was followed by the addition of a solution of sodium hydroxide (14.5 mg, 0.36 mmol, 2.00 equiv) in methanol (0.2 mL) dropwise with stirring. The solids were collected by filtration and dried under reduced pressure. This gave 40 mg (40%) of a sodium salt of the title compound as a white solid. 1H-NMR (300 MHz, d6-DMSO, ppm): δ 9.78 (1H, brs), 7.54 (1H, s), 7.47 (1H, brs), 7.09-7.17 (4H, m), 6.82 (1H, s), 4.31 (1H, brs), 3.88 (2H, brs), 3.13 (1H, brs), 3.04 (2H, brs), 2.90 (1H, brs), 2.58 (3H, s), 1.65-1.77 (2H, m). MS (m/z): 494 [M+H]+. Example 31 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Intermediate 31.1: 2-bromo-1-(3-nitrophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-nitrophenyl)ethanone (50 g, 303.03 mmol, 1.00 equiv) in acetic acid (300 mL), Br2 (53.5 g, 331.6 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 60° C. in an oil bath. The reaction was then quenched by the addition of ice and the solids were collected by filtration. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. This resulted in 25 g (34%) of 2-bromo-1-(3-nitrophenyl)ethanone as a white solid. Intermediate 31.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (2 g, 8.23 mmol, 1.00 equiv), triethylamine (3.4 g, 4.00 equiv), (2,4-dichlorophenyl)-N-methylmethanamine (1.9 g, 10.05 mmol, 1.20 equiv), 1,4-dioxane (50 mL). The resulting solution was stirred for 2 h at room temperature at which time it was judged to be complete by LCMS. The mixture was concentrated under vacuum and the residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 1.5 g (50%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone as a yellow solid. Intermediate 31.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone (28 g, 1.00 equiv, Crude) in methanol (280 mL), NaBH4 (6.38 mg, 0.17 mmol, 2.00 equiv). The resulting solution was stirred for 0.5 h at 0° C. The reaction progress was monitored by LCMS. The reaction was then quenched by the addition of 10 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 14 g of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol as a yellow solid. Intermediate 31.4: 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol (14 g, 39.55 mmol, 1.00 equiv) in dichloromethane (140 mL), sulfuric acid (140 mL). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting solution was diluted with 100 mL of ice. The pH value of the solution was adjusted to 8-9 with sat. sodium hydroxide (100 mL). The resulting solution was extracted with 2×500 mL of ethyl acetate and the organic layers combined and dried over sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 7 g (51%) of 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as a yellow solid. Intermediate 31.5: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (200 mg, 0.59 mmol, 1.00 equiv), Fe (360 mg, 6.43 mmol, 8.60 equiv), hydrogen chloride (0.02 mL), ethanol (0.6 mL), water (0.2 mL). The resulting solution was stirred for 0.5 h at 80° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 0.2 g (crude) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Compound 31: 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Following the procedures outlined in Example 30, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, D2O+DMSO-d6, ppm): δ 7.67 (s, 1H), 7.33 (t, J=8.1 Hz, 1H), 7.07-7.15 (m, 2H), 6.81-6.86 (m, 2H), 4.39-4.66 (m, 3H), 3.75-3.81 (m, 1H), 3.45-3.50 (m, 1H), 3.02-3.08 (m, 5H), 1.67-1.78 (m, 2H). MS (ES, m/z): 494.0 [M+H]+. Example 32 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Compound 32: 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.28 (s, 4H), 6.81 (s, 1H), 4.73-4.77 (m, 2H), 4.57 (m, 1H), 3.81 (s, 1H), 3.66 (s, 1H), 3.18 (s, 3H), 3.06 (s, 2H), 1.74 (m, 4H), 1.20-1.35 (m, 1H). MS (ES, m/z): 508 [M+H]+ Example 33 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Compound 33: 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.54 (s, 1H), 7.38 (s, 1H), 7.25 (s, 1H), 7.11 (s, 1H), 6.94 (m, 2H), 4.66 (s, 1H), 4.55-4.51 (m, 1H), 3.89 (s, 1H), 3.65 (m, 2H), 3.18 (s, 3H), 3.05 (s, 2H), 1.71 (m, 4H). MS (ES, m/z): 508 [M+H]+. Example 34 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Intermediate 34.1: (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (200 mg, 0.65 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (1.2 mL). This was followed by the addition of bis(trichloromethyl) carbonate (200 mg, 0.67 mmol, 1.03 equiv) slowly with stirring at 0-5° C. The resulting solution was stirred for 1 h at room temperature. To this was added triethylamine (1 mL) followed by (S)-dimethyl 2-aminosuccinate (200 mg, 1.24 mmol, 1.91 equiv) in several batches. The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum and the residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 50 mg (15%) of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate as yellow oil. Compound 34: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate (100 mg, 0.20 mmol, 1.00 equiv) in methanol (5 mL), water (1 mL), sodium hydroxide (30 mg, 0.75 mmol, 3.71 equiv). The resulting solution was stirred for 3 h at room temperature and then concentrated under vacuum. The pH of the solution was adjusted to 3-4 with 1N hydrochloric acid. The solids were collected by filtration and the residue was lyophilized. This resulted in 16 mg (16%) of (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.98 (s, 1H), 7.66 (s, 1H), 7.38-7.44 (d, J=17.1 Hz, 2H), 7.12-7.15 (d, J=8.4 Hz, 2H), 6.78 (s, 1H), 6.60-6.63 (s, 1H), 4.48-4.54 (m, 4H), 3.63-3.66 (s, 2H), 3.01 (s, 1H), 2.51-2.84 (m, 2H). MS (ES, m/z): 466 [M+H]+. Example 35 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Compound 35: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): δ 8.88 (s, 1H), 7.54 (s, 1H), 7.31-7.18 (m, 3H), 6.83-6.78 (m, 2H), 6.53-6.51 (m, 1H), 4.49-4.47 (m, 1H), 4.29 (m, 1H), 3.87 (m, 2H), 3.32 (m, 2H), 2.76-2.59 (m, 2H), 2.50 (s, 3H). MS 466 [M+H]+. Example 36 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Compound 36: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Following the procedures outlined in Example 34, substituting (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave the title compound. 1H-NMR (300 MHz, DMSO, ppm) δ 12.32 (s, 2H), 8.63 (s, 1H), 7.47 (s, 1H), 7.30-7.33 (d, J=8.1 Hz, 2H), 7.06-7.09 (d, J=5.4 Hz, 2H), 6.79 (s, 1H), 6.45-6.48 (d, J=8.1 Hz, 1H), 4.19-4.20 (s, 2H), 3.68 (s, 2H), 2.95 (s, 1H), 2.68 (s, 1H), 2.45 (s, 3H), 2.27-2.30 (s, 2H), 1.99-2.02 (s, 1H), 1.76-7.78 (s, 1H). MS (ES, m/z): 480 [M+H]+. Example 37 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Compound 37: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline and (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 8.74 (s, 1H), 7.67 (s, 1H), 7.42 (m, 1H), 7.27-7.25 (m, 2H), 6.79 (m, 2H), 6.52-6.49 (m, 1H), 4.63-4.58 (m, 1H), 4.44 (m, 2H), 4.20-4.16 (m, 1H), 3.72-3.64 (m, 2H), 2.99 (s, 3H), 2.34-2.27 (m, 2H), 2.01-1.97 (m, 2H), 1.82-1.77 (m, 2H). MS 480 [M+H]+. Example 38 (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Intermediate 38.1: 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (300 mg, 0.98 mmol, 1.00 equiv) in dichloromethane (10 mL). This was followed by the addition of 4-nitrophenyl chloroformate (230 mg, 1.14 mmol, 1.20 equiv) in several batches at room temperature. The resulting solution was stirred for 3 h at room temperature. The solids were collected by filtration. This resulted in 0.3 g (65%) of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate as a yellow solid. Intermediate 38.2: diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (200 mg, 0.42 mmol, 1.00 equiv) in N,N-dimethylformamide (6 mL), a solution of diethyl aminomethylphosphonate (144 mg, 0.63 mmol, 1.50 equiv) in N,N-dimethylformamide (1 mL) and triethylamine (64 mg). The resulting solution was stirred overnight at room temperature. The reaction was then quenched by the addition of 10 mL of water. The resulting solution was extracted with 3×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 40 mg (17%) of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate as a solid. Compound 38: (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate (40 mg, 0.08 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (0.15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. To the above was added methanol (5 mL) and sodium hydroxide (5 mg). The resulting mixture was stirred 0.5 h at room temperature. The solids were collected by filtration and the residue was lyophilized. This resulted in 17.4 mg (42%) a sodium salt of the title compound as a yellow solid. 1H-NMR (300 MHz, CD3OD+DCl, ppm): δ 7.46-7.49 (m, 3H), 7.20-7.23 (d, J=8.7 Hz, 2H), 6.80 (s, 1H), 4.77-4.83 (d, J=15.9 Hz, 1H), 4.65-4.71 (m, 1H), 4.50-4.55 (d, J=16.2 Hz, 1H), 3.79-3.85 (m, 1H), 3.56-3.69 (m, 3H), 3.32 (s, 3H). MS (ES, m/z): 444 [M+H]+. Example 39 (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Compound 39: (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Following the procedures outlined in Example 38, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.37 (m, 3H), 6.96 (m, 1H), 6.82 (s, 1H), 4.81 (m, 1H), 4.70 (m, 1H), 4.54 (m, 1H), 3.83 (m, 1H), 3.65 (m, 3H), 3.19 (s, 3H). Example 40 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic acid Intermediate 40.1: ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate Following the procedures outlined in Example 34, substituting ethyl 3-aminopropanoate for (S)-dimethyl 2-aminosuccinate gave the title compound as a yellow oil. Intermediate 40.2: 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid Into a 50-mL round-bottom flask, was placed a solution of ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate (150 mg, 0.33 mmol, 1.00 equiv) in methanol (10 mL), water (2 mL) and sodium hydroxide (80 mg, 2.00 mmol). The resulting solution was stirred for 2 h at 25° C. and the resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7-8 with hydrogen chloride. The resulting solution was extracted with chloroform (3×10 ml) and the organic layers combined and dried over sodium sulfate. This resulted in 31.5 mg (22%) of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.56 (1H, s), 7.45 (1H, s), 7.29-7.32 (2H, d, J=8.1 Hz), 7.04-7.07 (2H, d, J=8.4 Hz), 6.79 (1H, s), 6.21 (1H, s), 4.16 (1H, m), 3.56-3.58 (2H, d, J=5.4 Hz), 3.27-3.29 (2H, d, J=6 Hz), 2.82-2.87 (1H, m), 2.59 (2H, s), 2.38-2.40 (4H, m). MS (ES, m/z): 422 [M+H]+. Intermediate 40.3: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid (200 mg, 0.47 mmol, 1.00 equiv) in dichloromethane (20 mL), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (136 mg, 0.71 mmol, 1.50 equiv) and 4-dimethylaminopyridine (115 mg, 0.94 mmol, 1.99 equiv). This was followed by the addition of a solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (102 mg, 0.71 mmol, 1.49 equiv) in dichloromethane (2 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was washed with KHSO4 (2×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 240 mg (92%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea as a yellow solid. Intermediate 40.4: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea (150 mg, 0.27 mmol, 1.00 equiv) in dichloromethane (10 mL) and acetic acid (1 mL) Sodium borohydride (42 mg, 1.11 mmol, 4.04 equiv) was added and the resulting solution was stirred overnight at room temperature. The resulting mixture was washed with saturated aqueous sodium chloride (3×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 30 mg (21%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea as a yellow solid. Compound 40: 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic acid Into a 50-mL round-bottom flask, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea (100 mg, 0.19 mmol, 1.00 equiv) in 2,2,2-trifluoroacetic acid (10 mL), and water (2 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with methanol:water (60%). The residue was lyophilized. This resulted in 36.3 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.55 (s, 1H), 7.64 (s, 1H), 7.39-7.42 (d, J=8.7 Hz, 2H), 7.09-7.12 (d, J=8.4 Hz, 2H), 6.79 (s, 1H), 6.23-6.27 (m, 1H), 4.33-4.50 (m, 3H), 3.62 (s, 1H), 3.19 (m, 1H), 3.08-3.10 (d, J=5.7 Hz, 2H), 2.94 (s, 3H), 1.70-1.77 (d, J=23.1 Hz, 2H), 1.41-1.46 (d, J=12 Hz, 2H). MS (ES, m/z): 494 [M+H]+. Example 41 N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 41.1 (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate To a solution of dry DMF (50 mL) under N2 was added 3,4,5-trifluorobenzaldehyde (4.26 g, 26.6 mmol) followed by ethyl 2-(triphenylphosphoranylidene)propionate (10.6 g, 29.3 mmol) in portions, keeping the solution at room temperature. After 1 hour, TLC (10% EtOAC in Hexanes) showed complete conversion, and the solvent was removed by rotary evaporation. The resulting material was brought up in 50 mL methyl t-butyl ether (MBTE) and the precipitate removed by filtration and washed with additional MBTE (3×50 mL). After concentration, the resulting filtrate was applied onto a silica gel column (25% EtOAc in hexanes) resulting in 6.0 g of the title compound (93%) as a white powder. Intermediate 41.2 (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate To a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (Intermediate 41.1, 6.0 g, 24.56 mmol) in dry DMF (25 mL) under N2 was added phenol (2.774 g, 29.5 mmol) and K2CO3 (10.2 g, 73.68 mmol). The resulting solution was brought to 120° C. and stirred for 3 hours at which point TLC indicated complete conversion. The solvent was removed by rotary evaporation and the resulting residue brought up in EtOAc (200 mL) and washed with water (2×200 mL), 1N NaOH (2×200 mL) and brine (200 mL). The organic layer was dried over Na2SO4 and concentrated to yield 6.94 g (89%) of the title compound as tan crystals. Intermediate 41.3 (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (1 g, 3.14 mmol) in DCM (3.14 mL) under N2 was added chlorosulfonic acid (0.419 mL, 6.28 mmol) dropwise. After 1 hour an additional 0.209 mL chlorosulfonic acid was added. After an additional hour the reaction mixture was quenched with ice-water and extracted into EtOAc (2×200 mL). The combined organic layers were dried briefly (<10 min) over Na2SO4 and concentrated to recover 1.283 g of the title compound (98%) as a yellow oil. Intermediate 41.4 N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 41.3) (104.3 mg, 0.25 mmol) in chloroform (0.5 mL) was added DIEA (0.0869 mL, 0.5 mmol) and a solution of butane-1,4-diamine (12.6 uL, 0.125 mmol) and DIEA (0.087 mL, 0.5 mmol) in chloroform (0.125 mL). After one hour the solvent was removed and the resulting residue brought up in EtOAc (40 mL), washed with water (2×40 mL), brine (40 mL) and dried over Na2SO4. Removing the solvent gave 118 mg of the title compound which was used without further purification. Intermediate 41.5: N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide] To a solution of Intermediate 41.4 (118 mg, 0.139 mmol) in MeOH (1.39 mL) was added a NaOH (0.3M in water, 0.278 mL, 0.835 mmol). The reaction was placed under N2 and heated at 60° C. for 30 minutes. After cooling the reaction mixture was diluted with water (20 mL), partitioned with EtOAc (20 mL) and acidified with HCl. After extracting with EtOAc (2×20 mL) the combined organic phases were dried over Na2SO4 and the solvent removed to give 40.7 mg of the title compound. Compound 41: N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (2 mL) was added to intermediate 41.5 (40.7 mg, 0.051 mmol) and was heated at 80c under N2. After 70 minutes, the solvent was removed in vacuo. The residue was brought up in toluene (2 mL) and the toluene was also removed in vacuo. The bis-acid chloride was dissolved in DME (0.5 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (7.8 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.80 (d, 4H), 7.44 (s, 2H), 7.30 (d, 4H), 7.11 (d, 4H), 2.80 (m, 4H), 2.18 (s, 6H), 1.44 (m, 4H). MS (m/z): 875.16 (M+H). Example 42 N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 42: N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide]) Following the procedures outlined in Example 41, compound 42 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.06 (d, 6H), 7.04 (s, 2H), 4.02 (s, 4H), 2.19 (s, 6H). MS (m/z): 924.21 (M+H) Example 43 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 43.1 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide) To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate(intermediate 41.3) (225 mg, 0.54 mmol) in DCM (3 mL) was added a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (38 mg, 0.26 mmol) and triethylamine (101 mg, 1.0 mmol) in DCM (2 mL) dropwise. After 30 minutes, 1N HCl was added (10 mL) and the reaction mixture was extracted with DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (262 mg). Intermediate 43.2 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide) A solution of the intermediate 43.1 (262 mg, 0.29 mmol) and 3N NaOH (0.6 mL, 1.8 mmol) in methanol (3 mL) was heated at 65° C. for 1 hour. The reaction mixture was cooled to RT and the methanol removed at reduced pressure and 1N HCl (3 mL, 3 mmol) was added to the residue. The product was extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (173 mg). Compound 43: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (1 mL) was added to intermediate 43.2 (63 mg, 0.074 mmol) and was heated at 80°. After 2 hours, the solvent was removed in vacuo. The bis-acid chloride was dissolved in DME (1 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (20 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.83 (d, j=8.8 Hz, 4H), 7.43 (s, 2H), 7.30 (d, j=8.9 Hz, 4H), 7.11 (d, j=8.6 Hz, 4H), 3.42 (t, j=5.5 Hz, 8H), 3.03 (t, j=5.4 Hz, 4H), 2.17 (s, 6H). MS (m/z): 935.08 (M+H). Example 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 44.1: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (250 mg, 0.60 mmol) in DCM (3 mL) was added a solution of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (157 mg, 0.72 mmol) and triethylamine (72 mg, 0.72 mmol) in DCM (2 mL). After 15 minutes, water (10 mL) was added and the reaction mixture was extracted with DCM (2×25 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried (Na2SO4) and concentrated. The crude material was purified by flash chromatography on silica gel eluting with 50% EtOAc in DCM to give the title compound (169 mg). Intermediate 44.2: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (169 mg, 0.28 mmol) in THF (6 ml) and water (0.6 mL) under nitrogen was added trimethylphosphine (26 mg, 0.34 mmol). After stirring for 3 hours, the solvents were removed at reduced pressure and. The residue was dissolved in water (5 mL) and extracted with EtOAc (3×25 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (162 mg). Intermediate 44.3: N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] A solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (71 mg, 0.17 mmol) in EtOAc (1 mL) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (84 mg, 0.15 mmol) and triethylamine (22 mg, 0.22 mmol) in DCM (1 mL) with stirring. After 30 minutes, water (10 mL) was added and the product extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (177 mg). Compound 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures outlined in Example 43, intermediate 44.3 was converted to the bis-guanidine and gave, after purification by preparative HPLC, the title compound (21 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.8 Hz, 4H), 7.44 (s, 2H), 7.30 (d, j=8.8 Hz, 4H), 7.10 (d, j=8.8 Hz, 4H), 3.54 (m, 4H), 3.48 (m, 4H), 3.43 (t, j=5.5 Hz, 4H), 3.04 (t, j=5.5 Hz, 4H), 2.17 (d, j=1.2 Hz, 6H). MS (m/z): 979.05 (M+H). Example 45 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 45: (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide A 4.3 M solution of guanidine free base in methanol was prepared. A 25% solution of NaOMe in MeOH (1.03 mL, 4.5 mmol) was added to guanidine hydrochloride (480 mg, 5.0 mmol), and the mixture was stirred for 30 minutes. The mixture was filtered (0.2 PTFE) to give the guanidine free base solution. A portion (0.3 mL, 1.3 mmol) was added to (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (74 mg, 0.13 mmol) with stirring. After 15 minutes, water (10 mL) was added and the product extracted with DCM (4×20 mL). The combined organic layers were dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (34 mg) as a TFA salt. 1H-NMR (400 mHz, d6-DMSO) δ 11.14 (s, 1H), 8.38 (br s, 4H), 7.78 (d, j=9.0 Hz, 2H), 7.5 (m, 3H), 7.45 (d, j=9.1, 2H), 7.42 (s, 1H), 7.19 (d, j=8.8 Hz, 2H), 3.55 (m, 6H), 3.44 (m, 4H), 3.36 (m, 2H), 2.95 (m, 2H), 2.87 (m, 2H), 2.11 (s, 3H). MS (m/z): 586.11 (M+H). Example 46 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 46.1 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] Carbonyldiimidisole (16.2 mg, 0.10 mmol) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 44.2) (125 mg, 0.22 mmol) in DMF (2 mL) and stirred for 23 hours at which time the solvent was removed under vacuum. The residue was dissolved in EtOAc, washed with water (4×10 mL), dried (Na2SO4) and concentrated to give the title compound (132 mg). Compound 46: N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] A solution of 4.4 M guanidine in methanol (Example 45) (0.5 mL, 2.2 mmol) was added to a solution of intermediate 46.1 (65 mg, 0.055 mmol) in DMF, and stirred for 4 hours. The reaction was quenched with 50% aqueous AcOH, and then concentrated to dryness. The residue was purified by preparative HPLC to give the title compound (35 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.2 Hz, 4H), 7.43 (d, j=1.4 Hz, 2H), 7.30 (d, j=9.0 Hz, 4H), 7.11 (d, j=9.0 Hz, 4H), 3.57 (m, 12H), 3.46 (m, 12H), 3.26 (t, J=5.4 Hz, 4H), 3.04 (t, j=5.4 Hz, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1197.07 (M+H). Example 47 N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12,21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 47: N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12,21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in Example 46, substituting subaric acid bis(N-hydroxysuccinimide ester) for carbonyldiimidazole gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (m, 4H), 7.43 (m, 2H), 7.30 (m, 4H), 7.11 (m, 4H), 3.58 (m, 12H), 3.50 (m, 8H), 3.32 (m, 4H), 3.05 (t, j=5.4 Hz, 4H), 2.18 (d, j=1.6 Hz, 6H), 2.15 (m, 4H), 1.56 (m, 4H), 1.29 (m, 4H). MS (m/z): 1309.12 (M+H). Example 48 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 48.1: (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide To (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (250 mg, 0.42 mmol) was added 4.4 M guanidine in methanol (as prepared in example 45) (1.0 mL, 4.4 mmol) and the reaction was stirred at RT. After 30 minutes, water (10 mL) was added, and the mixture was extracted with DCM (4×25 mL). The aqueous phase was adjusted to pH 7, and extracted with DCM (2×25 mL). The combined organic extracts were dried (Na2SO4) and concentrated to give the title compound (245 mg). Compound 48: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide To a mixture of (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide (70 mg, 0.11 mmol) and propargyl alcohol (6.4 mg, 0.11 mmol) in t-butanol (0.22 mL) and water (0.22 mL) was added 1 M sodium ascorbate (11 μL, 0.011 mmol) and 0.3 M copper sulfate (3.6 μL, 0.0011 mmol) and the reaction was stirred at RT. After 14 hours, the product was purified by preparative HPLC to give the title compound (22 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.93 (s, 1H), 7.84 (m, 2H), 7.44 (s, 1H), 7.30 (m, 2H), 7.11 (m, 2H), 4.64 (d, j=0.6 Hz, 2H), 4.55 (t, j=5.0 Hz, 2H), 3.86 (t, j=5.0 Hz, 2H), 3.57 (m, 4H), 3.52-3.42 (m, 6H), 3.03 (t, j=5.4 Hz, 2H), 2.18 (d, j=1.3 Hz, 3H). MS (m/z): 668.14 (M+H). Example 49 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 49: N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in example 48, substituting propargyl ether for propargyl alcohol gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 8.00 (s, 2H), 7.83 (m, 4H), 7.43 (s, 2H), 7.30 (m, 4H), 7.10 (m, 4H), 4.61 (s, 4H), 4.55 (m, 4H), 3.86 (m, 4H), 3.58-3.50 (m, 8H), 3.50-3.40 (m, 12H), 3.01 (m, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1317.09 (M+H). Example 50 N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) Intermediate 50.1: 2,2′-(piperazine-1,4-diyl)diacetonitrile To a solution of piperazine (6 g, 69.77 mmol, 1.00 equiv) in acetonitrile (150 mL) was added potassium carbonate (19.2 g, 139.13 mmol, 2.00 equiv) and the mixture was stirred. To this was added dropwise a solution of 2-bromoacetonitrile (16.7 g, 140.34 mmol, 2.00 equiv) in acetonitrile (100 mL) and the suspension was stirred for 4 h at room temperature. The solids were filtered out and the resulting solution was concentrated under vacuum. The crude product was purified by re-crystallization from methanol resulting in 7.75 g (68%) of Intermediate 50.1 as a white solid. Intermediate 50.2: 2,2′-(piperazine-1,4-diyl)diethanamine To a suspension of lithium aluminum hydride (LiAlH4; 700 mg, 18.42 mmol, 4.30 equiv) in tetrahydrofuran (40 mL) cooled to 0° C. was added dropwise a solution of Intermediate 50.1 (700 mg, 4.27 mmol, 1.00 equiv) in tetrahydrofuran (10 mL). The mixture was stirred for 15 minutes at 0° C. and heated to reflux for 3 h. The reaction was cooled, the pH adjusted to 8-9 with potassium hydroxide (50%), and the solids filtered out. The resulting mixture was concentrated under vacuum and the resulting solids washed with hexane to afford 0.3 g (41%) of Intermediate 50.2 as a yellow solid. Intermediate 50.3: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-(benzyloxy)benzenesulfonamide) To Intermediate 50.2 (500 mg, 2.91 mmol, 1.00 equiv) in dichloromethane (10 mL) was added triethylamine (1.46 g, 0.01 mmol, 2.00 equiv) and 4-(benzyloxy)benzene-1-sulfonyl chloride (2.0 g, 0.01 mmol, 2.40 equiv) and the resulting solution was stirred for 2 h at room temperature. The reaction was diluted with dichloromethane, washed with 3×10 mL of water, dried over sodium sulfate then filtered and concentrated under vacuum to afford 0.9 g (47%) of Intermediate 50.3 as a yellow solid. Intermediate 50.4: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-hydroxybenzenesulfonamide) To intermediate 50.3 (3 g, 4.52 mmol, 1.00 equiv) in N,N-dimethylformamide (500 mL) and methanol (100 mL) was added Palladium on carbon (1 g) and the suspension stirred under hydrogen gas for 4 h at room temperature. The solids were filtered out and the resulting mixture was concentrated under vacuum to afford 1.5 g (69%) of Intermediate 50.4 as a gray solid. Intermediate 50.5: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis((E)-ethyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate) To Intermediate 50.4 (1 g, 2.06 mmol, 1.00 equiv) in N,N-dimethylformamide (30 mL) was added Cs2CO3 (1.45 g, 4.45 mmol, 2.16 equiv) and the resulting suspension stirred for 2 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (1.1 g, 4.51 mmol, 2.19 equiv) in N,N-dimethylformamide (10 mL) dropwise with stirring. The reaction was stirred for 0.5 h at room temperature and then overnight at 90° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and then eluted with dichloromethane:methanol (100:1) to afford 390 mg (20%) of Intermediate 50.5 as a yellow solid. Intermediate 50.6: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic acid) To Intermediate 50.5 (170 mg, 0.16 mmol, 1.00 equiv, 90%) in 1:1 methanol/tetrahydrofuran (20 mL) was added lithium hydroxide (4 equiv, 30 mg) and the reaction was stirred for 2 h at 27° C. The pH value of the solution was adjusted to 1-2 with aqueous hydrochloric acid (6 mol/L) and the solids were collected by filtration. The residue was washed with ethyl acetate (2×5 mL) and then dried under vacuum to afford 150 mg (94%) of Intermediate 50.6 as a white solid. Compound 50: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) To a solution of Intermediate 50.6 (100 mg, 0.09 mmol, 1.00 equiv, 80%) in tetrahydrofuran (30 mL) was added carbonyl diimidazole (CDI; 58 mg, 0.36 mmol, 4.00 equiv) and the resulting solution was stirred for 1 h at 25° C. To this was added guanidine (2M in methanol, 10 ml) and the resulting solution was stirred for an additional 14 h at 30° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and eluted with dichloromethane:methanol (10:1). The crude product (230 mg) was then purified by reverse-phase (C18) preparative-HPLC to afford 16 mg (17%) of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.89-7.92 (4H, d, J=8.7 Hz), 7.50 (2H, s), 7.34-7.36 (4H, d, J=8.7 Hz), 7.16-7.19 (4H, d, J=8.7 Hz), 2.88-3.16 (16H, m), 2.20 (6H, s); MS (ES, m/z): 959 [M+H]+ Example 51 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic acid Intermediate 51.1: (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylic acid To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (900 mg, 2.83 mmol, 1.00 equiv) in methanol (20 mL) was added methanolic 2M LiOH (50 mL) and the resulting solution stirred for 2 h. The resulting mixture was concentrated under vacuum, the pH value of the solution was adjusted to 5-6 with aqueous HCl (6 mol/L) and the mixture was extracted with 3×20 mL of ethyl acetate. The organic layers were combined, washed with 2×10 mL of sodium chloride (sat.) and then dried over anhydrous sodium sulfate. The solids were filtered out and the solution was concentrated to afford 0.7 g (85%) of Intermediate 51.1 as a white solid. Intermediate 51.2: (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To Intermediate 51.1 (1 g, 3.14 mmol, 1.00 equiv) in dichloromethane (15 mL) at 0-5° C. was added dropwise a solution of sulfurochloridic acid (8.5 g, 73.28 mmol, 23.00 equiv) in dichloromethane (5 mL). The reaction was stirred overnight at 25° C. in an oil bath, and then quenched by the addition of 200 mL of water/ice. The mixture was extracted with 4×50 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate to afford 1.1 g (90%) of Intermediate 51.2 as a yellow solid. Intermediate 51.3: (E)-3-(4-(4-(N-(4-(diethoxyphosphoryl)phenyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To diethyl 4-aminophenylphosphonate (intermediate 2.2) (150 mg, 0.66 mmol, 1.00 equiv) in pyridine (3 mL) was added Intermediate 51.2 (300 mg, 0.77 mmol, 1.22 equiv) in several portions. The mixture was stirred for 3 h at 30° C. and then concentrated, the pH value of the solution adjusted to 3 with aqueous HCl (1 mol/L) and the resulting mixture extracted with 3×30 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and eluted with dichloromethane:methanol (50:1) to afford 100 mg (26%) of Intermediate 51.3 as a yellowish solid. Intermediate 51.4: (E)-diethyl 4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonate To Intermediate 51.3 (150 mg, 0.26 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added CDI (120 mg, 0.74 mmol, 1.40 equiv) and the reaction stirred for 2 h at RT. To this was added guanidine (1M in DMF; 0.8 ml) and the reaction was stirred overnight at 30° C. The resulting mixture was concentrated under vacuum and the crude product was purified by reverse phase (C18) Prep-HPLC to afford 40 mg (25%) of Intermediate 51.4 as a White solid. Compound 51: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic acid To Intermediate 51.4 (40 mg, 0.06 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added bromotrimethylsilane (15 mg, 0.09 mmol, 1.37 equiv) dropwise with stirring and the resulting solution was stirred at 40° C. overnight. The resulting mixture was concentrated, diluted with methanol (2 mL) and then concentrated under vacuum. This operation was repeated four times. The crude product (75 mg) was purified by reverse phase (C18) Prep-HPLC to afford 12.5 mg of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): 10.54 (s, 1H), 7.82-7.79 (d, J=8.4 Hz, 2H), 7.52-7.40 (m, 5H), 7.18-7.10 (m, 4H), 2.08 (s, 3H); 31P-NMR (400 MHz, DMSO, ppm):11.29; MS (ES, m/z): 567 [M+H]+ Example 52 (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic acid Intermediate 52.1: diethyl 4-((4-(benzyloxy)phenylsulfonamido)methyl)benzylphosphonate To 4-diethyl 4-(aminomethyl)benzylphosphonate (intermediate 6.1) (60 mg, 0.23 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (47 mg, 0.47 mmol, 2.00 equiv) was added dropwise a solution of 4-(benzyloxy)benzene-1-sulfonyl chloride (72 mg, 0.26 mmol, 1.10 equiv) in dichloromethane (5 mL) and the resulting solution was stirred for 1 h at 25° C. The reaction mixture was concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1). The isolated product was washed with 2×50 mL of n-hexane resulting in 50 mg (43%) of Intermediate 52.1 as a white solid. Intermediate 52.2: diethyl 4-((4-hydroxyphenylsulfonamido)methyl)benzylphosphonate To Intermediate 52.1 (1.2 g, 2.39 mmol, 1.00 equiv) in methanol (20 mL) in N,N-dimethylformamide (5 mL) was added Palladium on carbon (0.9 g) and the suspension stirred overnight at 30° C. under a hydrogen atmosphere. The reaction was filtered and concentrated under vacuum to afford 1 g (91%) of Intermediate 52.2 as brown oil. Intermediate 52.3: (E)-ethyl 3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)-sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To Intermediate 52.2 (100 mg, 0.24 mmol, 1.00 equiv) in N,N-dimethylformamide (10 mL) was added Cs2CO3 (160 mg, 0.49 mmol, 2.10 equiv) and the mixture was stirred for 1.5 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (60 mg, 0.25 mmol, 1.10 equiv) in N,N-dimethylformamide (5 mL) and the reaction was stirred overnight at 90° C. The solids were filtered out and the filtrate was concentrated under vacuum, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (200:1) to afford 50 mg (23%) of Intermediate 52.3 as yellow oil. Intermediate 52.4: (E)-3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)sulfamoyl)-phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To Intermediate 52.3 (700 mg, 1.10 mmol, 1.00 equiv) in tetrahydrofuran (20 mL) and water (20 mL) was added LiOH (700 mg, 29.17 mmol, 30.00 equiv) and the resulting solution was stirred for 1 h at 25° C. The reaction was concentrated, the pH value of the solution was adjusted to 4-5 with aqueous HCl (2 mol/L) and the mixture was extracted with 2×150 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1-2:1) to afford 250 mg (35%) of Intermediate 52.4 as a white solid. Compound 52: (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic acid Compound 52 was prepared from Intermediate 52.4 using the procedures described under Example 51, except preparative HPLC was not required, affording 84 mg (89%) of a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.83-7.80 (d, J=8.7 Hz, 2H), 7.52 (s, 1H), 7.38-7.36 (d, J=8.7 Hz, 2H), 7.23-7.20 (m, 2H), 7.17-7.09 (m, 4H), 4.06 (s, 2H), 3.11 (s, 1H), 3.04 (s, 1H), 2.23-2.23 (s, 3H). MS (ES, m/z): 595 [M+H]+ Example 53 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic acid Compound 53: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic acid Compound 53 was prepared from diethyl 4-aminobenzylphosphonate (intermediate 3.2) using the procedures described in Example 52 except the final product was purified by preparative HPLC. 1H-NMR (300 MHz, CD3OD, ppm): 7.77-7.74 (d, J=8.7 Hz, 2H), 7.46 (s, 1H), 7.33-7.31 (d, J=8.7 Hz, 2H), 7.21-7.19 (m, 2H), 7.06-7.11 (m, 4H), 3.04-2.97 (d, J=21.6 Hz, 2H), 2.19 (s, 3H); 31P-NMR (400 MHz, CD3OD, ppm): 22.49. MS (ES, m/z):581 [M+H]+. Example 54 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic acid Compound 54: (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic acid Compound 54 was prepared from diethyl 3-aminopropylphosphonate (intermediate 4.1) using the procedures described under Example 51. 1H-NMR (400 MHz, DMSO, ppm): 7.81-7.78 (d, J=8.4 Hz, 2H), 7.57 (s, 1H), 7.42-7.39 (d, J=9.3 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 2.75-2.77 (q, 2H), 2.10 (s, 3H), 1.59-1.42 (m, 4H). MS (ES, m/z): 533 [M+H]+ Example 55 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic acid Compound 55: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic acid Compound 55 was prepared from diethyl 2-aminoethylphosphonate (intermediate 1.9) using the procedures described under Example 51, except purification of the final product by preparative HPLC was not required. 1H-NMR (400 MHz, DMSO, ppm): 11.02 (s, 1H), 8.28 (s, 4H), 7.79-7.82 (d, J=9.2 Hz, 2H), 7.62-7.65 (t, 1H), 7.54-7.49 (m, 3H), 7.26-7.24 (d, J=8.8 Hz, 2H), 3.42-3.58 (m, 2H), 2.15 (s, 3H), 1.73-1.65 (m, 2H); 31P-NMR (400 MHz, DMSO, ppm): 21.36. MS (ES, m/z): 519 [M+H]+ Example 56 (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic acid Compound 56: (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic acid Compound 56 was prepared from diethyl aminomethylphosphonate (intermediate 5.3) using the procedures described under Example 51, except purification of the final product by Flash-Prep-HPLC with CH3CN:water (10:100). 1H-NMR (300 MHz, DMSO, ppm): δ 7.84-7.81 (d, J=8.1 Hz, 2H), 7.57 (s, 1H), 7.45-7.42 (d, J=9.3 Hz, 3H), 7.18-7.15 (d, J=8.4 Hz, 2H), 3.04-3.01 (m, 2H), 2.08 (s, 3H). MS (ES, m/z): 505 [M+H]+. Example 57 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Compound 57: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenyl-sulfonamido)acetic acid Compound 57 was prepared from ethyl 2-((diethoxyphosphoryl)methylamino)acetate (intermediate 8.2) using the procedures described under Example 51. 1H-NMR (300 MHz, DMSO, ppm): δ 8.33 (s, 4H), 7.84-7.81 (d, J=8.1 Hz, 2H), 7.52-7.50 (d, J=7.8 Hz, 2H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.11 (s, 2H), 2.14 (s, 3H); MS (ES, m/z): 563 [M+H]+. Example 58 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.1: (E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic acid (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid (Intermediate 51.2) was converted to intermediate 58.1 using procedures outlined in Example 58, with aqueous ammonia as the amine. The title compound was obtained as a yellow solid. Intermediate 58.2: (E)-methyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.1 (2 g, 5.42 mmol, 1.00 equiv) in methanol (60 mL). This was followed by the addition of thionyl chloride (2.5 g, 21.19 mmol, 4.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at 50° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7 with ammonia (2 mol/L). The resulting solution was extracted with 10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (30:1-1:1). This resulted in 2.1 g (97%) of the title compound as a white solid. Intermediate 58.3: (E)-methyl 3-(4-(4-(N-(ethoxycarbonyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.2 (280 mg, 0.73 mmol, 1.00 equiv) in acetone (20 mL). This was followed by the addition of potassium carbonate (200 mg, 1.45 mmol, 2.00 equiv). The mixture was stirred for 3 h at room temperature. To this was added ethyl chloroformate (90 mg, 0.83 mmol, 1.20 equiv). The resulting solution was stirred for 6 h at 65° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 2-3 with hydrogen chloride (1 mol/L). The resulting solution was extracted with 2×50 ml of ethyl acetate and the organic layers combined. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (72%) of the title compound as yellow oil. Intermediate 58.4: (E)-methyl 3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)-sulfamoyl)phenoxy)phenyl)-2-methylacrylate Into a 100-mL round-bottom flask, was placed a solution of intermediate 58.3 (300 mg, 0.66 mmol, 1.00 equiv) in toluene (20 mL), 2-methoxyethanamine (100 mg, 1.33 mmol, 1.10 equiv). The resulting solution was stirred for 1 h at 110° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (1:1). This resulted in 0.3 g (92%) of the title compound as a yellow solid. Compound 58: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.4 was converted to compound 58 using the procedures described under Example 52. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO, ppm): δ10.62 (s, 1H), 8.33 (s, 3H), 7.94-7.91 (d, J=8.7 Hz, 2H), 7.55-7.52 (d, J=9 Hz, 2H), 7.45 (s, 1H), 7.26-7.22 (d, J=9 Hz, 2H), 6.55 (s, 1H), 3.37-3.27 (m, 2H), 3.21 (s, 3H), 3.15-3.12 (m, 2H), 2.16 (s, 3H). MS (ES, m/z): 512 [M+H]+. Example 59 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic acid Intermediate 59.1: (E)-di-tert-butyl 2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinate Intermediate 59.1 was prepared from di-tert-butyl 2-aminosuccinate using the procedures described under Example 51. Compound 59: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of intermediate 59.1 (100 mg, 0.16 mmol, 1.00 equiv) in tetrahydrofuran (5 mL). This was followed by the addition of 2,2,2-trifluoroacetic acid (10 mL) dropwise with stirring. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 63.6 mg (64%) of a TFA salt of the title compound as a light yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.26 (s, 4H), 7.82-7.79 (d, J=8.7 Hz, 2H), 7.49-7.45 (m, 3H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.00-3.96 (m, 1H), 2.65-2.60 (m, 1H), 2.48-2.41 (m, 1H), 2.13 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 60 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Intermediate 60.1: tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed copper(I) iodide (1.0 g, 5.26 mmol, 0.20 equiv), L-proline (930 mg, 8.09 mmol, 0.30 equiv) in DMSO (50 mL). The resulting solution was stirred for 15 min at room temperature. Then, tert-butyl piperazine-1-carboxylate (5 g, 26.88 mmol, 1.00 equiv), 1,3-dibromobenzene (9.5 g, 40.25 mmol, 1.50 equiv), potassium carbonate (7.4 g, 53.62 mmol, 1.99 equiv) was added. The resulting solution was stirred overnight at 90° C. The reaction was then quenched by the addition of 100 mL of water. The resulting solution was extracted with 2×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 2.9 g of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate as a white solid. Intermediate 60.2: 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate (3.8 g, 11.14 mmol, 1.00 equiv) in toluene/tetrahydrofuran=1:1 (40 mL). This was followed by the addition of n-BuLi (4.9 mL, 2.5M/L) dropwise with stirring at −70° C. The resulting solution was stirred for 30 min at −70° C. To this was added triisopropyl borate (2.5 g, 13.30 mmol, 1.19 equiv) dropwise with stirring at −70° C. The mixture was warmed to 0° C., the reaction was then quenched by the addition of 13 mL of saturated ammonium chloride and 3.4 mL of water. Phosphoric acid (85 wt %, 1.5 g, 1.2 equiv) was added and the mixture was stirred for 30 min. The organic layer was separated and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was dissolved in 20 mL of toluene. The product was precipitated by the addition of 80 mL of heptane. The solids were washed with 20 mL of heptane and collected by filtration. This resulted in 2.9 g (85%) of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid as a white solid. Intermediate 60.3: 6-chloroquinazoline-2,4(1H,3H)-dione Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-amino-5-chlorobenzoic acid (10 g, 58.48 mmol, 1.00 equiv) in water (100 mL), acetic acid (8 g, 133.33 mmol, 2.24 equiv). This was followed by the addition of NaOCN (8.2 g, 126.15 mmol, 2.13 equiv). The mixture was stirred for 30 mins at 30° C. To this was added sodium hydroxide (86 g, 2.15 mol, 37.00 equiv). The resulting solution was stirred overnight at 30° C. The solids were collected by filtration. The residue was dissolved in water. The pH value of the solution was adjusted to 7 with hydrogen chloride (12 mol/L). The solids were collected by filtration. This resulted in 5 g (44%) of 6-chloroquinazoline-2,4(1H,3H)-dione as a white solid. Intermediate 60.4: 2,4,6-trichloroquinazoline Into a 50-mL round-bottom flask, was placed a solution of 6-chloroquinazoline-2,4(1H,3H)-dione (2.2 g, 11.22 mmol, 1.00 equiv) in 1,4-dioxane (20 mL), phosphoryl trichloride (17 g, 111.84 mmol, 10.00 equiv). The resulting solution was stirred overnight at 120° C. in an oil bath. The resulting mixture was concentrated under vacuum. The reaction was then quenched by the addition of 200 mL of water. The resulting solution was extracted with 3×200 mL of ethyl acetate and the organic layers combined. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.8 g (69%) of 2,4,6-trichloroquinazoline as a white solid. Intermediate 60.5: tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid (intermediate 60.2) (960 mg, 3.14 mmol, 1.00 equiv), 2,4,6-trichloroquinazoline (800 mg, 3.43 mmol, 1.09 equiv), PdCl2(dppf).CH2Cl2 (130 mg, 0.16 mmol, 0.05 equiv), Potassium Carbonate (860 mg, 6.23 mmol, 1.99 equiv) in N,N-dimethylformamide (30 mL). The resulting solution was stirred for 3 h at 85° C. The reaction was then quenched by the addition of 50 mL of saturated brine. The resulting solution was extracted with 2×30 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 0.45 g (31%) of tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate as a yellow solid. Intermediate 60.6: 2,6-dichloro-4-(3-(piperazin-1-yl)phenyl)quinazoline 2,2,2-trifluoroacetate To intermediate 60.5 (100 mg, 0.22 mmol, 1.00 equiv) was added dichloromethane (10 mL) and 2,2,2-trifluoroacetic acid (124 mg, 1.09 mmol, 5.00 equiv) and the resulting solution was stirred for 3 h at 40° C. The reaction was then concentrated under vacuum to afford 70 mg of Intermediate 60.6 as yellow solid. Intermediate 60.7: tert-butyl (4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.6 (70 mg, 0.15 mmol, 1.00 equiv) in dichloromethane (10 mL) was added N-tert-butoxycarbonyl-N′-tert-butoxycarbonyl-N″-trifluoromethanesulfonylguanidine (91 mg, 0.23 mmol, 1.57 equiv) and triethylamine (38 mg, 0.38 mmol, 2.54 equiv) and the resulting solution was stirred for 3 h at 40° C. The mixture was then concentrated under vacuum, the residue applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:8) to afford 70 mg (77%) of Intermediate 60.7 as a yellow solid. Intermediate 60.8: tert-butyl (4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.7 (70 mg, 0.12 mmol, 1.00 equiv) in NMP (1.5 mL) was added guanidine (0.24 mL, 2.00 equiv, 1 mol/L) and 1,4-diaza-bicyclo[2.2.2]octane (26 mg, 0.23 mmol, 1.99 equiv) and the resulting solution stirred for 1.5 h at 25° C. The reaction was quenched by the addition of 20 mL of water and the resulting solution was extracted with 2×20 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (5:1) to afford 30 mg (41%) of Intermediate 60.8 as a yellow solid. Compound 60: 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide To Intermediate 60.8 (30 mg, 0.05 mmol, 1.00 equiv) in dichloromethane (5 mL) was added 2,2,2-trifluoroacetic acid (0.2 mL) and the resulting solution stirred for 6 h at 30° C. The mixture was then concentrated under vacuum and the residue lyophilized to afford 20 mg (75%) of a TFA salt of the title compound as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.97-8.08 (m, 3H), 7.54-7.59 (m, 1H), 7.28-7.39 (m, 3H), 3.71 (d, J=4.8 Hz, 4H), 3.44 (d, J=4.8 Hz, 4H). MS (ES, m/z): 424.0 [M+H]+. Example 61 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Intermediate 61.1: 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride Following the procedures outlined in example 60, substituting 1,4-dibromobenzene for 1,3-dibromobenzene, 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride was obtained as a red solid. Intermediate 61.2: methyl 2-(4-(4-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)acetate To methyl 2-bromoacetate (116 mg, 0.76 mmol, 3.00 equiv) in N,N-dimethylformamide (10 mL) was added potassium carbonate (140 mg, 1.01 mmol, 4.00 equiv) followed by the portion-wise addition of Intermediate 61.1 (100 mg, 0.25 mmol, 1.00 equiv) and the reaction was stirred for 4 h at 30° C. The mixture was concentrated under vacuum and the residue applied onto a silica gel column, eluting with ethyl acetate/petroleum ether (1:5) to afford 60 mg (55%) of Intermediate 61.2 as a yellow solid. Intermediate 61.3: methyl 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetate To Intermediate 61.2 (60 mg, 0.14 mmol, 1.00 equiv) in NMP (5 mL) was added 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 15 mg, 0.13 mmol, 1.00 equiv), guanidine (0.3 mL of a 1M solution in NMP, 2.00 equiv) and the resulting solution was stirred for 2 h at 30° C. The reaction was diluted with 10 mL of water, extracted with 4×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (50:1-20:1) to afford 30 mg (47%) of Intermediate 61.3 as a yellow solid. Compound 61: 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid To Intermediate 61.3 (20 mg, 0.04 mmol, 1.00 equiv) in methanol (5 mL) was added a solution of LiOH (32 mg, 1.33 mmol, 30.00 equiv) in water (1 mL) and the reaction was stirred for 3 h at 25° C. The solution was concentrated under vacuum, the pH value adjusted to 6 with aqueous HCl (1 mol/L) and the resulting solids were collected by filtration to afford 15.6 mg (80%) of compound 61 as a yellow solid. 1H-NMR (300 MHz, DMSO ppm): 8.07-8.06 (t, 1H), 7.96-7.93 (t, 2H), 7.72-7.69 (d, J=8.7 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 3.58-3.54 (m, 4H), 3.43-3.36 (m, 6H). MS (ES, m/z): 440 [M+H]+. Example 62 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Compound 62: 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Compound 62 was prepared from intermediate 60.6, using the procedures described for Example 61. 1H-NMR (300 HHz, DMSO-d6, ppm): 7.80-7.86 (m, 3H), 7.41-7.46 (m, 1H), 7.16-7.22 (m, 2H), 7.08-7.10 (m, 1H), 3.13 (brs, 4H), 2.71 (brs, 4H). MS (ES, m/z): 440 [M+H]+; Example 63 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Intermediate 63.1: (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid Into a 50-mL 3-necked round-bottom flask, was placed ZnCl2 (0.5 g, 0.50 equiv), acetic anhydride (5 mL). To the above was added sodium (2S,3R,4S,5R)-2,3,4,5,6-pentahydroxyhexanoate (1.6 g, 6.97 mmol, 1.00 equiv, 95%) at −5° C. Anhydrous HCl was introduced in for 0.5 h at 0° C. The resulting solution was stirred overnight at room temperature. The reaction mixture was cooled to 0° C. The reaction was then quenched by the addition of 8 g of ice. The mixture was stirred for 1 h at room temperature. The resulting solution was diluted with 20 mL of water. The resulting solution was extracted with 3×20 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.0 g (35%) of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid as a yellow liquid. Intermediate 63.2: (2R,3R,4S,5R)-6-chloro-6-oxohexane-1,2,3,4,5-pentayl pentaacetate Into a 50-mL 3-necked round-bottom flask, was placed a solution of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid (intermediate 63.1) (610 mg, 1.35 mmol, 1.00 equiv, 90%) in CCl4 (30 mL). This was followed by the addition of oxalyl dichloride (3 mL) dropwise with stirring. The resulting solution was heated to reflux for 3 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 0.62 g (crude) of intermediate 63.2 as yellow oil. Intermediate 63.3: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine 2,2,2-trifluoroacetate To Intermediate 60.6 (150 mg, 0.32 mmol, 1.00 equiv) in dichloromethane (5 mL) was added triethylamine (96 mg, 0.95 mmol, 2.99 equiv) and the solution cooled to 0° C. Intermediate 63.2 (407 mg, 0.96 mmol, 3.02 equiv) in dichloromethane (5 mL) was then added dropwise and the reaction was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:2) to afford 150 mg (62%) of Intermediate 63.3 as a yellow solid. Intermediate 63.4: (2R,3R,4S,5R)-6-(4-(3-(6-chloro-2-(diaminomethyleneamino)-quinazolin-4-yl)phenyl)piperazin-1-yl)-6-oxohexane-1,2,3,4,5-pentayl pentaacetate To Intermediate 63.3 (150 mg, 0.20 mmol, 1.00 equiv) in NMP (5 mL) was added guanidine (0.8 mL of a 1 mol/L solution in NMP; 4.0 equiv) and 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 44.8 mg, 0.40 mmol, 2.00 equiv) and the resulting solution was stirred for 1.5 h at 30° C. The reaction was quenched by the addition of 10 mL of water and then extracted with 2×10 mL of ethyl acetate. The organic layers combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and then eluted with dichloromethane/methanol (10:1) to afford 30 mg (19%) of Intermediate 63.4 as a yellow solid. Compound 63: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine To Intermediate 63.4 (25 mg, 0.03 mmol, 1.00 equiv) in methanol (5 mL), was added a solution of LiOH (3.9 mg, 0.16 mmol, 5.03 equiv) in water (0.2 mL) and the resulting solution was stirred for 0.5 h at 0° C. The pH value of the solution was adjusted to 7 with aqueous HCl (5%), the resulting mixture was concentrated under vacuum and then purified by Prep-HPLC to afford 10 mg (45%) a TFA salt of compound 63 as a yellow solid. LCMS (ES, m/z): 560.0 [M+H]+; 1H-NMR (300 MHz, CD3OD, ppm): 7.96-8.09 (m, 3H), 7.52-7.57 (m, 1H), 7.25-7.39 (m, 3H), 4.73 (d, J=5.1 Hz, 1H), 4.07-4.09 (m, 1H), 3.62-3.89 (m, 8H). MS (ES, m/z): 560.0 [M+H]+ Example 64 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic acid Intermediate 64.1: methyl 3-(4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)propanoate To Intermediate 60.6 (200 mg, 0.51 mmol, 1.00 equiv) in tetrahydrofuran (10 mL) was added methyl acrylate (253 mg, 2.94 mmol, 5.81 equiv) and triethylamine (253 mg, 2.50 mmol, 4.95 equiv) and the resulting mixture was stirred for 3 h at room temperature. The reaction was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:3) to afford 100 mg (44%) of Intermediate 64.1 as a yellow solid. Compound 64: 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic acid Compound 64 was prepared from Intermediate 64.1 using the procedures described in Example 61, affording 25 mg of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 7.89-7.92 (m, 3H), 7.42-7.47 (m, 1H), 7.35 (brs, 1H), 7.15-7.24 (m, 2H), 3.25 (brs, 4H), 2.63-2.74 (m, 6H), 2.31-2.35 (m, 2H). LCMS (ES, m/z): 454.0 [M+H]+ Example 65 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 65: 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of the title compound was prepared using procedures similar to those outlined in Example 61, starting with intermediate 60.6 and tert-butyl 3-bromopropylcarbamate. MS (ES, m/z): 439 [M+H]+ Example 66 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Compound 66: 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide A TFA salt of Compound 66 was prepared from Intermediate 61.1, using the procedures described in Example 60. MS (ES, m/z): 424 [M+H]+ Example 67 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 67: 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of Compound 67 was prepared from Compound 65 using the procedures outlined in Example 60. MS (ES, m/z): 481 [M+H]+ Example 68 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 68: 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine A TFA salt of Compound 68 was prepared from Compound 60.6 and ethylene oxide using the procedures outlined in Example 61. MS (ES, m/z): 426 [M+H]+ Example 69 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 69: 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine A TFA salt of Compound 69 was prepared from Intermediate 61.1 using the procedures described in Example 68. MS (ES, m/z): 426 [M+H]+ Example 70 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid 2,2,2-trifluoroacetic acid salt Compound 70: 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid Compound 70 was prepared from Intermediate 60.6 and methyl 4-bromobutanoate using the procedures described in Example 61. Purification by silica gel column with methanol:water (0˜0.04) gave a TFA salt of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 11.33 (s, 1H), 8.09-8.19 (m, 2H), 7.96-7.96 (s, 1H), 7.53-7.58 (m, 1H), 7.25-7.37 (m, 3H), 4.0 (s, 4H), 3.16 (s, 6H), 2.34-2.39 (m, 2H), 1.92 (s, 2H); MS (ES, m/z): 468 [M+H] Examples 71-104 Examples 71-104 were prepared using methods described in Examples 1-70. Characterization data (mass spectra) for compounds 71-104 are provided in Table 3. Example 71 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propane-1-sulfonic acid Example 72 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Example 73 4-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid Example 74 (E)-N-(diaminomethylene)-3-(4-(4-(N-(ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 75 (E)-N-(diaminomethylene)-3-(4-(4-(N-(2-(dimethylamino)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 76 4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic acid Example 77 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-methyl-N-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)sulfamoyl)phenoxyl)phenyl)-2-methylacrylamide Example 78 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Example 79 2-(4-(4-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 80 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)benzenesulfonamide Example 81 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 82 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 83 1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazole-4,5-dicarboxylic acid Example 84 (E)-3-(4-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 85 2-(4-(4-(4-(2-aminoethyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 86 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 87 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 88 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 89 1-(4-(4-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 90 (E)-2-(4-(2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethyl)piperazin-1-yl)acetic acid Example 91 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 92 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 93 (E)-1-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)guanidine Intermediate 93.1 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (Intermediate 41.2) (800 mg, 2.51 mmol) in dry DCM (25 mL) under N2 at −78° C. was added a solution of DIBAL-H (8.79 mL, 1M in DCM) dropwise over several minutes. The reaction was allowed to warm to room temperature over 2 hours. The reaction mixture was cooled to 0° C., quenched with 25 mL of Rochelle's Salt solution (10% w/v in water), and stirred vigorously for 1 hour. The resulting suspension was diluted with water (20 mL) and extracted with DCM (3×30 mL). The combined organic layers were dried over Na2SO4 and concentrated. The resulting oil was applied onto a silica gel column (50% EtOAc in hexanes) to yield 566 mg of the title compound (82%) as a yellow oil. Intermediate 93.2 (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol (Intermediate 93.1) (410 mg, 1.49 mmol) in dry toluene (7.45 mL) under N2 was added PPh3 and phthalimide. The resulting solution was cooled to 0° C. and diethyl azodicarboxylate (DEAD, 0.748 mL) was added dropwise over several minutes. The reaction was allowed to warm to room temperature and stirred overnight. After diluting with EtOAc (20 mL), the organic layer was washed with water (2×30 mL), brine (30 mL) and dried over Na2SO4. After removal of solvent, the resulting residue was applied to a silica gel column (15% EtOAc in hexanes) to yield 385 mg of the title compound (63%) as an oil. Intermediate 93.3 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine To a solution of (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione (Intermediate 93.2, 100 mg, 0.25 mmol) in methanol (1 mL) was added hydrazine hydrate (25 mg, 0.5 mmol) and the reaction stirred at 50° C. overnight. The white solid was filtered with DCM, and the solvent removed from the filtrate. The residue was brought up in DCM and filtered. This was repeated until no further precipitate formed to give 49.5 mg of the title compound (71%) as a yellow oil, a 10 mg portion of which was diluted with 1N HCl and freeze dried to give 7.8 mg of the title compound as an HCl salt. 1H-NMR (400 MHz, d6-DMSO): δ 8.25 (s, 2H), 7.37 (t, 2H), 7.20 (d, 2H), 7.12 (t, 1H), 6.97 (s, 1H), 3.57 (s, 2H), 1.96 (s, 3H). MS (m/z): 258.96 (M-NH2). Intermediate 93.4: (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine (intermediate 93.3, 100 mg, 0.364 mmol) in DCM (0.364 mL, 1M) was added chlorosulfonic acid (2.91 mmol, 194.3 uL) in 4 portions dropwise every 20 minutes. The reaction was stirred an additional 20 minutes and then quenched into a solution of N1,N1-dimethylethane-1,2-diamine (3.78 mL) in DCM (12 mL) at 0° C. The resulting solution was warmed to room temperature and stirred for 30 minutes. Upon completion the solvent was removed and the residue brought up in 1:1 Acetonitrile:water solution and purified by preparative HPLC to give 74.5 mg of the title compound (31%) as a TFA salt. Compound 93: (E)-4-(2,6-difluoro-4-(3-guanidino-2-methylprop-1-enyl)phenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide (Intermediate 93.4, 39.3 mg, 0.092 mmol) in dry THF (460 uL, 0.2M) under N2 was added TEA (0.276 mmol, 27.9 mg) and (1H-pyrazol-1-yl)methanediamine hydrochloride (0.102 mmol, 14.9 mg). The resulting solution was stirred for 1 hour, at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 1:1 ACN:water and purified by preparative HPLC to give 16.9 mg of the title compound (26%) as a TFA salt. 1H-NMR (400 MHz, CD4OD): δ 7.87 (d, 2H), 7.12 (d, 2H), 7.08 (d, 2H), 3.92 (s, 2H), 3.62 (m, 2H), 3.29 (m, 2H), 3.17 (t, 2H), 2.01 (s, 6H), 1.91 (s, 3H). MS (m/z): 468.12 (M+H)+. Example 94 N-(2-(2-(2-(2-(4,5-bis(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 95 N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 96 N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 97 N1,N31-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 98 N1,N31-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 99 (E)-3-(4-(4-(N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 100 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 101 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 102 N1,N31-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 103 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 104 N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide TABLE 3 Analytical Data for Example Compounds 71-104 Example [M + H]+ 71 533 72 523 73 468 74 482 75 525 76 527 77 589 78 493 79 439 80 628 81 1239.1 82 546.3 83 686 84 542 85 425 86 629 87 604 [M + 2]/2 88 604 [M + 2]/2 89 481 90 581 91 588 92 588 94 658 95 588 96 588 97 1571 98 1571 99 628 100 1117 101 628 102 1649 103 1117 104 1549 Example 105 4-/3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-polyethylimino-sulfonamide Example 105 is prepared from polyethylamine according to the procedures in described in Examples 1-70, where “x,” “y,” “n” and “m” are determined by the stoichiometry of the sulfonylchloride and polyethylamine. Example 106 As illustrated below, other polymeric nucleophiles are employed using the procedures described in Examples 1-70 to prepare polyvalent compounds: Example 107 As illustrated below, polymeric electrophiles are used with nucleophilic Intermediates to prepare polyvalent compounds using, for example, the procedures outlined in Example 68. Example 108-147 General Procedure for Copolymerization of Intermediate 108.1 and Intermediate 108.2 With Other Monomers Intermediate 108.1: N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acrylamide Intermediate 108.1 (Int 108.1) was prepared from intermediate 30.7 and acrylic acid using procedures described in Examples 1-70. MS (m/z): 361.1 (M+H) Intermediate 108.2: N-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethyl)acrylamide Intermediate 108.2 (Int 108.2) was prepared from intermediate 30.7 using procedures described in Examples 1-70. MS (m/z): 404.1 (M+H) A 20-mL vial is charged with a total of 1 g of Intermediate 108.1 or Intermediate 108.2 and other monomers, a total of 9 g of isopropanol/dimethylformamide solvent mixture, and 20 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and is sealed under a nitrogen atmosphere. The stoichiometry for each example is shown in Table 1. The reaction mixture is heated in an oil bath to 70° C. under stirring. After 8 h at 70° C. the reaction mixture is cooled down to ambient temperature and then 10 mL of water is added. The solution is then transferred to a dialysis bag (MWCO 1000) for dialysis against DI water for 2 days. The resulting solution is freeze-dried to afford copolymers. TABLE 4 Examples of conditions that can be used to create copolymers from acrylamide-functionalized NHE inhibitors and substituted acrylamides and methacrylates Monomer (mg) Poly(ethylene Int 108.1 glycol) methyl butyl acryl- Solvent Exam- Or acryl- ether acry- ic (g) ple Int 108.2 amide methacrylate late acid IPA/DMF 108 10 990 0 0 0 0/9 109 50 950 0 0 0 0/9 110 100 900 0 0 0 0/9 111 250 750 0 0 0 0/9 112 500 500 0 0 0 0/9 113 10 990 0 0 0 2.25/6.75 114 50 950 0 0 0 2.25/6.75 115 100 900 0 0 0 2.25/6.75 116 250 750 0 0 0 2.25/6.75 117 500 500 0 0 0 2.25/6.75 118 10 990 0 0 0 4.5/4.5 119 50 950 0 0 0 4.5/4.5 120 100 900 0 0 0 4.5/4.5 121 250 750 0 0 0 4.5/4.5 122 500 500 0 0 0 4.5/4.5 123 10 990 0 0 0 6.75/2.25 124 50 950 0 0 0 6.75/2.25 125 100 900 0 0 0 6.75/2.25 126 250 750 0 0 0 6.75/2.25 127 500 500 0 0 0 6.75/2.25 128 10 990 0 0 0 9/0 129 50 950 0 0 0 9/0 130 100 900 0 0 0 9/0 131 250 750 0 0 0 9/0 132 500 500 0 0 0 9/0 133 10 0 990 0 0 6.75/2.25 134 50 0 950 0 0 6.75/2.25 135 100 0 900 0 0 6.75/2.25 136 250 0 750 0 0 6.75/2.25 137 500 0 500 0 0 6.75/2.25 138 100 775 0 25 0 6.75/2.25 139 100 750 0 50 0 6.75/2.25 140 100 700 0 100 0 6.75/2.25 141 100 650 0 150 0 6.75/2.25 142 100 600 0 200 0 6.75/2.25 143 100 800 0 0 10 6.75/2.25 144 100 800 0 0 25 6.75/2.25 145 100 800 0 0 50 6.75/2.25 146 100 800 0 0 100 6.75/2.25 147 100 800 0 0 150 6.75/2.25 Example 148 Synthesis of 2-Methyl-acrylic acid 3-trimethylsilanyl-prop-2-ynyl ester A solution of trimethylsilyl propyn-1-ol (1 g, 7.8 mmol) and Et3N (1.4 mL, 10 mmol) in Et2O (10 mL) is cooled to −20° C. and a solution of methacryloyl chloride (0.9 mL, 9.3 mmol) in Et2O (5 mL) is added dropwise over 1 h. The mixture is stirred at this temperature for 30 min, and then allowed to warm to ambient temperature overnight. Any precipitated ammonium salts can be removed by filtration, and volatile components can be removed under reduced pressure. The crude product is then purified by flash chromatography. Examples 149-154 General Procedure for synthesis of poly N-(2-hydroxypropyl)methacrylamide-co-prop-2-ynyl methacrylate General Procedure for Copolymerization of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate A 100-mL round bottom flask equipped with a reflux condenser is charged with a total 5 g of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate, 45 g of isopropanol/dimethylformamide solvent mixture, and 100 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and maintained under nitrogen atmosphere during the reaction. Stoichiometry for each example is shown in Table 5. The reaction mixture is heated in an oil bath to 70° C. under stirring, and after 8 h the reaction mixture is cooled to ambient temperature and then 30 mL of solvent is evaporated under vacuum. The resulting solution is then precipitated into 250 mL of Et2O. The precipitate is collected, redissolved in 10 mL of DMF, and precipitated again into 250 mL of Et2O. The resulting precipitate is dried under vacuum to afford copolymers. General Procedure for Removal of Trimethyl Silyl Group The trimethyl silyl protected polymer (4 g), acetic acid (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups), and 200 mL of THF is mixed in a 500 mL flask. The mixture is cooled to −20° C. under nitrogen atmosphere and followed by addition of 0.20 M solution of tetra-n-butylammonium fluoride trihydrate (TBAF.3H2O) in THF (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups) over a course of 5 min. The solution is stirred at this temperature for 30 min and then warmed to ambient temperature for an additional 8 hours. The resulting mixture is passed through a short silica pad and then precipitated in Et2O. The resulting precipitate is dried under vacuum to afford copolymers. TABLE 5 Examples of copolymerization conditions that can be used to prepared polymethacrylates Monomer (g) 3-(trimethylsilyl) N-(2-hydroxypropyl) prop-2-ynyl Solvent (g) Example methacrylamide methacrylate IPA/DMF 149 2.5 2.5  0/45 150 2.5 2.5 11.25/33.75 151 2.5 2.5 22.5/22.5 152 2.5 2.5 33.75/11.25 153 2.5 2.5 45/0  Examples 154-167 General Procedure for Post-Modification of Examples 149-153 by [2+3] Cycloaddition Polymer 154 (54 mg) containing 0.1 mmol of alkyne moiety, a total of 0.1 mmol of azido-compounds (Intermediate 28.1, 13-azido-2,5,8,11-tetraoxamidecane, N-(2-azidoethyl)-3-(dimethylamino)propanamide and 1-azidodecane, corresponding ratios shown in Table 6), 0.05 mmol of diisopropylethylamine, and 1 mL of DMF is mixed at ambient temperature and degassed for 1 min. While maintaining a nitrogen atmosphere, copper iodide (10 mg, 0.01 mmol) is then added to the mixture. The solution is stirred at ambient temperature for 3 days and then passed through a short neutral alumina pad. The resulting solution is diluted with 10 mL of DI water, dialyzed against DI water for 2 days, and lyophilized to afford copolymers. TABLE 6 Examples of compounds that can be prepared from polymeric alkynes and varying ratios of substituted azides via [3 + 2] cycloaddition Azido compounds (mmol) Inter- 13-azido- N-(2-azidoethyl)- Exam- mediate 2,5,8,11- 3-(dimethylamino) 1- ple 28.1 tetraoxatridecane propanamide azidodecane 155 0.002 0.098 0 0 156 0.005 0.095 0 0 157 0.01 0.09 0 0 158 0.025 0.075 0 0 159 0.05 0.05 0 0 160 0.01 0.088 0.002 0 161 0.01 0.085 0.005 0 162 0.01 0.08 0.01 0 163 0.01 0.07 0.02 0 164 0.01 0.088 0 0.002 165 0.01 0.085 0 0.005 166 0.01 0.08 0 0.01 167 0.01 0.07 0 0.02 Example 168 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 168.1, bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate To a 500 ml 3-necked roundbottom flask was added 2,3-dihydroxysuccinic acid (10.0 g, 66.62 mmol, 1.00 equiv), N,N′-Dicyclohexyl carbodiimide (DCC; 30.0 g, 145.42 mmol, 2.18 equiv) and tetrahydrofuran (THF; 100 mL). This was followed by the addition of a solution of N-hydroxysuccinimide (NHS; 16.5 g, 143.35 mmol, 2.15 equiv) in THF (100 mL) at 0-10° C. The resulting solution was warmed to room temperature and stirred for 16 h. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from N,N-dimethylformamide (DMF)/ethanol in the ratio of 1:10. This resulted in 5.2 g (22%) of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 6.70 (d, J=7.8 Hz, 2H), 4.89 (d, J=7.2 Hz, 2H), 2.89 (s, 8H). MS (m/z): 367 [M+Na]+. Intermediate 168.2 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a 50-mL 3-necked round-bottom flask was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3.2 g, 21.59 mmol, 21.09 equiv) and dichloromethane (DCM; 20 mL). This was followed by the addition of a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (Intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv) in DMF (5 mL) dropwise with stirring. The resulting solution was stirred for 5 h at which time it was diluted with 100 mL of ethyl acetate. The resulting mixture was washed successively with 2×10 mL of water and 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (58%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 168, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (300 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (92.5 mg, 0.27 mmol, 0.45 equiv) and triethylamine (TEA; 1.0 g, 9.88 mmol, 16.55 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (300 mg) was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (20% CH3CN up to 40% in 5 min, up to 100% in 2 min); Detector, uv 220&254 nm. This resulted in 192.4 mg (28%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 7.92 (d, J=7.8 Hz, 2H, 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119 [M+H]+. Example 169 N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Intermediate 169.1, N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.26 mmol, 1.00 equiv) in DCM (5 mL). This was followed by the addition of a solution of ethane-1,2-diamine (307 mg, 5.11 mmol, 19.96 equiv) in DCM/DMF (10/1 mL). The resulting solution was stirred for 5 h at room temperature. The mixture was concentrated under vacuum. The resulting solution was diluted with 50 mL of ethyl acetate and washed with 2×10 mL of water and then 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to afford 90 mg (76%) of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 169, N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (250 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (92 mg, 0.27 mmol, 0.44 equiv) and triethylamine (280 mg, 2.77 mmol, 4.55 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum, the residue diluted with 100 mL of ethyl acetate and then washed with 2×10 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (25% CH3CN up to 35% in 5 min, up to 100% in 2.5 min); Detector, uv 220&254 nm. This resulted in 88.4 mg (15%) of a TFA salt of N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, CD3OD, ppm) δ 7.67 (d, J=7.6 Hz, 2H), 7.61 (s, 2H), 7.44 (t, J=7.6 Hz, 2H), 7.37 (d, J=7.6 Hz, 2H), 7.25 (d, J=2 Hz, 2H), 6.72 (s, 2H), 4.33 (t, J=6.4 Hz, 2H), 4.30 (s, 2H), 3.64 (m, 4H), 3.21 (s, 4H), 2.98 (m, 2H), 2.90 (m, 4H), 2.65 (m, 2H), 2.42 (s, 6H). MS (m/z): 943 [M+H]+. Example 170 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 170.1, 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Using procedures outlined in Example 1 to prepare intermediate 1.6, substituting N-(2,4-dichlorobenzyl)ethanamine for 1-(2,4-dichlorophenyl)-N-methylmethanamine, the title compound was prepared as a hydrochloride salt. Intermediate 170.2 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (300 mg, 1.51 mmol, 1.00 equiv) in DCM (10 mL) was added TEA (375 mg, 3.00 equiv) followed by the portionwise addition of 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.23 mmol, 1.00 equiv). The resulting solution was stirred for 1 h at room temperature and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 0.4 g (41%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Intermediate 170.3, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL round-bottom flask, was placed N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (400 mg, 0.68 mmol, 1.00 equiv), triphenylphosphine (400 mg, 2.20 equiv), THF (10 mL) and water (1 mL) and the reaction was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and applied onto a preparative thin-layer chromatography (TLC) plate, eluting with DCM:methanol(5:1). This resulted in 350 mg (73%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 170, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.18 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (25 mg, 0.07 mmol, 0.45 equiv) and triethylamine (75 mg, 4.50 equiv). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC with water:methanol (1:10-1:100). This resulted in 12.1 mg (5%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.70-7.60 (m, 8H), 7.53-7.49 (m, 6H), 6.88 (s, 2H), 5.61-5.59 (m, 2H), 4.38 (m, 2H), 4.24-4.22 (m, 2H), 3.78-3.72 (m, 2H), 3.58-3.48 (m, 2H), 3.43 (m, 7H), 3.43-3.40 (m, 11H), 3.27-3.20 (m, 5H), 2.91-2.87 (m, 6H), 2.76-2.70 (m, 2H), 2.61-2.55 (m, 3H), 1.04-0.99 (m, 6H). MS (m/z): 1235 [M+H]+. Example 171 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline Intermediate 171.1, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (10.0 g, 41.15 mmol, 1.00 equiv) in THF (150 mL), (2,4-dichlorophenyl)methanamine (7.16 g, 40.91 mmol, 1.00 equiv) and triethylamine (5.96 g, 59.01 mmol, 1.50 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was concentrated to dryness and used for next step, assuming theoretical yield. Intermediate 171.2, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of intermediate 171.1 (40.91 mmol, 1.00 equiv) in methanol (150 mL). This was followed by the addition of NaBH4 (2.5 g, 65.79 mmol, 1.50 equiv) in several batches at 0° C. The resulting solution was stirred for 2 h at 25° C. The reaction was then quenched by the addition of aqueous NH4Cl. The resulting mixture was concentrated under vacuum, and the solids were collected by filtration. The crude product was purified by re-crystallization from ethyl acetate. This resulted in 3.5 g (23%) of 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol as a yellowish solid. Intermediate 171.3, 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol (intermediate 171.2) (500 mg, 1.47 mmol, 1.00 equiv) in DCM (10 mL) was added conc. sulfuric acid (4 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 12 h at room temperature. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 10 with sodium hydroxide. The resulting solution was extracted with 2×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (63%) of 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as yellow oil. Intermediate 171.4, 2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl)bis(4-methylbenzenesulfonate) Into a 250-mL 3-necked round-bottom flask, was placed a solution of tetraethylene glycol (10 g, 51.55 mmol, 1.00 equiv) in DCM (100 mL). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (21.4 g, 112.63 mmol, 2.20 equiv) in DCM (50 mL) dropwise with stirring at 5° C. To this was added N,N-dimethylpyridin-4-amine (15.7 g, 128.69 mmol, 2.50 equiv). The resulting solution was stirred for 2 h at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×100 mL of DCM and the organic layers combined. The resulting mixture was washed with 1×100 mL of brine and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 11 g (43%) of the title compound as white oil. Intermediate 171.5, 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (intermediate 171.3) (171 mg, 0.53 mmol, 2.50 equiv) in DMF (2 mL) was added potassium carbonate (87 mg, 0.63 mmol, 3.00 equiv) and intermediate 171.4 (106 mg, 0.21 mmol, 1.00 equiv) and the resulting solution was stirred at 50° C. After stirring overnight, the resulting solution was diluted with 20 ml of water. The resulting mixture was extracted with 3×20 ml of ethyl acetate and the organic layers combined and concentrated under vacuum. The crude product was purified by Prep-HPLC with methanol:water (1:1). This resulted in 10 mg (2%) of 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline) as a light yellow solid. Compound 171, 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline To intermediate 171.5 (50 mg, 0.06 mmol, 1.00 equiv) in ethanol (5 mL) was added iron (34 mg, 0.61 mmol, 9.76 equiv) followed by the addition of hydrogen chloride (5 mL) dropwise with stirring. The resulting solution was stirred for 2 h at room temperature and then for an additional 4 h at 55° C. The reaction progress was monitored by LCMS. The solids were filtered out and the resulting solution was diluted with 10 mL of water. The resulting mixture was concentrated under vacuum and the pH of the solution was adjusted to 9-10 with sodium carbonate. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined, washed with 50 mL of brine and then concentrated under vacuum. The crude product was purified by Prep-HPLC with H2O:CH3CN (10:1). This resulted in 5 mg (11%) of 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline as a yellow solid.). 1H-NMR (400 MHz, CD3OD, ppm) δ 7.27 (m, 2H), 7.06 (m, 2H), 6.80 (s, 2H), 6.63 (d, 2H), 6.54 (m, 4H), 4.14 (m, 2H), 4.02 (d, 2H), 3.65 (m, 12H), 3.19 (m, 3H), 2.81 (s, 4H), 2.71 (m, 2H). MS (m/z): 745 [M+H]+. Example 172 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 28.1: N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (1.5 g, 6.87 mmol, 1.79 equiv) in DCM (20 mL) was added triethylamine (1.5 g, 14.82 mmol, 3.86 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (1.5 g, 3.84 mmol, 1.00 equiv). The reaction was stirred overnight at room temperature at which time the resulting mixture was concentrated under vacuum. The residue was dissolved in 100 mL of ethyl acetate and then was washed with 2×20 mL of water, dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.8 g (85%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 28, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (1.8 g, 3.26 mmol, 1.00 equiv) in THF (30 mL) was added triphenylphosphine (2.6 g, 9.91 mmol, 3.04 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (5.0 g) was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. 1.2 g product was obtained. This resulted in 1.2 g (64%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 172, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (1.2 g, 2.28 mmol, 1.00 equiv) in DMF (8 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (intermediate 168.1) (393 mg, 1.14 mmol, 0.50 equiv) and triethylamine (1.5 g, 14.82 mmol, 6.50 equiv) and the resulting solution was stirred overnight at room temperature. The mixture was concentrated under vacuum and the crude product was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. This resulted in 591 mg (43%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H, 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 30H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 603 [1/2M+H]+. Example 173 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 173.1, N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4) (400 mg, 1.08 mmol, 1.00 equiv) in DMSO (6 mL), 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (236.11 mg, 1.08 mmol, 1.00 equiv), (S)-pyrrolidine-2-carboxylic acid (24.79 mg, 0.21 mmol, 0.20 equiv), copper(I) iodide (20.48 mg, 0.11 mmol, 0.10 equiv) and potassium carbonate (223.18 mg, 1.62 mmol, 1.50 equiv). The resulting solution was stirred at 90° C. in an oil bath and the reaction progress was monitored by LCMS. After stirring overnight the reaction mixture was cooled with a water/ice bath and then diluted with ice water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic extracts were combined and washed with 2×20 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (2:1). This resulted in 130 mg (24%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Intermediate 173.2, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 50-mL round-bottom flask, was placed a solution of intermediate 173.1 (350 mg, 0.69 mmol, 1.00 equiv) in THF/water (4/0.4 mL) and triphenylphosphine (205 mg, 0.78 mmol, 1.20 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The resulting mixture was then concentrated under vacuum. The pH of the solution was adjusted to 2-3 with 1N hydrogen chloride (10 ml). The resulting solution was extracted with 2×10 mL of ethyl acetate and the aqueous layers combined. The pH value of the solution was adjusted to 11 with NH3.H2O. The resulting solution was extracted with 3×30 mL of DCM and the organic layers combined. The resulting mixture was washed with 30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 250 mg (75%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline as yellow oil. Compound 173, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To intermediate 173.2 (240 mg, 0.50 mmol, 1.00 equiv) in DMF (5 mL) was added TEA (233 mg, 2.31 mmol, 4.50 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (62 mg, 0.18 mmol, 0.35 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with methanol:water (1:10). This resulted in 140 mg (26%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamideas a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 7.65 (m, 4H), 7.11 (m, 2H), 6.83 (m, 2H), 6.58 (m, 2H), 6.41 (m, 4H), 4.09 (m, 32H), 3.45 (m, 17H), 3.43 (m, 5H), 3.31 (m, 9H), 2.51 (m, 6H). MS (m/z): 1079 [M+H]+. Example 174 N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Intermediate 174.1, 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea To 4-nitrophenyl 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (prepared by the procedure described in example 38) (200 mg, 0.40 mmol, 1.00 equiv, 95%) in DMF (5 mL) was added TEA (170 mg, 1.60 mmol, 4.00 equiv, 95%) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (90 mg, 0.39 mmol, 1.00 equiv, 95%) and the resulting solution was stirred for 2 h. The mixture was then concentrated under vacuum, diluted with 10 mL of water and then extracted with 3×30 mL of ethyl acetate. The organic layers were combined, washed with 3×30 mL of brine, dried over anhydrous sodium sulfate and then evaporated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜1:1). This resulted in 160 mg (72%) of 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Intermediate 174.2 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea Intermediate 174.2 was prepared from 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.1) using the procedure described to prepare intermediate 173.2. The crude product was purified by silica gel chromatography, eluting with DCM/methanol (50:1). This resulted in 230 mg of 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Compound 174, N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Compound 174 was prepared from 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.2) using the procedures described in example 172. The crude product (400 mg) was purified by Prep-HPLC with methanol:acetonitrile=60:40. This resulted in 113 mg (23%) of N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, DMSO, ppm): δ 8.68 (s, 2H), 7.68 (s, 2H), 7.64 (t, 2H), 7.39 (s, 2H), 7.24-7.28 (m, 6H), 6.77-6.78 (m, 4H), 6.23 (s, 2H), 4.47 (s, 4H), 4.23 (s, 2H), 3.76 (s, 4H), 3.42-3.69 (m, 24H), 3.28-3.36 (m, 4H), 3.20-3.24 (m, 6H), 3.02 (s, 6H). MS (m/z): 583 [1/2M+1]+. Example 175 N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Intermediate 175.1, N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (intermediate 10.6) (9 g, 20.02 mmol, 1.00 equiv, 95%) in DCM (200 mL) was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (15.6 g, 105.41 mmol, 5.00 equiv) and triethylamine (4.26 g, 42.18 mmol, 2.00 equiv) and the resulting solution was stirred for 3 h at room temperature. The reaction mixture was diluted with 100 mL of DCM and then washed with 2×50 mL of Brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (10:1). This resulted in 3 g (28%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. Compound 175, N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (150 mg, 0.28 mmol, 2.50 equiv, 92%) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) oxalate (34 mg, 0.12 mmol, 1.00 equiv) and triethylamine (49 mg, 0.49 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 97 mg (68%) of a TFA salt of N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90 (m, 4H), 7.56 (s, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.77 (m, 4H), 4.53 (d, 2H), 3.90 (m, 2H), 3.88 (m, 10H), 3.58 (m, 12H), 3.31 (s, 6H), 3.12 (m, 4H). MS (m/z): 530 [1/2M+1]+. Example 176 N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 176.1, N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-(2-aminoethoxy)ethanamine dihydrochloride (1.0 g, 5.65 mmol, 5.52 equiv) in DMF (20 mL), potassium carbonate (2.0 g, 14.39 mmol, 14.05 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv). The resulting solution was stirred overnight at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic layers were combined and dried over sodium sulfate and concentrated under vacuum. This resulted in 60 mg (13%) of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow solid. Compound 176, N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 176.1) (60 mg, 0.13 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (21 mg, 0.06 mmol, 0.47 equiv) and triethylamine (50 mg, 0.49 mmol, 3.77 equiv). The resulting solution was stirred overnight at room temperature at which time the mixture was concentrated under vacuum. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 21 mg (13%) of a TFA salt of N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 10H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 517 [1/2M+1]+. Example 177 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Intermediate 177.1, bis(2,5-dioxopyrrolidin-1-yl)succinate To succinic acid (3.0 g, 25.42 mmol, 1.00 equiv) in THF (50 mL) was added a solution of 1-hydroxypyrrolidine-2,5-dione (6.4 g, 55.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (11.5 g, 55.83 mmol, 2.20 equiv) in THF (50 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The solids were collected by filtration and the filtrate was concentrated to give the crude product. The resulting solids were washed with THF and ethanol. This resulted in 2.4 g (27%) of bis(2,5-dioxopyrrolidin-1-yl)succinate as a white solid. Compound 177, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 177 was prepared using the procedure described in example 175, substituting (2,5-dioxopyrrolidin-1-yl)succinate (intermediate 177.1) for bis(2,5-dioxopyrrolidin-1-yl)oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 32.8 mg (8%) of N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.93-7.91 (d, J=8.1 Hz, 4H), 7.57-7.56 (d, J=1.8 Hz, 2H), 7.50-7.47 (d, J=8.4 Hz, 4H), 6.86 (s, 2H), 4.78-4.73 (d, J=13.5 Hz, 4H), 4.52 (m, 2H), 3.85 (m, 2H), 3.59-3.47 (m, 18H), 3.15-3.09 (m, 10H), 2.49 (s, 4H). MS (m/z): 544 [1/2M+1]+. Example 178 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Intermediate 178.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate Intermediate 178.1 was prepared using the procedure outlined in example 177, substituting 2,2′-oxydiacetic acid for succinic acid. The crude product was washed with ethyl acetate. This resulted in 1.5 g (19%) of Intermediate 178.1 as a white solid. Compound 178, 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 178 was prepared using the procedure described in example 175, substituting bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) for bis(2,5-dioxopyrrolidin-1-yl)oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 39.1 mg (7%) of a TFA salt of 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 552 [1/2M+1]+. Example 179 (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 179.1, tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate To triethyleneglycol (17.6 g, 117.20 mmol, 3.00 equiv) in anhydrous THF (70 mL), was added sodium (30 mg, 1.25 mmol, 0.03 equiv). Tert-butyl acrylate (5.0 g, 39.01 mmol, 1.00 equiv) was added after the sodium had dissolved. The resulting solution was stirred overnight at room temperature and then neutralized with 1.0 N hydrogen chloride. After removal of the solvent, the residue was suspended in 50 mL of brine and extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of the solvent, the tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (9.6 g) was isolated as a colorless oil, which was used directly for the next reaction step without further purification. Intermediate 179.2, tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (intermediate 179.1) (9.6 g, 34.49 mmol, 1.00 equiv) in anhydrous pyridine (12 mL). The mixture was cooled to 0° C. and 4-methylbenzene-1-sulfonyl chloride (7.9 g, 41.44 mmol, 1.20 equiv) was added slowly in several portions. The resulting solution was stirred at 0° C. for 1-2 h and then the flask containing the reaction mixture was sealed and placed in a refrigerator at 0° C. overnight. The mixture was poured into 120 mL of water/ice, and the aqueous layer was extracted with 3×50 mL of DCM. The combined organic layers were washed with 2×50 mL of cold 1.0 N hydrogen chloride and saturated brine and dried over anhydrous sodium sulfate. The solvent was removed under vacuum to yield 13.4 g (90%) of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.3, tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate (13.4 g, 30.98 mmol, 1.00 equiv) in anhydrous DMF (100 mL) followed by potassium phthalimide (7.5 g, 40.49 mmol, 1.31 equiv). The resulting solution was heated to 100° C. and stirred for 3 h. The reaction progress was monitored by LCMS. The DMF was removed under vacuum to afford a brown oil residue. To the residue was added 200 mL water and the mixture was extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of solvent, The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (0˜1:3). The solvent was removed from fractions containing phthalimide and the residue was washed with 20% ethyl acetate/petroleum ether to yield 10.1 g (78%) of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.4, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate (intermediate 179.3) (1.5 g, 3.68 mmol, 1.00 equiv) in neat 2,2,2-trifluoroacetic acid (TFA; 2.0 mL). The resulting solution was stirred for 40 min at ambient temperature. Excess TFA was removed under vacuum to afford a pale-yellow oil residue which was purified on a silica gel column eluting with ethyl acetate/petroleum ether (1:5˜1:2˜2:1) to yield 1.1 g (84%) of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid as a white solid. Intermediate 179.5, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid (700 mg, 1.99 mmol, 1.00 equiv) in anhydrous DCM (30.0 mL), then oxalyl dichloride (0.7 mL) was added dropwise at room temperature. Two drops of anhydrous DMF were then added. The resulting solution was heated to reflux for 40 min. The solvent was removed under vacuum to yield 750 mg of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride as pale yellow oil, which was used directly for the next reaction step without further purification. Intermediate 179.6, N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide To 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 31.5) (600.0 mg, 1.95 mmol, 1.00 equiv) in anhydrous DCM (5.0 mL) was added N-ethyl-N,N-diisopropylamine (DIEA; 0.5 mL). Then a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride (intermediate 179.5) (794 mg, 2.15 mmol, 1.10 equiv) was added dropwise with stirring at room temperature. The resulting solution was stirred for 2 h at ambient temperature and then concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1). This resulted in 870 mg (66%) of N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide as a pale yellow syrup. The other fractions was collected and evaporated to get an additional 200 mg of impure product. Intermediate 179.7, 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide Into a 100-mL round-bottom flask, was placed N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide (870.0 mg, 1.36 mmol, 1.00 equiv) and 1M hydrazine monohydrate in ethanol (30.0 mL, 30.0 mmol). The resulting solution was heated at reflux for 1 hour. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residual solution was diluted with 30 mL of water and then extracted with 3×50 mL of DCM. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1˜10:1˜1:1). This resulted in 600 mg (85%) of 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide as a pale yellow syrup. Compound 179, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide (intermediate 179.7) (270 mg, 0.53 mmol, 2.00 equiv) in anhydrous DMF (5.0 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91.0 mg, 0.26 mmol, 1.00 equiv) and triethylamine (0.3 mL) and the resulting solution was stirred for 2 h at 35° C. The resulting mixture was then concentrated under vacuum. The residue was purified by Prep-HPLC, to give 170 mg (56%) of a TFA salt of (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (s, 1H), 7.65 (s, 2H), 7.54 (d, J=1.5 Hz, 2H), 7.36-7.46 (m, 4H), 7.02 (dd, J 7.5, 1.2 Hz, 2H), 6.90 (s, 2H), 4.83-4.75 (m, 2H), 4.65-4.60 (m, 2H), 4.53 (s, 1H), 4.46 (m, 3H), 3.88-3.80 (m, 6H), 3.64-3.51 (m, 22H), 3.41-3.35 (m, 4H), 3.16 (s, 6H), 2.64 (t, J=6.0 Hz, 4H). MS (m/z): 1136 [M+H]+. Example 180 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 180, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide Compound 180 was prepared from compound 28 following the procedure outlined in example 175. The crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=39/100/0.05 increasing to CH3CN/H2O/CF3COOH=39/100/0.05 within min; Detector, UV 254 nm. This resulted in 113.4 mg (11%) of a TFA salt of N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.766 (d, J=7.5 Hz, 2H), 7.683 (s, 2H), 7.586˜7.637 (m, 4H), 7.537 (d, J=7.8 Hz, 2H), 6.644 (s, 2H), 4.834-4.889 (m, 2H), 4.598 (d, J=16.2 Hz, 2H), 4.446 (d, J=15.0 Hz, 2H), 3.602˜3.763 (m, 4H), 3.299˜3.436 (m, 24H), 3.224-3.263 (m, 4H), 2.975 (s, 6H), 2.825˜2.863 (m, 4H). MS (m/z): 574 [M/2+H]+. Example 181 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181 was prepared from compound 28 and (2,5-dioxopyrrolidin-1-yl)succinate following the procedure outlined in example 175. The crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=0.05/100/0.05 increasing to CH3CN/H2O/CF3COOH=90/100/0.05 within 19 min; Detector, UV 254 nm. This resulted in 201 mg (78%) of a TFA salt of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.76 (d, J=7.5 Hz, 2H), 7.68 (s, 2H), 7.63˜7.52 (m, 6H), 6.64 (s, 1H), 4.88˜4.82 (m, 2H), 4.62-4.42 (m, 4H), 3.76˜3.60 (m, 4H), 3.43˜3.30 (m, 25H), 3.14˜3.10 (m, 4H), 2.97 (s, 6H), 2.86˜2.82 (m, 4H), 2.27 (s, 4H). MS (m/z): 589 [M/2+1]+. Example 182 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182 was prepared from compound 28 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product (250 mg) was purified by Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, MeCN/H2O/CF3COOH=39/100/0.05; Detector, UV 254 nm. This resulted in 152.3 mg (47%) of a TFA salt of N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CDCl3, ppm): δ 7.92˜7.89 (d, J=8.1 Hz, 2H), 7.79 (s, 2H), 7.69˜7.64 (m, 2H), 7.57˜7.55 (d, J=7.5 Hz, 4H), 3.68 (s, 2H), 4.87˜4.75 (m, 4H), 4.54˜4.49 (m, 2H), 3.90˜3.88 (m, 2H), 3.67˜3.45 (m, 20H), 3.39˜3.32 (m, 4H), 3.31 (s, 6H), 3.17˜3.05 (m, 4H), 1.41 (s, 1H). MS (m/z): 1189 [M+H]+. Example 183 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Example 183, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 183 was prepared from intermediate 175.1 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%). This resulted in 29.5 mg (5%) of a TFA salt of N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.92 (m, 4H), 7.57 (m, 2H), 7.51-7.49 (m, 4H), 6.87 (m, 2H), 4.83-4.74 (m, 4H), 4.55-4.50 (m, 2H), 3.92-3.87 (m, 2H), 3.67-3.48 (m, 8H), 3.40-3.38 (m, 4H), 3.18 (s, 6H), 3.14-3.00 (m, 4H), 1.41 (s, 6H). MS (m/z): 551 [1/2M+H]+. Example 184 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 184.1, 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate Into a 250-mL round-bottom flask was placed a solution of tetraethylene glycol (50 g, 257.47 mmol, 9.81 equiv) in DCM (150 mL) and triethylamine (8 g, 79.05 mmol, 3.01 equiv). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (5.0 g, 26.23 mmol, 1.00 equiv) in DCM (10 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at room temperature, at which time it was diluted with 200 ml of hydrogen chloride (3N aq.). The resulting solution was extracted with 2×150 mL of DCM and the combined organic layers were washed with 3×150 mL of saturated sodium bicarbonate. The mixture was dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜ethyl acetate). This resulted in 7.0 g (77%) of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate as colorless oil. Intermediate 184.2, 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol To intermediate 184.1 (2.0 g, 5.74 mmol, 1.00 equiv) in DMF (40 mL) was added sodium azide (700 mg, 10.77 mmol, 1.88 equiv) and sodium bicarbonate (800 mg, 9.52 mmol, 1.66 equiv). The resulting solution was stirred for 2 h at 80° C. at which time the mixture was concentrated under vacuum. The residue was diluted with 100 mL of water and then extracted with 3×100 mL of DCM. The organic layers were combined and concentrated under vacuum to afford 1.3 g of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol as light yellow oil. Intermediate 184.3, 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine Into a 50-mL round-bottom flask, was placed a solution of intermediate 184.2 (220 mg, 1.00 mmol, 2.38 equiv) in DMF (10 mL) and sodium hydride (40 mg, 1.00 mmol, 2.37 equiv, 60%). The resulting solution was stirred for 30 min at room temperature, at which time 2,6-dibromopyridine (100 mg, 0.42 mmol, 1.00 equiv) was added. The resulting solution was stirred for an additional 2 h at 80° C., and then was concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (50:1-30:1). This resulted in 180 mg (83%) of 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine as light yellow oil. Intermediate 184.4, 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine To intermediate 184.3 (180 mg, 0.35 mmol, 1.00 equiv) in THF/water (30/3 mL) was added triphenylphosphine (400 mg, 1.52 mmol, 4.35 equiv) and the resulting solution was stirred overnight at 40° C. After cooling to room temperature, the reaction mixture was extracted with 4×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (80:1˜20:1). This resulted in 100 mg (62%) of 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine as light yellow oil. Compound 184, N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To intermediate 184.4 (100 mg, 0.22 mmol, 1.00 equiv) in DCM (50 mL) was added triethylamine (70 mg, 0.69 mmol, 3.20 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (350 mg, 0.90 mmol, 4.13 equiv). The resulting solution was stirred overnight at room temperature, and then concentrated under vacuum. The residue was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)=35%-40%. This resulted in 88.4 mg (29%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (d, 2H), 7.78 (s, 2H), 7.67-7.50 (m, 7H), 6.86 (s, 2H), 6.34-6.31 (d, 2H), 4.90-4.75 (m, 4H), 4.52-4.46 (m, 2H), 4.42-4.39 (t, 4H), 3.90-3.81 (m, 6H), 3.71-3.43 (m, 22H), 3.16 (s, 6H), 3.07-3.03 (t, 4H). MS (m/z): 1170 [M+H]+ Example 185 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)tris(2,2,2-trifluoroacetate) Intermediate 185.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-(methylazanediyl)diacetate To 2-[(carboxymethyl)(methyl)amino]acetic acid (2.0 g, 13.60 mmol, 1.00 equiv) in THF (30 mL) was added DCC (6.2 g, 30.05 mmol, 2.21 equiv) and a solution of NHS (3.5 g, 30.41 mmol, 2.24 equiv) in THF (30 mL) and the reaction stirred at 0-10° C. for 2 h. The resulting solution was allowed to warm to room temperature and stirred for 16 h. The solids were then filtered out, and the resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. to afford 2.0 g (21%) of the title compound as a white solid. Compound 185, 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-acetamide)tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 185.1 (106 mg, 0.15 mmol, 0.50 equiv, 48%) and triethylamine (150 mg, 1.48 mmol, 4.97 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 26.4 mg (12%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (m, 4H), 7.5 (m, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.81 (m, 4H), 4.50 (m, 2H), 4.06 (s, 4H), 3.89 (m, 2H), 3.66-3.44 (m, 22H), 3.32 (s, 6H), 3.15 (m, 4H), 3.01 (s, 3H). MS (m/z): 559 [(M+2H)/2] Example 186 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) Intermediate 186.1, bis(2,5-dioxopyrrolidin-1-yl) 5-aminoisophthalate Into a 50-mL 3-necked round-bottom flask, was placed a solution of 5-aminoisophthalic acid (300 mg, 1.66 mmol, 1.00 equiv) in THF (5 mL) and 1-hydroxypyrrolidine-2,5-dione (420 mg, 3.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (750 mg, 3.64 mmol, 2.20 equiv) in THF (5 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The solids were removed by filtration and the filtrate was concentrated under vacuum. The crude product was purified by re-crystallization from ethanol. This resulted in 70 mg (11%) of the title compound as a light yellow solid. Compound 186, 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.20 mmol, 1.00 equiv) in DMF (5 mL) was added intermediate 186.1 (44.8 mg, 0.12 mmol, 0.60 equiv) and triethylamine (60.4 mg, 0.60 mmol, 3.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 32.4 mg (19%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90-7.87 (d, J=8.4 Hz, 4H), 7.60-7.54 (3H, m), 7.46-7.44 (d, J=8.4 Hz, 4H), 7.34 (d, J=1.2 Hz, 2H), 6.82 (s, 2H), 4.89-4.71 (m, 4H), 4.53-4.48 (d, J=16.2 Hz, 2H), 3.91-3.85 (m, 2H), 3.67-3.45 (m, 22H), 3.33-3.32 (m, 6H), 3.18-3.01 (m, 4H). MS (m/z): 575 [(M+2H)/2]+ Example 187 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 187, 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (150 mg, 0.28 mmol, 1.00 equiv) in DMF (5 mL), triethylamine (56 mg, 0.55 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (44 mg, 0.14 mmol, 0.49 equiv). The resulting solution was stirred overnight at room temperature, at which time the mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 19 min; Detector, UV 254 nm. This resulted in 72.4 mg (44%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.2 Hz, 2H), 7.71 (s, 2H), 7.49˜7.58 (m, 4H), 7.36-7.37 (m, 2H), 6.82 (s, 2H), 4.39-4.44 (m, 2H), 4.06 (s, 4H), 3.80 (d, J=16.2 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55-3.61 (m, 16H), 3.43˜3.52 (m, 12H), 3.02˜3.08 (m, 6H), 2.65-2.70 (m, 2H), 2.49 (s, 6H). MS (m/z): 1190 [M+H]+ Example 188 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate) Intermediate 188.1, 5-bromoisophthalic acid Into a 100-mL round-bottom flask, was placed a solution of isophthalic acid (10 g, 60.24 mmol, 1.00 equiv) in 98% H2SO4 (60 mL). This was followed by the addition of N-bromosuccinimide (12.80 g, 72.32 mmol, 1.20 equiv), in portions at 60° C. in 10 min. The resulting solution was stirred overnight at 60° C. in an oil bath. The reaction was cooled to room temperature and then quenched by the addition of water/ice. The solids were collected by filtration, and washed with 2×60 mL of hexane. The solid was dried in an oven under reduced pressure. The crude product was purified by re-crystallization from ethyl acetate to give 3 g (20%) of 5-bromoisophthalic acid as a white solid. Intermediate 188.2, bis(2,5-dioxopyrrolidin-1-yl) 5-bromoisophthalate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-bromoisophthalic acid (3 g, 11.76 mmol, 1.00 equiv, 96%) in THF (20 mL) followed by NHS (3 g, 26.09 mmol, 2.20 equiv) at 0-5° C. To this was added a solution of DCC (5.6 g, 27.18 mmol, 2.20 equiv) in THF (20 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred overnight at room temperature. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from DCM/ethanol in the ratio of 1:10. This resulted in 4 g (75%) of the title compound as a white solid. Compound 188, 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.19 mmol, 2.50 equiv, 95%) in DMF (8 mL), intermediate 188.1 (35 mg, 0.08 mmol, 1.00 equiv, 98%) and triethylamine (32 mg, 0.32 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature and then concentrated to dryness. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)=30%-42%. This resulted in 86 mg (75%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.26 (s, 1H), 8.13 (s, 2H), 7.90 (d, J=9 Hz, 4H), 7.55 (s, 2H), 7.48 (d, J=9 Hz, 4H), 6.84 (s, 2H), 4.76 (m, 4H), 4.54 (m, 2H), 3.89 (m, 2H), 3.68 (m, 18H), 3.53 (m, 4H), 3.33 (s, 6H), 3.18 (m, 4H). MS (m/z): 609 [(M+2H)/2]+ Example 189 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) Intermediate 189.1, bis(2,5-dioxopyrrolidin-1-yl) 2-hydroxymalonate Into a 100 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-hydroxymalonic acid (1.6 g, 13.32 mmol, 1.00 equiv) in THF (30 mL) and DCC (6.2 g, 30.05 mmol, 2.26 equiv). This was followed by the addition of a solution of NHS (3.5 g, 30.41 mmol, 2.28 equiv) in THF (30 mL) at 0-10° C. in 2 h. The resulting solution was stirred for 16 h at room temperature. The solids were then filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from ethanol to give 0.5 g (12%) of the title compound as a white solid. Compound 189, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL), was added Intermediate 189.1 (29 mg, 0.10 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred for 3 h at 30° C. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 36.5 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 546 [(M+2H)/2] Example 190 N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Compound 190, N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 168.2) (200 mg, 0.40 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (81 mg, 0.80 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl)oxalate (57 mg, 0.20 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 72.3 mg (34%) of N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.81 (m, 2H), 7.72 (s, 2H), 7.48-7.57 (m, 4H), 7.35-7.36 (m, 2H), 6.81-6.82 (m, 2H), 4.39-4.43 (m, 2H), 3.79 (d, J=16.5 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55-3.60 (m, 8H), 3.43-3.50 (m, 12H), 3.02-3.09 (m, 6H), 2.64-2.71 (m, 2H), 2.49 (s, 6H). MS (m/z): 1059 [M+H]+ Example 191 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 191, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 168.2) (150 mg, 0.30 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol, 1.98 equiv) and intermediate 177.1 (47 mg, 0.15 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was then concentrated under vacuum and the crude product (150 mg) was purified by Flash-Prep-HPLC with the following conditions: column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 53.1 mg (33%) of N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.80 (m, 2H), 7.71 (s, 2H), 7.48-7.57 (m, 4H), 7.36-7.37 (m, 2H), 6.82 (s, 2H), 4.39-4.44 (m, 2H), 3.79 (d, J=15.9 Hz, 2H), 3.66 (d, J=16.2 Hz, 2H), 3.45-3.57 (m, 16H), 3.35-3.37 (m, 4H), 3.03-3.08 (m, 6H), 2.65-2.71 (m, 2H), 2.49-2.50 (m, 10H). MS (m/z): 1089 [M+H]+ Example 192 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamoyl)benzenesulfonic acid Intermediate 192.1, sodium 3,5-bis((2,5-dioxopyrrolidin-1-yloxy)carbonyl)benzenesulfonate To sodium 3,5-dicarboxybenzenesulfonate (1 g, 3.73 mmol, 1.00 equiv) and NHS (940 mg, 8.17 mmol, 2.20 equiv) in DMF (10 mL) at 0° C. was added dropwise a solution of DCC (1.69 g, 8.20 mmol, 2.20 equiv) in THF (10 mL) and the reaction stirred overnight. The solids were removed by filtration and the filtrate was concentrated under vacuum to afford 500 mg (29%) of the title compound as a white solid. Compound 192, 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl-carbamoyl)benzenesulfonic acid To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added intermediate 192.1 (45 mg, 0.10 mmol, 0.50 equiv) and triethylamine (90 mg, 4.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30.6 mg (22%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.35-8.34 (m, 3H), 7.84-7.81 (m, 4H), 7.48 (m, 2H), 7.41-7.38 (m, 4H), 6.75 (m, 2H), 4.87-4.70 (m, 4H), 4.56-4.50 (m, 2H), 3.92-3.85 (m, 2H), 3.70-3.42 (m, 22H), 3.37-3.32 (m, 6H), 3.20-3.06 (m, 4H). MS (m/z): 608 [[(M+2H)/2]+ Example 193 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide Intermediate 193.1, 5-hydroxyisophthalic acid To dimethyl 5-hydroxyisophthalate (4.0 g, 19.03 mmol, 1.00 equiv) in THF (10 mL) was added lithium hydroxide (20 mL, 2M in water) and the resulting solution was stirred overnight at 40° C. The mixture concentrated under vacuum to remove the organic solvents and then the pH of the solution was adjusted to ˜2 with 6N hydrochloric acid. The resulting solids were collected by filtration and dried in a vacuum oven to afford 2.0 g (58%) of 5-hydroxyisophthalic acid as a white solid. Intermediate 193.2, bis(2,5-dioxopyrrolidin-1-yl) 5-hydroxyisophthalate To 5-hydroxyisophthalic acid (Intermediate 193.1; 1 g, 5.49 mmol, 1.00 equiv) and NHS (1.39 g, 2.20 equiv), in THF (5 mL) at 0° C. was added dropwise a solution of DCC (2.4 g, 2.20 equiv) in THF (5 mL). The resulting solution was stirred overnight at room temperature, then filtered and concentrated under vacuum to give 0.5 g (22%) of the title compound as a white solid. Compound 193, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added Intermediate 193.2 (34 mg, 0.09 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30 mg (24%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (m, 4H), 7.71-7.70 (m, 1H), 7.56-7.55 (m, 2H), 7.47-7.44 (m, 4H), 7.37-7.36 (m, 2H), 6.84 (m, 2H), 4.87-4.70 (m, 4H), 4.53-4.48 (m, 2H), 3.92-3.85 (m, 2H), 3.67-3.46 (m, 22H), 3.37-3.32 (m, 6H), 3.17-3.07 (m, 4H). MS (m/z): 576 [[(M+2H)/2]+ Example 194 (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide Intermediate 194.1, N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N1-(3-aminopropyl)-N1-methylpropane-1,3-diamine (560 mg, 3.85 mmol) dissolved in DCM (20 mL), was added triethylamine (300 mg, 2.96 mmol) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.77 mmol). The resulting solution was stirred for 3 h at room temperature. After removing the solvent, the resulting residue was diluted with EtOAc (50 mL), washed with water (2×10 mL) and dried over anhydrous sodium sulfate. The crude product was purified by Flash-Prep-HPLC with H2O:MeOH (1:4) to afford 300 mg (74%) of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 194, (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide To a solution of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 194.1, 300 mg, 0.60 mmol) in DMF (2 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91 mg, 0.27 mmol) and triethylamine (270 mg, 2.67 mmol) and the resulting solution was stirred for 2 h at room temperature and the reaction progress was monitored by LCMS. Upon completion, the mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (20%-29%) to afford 30.9 mg (8%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.90-7.88 (m, 2H), 7.80 (m, 2H), 7.69-7.65 (m, 2H), 7.58-7.56 (m, 4H), 6.85 (m, 2H), 4.87-4.71 (m, 4H), 4.54-4.44 (m, 4H), 3.88-3.82 (m, 2H), 3.62-3.53 (m, 4H), 3.22 (m, 6H), 3.13-3.09 (m, 6H), 3.01-2.97 (m, 4H), 2.88 (m, 6H), 2.00-1.96 (m, 8H). LCMS (ES, m/z): 1114 [M+H]+. Example 195 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 195, 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. After removal of the solvent, the crude product (150 mg) was purified by Flash-Prep-HPLC (C18 silica gel; methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 44.4 mg (27%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3CD, ppm): 7.79˜7.76 (m, 2H), 7.70 (s, 2H), 7.57-7.50 (m, 4H), 7.36 (d, J=Hz, 2H), 4.89-4.41 (m, 2H), 4.06 (m, 4H), 3.81-3.62 (m, 5H), 3.59-3.42 (m, 11H), 3.33-3.31 (m, 8H), 3.07-3.01 (m, 6H), 2.71-2.64 (m, 2H), 2.48 (s, 6H). LCMS (ES, m/z): 1103[M+H]+. Example 196 N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 196, N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared from 2,2-dimethylmalonic acid as described in Example 168) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. The mixture was concentrated and then purified by Flash-Prep-HPLC (C18 silica gel, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 75.1 mg of the title compound (46%) as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.80˜7.77 (m, 2H), 7.71 (s, 2H), 7.57-7.48 (m, 4H), 7.36-7.35 (d, J=2.1 Hz, 2H), 6.81 (d, J=1.2 Hz, 2H), 4.43-4.38 (m, 2H), 3.82-3.62 (m, 4H), 3.57-3.31 (m, 18H), 3.07-3.02 (m, 6H), 2.71-2.64 (m, 2H), 2.49 (s, 6H), 1.41 (s, 6H). LC-MS (ES, m/z): 1101 [M+H]+. Example 197 N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 197, N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (148 mg, 0.26 mmol) in DMF (5 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl)oxalate (prepared from oxalic acid as described in Example 168) (31 mg, 0.11 mmol) and triethylamine (44 mg, 0.44 mmol) and the resulting solution was stirred overnight. The crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)(28%-35%) to afford 101.8 mg (68%) of the title compound as a TFA salt. 1H-NMR (300 Hz, CD3OD, ppm): 7.94 (d, J=9 Hz, 4H), 7.58 (s, 2H), 7.50 (d, J=9 Hz, 4H), 6.88 (s, 2H), 4.80 (m, 4H), 4.53 (m, 2H), 3.90 (m, 2H), 3.59 (m, 16H), 3.52 (m, 2H), 3.49 (m, 12H), 3.13 (s, 6H), 3.09 (m, 4H). LC-MS (ES, m/z): 574 [(M+2H)/2]+. Example 198 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 198, 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82) (200 mg, 0.37 mmol) in DMF (2 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (60 mg) and triethylamine (184 mg). The resulting solution was stirred for 2 h at room temperature at which point LCMS indicated complete conversion. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(25%-35%). This resulted in 79.6 mg (31%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.94-7.91 (m, 4H), 7.58-7.57 (m, 2H), 7.51-7.48 (m, 4H), 6.88 (m, 2H), 4.82-4.74 (m, 4H), 4.52-4.47 (m, 2H), 4.06 (m, 4H), 3.90 (m, 2H), 3.64-3.42 (m, 34H), 3.15-3.13 (s, 6H), 3.11-3.09 (m, 4H). LC-MS (ES, m/z): 596 [(M+2H)/2]+. Example 199 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 199, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)succinamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (200 mg, 0.37 mmol) in dry DMF (10 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl)succinate (intermediate 177.1) (57.1 mg, 0.18 mmol) and triethylamine (111 mg, 1.10 mmol). The resulting solution was stirred for 4 h at 25° C. in an oil bath and monitored by LCMS. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(28%-35%). This resulted in 113.8 mg (45%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.93-7.91 (d, J=8.1 Hz, 4H), 7.58-7.57 (m, 2H), 7.50-7.48 (m, 4H), 6.87 (s, 2H), 4.88-4.74 (m, 4H), 4.55-4.49 (d, J=16.2 Hz, 2H), 3.94-3.88 (m, 2H), 3.67-3.59 (m, 14H), 3.55-3.45 (m, 12H), 3.35-3.09 (m, 10H), 2.48 (s, 4H). LC-MS (ES, m/z): 588 [(M+2H)/2]+. Example 200 N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt Intermediate 200.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 175.1 (3 g) was purified by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (50%), iso-propanol (50%); Detector, UV 254 nm This resulted in 1 g of (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 200.1) as a yellow solid. Compound 200, N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt To Intermediate 200.1 (280 mg, 0.56 mmol, 2.00 equiv) in DMF (10 mL) was added intermediate 177.1 (87 mg, 0.28 mmol, 1.00 equiv) and triethylamine (94.3 mg, 0.93 mmol, 4.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product (300 mg) was purified by Prep-HPLC with CH3CN:H2O (35-55%). The product was then dissolved in 15 mL of dichloromethane and gaseous hydrochloric acid was introduced for 20 minutes, then the mixture was concentrated under vacuum. The crude product was washed with 3×10 mL of ether to afford 222.4 mg of Compound 200 as a light yellow solid. 1H-NMR (400 MHz, CD3OD, ppm):7.94-7.92 (d, J=8 Hz, 4H), 7.56-7.52 (m, 6H), 6.82 (s, 2H), 4.89-4.84 (m, 4H), 4.52-4.48 (d, J=16.4 Hz, 2H), 3.91-3.90 (d, J=4 Hz, 2H), 3.62-3.48 (m, 18H), 3.39-3.32 (m, 4H), 3.19-3.10 (m, 10H), 2.57-2.55 (d, J=5.2 Hz, 4H). LCMS (ES, m/z): 544 [M−2HCl]/2+H+. Example 201 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride salt Compound 201, 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride salt To intermediate 200.1 (500 mg, 1.00 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 178.1 (150 mg, 0.46 mmol, 0.45 equiv) and triethylamine (0.4 g, 4.50 equiv) and the resulting solution was stirred for 2 h. The crude product was purified by Prep-HPLC with CH3CN/H2O (0.05% TFA) (28%-34%). The product was dissolved in 15 mL of dichloromethane and then gaseous hydrochloric acid was introduced for 20 mins. The mixture was concentrated under vacuum and the crude product was washed with 3×10 mL of ether to afford 101.1 mg (18%) of Compound 201 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (m, 4H), 7.57-7.51 (m, 6H), 6.84 (s, 2H), 4.88-4.70 (m, 4H), 4.50 (s, 2H), 4.08 (s, 4H), 3.92-3.91 (m, 2H), 3.90-3.54 (m, 9H), 3.50-3.49 (m, 5H), 3.47-3.44 (m, 8H), 3.18 (s, 6H), 3.12-3.10 (m, 4H). LCMS (ES, m/z): 552 [M−2HCl]/2+H+. Example 202 (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt Intermediate 202.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide bis(2,2,2-trifluoroacetate) To 2-(2-(2-aminoethoxy)ethoxy)ethanamine (30.4 g, 205.41 mmol, 8.01 equiv) in dichloromethane (1000 mL) was added triethylamine (5.2 g, 51.49 mmol, 2.01 equiv). This was followed by the addition of (S)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (10 g, 23.42 mmol, 1.00 equiv; prepared from intermediate 244.1 and the procedures described in Example 1) in portions at 10° C. in 1 h. The resulting solution was stirred for 15 min at room temperature. The resulting mixture was washed with 3×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water/TFA (4/100/0.0005) increasing to 8/10/0.0005 within 30 min; Detector, UV 254 nm. This resulted in 7.2 g (42%) of intermediate 202.1 as a white solid Compound 202, (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt To intermediate 202.1 (500 mg, 0.69 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (138 mg, 1.37 mmol, 1.99 equiv) followed by the addition of 1,4-diisocyanatobutane (48 mg, 0.34 mmol, 0.50 equiv) in portions. The resulting solution was stirred for 10 min at room temperature then the crude product (500 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 246.7 mg (59%) of Compound 202 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.92 (d, J=7.2 Hz, 2H), 7.83 (s, 2H), 7.69-7.65 (m, 2H), 7.60-7.55 (m, 4H), 6.81 (s, 2H), 4.87-4.83 (m, 4H), 4.54-4.50 (m, 2H), 3.94-3.91 (m, 2H), 3.69-3.49 (m, 18H), 3.39-3.32 (m, 4H), 3.21-3.15 (m, 10H), 3.08-3.05 (m, 4H), 1.57 (s, 4H). LCMS (ES, m/z): 1145 [M−2HCl+1]+. Example 203 (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt Compound 203, (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis-(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt To intermediate 202.1 (400 mg, 0.55 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (111 mg, 1.10 mmol, 2.00 equiv) followed by the portionwise addition of 1,4-diisocyanatobenzene (44 mg, 0.28 mmol, 0.50 equiv). The resulting solution was stirred for 10 min and the crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water (0.05/100) increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 201.7 mg (59%) of Compound 203 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.84 (d, J=7.6 Hz, 2H), 7.71 (s, 2H), 7.60-7.56 (m, 2H), 7.48-7.45 (m, 4H), 7.16 (s, 4H), 6.76 (s, 2H), 4.70-4.66 (m, 4H), 4.42-4.38 (m, 2H), 3.78-3.74 (m, 2H), 3.53-3.48 (m, 18H), 3.44-3.26 (m, 4H), 3.06-2.99 (m, 10H). LCMS (ES, m/z): 1163[M−2HCl+1]+. Example 204 N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1, 2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetic acid To a slurry of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (Intermediate 1.6) (283 mg, 0.66 mmol) and triglycine (152 mg, 0.80 mmol) in THF (1.5 mL) at 0° C. was added water (1.0 mL) followed by triethylamine (202 mg, 2.0 mmol). The reaction was allowed to warm to room temperature and stirred for 15 hours. The solvents were removed at reduced pressure and the residue was purified by preparative HPLC to give Intermediate 204.1 (122 mg) as a TFA salt. Compound 204, N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1 (60 mg, 0.091 mmol) was dissolved in DMF (0.90 mL) followed by N-hydroxysuccinimide (12.6 mg, 0.11 mmol) and 1,4-diaminobutane (4.0 mg, 0.045 mmol). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (21 mg, 0.11 mmol) was added and the reaction was stirred at room temperature for 16 hours, at which time additional 1,4-diaminobutane (1 uL) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (5 mg) were added. Two hours after the addition, solvent was removed at reduced pressure and the residue was purified by preparative HPLC. The title compound was obtained as a TFA salt (26 mg). 1H-NMR (400 mHz, CD3OD) δ 7.90 (d, j=8.6 Hz, 4H), 7.52 (d, j=1.8 Hz, 2H), 7.47 (d, j=8.6 Hz, 4H), 6.84 (s, 2H), 7.75 (m, 6H), 4.44 (d, J=15.6 Hz, 2H), 3.86 (s, 4H), 3.81 (s, 4H), 3.61 (s, 4H), 3.54 (m, 2H), 3.16 (m, 4H), 3.16 (s, 6H), 1.49 (m, 4H). MS (m/z): 1636.98 [M+H]+. Example 205 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 205, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (110 mg, 0.22 mmol) in DMF (2.0 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (34 mg, 0.10 mmol) and the reaction was stirred for 10 minutes. The solvent was removed under vacuum and the residue was purified by preparative HPLC to give the title compound (23 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.81 (m, 4H), 7.44 (s, 1H), 7.37 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.72 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.02 [M+H]+. Example 206 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 206.1, N,N′-(1,4-phenylenebis(methylene))bis(2-(2-(2-aminoethoxy)ethoxy)ethanamine) A solution of terephthalaldehyde (134 mg, 1.0 mmol) and 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (1.48 g, 10.0 mmol) in DCM (10 mL) was stirred at room temperature. After 15 minutes sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added and the reaction was stirred for 1.5 hours. Acetic acid (600 mg, 10 mmol) was then added. After stirring for an additional 1.5 hours, acetic acid (600 mg, 10 mmol) and sodium triacetoxyborohydride (636 mg, 3.0 mmol) were added, and stirring was continued at room temperature. One hour later an additional portion of sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added. Twenty hours later the reaction was quenched with 1N HCl (5 mL) and concentrated to dryness. Methanol (10 mL) and 12N HCl (3 drops) were added and the mixture was concentrated to dryness. The residue was dissolved in water (10 mL) and a portion (1.0 mL) was purified by preparative HPLC to give a TFA salt of the title compound (25 mg) as a TFA salt. Compound 206, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of intermediate 206.1 (25 mg, 0.029 mmol) in DCM (0.5 mL) was added of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (25 mg, 0.06 mmol) followed by triethylamine (24.2 mg, 0.24 mmol) and the reaction was allowed to stir at room temperature for 18 hours. The reaction was concentrated to dryness, and then purified by preparative HPLC to give the title compound (8 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.85 (m, 2H), 7.74 (m, 2H), 7.62 (m, 6H), 7.53 (m, 4H), 6.80 (s, 1H), 4.74 (m, 6H), 4.44 (m, 2H), 4.30 (s, 4H), 3.83 (m, 2H), 3.76 (m, 4H), 3.62 (m, 8H), 3.50 (m, 4H), 3.23 (m, 4H), 3.10 (s, 6H), 3.02 (m, 4H). MS (m/z): 1105.05 [M+H]+. Example 207 (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 207, (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Following the procedures outlined in example 205, compound 207 was prepared using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.82 (m, 4H), 7.45 (m, 1H), 7.38 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.74 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.07 [M+H]+. Example 208 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 208, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (47 mg, 0.061 mmol) in DMF (0.20 mL) was added 1,4-diisocyanatobutane (4.0 mg, 0.03 mmol) followed by diisopropylethylamine (15 mg, 0.12 mmol). After stirring at room temperature for 30 minutes, the reaction was purified by preparative HPLC to give the title compound (31 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.88 (m, 2H), 7.75 (m, 2H), 7.63 (m, 2H), 7.54 (m, 4H), 6.83 (m, 2H), 4.74 (m, 4H), 4.48 (m, 2H), 3.87 (m, 2H), 3.62-3.55 (m, 14H), 3.51-3.43 (m, 12H), 3.24 (m, 4H), 3.14 (s, 6H), 3.05 (m, 8H), 1.43 (m, 4H). MS (m/z): 1230.99 [M+H]+. Example 209 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 209, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in example 208, compound 209 was prepared using 1,4-diisocyanatobenzene. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.78 (m, 2H), 7.64 (m, 2H), 7.53 (m, 2H), 7.43 (m, 2H), 7.39 (m, 2H), 7.10 (s, 4H), 6.71 (s, 2H), 4.58 (m, 4H), 4.39 (m, 2H), 3.68 (m, 2H), 3.54 (s, 8H), 3.50-3.44 (m, 8H), 3.42 (m, 6H), 3.35 (m, 4H), 2.99 (s, 6H), 2.95 (m, 4H). MS (m/z): 1250.98 [M+H]+. Example 210 (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.1, (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Intermediate 210.1 was prepared following the procedure outlined in Example 44.2 using 20-azido-3,6,9,12,15,18-hexaoxaicosan-1-amine. The title compound was recovered in 64% yield as a yellow oil. Intermediate 210.2, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-4-(2-carboxyprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.2 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (22.4 mg, 0.065 mmol) and (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (91.5 mg, 0.13 mmol). The title compound was recovered in 60% yield as a clear semi-solid. Compound 210, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Compound 210 was prepared following the procedure outlined in Example 45 using Intermediate 210.2 (59.6 mg). Purification by preparative HPLC gave the title compound (10 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.64 (d, 4H), 7.48 (s, 1H), 7.32 (d, 4H), 7.12 (d, 4H), 3.62-3.58 (m, 17H), 3.55-3.52 (m, 9H), 3.48-3.41 (m, 13H), 3.06 (s, 3H), 2.72 (s, 6H). MS (m/z): 1549.23 [M+H]+. Compound 211 (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211, (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211 was prepared following the procedure outlined in Example 45 using (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 210.2, 13.2 mg). Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.84 (d, 2H), 7.52 (s, 1H), 7.35 (d, 2H), 7.12 (d, 2H), 3.74-3.70 (m, 2H), 3.69-3.58 (m, 24H), 3.55-3.51 (m, 2H), 3.49-3.46 (m, 2H), 3.15-3.12 (m, 2H), 3.07-3.04 (m, 2H). MS (m/z): 718.28 [M+H]+. Example 212 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 212.1, (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Compound 44.2 (100 mg, 0.175 mmol) and (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (30.1 mg, 0.087 mmol) were dissolved in DMF (0.35 mL) with DIEA (67.7 mg, 0.525 mmol) and stirred for 2 hours at room temperature. The solvent was removed and the resulting material partitioned between EtOAc (20 mL) and water (20 mL). The organic layer was washed with saturated NaHCO3 (20 mL), brine (20 mL) and dried over Na2SO4 to give the product (87.7 mg) as a yellow oil that was used without further purification. Compound 212, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 212 was prepared following the procedures outlined in Example 45. Purification by preparative HPLC gave 9.6 mg of the title compound as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.11 (d, 4H), 4.44 (s, 2H), 3.61-3.53 (m, 21H), 3.50-3.41 (m, 15H), 3.05 (t, 4H), 2.17 (s, 6H). MS (m/z): 1286.11 [M+H]+. Example 213 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 213, 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)acetamide) Compound 213 was prepared following the procedure outlined in Example 168 using tris(2,5-dioxopyrrolidin-1-yl) 2,2′,2″-nitrilotriacetate (75 mg, 0.156 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 254 mg, 0.467 mmol). Purification by preparative HPLC gave the title compound (32.0 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 3H), 7.75 (s, 3H), 7.63 (t, 3H), 7.54 (t, 6H), 6.82 (s, 3H), 4.84-4.75 (m, 6H), 4.48 (d, 3H), 3.86 (m, 3H), 3.85-3.37 (m, 54H), 3.14 (s, 9H), 3.02 (t, 6H). MS (m/z): 1777.07 [M+H]+. Example 214 N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 214.1, N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide A solution of 32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontan-1-amine (436.9 mg, 0.777 mmol) in dry DMF (3.5 mL) under N2 was cooled to 0° C. A solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.706 mmol) and DIEA (273.2 mg, 2.118 mmol) in DMF (3 mL) was added dropwise. After 60 minutes LCMS indicated complete conversion and the solvent was removed to give N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (620 mg) as a yellow oil which was used without further purification. Compound 214, N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 214.1, 620 mg, 0.706 mmol) in THF/H2O (10:1 v/v, 14.3 mL) under N2 was added trimethylphosphine (214.8 mg, 2.82 mmol). The resulting solution was stirred overnight at which point LCMS indicated complete conversion. The solvent was removed to give 819 mg of an orange oil, a portion of which was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 1H), 7.68 (s, 1H), 7.62 (t, 1H), 7.55 (m, 2H), 6.82 (s, 1H), 3.85 (m, 1H), 3.78 (q, 3H), 3.70-3.58 (m, 55H), 3.52 (m, 2H), 3.46 (t, 3H), 3.18 (t, 3H), 3.11 (s, 3H), 3.03 (t, 2H). MS (m/z): 855.24 [M+H]+. Example 215 N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide Compound 215, N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968) in DMF (0.5 mL) was added benzene-1,3,5-tricarboxylic acid (6.7 mg, 0.0319 mmol), DIEA (37.5 mg, 0.291 mmol), and finally HATU (40.4 mg, 0.107 mmol). The reaction was stirred for 60 minutes at room temperature at which point LCMS indicated complete conversion. The resulting solution was diluted with acetonitrile/water solution (1:1 v/v) and filtered. Purification by preparative HPLC gave the title compound (37.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.37 (s, 3H), 7.84 (d, 2H), 7.83 (s, 2H), 7.62 (t, 2H), 7.51-7.50 (m, 4H), 6.79 (s, 2H), 4.83-4.70 (m, 5H), 4.46 (d, 2H), 3.86 (q, 2H), 3.67-3.53 (m, 27H), 3.45 (t, 5H), 3.39 (t, 5H), 3.14 (s, 7H), 2.98 (t, 4H). MS (m/z): 1797.15 [M+H]+. Example 216 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 216, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 216 was prepared following the procedure outlined in Example 215 using terephthalic acid (10.7 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 100 mg, 0.129 mmol). Purification by preparative HPLC gave the title compound (46.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (m, 6H), 7.73 (s, 2H), 7.59 (t, 2H), 7.52-7.49 (m, 4H) m, 6.80 (s, 2H), 4.77-4.69 (m, 4H), 4.49 (d, 2H), 3.587 (qs, 2H), 3.67-3.54 (m, 27H), 3.45 (t, 5H), 3.40 (t, 5H), 3.13 (s, 7H), 2.99 (t, 4H). MS (m/z): 1224.34 [M+H]+. Example 217 N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217, N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-dioate (69.1 mg, 0.0975 mmol) and N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 214, 166.2 mg, 0.195 mmol). Purification by preparative HPLC gave the title compound (106.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.76 (s, 2H), 7.66 (t, 2H), 7.56 (m, 4H), 6.86 (s, 2H), 3.90 (m, 2H), 3.82 (t, 2H), 3.76 (m, 6H), 3.62-3.41 (m, 28H), 3.38 (m, 6H), 3.35-3.28 (m, 56H), 3.15 (s, 6H), 3.05 (t, 4H), 2.43 (t, 4H). MS (m/z): 1094.37 [(M+2H)/2]+. Example 218 2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (10.2 mg, 0.0298 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 30 mg, 0.0597 mmol). Purification by preparative HPLC gave the title compound (5.1 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.92 (d, J=7.8 Hz, 2H), 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H0, 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119.04 [M+H]+. Example 219 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide Compound 219, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol) and DIEA (35.5 mg, 0.275 mmol) in dry DCM (0.183 mL) under N2 was added benzene-1,3-disulfonyl dichloride (12.7 mg, 0.0459 mmol) in DCM (0.183 mL). The reaction mixture was stirred at room temperature for 60 minutes at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 4 mL ACN/H2O solution (1:1). Filtration and purification by preparative HPLC gave the title compound (16.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.28 (s, 1H), 8.06 (d, 1H), 7.85 (d, 2H), 7.75 (d, 2H), 7.70 (s, 1H), 7.63 (t, 2H), 7.53 (m, 3H), 6.82 (s, 1H), 4.52 (d, 1H), 3.85 (d, 1H), 3.61-3.46 (m, 28H), 3.13 (s, 6H), 3.09-3.03 (m, 7H). MS (m/z): 1294.99 [M+H]+. Example 220 N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)biphenyl-4,4′-disulfonamide Compound 220, N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)biphenyl-4,4′-disulfonamide Compound 220 was prepared following the procedure outlined in Example 219 using biphenyl-4,4′-disulfonyl dichloride (16.1 mg, 0.0459 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol). Purification by preparative HPLC gave the title compound (16.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.96 (d, 4H), 7.88-7.85 (m, 5H), 7.78 (s, 2H), 7.61 (t, 2H), 7.47 (d, 2H), 6.78 (s, 2H), 4.74-4.69 (m, 3H), 4.45 (d, 2H), 3.88-3.83 (m, 2H), 3.62-3.59 (m, 2H), 3.55-3.53 (m, 9H), 3.52-3.43 (m, 17H), 3.13 (s, 6H), 3.11-3.03 (m, 8H). MS (m/z): 1371.02 [M+H]+. Example 221 (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic acid Compound 221, (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic acid Compound 221 was prepared by isolating the mono-addition byproduct from the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (70.4 mg, 0.205 mmol) and Compound 28 (223 mg, 0.409 mmol). Purification by preparative HPLC gave the title compound (44.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 1H), 7.81 (d, 1H), 7.63 (t, 1H), 7.55 (s, 1H), 7.50 (t, 1H), 6.84 (s, 0.5H), 3.88-3.84 (m, 1H), 3.64-3.34 (m, 22H), 3.14 (s, 4H), 3.07 (m, 2H). MS (m/z): 677.36 [M+H]+. Example 222 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222 was prepared following the procedure outlined in Example 215 using (2S,3S)-2,3-dihydroxysuccinic acid (15.5 mg, 0.103 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 112 mg, 0.206 mmol). Purification by preparative HPLC gave the title compound (39.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.54-7.50 (m, 4H), 6.82 (s, 2H), 4.34 (s, 2H), 3.90-3.85 (m, 1H), 3.62-3.30 (m, 47H), 3.14 (m, 8H), 3.05 (t, 4H). MS (m/z): 1206.95 [M+H]+. Example 223 N1,N4-bis(2-(2-(2-(2-(3-((R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 223.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and 223.1b (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1, 4.5 g, 7.88 mmol, 1.00 equiv) was separated into its enantiomers by chiral phase preparative Supercritical Fluid Chromatography (Prep-SFC) with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2(80%), methanol (20%); Detector, UV 254 nm. This resulted in 1.61 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.5 Hz, 1H), 7.711 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=16.2 Hz, 1H), 3.58-3.69 (m, 9H), 3.40-3.52 (m, 4H), 3.33-3.38 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. This also gave 1.81 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.78-7.81 (m, 1H), 7.71 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=15.9 Hz, 1H), 3.57-3.70 (m, 9H), 3.44-3.53 (m, 4H), 3.37-3.40 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 223.2, (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1a was converted to Intermediate 223.2. Compound 223, N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 223 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 223.2, 239 mg, 0.439 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (75.5 mg, 0.219 mmol). Purification by preparative HPLC gave the title compound (135.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.68 (s, 2H), 7.63 (t, 2H), 7.54-7.52 (m, 4H), 6.83 (s, 2H), 4.83-4.75 (m, 5H), 4.50-4.48 (m, 2H), 4.43 (d, 2H), 3.89-3.82 (m, 2H), 3.63-3.35 (m, 34H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.11 [M+H]+. Example 224 N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 224.1, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1b was converted to Intermediate 224.1. Compound 224, N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 224 was prepared following the procedures outlined in Example 223 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 274 mg, 0.502 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (86.4 mg, 0.251 mmol). Purification by preparative HPLC gave the title compound (159 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 6.54-6.51 (m, 4H), 6.83 (s, 2H), 4.84-4.75 (m, 4H), 4.50-4.43 (m, 4H), 3.90-3.85 (m, 4H), 3.62-3.28 (m, 35H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1207.11 [M+H]+. Example 225 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 225.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and intermediate 225.1b, (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (5 g, 8.76 mmol, 1.00 equiv) was separated into its enantiomers by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), ethanol (20%); Detector, UV 254 nm. This resulted in 1.69 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.85 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.43 (t, 1H), 3.81 (m, 1H), 3.67 (m, 9H), 3.48 (m, 4H), 3.33 (m, 2H), 3.01 (m, 1H), 2.71 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Also isolated was 1.65 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.84 (d, J=8.4 Hz, 2H), 7.43 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.42 (t, 1H), 3.81 (m, 1H), 3.67 (m, 10H), 3.59 (m, 4H), 3.49 (m, 2H), 3.11 (m, 2H), 2.72 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 225.2, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1b was converted to Intermediate 225.2. Compound 225, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 225 was prepared following the procedures outlined in Example 168 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 302.4 mg, 0.555 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (95.5 mg, 0.277 mmol). Purification by preparative HPLC gave the title compound (97.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.46 (d, 4H), 6.84 (s, 2H), 4.88-4.72 (m, 3H), 4.43-4.42 (m, 2H), 3.85-3.80 (m, 1H), 3.63-3.35 (m, 24H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.05 [M+H]+. Example 226 N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 226.1, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1a was converted to intermediate 226.1. Compound 226, N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 226 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 226.1, 267.5 mg, 0.491 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (84.5 mg, 0.245 mmol). Purification by preparative HPLC gave the title compound (145.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 5H), 7.54 (s, 2H), 7.48 (d, 4H), 6.84 (s, 2H), 4.84-4.73 (m, 4H), 4.50-4.43 (d, 2H), 4.18 (d, 2H), 3.85-3.80 (m, 2H), 3.64-3.40 (m, 32H), 3.13 (s, 6H), 3.08 (t, 3H). MS (m/z): 1207.10 [M+H]+. Example 227 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (49.6 mg, 0.144 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 157 mg, 0.288 mmol). Purification by preparative HPLC gave the title compound (34.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.77-4.74 (m, 6H), 4.46 (d, 2H), 4.43 (t, 2H), 3.89-3.84 (m, 2H), 3.62-3.53 (m, 19H), 3.49-3.41 (m, 13H), 3.14 (s, 6H), 3.08 (t, 4H). MS (m/z): 1206.94 [M+H]+. Example 228 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)isophthalamide Compound 228, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)isophthalamide Compound 228 was prepared following the procedure outlined in Example 215 using isophthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (45.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.25 (s, 1H), 7.92 (d, 2H), 7.85 (d, 2H), 7.73 (s, 2H), 7.58 (t, 2H), 7.49 (m, 5H), 6.81 (s, 2H), 4.83-4.71 (m, 4H), 4.49 (d, 2H), 3.87 (m, 2H), 3.67-3.54 (m, 28H), 3.45 (t, 5H), 3.44 (q, 5H), 3.14 (s, 7H), 2.99 (t, 4H). MS (m/z): 1223.19 [M+H]+. Example 229 (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 229, (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 25 mg, 0.0322 mmol) was dissolved in DMF (0.161 mL) with DIEA (12.4 mg, 0.0966 mmol) and (2R,3S)-2,3-dihydroxysuccinic acid (2.7 mg, 0.0161 mmol). Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (18.4 mg, 0.0354 mmol) was added and the resulting solution stirred for 60 minutes, at which point LCMS indicated complete conversion. The reaction mixture was diluted to 2 mL with acetonitrile/water (1:1) and filtered. Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.80 (d, 2H), 7.69 (s, 2H), 7.55 (t, 2H), 7.43 (m, 4H), 6.75 (s, 2H), 4.80-4.75 (m, 3H), 4.39 (d, 2H), 4.24 (d, 2H), 3.76 (m, 2H), 3.64-3.25 (m, 33H), 3.04 (s, 7H), 2.95 (t, 4H). MS (m/z): 1207.10 [M+H]+. Example 230 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)phthalamide Compound 230, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)phthalamide Compound 230 was prepared by following the procedure outlined in Example 215 using phthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (35.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.76 (s, 2H), 7.63 (t, 2H), 7.50 (m, 8H), 6.79 (s, 2H), 4.83-4.73 (m, 4H), 4.65 (d, 2H), 3.85 (q, 2H), 3.62-3.39 (m, 36H), 3.10 (s, 6H), 3.02 (t, 4H). MS (m/z): 1223.00 [M+H]+. Example 231 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 231, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 231 was prepared following the procedure outlined in Example 215 using terephthalic acid (11.4 mg, 0.0684 mmol) and 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-hydroxyethoxy)ethoxy)-ethyl)benzenesulfonamide (Compound 175.1, 100 mg, 0.136 mmol). Purification by preparative HPLC gave the title compound (9.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86-7.85 (m, 9H), 7.83 (s, 2H), 7.50 (s, 1H), 7.41 (d, 4H), 6.80 (s, 1H), 3.68-3.42 (m, 26H), 3.34 (m, 2H), 3.09-3.01 (m, 12H). MS (m/z): 1135.07 [M+H]+. Example 232 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 232, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 80 mg, 0.110 mmol) and DIEA (42.1 mg, 0.330 mmol) were dissolved in dry DCM (0.5 mL) under N2 and cooled to 0° C. A solution of triphosgene (4.9 mg, 0.0165 mmol) in DCM (0.2 mL) was added dropwise and the resulting solution was warmed to room temperature over 30 minutes. The solvent was removed; the resulting residue was brought up in 4 mL of acetonitrile/water (1:1) solution and filtered. Purification by preparative HPLC gave the title compound (8.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 4H), 7.60 (s, 2H), 7.47 (d, 4H), 6.84 (s, 2H), 3.58-3.42 (m, 24H), 3.12-3.05 (m, 17H). MS (m/z): 1031.96 [M+H]+. Example 233 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 233, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 233 was prepared following the procedures outlined in Example 215 using terephthalic acid (10.4 mg, 0.0628 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 97.2 mg, 0.1255 mmol). Purification by preparative HPLC gave the title compound (38.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.83 (m, 10H), 7.85 (s, 2H), 7.42 (d, 4H), 6.83 (s, 1H), 3.66-3.55 (m, 28H), 3.46-3.39 (m, 11H), 3.12 (s, 7H), 3.04 (t, 4H). MS (m/z): 1223.14 [M+H]+. Example 234 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 234, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 234 was prepared following the procedures outlined in Example 215 using terephthalic acid (13.8 mg, 0.0833 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 121.7 mg, 0.167 mmol). Purification by preparative HPLC gave the title compound (60.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (m, 6H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51 (m, 4H), 6.80 (s, 2H), 4.88-4.75 (m, 4H), 4.75 (d, 2H), 4.74 (m, 2H), 3.85-3.42 (m, 25H), 3.12 (s, 6H), 2.99 (t, 4H). MS (m/z): 1135.11 [M+H]+. Example 235 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235 was prepared following the procedures outlined in Example 232 using N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 56.6 mg, 0.0775 mmol). Purification by preparative HPLC gave the title compound (25.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.75 (s, 2H, 7.65 (t, 2H), 7.53 (m, 4H), 6.83 (s, 2H), 4.89-4.68 (m, 2H), 3.88 (m, 2H), 3.62-3.43 (m, 21H), 3.30-3.27 (m, 6H), 3.11 (s, 7H), 3.03 (t, 4H). MS (m/z): 1031.07 [M+H]+. Example 236 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (5.24 mg, 0.0374 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 54.7 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (27.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88-7.86 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 4.48 (m, 2H), 3.38-3.31 (m, 1H), 3.61-3.42 (m, 17H), 3.35-3.30 (m, 4H), 3.13 (s, 6H), 3.08-3.02 (m, 7H), 1.45 (m, 2H). MS (m/z): 1145.04 [M+H]+. Example 237 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (8.79 mg, 0.0549 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 80.2 mg, 0.110 mmol). Purification by preparative HPLC gave the title compound (37.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.73 (s, 2H), 7.61 (t, 2H), 7.52 (d, 2H), 7.48 (d, 2H), 7.18 (s, 5H), 6.78 (s, 2H), 4.71-4.63 (m, 6H), 4.45-4.40 (m, 2H), 3.81-3.77 (m, 2H), 3.58-3.55 (m, 6H), 3.53-3.50 (m, 14H), 3.47-3.44 (m, 6H), 3.35-3.33 (m, 6H), 3.09 (s, 8H), 3.03 (t, 5H). MS (m/z): 1165.06 [M+H]+. Example 238 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (5.64 mg, 0.402 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 58.8 mg, 0.805 mmol). Purification by preparative HPLC gave the title compound (13.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, J=8 Hz, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.52 (s, 2H), 7.47 (d, J=7 Hz, 2H), 7.18 (s, 5H), 7.78 (s, 2H), 4.77-4.68 (m, 5H), 4.48-4.40 (m, 2H), 3.35-3.28 (m, 2H), 3.56-3.51 (m, 16H), 3.45 (t, J=5 Hz, 5H), 3.35-3.32 (m, 10H), 3.09 (s, 6H), 3.03 (t, J=5 Hz, 3H). MS (m/z): 1145.01 [M+H]+. Example 239 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (12.5 mg, 0.078 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 113.9 mg, 0.156 mmol). Purification by preparative HPLC gave the title compound (48.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, J=8 Hz, 4H), 7.52 (s, 2H), 7.40 (d, J=8 Hz, 4H), 7.18 (s, 4H), 7.69 (s, 2H), 4.70-4.62 (m, 3H), 4.48-4.40) (m, 2H), 3.82-3.76 (m, 2H), 3.58-3.43 (m, 21H), 3.35-3.30 (m, 4H), 3.11-3.06 (m, 11H). MS (m/z): 1165.12[M+H]+. Example 240 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (9.6 mg, 0.057 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 88.6 mg, 0.114 mmol). Purification by preparative HPLC gave the title compound (24.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.94 (t, 1H), 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.53-7.50 (m, 4H), 6.82 (s, 2H), 4.479-4.45 (m, 2H), 4.44 (s, 2H), 3.88-3.84 (m, 2H), 3.62-3.53 (m, 22H), 3.50-3.48 (m, 5H), 3.45-3.40 (m, 9H), 3.13 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.02 [M+H]+. Example 241 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.7 mg, 0.0519 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 80.5 mg, 0.104 mmol). Purification by preparative HPLC gave the title compound (25.7) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 3H), 7.76 (s, 2H), 7.63 (t, 2H), 7.54-7.51 (m, 4H), 6.83 (s, 2H), 4.78-4.73 (m, 4H), 4.49-4.42 (m, 4H), 3.89-3.85 (m, 2H), 3.62-3.53 (m, 22H), 3.51-48 (m, 5H), 3.46-3.38 (m, 9H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.21 [M+H]+. Example 242 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (6.3 mg, 0.0374 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 58.0 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (21.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 3H), 6.84 (s, 1H), 4.772-4.69 (m, 3H), 4.43 (s, 2H), 3.86-3.81 (m, 1H), 3.59-3.53 (m, 16H), 3.49-3.39 (m, 11H), 3.12 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.14 [M+H]+. Example 243 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.4 mg, 0.0.0499 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 77.3 mg, 0.0999 mmol). Purification by preparative HPLC gave the title compound (23.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.81-4.71 (m, 4H), 4.49-4.41 (m, 4H), 3.89-3.83 (m, 2H), 3.60-3.53 (m, 17H), 3.49-3.38 (m, 12H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.09 [M+H]+. Example 244 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 244.1, (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 2000-mL round-bottom flask, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4; 20 g, 54.20 mmol, 1.00 equiv) in ethanol (500 mL). This was followed by the addition of D-(+)-dibenzoyl tartaric acid (19 g, 53.07 mmol, 0.98 equiv), water (160 mL) and ethanol (1440 mL) at 45° C. The resulting solution was stirred for 30 min at 45° C. in an oil bath. After cooling to room temperature over 24 hours, the solids were collected by filtration. The filter cake was dissolved in potassium carbonate (saturated.) and was extracted with 2×500 mL of ethyl acetate. The combined organic layers were washed with 2×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. This gave (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a colorless oil. Intermediate 224.1 (alternate synthesis), (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 244.1) was converted to (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1) following the procedures outlined for the racemic substrates in Example 1 and the reduction described in Example 170. Compound 244, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 244 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (6.5 mg, 0.0471 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 72.9 mg, 0.0941 mmol). Purification by preparative HPLC gave the title compound (34.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 6.83 (s, 2H), 4.48 (d, 2H), 3.90-3.85 (m, 2H), 3.59-3.55 (m, 17H), 3.51-3.43 (m, 14H), 3.31-3.23 (m, 6H), 3.14 (s, 7H), 3.04 (m, 9H), 1.43 (m, 4H). MS (m/z): 1232.99 [M+H]+. Example 245 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 79.1 mg, 0.102 mmol) and 1,4-diisocyanatobenzene (8.2 mg, 0.051 μmol). Purification by preparative HPLC gave the title compound (43.2 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51-7.46 (m, 4H), 7.17 (s, 4H), 6.78 (s, 2H), 4.44-4.39 (m, 2H), 3.82-3.77 (m, 2H), 3.61 (s, 11H), 3.57-3.53 (m, 13H), 3.49-3.48 (m, 6H), 3.44 (t, 5H), 3.35-3.29 (m, 6H), 3.09 (s, 7H), 3.03 (t, 4H). MS (m/z): 1253.01 [M+H]+. Compound 246 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246 was prepared following the procedures outlined in Example 215 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 65.1 mg, 0.0841 mmol) and terephthalic acid (6.98 mg, 0.042 mmol). Purification by preparative HPLC gave the title compound (19.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89-7.85 (m, 6H), 7.52 (s, 2H), 7.43 (d, 4H), 6.81 (s, 2H), 4.73-4.66 (m, 3H), 4.47-4.42 (m, 1H), 3.84-3.79 (m, 2H), 3.64-3.59 (m, 14H), 3.57-3.54 (m, 11H), 3.46-3.39 (m, 8H), 3.12 (s, 6H), 3.03 (t, 4H). MS (m/z): 1233.04 [M+H]+. Example 247 N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247, N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247 was prepared following the procedure outlined in Example 215 using 4-amino-4-oxobutanoic acid (7.6 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0646 mmol). Purification by preparative HPLC gave the title compound (27.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 1H), 7.75 (s, 1H), 7.64 (t, 1H), 7.55 (s, 1H), 7.51 (d, 1H), 6.84 (s, 1H), 4.78-4.71 (m, 2H), 4.55-4.48 (m, 1H), 3.81-3.75 (m, 1H), 3.63-3.55 (m, 10H), 3.51-4.45 (m, 5H), 3.44-3.41 (m, 3H), 3.38-3.31 (m, 3H), 3.13 (s, 3H), 3.07-3.02 (t, 2H), 2.48-2.43 (m, 4H). MS (m/z): 645.32 [M+H]+. Example 248 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (7.64 mg, 0.545 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 84.4 mg, 0.109 mmol). Purification by preparative HPLC gave the title compound (43.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.71 (m, 4H), 3.89-3.85 (dd, 2H), 3.59-3.56 (m, 17H), 3.49-3.43 (m, 14H), 3.28-3.23 (m, 5H), 3.14 (s, 7H), 3.09-3.04 (m, 9H), 1.42 (s, 4H). MS (m/z): 1233.03 [M+H]+. Example 249 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (7.95 mg, 0.0495 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 76.7 mg, 0.099 mmol). Purification by preparative HPLC gave the title compound (39.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.40 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.88-4.83 (m, 4H), 4.65-4.50 (m, 2H), 3.81-3.77 (m, 2H), 3.61-3.59 (m, 9H), 3.58-3.54 (m, 11H), 3.53-3.48 (m, 5H), 3.47-3.42 (m, 5H), 3.35-3.30 (m, 4H), 3.11 (s, 6H), 3.07 (t, 4H). MS (m/z): 1253.04 [M+H]+. Example 250 (S or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250, (S— or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250 was prepared following the procedures outlined in Example 232 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 225.2, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (26.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.72 (m, 5H), 4.48-4.42 (m, 2H), 3.87-3.83 (m, 2H), 3.58-3.54 (m, 17H), 3.49-3.43 (m, 15H), 3.24-3.22 (m, 6H), 3.12 (s. 6H), 3.08 (t, 4H). MS (m/z): 1118.96 [M+H]+. Example 251 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 88.1 mg, 0.114 mmol) and 1,4-diisocyanatobutane (7.9 mg, 0.0569 mmol). Purification by preparative HPLC gave the title compound (56.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.77-4.74 (m, 4H), 4.50-4.46 (m, 2H), 3.89-3.84 (m, 2H), 3.61-3.56 (m, 17H), 3.50-3.43 (m, 14H), 3.26-3.23 (m, 6H), 3.14 (s, 7H), 3.09-3.04 (m, 10H), 1.48 (s, 4H). MS (m/z): 1233.01 [M+H]+. Example 252 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252 was prepared following the procedures outlined in Example 208 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 45.2 mg, 0.0584 mmol) and 1,4-diisocyanatobenzene (4.7 mg, 0.0292 mmol). Purification by preparative HPLC gave the title compound (20.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.39 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.72-4.61 (m, 4H), 4.46-3.99 (m, 1H), 3.81-3.73 (m, 1H), 3.62-3.42 (m, 33H), 3.35-3.33 (m, 5H), 3.09-3.06 (m, 13H). MS (m/z): 1252.95 [M+H]+. Topological Polar Surface Area Data Topological Polar Surface Area (tPSA) values for representative compounds in the disclosure are shown in Table 7, below. The tPSA values were calculated using the method of Ertl et al., Journal of Medicinal Chemistry, 43:3714-3717 (2000). TABLE 7 tPSA Values of Compounds Topological polar Example # surface area ({acute over (Å)}2) Example 01 125 Example 02 125 Example 03 125 Example 04 125 Example 05 125 Example 06 125 Example 07 121 Example 08 154 Example 09 132 Example 10 125 Example 11 125 Example 12 125 Example 13 125 Example 14 125 Example 15 124 Example 16 177 Example 17 134 Example 18 116 Example 19 116 Example 20 116 Example 21 238 Example 22 116 Example 23 116 Example 24 177 Example 25 238 Example 26 116 Example 27 134 Example 28 112 Example 29 229 Example 30 137 Example 31 137 Example 32 137 Example 33 137 Example 34 119 Example 35 119 Example 36 119 Example 37 119 Example 38 112 Example 39 112 Example 40 119 Example 41 291 Example 42 291 Example 43 309 Example 44 318 Example 45 199 Example 46 387 Example 47 404 Example 48 224 Example 49 417 Example 50 297 Example 51 213 Example 52 213 Example 53 213 Example 54 213 Example 55 213 Example 56 213 Example 57 241 Example 58 184 Example 59 220 Example 60 147 Example 61 134 Example 62 134 Example 63 215 Example 64 134 Example 65 123 Example 66 147 Example 67 161 Example 68 117 Example 69 117 Example 70 134 Example 71 208 Example 72 154 Example 73 134 Example 74 174 Example 75 178 Example 76 125 Example 77 238 Example 78 121 Example 79 123 Example 80 136 Example 81 242 Example 82 112 Example 83 191 Example 84 190 Example 85 123 Example 86 228 Example 87 270 Example 88 270 Example 89 159 Example 90 189 Example 91 147 Example 92 147 Example 93 74 Example 94 157 Example 95 115 Example 96 115 Example 97 312 Example 98 312 Example 99 235 Example 100 212 Example 101 202 Example 102 487 Example 103 212 Example 104 500 Example 168 251 Example 169 214 Example 170 270 Example 171 86 Example 172 270 Example 173 185 Example 174 243 Example 175 211 Example 176 233 Example 177 211 Example 178 220 Example 179 219 Example 180 229 Example 181 229 Example 182 229 Example 183 211 Example 184 202 Example 185 214 Example 186 237 Example 187 238 Example 188 211 Example 189 231 Example 190 211 Example 191 211 Example 192 273 Example 193 231 Example 194 221 Example 195 220 Example 196 211 Example 197 229 Example 198 238 Example 199 229 Example 200 211 Example 201 220 Example 202 235 Example 203 235 Example 204 290 Example 205 251 Example 206 177 Example 207 251 Example 208 253 Example 209 253 Example 210 500 Example 211 227 Example 212 445 Example 213 347 Example 214 176 Example 215 344 Example 216 229 Example 217 441 Example 218 251 Example 219 280 Example 220 280 Example 221 192 Example 222 270 Example 223 270 Example 224 270 Example 225 270 Example 226 270 Example 227 270 Example 228 229 Example 229 270 Example 230 229 Example 231 211 Example 232 194 Example 233 229 Example 234 211 Example 235 194 Example 236 235 Example 237 235 Example 238 235 Example 239 235 Example 240 270 Example 241 270 Example 242 270 Example 243 270 Example 244 253 Example 245 253 Example 246 229 Example 247 158 Example 248 253 Example 249 253 Example 250 212 Example 251 253 Example 252 253 Pharmacological Data 1. Pharmacological Test Example 1 Cell-Based Assay of NHE-3 Activity. Rat NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Tsien (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 mM at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 uM BCECF-AM (Invitrogen). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 5 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3) and 0-30 uM test compound, and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem 538 nm). Initial rates were plotted as the average 3-6 replicates, and pIC50 values were estimated using GraphPad Prism. The inhibitory data of many of the example compounds illustrated above are shown in Table 8, below. TABLE 8 Inhibitory data of compounds against rat NHE-3 rat NHE-3 Example # Average pIC50 1 Example 171 <5.0 Example 174 <5.0 Example 175 <5.0 Example 223 <5.0 Example 231 <5.0 Example 232 <5.0 Example 233 <5.0 Example 235 <5.0 Example 30 5 to 6 Example 31 5 to 6 Example 52 5 to 6 Example 54 5 to 6 Example 63 5 to 6 Example 64 5 to 6 Example 176 5 to 6 Example 196 5 to 6 Example 209 5 to 6 Example 219 5 to 6 Example 234 5 to 6 Example 28 6 to 7 Example 29 6 to 7 Example 45 6 to 7 Example 46 6 to 7 Example 60 6 to 7 Example 65 6 to 7 Example 66 6 to 7 Example 67 6 to 7 Example 68 6 to 7 Example 69 6 to 7 Example 97 6 to 7 Example 100 6 to 7 Example 102 6 to 7 Example 104 6 to 7 Example 169 6 to 7 Example 170 6 to 7 Example 178 6 to 7 Example 207 6 to 7 Example 210 6 to 7 Example 211 6 to 7 Example 213 6 to 7 Example 217 6 to 7 Example 218 6 to 7 Example 225 6 to 7 Example 228 6 to 7 Example 47 >7 Example 81 >7 Example 87 >7 Example 88 >7 Example 98 >7 Example 103 >7 Example 172 >7 Example 177 >7 Example 191 >7 Example 195 >7 Example 200 >7 Example 201 >7 Example 202 >7 Example 203 >7 Example 204 >7 Example 205 >7 Example 206 >7 Example 208 >7 Example 212 >7 Example 215 >7 Example 216 >7 Example 222 >7 Example 224 >7 Example 229 >7 Example 230 >7 Example 236 >7 Example 237 >7 Example 244 >7 Example 250 >7 Example 251 >7 1 pIC50 is the negative log the IC50 value (an IC50 value of 1 micromolar corresponds to a pIC50 value of 6.0) 2. Pharmacological Test Example 2 Parallel Artificial Membrane Permeability Assay (PAMPA). The model consists of a hydrophobic filter material coated with a mixture of lecithin/phospholipids creating an artificial lipid membrane. BD Gentest PAMPA 96-well plates (cat #353015) are warmed for 1 hr at room temperature. 1 mL of 20 uM control compounds (pooled mix of 10 mM atenolol, ranitidine, labetalol, and propranolol) in transport buffer (10 mM HEPES in HBSS pH 7.4) are prepared along with 1 mL of 20 uM test compounds in transport buffer. The PAMPA plates are separated, and 0.3 mL of compound are added in duplicate to apical side (bottom/donor plate=“AP”), and 2 mL buffer are placed in the basolateral chamber (top/receiver plate=“BL”). The BL plate is placed on the AP plate and incubated for 3 hrs in 37° C. incubator. At that time, samples are removed from both plates, and analyzed for compound concentration using LC/MS. A “Pe” (effective permeability) value is calculated using the following formula. Pe=(−ln [1−CA(t)/Ceq])/[A*(1/VD±1/VA)*t where CA=concentration in acceptor well, CD=concentration in donor well VD=donor well volume (mL), VA=acceptor well volume (mL) A=filter area=0.3 cm2, t=transport time (seconds) Ceq=equilibrium concentration=[CD(t)*VD+CA(t)*VA]/(VD+VA) Pe is reported in units of cm/sec×10−6. Results from PAMPA testing are shown in Table 9. TABLE 9 Papp values as determined using the PAMPA assay Avg Papp, A→ B, Example # cm/sec × 10−6 Example 01 0.53 Example 03 0.8 Example 07 0.5 Example 08 0.2 Example 13 0.3 Example 14 0.4 Example 15 0.05 Example 16 <0.02 Example 23 <0.04 Example 24 0.03 Example 26 <0.02 Example 27 <0.02 Example 30 0.56 Example 31 0.61 Example 34 0.2 Example 35 0.17 Example 36 0.2 Example 37 0.1 Example 38 0.1 Example 44 0.1 Example 47 <0.01 Example 48 0.9 Example 51 0.2 Example 52 1.61 Example 53 1.6 Example 54 1.3 Example 56 0.5 Example 57 1.65 Example 58 0.2 Example 59 0.1 Example 60 0.99 Example 61 0.1 Example 63 0.43 Example 68 0.35 Example 69 0.3 Example 70 0.4 Example 71 0.45 Example 72 0.2 Example 73 0.27 Example 74 0.45 Example 75 0.4 Example 76 0.2 Increasing values of tPSA are typically associated with lower permeability. FIG. 1 illustrates the Relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of Example compounds. Compounds with higher tPSA values trend toward lower permeability. 3. Pharmacological Test Example 3 Pharmacodynamic Model: Effect of Test Compounds on Fluid Content of Intestinal Compartments. Normal female Sprague Dawley rats, 7 weeks old, were acclimated for at least 2 days. The animals were fed ad lib through the experiment. Groups of 5 rats were orally gavaged with 1.5 mL of water containing a negative control compound or test compounds, adjusted to a concentration that results in a dose of 10 mg/kg. Six hours after dosing, rats were euthanized with isofluorane. The cecum and colon were ligated and then removed. After a brief rinse in saline and pat-drying, the segments were weighed. The segments were then opened, and the contents collected and weighed. The collected contents were then dried, and weighed again. The % water content was reported as 100×((Ww−Wd)/Ww) where Ww is the weight of the wet contents, and Wd is the weight of the contents after drying. The differences between groups are evaluated by one way ANOVA with Bonferroni post tests. Examples are shown in FIGS. 2A and 2B (wherein rats were dosed orally with 10 mg/kg of compound (Example or Control), and then after 6 hours, cecum and colon contents were removed, weighed and dried, and the % water in the contents was determined: *, P<0.05 and ***, P<0.01 compared to control in ANOVA analysis). 4. Pharmacological Test Example 4 Determination of Compound Cmax and AUC. Sprague-Dawley rats were orally gavaged with test article (2.5 mg/kg) and serum was collected at 0.5, 1, 2 and 4 h. Serum samples were treated with acetonitrile, precipitated proteins removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. Table 10 illustrates data from the pharmacokinetic profiling of selected example compounds. All compounds were orally dosed at the dosage shown, and pharmacokinetic parameters determined as described in the text. TABLE 10 Pharmacokinetic Profiling of Selected Example Compounds Actual Oral Dose Cmax AUC Example (mg/kg) (ng/mL) (ng × hr/mL) Example 01 2.1 21 53 Example 16 1.6 71 159 Example 31 1.3 11 56 Example 35 2.2 2.4 5 Example 50 2.3 93 242 Example 52 4.6 14 9 Example 55 2.2 9 23 Example 60 2.4 2 0 Example 63 2.4 0 0 Example 211 0.7 <2.3 <3.0 Example 212 1.5 <2.7 <4.4 Example 213 9.5 <5.0 <5.0 Example 214 2.6 <5.0 <5.0 Example 215 7.7 <2.0 <2.0 Example 216 1.9 <4.0 <8.3 Example 217 9.1 <10.0 <10.0 Example 204 10.9 <2.0 <2.0 Example 218 9 <1.0 <1.0 Example 169 11 <3.5 <4.0 Example 205 10.7 <2.0 <2.0 Example 225 27 <3.5 <5.3 Example 226 31 <3.0 <5.0 Example 172 26 <2.0 <2.0 Example 228 23 <5.0 <5.0 Example 230 17 <5.0 <5.0 Example 173 28 23 19 Example 174 27 <5.4 <5.0 Example 208 12 <5.0 <5.0 Example 231 23 <2.5 <3.0 Example 232 17 <2.0 <2.0 Example 233 19 <2.6 <6.8 Example 234 22 <2.0 <2.0 Example 235 11 <5.0 <5.0 Example 175 28 8 6 Example 177 14 <3.2 <4.0 Example 178 18 <2.0 <2.0 Example 179 27 <16.0 <35.0 Example 180 25 <10.0 <19.0 Example 181 28 <2.0 <2.0 Example 185 17 <2.0 <2.0 Example 186 15 <3.4 <5.0 Example 244 16 <7.0 <15.0 Example 245 21 <2.0 <2.0 5. Pharmacological Test Example 5 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: CRF/ESRD Model. Male Sprague-Dawley rats with subtotal (⅚th) nephrectomy, 7 weeks old and weighing 175-200 g at surgery time, are purchased from Charles River Laboratories. The animals are subjected to acclimation for 7 days, and randomly grouped (using random number table) before proceeding to experiments. During acclimation, all animals are fed with base diet HD8728CM. The rats are housed in holding cages (2/cage) during the acclimation period and the time between sample collections. The rats are transferred to metabolic cages on the days of sample collections. Food and water is provided ad libitum. Chronic renal failure is induced in the rats by subtotal (⅚th) nephrectomy (Nx) followed by intravenous (IV) injection of adriamycin (ADR) at 2 weeks post-nephrectomy, at a dose of 3.5 mg/kg body weight. Animals are then randomized into control and treatment groups with 10 rats per group. Rats in untreated group are fed with base diet and rats in the treatment groups are fed the same chow supplemented with NHE-3 inhibitor/fluid holding polymer at various doses. All the groups are maintained for 28 days. Serum samples are collected at day (−1) (1 days before ADR injection), days 14 and 28 post ADR treatment. Twenty four hour urine and fecal samples are collected at day (−1), days 14 and 28 post ADR treatment and stored at −20° C. for later analysis. Body weight, food and water consumption are measured at the same time points as urine collections. Serum and urine chemistry (Na, K, Ca, Cl) are determined using an ACE Clinical Chemistry System (ALFA WASSER MANN Diagnostic Technologies, LLC). Fecal electrolyte (Na, K, Ca, Cl) excretions are determined by IC. Fluid balance are also determined via amount of fluid intake (in drinking water) subtracted by combined fecal water amount and urine volume. Tissues (heart, kidney and small intestine) are harvested at the end of experiments for later histopathological analysis. The third space (pleural fluids and ascites) body fluid accumulation are scored semi-quantitatively as follows: grade 0, no fluid accumulation; grade 1, trace amount of fluids; grade 2, obvious amount of fluids; grade 3, both cavities full of fluids; grade 4, fluids overflowed once the cavities are opened. Each score of body fluid accumulation is confirmed and agreed on by 2 investigators. Animals treated with NHE-3 inhibitor/fluid holding polymer show decreased serum aldosterone, decreased 24 hr urine volume and decreased urine K excretion, and increased urine Na excretion compared to no treatment group. Treated animals also have increased fecal Na and fluid excretion, compared to control group. Compared to untreated rats which show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 5 g per day. Treatment of NHE-3 inhibitor/fluid holding polymer in CRF rats is associated with less edema in heart, kidney and small intestine tissues, less hypertrophy in heart, less third space fluid accumulation, and lower body weight at the end of experiment compared to untreated group. 6. Pharmacological Test Example 6 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Congestive Heart Failure Model. CHFs are introduced to male Sprague Dawley rats, 7-8 weeks old fed ad lib regular diet and ad lib 10% ethanol in drinking water, and gavaged with a daily dose of 6.3 mg cobalt acetate for 7 days. Then CHF rats are gavaged with a daily dose of 4 mg of furosemide for 5 days, inducing resistance to furosemide diuretic effects. The rats are then randomly divided into 2 groups, control and treatment, and the treatment group administered NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer have decreased serum aldosterone levels, decreased 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to control group. Animals treated with NHE-3 inhibitor/fluid holding polymer have, for example, increased fecal Na and fluid excretion. Compared to untreated rats, which show a positive fluid balance of, for example, 4 g per day, treated animals demonstrate a fluid loss of 5 g per day. 7. Pharmacological Test Example 7 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Hypertension Model. Male Dahl salt-sensitive rats are obtained from Harlan Teklad. After acclimation, animals are randomly grouped and fed diet containing 8% NaCl±NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment systolic BP, serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer would show decreased systolic BP, serum aldosterone levels, 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to no treatment group. Animals treated with NHE-3 inhibitor/fluid holding polymer would also show increased fecal fluid excretion. Compared to untreated rats which would show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 2 g per day. 8. Pharmacological Test Example 8 Na Transport Inhibition Study on Colonic Tissues. Immediately following euthanasia and exsanguinations of the rats, the entire distal colon is removed, cleansed in ice-cold isotonic saline, and partially stripped of the serosal muscularis using blunt dissection. Flat sheets of tissue are mounted in modified Ussing chambers with an exposed tissue area of 0.64 cm2. Transepithelial fluxes of 22Na+ (Perkin Elmer Life Sciences, Boston, Mass.) are measured across colonic tissues bathed on both sides by 10 ml of buffered saline (pH 7.4) at 37° C. and circulated by bubbling with 95% O2-5% CO2. The standard saline contains the following solutes (in mmol/l): 139.4 Na+, 5.4 K, 1.2 Mg2+, 123.2 Cl, 21.0 HCO3−, 1.2 Ca2+, 0.6 H2PO4−, 2.4 HPO2−, and 10 glucose. The magnitude and direction of the net flux (Jnet Na) is calculated as the difference between the two unidirectional fluxes (mucosal to serosal, Jms Na and serosal to mucosal, Jsm Na) measured at 15-min intervals for a control period of 45 min (Per I), under short-circuit conditions. In some series, Per I is followed by a second 45-min flux period (Per II) to determine the acute effects of NHE inhibitors. 9. Pharmacological Test Example 9 Pharmacodynamic Model: Effect of Test Compounds and FAP on Consistency and Form of Rat Stools. Normal rats are given a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer mixed in their diet at escalated doses. Distilled water is available at libitum. Clinical data monitored are body weight, food intake, water intake, fecal and urinary output. Urinary Na, K and creatinine are measured by a Clinical Analyzer (VetAce; Alfa Wassermann Diagnostic Technologies, LLC, West Caldwell, N.J.). The consistency of the stools expelled within 24 h after the administration of each drug or vehicle is reported as follows: when the feces are unformed, i.e., muddy or watery, this is judged to be diarrhea and the percentage diarrhea is reported as the ratio of the number of animals producing unformed stools to the number tested. All of the feces is collected just after each evacuation and put into a covered vessel prepared for each animal in order to prevent the feces from drying. To investigate the duration of activity of each drug, the feces collected over each 8-h period is dried for more than 8 h at 70° C. in a ventilated oven after the wet weight is measured. The fecal fluid content is calculated from the difference between the fecal wet weight and the dry weight. Fecal Na and K is analyzed by ion Chromatography (Dionex) after acid digestion of the feces specimen. 10. Pharmacological Test Example 10 Effect of Test Compounds and FAP on CKD Rats. Male Sprague-Dawley rats (275-300 g; Harlan, Indianapolis, Ind.) are used and have free access to water and Purina rat chow 5001 at all times. A 5/6 nephrectomy is performed to produce a surgical resection CRF model and the treatment study is performed 6 wk after this procedure. In one control group, CRF rats are given access to Purina rat chow; in treated groups, CRF rats are given access to Purina rat chow mixed with the article, i.e. a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer. The treatment period is 30 days. Systolic blood pressure is monitored in all animals with the use of a tail sphygmomanometer (Harvard Apparatus, South Natick, Mass.). All rats are euthanatized by an intraperitoneal injection of pentobarbital (150 mg/kg body wt), and blood is collected by cardiac puncture for serum Na+ (Roche Hitachi Modular P800 chemistry analyzer; Roche Diagnostics, Indianapolis, Ind.) and creatinine determination (kit 555A; Sigma Chemical, St. Louis, Mo.). Sodium and creatinine is also determined in a urine specimen collected over 24 h immediately before euthanasia. 11. Pharmacological Test Example 11 Effect of Test Compounds on Intestinal Fluid Accumulation in Suckling Mice. Institute of Cancer Research/Harlan Sprague-Dawley (ICR-HSD) suckling mice, 2 to 4 days old (2.1±1.0 g), are dosed orally with 0.1 mL of test solution (vehicle (1 mmol/L HEPES) or NHE inhibitor dissolved in vehicle). After dosing, the mice are kept at room temperature for 3 hours, then killed, the intestinal and body weights measured, and a ratio of the intestinal weight to remaining body weight is calculated. A ratio of 0.0875 represents one mouse unit of activity, indicating significant fluid accumulation in the intestine. 12. Pharmacological Test Example 12 Determination of Water-Absorbing Capacity. This test is designed to measure the ability of a polymer to absorb 0.9% saline solution against a pressure of 50 g/cm2 or 5 kPa. The superabsorbent is put into a plastic cylinder that has a screen fabric as bottom. A weight giving the desired pressure is put on top. The cylinder arrangement is then placed on a liquid source. The superabsorbent soaks for one hour, and the absorption capacity is determined in g/g. This test principle is described in the European Disposables And Nonwovens Association (EDANA) standard EDANA ERT 442—Gravimetric Determination of Absorption under Pressure or Absorbency Under Load (AUL), or in the AUL-test found in column 12 in U.S. Pat. No. 5,601,542, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Any of these two methods can be used, or the simplified method described below. Equipment: A plastic cylinder having a screen fabric made of steel or nylon glued to the bottom. The fabric can have mesh openings of 36 μm (designated “400 mesh”), or in any case smaller than the smallest tested particles. The cylinder can have an internal diameter of 25.4 mm, and a height of 40 mm. A larger cylinder can also be used, such as the apparatus in the EDANA standard ERT 442—Gravimetric Determination of Absorption Under Pressure. A plastic piston or spacer disc with a diameter slightly smaller than the cylinder's inner diameter. For a cup with a 25.4 mm inner diameter the disc can be 25.2 mm wide, 8 mm high, and weigh about 4.4 g. A weight that exerts a 50 g/cm2 pressure on the superabsorbent (in combination with the piston). For a 25.4 mm inner diameter cylinder (=5.067 cm2) and a 4.4 g piston, the weight should have a mass of 249 g. Glass or ceramic filter plate (porosity=0). The plate is at least 5 mm high, and it has a larger diameter than the cylinder. Filter paper with a larger diameter than the cylinder. Pore size<25 μm. Petri dish or tray 0.9% NaCl solution Procedure: Put the glass filter plate in a Petri dish, and place a filter paper on top. Fill the Petri dish with 0.9% NaCl solution—up to the edge of the filter plate. Weigh a superabsorbent sample that corresponds to a 0.032 g/cm2 coverage on the cylinder's screen fabric 0.16 g for a cylinder with a 25.4 mm inner diameter). Record the exact weight of the sample (A). Carefully distribute the sample on the screen fabric. Place the plastic piston on top of the distributed sample, and weigh the cylinder assembly (B). Then mount the weight onto the piston. Place the assembly on the filter paper, and let the superabsorbent soak for 60 minutes. Remove the weight, and weigh the assembly with the swollen superabsorbent (C). Calculate the AUL in g/g according to this formula: C-B. 13. Pharmacological Test Example 13 Pharmacodynamic Model: Effect of Test Compounds on Fecal Water Content. Normal female Sprague Dawley rats (Charles-River laboratories international, Hollister, Calif.), 7-8 weeks old with body weight 175-200 g were acclimated for at least 3 days before proceeding to experiments. The animals were provided food (Harlan Teklad 2018c) and water ad lib. through the experiment. Animals were randomly grouped with 6 rats per group. The experiments were initiated by orally dosing test compounds at 3 mg/kg in volume of 10 ml/kg. Rats from control group were gavaged with the same volume of vehicle (water). After dosing, rats were placed in metabolic cages for 16 hrs (overnight). Food and water consumption were monitored. After sixteen hours, feces and urine were collected. The percent of fecal water was measured by weighing fecal samples before and after drying. Representative data of % fecal water content are shown in Table 11 (data are expressed as means, with 6 animals per data point). The differences between control and treated groups were evaluated by one way ANOVA with Dunnett post tests. Results are significant if p<0.05. TABLE 11 % Fecal % Fecal water (% of Example water control) Significant? 224 65% 125% Y 234 58% 117% Y 239 58% 114% Y 178 59% 118% Y 237 60% 120% Y 238 60% 121% Y 177 60% 121% Y 244 61% 118% Y 236 64% 128% Y 250 60% 120% Y 200 62% 124% Y 201 63% 127% Y 202 63% 134% Y 203 61% 130% Y 14. Pharmacological Test Example 14 Pharmacodynamic Model: Effect of Test Compounds on Urinary Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in reduced levels of sodium in the urine. To test this, the protocols in Example 13 were repeated, but urine was collected in addition to feces. Urine sodium levels were analyzed by ion chromatography (IC), and the amount of sodium excreted in the urine was corrected for variations in sodium intake by measuring food consumption. In addition, test compounds were administered at several dose levels to demonstrate a dose-response relationship. As shown in FIGS. 3A and 3B for Examples 201, 244, and 260, where as rats excrete about half the sodium they consume in urine, in rats treated with increasing doses of NHE-3 inhibitor, the amount of sodium excreted in the urine diminishes significantly and dose dependently. 15. Pharmacological Test Example 15 Pharmacodynamic Model: Dose Dependent Effect of Test Compound on Fecal Water Content. Rats were monitored for fecal water content as in Example 13, and the test compound was administered at several dose levels to demonstrate a dose-response relationship. As shown in FIG. 4, in rats treated with increasing doses of the NHE-3 inhibitor tested (i.e., Example 87), the fecal water content increased significantly and dose dependently. 16. Pharmacological Test Example 16 Pharmacodynamic Model: Addition of a Fluid Absorbing Polymer to Chow. Rats were monitored for fecal water content as in Example 13, with the addition of a second group that were fed chow with the addition of 1% Psyllium to their diet. In addition to fecal water and urinary sodium, fecal form was monitored on a scale of 1-5, where 1 is a normal pellet, 3 indicates soft and unformed pellets, and 5 indicates watery feces. As shown in FIGS. 5A, 5B and 5C, supplementing the diet with Psyllium resulted in a slight reduction of fecal stool form, but without impacting the ability of the test compound (i.e., Example 224) to increase fecal water content or decrease urinary sodium. 17. Pharmacological Test Example 17 Pharmacodynamic Model: Effect of Test Compounds on Acute Stress-Induced Visceral Hypersensitivity in Female Wistar Rats. Female Wistar rats weighing 220-250 g were prepared for electromyography. The animals were anaesthetized, and three pairs of nichrome wire electrodes were implanted bilaterally in the striated muscles at 3 cm laterally from the midline. The free ends of electrodes were exteriorised on the back of the neck and protected by a glass tube attached to the skin. Electromyographic recordings (EMG) were begun 5 days after surgery. The electrical activity of the abdominal striated muscles were recorded with an electromyograph machine (Mini VIII; Alvar, Paris, France) using a short time constant (0.03 sec.) to remove low-frequency signals (<3 Hz). Partial restraint stress (PRS), a relatively mild stress, was performed as follows. Briefly, animals were lightly anaesthetized with ethyl-ether, and their freeholders, upper forelimbs and thoracic trunk were wrapped in a confining harness of paper tape to restrict, but not prevent their body movements and placed in their home cage for 2 hours. Control sham-stress animals were anaesthetized but not wrapped. PRS was performed between 10:00 and 12:00 AM. Colorectal distension (CRD) was accomplished as follows: rats were placed in a plastic tunnel, where they were not allowed to move or escape daily during 3 consecutive days (3 h/day) before any CRD. The balloon used for distension was 4 cm in long and made from a latex condom inserted in the rectum at 1 cm of the anus and fixed at the tail. The balloon, connected to a barostat was inflated progressively by steps of 15 mmHg, from 0, 15, 45 and 60 mmHg, each step of inflation lasting 5 min. CRD was performed at T+2h15 as a measure of PRS induced visceral hyperalgesia test compound or vehicle. To determine the antinociceptive effect of test compounds on stress-induced visceral hypersensitivity, test compounds were administered 1 h before CRD in 6 groups of 8 female rats. For each parameter studied (the number of abdominal contractions for each 5-min period during rectal distension) data is expressed as mean±SEM. Comparisons between the different treatments were performed using an analysis of variance (ANOVA) followed by a Dunnett post test. The criterion for statistical significance is p<0.05. FIG. 6 shows the results of this test using the compound illustrated in Example 224 dosed orally at 10 mg/kg, and shows that at 45 and 60 mm Hg, inhibition of NHE-3 in rats surprisingly reduces visceral hypersensitivity to distension (p<0.05). 18. Pharmacological Test Example 18 Pharmacodynamic Model: Effect of Test Compounds on Fecal Sodium Levels. It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in increase levels of sodium in the feces. To test this, the protocols in Example 13 were repeated. After drying of feces to determine water content, 1M HCl was added to dried ground feces to a concentration of 50 mg/mL and extracted at room temperature on rotator for 5 days. Sodium content was analyzed by ion chromatography (IC). As shown in FIGS. 7A and 7B for Example 224, in rats treated with an NHE-3 inhibitor, the amount of sodium excreted in the feces significantly (p<0.05 by t-test). 19. Pharmacological Test Example 19 Determination of Compound Remaining in Feces. Sprague-Dawley rats were orally gavaged with test article. A low dose of compound (0.1 mg/kg) was selected so that feces would remain solid and practical to collect. For both Examples 202 and 203, three rats were dosed, and following dosage of compounds, the rats were placed in metabolic cages for 72 hours. After 72 hours, fecal samples were recovered and dried for 48 hours. Dried fecal samples were ground to a powdered from, and for each rat, 10 replicates of 50 mg samples were extracted with acetonitrile. Insoluble materials were removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. The amount of compound actually dosed was determined by LC/MS/MS analysis of the dosing solutions. The total amount of compound present in the 72-hour fecal samples was compared to the total amount of compound dosed, and reported as percentage of total dose recovered. The results, shown in Table 12, demonstrate near quantitative recovery of Examples 202 and 203 in 72-hour fecal samples. TABLE 12 Recovery of dosed compounds from 72-hour fecal samples % Recovery ± SD Example 202 Example 203 Rat 1 93.8 ± 11.8 100.3 ± 6.7 Rat 2 90.5 ± 5.5   75.8 ± 8.2 Rat 3 92.4 ± 10.6 104.4 ± 7.1 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 13826186 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open 514/408 Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology
nasdaq:ardx Ardelyx Aug 9th, 2016 12:00AM Jan 8th, 2015 12:00AM https://www.uspto.gov?id=US09408840-20160809 Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorder The present disclosure is directed to compounds of the structure (X): CoreL-NHE)n  (X) wherein: n is 2 or 3; NHE has the structure wherein: R1 is H or —SO2—NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker; and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH— and —NHSO2—; and Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted benzene, pyridinyl, a polyethylene glycol linker and —(CH2)1-6O(CH2)1-6—, and methods of using such compounds for the treatment of irritable bowel syndrome, chronic kidney disease and end-stage renal disease. 9408840 1. A method for treating irritable bowel syndrome in a subject in need thereof comprising administering a compound, or a pharmaceutically acceptable salt thereof, wherein the compound has the following structure (X): CoreL-NHE)n  (X) wherein: n is 2; NHE has the structure wherein: R1 is H or —SO2-NR7R8—; R2 is selected from H, —NR7(CO)R8, —SO2—NR7R8— and —NR7R8; R3 is hydrogen; R7 is hydrogen; R8 is a bond linking to L; L is a polyalkylene glycol linker; and Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, NHC(═O)—, —NHC(═O)NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-6 alkylene, optionally substituted phenyl, pyridinyl, a polyethylene glycol linker and —(CH2)1-6O(CH2)1-6—. 2. A method of claim 1, wherein the NHE has one of the following structures: or pharmaceutically acceptable salt thereof. 3. The method of claim 1, or a pharmaceutically acceptable salt thereof, wherein L is a polyethylene glycol linker. 4. The method of claim 1, or a pharmaceutically acceptable salt thereof, wherein the Core is selected from the group consisting of: 5. The method of claim 1, wherein the compound is selected from: 6. The method of claim 1, wherein the pharmaceutically acceptable salt is selected from: 6 CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation application U.S. patent application Ser. No. 13/804,752, filed Mar. 14, 2013, allowed, which is a continuation of U.S. patent application Ser. No. 13/172,394, filed Jun. 29, 2011, now U.S. Pat. No. 8,541,488, which is a continuation of International PCT Patent Application No. PCT/US2009/069852, filed on Dec. 30, 2009, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/141,853, filed Dec. 31, 2008, U.S. Provisional Patent Application No. 61/169,509, filed Apr. 15, 2009, and U.S. Provisional Patent Application No. 61/237,842, filed Aug. 28, 2009. This application is also related to U.S. patent application Ser. No. 13/826,186, allowed, which is a divisional application of U.S. patent application Ser. No. 13/172,394. The contents of each of the foregoing applications are hereby incorporated by reference in their entirety. BACKGROUND 1. Field The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. 2. Description of the Related Art Disorders Associated with Fluid Retention and Salt Overload According to the American Heart Association, more than 5 million Americans have suffered from heart failure, and an estimated 550,000 cases of congestive heart failure (CHF) occur each year (Schocken, D. D. et al., Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group: Circulation, v. 117, no. 19, p. 2544-2565 (2008)). The clinical syndrome of congestive heart failure occurs when cardiac dysfunction prevents adequate perfusion of peripheral tissues. The most common form of heart failure leading to CHF is systolic heart failure, caused by contractile failure of the myocardium. A main cause of CHF is due to ischemic coronary artery disease, with or without infarction. Long standing hypertension, particularly when it is poorly controlled, may lead to CHF. In patients with CHF, neurohumoral compensatory mechanisms (i.e., the sympathetic nervous system and the renin-angiotensin system) are activated in an effort to maintain normal circulation. The renin-angiotensin system is activated in response to decreased cardiac output, causing increased levels of plasma renin, angiotensin II, and aldosterone. As blood volume increases in the heart, cardiac output increases proportionally, to a point where the heart is unable to dilate further. In the failing heart, contractility is reduced, so the heart operates at higher volumes and higher filling pressures to maintain output. Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath). All of these symptoms are related to fluid volume and salt retention, and this chronic fluid and salt overload further contribute to disease progression. Compliance with the medication regimen and with dietary sodium restrictions is a critical component of self-management for patients with heart failure and may lengthen life, reduce hospitalizations and improve quality of life. Physicians often recommend keeping salt intake below 2.3 g per day and no more than 2 g per day for people with heart failure. Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt. A number of drug therapies currently exist for patients suffering from CHF. For example, diuretics may be used or administered to relieve congestion by decreasing volume and, consequently, filling pressures to below those that cause pulmonary edema. By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms. Among the classes or types of diuretics currently being used is thiazides. Thiazides inhibit NaCl transport in the kidney, thereby preventing reabsorption of Na in the cortical diluting segment at the ending portion of the loop of Henle and the proximal portion of the distal convoluted tubule. However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml/min. Additionally, thiazides, as well as other diuretics, may cause hypokalemia. Also among the classes or types of diuretics currently being used is loop diuretics (e.g., furosemide). These are the most potent diuretics and are particularly effective in treating pulmonary edema. Loop diuretics inhibit the NaKCl transport system, thus preventing reabsorption of Na in the loop of Henle. Patients that have persistent edema despite receiving high doses of diuretics may be or become diuretic-resistant. Diuretic resistance may be caused by poor availability of the drug. In patients with renal failure, which has a high occurrence in the CHF population, endogenous acids compete with loop diuretics such as furosemide for the organic acid secretory pathway in the tubular lumen of the nephron. Higher doses, or continuous infusion, are therefore needed to achieve entrance of an adequate amount of drug into the nephron. However, recent meta-analysis have raised awareness about the long-term risk of chronic use of diuretics in the treatment of CHF. For instance, in a recent study (Ahmed et al., Int J Cardiol. 2008 Apr. 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics. Angiotensin-converting enzyme (“ACE”) inhibitors are an example of another drug therapy that may be used to treat congestive heart failure. ACE inhibitors cause vasodilatation by blocking the renin-angiotensin-aldosterone system. Abnormally low cardiac output may cause the renal system to respond by releasing renin, which then converts angiotensinogen into angiotensin I. ACE converts angiotensin I into angiotensin II. Angiotensin II stimulates the thirst centers in the hypothalamus and causes vasoconstriction, thus increasing blood pressure and venous return. Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase. ACE inhibitors block this compensatory system and improve cardiac performance by decreasing systemic and pulmonary vascular resistance. ACE inhibitors have shown survival benefit and conventionally have been a treatment of choice for CHF. However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia. In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients. (See, e.g., C. S. Cruz et al., “Incidence and Predictors of Development of Acute Renal Failure Related to the Treatment of Congestive Heart Failure with ACE Inhibitors, Nephron Clin. Pract., v. 105, no. 2, pp c77-c83 (2007)). Patients with end stage renal disease (“ESRD”), i.e., stage 5 chronic kidney failure, must undergo hemodialysis three times per week. The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium/volume overload). The fluid overload is characterized as interdialytic weight gain. High fluid overload is also worsened by heart dysfunction, specifically CHF. Dialysis is used to remove uremic toxins and also adjust salt and fluid homeostasis. However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed. SIH is exhibited in about 15% to 25% of the ESRD population (Davenport, A., C. Cox, and R. Thuraisingham, Blood pressure control and symptomatic intradialytic hypotension in diabetic haemodialysis patients: a cross-sectional survey; Nephron Clin. Pract., v. 109, no. 2, p. c65-c71 (2008)). Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food The cause of primary or “essential” hypertension is elusive. However, several observations point to the kidney as a primary factor. The strongest data for excess salt intake and elevated blood pressure come from INTERSALT, a cross-sectional study of greater than 10,000 participants. For individuals, a significant, positive, independent linear relation between 24-hour sodium excretion and systolic blood pressure was found. Higher individual 24-hour urinary sodium excretions were found to be associated with higher systolic/diastolic blood pressure on average, by 6-3/3-0 mm Hg. Primary hypertension is a typical example of a complex, multifactorial, and polygenic trait. All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention. In a broad sense, these syndromes are characterized by increased renal sodium reabsorption arising through either primary defects in sodium transport systems or stimulation of mineralocorticoid receptor activity (Altun, B., and M. Arici, 2006, Salt and blood pressure: time to challenge; Cardiology, v. 105, no. 1, p. 9-16 (2006)). A much larger number of controlled studies have been performed on hypertensive subjects during the last three decades to determine whether sodium reduction will reduce established high blood pressure. Meta-analyses of these studies have clearly shown a large decrease in blood pressure in hypertensive patients. In end stage liver disease (ESLD), accumulation of fluid as ascites, edema or pleural effusion due to cirrhosis is common and results from a derangement in the extracellular fluid volume regulatory mechanisms. Fluid retention is the most frequent complication of ESLD and occurs in about 50% of patients within 10 years of the diagnosis of cirrhosis. This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis. The one-year and five-year survival rate is 85% and 56%, respectively (Kashani et al., Fluid retention in cirrhosis: pathophysiology and management; QJM, v. 101, no. 2, p. 71-85 (2008)). The most acceptable theories postulate that the initial event in ascites formation in the cirrhotic patient is sinusoidal hypertension. Portal hypertension due to an increase in sinusoidal pressure activates vasodilatory mechanisms. In advanced stages of cirrhosis, arteriolar vasodilation causes underfilling of systemic arterial vascular space. This event, through a decrease in effective blood volume, leads to a drop in arterial pressure. Consequently, baroreceptor-mediated activation of renin-angiotensin aldosterone system, sympathetic nervous system and nonosmotic release of antidiuretic hormone occur to restore the normal blood homeostasis. These events cause further retention of renal sodium and fluid. Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity. Persistent renal sodium and fluid retention, alongside increased splanchnic vascular permeability in addition to lymph leakage into the peritoneal cavity, play a major role in a sustained ascites formation. Thiazolidinediones (TZD's), such as rosiglitazone, are peroxisome proliferator-activated receptor (PPAR) gamma agonist agents used for the treatment of type-2 diabetes and are widely prescribed. Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy. The incidence of TZD-induced fluid retention ranges from 7% in monotherapy and to as high as 15% when combined with insulin (Yan, T., Soodvilai, S., PPAR Research volume 2008, article ID 943614). The mechanisms for such side-effects are not fully understood but may be related in Na and fluid re-absorption in the kidney. However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events. In view of the foregoing, it is recognized that salt and fluid accumulation contribute to the morbidity and mortality of many diseases, including heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and the like. It is also accepted that salt and fluid accumulation are risk factors for hypertension. Accordingly, there is a clear need for a medicament that, when administered to a patient in need, would result in a reduction in sodium retention, fluid retention, or preferably both. Such a medicament would more preferably also not involve or otherwise impair renal mechanisms of fluid/Na homeostasis. One option to consider for treating excessive fluid overload is to induce diarrhea. Diarrhea may be triggered by several agents including, for example, laxatives such as sorbitol, polyethyleneglycol, bisacodyl and phenolphthaleine. Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited. The mechanism of action of phenolphthalein is not clearly established, but is thought to be caused by inhibition of the Na/K ATPase and the Cl/HCO3 anion exchanger and stimulation of electrogenic anion secretion (see, e.g., Eherer, A. J., C. A. Santa Ana, J. Porter, and J. S. Fordtran, 1993, Gastroenterology, v. 104, no. 4, p. 1007-1012). However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans. Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage. Accordingly, it should also be recognized that the induction of chronic diarrhea as part of an effort to control salt and fluid overload would be an undesired treatment modality for most patients. Any medicament utilizing the GI tract for this purpose would therefore need to control diarrhea in order to be of practical benefit. One approach for the treatment of mild diarrhea is the administration of a fluid-absorbing polymer, such as the natural plant fiber psyllium. Polymeric materials, and more specifically hydrogel polymers, may also be used for the removal of fluid from the gastrointestinal (GI) tract. The use of such polymers is described in, for example, U.S. Pat. No. 4,470,975 and U.S. Pat. No. 6,908,609, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract. Many mammals, including humans, make a soft feces with a water content of about 70%, and do so by transporting fluid against the high hydraulic resistance imposed by the fecal mass. Several studies show that the pressure required to dehydrate feces from about 80% to about 60% is between about 500 kPa and about 1000 kPa (i.e., about 5 to about 10 atm). (See, e.g., McKie, A. T., W. Powrie, and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G391-G394; Bleakman, D., and R. J. Naftalin, 1990, Am J Physiol, v. 258, no. 3 Pt 1, p. G377-G390; Zammit, P. S., M. Mendizabal, and R. J. Naftalin, 1994, J Physiol, v. 477 (Pt 3), p. 539-548.) However, the static pressure measured intraluminally is usually between about 6 kPa and about 15 kPa. The rather high pressure needed to dehydrate feces is essentially due to an osmotic process and not a mechanical process produced by muscular forces. The osmotic pressure arises from the active transport of salt across the colonic mucosa that ultimately produces a hypertonic fluid absorption. The osmotic gradient produced drives fluid from the lumen to the serosal side of the mucosa. Fluid-absorbing polymers, such as those described in for example U.S. Pat. Nos. 4,470,975 and 6,908,609, may not be able to sustain such pressure. Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt. Synthetic polymers that bind sodium have also been described. For example, ion-exchange polymeric resins, such as Dowex-type cation exchange resins, have been known since about the 1950's. However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity. Additionally, during the ion-exchange process, the resins may release a stochiometric amount of exogenous cations (e.g., H, K, Ca), which may in turn potentially cause acidosis (H), hyperkalemia (K) or contribute to vascular calcification (Ca). Such resins may also cause constipation. Gastrointestinal Tract Disorders Constipation is characterized by infrequent and difficult passage of stool and becomes chronic when a patient suffers specified symptoms for over 12 non-consecutive weeks within a 12-month period. Chronic constipation is idiopathic if it is not caused by other diseases or by use of medications. An evidence-based approach to the management of chronic constipation in North America (Brandt et al., 2005, Am. J. Gastroenterol. 100(Suppl. 1):S5-S21) revealed that prevalence is approximately 15% of the general population. Constipation is reported more commonly in women, the elderly, non-whites, and individuals from lower socioeconomic groups. Irritable bowel syndrome (IBS) is a common GI disorder associated with alterations in motility, secretion and visceral sensation. A range of clinical symptoms characterizes this disorder, including stool frequency and form, abdominal pain and bloating. The recognition of clinical symptoms of IBS are yet to be defined, but it is now common to refer to diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS), wherein D-IBS is defined as continuous passage of loose or watery stools and C-IBS as a group of functional disorders which present as difficult, infrequent or seemingly incomplete defecation. The pathophysiology of IBS is not fully understood, and a number of mechanisms have been suggested. Visceral hypersensitivity is often considered to play a major etiologic role and has been proposed to be a biological marker even useful to discriminate IBS from other causes of abdominal pain. In a recent clinical study (Posserud, I. et al, Gastroenterology, 2007; 133:1113-1123) IBS patients were submitted to a visceral sensitivity test (Balloon distention) and compared with healthy subjects. It revealed that 61% of the IBS patients had an altered visceral perception as measured by pain and discomfort threshold. Other reviews have documented the role of visceral hypersensitivity in abdominal pain symptomatic of various gastrointestinal tract disorders (Akbar, A, et al, Aliment. Pharmaco. Ther., 2009, 30, 423-435; Bueno et al., Neurogastroenterol Motility (2007) 19 (suppl. 1), 89-119). Colonic and rectal distention have been widely used as a tool to assess visceral sensitivity in animal and human studies. The type of stress used to induce visceral sensitivity varies upon the models (see for instance Eutamen, H Neurogastroenterol Motil. 2009 Aug. 25. [Epub ahead of print]), however stress such as Partial restraint stress (PRS) is a relatively mild, non-ulcerogenic model that is considered more representative of the IBS setting. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects. Opioid-induced constipation (OIC) (also referred to as opioid-induced bowel dysfunction or opioid bowel dysfuntion (OBD)) is a common adverse effect associated with opioid therapy. OIC is commonly described as constipation; however, it is a constellation of adverse gastrointestinal (GI) effects, which also includes abdominal cramping, bloating, and gastroesophageal reflux. Patients with cancer may have disease-related constipation, which is usually worsened by opioid therapy. However, OIC is not limited to cancer patients. A recent survey of patients taking opioid therapy for pain of non-cancer origin found that approximately 40% of patients experienced constipation related to opioid therapy (<3 complete bowel movements per week) compared with 7.6% in a control group. Of subjects who required laxative therapy, only 46% of opioid-treated patients (control subjects, 84%) reported achieving the desired treatment results >50% of the time (Pappagallo, 2001, Am. J. Surg. 182(5A Suppl.):11S-18S). Some patients suffering from chronic idiopathic constipation can be successfully treated with lifestyle modification, dietary changes and increased fluid and fiber intake, and these treatments are generally tried first. For patients who fail to respond to these approaches, physicians typically recommend laxatives, most of which are available over-the-counter. Use of laxatives provided over-the-counter is judged inefficient by about half of the patients (Johanson and Kralstein, 2007, Aliment. Pharmacol. Ther. 25(5):599-608). Other therapeutic options currently prescribed or in clinical development for the treatment of IBS and chronic constipation including OIC are described in, for example: Chang et al., 2006, Curr. Teat. Options Gastroenterol. 9(4):314-323; Gershon and Tack, 2007, Gastroenterology 132(1):397-414; and, Hammerle and Surawicz, 2008, World J. Gastroenterol. 14(17):2639-2649. Such treatments include but are not limited to serotonin receptor ligands, chloride channel activators, opioid receptor antagonists, guanylate-cyclase receptor agonists and nucleotide P2Y(2) receptor agonists. Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal. Na+/H+ Exchanger (NHE) Inhibitors A major function of the GI tract is to maintain water/Na homeostasis by absorbing virtually all water and Na to which the GI tract is exposed. The epithelial layer covering the apical surface of the mammalian colon is a typical electrolyte-transporting epithelium, which is able to move large quantities of salt and water in both directions across the mucosa. For example, each day the GI tract processes about 9 liters of fluid and about 800 meq of Na. (See, e.g., Zachos et al., Molecular physiology of intestinal Na+/H+ exchange; Annu Rev. Physiol., v. 67, p. 411-443 (2005).) Only about 1.5 liters of this fluid and about 150 meq of this sodium originates from ingestion; rather, the majority of the fluid (e.g., about 7.5 liters) and sodium (about 650 meq) is secreted via the GI organs as part of digestion. The GI tract therefore represents a viable target for modulating systemic sodium and fluid levels. Many reviews have been published on the physiology and secretory and/or absorption mechanisms of the GI tract (see, e.g., Kunzelmann et al., Electrolyte transport in the mammalian colon: mechanisms and implications for disease; Physiol. Rev., v. 82, no. 1, p. 245-289 (2002); Geibel, J. P.; Secretion and absorption by colonic crypts; Annu Rev. Physiol, v. 67, p. 471-490 (2005); Zachos et al., supra; Kiela, P. R. et al., Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl. 7, p. 51-79 (2006)). The two main mechanisms of Na absorption are electroneutral and electrogenic transport. Electroneutral transport is essentially due to the Na+/H+ antiport NHE (e.g., NHE-3) and is responsible for the bulk of Na absorption. Electrogenic transport is provided by the epithelium sodium channel (“ENaC”). Electroneutral transport is located primarily in the ileal segment and proximal colon and electrogenic transport is located in the distal colon. Plasma membrane NHEs contribute to maintenance of intracellular pH and volume, transcellular absorption of NaCl and NaHCO3, and fluid balance carried out by epithelial cells, especially in the kidney, intestine, gallbladder, and salivary glands, as well as regulation of systemic pH. There exists a body of literature devoted to the role and clinical intervention on systemic NHEs to treat disorders related to ischemia and reperfusion for cardioprotection or renal protection. Nine isoforms of NHEs have been identified (Kiela, P. R., et al.; Apical NA+/H+ exchangers in the mammalian gastrointestinal tract; J. Physiol. Pharmacol., v. 57 Suppl 7, p. 51-79 (2006)), of which NHE-2, NHE-3 and NHE-8 are expressed on the apical side of the GI tract, with NHE-3 providing a larger contribution to transport. Another, yet to be identified, Cl-dependant NHE has been identified in the crypt of rat cells. In addition, much research has been devoted to identifying inhibitors of NHEs. The primary targets of such research have been NHE-1 and NHE-3. Small molecule NHE inhibitors are, for example, described in: U.S. Pat. Nos. 5,866,610; 6,399,824; 6,911,453; 6,703,405; 6,005,010; 6,736,705; 6,887,870; 6,737,423; 7,326,705; 5,824,691 (WO 94/026709); U.S. Pat. No. 6,399,824 (WO 02/024637); U.S. Pat. Pub. Nos. 2004/0039001 (WO 02/020496); 2005/0020612 (WO 03/055490); 2004/0113396 (WO 03/051866); 2005/0020612; 2005/0054705; 2008/0194621; 2007/0225323; 2004/0039001; 2004/0224965; 2005/0113396; 2007/0135383; 2007/0135385; 2005/0244367; 2007/0270414; International Publication Nos. WO 01/072742; WO 01021582 (CA2387529); WO 97/024113 (CA02241531) and European Pat. No. EP 0744397 (CA2177007); all of which are incorporated herein by reference in their entirety for all relevant and consistent purposes. However, to-date, such research has failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract. Such inhibitors could be utilized in the treatment of disorders associated with fluid retention and salt overload and in the treatment of GI tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. Such inhibitors would be particular advantageous because they could be delivered with reduced fear of systemic on-target or off-target effects (e.g., little or no risk of renal involvement or other systemic effects. Accordingly, while progress has been made in the foregoing fields, there remains a need in the art for novel compounds for use in the disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. The present invention fulfills this need and provides further related advantages. BRIEF SUMMARY In brief, the present invention is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention and salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder. In one embodiment, a compound is provided having: (i) a topological Polar Surface Area (tPSA) of at least about 200 Å2 and a molecular weight of at least about 710 Daltons in the non-salt form; or (ii) a tPSA of at least about 270 Å2, wherein the compound is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein upon administration to a patient in need thereof. In further embodiments, the compound has a molecular weight of at least about 500 Da, at least about 1000 Da, at least about 2500 Da, or at least about 5000 Da. In further embodiments, the compound has a tPSA of at least about 250 Å2, at least about 270 Å2, at least about 300 Å2, at least about 350 Å2, at least about 400 Å2, or at least about 500 Å2. In further embodiments, the compound is substantially active on the apical side of the epithelium of the gastrointestinal tract to inhibit antiport of sodium ions and hydrogen ions mediated by NHE-3, NHE-2, NHE-8, or a combination thereof. In further embodiments, the compound is substantially systemically non-bioavailable and/or substantially impermeable to the epithelium of the gastrointestinal tract. In further embodiments, the compound is substantially active in the lower gastrointestinal tract. In further embodiments, the compound has (i) a total number of NH and/or OH and/or other potential hydrogen bond donor moieties greater than about 5; (ii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 10; and/or (iii) a Moriguchi partition coefficient greater than about 105 or less than about 10. In further embodiments, the compound has a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s. In further embodiments, the compound is substantially localized in the gastrointestinal tract or lumen. In further embodiments, the compound inhibits NHE irreversibly. In further embodiments, the compound is capable of providing a substantially persistent inhibitory action and wherein the compound is orally administered once-a-day. In further embodiments, the compound is substantially stable under physiological conditions in the gastrointestinal tract. In further embodiments, the compound is inert with regard to gastrointestinal flora. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract. In further embodiments, the compound is designed to be delivered to the lower part of the gastrointestinal tract past the duodenum. In further embodiments, the compound, when administered at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, less than about 10× the IC50, or less than about 100× the IC50. In further embodiments, upon administration of the compound to a patient in need thereof, the compound exhibits a maximum concentration detected in the serum, defined as Cmax, that is lower than the NHE inhibitory concentration IC50 of the compound. In further embodiments, upon administration of the compound to a patient in need thereof, greater than about 80%, greater than about 90% or greater than about 95% of the amount of compound administered is present in the patient's feces. In further embodiments, the compound has a structure of Formula (I) or (IX): wherein: NHE is a NHE-inhibiting small molecule that comprises (i) a hetero-atom containing moiety, and (ii) a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto, the heteroatom-containing moiety being selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the scaffold or support moiety to form a fused bicyclic structure; and, Z is a moiety having at least one site thereon for attachment to the NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; and, E is an integer having a value of 1 or more. In further embodiments, the total number of freely rotatable bonds in the NHE-Z molecule is at least about 10. In further embodiments, the total number hydrogen bond donors in the NHE-Z molecule is at least about 5. In further embodiments, the total number of hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the total number of hydrogen bond donors and hydrogen bond acceptors in the NHE-Z molecule is at least about 10. In further embodiments, the Log P of the NHE-Z inhibiting compound is at least about 5. In further embodiments, the log P of the NHE-Z inhibiting compound is less than about 1, or less than about 0. In further embodiments, the scaffold is a 5-member or 6-member cyclic or heterocyclic moiety. In further embodiments, the scaffold is aromatic. In further embodiments, the scaffold of the NHE-inhibiting small molecule is bound to the moiety, Z, and the compound has the structure of Formula (II): wherein: Z is a Core having one or more sites thereon for attachment to one or more NHE-inhibiting small molecules, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; Scaffold is the cyclic or heterocyclic scaffold or support moiety of the NHE-inhibiting small molecule, which is bound directly or indirectly to heteroatom-containing moiety, B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-7 hydrocarbyl or heterohydrocarbyl, and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties, which links B and the Scaffold; and, D and E are integers, each independently having a value of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a Core moiety having two or more sites thereon for attachment to multiple NHE-inhibiting small molecules, either directly or indirectly through a linking moiety, L, and the compound has the structure of Formula (X): CoreL-NHE)n  (X) wherein L is a bond or linker connecting the Core to the NHE-inhibiting small molecule, and n is an integer of 2 or more, and further wherein each NHE-inhibiting small molecule may be the same or differ from the others. In further embodiments, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further embodiments, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further embodiments, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further embodiments, L is a polyalkylene glycol linker. In further embodiments, L is a polyethylene glycol linker. In further embodiments, n is 2. In further embodiments, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further embodiments, the Core is selected from the group consisting of: In further embodiments, the compound is an oligomer, and Z is a linking moiety, L, that links two or more NHE-inhibiting small molecules together, when the two or more NHE-inhibiting small molecules may be the same or different, and the compound has the structure of Formula (XI): wherein L is a bond or linker connecting one NHE-inhibiting small molecule to another, and m is 0 or an integer of 1 or more. In further embodiments, the compound is an oligomer, dendrimer or polymer, and Z is a backbone, denoted Repeat Unit, to which is bound multiple NHE-inhibiting moieties, and the compound has the structure of Formula (XIIB): wherein: L is a bond or a linking moiety; NHE is a NHE-inhibiting small molecule; and n is a non-zero integer. In another embodiment, a pharmaceutical composition is provided comprising a compound as set forth above, or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof, and a pharmaceutically acceptable carrier, diluent or excipient. In further embodiments, the composition further comprises a fluid-absorbing polymer. In further embodiments, the fluid-absorbing polymer is delivered directly to the colon. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 5 kPa. In further embodiments, the fluid-absorbing polymer has a fluid absorbency of at least about 15 g of isotonic fluid per g of polymer under a static pressure of about 10 kPa. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 10 g/g. In further embodiments, the fluid-absorbing polymer is characterized by a fluid absorbency of at least about 15 g/g. In further embodiments, the fluid-absorbing polymer is superabsorbent. In further embodiments, the fluid-absorbing polymer is a crosslinked, partially neutralized polyelectrolyte hydrogel. In further embodiments, the fluid-absorbing polymer is a crosslinked polyacrylate. In further embodiments, the fluid-absorbing polymer is a polyelectrolyte. In further embodiments, the fluid-absorbing polymer is calcium Carbophil. In further embodiments, the fluid-absorbing polymer is prepared by a high internal phase emulsion process. In further embodiments, the fluid-absorbing polymer is a foam. In further embodiments, the fluid-absorbing polymer is prepared by a aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker and a free radical initiator redox system in water. In further embodiments, the fluid-absorbing polymer is a hydrogel. In further embodiments, the fluid-absorbing polymer is an N-alkyl acrylamide. In further embodiments, the fluid-absorbing polymer is a superporous gel. In further embodiments, the fluid-absorbing polymer is naturally occurring. In further embodiments, the fluid-absorbing polymer is selected from the group consisting of xanthan, guar, wellan, hemicelluloses, alkyl-cellulose hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In further embodiments, the fluid-absorbing polymer is psyllium. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose. In further embodiments, the fluid-absorbing polymer is a polysaccharide that includes xylose and arabinose, wherein the ratio of xylose to arabinose is at least about 3:1, by weight. In further embodiments, the composition further comprises another pharmaceutically active agent or compound. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of an analgesic peptide or agent. In further embodiments, the composition further comprises another pharmaceutically active agent or compound selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In another embodiment, a method for inhibiting NHE-mediated antiport of sodium and hydrogen ions is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder associated with fluid retention or salt overload is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating a disorder selected from the group consisting of heart failure (such as congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In another embodiment, a method for treating hypertension is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium and/or fluid. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound to the mammal in order to increase the mammal's daily fecal output of sodium by at least about 30 mmol, and/or fluid by at least about 200 ml. In further embodiments, the mammal's fecal output of sodium and/or fluid is increased without introducing another type of cation in a stoichiometric or near stoichiometric fashion via an ion exchange process. In further embodiments, the method further comprises administering to the mammal a fluid-absorbing polymer to absorb fecal fluid resulting from the use of the compound that is substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions therein. In further embodiments, the compound or composition is administered to treat hypertension. In further embodiments, the compound or composition is administered to treat hypertension associated with dietary salt intake. In further embodiments, administration of the compound or composition allows the mammal to intake a more palatable diet. In further embodiments, the compound or composition is administered to treat fluid overload. In further embodiments, the fluid overload is associated with congestive heart failure. In further embodiments, the fluid overload is associated with end stage renal disease. In further embodiments, the fluid overload is associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy. In further embodiments, the compound or composition is administered to treat sodium overload. In further embodiments, the compound or composition is administered to reduce interdialytic weight gain in ESRD patients. In further embodiments, the compound or composition is administered to treat edema. In further embodiments, the edema is caused by chemotherapy, pre-menstrual fluid overload or preeclampsia. In further embodiments, the compound or composition is administered orally, by rectal suppository, or enema. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active compounds or agents is selected from the group consisting of a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, aldosterone antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, and peroxisome proliferator-activated receptor (PPAR) gamma agonist agent. In further embodiments, the diuretic is selected from the group consisting of a high ceiling loop diuretic, a benzothiadiazide diuretic, a potassium sparing diuretic, and a osmotic diuretic. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. In another embodiment, a method for treating a gastrointestinal tract disorder is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound or pharmaceutical composition as set forth above. In further embodiments, the gastrointestinal tract disorder is a gastrointestinal motility disorder. In further embodiments, the gastrointestinal tract disorder is irritable bowel syndrome. In further embodiments, the gastrointestinal tract disorder is chronic constipation. In further embodiments, the gastrointestinal tract disorder is chronic idiopathic constipation. In further embodiments, the gastrointestinal tract disorder is chronic constipation occurring in cystic fibrosis patients. In further embodiments, the gastrointestinal tract disorder is opioid-induced constipation. In further embodiments, the gastrointestinal tract disorder is a functional gastrointestinal tract disorder. In further embodiments, the gastrointestinal tract disorder is selected from the group consisting of chronic intestinal pseudo-obstruction and colonic pseudo-obstruction. In further embodiments, the gastrointestinal tract disorder is Crohn's disease. In further embodiments, the gastrointestinal tract disorder is ulcerative colitis. In further embodiments, the gastrointestinal tract disorder is a disease referred to as inflammatory bowel disease. In further embodiments, the gastrointestinal tract disorder is associated with chronic kidney disease (stage 4 or 5). In further embodiments, the gastrointestinal tract disorder is constipation induced by calcium supplement. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with the use of a therapeutic agent. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with a neuropathic disorder. In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is post-surgical constipation (postoperative ileus). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is idiopathic (functional constipation or slow transit constipation). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is associated with neuropathic, metabolic or an endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). In further embodiments, the gastrointestinal tract disorder is constipation, and the constipation to be treated is due the use of drugs selected from analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. In another embodiment, a method for treating irritable bowel syndrome is provided, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of an NHE-3 inhibitor compound or a pharmaceutical composition comprising an NHE-3 inhibitor compound. In further embodiments, the NHE-3 inhibitor compound or the pharmaceutical composition comprising an NHE-3 inhibitor compound is a compound or pharmaceutical composition as set forth above. In further embodiments of the above embodiments, the compound or composition is administered to treat or reduce pain associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce visceral hypersensitivity associated with a gastrointestinal tract disorder. In further embodiments, the compound or composition is administered to treat or reduce inflammation of the gastrointestinal tract. In further embodiments, the compound or composition is administered to reduce gastrointestinal transit time. In further embodiments, the compound or composition is administered either orally or by rectal suppository. In further embodiments, the method comprises administering a pharmaceutically effective amount of the compound or composition, in combination with one or more additional pharmaceutically active compounds or agents. In further embodiments, the one or more additional pharmaceutically active agents or compounds are an analgesic peptide or agent. In further embodiments, the one or more additional pharmaceutically active agents or compounds are selected from the group consisting of a laxative agent selected from a bulk-producing agent (e.g. psyllium husk (Metamucil)), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant (e.g., docusate, Colace, Diocto), a hydrating or osmotic agent (e.g., dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate), and a hyperosmotic agent (e.g., glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG)). In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as part of a single pharmaceutical preparation. In further embodiments, the pharmaceutically effective amount of the compound or composition, and the one or more additional pharmaceutically active compounds or agents, are administered as individual pharmaceutical preparations. In further embodiments, the individual pharmaceutical preparation are administered sequentially. In further embodiments, the individual pharmaceutical preparation are administered simultaneously. These and other aspects of the invention will be apparent upon reference to the following detailed description. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a graph that illustrates the relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of certain example compounds, as further discussed in the Examples (under the subheading “2. Pharmacological Test Example 2”). FIGS. 2A and 2B are graphs that illustrate the cecum and colon water content after oral administration of certain example compounds, as further discussed in the Examples (under the subheading “3. Pharmacological Test Example 3”). FIGS. 3A and 3B are graphs that illustrate the dose dependent decrease of urinary salt levels after administration of certain example compounds, as further discussed in the Examples (under the subheading “14. Pharmacological Test Example 14”). FIG. 4 is a graph that illustrates a dose dependent increase in fecal water content after administration of a certain example compound, as further discussed in the Examples (under the subheading “15. Pharmacological Test Example 15”). FIGS. 5A, 5B and 5C are graphs that illustrate that supplementing the diet with Psyllium results in a slight reduction of fecal stool form, but without impacting the ability of a certain example compound to increase fecal water content or decrease urinary sodium, as further discussed in the Examples (under the subheading “16. Pharmacological Test Example 16”). FIG. 6 is a graph that illustrates that inhibition of NHE-3 reduces hypersensitivity to distention, as further discussed in the Examples (under the subheading “17. Pharmacological Test Example 17”). FIGS. 7A and 7B are graphs that illustrate that inhibition of NHE-3 increases the amount of sodium excreted in feces, as further discussed in the Examples (under subheading “18. Pharmacological Test Example 18”). FIG. 8 is a schematic representation of a dendrimer. DETAILED DESCRIPTION In accordance with the present disclosure, and as further detailed herein below, it has been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various disorders that may be associated with or caused by fluid retention and/or salt overload, and/or disorders such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from, for example, CHF, ESRD/CKD and/or liver disease. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of hypertension, that may be associated with or caused by fluid retention and/or salt overload. More specifically, it has been found that the inhibition of the NHE-mediated antiport of sodium ions and hydrogen ions in the GI tract increases the fecal excretion of sodium, effectively reducing systemic levels of sodium and fluid. This, in turn, improves the clinical status of a patient suffering from hypertension. Such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. and/or hypertension. Additionally, and also as further detailed herein below, it has further been found that the inhibition of NHE-mediated antiport of sodium ions (Na+) and hydrogen ions (H+) in the gastrointestinal tract, and more particularly the gastrointestinal epithelia, is a powerful approach to the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, and more particularly to the restoration of appropriate fluid secretion in the gut and the improvement of pathological conditions encountered in constipation states. Applicants have further recognized that by blocking sodium ion re-absorption, the compound of the invention restore fluid homeostasis in the GI tract, particularly in situations wherein fluid secretion/absorption is altered in such a way that it results in a high degree of feces dehydration, low gut motility, and/or a slow transit-time producing constipation states and GI discomfort generally. It has further been found that such a treatment may optionally be enhanced by the co-administration of other beneficial compounds or compositions, such as for example a fluid-absorbing polymer. The fluid-absorbing polymer may optimally be chosen so that it does not block or otherwise negatively interfere with the mechanism of action of the co-dosed NHE inhibitor. Due to the presence of NHEs in other organs or tissues in the body, the method of the present disclosure employs the use of compounds and compositions that are desirably highly selective or localized, thus acting substantially in the gastrointestinal tract without exposure to other tissues or organs. In this way, any systemic effects can be minimized (whether they are on-target or off-target). Accordingly, it is to be noted that, as used herein, and as further detailed elsewhere herein, “substantially active in the gastrointestinal tract” generally refers to compounds that are substantially systemically non-bioavailable and/or substantially impermeable to the layer of epithelial cells, and more specifically epithelium of the GI tract. It is to be further noted that, as used herein, and as further detailed elsewhere herein, “substantially impermeable” more particularly encompasses compounds that are impermeable to the layer of epithelial cells, and more specifically the gastrointestinal epithelium (or epithelial layer). “Gastrointestinal epithelium” refers to the membranous tissue covering the internal surface of the gastrointestinal tract. Accordingly, by being substantially impermeable, a compound has very limited ability to be transferred across the gastrointestinal epithelium, and thus contact other internal organs (e.g., the brain, heart, liver, etc.). The typical mechanism by which a compound can be transferred across the gastrointestinal epithelium is by either transcellular transit (a substance travels through the cell, mediated by either passive or active transport passing through both the apical and basolateral membranes) and/or by paracellular transit, where a substance travels between cells of an epithelium, usually through highly restrictive structures known as “tight junctions”. The compounds of the present disclosure may therefore not be absorbed, and are thus essentially not systemically bioavailable at all (e.g., impermeable to the gastrointestinal epithelium at all), or they show no detectable concentration of the compound in serum. Alternatively, the compounds may: (i) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the liver (i.e., hepatic extraction) via first-pass metabolism; and/or (ii) exhibit some detectable permeability to the layer of epithelial cells, and more particularly the epithelium of the GI tract, of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are rapidly cleared in the kidney (i.e., renal excretion). In this regard it is to be still further noted that, as used herein, “substantially systemically non-bioavailable” generally refers to the inability to detect a compound in the systemic circulation of an animal or human following an oral dose of the compound. For a compound to be bioavailable, it must be transferred across the gastrointestinal epithelium (that is, substantially permeable as defined above), be transported via the portal circulation to the liver, avoid substantial metabolism in the liver, and then be transferred into systemic circulation. As further detailed elsewhere herein, small molecules exhibiting an inhibitory effect on NHE-mediated antiport of sodium and hydrogen ions described herein may be modified or functionalized to render them “substantially active” in the GI tract (or “substantially impermeable” to the GI tract and/or “substantially systemically non-bioavailable”from the GI tract) by, for example, ensuring that the final compound has: (i) a molecular weight of greater than about 500 Daltons (Da) (e.g., greater than about 1000 Da, about 2500 Da, about 5000 Da, or even about 10000 Da) in its non-salt form; and/or (ii) at least about 10 freely rotatable bonds therein (e.g., about 10, about 15 or even about 20); and/or (iii) a Moriguchi Partition Coefficient of at least about 105 (or log P of at least about 5), by for example increasing the hydrophobicity of the compound (e.g., inserting or installing a hydrocarbon chain of a sufficient or suitable length therein), or alternatively a Moriguchi Partition Coefficient of less than 10 (or alternatively a log P of less than about 1, or less than about 0); and/or (iv) a number of hydrogen-bond donors therein greater than about 5, about 10, or about 15; and/or (v) a number of hydrogen-bond acceptors therein greater than about 5, about 10, or about 15; and/or (vi) a total number of hydrogen-bond donors and acceptors therein of greater than about 5, about 10, or about 15; and/or, (vii) a topological polar surface area (tPSA) therein of greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, by for example inserting or installing a sufficiently hydrophilic functional group therein (e.g., a polyalkylene ether or a polyol or an ionizable group, such as a phosphonate, sulfonate, carboxylate, amine, quaternary amine, etc.), the hydrogen-bond donors/acceptor groups also contributing to compound tPSA. One or more of the above-noted methods for structurally modifying or functionalizing the NHE-inhibiting small molecule may be utilized in order to prepare a compound suitable for use in the methods of the present disclosure, so as to render the compound substantially impermeable or substantially systemically non-bioavailable; that is, one or more of the noted exemplary physical properties may be “engineered” into the NHE-inhibiting small molecule to render the resulting compound substantially impermeable or substantially systemically non-bioavailable, or more generally substantially active, in the GI tract, while still possessing a region or moiety therein that is active to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. Without being held to any particular theory, the NHE-inhibitors (e.g., NHE-3, -2 and/or -8) of the instant disclosure are believed to act via a distinct and unique mechanism, causing the retention of fluid and ions in the GI tract (and stimulating fecal excretion) rather than stimulating increased secretion of said fluid and ions. For example, lubiprostone (Amitiza® Sucampo/Takeda) is a bicyclic fatty acid prostaglandin E1 analog that activates the Type 2 Chloride Channel (ClC-2) and increases chloride-rich fluid secretion from the serosal to the mucosal side of the GI tract (see, e.g., Pharmacological Reviews for Amitiza®, NDA package). Linaclotide (MD-1100 acetate, Microbia/Forest Labs) is a 14 amino acid peptide analogue of an endogenous hormone, guanylin, and indirectly activates the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) thereby inducing fluid and electrolyte secretion into the GI (see, e.g., Li et al., J. Exp. Med., vol. 202 (2005), pp. 975-986). The substantially impermeable NHE inhibitors described in the instant disclosure act to inhibit the reuptake of salt and fluid rather than promote secretion. Since the GI tract processes about 9 liters of fluid and about 800 meq of Na each day, it is anticipated that NHE inhibition could permit the removal of substantial quantities of systemic fluid and sodium to resorb edema and resolve CHF symptoms. I. Substantially Impermeable or Substantially Systemically Non-Bioavailable NHE-Inhibiting Compounds A. General Structure Generally speaking, the present disclosure encompasses essentially any small molecule, which may be monovalent or polyvalent, that is effective or active as a NHE inhibitor and that is substantially active in the GI tract, and more particularly substantially impermeable or substantially systemically non-bioavalable therein, including known NHE inhibitors that may be modified or functionalized in accordance with the present disclosure to alter the physicochemical properties thereof so as to render the overall compound substantially active in the GI tract. In particular, however, the present disclosure encompasses monovalent or polyvalent compounds that are effective or active as NHE-3, NHE-2 and/or NHE-8 inhibitors. Accordingly, the compounds of the present disclosure may be generally represented by Formula (I): NHE-Z  (I) wherein: (i) NHE represents a NHE-inhibiting small molecule, and (ii) Z represents a moiety having at least one site thereon for attachment to an NHE-inhibiting small molecule, the resulting NHE-Z molecule possessing overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable. The NHE-inhibiting small molecule generally comprises a heteroatom-containing moiety and a cyclic or heterocyclic scaffold or support moiety bound directly or indirectly thereto. In particular, examination of the structures of small molecules reported to-date to be NHE inhibitors suggest, as further illustrated herein below, that most comprise a cyclic or heterocyclic support or scaffold bound directly or indirectly (by, for example, an acyl moiety or a hydrocarbyl or heterohydrocarbyl moiety, such as an alkyl, an alkenyl, a heteroalkyl or a heteroalkenyl moiety) to a heteroatom-containing moiety that is capable of acting as a sodium atom or sodium ion mimic, which is typically selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety (e.g., a nitrogen-containing hetrocyclic moiety). Optionally, the heteroatom-containing moiety may be fused with the scaffold or support moiety to form a fused, bicyclic structure, and/or it may be capable of forming a positive charge at a physiological pH. In this regard it is to be noted that, while the heteroatom-containing moiety that is capable of acting as a sodium atom or ion mimic may optionally form a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein. Rather, in various embodiments, the compound may have no charged moieties, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof, the compound for example being a zwitterion). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge (e.g., +1, +2, +3, etc.), or a net negative charge (e.g., −1, −2, −3, etc.). The Z moiety may be bound to essentially any position on, or within, the NHE small molecule, and in particular may be: (i) bound to the scaffold or support moiety, (ii) bound to a position on, or within, the heteroatom-containing moiety, and/or (iii) bound to a position on, or within, a spacer moiety that links the scaffold to the heteroatom-containing moiety, provided that the installation of the Z moiety does not significantly adversely impact NHE-inhibiting activity. In one particular embodiment, Z may be in the form of an oligomer, dendrimer or polymer bound to the NHE small molecule (e.g., bound for example to the scaffold or the spacer moiety), or alternatively Z may be in the form of a linker that links multiple NHE small molecules together, and therefore that acts to increase: (i) the overall molecular weight and/or polar surface area of the NHE-Z molecule; and/or, (ii) the number of freely rotatable bonds in the NHE-Z molecule; and/or, (iii) the number of hydrogen-bond donors and/or acceptors in the NHE-Z molecule; and/or, (iv) the Log P value of the NHE-Z molecule to a value of at least about 5 (or alternatively less than 1, or even about 0), all as set forth herein; such that the overall NHE-inhibiting compound (i.e., the NHE-Z compound) is substantially impermeable or substantially systemically non-bioavailable. The present disclosure is more particularly directed to such a substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound, or a pharmaceutical salt thereof, wherein the compound has the structure of Formula (II): wherein: (i) Z, as previously defined above, is a moiety bound to or incorporated in the NHE-inhibiting small molecule, such that the resulting NHE-Z molecule possesses overall physicochemical properties that render it substantially impermeable or substantially systemically non-bioavailable; (ii) B is the heteroatom-containing moiety of the NHE-inhibiting small molecule, and in one particular embodiment is selected from a substituted guanidinyl moiety and a substituted heterocyclic moiety, which may optionally be fused with the Scaffold moiety to form a fused, bicyclic structure; (iii) Scaffold is the cyclic or heterocyclic moiety to which is bound directly or indirectly the hetero-atom containing moiety (e.g., the substituted guanidinyl moiety or a substituted heterocyclic moiety), B, and which is optionally substituted with one or more additionally hydrocarbyl or heterohydrocarbyl moieties; (iv) X is a bond or a spacer moiety selected from a group consisting of substituted or unsubstituted hydrocarbyl or heterohydrocarbyl moieties, and in particular substituted or unsubstituted C1-C7 hydrocarbyl or heterohydrocarbyl (e.g., C1-C7 alkyl, alkenyl, heteroalkyl or heteroalkenyl), and substituted or unsubstituted, saturated or unsaturated, cyclic or heterocyclic moieties (e.g., C4-C7 cyclic or heterocyclic moieties), which links B and the Scaffold; and, (v) D and E are integers, each independently having a value of 1, 2 or more. In one or more particular embodiments, as further illustrated herein below, B may be selected from a guanidinyl moiety or a moiety that is a guanidinyl bioisostere selected from the group consisting of substituted cyclobutenedione, substituted imidazole, substituted thiazole, substituted oxadiazole, substituted pyrazole, or a substituted amine. More particularly, B may be selected from guanidinyl, acylguanidinyl, sulfonylguanidinyl, or a guanidine bioisostere such as a cyclobutenedione, a substituted or unsubstituted 5- or 6-member heterocycle such as substituted or unsubstituted imidazole, aminoimidazole, alkylimidizole, thiazole, oxadiazole, pyrazole, alkylthioimidazole, or other functionality that may optionally become positively charged or function as a sodium mimetic, including amines (e.g., tertiary amines), alkylamines, and the like, at a physiological pH. In one particularly preferred embodiment, B is a substituted guanidinyl moiety or a substituted heterocyclic moiety that may optionally become positively charged at a physiological pH to function as a sodium mimetic. In one exemplary embodiment, the compound of the present disclosure (or more particularly the pharmaceutically acceptable HCl salt thereof, as illustrated) may have the structure of Formula (III): wherein Z may be optionally attached to any one of a number of sites on the NHE-inhibiting small molecule, and further wherein the R1, R2 and R3 substituents on the aromatic rings are as detailed elsewhere herein, and/or in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. In this regard it is to be noted, however, that the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may have a structure other than illustrated above, without departing from the scope of the present disclosure. For example, in various alternative embodiments, one or both of the terminal nitrogen atoms in the guanidine moiety may be substituted with one or more substituents, and/or the modifying or functionalizing moiety Z may be attached to the NHE-inhibiting compound by means of (i) the Scaffold, (ii) the spacer X, or (iii) the heteroatom-containing moiety, B, as further illustrated generally in the structures provided below: In this regard it is to be further noted that, as used herein, “bioisostere” generally refers to a moiety with similar physical and chemical properties to a guanidine moiety, which in turn imparts biological properties to that given moiety similar to, again, a guanidine moiety, in this instance. (See, for example, Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes.) As further detailed below, known NHE-inhibiting small molecules or chemotypes that may serve as suitable starting materials (for modification or functionalization, in order to render the small molecules substantially impermeable or substantially systemically non-bioavailable, and/or used in pharmaceutical preparations in combination with, for example, a fluid-absorbing polymer) may generally be organized into a number of subsets, such as for example: wherein: the terminal ring (or, in the case of the non-acyl guanidines, “R”), represent the scaffold or support moiety; the guanidine moiety (or the substituted heterocycle, and more specifically the piperidine ring, in the case of the non-guanidine inhibitors) represents B; and, X is the acyl moiety, or the -A-B-acyl-moiety (or a bond in the case of the non-acyl guanidines and the non-guanidine inhibitors). (See, e.g., Lang, H. J., “Chemistry of NHE Inhibitors” in The Sodium-Hydrogen Exchanger, Harmazyn, M., Avkiran, M. and Fliegel, L., Eds., Kluwer Academic Publishers 2003. See also B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Without being held to any particular theory, it has been proposed that a guanidine group, or an acylguanidine group, or a charged guanidine or acylguanidine group (or, in the case of non-guanidine inhibitors, a heterocycle or other functional group that can replicate the molecular interactions of a guanidinyl functionality including, but not limited to, a protonated nitrogen atom in a piperidine ring) at physiological pH may mimic a sodium ion at the binding site of the exchanger or antiporter (See, e.g., Vigne, P.; Frelin, C.; Lazdunski, M. J. Biol. Chem. 1982, 257, 9394). Although the heteroatom-containing moiety may be capable of forming a positive charge, this should not be understood or interpreted to require that the overall compound have a net positive charge, or only a single positively charged moiety therein, or even that the heteroatom-containing moiety therein be capable of forming a positive charge in all instances. Rather, in various alternative embodiments, the compound may have no charged moieties therein, or it may have multiple charged moieties therein (which may have positive charges, negative charges, or a combination thereof). Additionally, it is to be understood that the overall compound may have a net neutral charge, a net positive charge, or a net negative charge. In this regard it is to be noted that the U.S. Patents and U.S. Published Applications cited above, or elsewhere herein, are incorporated herein by reference in their entirety, for all relevant and consistent purposes. In addition to the structures illustrated above, and elsewhere herein, it is to be noted that bioisosteric replacements for guanidine or acylguanidine may also be used. Potentially viable bioisosteric “guanidine replacements” identified to-date have a five- or six-membered heterocyclic ring with donor/acceptor and pKa patterns similar to that of guanidine or acylguanidine (see for example Ahmad, S. et al., Aminoimidazoles as Bioisosteres of Acylguanidines: Novel, Potent, Selective and Orally Bioavailable Inhibitors of the Sodium Hydrogen Exchanger Isoform-1, Boorganic & Med. Chem. Lett., pp. 177-180 (2004), the entire contents of which is incorporated herein by reference for all relevant and consistent purposes), and include those illustrated below: The above bioisosteric embodiments (i.e., the group of structures above) correspond to “B” in the structure of Formula (II), the broken bond therein being attached to “X” (e.g., the acyl moiety, or alternatively a bond linking the bioisostere to the scaffold), with bonds to Z in Formula (III) not shown here. It is to be noted that, in the many structures illustrated herein, all of the various linkages or bonds will not be shown in every instance. For example, in one or more of the structures illustrated above, a bond or connection between the NHE-inhibiting small molecule and the modifying or functionalizing moiety Z is not always shown. However, this should not be viewed in a limiting sense. Rather, it is to be understood that the NHE-inhibiting small molecule is bound or connected in some way (e.g., by a bond or linker of some kind) to Z, such that the resulting NHE-Z molecule is suitable for use (i.e., substantially impermeable or substantially systemically non-bioavailable in the GI tract). Alternatively, Z may be incorporated into the NHE-inhibiting small molecule, such as for example by positioning it between the guanidine moiety and scaffold. It is to be further noted that a number of structures are provided herein for substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, and/or for NHE-inhibiting small molecules suitable for modification or functionalization in accordance with the present disclosure so as to render them substantially impermeable or substantially systemically non-bioavailable. Due to the large number of structures, various identifiers (e.g., atom identifiers in a chain or ring, identifiers for substituents on a ring or chain, etc.) may be used more than once. An identifier in one structure should therefore not be assumed to have the same meaning in a different structure, unless specifically stated (e.g., “R1” in one structure may or may not be the same as “R1” in another structure). Additionally, it is to be noted that, in one or more of the structures further illustrated herein below, specific details of the structures, including one or more of the identifiers therein, may be provided in a cited reference, the contents of which are specifically incorporated herein by reference for all relevant and consistent purposes. B. Illustrative Small Molecule Embodiments The substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure may in general be derived or prepared from essentially any small molecule possessing the ability to inhibit NHE activity, including small molecules that have already been reported or identified as inhibiting NHE activity but lack impermeability (i.e., are not substantially impermeable). In one particularly preferred embodiment, the compounds utilized in the various methods of the present disclosure are derived or prepared from small molecules that inhibit the NHE-3, -2, and/or -8 isoforms. To-date, a considerable amount of work has been devoted to the study of small molecules exhibiting NHE-1 inhibition, while less has been devoted for example to the study of small molecules exhibiting NHE-3 inhibition. Although the present disclosure is directed generally to substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, the substantially impermeable or substantially systemically non-bioavailable compounds exhibiting NHE-3, -2, and/or -8 inhibition are of particular interest. However, while it is envisioned that appropriate starting points may be the modification of known NHE-3, -2, and/or -8 inhibiting small molecules, small molecules identified for the inhibition of other NHE subtypes, including NHE-1, may also be of interest, and may be optimized for selectivity and potency for the NHE-3, -2, and/or -8 subtype antiporter. Small molecules suitable for use (i.e., suitable for modification or functionalization in accordance with the present disclosure) to prepare the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds of the present disclosure include those illustrated below. In this regard it is to be noted a bond or link to Z (i.e., the modification or functionalization that renders the small molecules substantially impermeable or substantially systemically non-bioavailable) is not specifically shown. As previously noted, the Z moiety may be attached to, or included within, the small molecule at essentially any site or position that does not interfere (e.g., stericly interfere) with the ability of the resulting compound to effectively inhibit the NHE antiport of interest. More particularly, Z may be attached to essentially any site on the NHE-inhibiting small molecule, Z for example displacing all or a portion of a substituent initially or originally present thereon and as illustrated below, provided that the site of installation of the Z moiety does not have a substantially adversely impact on the NHE-inhibiting activity thereof. In one particular embodiment, however, a bond or link extends from Z to a site on the small molecule that effectively positions the point of attachment as far away (based, for example, on the number of intervening atoms or bonds) from the atom or atoms present in the resulting compound that effectively act as the sodium ion mimic (for example, the atom or atoms capable of forming a positive ion under physiological pH conditions). In a preferred embodiment, the bond or link will extend from Z to a site in a ring, and more preferably an aromatic ring, within the small molecule, which serves as the scaffold. In view of the foregoing, in one particular embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2005/0054705, the entire content of which (and in particular the text of pages 1-2 therein) is incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In one particularly preferred embodiment, R6 and R7 are a halogen (e.g., Cl), R5 is lower alkyl (e.g., CH3), and R1-R4 are H, the compound having for example the structure: In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 1-2 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular page 49 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 118-120 and 175-177 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 129-131 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that the substituent Z within the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 127-129 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring of the structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 134-137 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 31-32 and 137-139 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 37-45 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 100-102 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference (wherein, in particular, the wavy bonds indicate variable length, or a variable number of atoms, therein). In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 90-91 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 5,900,436 (or EP 0822182 B1), the entire contents of which (and in particular column 1, lines 10-55 therein) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined in the cited patents, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 35-47 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 154-155 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 132-133 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particular embodiment, the following small molecule, disclosed in Canadian Patent Application No. 2,241,531 (or International Patent Publication No. WO 97/24113), the entire content of which (and in particular pages 58-65 AND 141-148 therein) is incorporated herein for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patent application, the details of which are incorporated herein by reference. (In this regard it is to be noted that Z within the ring structure illustrated above is not to be confused with the moiety Z that, in accordance with the present disclosure, is attached to the NHE-inhibiting small molecule in order effective render the resulting “NHE-Z” molecule substantially impermeable.) In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. Nos. 6,911,453 and 6,703,405, the entire contents of which (and in particular the text of columns 1-7 and 46 of U.S. Pat. No. 6,911,453 and columns 14-15 of U.S. Pat. No. 6,703,405) are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structure are defined in the cited patents, the details of which are incorporated herein by reference. A particularly preferred small molecule falling within the above-noted structure is further illustrated below (see, e.g., Example 1 of the U.S. Pat. No. 6,911,453, the entire contents of which are specifically incorporated herein by reference): In yet another particular embodiment, the following small molecules, disclosed in U.S. Patent Publication Nos. 2004/0039001, 2004/0224965, 2005/0113396 and 2005/0020612, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variables in the structures are defined above and/or in one or more of the cited patent applications, the details of which are incorporated herein by reference, and/or as illustrated above (wherein the broken bonds indicate a point of attachment for the Y moiety to the fused heterocyclic ring). In particular, in various embodiments the combination of X and Y may be as follows: In a particularly preferred embodiment of the above-noted structure, the small molecule has the general structure: wherein R1, R2 and R3 may be the same or different, but are preferably different, and are independently selected from H, NR′R″ (wherein R′ and R″ are independently selected from H and hydrocarbyl, such as lower alkyl, as defined elsewhere herein) and the structure: In a more particularly preferred embodiment of the above structure, a small molecule falling within the above-noted structure is further illustrated below (see, e.g., compound I1 on p. 5 of the 2005/0020612 patent application, the entire contents of which are specifically incorporated herein by reference): In another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,399,824, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In the structure, R may be preferably selected from H and (CH3)2NCH2CH2—, with H being particularly preferred in various embodiments. In yet another particular embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,005,010 (and in particular columns 1-3 therein), and/or U.S. Pat. No. 6,166,002 (and in particular columns 1-3 therein), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, may be suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). The variable (“R”) in the structure is defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2008/0194621, the entire content of which (and in particular the text of Example 1 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). R1 R2 R3 —H —H —NH2 —H —H —H —H —H —NH2 —H —H —H —NH2 The variables (“R1”, “R2 and “R3”) in the structure are as defined above, and/or as defined in the cited patent application, the details of which are incorporated herein by reference. In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Patent Application No. 2007/0225323, the entire content of which (and in particular the text of Example 36 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In yet another particularly preferred embodiment, the following small molecule, disclosed in U.S. Pat. No. 6,911,453, the entire content of which (and in particular the text of Example 35 therein) is incorporated herein by reference for all relevant and consistent purposes, may be particularly suitable for use or modification in accordance with the present disclosure (e.g., bound to or modified to include Z, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable). In one particularly preferred embodiment of the present disclosure, the small molecule may be selected from the group consisting of: In these structures, a bond or link (not shown) may extend, for example, between the Core and amine-substituted aromatic ring (first structure), the heterocyclic ring or the aromatic ring to which it is bound, or alternatively the chloro-substituted aromatic ring (second structure), or the difluoro-substituted aromatic ring or the sulfonamide-substituted aromatic ring (third structure). C. Exemplary Small Molecule Selectivity Shown below are examples of various NHE inhibiting small molecules and their selectivity across the NHE-1, -2 and -3 isoforms. (See, e.g., B. Masereel et al., An Overview of Inhibitors of Na+/H+ Exchanger, European J. of Med. Chem., 38, pp. 547-554 (2003), the entire contents of which is incorporated by reference here for all relevant and consistent purposes). Most of these small molecules were optimized as NHE-1 inhibitors, and this is reflected in their selectivity with respect thereto (IC50's for subtype-1 are significantly more potent (numerically lower) than for subtype-3). However, the data in Table 1 indicates that NHE-3 activity may be engineered into an inhibitor series originally optimized against a different isoform. For example, amiloride is a poor NHE-3 inhibitor and was inactive against this antiporter at the highest concentration tested (IC50>100 μM); however, analogs of this compound, such as DMA and EIPA, have NHE-3 IC50's of 14 and 2.4 uM, respectively. The cinnamoylguanidine S-2120 is over 500-fold more active against NHE-1 than NHE-3; however, this selectivity is reversed in regioisomer S-3226. It is thus possible to engineer NHE-3 selectivity into a chemical series optimized for potency against another antiporter isoform; that is, the inhibitor classes exemplified in the art may be suitably modified for activity and selectivity against NHE-3 (or alternatively NHE-2 and/or NHE-8), as well as being modified to be rendered substantially impermeable or substantially systemically non-bioavailable. R1 R2 Amiloride —H —H DMA —CH3 —CH3 EIPA —C2H5 —CH(CH3)2 HMA —(CH2)6— TABLE 1 IC50 or Ki (μM)b Druga NHE-1 NHE-2 NHE-3 NHE-5 Amiloride   1-1.6*   1.0** >100* 21 EIPA  0.01*-0.02** 0.08*-0.5**   2.4* 0.42 HMA 0.013*  —   2.4* 0.37 DMA 0.023*   0.25*  14* — Cariporide 0.03-3.4   4.3-62  1->100 >30 Eniporide 0.005-0.38     2-17 100-460 >30 Zoniporide 0.059  12 >500* — BMS-284640 0.009 1800  >30 3.36 T-162559 (S) 0.001   0.43  11 — T-162559 (R) 35   0.31  >30 — S-3226 3.6  80**   0.02 S-2120 0.002   0.07   1.32 *= from rat, **= from rabbit. NA = not active aTable adapted from Masereel, B. et al., European Journal of Medicinal Chemistry, 2003, 38, 547-54. bKi values are in italic As previously noted above, the NHE inhibitor small molecules disclosed herein, including those noted above, may advantageously be modified to render them substantially impermeable or substantially systemically non-bioavailable. The compounds as described herein are, accordingly, effectively localized in the gastrointestinal tract or lumen, and in one particular embodiment the colon. Since the various NHE isomforms may be found in many different internal organs (e.g., brain, heart, liver, etc.), localization of the NHE inhibitors in the intestinal lumen is desirable in order to minimize or eliminate systemic effects (i.e., prevent or significantly limit exposure of such organs to these compounds). Accordingly, the present disclosure provides NHE inhibitors, and in particular NHE-3, -2 and/or -8 inhibitors, that are substantially systemically non-bioavailable in the GI tract, and more specifically substantially systemically impermeable to the gut epithelium, as further described below. D. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is monovalent; that is, the molecule contains one moiety that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following structures of Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen (e.g., Cl), —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R4 is selected from H, C1-C7 alkyl or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines, optionally linked to the ring Ar1 by a heterocyclic linker; R4 and R12 are independently selected from H and R7, where R7 is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R3 is selected from H or R7, where R7 is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or R7, wherein R7 is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In another particular embodiment, the NHE-Z molecule of the present disclosure may have the structure of Formula (IV): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or Z, where Z is selected from substituted hydrocarbyl, heterohydrocarbyl, or polyols and/or substituted or unsubstituted polyalkylene glycol, wherein substituents thereon are selected from the group consisting of phosphinates, phosphonates, phosphonamidates, phosphates, phosphonthioates and phosphonodithioates; R4 is selected from H or Z, where Z is substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, a polyalkylene glycol and a polyol, where substituents thereon are selected from hydroxyls, amines, amidines, carboxylates, phosphonates, sulfonates, and guanidines; R6 is selected from —H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. Additionally, or alternatively, in one or more embodiments of the compounds illustrated above, the compound may optionally have a tPSA of at least about 100 Å2, about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, or more and/or a molecular weight of at least about 710 Da. II. Polyvalent Structures Macromolecules and Oligomers A. General Structure As noted above, the compounds of the present disclosure comprise a NHE-inhibiting small molecule that has been modified or functionalized structurally to alter its physicochemical properties (by the attachment or inclusion of moiety Z), and more specifically the physicochemical properties of the NHE-Z molecule, thus rendering it substantially impermeable or substantially systemically non-bioavailable. In one particular embodiment, and as further detailed elsewhere herein, the NHE-Z compound may be polyvalent (i.e., an oligomer, dendrimer or polymer moiety), wherein Z may be referred to in this embodiment generally as a “Core” moiety, and the NHE-inhibiting small molecule may be bound, directly or indirectly (by means of a linking moiety) thereto, the polyvalent compounds having for example one of the following general structures of Formula (VIII), (IX) and (X): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and E and n are both an integer of 2 or more. In various alternative embodiments, however, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by forming a polymeric structure from multiple NHE-inhibiting small molecules, which may be the same or different, connected or bound by a series of linkers, L, which also may be the same or different, the compound having for example the structure of Formula (XI): wherein: Core (or Z) and NHE are as defined above; L is a bond or linker, as further defined elsewhere herein below, and m is 0 or an integer of 1 or more. In this embodiment, the physicochemical properties, and in particular the molecular weight or polar surface area, of the NHE-inhibiting small molecule is modified (e.g., increased) by having a series of NHE-inhibiting small molecules linked together, in order to render them substantially impermeable or substantially systemically non-bioavailable. In these or yet additional alternative embodiments, the polyvalent compound may be in dimeric, oligomeric or polymeric form, wherein for example Z or the Core is a backbone to which is bound (by means of a linker, for example) multiple NHE-inhibiting small molecules. Such compounds may have, for example, the structures of Formulas (XIIA) or (XIIB): wherein: L is a linking moiety; NHE is a NHE-inhibiting small molecule, each NHE as described above and in further detail hereinafter; and n is a non-zero integer (i.e., an integer of 1 or more). The Core moiety has one or more attachment sites to which NHE-inhibiting small molecules are bound, and preferably covalently bound, via a bond or linker, L. The Core moiety may, in general, be anything that serves to enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable (e.g., an atom, a small molecule, etc.), but in one or more preferred embodiments is an oligomer, a dendrimer or a polymer moiety, in each case having more than one site of attachment for L (and thus for the NHE-inhibiting small molecule). The combination of the Core and NHE-inhibiting small molecule (i.e., the “NHE-Z” molecule) may have physicochemical properties that enable the overall compound to be substantially impermeable or substantially systemically non-bioavailable. In this regard it is to be noted that the repeat unit in Formulas (XIIA) and (XIIB) generally encompasses repeating units of various polymeric embodiments, which may optionally be produced by methods referred to herein. In each polymeric, or more general polyvalent, embodiment, it is to be noted that each repeat unit may be the same or different, and may or may not be linked to the NHE-inhibiting small molecule by a linker, which in turn may be the same or different when present. In this regard it is to be noted that as used herein, “polyvalent” refers to a molecule that has multiple (e.g., 2, 4, 6, 8, 10 or more) NHE-inhibiting moieties therein. In this regard it is to be still further noted that, as further illustrated elsewhere herein, certain polyvalent NHE-inhibiting compounds of the present disclosure show unexpectedly higher potency, as measured by inhibition assays (as further detailed elsewhere herein) and characterized by the concentration of said NHE inhibitor resulting in 50% inhibition (i.e., the IC50 values). It has been observed that certain multivalent structures, represented generally by Formula (X), above, have an IC50 value several fold lower in magnitude than the individual NHE, or L-NHE, structure (which may be referred to as the “monomer” or monovalent form). For example, in one embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 5 time lower (i.e. potency about 5 time higher) than the monomer (or monovalent) form (e.g. Examples 46 and 49). In another embodiment, multivalent compounds according to Formula (X) were observed to have an IC50 value of at least about 10 time lower (i.e. potency about 10 time higher) than the monomer form (e.g. Examples 87 and 88). The above noted embodiments are further illustrated herein below. For example, the first representation below of an exemplary oligomer compound, wherein the various parts of the compound corresponding to the structure of Formula (X) are identified, is intended to provide a broad context for the disclosure provided herein. It is to be noted that while each “NHE” moiety (i.e., the NHE small molecule) in the structure below is the same, it is within the scope of this disclosure that each is independently selected and may be the same or different. In the illustration below, the linker moiety is a polyethylene glycol (PEG) motif. PEG derivatives are advantageous due in part to their aqueous solubility, which may help avoid hydrophobic collapse (the intramolecular interaction of hydrophobic motifs that can occur when a hydrophobic molecule is exposed to an aqueous environment (see, e.g., Wiley, R. A.; Rich, D. H. Medicai Research Reviews 1993, 13(3), 327-384). The core moiety illustrated below is also advantageous because it provides some rigidity to the Core-(L-NHE)n molecule, allowing an increase in distance between the NHE inhibitors while minimally increasing rotational degrees of freedom. In an alternative embodiment (e.g., Formula (XI), wherein m=0), the structure may be for example: Within the polyvalent compounds utilized for treatments according to the present disclosure, n and m (when m is not zero) may be independently selected from the range of from about 1 to about 10, more preferably from about 1 to about 5, and even more preferably from about 1 to about 2. In alternative embodiments, however, n and m may be independently selected from the range of from about 1 to about 500, preferably from about 1 to about 300, more preferably from about 1 to about 100, and most preferably from about 1 to about 50. In these or other particular embodiments, n and m may both be within the range of from about 1 to about 50, or from about 1 to about 20. The structures provided above are illustrations of one embodiment of compounds utilized for administration wherein absorption is limited (i.e., the compound is rendered substantially impermeable or substantially systemically non-bioavailable) by means of increasing the molecular weight of the NHE-inhibiting small molecule. In an alternative approach, as noted elsewhere herein, the NHE-inhibiting small molecule may be rendered substantially impermeable or substantially systemically non-bioavailable by means of altering, and more specifically increasing, the topological polar surface area, as further illustrated by the following structures, wherein a substituted aromatic ring is bound to the “scaffold” of the NHE-inhibition small molecule. The selection of ionizable groups such as phosphonates, sulfonates, guanidines and the like may be particularly advantageous at preventing paracellular permeability. Carbohydrates are also advantageous, and though uncharged, significantly increase tPSA while minimally increasing molecular weight. It is to be noted, within one or more of the various embodiments illustrated herein, NHE-inhibiting small molecules suitable for use (i.e., suitable for modification or functionalization, in order to render them substantially impermeable or substantially systemically non-bioavailable) may, in particular, be selected independently from one or more of the small molecules described as benzoylguandines, heteroaroylguandines, “spacer-stretched” aroylguandines, non-acyl guanidines and acylguanidine isosteres, above, and as discussed in further detail hereinafter and/or to the small molecules detailed in, for example: U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 5,824,691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP 0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Again, it is to be noted that when it is said that NHE-inhibiting small molecule is selected independently, it is intended that, for example, the oligomeric structures represented in Formulas (X) and (XI) above can include different structures of the NHE small molecules, within the same oligomer or polymer. In other words, each “NHE” within a given polyvalent embodiment may independently be the same or different than other “NHE” moieties within the same polyvalent embodiment. In designing and making the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds that may be utilized for the treatments detailed in the instant disclosure, it may in some cases be advantageous to first determine a likely point of attachment on a small molecule NHE inhibitor, where a core or linker might be installed or attached before making a series of candidate multivalent or polyvalent compounds. This may be done by one skilled in the art via known methods by systematically installing functional groups, or functional groups displaying a fragment of the desired core or linker, onto various positions of the NHE inhibitor small molecule and then testing these adducts to determine whether the modified inhibitor still retains desired biological properties (e.g., NHE inhibition). An understanding of the SAR of the inhibitor also allows the design of cores and/or linkers that contribute positively to the activity of the resulting compounds. For example, the SAR of an NHE inhibitor series may show that installation of an N-alkylated piperazine contributes positively to biochemical activity (increased potency) or pharmaceutical properties (increased solubility); the piperazine moiety may then be utilized as the point of attachment for the desired core or linker via N-alkylation. In this fashion, the resulting compound thereby retains the favorable biochemical or pharmaceutical properties of the parent small molecule. In another example, the SAR of an NHE inhibitor series might indicate that a hydrogen bond donor is important for activity or selectivity. Core or linker moieties may then be designed to ensure this H-bond donor is retained. These cores and/or linkers may be further designed to attenuate or potentiate the pKa of the H-bond donor, potentially allowing improvements in potency and selectivity. In another scenario, an aromatic ring in an inhibitor could be an important pharmacophore, interacting with the biological target via a pi-stacking effect or pi-cation interaction. Linker and core motifs may be similarly designed to be isosteric or otherwise synergize with the aromatic features of the small molecule. Accordingly, once the structure-activity relationships within a molecular series are understood, the molecules of interest can be broken down into key pharmacophores which act as essential molecular recognition elements. When considering the installation of a core or linker motif, said motifs can be designed to exploit this SAR and may be installed to be isosteric and isoelectronic with these motifs, resulting in compounds that retain biological activity but have significantly reduced permeability. Another way the SAR of an inhibitor series can be exploited in the installation of core or linker groups is to understand which regions of the molecule are insensitive to structural changes. For example, X-ray co-crystal structures of protein-bound inhibitors can reveal those portions of the inhibitor that are solvent exposed and not involved in productive interactions with the target. Such regions can also be identified empirically when chemical modifications in these regions result in a “flat SAR” (i.e., modifications appear to have minimal contribution to biochemical activity). Those skilled in the art have frequently exploited such regions to engineer in pharmaceutical properties into a compound, for example, by installing motifs that may improve solubility or potentiate ADME properties. In the same fashion, such regions are expected to be advantageous places to install core or linker groups to create compounds as described in the instant disclosure. These regions are also expected to be sites for adding, for example, highly polar functionality such as carboxylic acids, phosphonic acids, sulfonic acids, and the like in order to greatly increase tPSA. Another aspect to be considered in the design of cores and linkers displaying an NHE inhibitor is the limiting or preventing of hydrophobic collapse. Compounds with extended hydrocarbon functionalities may collapse upon themselves in an intramolecular fashion, causing an increased enthalpic barrier for interaction with the desired biological target. Accordingly, when designing cores and linkers, these are preferably designed to be resistant to hydrophobic collapse. For example, conformational constraints such as rigid monocyclic, bicyclic or polycyclic rings can be installed in a core or linker to increase the rigidity of the structure. Unsaturated bonds, such as alkenes and alkynes, may also or alternatively be installed. Such modifications may ensure the NHE-inhibiting compound is accessible for productive binding with its target. Furthermore, the hydrophilicity of the linkers may be improved by adding hydrogen bond donor or acceptor motifs, or ionic motifs such as amines that are protonated in the GI, or acids that are deprotonated. Such modifications will increase the hydrophilicity of the core or linker and help prevent hydrophobic collapse. Furthermore, such modifications will also contribute to the impermeability of the resulting compounds by increasing tPSA. Specific examples of NHE-inhibiting small molecules modified consistent with the principles detailed above are illustrated below. These moieties display functional groups that facilitate their appendage to “Z” (e.g., a core group, Core, or linking group, L). These functional groups can include electrophiles, which can react with nucleophilic cores or linkers, and nucleophiles, which can react with electrophilic cores or linkers. Small molecule NHE inhibitors may be similarly derivatized with, for example, boronic acid groups which can then react with appropriate cores or linkers via palladium mediated cross-coupling reactions. The NHE inhibitor may also contain olefins which can then react with appropriate cores or linkers via olefin metathesis chemistry, or alkynes or azides which can then react with appropriate cores or linkers via [2+3] cycloaddition. One skilled in the art may consider a variety of functional groups that will allow the facile and specific attachment of an NHE inhibiting small molecule to a desired core or linker. Exemplary functionalized derivatives of NHEs include but are not limited to the following: wherein the variables in the above-noted structures (e.g., R, etc.) are as defined in U.S. Pat. No. 6,399,824, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. wherein the variables in the above-noted structures (e.g., R7-9, etc.) are as defined in U.S. Patent Application No. 2005/0020612 and U.S. Pat. No. 6,911,453, the entire contents of which (and in particular the text of columns 1-4 therein) are incorporated herein by reference for all relevant and consistent purposes. It is to be noted that one skilled in the art can envision a number of core or linker moieties that may be functionalized with an appropriate electrophile or nucleophile. Shown below are a series of such compounds selected based on several design considerations, including solubility, steric effects, and their ability to confer, or be consistent with, favorable structure-activity relationships. In this regard it is to be further noted, however, that the structures provided below, and above, are for illustration purposes only, and therefore should not be viewed in a limiting sense. Exemplary electrophilic and nucleophilic linker moieties include, but are not limited to, the linker moieties illustrated in the Examples and the following: The linking moiety, L, in each of the described embodiments (including embodiments in which a NHE-inhibiting small molecule is linked to a core such as an atom, another small molecule, a polymer moiety, an oligomer moiety, or a non-repeating moiety) can be a chemical linker, such as a bond or other moiety, for example, comprising about 1 to about 200 atoms, or about 1 to about 100 atoms, or about 1 to about 50 atoms, that can be hydrophilic and/or hydrophobic. In one embodiment, the linking moiety can be a polymer moiety grafted onto a polymer backbone, for example, using living free radical polymerization approaches known in the art. Preferred L structures or moieties may also be selected from, for example, oligoethylene glycol, oligopeptide, oligoethyleneimine, oligotetramethylene glycol and oligocaprolactone. As noted, the core moiety can be an atom, a small molecule, an oligomer, a dendrimer or a polymer moiety, in each case having one or more sites of attachment for L. For example, the core moiety can be a non-repeating moiety (considered as a whole including linking points to the inhibitors), selected for example from the group consisting of alkyl, phenyl, aryl, alkenyl, alkynyl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, and moieties comprising combinations thereof (in each permutation). A non-repeating moiety can include repeating units (e.g., methylene) within portions or segments thereof (e.g., within an alkyl segment), without having discrete repeat units that constitute the moiety as a whole (e.g., in the sense of a polymer or oligomer). Exemplary core moieties include but are not limited to the core moieties illustrated in the Examples and ether moieties, ester moieties, sulfide moieties, disulfide moieties, amine moieties, aryl moieties, alkoxyl moieties, etc., such as, for example, the following: wherein the broken bonds (i.e., those having a wavy bond, through them) are points of connection to either an NHE inhibitor or a linker moiety displaying an NHE inhibitor, where said points of connection can be made using chemistries and functional groups known to the art of medicinal chemistry; and further wherein each p, q, r and s is an independently selected integer ranging from about 0 to about 48, preferably from about 0 to about 36, or from about 0 to about 24, or from about 0 to about 16. In some instances, each p, q, r and s can be an independently selected integer ranging from about 0 to 12. Additionally, R can be a substituent moiety generally selected from halide, hydroxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, carbocyclic, heterocyclic, and moieties comprising combinations thereof. In another approach, the core moiety is a dendrimer, defined as a repeatedly branched molecule (see, e.g., J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y., 2001) and schematically represented in FIG. 8: In this approach, the NHE inhibiting small molecule is attached through L to one, several or optionally all termini located at the periphery of the dendrimer. In another approach, a dendrimer building block named dendron, and illustrated above, is used as a core, wherein the NHE inhibitor group is attached to one, several or optionally all termini located at the periphery of the dendron. The number of generations herein is typically between about 0 and about 6, and preferably between about 0 and about 3. (Generation is defined in, for example, J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.) Dendrimer and/or dendron structures are well known in the art and include, for example, those shown in or illustrated by: (i) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, John Wiley & Sons, Ltd. NY, N.Y.; (ii) George R Newkome, Charles N. Moorefield and Fritz Vogtle, Dendrimers and Dendrons: Concepts, Syntheses, Applications, VCH Verlagsgesellschaft Mbh; and, (iii) Boas, U., Christensen, J. B., Heegaard, P. M. H., Dendrimers in Medicine and Biotechnology: New Molecular Tools, Springer, 2006. In yet another approach, the core moiety may be a polymer moiety or an oligomer moiety. The polymer or oligomer may, in each case, be independently considered and comprise repeat units consisting of a repeat moiety selected from alkyl (e.g., —CH2—), substituted alkyl (e.g., —CHR—, wherein, for example, R is hydroxy), alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, aryl, heterocyclic, amine, ether, sulfide, disulfide, hydrazine, and any of the foregoing substituted with oxygen, sulfur, sulfonyl, phosphonyl, hydroxyl, alkoxyl, amine, thiol, ether, carbonyl, carboxyl, ester, amide, alkyl, alkenyl, alkynyl, aryl, heterocyclic, as well as moieties comprising combinations thereof. In still another approach, the core moiety comprises repeat units resulting from the polymerization of ethylenic monomers (e.g., such as those ethylenic monomers listed elsewhere herein below). Preferred polymers for polymeric moieties useful in constructing substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds that are multivalent, for use in the treatment various treatment methods disclosed herein, can be prepared by any suitable technique, such as by free radical polymerization, condensation polymerization, addition polymerization, ring-opening polymerization, and/or can be derived from naturally occurring polymers, such as saccharide polymers. Further, in some embodiments, any of these polymer moieties may be functionalized. Examples of polysaccharides useful in preparation of such compounds include but are not limited to materials from vegetable or animal origin, including cellulose materials, hemicellulose, alkyl cellulose, hydroxyalkyl cellulose, carboxymethylcellulose, sulfoethylcellulose, starch, xylan, amylopectine, chondroitin, hyarulonate, heparin, guar, xanthan, mannan, galactomannan, chitin, and/or chitosan. More preferred, in at least some instances, are polymer moieties that do not degrade, or that do not degrade significantly, under the physiological conditions of the GI tract (such as, for example, carboxymethylcellulose, chitosan, and sulfoethylcellulose). When free radical polymerization is used, the polymer moiety can be prepared from various classes of monomers including, for example, acrylic, methacrylic, styrenic, vinylic, and dienic, whose typical examples are given thereafter: styrene, substituted styrene, alkyl acrylate, substituted alkyl acrylate, alkyl methacrylate, substituted alkyl methacrylate, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N,N-dialkylacrylamide, N,N-dialkylmethacrylamide, isoprene, butadiene, ethylene, vinyl acetate, and combinations thereof. Functionalized versions of these monomers may also be used and any of these monomers may be used with other monomers as comonomers. For example, specific monomers or comonomers that may be used in this disclosure include methyl methacrylate, ethyl methacrylate, propyl methacrylate (all isomers), butyl methacrylate (all isomers), 2-ethylhexyl methacrylate, isobomyl methacrylate, methacrylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, α-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate (all isomers), butyl acrylate (all isomers), 2-ethylhexyl acrylate, isobomyl acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene, glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate (all isomers), hydroxybutyl methacrylate (all isomers), N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, triethyleneglycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate (all isomers), hydroxybutyl acrylate (all isomers), N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, triethyleneglycol acrylate, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-tert-butylmethacrylamide, N-n-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N-tert-butylacrylamide, N—N-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, 4-acryloylmorpholine, vinyl benzoic acid (all isomers), diethylaminostyrene (all isomers), a-methylvinyl benzoic acid (all isomers), diethylamino α-methylstyrene (all isomers), p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic sodium salt, alkoxy and alkyl silane functional monomers, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, butadiene, isoprene, chloroprene, ethylene, vinyl acetate, vinylformamide, allylamine, vinylpyridines (all isomers), fluorinated acrylate, methacrylates, and combinations thereof. Main chain heteroatom polymer moieties can also be used, including polyethyleneimine and polyethers such as polyethylene oxide and polypropylene oxide, as well as copolymers thereof. In one particular embodiment, the polymer to which the NHE inhibitor small molecule, NHE, is attached or otherwise a part of is a polyol (e.g., a polymer having a repeat unit of, for example, a hydroxyl-substituted alkyl, such as —CH(OH)—). Polyols, such as mono- and disaccharides, with or without reducing or reducible end groups thereon, may be good candidates, for example, for installing additional functionality that could render the compound substantially impermeable. In one particular embodiment, the NHE inhibiting small molecule, NHE, is attached at one or both ends of the polymer chain. More specifically, in yet another alternative approach to the polyvalent embodiment of the present disclosure, a macromolecule (e.g., a polymer or oligomer) having one of the following exemplary structures may be designed and constructed as described herein: It is to be further noted that the repeat moiety in Formulas (XIIA) or (XIIB) generally encompasses repeating units of polymers and copolymers produced by methods referred to herein above. It is to be noted that the various properties of the oligomers and polymers that form the core moiety as disclosed herein above may be optimized for a given use or application using experimental means and principles generally known in the art. For example, the overall molecular weight of the compounds or structures presented herein above may be selected so as to achieve non-absorbability, inhibition persistence and/or potency. Additionally, with respect to those polymeric embodiments that encompass or include the compounds generally represented by the structure of Formula (I) herein, and/or those disclosed for example in the many patents and patent applications cited herein (see, e.g., U.S. Pat. No. 5,866,610; U.S. Pat. No. 6,399,824; U.S. Pat. No. 6,911,453; U.S. Pat. No. 6,703,405; U.S. Pat. No. 6,005,010; U.S. Pat. No. 6,887,870; U.S. Pat. No. 6,737,423; U.S. Pat. No. 7,326,705; U.S. Pat. No. 5,824,691 (WO94/026709); U.S. Pat. No. 6,399,824 (WO02/024637); US 2004/0339001 (WO02/020496); US 2005/0020612 (WO03/055490); WO01/072742; CA 2387529 (WO01021582); CA 02241531 (WO97/024113); US 2005/0113396 (WO03/051866); US2005/0020612; US2005/0054705; US2008/0194621; US2007/0225323; US2004/0039001; US2004/0224965; US2005/0113396; US2007/0135383; US2007/0135385; US2005/0244367; US2007/0270414; and CA 2177007 (EP 0744397), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes), such as those wherein these compounds or structures are pendants off of a polymeric backbone or chain, the composition of the polymeric backbone or chain, as well as the overall size or molecular weight of the polymer, and/or the number of pendant molecules present thereon, may be selected according to various principles known in the art in view of the intended application or use. With respect to the polymer composition of the NHE inhibiting compound, it is to be noted that a number of polymers can be used including, for example, synthetic and/or naturally occurring aliphatic, alicyclic, and/or aromatic polymers. In preferred embodiments, the polymer moiety is stable under physiological conditions of the GI tract. By “stable” it is meant that the polymer moiety does not degrade or does not degrade significantly or essentially does not degrade under the physiological conditions of the GI tract. For instance, at least about 90%, preferably at least about 95%, and more preferably at least about 98%, and even more preferably at least about 99% of the polymer moiety remains un-degraded or intact after at least about 5 hours, at least about 12 hours, at least about 18 hours, at least about 24 hours, or at least about 48 hours of residence in a gastrointestinal tract. Stability in a gastrointestinal tract can be evaluated using gastrointestinal mimics, e.g., gastric mimics or intestinal mimics of the small intestine, which approximately model the physiological conditions at one or more locations therein. Polymer moieties detailed herein for use as the core moiety can be hydrophobic, hydrophilic, amphiphilic, uncharged or non-ionic, negatively or positively charged, or a combination thereof. Additionally, the polymer architecture of the polymer moiety can be linear, grafted, comb, block, star and/or dendritic, preferably selected to produce desired solubility and/or stability characteristics as described above. Additionally or alternatively, modifications may be made to NHE-inhibiting small molecules that increase tPSA, thus contributing to the impermeability of the resulting compounds. Such modifications preferably include addition of di-anions, such as phosphonates, malonates, sulfonates and the like, and polyols such as carbohydrates and the like. Exemplary derivatives of NHEs with increased tPSA include but are not limited to the following: B. Preferred Embodiments In one or more particularly preferred embodiments of the present disclosure, the “NHE-Z” molecule is polyvalent; that is, the molecule contains two or more moieties that effectively acts to inhibit NHE-mediated antiport of sodium ions and hydrogen ions. In such embodiments, the NHE-Z molecule may be selected, for example, from one of the following Formulas (IV), (V), (VI) or (VII): wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 is selected from H, C1-C7 alkyl or L, where L is as described above; R6 is absent or selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each R1, R2, R3, and R5 are optionally linked to the ring Ar1 by a heterocyclic linker, and further are independently selected from H, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R4 and R12 are independently selected from H or L, where L is as defined above; R10 and R11, when presented, are independently selected from H and C1-C7 alkyl; and, Ar1 and Ar2 independently represent an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; wherein: each X is a halogen atom, which may be the same or different; R1 is selected from —SO2—NR7R8, —NR7(CO)R8, —(CO)NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or L, provided at least one is L, wherein L is selected from the group consisting of substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol and polyols, and further wherein L links the repeat unit to at least one other repeat unit and/or at least one other Core moiety independently selected from substituted or unsubstituted hydrocarbyl, heterohydrocarbyl, polyalkylene glycol, polyols, polyamines, or polyacrylamides, of the polyvalent compound; R3 is selected from H or L, where L is as described above; R13 is selected from substituted or unsubstituted C1-C8 alkyl; R2 and R12 are independently selected from H or L, wherein L is as described above; R10 and R11, when present, are independently selected from H and C1-C7 alkyl; Ar1 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom; and Ar2 represents an aromatic ring, or alternatively a heteroaromatic ring wherein one or more of the carbon atoms therein is replaced with a N, O or S atom. In one particular embodiment for the structure of Formula (V), one of R1, R2 and R3 is linked to the ring Ar1, and/or R5 is linked to the ring Ar2, by a heterocyclic linker having the structure: wherein R represents R1, R2, R3, or R5 bound thereto. In one particular embodiment, the NHE-inhibiting small molecule has the structure of Formula (IV): or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2, R3, R5 and R9 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L; R4 is selected from H, C1-C7 alkyl, or a bond linking the NHE-inhibiting small molecule to L; R6 is absent or selected from H and C1-C7 alkyl; and Ar1 and Ar2 independently represent an aromatic ring or a heteroaromatic ring. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has the following structure: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof, wherein: each R1, R2 and R3 are independently selected from H, halogen, —NR7(CO)R8, —(CO)NR7R8, —SO2—NR7R8, —NR7SO2R8, —NR7R8, —OR7, —SR7, —O(CO)NR7R8, —NR7(CO)OR8, and —NR7SO2NR8, where R7 and R8 are independently selected from H or a bond linking the NHE-inhibiting small molecule to L, provided at least one is a bond linking the NHE-inhibiting small molecule to L. In further particular embodiments of the above embodiment, the NHE-inhibiting small molecule has one of the following structures: or a stereoisomer, prodrug or pharmaceutically acceptable salt thereof. In further particular embodiments of the above embodiment, L is a polyalkylene glycol linker, such as a polyethylene glycol linker. In further particular embodiments of the above embodiment, n is 2. In further particular embodiments of the above embodiment, the Core has the following structure: wherein: X is selected from the group consisting of a bond, —O—, —NH—, —S—, C1-6alkylene, —NHC(═O)—, —C(═O)NH—, —NHC(═O)NH—, —SO2NH—, and —NHSO2—; Y is selected from the group consisting of a bond, optionally substituted C1-8alkylene, optionally substituted aryl, optionally substituted heteroaryl, a polyethylene glycol linker, —(CH2)1-6O(CH2)1-6— and —(CH2)1-6NY1(CH2)1-6—; and Y1 is selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, optionally substituted aryl or optionally substituted heteroaryl. In further particular embodiments of the above embodiment, the Core is selected from the group consisting of: III. Terminology, Physical and Performance Properties A. Terminology Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to”. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. “Amino” refers to the —NH2 radical. “Cyano” refers to the —CN radical. “Hydroxy” or “hydroxyl” refers to the —OH radical. “Imino” refers to the ═NH substituent. “Nitro” refers to the —NO2 radical. “Oxo” refers to the ═O substituent. “Thioxo” refers to the ═S substituent. “Alkyl” refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), having from one to twelve carbon atoms (C1-C12 alkyl), preferably one to eight carbon atoms (C1-C8 alkyl) or one to six carbon atoms (C1-C6 alkyl), and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (iso-propyl), n-butyl, n-pentyl, 1,1-dimethylethyl (t-butyl), 3-methylhexyl, 2-methylhexyl, ethenyl, prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, ethynyl, propynyl, butyryl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted. “Alkylene” or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated or unsaturated (i.e., contains one or more double and/or triple bonds), and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, ethenylene, propenylene, n-butenylene, propynylene, n-butynylene, and the like. The alkylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond. The points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted. “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted. “Alkylamino” refers to a radical of the formula —NHRa or —NRaRa where each Ra is, independently, an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, an alkylamino group may be optionally substituted. “Thioalkyl” refers to a radical of the formula —SRa where Ra is an alkyl radical as defined above containing one to twelve carbon atoms. Unless stated otherwise specifically in the specification, a thioalkyl group may be optionally substituted. “Aryl” refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term “aryl” or the prefix “ar-” (such as in “aralkyl”) is meant to include aryl radicals that are optionally substituted. “Aralkyl” refers to a radical of the formula —Rb-Rc where Rb is an alkylene chain as defined above and Rc is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. Unless stated otherwise specifically in the specification, an aralkyl group may be optionally substituted. “Cycloalkyl” or “carbocyclic ring” refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, a cycloalkyl group may be optionally substituted. “Cycloalkylalkyl” refers to a radical of the formula —RbRd where Rd is an alkylene chain as defined above and Rg is a cycloalkyl radical as defined above. Unless stated otherwise specifically in the specification, a cycloalkylalkyl group may be optionally substituted. “Fused” refers to any ring structure described herein which is fused to an existing ring structure in the compounds of the invention. When the fused ring is a heterocyclyl ring or a heteroaryl ring, any carbon atom on the existing ring structure which becomes part of the fused heterocyclyl ring or the fused heteroaryl ring may be replaced with a nitrogen atom. “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted. “Heterocyclyl” or “heterocyclic ring” refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted. “N-heterocyclyl” refers to a heterocyclyl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocyclyl radical to the rest of the molecule is through a nitrogen atom in the heterocyclyl radical. Unless stated otherwise specifically in the specification, a N-heterocyclyl group may be optionally substituted. “Heterocyclylalkyl” refers to a radical of the formula —RbRe where Rb is an alkylene chain as defined above and Re is a heterocyclyl radical as defined above, and if the heterocyclyl is a nitrogen-containing heterocyclyl, the heterocyclyl may be attached to the alkyl radical at the nitrogen atom. Unless stated otherwise specifically in the specification, a heterocyclylalkyl group may be optionally substituted. “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted. “N-heteroaryl” refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. Unless stated otherwise specifically in the specification, an N-heteroaryl group may be optionally substituted. “Heteroarylalkyl” refers to a radical of the formula —RbRf where Rb is an alkylene chain as defined above and Rf is a heteroaryl radical as defined above. Unless stated otherwise specifically in the specification, a heteroarylalkyl group may be optionally substituted. The term “substituted” used herein means any of the above groups (i.e., alkyl, alkylene, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl) wherein at least one hydrogen atom is replaced by a bond to a non-hydrogen atoms such as, but not limited to: a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyldiarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles. For example, “substituted” includes any of the above groups in which one or more hydrogen atoms are replaced with —NRgRh, —NRgC(═O)Rh, —NRgC(═O)NRgRh, —NRgC(═O)ORh, —NRgSO2Rh, —OC(═O)NRgRh, —ORg, —SRg, —SORg, —SO2Rg, —OSO2Rg, —SO2ORg, ═NSO2Rg, and —SO2NRgRh. “Substituted” also means any of the above groups in which one or more hydrogen atoms are replaced with —C(═O)Rg, —C(═O)ORg, —C(═O)NRgRh, —CH2SO2Rg, —CH2SO2NRgRh, —(CH2CH2O)2-10Rg. In the foregoing, Rg and Rh are the same or different and independently hydrogen, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl. “Substituted” further means any of the above groups in which one or more hydrogen atoms are replaced by a bond to an amino, cyano, hydroxyl, imino, nitro, oxo, thioxo, halo, alkyl, alkoxy, alkylamino, thioalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, heterocyclyl, N-heterocyclyl, heterocyclylalkyl, heteroaryl, N-heteroaryl and/or heteroarylalkyl group. In addition, each of the foregoing substituents may also be optionally substituted with one or more of the above substituents. “Prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term “prodrug” is also meant to include any covalently bonded carriers, which release the active compound of the invention in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like. The invention disclosed herein is also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples. “Stable compound” and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. “Optional” or “optionally” means that the subsequently described event or circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted aryl” means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution. “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals. “Pharmaceutically acceptable salt” includes both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like. “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine. Often crystallizations produce a solvate of the compound of the invention. As used herein, the term “solvate” refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent. A “pharmaceutical composition” refers to a formulation of a compound of the invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor. The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (−), (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. A “stereoisomer” refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another. A “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds. In accordance with the present disclosure, the compounds described herein are designed to be substantially active or localized in the gastrointestinal lumen of a human or animal subject. The term “gastrointestinal lumen” is used interchangeably herein with the term “lumen,” to refer to the space or cavity within a gastrointestinal tract (GI tract, which can also be referred to as the gut), delimited by the apical membrane of GI epithelial cells of the subject. In some embodiments, the compounds are not absorbed through the layer of epithelial cells of the GI tract (also known as the GI epithelium). “Gastrointestinal mucosa” refers to the layer(s) of cells separating the gastrointestinal lumen from the rest of the body and includes gastric and intestinal mucosa, such as the mucosa of the small intestine. A “gastrointestinal epithelial cell” or a “gut epithelial cell” as used herein refers to any epithelial cell on the surface of the gastrointestinal mucosa that faces the lumen of the gastrointestinal tract, including, for example, an epithelial cell of the stomach, an intestinal epithelial cell, a colonic epithelial cell, and the like. “Substantially systemically non-bioavailable” and/or “substantially impermeable” as used herein (as well as variations thereof) generally refer to situations in which a statistically significant amount, and in some embodiments essentially all of the compound of the present disclosure (which includes the NHE-inhibitor small molecule), remains in the gastrointestinal lumen. For example, in accordance with one or more embodiments of the present disclosure, preferably at least about 70%, about 80%, about 90%, about 95%, about 98%, about 99%, or even about 99.5%, of the compound remains in the gastrointestinal lumen. In such cases, localization to the gastrointestinal lumen refers to reducing net movement across a gastrointestinal layer of epithelial cells, for example, by way of both transcellular and paracellular transport, as well as by active and/or passive transport. The compound in such embodiments is hindered from net permeation of a layer of gastrointestinal epithelial cells in transcellular transport, for example, through an apical membrane of an epithelial cell of the small intestine. The compound in these embodiments is also hindered from net permeation through the “tight junctions” in paracellular transport between gastrointestinal epithelial cells lining the lumen. In this regard it is to be noted that, in one particular embodiment, the compound is essentially not absorbed at all by the GI tract or gastrointestinal lumen. As used herein, the terms “substantially impermeable” or “substantially systemically non-bioavailable” refers to embodiments wherein no detectable amount of absorption or permeation or systemic exposure of the compound is detected, using means generally known in the art. In this regard it is to be further noted, however, that in alternative embodiments “substantially impermeable” or “substantially systemically non-bioavailable” provides or allows for some limited absorption in the GI tract, and more particularly the gut epithelium, to occur (e.g., some detectable amount of absorption, such as for example at least about 0.1%, 0.5%, 1% or more and less than about 30%, 20%, 10%, 5%, etc., the range of absorption being for example between about 1% and 30%, or 5% and 20%, etc.; stated another way, “substantially impermeable” or “substantially systemically non-bioavailable” refers to compounds that exhibit some detectable permeability to an epithelium layer of cells in the GI tract of less than about 20% of the administered compound (e.g., less than about 15%, about 10%, or even about 5%, and for example greater than about 0.5%, or 1%), but then are cleared by the liver (i.e., hepatic extraction) and/or the kidney (i.e., renal excretion). B. Permeability In this regard it is to be noted that, in various embodiments, the ability of the compound to be substantially systemically non-bioavailable is based on the compound charge, size, and/or other physicochemical parameters (e.g., polar surface area, number of hydrogen bond donors and/or acceptors therein, number of freely rotatable bonds, etc.). More specifically, it is to be noted that the absorption character of a compound can be selected by applying principles of pharmacodynamics, for example, by applying Lipinski's rule, also known as “the rule of five.” Although not a rule, but rather a set of guidelines, Lipinski shows that small molecule drugs with (i) a molecular weight, (ii) a number of hydrogen bond donors, (iii) a number of hydrogen bond acceptors, and/or (iv) a water/octanol partition coefficient (Moriguchi Log P), greater than a certain threshold value, generally do not show significant systemic concentration (i.e., are generally not absorbed to any significant degree). (See, e.g., Lipinski et al., Advanced Drug Delivery Reviews, 46, 2001 3-26, incorporated herein by reference.) Accordingly, substantially systemically non-bioavailable compounds (e.g., substantially systemically non-bioavailable NHE inhibitor compounds) can be designed to have molecular structures exceeding one or more of Lipinski's threshold values. (See also Lipinski et al., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Delivery Reviews, 46:3-26 (2001); and Lipinski, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharm. & Toxicol. Methods, 44:235-249 (2000), incorporated herein by reference.) In some embodiments, for example, a substantially impermeable or substantially systemically non-bioavailable NHE inhibitor compound of the present disclosure can be constructed to feature one or more of the following characteristics: (i) a MW greater than about 500 Da, about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more (in the non-salt form of the compound); (ii) a total number of NH and/or OH and/or other potential hydrogen bond donors greater than about 5, about 10, about 15 or more; (iii) a total number of O atoms and/or N atoms and/or other potential hydrogen bond acceptors greater than about 5, about 10, about 15 or more; and/or (iv) a Moriguchi partition coefficient greater than about 105 (i.e., Log P greater than about 5, about 6, about 7, etc.), or alternatively less than about 10 (i.e., a Log P of less than 1, or even 0). In view of the foregoing, and as previously noted herein, essentially any known NHE inhibitor small molecule (described herein and/or in the art) can be used in designing a substantially systemically non-bioavailable NHE inhibitor molecular structure, in accordance with the present disclosure. In addition to the parameters noted above, the molecular polar surface area (i.e., “PSA”), which may be characterized as the surface belonging to polar atoms, is a descriptor that has also been shown to correlate well with passive transport through membranes and, therefore, allows prediction of transport properties of drugs. It has been successfully applied for the prediction of intestinal absorption and Caco2 cell monolayer penetration. (For Caco2 cell monolayer penetration test details, see for example the description of the Caco2 Model provided in Example 31 of U.S. Pat. No. 6,737,423, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, and the text of Example 31 in particular, which may be applied for example to the evaluation or testing of the compounds of the present disclosure.) PSA is expressed in {acute over (Å)}2 (squared angstroms) and is computed from a three-dimensional molecular representation. A fast calculation method is now available (see, e.g., Ertl et al., Journal of Medicinal Chemistry, 2000, 43, 3714-3717, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) using a desktop computer and commercially available chemical graphic tools packages, such as ChemDraw. The term “topological PSA” (tPSA) has been coined for this fast-calculation method. tPSA is well correlated with human absorption data with common drugs (see, e.g., Table 2, below): TABLE 2 name % FAa TPSAb metoprolol 102 50.7 nordiazepam 99 41.5 diazepam 97 32.7 oxprenolol 97 50.7 phenazone 97 26.9 oxazepam 97 61.7 alprenolol 96 41.9 practolol 95 70.6 pindolol 92 57.3 ciprofloxacin 69 74.6 metolazone 64 92.5 tranexamic acid 55 63.3 atenolol 54 84.6 sulpiride 36 101.7 mannitol 26 121.4 foscarnet 17 94.8 sulfasalazine 12 141.3 olsalazine 2.3 139.8 lactulose 0.6 197.4 raffinose 0.3 268.7 (from Ertl et al., J. Med. Chem., 2000, 43:3714-3717). Accordingly, in some preferred embodiments, the compounds of the present disclosure may be constructed to exhibit a tPSA value greater than about 100 Å2, about 120 Å2, about 130 Å2, or about 140 Å2, and in some instances about 150 Å2, about 200 Å2, about 250 Å2, about 270 Å2, about 300 Å2, about 400 Å2, or even about 500 Å2, such that the compounds are substantially impermeable or substantially systemically non-bioavailable (as defined elsewhere herein). Because there are exceptions to Lipinski's “rule,” or the tPSA model, the permeability properties of the compounds of the present disclosure may be screened experimentally. The permeability coefficient can be determined by methods known to those of skill in the art, including for example by Caco-2 cell permeability assay and/or using an artificial membrane as a model of a gastrointestinal epithelial cell. (As previously noted above, see for example U.S. Pat. No. 6,737,423, Example 31 for a description of the Caco-2 Model, which is incorporated herein by reference). A synthetic membrane impregnated with, for example, lecithin and/or dodecane to mimic the net permeability characteristics of a gastrointestinal mucosa, may be utilized as a model of a gastrointestinal mucosa. The membrane can be used to separate a compartment containing the compound of the present disclosure from a compartment where the rate of permeation will be monitored. Also, parallel artificial membrane permeability assays (PAMPA) can be performed. Such in vitro measurements can reasonably indicate actual permeability in vivo. (See, for example, Wohnsland et al., J. Med. Chem., 2001, 44:923-930; Schmidt et al., Millipore Corp. Application Note, 2002, n° AN1725EN00, and n° AN1728EN00, incorporated herein by reference.) Accordingly, in some embodiments, the compounds utilized in the methods of the present disclosure may have a permeability coefficient, Papp, of less than about 100×10−6 cm/s, or less than about 10×10−6 cm/s, or less than about 1×10−6 cm/s, or less than about 0.1×10−6 cm/s, when measured using means known in the art (such as for example the permeability experiment described in Wohnsland et al., J. Med. Chem., 2001, 44. 923-930, the contents of which is incorporated herein by reference). As previously noted, in accordance with the present disclosure, NHE inhibitor small molecules are modified as described above to hinder the net absorption through a layer of gut epithelial cells, rendering them substantially systemically non-bioavailable. In some particular embodiments, the compounds of the present disclosure comprise an NHE-inhibiting small molecule linked, coupled or otherwise attached to a moiety Z, which may be an oligomer moiety, a polymer moiety, a hydrophobic moiety, a hydrophilic moiety, and/or a charged moiety, which renders the overall compound substantially impermeable or substantially systemically non-bioavailable. In some preferred embodiments, the NHE-inhibiting small molecule is coupled to a multimer or polymer portion or moiety, such that the resulting NHE-Z molecule is substantially impermeable or substantially systemically non-bioavailable. The multimer or polymer portion or moiety may be of a molecular weight greater than about 500 Daltons (Da), about 1000 Da, about 2500 Da, about 5000 Da, about 10,000 Da or more, and in particular may have a molecular weight in the range of about 1000 Daltons (Da) to about 500,000 Da, preferably in the range of about 5000 to about 200,000 Da, and more preferably may have a molecular weight that is sufficiently high to essentially preclude any net absorption through a layer of gut epithelial cells of the compound. For example, an NHE-inhibiting small molecule may be linked to at least one repeat unit of a polymer portion or moiety according, for example, to the structure of Formula (XIIA) or Formula (XIIB), as illustrated herein. In these or other particular embodiments, the NHE-inhibiting small molecule is modified as described herein to substantially hinder its net absorption through a layer of gut epithelial cells and may comprise, for example, a NHE-inhibiting compound linked, coupled or otherwise attached to a substantially impermeable or substantially systemically non-bioavailable “Core” moiety, as described above. C. Persistent Inhibitory Effect In other embodiments, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds utilized in the treatment methods of the present disclosure may additionally exhibit a persistent inhibitor effect. This effect manifests itself when the inhibitory action of a compound at a certain concentration in equilibrium with the epithelial cell (e.g., at or above its inhibitory concentration, IC) does not revert to baseline (i.e., sodium transport without inhibitor) after the compound is depleted by simple washing of the luminal content. This effect can be interpreted as a result of the tight binding of the NHE-inhibiting compounds to the NHE protein at the intestinal apical side of the gut epithelial cell. The binding can be considered as quasi-irreversible to the extent that, after the compound has been contacted with the gut epithelial cell and subsequently washed off said gut epithelial cell, the flux of sodium transport is still significantly lower than in the control without the compound. This persistent inhibitory effect has the clear advantage of maintaining drug activity within the GI tract even though the residence time of the active in the upper GI tract is short, and when no entero-biliary recycling process is effective to replenish the compound concentration near its site of action. Such a persistent inhibitory effect has an obvious advantage in terms of patient compliance, but also in limiting drug exposure within the GI tract. The persistence effect can be determined using in vitro methods; in one instance, cell lines expressing NHE transporters are split in different vials and treated with a NHE-inhibiting compound and sodium solution to measure the rate of sodium uptake. The cells in one set of vials are washed for different periods of time to remove the inhibitor, and sodium uptake measurement is repeated after the washing. Compounds that maintain their inhibitory effect after multiple/lengthy washing steps (compared to the inhibitory effect measured in the vials where washing does not occur) are persistent inhibitors. Persistence effect can also be characterized ex vivo by using the everted sac technique, whereby transport of Na is monitored using an excised segment of GI perfused with a solution containing the inhibitor and shortly after flushing the bathing solution with a buffer solution free from inhibitor. A persistence effect can also be characterized in vivo by observing the time needed for sodium balance to return to normal when the inhibitor treatment is discontinued. The limit of the method resides in the fact that apical cells (and therefore apical NHE transporters) are sloughed off after a period of 3 to 4 days, the typical turnover time of gut epithelial cells. A persistence effect can be achieved by increasing the residence time of the active compound at the apical surface of the gut epithelial cells; this can be obtained by designing NHE antiport inhibitors with several NHE inhibiting moieties built-in the small molecule or oligomer (wherein “several” as used herein typically means at least about 2, about 4, about 6 or more). Examples of such structures in the context of analogs of the antibiotic vancomycin are given in Griffin, et al., J. Am. Chem. Soc., 2003, 125, 6517-6531. Alternatively the compound comprises groups that contribute to increase the affinity towards the gut epithelial cell so as to increase the time of contact with the gut epithelial cell surface. Such groups are referred to as being “mucoadhesive.” More specifically, the Core or L moiety can be substituted by such mucoadhesive groups, such as polyacrylates, partially deacetylated chitosan or polyalkylene glycol. (See also Patil, S. B. et al., Curr. Drug. Deliv., 2008, Oct. 5(4), pp. 312-8.) D. GI Enzyme Resistance Because the compounds utilized in the treatment methods of the present disclosure are preferably substantially systemically non-bioavailable, and/or preferably exhibit a persistent inhibitory effect, it is also desirable that, during their prolonged residence time in the gut, these compounds sustain the hydrolytic conditions prevailing in the upper GI tract. In such embodiments, compounds of the present disclosure are resistant to enzymatic metabolism. For example, administered compounds are preferably resistant to the activity of P450 enzymes, glucurosyl transferases, sulfotransferases, glutathione S-transferases, and the like, in the intestinal mucosa, as well as gastric (e.g., gastric lipase, and pepsine), pancreatic (e.g., trypsin, triglyceride pancreatic lipase, phospholipase A2, endonucleases, nucleotidases, and alpha-amylase), and brush-border enzymes (e.g., alkaline phosphatase, glycosidases, and proteases) generally known in the art. The compounds that are utilized in methods of the present disclosure are also preferably resistant to metabolism by the bacterial flora of the gut; that is, the compounds are not substrates for enzymes produced by bacterial flora. In addition, the compounds administered in accordance with the methods of the present disclosure may be substantially inactive towards the gastrointestinal flora, and do not disrupt bacterial growth or survival. As a result, in various embodiments herein, the minimal inhibitory concentration (or “MIC”) against GI flora is desirably greater than about 15 μg/ml, about 30 μg/ml, about 60 μg/ml, about 120 μg/ml, or even about 240 μg/ml, the MIC in various embodiments being for example between about 16 and about 32 μg/ml, or between about 64 and about 128 μg/ml, or greater than about 256 μg/ml. To one skilled in the art of medicinal chemistry, metabolic stability can be achieved in a number of ways. Functionality susceptible to P450-mediated oxidation can be protected by, for example, blocking the point of metabolism with a halogen or other functional group. Alternatively, electron withdrawing groups can be added to a conjugated system to generally provide protection to oxidation by reducing the electrophilicity of the compound. Proteolytic stability can be achieved by avoiding secondary amide bonds, or by incorporating changes in stereochemistry or other modifications that prevent the drug from otherwise being recognized as a substrate by the metabolizing enzyme. E. Sodium and/or Fluid Output It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may act to increase the patient's daily fecal output of sodium by at least about 20, about 30 mmol, about 40 mmol, about 50 mmol, about 60 mmol, about 70 mmol, about 80 mmol, about 90 mmol, about 100 mmol, about 125 mmol, about 150 mmol or more, the increase being for example within the range of from about 20 to about 150 mmol/day, or from about 25 to about 100 mmol/day, or from about 30 to about 60 mmol/day Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patent in need thereof, may act to increase the patient's daily fluid output by at least about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml or more, the increase being for example within the range of from about 100 to about 1000 ml/day, or from about 150 to about 750 ml/day, or from about 200 to about 500 ml/day (assuming isotonic fluid). F. Cmax and IC50 It is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof at a dose resulting in at least a 10% increase in fecal water content, has a Cmax that is less than the IC50 for NHE-3, more specifically, less than about 10× (10 times) the IC50, and, more specifically still, less than about 100× (100 times) the IC50. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a Cmax of less than about 10 ng/ml, about 7.5 ng/ml, about 5 ng/ml, about 2.5 ng/ml, about 1 ng/ml, or about 0.5 ng/ml, the Cmax being for example within the range of about 1 ng/ml to about 10 ng/ml, or about 2.5 ng/ml to about 7.5 ng/ml. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered either alone or in combination with one or more additional pharmaceutically active compounds or agents (including, for example, a fluid-absorbing polymer) to a patient in need thereof, may have a IC50 of less than about 10 μM, about 7.5 μM, about 5 μM, about 2.5 μM, about 1 μM, or about 0.5 μM, the IC50 being for example within the range of about 1 μM to about 10 μM, or about 2.5 μM to about 7.5 μM. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, one or more of the NHE-Z inhibiting compounds (monovalent or divalent) detailed herein, when administered to a patient in need thereof, may have a ratio of IC50:Cmax, wherein IC50 and Cmax are expressed in terms of the same units, of at least about 10, about 50, about 100, about 250, about 500, about 750, or about 1000. Additionally, or alternatively, it is also to be noted that, in various embodiments of the present disclosure, wherein one or more of the NHE-Z inhibiting compounds (monovalent or divalent) as detailed herein is orally administered to a patent in need thereof, within the therapeutic range or concentration, the maximum compound concentration detected in the serum, defined as Cmax, is lower than the NHE inhibitory concentration IC50 of said compound. As previously noted, as used herein, IC50 is defined as the quantitative measure indicating the concentration of the compound required to inhibit 50% of the NHE-mediated Na/H antiport activity in a cell based assay. IV. Pharmaceutical Compositions and Methods of Treatment A. Compositions and Methods 1. Fluid Retention and/or Salt Overload Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various disorders associated with fluid retention and/or salt overload in the gastrointestinal tract (e.g., hypertension, heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease and/or peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention) comprises, in general, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” or “mammal” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment may be suffering from hypertension; from salt-sensitive hypertension which may result from dietary salt intake; from a risk of a cardiovascular disorder (e.g., myocardial infarction, congestive heart failure and the like) resulting from hypertension; from heart failure (e.g., congestive heart failure) resulting in fluid or salt overload; from chronic kidney disease resulting in fluid or salt overload, from end stage renal disease resulting in fluid or salt overload; from liver disease resulting in fluid or salt overload; from peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention; or from edema resulting from congestive heart failure or end stage renal disease. In various embodiments, a subject in need of treatment typically shows signs of hypervolemia resulting from salt and fluid retention that are common features of congestive heart failure, renal failure or liver cirrhosis. Fluid retention and salt retention manifest themselves by the occurrence of shortness of breath, edema, ascites or interdialytic weight gain. Other examples of subjects that would benefit from the treatment are those suffering from congestive heart failure and hypertensive patients and, particularly, those who are resistant to treatment with diuretics, i.e., patients for whom very few therapeutic options are available. A subject “in need of treatment” also includes a subject with hypertension, salt-sensitive blood pressure and subjects with systolic/diastolic blood pressure greater than about 130-139/85-89 mm Hg. Administration of NHE inhibitors, with or without administration of fluid-absorbing polymers, may be beneficial for patients put on “non-added salt” dietary regimen (i.e., 60-100 mmol of Na per day), to liberalize their diet while keeping a neutral or slightly negative sodium balance (i.e., the overall uptake of salt would be equal of less than the secreted salt). In that context, “liberalize their diet” means that patients treated may add salt to their meals to make the meals more palatable, or/and diversify their diet with salt-containing foods, thus maintaining a good nutritional status while improving their quality of life. The treatment methods described herein may also help patients with edema associated with chemotherapy, pre-menstrual fluid overload and preeclampsia (pregnancy-induced hypertension). Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for treating hypertension, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. The method may be for reducing fluid overload associated with heart failure (in particular, congestive heart failure), the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or pharmaceutical composition comprising it. The method may be for reducing fluid overload associated with end stage renal disease, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. The method may be for reducing fluid overload associated with peroxisome proliferator-activated receptor (PPAR) gamma agonist therapy, the method comprising administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound or composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound, or a composition comprising it. 2. Gastrointestinal Tract Disorders A pharmaceutical composition or preparation that may be used in accordance with the present disclosure for the treatment of various gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders, comprises, in general, any small molecule, which may be monovalent or polyvalent, that is effective or active as an NHE-inhibitor and that is substantially active in the GI tract, in particular, the substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compound of the present disclosure, as well as various other optional components as further detailed herein below (e.g., pharmaceutically acceptable excipients, etc.). The compounds utilized in the treatment methods of the present disclosure, as well as the pharmaceutical compositions comprising them, may accordingly be administered alone, or as part of a treatment protocol or regiment that includes the administration or use of other beneficial compounds (as further detailed elsewhere herein). In some particular embodiments, the NHE-inhibiting compound, including any pharmaceutical composition comprising the compound, is administered with a fluid-absorbing polymer (as more fully described below). A “subject” is preferably a human, but can also be an animal in need of treatment with a compound of the disclosure, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Subjects “in need of treatment” with a compound of the present disclosure, or subjects “in need of NHE inhibition” include subjects with diseases and/or conditions that can be treated with substantially impermeable or substantially systemically non-bioavailable NHE-inhibiting compounds, with or without a fluid-absorbing polymer, to achieve a beneficial therapeutic and/or prophylactic result. A beneficial outcome includes a decrease in the severity of symptoms or delay in the onset of symptoms, increased longevity and/or more rapid or more complete resolution of the disease or condition. For example, a subject in need of treatment is suffering from a gastrointestinal tract disorder; the patient is suffering from a disorder selected from the group consisting of: a gastrointestinal motility disorder, irritable bowel syndrome, chronic constipation, chronic idiopathic constipation, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, calcium-induced constipation in osteoporotic patients, opioid-induced constipation, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, Crohn's disease, ulcerative colitis and related diseases referred to as inflammatory bowel syndrome, colonic pseudo-obstruction, and the like. In various preferred embodiments, the constipation to be treated is: associated with the use of a therapeutic agent; associated with a neuropathic disorder; post-surgical constipation (postoperative ileus); associated with a gastrointestinal tract disorder; idiopathic (functional constipation or slow transit constipation); associated with neuropathic, metabolic or endocrine disorder (e.g., diabetes mellitus, renal failure, hypothyroidism, hyperthyroidism, hypocalcaemia, Multiple Sclerosis, Parkinson's disease, spinal cord lesions, neurofibromatosis, autonomic neuropathy, Chagas disease, Hirschsprung's disease or cystic fibrosis, and the like). Constipation may also be the result of surgery (postoperative ileus) or due the use of drugs such as analgesics (e.g., opioids), antihypertensives, anticonvulsants, antidepressants, antispasmodics and antipsychotics. Accordingly, it is to be noted that the present disclosure is further directed to methods of treatment involving the administration of the compound of the present disclosure, or a pharmaceutical composition comprising such a compound. Such methods may include, for example, a method for increasing gastrointestinal motility in a patient, the method comprising administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for decreasing the activity of an intestinal NHE transporter in a patient, the method comprising: administering to the patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or a composition comprising it. Additionally, or alternatively, the method may be for treating a gastrointestinal tract disorder, a gastrointestinal motility disorder, irritable bowel syndrome, chronic calcium-induced constipation in osteoporotic patients, chronic constipation occurring in cystic fibrosis patients, chronic constipation occurring in chronic kidney disease patients, a functional gastrointestinal tract disorder, gastroesophageal reflux disease, functional heartburn, dyspepsia, functional dyspepsia, non-ulcer dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, colonic pseudo-obstruction, Crohn's disease, ulcerative colitis, inflammatory bowel disease, the method comprising administering an antagonist of the intestinal NHE, and more specifically a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition, either orally or by rectal suppository. Additionally, or alternatively, the method may be for treating or reducing pain, including visceral pain, pain associated with a gastrointestinal tract disorder or pain associated with some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. Additionally, or alternatively, the method may be for treating inflammation, including inflammation of the gastrointestinal tract, e.g., inflammation associated with a gastrointestinal tract disorder or infection or some other disorder, the method comprising administering to a patient a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound, or composition. B. Combination Therapies 1. Fluid Retention and/or Salt Overload Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with a diuretic (i.e., High Ceiling Loop Diuretics, Benzothiadiazide Diuretics, Potassium Sparing Diuretics, Osmotic Diuretics), cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent, lipid-lowering agent, peroxisome proliferator-activated receptor (PPAR) gamma agonist agent or compound or with a fluid-absorbing polymer as more fully described below. The agent can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially systemically non-bioavailable NHE-inhibiting compound described herein and a diuretic, cardiac glycoside, ACE inhibitor, angiotensin-2 receptor antagonist, calcium channel blocker, beta blocker, alpha blocker, central alpha agonist, vasodilator, blood thinner, anti-platelet agent or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with a diuretic. Among the useful analgesic agents are, for example: High Ceiling Loop Diuretics [Furosemide (Lasix), Ethacrynic Acid (Edecrin), Bumetanide (Bumex)], Benzothiadiazide Diuretics [Hydrochlorothiazide (Hydrodiuril), Chlorothiazide (Diuril), Clorthalidone (Hygroton), Benzthiazide (Aguapres), Bendroflumethiazide (Naturetin), Methyclothiazide (Aguatensen), Polythiazide (Renese), Indapamide (Lozol), Cyclothiazide (Anhydron), Hydroflumethiazide (Diucardin), Metolazone (Diulo), Quinethazone (Hydromox), Trichlormethiazide (Naqua)], Potassium Sparing Diuretics [Spironolactone (Aldactone), Triamterene (Dyrenium), Amiloride (Midamor)], and Osmotic Diuretics [Mannitol (Osmitrol)]. Diuretic agents in the various classes are known and described in the literature. Cardiac glycosides (cardenolides) or other digitalis preparations can be administered with the compounds of the disclosure in co-therapy. Among the useful cardiac glycosides are, for example: Digitoxin (Crystodigin), Digoxin (Lanoxin) or Deslanoside (Cedilanid-D). Cardiac glycosides in the various classes are described in the literature. Angiotensin Converting Enzyme Inhibitors (ACE Inhibitors) can be administered with the compounds of the disclosure in co-therapy. Among the useful ACE inhibitors are, for example: Captopril (Capoten), Enalapril (Vasotec), Lisinopril (Prinivil). ACE inhibitors in the various classes are described in the literature. Angiotensin-2 Receptor Antagonists (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's) can be administered with the compounds of the disclosure in co-therapy. Among the useful Angiotensin-2 Receptor Antagonists are, for example: Candesartan (Atacand), Eprosartan (Teveten), Irbesartan (Avapro), Losartan (Cozaar), Telmisartan (Micardis), Valsartan (Diovan). Angiotensin-2 Receptor Antagonists in the various classes are described in the literature. Calcium channel blockers such as Amlodipine (Norvasc, Lotrel), Bepridil (Vascor), Diltiazem (Cardizem, Tiazac), Felodipine (Plendil), Nifedipine (Adalat, Procardia), Nimodipine (Nimotop), Nisoldipine (Sular), Verapamil (Calan, Isoptin, Verelan) and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with the compounds of the disclosure. Beta blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful beta blockers are, for example: Acebutolol (Sectral), Atenolol (Tenormin), Betaxolol (Kerlone), Bisoprolol/hydrochlorothiazide (Ziac), Bisoprolol (Zebeta), Carteolol (Cartrol), Metoprolol (Lopressor, Toprol XL), Nadolol (Corgard), Propranolol (Inderal), Sotalol (Betapace), Timolol (Blocadren). Beta blockers in the various classes are described in the literature. PPAR gamma agonists such as thiazolidinediones (also called glitazones) can be administered with the compounds of the disclosure in co-therapy. Among the useful PPAR agonists are, for example: rosiglitazone (Avandia), pioglitazone (Actos) and rivoglitazone. Aldosterone antagonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Aldosterone antagonists are, for example: eplerenone, spironolactone, and canrenone. Alpha blockers can be administered with the compounds of the disclosure in co-therapy. Among the useful Alpha blockers are, for example: Doxazosin mesylate (Cardura), Prazosin hydrochloride (Minipress). Prazosin and polythiazide (Minizide), Terazosin hydrochloride (Hytrin). Alpha blockers in the various classes are described in the literature. Central alpha agonists can be administered with the compounds of the disclosure in co-therapy. Among the useful Central alpha agonists are, for example: Clonidine hydrochloride (Catapres), Clonidine hydrochloride and chlorthalidone (Clorpres, Combipres), Guanabenz Acetate (Wytensin), Guanfacine hydrochloride (Tenex), Methyldopa (Aldomet), Methyldopa and chlorothiazide (Aldochlor), Methyldopa and hydrochlorothiazide (Aldoril). Central alpha agonists in the various classes are described in the literature. Vasodilators can be administered with the compounds of the disclosure in co-therapy. Among the useful vasodilators are, for example: Isosorbide dinitrate (Isordil), Nesiritide (Natrecor), Hydralazine (Apresoline), Nitrates/nitroglycerin, Minoxidil (Loniten). Vasodilators in the various classes are described in the literature. Blood thinners can be administered with the compounds of the disclosure in co-therapy. Among the useful blood thinners are, for example: Warfarin (Coumadin) and Heparin. Blood thinners in the various classes are described in the literature. Anti-platelet agents can be administered with the compounds of the disclosure in co-therapy. Among the useful anti-platelet agents are, for example: Cyclooxygenase inhibitors (Aspirin), Adenosine diphosphate (ADP) receptor inhibitors [Clopidogrel (Plavix), Ticlopidine (Ticlid)], Phosphodiesterase inhibitors [Cilostazol (Pletal)], Glycoprotein IIB/IIIA inhibitors [Abciximab (ReoPro), Eptifibatide (Integrilin), Tirofiban (Aggrastat), Defibrotide], Adenosine reuptake inhibitors [Dipyridamole (Persantine)]. Anti-platelet agents in the various classes are described in the literature. Lipid-lowering agents can be administered with the compounds of the disclosure in co-therapy. Among the useful lipid-lowering agents are, for example: Statins (HMG CoA reductase inhibitors), [Atorvastatin (Lipitor), Fluvastatin (Lescol), Lovastatin (Mevacor, Altoprev), Pravastatin (Pravachol), Rosuvastatin Calcium (Crestor), Simvastatin (Zocor)], Selective cholesterol absorption inhibitors [ezetimibe (Zetia)], Resins (bile acid sequestrant or bile acid-binding drugs) [Cholestyramine (Questran, Questran Light, Prevalite, Locholest, Locholest Light), Colestipol (Colestid), Colesevelam Hcl (WelChol)], Fibrates (Fibric acid derivatives) [Gemfibrozil (Lopid), Fenofibrate (Antara, Lofibra, Tricor, and Triglide), Clofibrate (Atromid-S)], Niacin (Nicotinic acid). Lipid-lowering agents in the various classes are described in the literature. The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Other agents include natriuretic peptides such as nesiritide, a recombinant form of brain-natriuretic peptide (BNP) and an atrial-natriuretic peptide (ANP). Vasopressin receptor antagonists such as tolvaptan and conivaptan may be co-administered as well as phosphate binders such as renagel, renleva, phoslo and fosrenol. Other agents include phosphate transport inhibitors (as described in U.S. Pat. Nos. 4,806,532; 6,355,823; 6,787,528; 7,119,120; 7,109,184; U.S. Pat. Pub. No. 2007/021509; 2006/0280719; 2006/0217426; International Pat. Pubs. WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, WO2003/080630, WO 2004/085448, WO 2004/085382; European Pat. Nos. 1465638 and 1485391; and JP Patent No. 2007131532, or phosphate transport antagonists such as Nicotinamide. 2. Gastrointestinal Tract Disorders As previously noted, the compounds described herein can be used alone or in combination with other agents. For example, the compounds can be administered together with an analgesic peptide or compound. The analgesic peptide or compound can be covalently attached to a compound described herein or it can be a separate agent that is administered together with or sequentially with a compound described herein in a combination therapy. Combination therapy can be achieved by administering two or more agents, e.g., a substantially non-permeable or substantially non-bioavailable NHE-inhibiting compound described herein and an analgesic peptide or compound, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. Other combinations are also encompassed by combination therapy. For example, two agents can be formulated together and administered in conjunction with a separate formulation containing a third agent. While the two or more agents in the combination therapy can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes of each other or within 1, 2, 3, 6, 9, 12, 15, 18, or 24 hours of each other or within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 days of each other or within 2, 3, 4, 5, 6, 7, 8, 9, or weeks of each other. In some cases even longer intervals are possible. While in many cases it is desirable that the two or more agents used in a combination therapy be present in within the patient's body at the same time, this need not be so. Combination therapy can also include two or more administrations of one or more of the agents used in the combination. For example, if agent X and agent Y are used in a combination, one could administer them sequentially in any combination one or more times, e.g., in the order X-Y-X, X-X-Y, Y-X-Y, Y-Y-X, X-X-Y-Y, etc. The compounds described herein can be used in combination therapy with an analgesic agent, e.g., an analgesic compound or an analgesic peptide. The analgesic agent can optionally be covalently attached to a compound described herein. Among the useful analgesic agents are, for example: Ca channel blockers, 5HT3 agonists (e.g., MCK-733), 5HT4 agonists (e.g., tegaserod, prucalopride), and 5HT1 receptor antagonists, opioid receptor agonists (loperamide, fedotozine, and fentanyl), NK1 receptor antagonists, CCK receptor agonists (e.g., loxiglumide), NK1 receptor antagonists, NK3 receptor antagonists, norepinephrine-serotonin reuptake inhibitors (NSR1), vanilloid and cannabanoid receptor agonists, and sialorphin. Analgesics agents in the various classes are described in the literature. Opioid receptor antagonists and agonists can be administered with the compounds of the disclosure in co-therapy or linked to the compound of the disclosure, e.g., by a covalent bond. For example, opioid receptor antagonists such as naloxone, naltrexone, methyl nalozone, nalmefene, cypridime, beta funaltrexamine, naloxonazine, naltrindole, and nor-binaltorphimine are thought to be useful in the treatment of opioid-induced constipaption (OIC). It can be useful to formulate opioid antagonists of this type in a delayed or sustained release formulation, such that initial release of the antagonist is in the mid to distal small intestine and/or ascending colon. Such antagonists are described in U.S. Pat. No. 6,734,188 (WO 01/32180 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Enkephalin pentapeptide (HOE825; Tyr-D-Lys-Gly-Phe-L-homoserine) is an agonist of the μ- and γ-opioid receptors and is thought to be useful for increasing intestinal motility (Eur. J. Pharm., 219:445, 1992), and this peptide can be used in conjunction with the compounds of the disclosure. Also useful is trimebutine which is thought to bind to mu/delta/kappa opioid receptors and activate release of motilin and modulate the release of gastrin, vasoactive intestinal peptide, gastrin and glucagons. K-opioid receptor agonists such as fedotozine, ketocyclazocine, and compounds described in US 2005/0176746 (WO 03/097051 A2), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. In addition, μ-opioid receptor agonists, such as morphine, diphenyloxylate, frakefamide (H-Tyr-D-Ala-Phe(F)-Phe-NH2; disclosed in WO 01/019849 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) and loperamide can be used. Tyr-Arg (kyotorphin) is a dipeptide that acts by stimulating the release of met-enkephalins to elicit an analgesic effect (J. Biol. Chem. 262:8165, 1987). Kyotorphin can be used with or linked to the compounds of the disclosure. CCK receptor agonists such as caerulein from amphibians and other species are useful analgesic agents that can be used with or linked to the compounds of the disclosure. Conotoxin peptides represent a large class of analgesic peptides that act at voltage gated Ca channels, NMDA receptors or nicotinic receptors. These peptides can be used with or linked to the compounds of the disclosure. Peptide analogs of thymulin (U.S. Pat. No. 7,309,690 or FR 2830451, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. CCK (CCKa or CCKb) receptor antagonists, including loxiglumide and dexloxiglumide (the R-isomer of loxiglumide) (U.S. Pat. No. 5,130,474 or WO 88/05774, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes) can have analgesic activity and can be used with or linked to the compounds of the disclosure. Other useful analgesic agents include 5-HT4 agonists such as tegaserod/zelnorm and lirexapride. Such agonists are described in: EP 1321142 A1, WO 03/053432A1, EP 505322 A1, EP 505322 B1, EP 507672 A1, EP 507672 B1, U.S. Pat. No. 5,510,353 and U.S. Pat. No. 5,273,983, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Calcium channel blockers such as ziconotide and related compounds described in, for example, EP 625162B1, U.S. Pat. No. 5,364,842, U.S. Pat. No. 5,587,454, U.S. Pat. No. 5,824,645, U.S. Pat. No. 5,859,186, U.S. Pat. No. 5,994,305, U.S. Pat. No. 6,087,091, U.S. Pat. No. 6,136,786, WO 93/13128 A1, EP 1336409 A1, EP 835126 A1, EP 835126 B1, U.S. Pat. No. 5,795,864, U.S. Pat. No. 5,891,849, U.S. Pat. No. 6,054,429, WO 97/01351 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Various antagonists of the NK-1, NK-2, and NK-3 receptors (for a review see Giardina et al. 2003 Drugs 6:758) can be can be used with or linked to the compounds of the disclosure. NK1 receptor antagonists such as: aprepitant (Merck & Co Inc), vofopitant, ezlopitant (Pfizer, Inc.), R-673 (Hoffmann-La Roche Ltd), SR-14033 and related compounds described in, for example, EP 873753 A1, U.S. 20010006972 A1, U.S. 20030109417 A1, WO 01/52844 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. NK-2 receptor antagonists such as nepadutant (Menarini Ricerche SpA), saredutant (Sanofi-Synthelabo), SR-144190 (Sanofi-Synthelabo) and UK-290795 (Pfizer Inc) can be used with or linked to the compounds of the disclosure. NK3 receptor antagonists such as osanetant (Sanofi-Synthelabo), talnetant and related compounds described in, for example, WO 02/094187 A2, EP 876347 A1, WO 97/21680 A1, U.S. Pat. No. 6,277,862, WO 98/11090, WO 95/28418, WO 97/19927, and Boden et al. (J Med. Chem. 39:1664-75, 1996), the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Norepinephrine-serotonin reuptake inhibitors such as milnacipran and related compounds described in WO 03/077897 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. Vanilloid receptor antagonists such as arvanil and related compounds described in WO 01/64212 A1, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, can be used with or linked to the compounds of the disclosure. The compounds can be used in combination therapy with a phosphodiesterase inhibitor (examples of such inhibitors can be found in U.S. Pat. No. 6,333,354, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes). The compounds can be used alone or in combination therapy to treat disorders associated with chloride or bicarbonate secretion that may lead to constipation, e.g., Cystic Fibrosis. The compounds can also or alternatively be used alone or in combination therapy to treat calcium-induced constipation effects. Constipation is commonly found in the geriatric population, particularly patients with osteoporosis who have to take calcium supplements. Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of constipation effects associated therewith. The compounds of the current disclosure have can be used in combination with an opioid. Opioid use is mainly directed to pain relief, with a notable side-effect being GI disorder, e.g. constipation. These agents work by binding to opioid receptors, which are found principally in the central nervous system and the gastrointestinal tract. The receptors in these two organ systems mediate both the beneficial effects, and the undesirable side effects (e.g. decrease of gut motility and ensuing constipation). Opioids suitable for use typically belong to one of the following exemplary classes: natural opiates, alkaloids contained in the resin of the opium poppy including morphine, codeine and thebaine; semi-synthetic opiates, created from the natural opioids, such as hydromorphone, hydrocodone, oxycodone, oxymorphone, desomorphine, diacetylmorphine (Heroin), nicomorphine, dipropanoylmorphine, benzylmorphine and ethylmorphine; fully synthetic opioids, such as fentanyl, pethidine, methadone, tramadol and propoxyphene; endogenous opioid peptides, produced naturally in the body, such as endorphins, enkephalins, dynorphins, and endomorphins. The compound of the disclosure can be used alone or in combination therapy to alleviate GI disorders encountered with patients with renal failure (stage 3-5). Constipation is the second most reported symptom in that category of patients (Murtagh et al., 2006; Murtagh et al., 2007a; Murtagh et al., 2007b). Without being held by theory, it is believed that kidney failure is accompanied by a stimulation of intestinal Na re-absorption (Hatch and Freel, 2008). A total or partial inhibition of such transport by administration of the compounds of the disclosure can have a therapeutic benefit to improve GI transit and relieve abdominal pain. In that context, the compounds of the disclosure can be used in combination with Angiotensin-modulating agents: Angiotensin Converting Enzyme (ACE) inhibitors (e.g. captopril, enalopril, lisinopril, ramipril) and Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers, or ARB's); diuretics such as loop diuretics (e.g. furosemide, bumetanide), Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) and potassium-sparing diuretics: amiloride; beta blockers: bisoprolol, carvedilol, nebivolol and extended-release metoprolol; positive inotropes: Digoxin, dobutamine; phosphodiesterase inhibitors such as milrinone; alternative vasodilators: combination of isosorbide dinitrate/hydralazine; aldosterone receptor antagonists: spironolactone, eplerenone; natriuretic peptides: Nesiritide, a recombinant form of brain-natriuretic peptide (BNP), atrial-natriuretic peptide (ANP); vasopressin receptor antagonists: Tolvaptan and conivaptan; phosphate binder (Renagel, Renleva, Phoslo, Fosrenol); phosphate transport inhibitor such as those described in U.S. Pat. No. 4,806,532, U.S. Pat. No. 6,355,823, U.S. Pat. No. 6,787,528, WO 2001/005398, WO 2001/087294, WO 2001/082924, WO 2002/028353, WO 2003/048134, WO 2003/057225, U.S. Pat. No. 7,119,120, EP 1465638, US Appl. 2007/021509, WO 2003/080630, U.S. Pat. No. 7,109,184, US Appl. 2006/0280719, EP 1485391, WO 2004/085448, WO 2004/085382, US Appl. 2006/0217426, JP 2007/131532, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes, or phosphate transport antagonist (Nicotinamide). The compounds of the disclosure can be used in combination with peptides or peptide analogs that activate the Guanylate Cyclase-receptor in the intestine and results in elevation of the intracellular second messenger, or cyclic guanosine monophosphate (cGMP), with increased chloride and bicarbonate secretion into the intestinal lumen and concomitant fluid secretion. Example of such peptides are Linaclotide (MD-1100 Acetate), endogenous hormones guanylin and uroguanylin and enteric bacterial peptides of the heat stable enterotoxin family (ST peptides) and those described in U.S. Pat. No. 5,140,102, U.S. Pat. No. 5,489,670, U.S. Pat. No. 5,969,097, WO 2006/001931A2, WO 2008/002971A2, WO 2008/106429A2, US 2008/0227685A1 and U.S. Pat. No. 7,041,786, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with type-2 chloride channel agonists, such as Amitiza (Lubiprostone) and other related compounds described in U.S. Pat. No. 6,414,016, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with P2Y2 receptor agonists, such as those described in EP 1196396B1 and U.S. Pat. No. 6,624,150, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. The compounds of the disclosure can be used in combination with laxative agents such as bulk-producing agents, e.g. psyllium husk (Metamucil), methylcellulose (Citrucel), polycarbophil, dietary fiber, apples, stool softeners/surfactant such as docusate (Colace, Diocto); hydrating agents (osmotics), such as dibasic sodium phosphate, magnesium citrate, magnesium hydroxide (Milk of magnesia), magnesium sulfate (which is Epsom salt), monobasic sodium phosphate, sodium biphosphate; hyperosmotic agents: glycerin suppositories, sorbitol, lactulose, and polyethylene glycol (PEG). The compounds of the disclosure can be also be used in combination with agents that stimulate gut peristalsis, such as Bisacodyl tablets (Dulcolax), Casanthranol, Senna and Aloin, from Aloe Vera. In one embodiment, the compounds of the disclosure accelerate gastrointestinal transit, and more specifically in the colon, without substantially affecting the residence time in the stomach, i.e. with no significant effect on the gastric emptying time. Even more specifically the compounds of the invention restore colonic transit without the side-effects associated with delayed gastric emptying time, such as nausea. The GI and colonic transit are measured in patients using methods reported in, for example: Burton D D, Camilleri M, Mullan B P, et al., J. Nucl. Med., 1997; 38:1807-1810; Cremonini F, Mullan B P, Camilleri M, et al., Aliment. Pharmacol. Ther., 2002; 16:1781-1790; Camilleri M, Zinsmeister A R, Gastroenterology, 1992; 103:36-42; Bouras E P, Camilleri M, Burton D D, et al., Gastroenterology, 2001; 120:354-360; Coulie B, Szarka L A, Camilleri M, et al., Gastroenterology, 2000; 119:41-50; Prather C M, Camilleri M, Zinsmeister A R, et al., Gastroenterology, 2000; 118:463-468; and, Camilleri M, McKinzie S, Fox J, et al., Clin. Gastroenterol. Hepatol., 2004; 2:895-904. C. Polymer Combination Therapy The NHE-inhibiting compounds described therein may be administered to patients in need thereof in combination with a fluid-absorbing polymer (“FAP”). The intestinal fluid-absorbing polymers useful for administration in accordance with embodiments of the present disclosure may be administered orally in combination with non-absorbable NHE-inhibitors (e.g., a NHE-3 inhibitor) to absorb the intestinal fluid resulting from the action of the sodium transport inhibitors. Such polymers swell in the colon and bind fluid to impart a consistency to stools that is acceptable for patients. The fluid-absorbing polymers described herein may be selected from polymers with laxative properties, also referred to as bulking agents (i.e., polymers that retain some of the intestinal fluid in the stools and impart a higher degree of hydration in the stools and facilitate transit). The fluid-absorbing polymers may also be optionally selected from pharmaceutical polymers with anti-diarrhea function, i.e., agents that maintain some consistency to the stools to avoid watery stools and potential incontinence. The ability of the polymer to maintain a certain consistency in stools with a high content of fluid can be characterized by its “water holding power.” Wenzl et al. (in Determinants of decreased fecal consistency in patients with diarrhea; Gastroenterology, v. 108, no. 6, p. 1729-1738 (1995)) studied the determinants that control the consistency of stools of patients with diarrhea and found that they were narrowly correlated with the water holding power of the feces. The water holding power is determined as the water content of given stools to achieve a certain level of consistency (corresponding to “formed stool” consistency) after the reconstituted fecal matter has been centrifuged at a certain g number. Without being held to any particular theory, has been found that the water holding power of the feces is increased by ingestion of certain polymers with a given fluid absorbing profile. More specifically, it has been found that the water-holding power of said polymers is correlated with their fluid absorbancy under load (AUL); even more specifically the AUL of said polymers is greater than 15 g of isotonic fluid/g of polymer under a static pressure of 5 kPa, even more preferably under a static pressure of 10 kPa. The FAP utilized in the treatment method of the present disclosure preferably has a AUL of at least about 10 g, about 15 g, about 20 g, about 25 g or more of isotonic fluid/g of polymer under a static pressure of about 5 kPa, and preferably about 10 kPA, and may have a fluid absorbency of about 20 g, about 25 g or more, as determined using means generally known in the art. Additionally or alternatively, the FAP may impart a minimum consistency to fecal matter and, in some embodiments, a consistency graded as “soft” in the scale described in the test method below, when fecal non water-soluble solid fraction is from 10% to 20%, and the polymer concentration is from 1% to 5% of the weight of stool. The determination of the fecal non water-soluble solid fraction of stools is described in Wenz et al. The polymer may be uncharged or may have a low charge density (e.g., 1-2 meq/gr). Alternatively or in addition, the polymer may be delivered directly to the colon using known delivery methods to avoid premature swelling in the esophagus. In one embodiment of the present disclosure, the FAP is a “superabsorbent” polymer (i.e., a lightly crosslinked, partially neutralized polyelectrolyte hydrogel similar to those used in baby diapers, feminine hygiene products, agriculture additives, etc.). Superabsorbent polymers may be made of a lightly crosslinked polyacrylate hydrogel. The swelling of the polymer is driven essentially by two effects: (i) the hydration of the polymer backbone and entropy of mixing and (ii) the osmotic pressure arising from the counter-ions (e.g., Na ions) within the gel. The gel swelling ratio at equilibrium is controlled by the elastic resistance inherent to the polymer network and by the chemical potential of the bathing fluid, i.e., the gel will de-swell at higher salt concentration because the background electrolyte will reduce the apparent charge density on the polymer and will reduce the difference of free ion concentrations inside and outside the gel that drives osmotic pressure. The swelling ratio SR (g of fluid per g of dry polymer and synonymously “fluid absorbency”) may vary from 1000 in pure water down to 30 in 0.9% NaCl solution representative of physiological saline (i.e., isotonic). SR may increase with the degree of neutralization and may decrease with the crosslinking density. SR generally decreases with an applied load with the extent of reduction dependent on the strength of the gel, i.e., the crosslinking density. The salt concentration within the gel, as compared with the external solution, may be lower as a result of the Donnan effect due to the internal electrical potential. The fluid-absorbing polymer may include crosslinked polyacrylates which are fluid absorbent such as those prepared from α,β-ethylenically unsaturated monomers, such as monocarboxylic acids, polycarboxylic acids, acrylamide and their derivatives. These polymers may have repeating units of acrylic acid, methacrylic acid, metal salts of acrylic acid, acrylamide, and acrylamide derivatives (such as 2-acrylamido-2-methylpropanesulfonic acid) along with various combinations of such repeating units as copolymers. Such derivatives include acrylic polymers which include hydrophilic grafts of polymers such as polyvinyl alcohol. Examples of suitable polymers and processes, including gel polymerization processes, for preparing such polymers are disclosed in U.S. Pat. Nos. 3,997,484; 3,926,891; 3,935,099; 4,090,013; 4,093,776; 4,340,706; 4,446,261; 4,683,274; 4,459,396; 4,708,997; 4,076,663; 4,190,562; 4,286,082; 4,857,610; 4,985,518; 5,145,906; 5,629,377 and 6,908,609 which are incorporated herein by reference for all relevant and consistent purposes (in addition, see Buchholz, F. L. and Graham, A. T., “Modern Superabsorbent Polymer Technology,” John Wiley & Sons (1998), which is also incorporated herein by reference for all relevant and consistent purposes). A class of preferred polymers for treatment in combination with NHE-inhibitors is polyelectrolytes. The degree of crosslinking can vary greatly depending upon the specific polymer material; however, in most applications the subject superabsorbent polymers are only lightly crosslinked, that is, the degree of crosslinking is such that the polymer can still absorb over 10 times its weight in physiological saline (i.e., 0.9% saline). For example, such polymers typically include less than about 0.2 mole % crosslinking agent. In some embodiments, the FAP's utilized for treatment are Calcium Carbophil (Registry Number: 9003-97-8, also referred as Carbopol EX-83), and Carpopol 934P. In some embodiments, the fluid-absorbing polymer is prepared by high internal phase emulsion (“HIPE”) processes. The HIPE process leads to polymeric foam slabs with a very large porous fraction of interconnected large voids (about 100 microns) (i.e., open-cell structures). This technique produces flexible and collapsible foam materials with exceptional suction pressure and fluid absorbency (see U.S. Pat. Nos. 5,650,222; 5,763,499 and 6,107,356, which are incorporated herein for all relevant and consistent purposes). The polymer is hydrophobic and, therefore, the surface should be modified so as to be wetted by the aqueous fluid. This is accomplished by post-treating the foam material by a surfactant in order to reduce the interfacial tension. These materials are claimed to be less compliant to loads, i.e., less prone to de-swelling under static pressure. In some embodiments, fluid-absorbing gels are prepared by aqueous free radical polymerization of acrylamide or a derivative thereof, a crosslinker (e.g., methylene-bis-acrylamide) and a free radical initiator redox system in water. The material is obtained as a slab. Typically the swelling ratio of crosslinked polyacrylamide at low crosslinking density (e.g., 2%-4% expressed as weight % of methylene-bis-acrylamide) is between 25 and 40 (F. Horkay, Macromolecules, 22, pp. 2007-09 (1989)). The swelling properties of these polymers have been extensively studied and are essentially the same of those of crosslinked polyacrylic acids at high salt concentration. Under those conditions, the osmotic pressure is null due to the presence of counter-ions and the swelling is controlled by the free energy of mixing and the network elastic energy. Stated differently, a crosslinked polyacrylamide gel of same crosslink density as a neutralized polyacrylic acid will exhibit the same swelling ratio (i.e., fluid absorbing properties) and it is believed the same degree of deswelling under pressure, as the crosslinked polyelectrolyte at high salt content (e.g., 1 M). The properties (e.g., swelling) of neutral hydrogels will not be sensitive to the salt environment as long as the polymer remains in good solvent conditions. Without being held to any particular theory, it is believed that the fluid contained within the gel has the same salt composition than the surrounding fluid (i.e., there is no salt partitioning due to Donnan effect). Another subclass of fluid-absorbing polymers that may be utilized is hydrogel materials that include N-alkyl acrylamide polymers (e.g., N-isopropylacrylamide (NIPAM)). The corresponding aqueous polyNIPAM hydrogel shows a temperature transition at about 35° C. Above this temperature the hydrogel may collapse. The mechanism is generally reversible and the gel re-swells to its original swelling ratio when the temperature reverts to room temperature. This allows production of nanoparticles by emulsion polymerization (R. Pelton, Advances in Colloid and Interface Science, 85, pp. 1-33, (2000)). The swelling characteristics of poly-NIPAM nanoparticles below the transition temperature have been reported and are similar to those reported for bulk gel of polyNIPAM and equivalent to those found for polyacrylamide (i.e. 30-50 g/g) (W. McPhee, Journal of Colloid and Interface Science, 156, pp. 24-30 (1993); and, K. Oh, Journal of Applied Polymer Science, 69, pp. 109-114 (1997)). In some embodiments, the FAP utilized for treatment in combination with a NHE-inhibitor is a superporous gel that may delay the emptying of the stomach for the treatment of obesity (J. Chen, Journal of Controlled Release, 65, pp. 73-82 (2000), or to deliver proteins. Polyacrylate-based SAP's with a macroporous structure may also be used. Macroporous SAP and superporous gels differ in that the porous structure remains almost intact in the dry state for superporous gels, but disappears upon drying for macroporous SAP's. The method of preparation is different although both methods use a foaming agent (e.g., carbonate salt that generates CO2 bubbles during polymerization). Typical swelling ratios, SR, of superporous materials are around 10. Superporous gels keep a large internal pore volume in the dry state. Macroporous hydrogels may also be formed using a method whereby polymer phase separation in induced by a non-solvent. The polymer may be poly-NIPAM and the non-solvent utilized may be glucose (see, e.g., Z. Zhang, J. Org. Chem., 69, 23 (2004)) or NaCl (see, e.g., Cheng et al., Journal of Biomedical Materials Research—Part A, Vol. 67, Issue 1, 1 Oct. 2003, Pages 96-103). The phase separation induced by the presence of NaCl leads to an increase in swelling ratio. These materials are preferred if the swelling ratio of the material, SR, is maintained in salt isotonic solution and if the gels do not collapse under load. The temperature of “service” should be shifted beyond body temperature, e.g. by diluting NIPAM in the polymer with monomer devoid of transition temperature phenomenon. In some embodiments, the fluid-absorbing polymer may be selected from certain naturally-occurring polymers such as those containing carbohydrate moieties. In a preferred embodiment, such carbohydrate-containing hydrogels are non-digestible, have a low fraction of soluble material and a high fraction of gel-forming materials. In some embodiments, the fluid-absorbing polymer is selected from xanthan, guar, wellan, hemicelluloses, alkyl-cellulose, hydro-alkyl-cellulose, carboxy-alkyl-cellulose, carrageenan, dextran, hyaluronic acid and agarose. In a preferred embodiment, the gel forming polymer is psyllium. Psyllium (or “ispaghula”) is the common name used for several members of the plant genus Plantago whose seeds are used commercially for the production of mucilage. Most preferably, the fluid-absorbing polymer is in the gel-forming fraction of psyllium, i.e., a neutral saccharide copolymer of arabinose (25%) and xylose (75%) as characterized in (J. Marlett, Proceedings of the Nutrition Society, 62, pp. 2-7-209 (2003); and, M. Fischer, Carbohydrate Research, 339, 2009-2012 (2004)), and further described in U.S. Pat. Nos. 6,287,609; 7,026,303; 5,126,150; 5,445,831; 7,014,862; 4,766,004; 4,999,200, each of which is incorporated herein for all relevant and consistent purposes, and over-the-counter psillium-containing agents such as those marketed under the name Metamucil (The Procter and Gamble company). Preferably the a psyllium-containing dosage form is suitable for chewing, where the chewing action disintegrates the tablet into smaller, discrete particles prior to swallowing but which undergoes minimal gelling in the mouth, and has acceptable mouthfeel and good aesthetics as perceived by the patient. The psyllium-containing dosage form includes physically discrete unit suitable as a unitary dosage for human subjects and other mammals, each containing a predetermined quantity of active material (e.g. the gel-forming polysaccharide) calculated to produce the desired therapeutic effect. Solid oral dosage forms that are suitable for the present compositions include tablets, pills, capsules, lozenges, chewable tablets, troches, cachets, pellets, wafer and the like. In some embodiments, the FAP is a polysaccharide particle wherein the polysaccharide component includes xylose and arabinose. The ratio of the xylose to the arabinose may be at least about 3:1 by weight, as described in U.S. Pat. Nos. 6,287,609; 7,026,303 and 7,014,862, each of which is incorporated herein for all relevant and consistent purposes. The fluid-absorbing polymers described herein may be used in combination with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. The NHE inhibitor and the FAP may also be administered with other agents including those described under the heading “Combination Therapies” without departing from the scope of the present disclosure. As described above, the NHE inhibitor may be administered alone without use of a fluid-absorbing polymer to resolve symptoms without eliciting significant diarrhea or fecal fluid secretion that would require the co-administration of a fluid-absorbing polymer. The fluid-absorbing polymers described herein may be selected so as to not induce any substantial interaction with the NHE-inhibiting compounds or a pharmaceutical composition containing the compound. As used herein, “no substantial interaction” generally means that the co-administration of the FAP polymer would not substantially alter (i.e., neither substantially decrease nor substantially increase) the pharmacological property of the NHE-inhibiting compounds administered alone. For example, FAPs containing negatively charged functionality, such as carboxylates, sulfonates, and the like, may potentially interact ionically with positively charged NHE inhibitors, preventing the inhibitor from reaching its pharmacological target. In addition, it may be possible that the shape and arrangement of functionality in a FAP could act as a molecular recognition element, and sequestor NHE inhibitors via “host-guest” interactions via the recognition of specific hydrogen bonds and/or hydrophobic regions of a given inhibitor. Accordingly, in various embodiments of the present disclosure, the FAP polymer may be selected, for co-administration or use with a compound of the present disclosure, to ensure that (i) it does not ionically interact with or bind with the compound of the present disclosure (by means of, for example, a moiety present therein possessing a charge opposite that of a moiety in the compound itself), and/or (ii) it does not possess a charge and/or structural conformation (or shape or arrangement) that enables it to establish a “host-guest” interaction with the compound of the present disclosure (by means of, for example, a moiety present therein that may act as a molecular recognition element and sequester the NHE inhibitor or inhibiting moiety of the compound). D. Dosage It is to be noted that, as used herein, an “effective amount” (or “pharmaceutically effective amount”) of a compound disclosed herein, is a quantity that results in a beneficial clinical outcome of the condition being treated with the compound compared with the absence of treatment. The amount of the compound or compounds administered will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical formulation. It will also depend on the subject's health, size, weight, age, sex and tolerance to drugs. Typically, the compound is administered for a sufficient period of time to achieve the desired therapeutic effect. In embodiments wherein both an NHE-inhibitor compound and a fluid-absorbing polymer are used in the treatment protocol, the NHE-inhibitor and FAP may be administered together or in a “dual-regimen” wherein the two therapeutics are dosed and administered separately. When the NHE inhibitor and the fluid-absorbing polymer are dosed separately, the typical dosage administered to the subject in need of the NHE inhibitor is typically from about 5 mg per day and about 5000 mg per day and, in other embodiments, from about 50 mg per day and about 1000 mg per day. Such dosages may induce fecal excretion of sodium (and its accompanying anions), from about 10 mmol up to about 250 mmol per day, from about 20 mmol to about 70 mmol per day or even from about 30 mmol to about 60 mmol per day. The typical dose of the fluid-absorbing polymer is a function of the extent of fecal secretion induced by the non-absorbable NHE inhibitor. Typically the dose is adjusted according to the frequency of bowel movements and consistency of the stools. More specifically the dose is adjusted so as to avoid liquid stools and maintain stool consistency as “soft” or semi-formed, or formed. To achieve the desired stool consistency and provide abdominal relief to patients, typical dosage ranges of the fluid-absorbing polymer to be administered in combination with the NHE inhibitor, are from about 2 g to about 50 g per day, from about 5 g to about 25 g per day or even from about 10 g to about 20 g per day. When the NHE-inhibitor and the FAP are administered as a single dosage regimen, the daily uptake may be from about 2 g to about 50 g per day, from about 5 g to about 25 g per day, or from about 10 g to about 20 g per day, with a weight ratio of NHE inhibitor to fluid-absorbing polymer being from about 1:1000 to 1:10 or even from about 1:500 to 1:5 or about 1:100 to 1:5. A typical dosage of the substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compound when used alone without a FAP may be between about 0.2 mg per day and about 2 g per day, or between about 1 mg and about 1 g per day, or between about 5 mg and about 500 mg, or between about 10 mg and about 250 mg per day, which is administered to a subject in need of treatment. The frequency of administration of therapeutics described herein may vary from once-a-day (QD) to twice-a-day (BID) or thrice-a-day (TID), etc., the precise frequency of administration varying with, for example, the patient's condition, the dosage, etc. For example, in the case of a dual-regimen, the NHE-inhibitor could be taken once-a-day while the fluid-absorbing polymer could be taken at each meal (TID). E. Modes of Administration The substantially impermeable or substantially systemically non-bioavailable, NHE-inhibiting compounds of the present disclosure with or without the fluid-absorbing polymers described herein may be administered by any suitable route. The compound is preferably administrated orally (e.g., dietary) in capsules, suspensions, tablets, pills, dragees, liquids, gels, syrups, slurries, and the like. Methods for encapsulating compositions (such as in a coating of hard gelatin or cyclodextran) are known in the art (Baker, et al., “Controlled Release of Biological Active Agents”, John Wiley and Sons, 1986). The compounds can be administered to the subject in conjunction with an acceptable pharmaceutical carrier as part of a pharmaceutical composition. The formulation of the pharmaceutical composition will vary according to the route of administration selected. Suitable pharmaceutical carriers may contain inert ingredients which do not interact with the compound. The carriers are biocompatible, i.e., non-toxic, non-inflammatory, non-immunogenic and devoid of other undesired reactions at the administration site. Examples of pharmaceutically acceptable carriers include, for example, saline, commercially available inert gels, or liquids supplemented with albumin, methyl cellulose or a collagen matrix. Standard pharmaceutical formulation techniques can be employed, such as those described in Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa. Pharmaceutical preparations for oral use can be obtained by combining a compound of the present disclosure with a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses. Pharmaceutical preparations which can be used orally include push-fit capsules made of a suitable material, such as gelatin, as well as soft, sealed capsules made of a suitable material, for example, gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can be added. All formulations for oral administration should be in dosages suitable for such administration. It will be understood that, certain compounds of the disclosure may be obtained as different stereoisomers (e.g., diastereomers and enantiomers) or as isotopes and that the disclosure includes all isomeric forms, racemic mixtures and isotopes of the disclosed compounds and a method of treating a subject with both pure isomers and mixtures thereof, including racemic mixtures, as well as isotopes. Stereoisomers can be separated and isolated using any suitable method, such as chromatography. F. Delayed Release NHE proteins show considerable diversity in their patterns of tissue expression, membrane localization and functional roles. (See, e.g., The sodium-hydrogen exchanger—From molecule To Its Role In Disease, Karmazyn, M., Avkiran, M., and Fliegel, L., eds., Kluwer Academics (2003).) In mammals, nine distinct NHE genes (NHE-1 through -9) have been described. Of these nine, five (NHE-1 through -5) are principally active at the plasma membrane, whereas NHE-6, -7 and -9 reside predominantly within intracellular compartments. NHE-1 is ubiquitously expressed and is chiefly responsible for restoration of steady state intracellular pH following cytosolic acidification and for maintenance of cell volume. Recent findings show that NHE-1 is crucial for organ function and survival (e.g. NHE-1-null mice exhibit locomotor abnormalities, epileptic-like seizures and considerable mortality before weaning). In contrast with NHE-1 expressed at the basolateral side of the nephrons and gut epithelial cells, NHE-2 through -4 are predominantly expressed on the apical side of epithelia of the kidney and the gastrointestinal tract. Several lines of evidence show that NHE-3 is the major contributor of renal bulk Na+ and fluid re-absorption by the proximal tubule. The associated secretion of H+ by NHE-3 into the lumen of renal tubules is also essential for about ⅔ of renal HCO3− re-absorption. Complete disruption of NHE-3 function in mice causes a sharp reduction in HCO3−, Na+ and fluid re-absorption in the kidney, which is consistently associated with hypovolemia and acidosis. In one embodiment, the novel compounds of the invention are intended to target the apical NHE antiporters (e.g. NHE-3, NHE-2 and NHE-8) without substantial permeability across the layer of gut epithelial cells, and/or without substantial activity towards NHEs that do not reside predominantly in the GI tract. This invention provides a method to selectively inhibit GI apical NHE antiporters and provide the desired effect of salt and fluid absorption inhibition to correct abnormal fluid homeostasis leading to constipations states. Because of their absence of systemic exposure, said compounds do not interfere with other key physiological roles of NHEs highlighted above. For instance, the compounds of the invention are expected to treat constipation in patients in need thereof, without eliciting undesired systemic effects, such as for example salt wasting or bicarbonate loss leading to hyponatriemia and acidosis among other disorders. In another embodiment, the compounds of the invention are delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The applicant found that an early release of the compounds in the stomach or the duodenum can have an untoward effect on gastric secretion or bicarbonate secretion (also referred to as “bicarbonate dump”). In this embodiment the compounds are designed so as to be released in an active form past the duodenum. This can be accomplished by either a prodrug approach or by specific drug delivery systems. As used herein, “prodrug” is to be understood to refer to a modified form of the compounds detailed herein that is inactive (or significantly less active) in the upper GI, but once administered is metabolised in vivo into an active metabolite after getting past, for example, the duodenum. Thus, in a prodrug approach, the activity of the NHE inhibitor can be masked with a transient protecting group that is liberated after compound passage through the desired gastric compartment. For example, acylation or alkylation of the essential guanidinyl functionality of the NHE inhibitor would render it biochemically inactive; however, cleavage of these functional groups by intestinal amidases, esterases, phosphatases, and the like, as well enzymes present in the colonic flora, would liberate the active parent compound. Prodrugs can be designed to exploit the relative expression and localization of such phase I metabolic enzymes by carefully optimizing the structure of the prodrug for recognition by specific enzymes. As an example, the anti-inflammatory agent sulfasalazine is converted to 5-aminosalicylate in the colon by reduction of the diazo bond by intestinal bacteria. In a drug delivery approach the NHE-inhibitor compounds of the invention are formulated in certain pharmaceutical compositions for oral administration that release the active in the targeted areas of the GI, i.e., jejunum, ileum or colon, or preferably the distal ileum and colon, or even more preferably the colon. Methods known from the skilled-in-the-art are applicable. (See, e.g., Kumar, P. and Mishra, B., Colon Targeted Drug Delivery Systems—An Overview, Curr. Drug Deliv., 2008, 5 (3), 186-198; Jain, S. K. and Jain, A., Target-specific Drug Release to the Colon., Expert Opin. Drug Deliv., 2008, 5 (5), 483-498; Yang, L., Biorelevant Dissolution Testing of Colon-Specific Delivery Systems Activated by Colonic Microflora, J. Control Release, 2008, 125 (2), 77-86; Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; and Bodmeier, R., Polymer Blends for Controlled Release Coatings, J. Control Release 2008, 125 (1), 1-15; Patel, M.; Shah, T.; and Amin, A., Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems, Crit. Rev. Ther. Drug Carrier Syst., 2007, 24 (2), 147-202; Jain, A.; Gupta, Y.; Jain, S. K., Perspectives of Biodegradable Natural Polysaccharides for Site-specific Drug Delivery to the Colon., J. Pharm. Sci., 2007, 10 (1), 86-128; Van den, M. G., Colon Drug Delivery, Expert Opin. Drug Deliv., 2006, 3 (1), 111-125; Basit, A. W., Advances in Colonic Drug Delivery, Drugs 2005, 65 (14), 1991-2007; Chourasia, M. K.; Jain, S. K., Polysaccharides for Colon-Targeted Drug Delivery, Drug Deliv. 2004, 11 (2), 129-148; Shareef, M. A.; Khar, R. K.; Ahuja, A.; Ahmad, F. J.; and Raghava, S., Colonic Drug Delivery: An Updated Review, AAPS Pharm. Sci. 2003, 5 (2), E17; Chourasia, M. K.; Jain, S. K., Pharmaceutical Approaches to Colon Targeted Drug Delivery Systems, J. Pharm. Sci. 2003, 6 (1), 33-66; and, Sinha, V. R.; Kumria, R., Colonic Drug Delivery: Prodrug Approach, Pharm. Res. 2001, 18 (5), 557-564. Typically the active pharmaceutical ingredient (API) is contained in a tablet/capsule designed to release said API as a function of the environment (e.g., pH, enzymatic activity, temperature, etc.), or as a function of time. One example of this approach is Eudracol™ (Pharma Polymers Business Line of Degussa's Specialty Acrylics Business Unit), where the API-containing core tablet is layered with various polymeric coatings with specific dissolution profiles. The first layer ensures that the tablet passes through the stomach intact so it can continue through the small intestine. The change from an acidic environment in the stomach to an alkaline environment in the small intestine initiates the release of the protective outer layer. As it travels through the colon, the next layer is made permeable by the alkalinity and intestinal fluid. This allows fluid to penetrate to the interior layer and release the active ingredient, which diffuses from the core to the outside, where it can be absorbed by the intestinal wall. Other methods are contemplated without departing from the scope of the present disclosure. In another example, the pharmaceutical compositions of the invention can be used with drug carriers including pectin and galactomannan, polysaccharides that are both degradable by colonic bacterial enzymes. (See, e.g., U.S. Pat. No. 6,413,494, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes.) While pectin or galactomannan, if used alone as a drug carrier, are easily dissolved in simulated gastric fluid and simulated intestinal fluid, a mixture of these two polysaccharides prepared at a pH of about 7 or above produces a strong, elastic, and insoluble gel that is not dissolved or disintegrated in the simulated gastric and intestinal fluids, thus protecting drugs coated with the mixture from being released in the upper GI tract. When the mixture of pectin and galactomannan arrives in the colon, it is rapidly degraded by the synergic action of colonic bacterial enzymes. In yet another aspect, the compositions of the invention may be used with the pharmaceutical matrix of a complex of gelatin and an anionic polysaccharide (e.g., pectinate, pectate, alginate, chondroitin sulfate, polygalacturonic acid, tragacanth gum, arabic gum, and a mixture thereof), which is degradable by colonic enzymes (U.S. Pat. No. 6,319,518). In yet other embodiments, fluid-absorbing polymers that are administered in accordance with treatment methods of the present disclosure are formulated to provide acceptable/pleasant organoleptic properties such as mouthfeel, taste, and/or to avoid premature swelling/gelation in the mouth and in the esophagus and provoke choking or obstruction. The formulation may be designed in such a way so as to ensure the full hydration and swelling of the FAP in the GI tract and avoid the formation of lumps. The oral dosages for the FAP may take various forms including, for example, powder, granulates, tablets, wafer, cookie and the like, and are most preferably delivered to the small bowel with little or no interaction with the upper GI such as the gastric compartment and the duodenum. The above-described approaches or methods are only some of the many methods reported to selectively deliver an active in the lower part of the intestine, and therefore should not be viewed to restrain or limit the scope of the disclosure. The following non-limiting examples are provided to further illustrate the present disclosure. EXAMPLES Exemplary Compound Synthesis Example 1 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Intermediate 1.1: 2-bromo-1-(3-bromophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-bromophenyl)ethanone (40 g, 202.02 mmol, 1.00 equiv) in acetic acid (200 mL). This was followed by the addition of a solution of Br2 (32 g, 200.00 mmol) in acetic acid (50 mL) dropwise with stirring at 60° C. The resulting solution was stirred for 3 h at 60° C. in an oil bath. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 24 g (43%) of 2-bromo-1-(3-bromophenyl)ethanone as a yellow solid. Intermediate 1.2: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-bromophenyl)ethanone (55 g, 199.28 mmol, 1.00 equiv) in 1,4-dioxane (300 mL), TEA (40 g, 396.04 mmol, 1.99 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (38 g, 201.06 mmol, 1.01 equiv). The resulting solution was stirred for 2 h at 25° C. in an oil bath. The solids were filtered out and the filtrate was used without any further purification. Intermediate 1.3: 1-(3-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanol Into a 1 L 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanone (77 g, 198.97 mmol, 1.00 equiv, theoretical yield) in methanol (300 mL). This was followed by the addition of NaBH4 (15 g, 394.74 mmol, 1.98 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 100 mL of acetone. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100). This resulted in 50 g (65%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol as a yellow oil. Intermediate 1.4: 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-bromophenyl)ethanol (25 g, 64.27 mmol, 1.00 equiv) in dichloromethane (100 mL). This was followed by the addition of sulfuric acid (100 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 4 h at room temperature. The resulting solution was diluted with of ice water. The pH value of the solution was adjusted to 8 with sodium hydroxide. The resulting solution was extracted with 3×300 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was re-crystallized from petroleum ether:ethyl acetate in the ratio of 8:1. This resulted in 15 g (63%) of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a white solid. Intermediate 1.5: 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of potassium carbonate (930 mg, 0.50 equiv) in xylene (50 mL). This was followed by the addition of phenylmethanethiol (2.5 g, 1.50 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 1 h at 25° C. Into another 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was added a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (5.0 g, 1 equiv) in xylene (50 mL), Pd2(dba)3 (300 mg), Xantphos (300 mg). The resulting solution was stirred for 30 min at 25° C. and then added to the above reaction solution. The mixture was stirred overnight at 140° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 2.5 g (45%) of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a yellow oil. Intermediate 1.6: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 250-mL 3-necked round-bottom flask, was placed a solution of 4-(3-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (8 g, 13.53 mmol, 1.00 equiv, 70%) in acetic acid/water (80/8 mL). Cl2(g) was introduced and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 5.0 g (90%) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride as a yellowish solid. Intermediate 1.7: 2-(2-bromoethyl)isoindoline-1,3-dione Into a 500-mL round-bottom flask, was placed a solution of 1,2-dibromoethane (30 g, 159.57 mmol, 2.95 equiv) in N,N-dimethylformamide (200 mL). This was followed by the addition of potassium phthalimide (10 g, 54.05 mmol, 1.00 equiv) in several batches. The resulting solution was stirred for 24 h at 60° C. The reaction was then quenched by the addition of 500 mL of water. The resulting solution was extracted with 2×200 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10). This resulted in 8 g (57%) of 2-(2-bromoethyl)isoindoline-1,3-dione as a white solid. Intermediate 1.8: diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 2-(2-bromoethyl)isoindoline-1,3-dione (8 g, 31.50 mmol, 1.00 equiv) and triethyl phosphite (6.2 g, 37.35 mmol, 1.19 equiv). The resulting solution was stirred for 18 h at 130° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ether:n-hexane (1:2). This resulted in 5 g (48%) of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate as a white solid. Intermediate 1.9: diethyl 2-aminoethylphosphonate Into a 500-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(1,3-dioxoisoindolin-2-yl)ethylphosphonate (5 g, 16.08 mmol, 1.00 equiv) in ethanol (200 mL) and hydrazine hydrate (8 g, 160.00 mmol, 9.95 equiv). The resulting solution was stirred for 12 h at room temperature. The solids were filtered and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (9:1). This resulted in 1.5 g (51%) of diethyl 2-aminoethylphosphonate as colorless oil. Intermediate 1.10: Diethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 2-aminoethylphosphonate (100 mg, 0.55 mmol, 1.00 equiv) in dichloromethane (10 mL) with TEA (220 mg, 2.18 mmol, 3.94 equiv). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.60 mmol, 1.08 equiv, 78%) in several batches. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 0.07 g (24%) of the title compound as a colorless oil. Compound 1: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid To a solution of Intermediate 1.10 (70 mg, 0.13 mmol, 1.00 equiv) in dichloromethane (10 mL) was added bromotrimethylsilane (200 mg, 1.32 mmol, 10.04 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. To the above was added methanol. The resulting mixture was concentrated under vacuum. This was followed by the addition of a solution of sodium hydroxide (11 mg, 0.28 mmol, 2.10 equiv) in methanol (2 mL). The resulting solution was stirred for an additional 1 h at room temperature. The resulting mixture was concentrated under vacuum. The solid was dried in an oven under reduced pressure. This resulted in 52.3 mg (73%) of the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.82 (d, J=7.5 Hz, 1H), 7.73 (s, 1H), 7.56 (m, 1H), 7.48 (d, J=8.1 Hz, 1H), 7.41 (s, 1H), 6.88 (s, 1H), 4.54 (s, 1H), 3.97 (m, 2H), 3.17 (m, 3H), 2.97 (m, 1H), 2.67 (s, 3H), 1.68 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 2 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic acid Intermediate 2.1: diethyl 4-nitrophenylphosphonate Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl phosphonate (3.02 g, 21.88 mmol, 1.10 equiv) in toluene (10 mL), Pd(PPh3)4 (1.15 g, 1.00 mmol, 0.05 equiv), TEA (2.21 g, 21.88 mmol, 1.10 equiv), 1-bromo-4-nitrobenzene (4 g, 19.90 mmol, 1.00 equiv). The resulting solution was stirred for 15 h at 90° C. The solids were filtered out and the resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2). This resulted in 3.53 g (68%) of diethyl 4-nitrophenylphosphonate as a yellow liquid. Intermediate 2.2: diethyl 4-aminophenylphosphonate Into a 50-mL round-bottom flask, was placed a solution of diethyl 4-nitrophenylphosphonate (1.07 g, 4.13 mmol, 1.00 equiv), TEA (3 mL), Palladium carbon (0.025 g). This was followed by the addition of formic acid (2 mL) dropwise with stirring at room temperature. The resulting solution was heated to reflux for 3 hr. The reaction was then quenched by the addition of 5 mL of water and the solids were filtered out. The resulting filtrate was extracted with 5×10 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate. This resulted in 800 mg (85%) of diethyl 4-aminophenylphosphonate as a white solid. Compound 2: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl-sulfonamido)phenylphosphonic acid Compound 2 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminophenylphosphonate (Intermediate 2.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.86 (d, 1H), 7.69 (m, 3H), 7.55 (m, 3H), 7.21 (m, 2H), 6.73 (s, 1H), 4.70 (m, 2H), 4.48 (d, 1H), 3.79 (m, 1H), 3.46 (m, 1H), 3.09 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 3 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic acid Intermediate 3.1: diethyl 4-nitrobenzylphosphonate Into a 250-mL round-bottom flask, was placed 1-(bromomethyl)-4-nitrobenzene (15 g, 69.77 mmol, 1.00 equiv), triethyl phosphite (70 mL). The resulting solution was stirred for 2 h at 110° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:1). This resulted in 17 g (89%) of the title compound as a yellow oil. Intermediate 3.2: diethyl 4-aminobenzylphosphonate Into a 100-mL 3-necked round-bottom flask, was placed a solution of diethyl 4-nitrobenzylphosphonate (5 g, 18.32 mmol, 1.00 equiv) in ethanol (50 mL) and a solution of NH4Cl (2.9 g, 54.72 mmol, 2.99 equiv) in water (50 mL) was added. This was followed by the addition of Fe (4.1 g, 73.21 mmol, 4.00 equiv), while the temperature was maintained at reflux. The resulting solution was heated to reflux for 1 hr. The solids were filtered out. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:3). This resulted in 2.5 g (56%) of the title compound as a yellow solid. Compound 3: 4-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)benzylphosphonic acid Compound 3 was prepared in an analogous manner to that of Compound 1 using diethyl 4-aminobenzylphosphonate (Intermediate 3.2) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.61˜7.66 (m, 1H), 7.52˜7.54 (m, 2H), 7.21˜7.20 (m, 2H), 7.11 (s, 1H), 6.95 (d, J=8.1 Hz, 2H), 6.73 (s, 1H), 4.51˜4.59 (m, 3H), 3.33 (s, 1H), 3.03˜2.89 (m, 6H). MS (ES, m/z): 541 [M+H]+. Example 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Intermediate 4.1: 3-diethyl 3-aminopropylphosphonate Following the procedures outlined in Example 1, substituting dibromopropane for dibromoethane gave the title compound. Compound 4 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Compound 4 was prepared in an analogous manner to that of Compound 1 using 3-diethyl 3-aminopropylphosphonate (Intermediate 4.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.87 (d, J=8.1 Hz, 1H), 7.77 (s, 1H), 7.61˜7.66 (m, 1H), 7.51˜7.54 (m, 2H), 6.88 (s, 1H), 4.77˜4.83 (m, 1H), 4.65 (d, J=16.2 Hz, 1H), 4.44 (d, J=15.6 Hz, 1H), 3.78˜3.84 (m, 1H), 3.50˜3.57 (m, 1H), 3.08 (s, 3H), 2.93˜2.97 (m, 2H), 1.61˜1.72 (m, 2H), 1.48˜1.59 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 5 (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Intermediate 5.1: 1,3,5-tribenzyl-1,3,5-triazinane Into a 100-mL 3-necked round-bottom flask was placed benzylamine (10 g, 93.46 mmol, 1.00 equiv), followed by the addition of formaldehyde (9.0 g, 1.20 equiv, 37%) dropwise with stirring at 0-10° C. To the precipitated gum was added 3M aqueous sodium hydroxide (20 mL), and the mixture was stirred. After standing in ice for 0.3 h, ether (30 mL) was added, and the mixture stirred until all precipitate dissolved. The aqueous phase was separated and extracted with ether. The solvents were removed under vacuum to afford 12 g (36%) of 1,3,5-tribenzyl-1,3,5-triazinane as colorless oil. Intermediate 5.2: diethyl (benzylamino)methylphosphonate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 1,3,5-tribenzyl-1,3,5-triazinane (3.0 g, 8.40 mmol, 1.00 equiv) and diethyl phosphite (3.5 g, 25.36 mmol, 3.00 equiv). The resulting solution was stirred for 3 h at 100° C. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:1). This resulted in 2.0 g (90%) of diethyl (benzylamino)methylphosphonate as a colorless oil. Intermediate 5.3: Diethyl aminomethylphosphonate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of diethyl (benzylamino)methylphosphonate (3.5 g, 13.62 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL) and Palladium carbon (0.2 g, 0.10 equiv). The resulting solution was stirred for 24 h at 50° C. under 20 atm pressure. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 2.0 g (crude) of the title compound as brown oil which was used without further purification. Compound 5: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Compound 5 was prepared in an analogous manner to that of Compound 1 using diethyl aminomethylphosphonate (Intermediate 5.3) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.8 Hz, 1H), 7.74 (s, 1H), 7.63˜7.66 (m, 1H), 7.57˜7.61 (m, 2H), 6.97 (s, 1H), 4.80˜4.89 (m, 1H), 4.55˜4.67 (m, 2H), 3.83˜3.89 (m, 1H), 3.55˜3.66 (m, 1H), 3.02˜3.11 (m, 5H). MS (ES, m/z): 465 [M+H]+. Example 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic acid Intermediate 6.1: 4-diethyl 4-(aminomethyl)benzylphosphonate Following the procedures outlined in Example 1, substituting 1,4-bis(bromomethyl)benzene for dibromoethane gave the title compound. Compound 6 4-((3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)benzylphosphonic acid Compound 6 was prepared in an analogous manner to that of Compound 1 using 4-diethyl 4-(aminomethyl)benzylphosphonate (Intermediate 6.1) as the amine. 1H-NMR (300 MHz, CD3OD, ppm): 7.85˜7.88 (m, 1H), 7.54˜7.59 (m, 2H), 7.37˜7.42 (m, 2H), 7.198˜7.22 (m, 2H), 7.06˜7.09 (m, 1H), 6.77 (s, 1H), 4.64 (m, J=16.2 Hz, 1H), 4.49˜4.53 (m, 1H), 4.37 (m, J=16.5, 1H), 4.17 (s, 2H), 3.45˜3.56 (m, 1H), 3.11˜3.27 (m, 1H), 3.09˜3.10 (m, 4H), 2.96˜2.97 (m, 1H). MS (ES, m/z): 555 [M+H]+. Example 7 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Compound 7: 3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Into a 50-mL round-bottom flask, was placed a solution of 3-aminopropane-1-sulfonic acid (180 mg, 1.29 mmol, 1.00 equiv) in tetrahydrofuran/water (10/10 mL) with sodium bicarbonate (430 mg, 5.12 mmol). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.29 mmol, 0.99 equiv) in several batches. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (500 mg) was purified by preparative HPLC to give 26.7 mg of the title compound (4%) as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): 10.28 (s, 1H), 7.53˜7.79 (m, 6H), 6.83 (s, 1H), 4.74 (s, 2H), 4.51 (s, 1H), 3.90 (s, 1H), 3.06 (s, 3H), 2.86˜2.93 (m, 2H), 2.33˜2.44 (m, 2H), 1.58˜1.63 (m, 2H). MS (ES, m/z): 493 [M+H]+. Example 8 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Intermediate 8.1: ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate Into a 500-mL 3-necked round-bottom flask, was placed a solution of diethyl (benzylamino)methylphosphonate (intermediate 5.2) (12 g, 46.69 mmol, 1.00 equiv) in acetonitrile (150 mL), DIEA (12 g, 2.00 equiv). This was followed by the addition of ethyl 2-bromoacetate (8.4 g, 50.30 mmol, 1.10 equiv) dropwise with stirring. The mixture was stirred for 30 min at room temperature. The resulting solution was heated to reflux for 6 hr. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:20 to 1:5). This resulted in 8.0 g (50%) of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate as yellow oil. Intermediate 8.2: ethyl 2-((diethoxyphosphoryl)methylamino)acetate A 250-mL pressure tank reactor was purged, flushed and maintained with a hydrogen atmosphere, then, was added a solution of ethyl 2-(benzyl((diethoxyphosphoryl)methyl)amino)acetate (8.0 g, 23.32 mmol, 1.00 equiv) in ethanol (180 mL), acetic acid (10 mL), Pd/C (0.9 g). The resulting solution was stirred at 20 atm for 32 h at 50° C. The solids were filtered out, and the resulting mixture was concentrated under vacuum. This resulted in 6.0 g (82%) of the acetic acid salt of ethyl 2-((diethoxyphosphoryl)methylamino)acetate as a brown oil. Intermediate 8.3: ethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-((diethoxyphosphoryl)methyl)phenylsulfonamido)acetate Into a 50-mL round-bottom flask, was placed a solution of ethyl 2-((diethoxyphosphoryl)methylamino)acetate (320 mg, 1.26 mmol, 1.00 equiv) in pyridine (10 mL). 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.28 mmol, 1.01 equiv) was added and the resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product (400 mg) was purified by preparative HPLC to give 200 mg (24%) of the title compound as a TFA salt. Intermediate 8.4: (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 8.3 (200 mg, 0.33 mmol, 1.00 equiv) in dichloromethane (6 mL). Bromotrimethylsilane (502 mg, 3.30 mmol, 10.01 equiv) was added and the resulting solution was stirred overnight at 40° C. in an oil bath. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The residue was dissolved in 10 mL of methanol. The resulting mixture was concentrated under vacuum. This resulted in 180 mg (99%) of the title compound as a yellow solid. Compound 8: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Into a 50-mL round-bottom flask, was placed a solution of (3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-ethoxy-2-oxoethyl)phenylsulfonamido)methylphosphonic acid (Intermediate 8.4) (180 mg, 0.33 mmol, 1.00 equiv) in tetrahydrofuran/water (5/5 mL). This was followed by the addition of lithium hydroxide (39 mg, 1.62 mmol, 4.97 equiv) in several batches at room temperature. The resulting solution was stirred for 4 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with 1M hydrogen chloride. The resulting mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC giving 59.2 mg (35%) of the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.73˜7.74 (m, 1H), 7.67˜7.68 (m, 1H), 7.58˜7.62 (m, 2H), 7.49 (s, 1H), 7.00 (s, 1H), 4.71˜4.75 (m, 1H), 4.49 (d, J=16.2 Hz, 1H), 4.33 (d, J=15.9 Hz, 1H), 4.07 (s, 2H), 3.62˜3.64 (m, 1H), 3.45˜3.54 (m, 2H), 3.31˜3.40 (m, 1H), 2.88 (s, 3H). MS (ES, m/z): 523 [M+H]+. Example 9 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic acid Intermediate 9.1: Dimethyl 2-aminosuccinate hydrochloride Into a 100-mL round-bottom flask, was placed a solution of 2-aminosuccinic acid (3 g, 22.56 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of thionyl chloride (10 g, 84.75 mmol, 3.76 equiv) dropwise with stirring at 0-5° C. The resulting solution was heated to reflux for 2 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 4.2 g (95%) of the title compound as a white solid. Intermediate 9.2: Dimethyl 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinate Into a 50-mL round-bottom flask, was placed a solution of dimethyl 2-aminosuccinate hydrochloride (107 mg, 0.54 mmol, 1.00 equiv) in pyridine (5 mL). This was followed by the addition of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.69 mmol, 1.27 equiv, 90%) in several batches. The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane:methanol (50:1). This resulted in 200 mg (72%) of the title compound as a colorless oil Compound 9: 2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of Intermediate 9.2 (100 mg, 0.19 mmol, 1.00 equiv) in tetrahydrofuran (5 mL) and water (5 mL). This was followed by the addition of LiOH (23 mg, 0.96 mmol, 4.93 equiv) in several batches at room temperature. The resulting solution was stirred for 2 h at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 6 with hydrogen chloride (1 mol/L). The solids were collected by filtration. The crude product (200 mg) was purified by preparative HPLC to give 12.1 mg (10%) the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.89 (d, J=7.2 Hz, 1H), 7.80 (d, J=6.3 Hz, 1H), 7.64˜7.52 (m, 3H), 6.95 (s, 1H), 4.78˜4.70 (m, 2H), 4.55˜4.50 (m, 1H), 4.23˜4.17 (m, 1H), 3.87˜3.82 (m, 1H), 3.63˜3.57 (m, 1H), 3.12 (s, 3H), 2.79˜2.65 (m, 2H). MS (ES, m/z): 487 [M-CF3COOH+H]+. Example 10 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Intermediate 10.1: 2-bromo-1-(4-bromophenyl)ethanone Into a 250-mL 3-necked round-bottom flask, was placed a solution of 1-(4-bromophenyl)ethanone (10.0 g, 50.25 mmol, 1.00 equiv) in acetic acid (50 mL). This was followed by the addition of a solution of bromine (8.2 g, 1.05 equiv) in acetic acid (50 mL) dropwise with stirring at 60° C. over 90 min. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate in the ratio of 7:1. This resulted in 9.3 g (67%) of the title compound as a yellow solid. Intermediate 10.2: 1-(4-bromophenyl)-2-((2,4-dichlorobenzyl)(methyl)amino)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(4-bromophenyl)ethanone (9.3 g, 33.45 mmol, 1.00 equiv) in dioxane (100 mL), triethylamine (5.0 g, 1.50 equiv), and (2,4-dichlorophenyl)-N-methylmethanamine (6.4 g, 33.68 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was used for next step directly. Intermediate 10.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of the crude Intermediate 10.2 in fresh methanol (100 mL). This was followed by the addition of sodium borohydride (2.5 g, 65.79 mmol, 2.00 equiv) in several batches at 0-5° C. The resulting solution was stirred for 1 h at 25° C. The reaction was then quenched by the addition of sat. NH4Cl. The resulting mixture was concentrated under vacuum. The resulting solution was extracted with EtOAc (2×100 mL) and the organic layers combined and concentrated under vacuum. The crude product was re-crystallized from petroleum ether/ethyl acetate (60 mL) in the ratio of 7:1. This resulted in 6.5 g (50%) of the title compound as a white solid. MS (ES, m/z): 390 [M+H]+. Intermediate 10.4: 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 50-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(4-bromophenyl)ethanol (1.0 g, 2.57 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of conc.H2SO4 (2 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 3 h at 20° C. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 9 with sodium hydroxide. The resulting solution was extracted with dichloromethane (2×30 mL) and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.9 g of the title compound which was used without further purification. MS (ES, m/z): 372 [M+H]+. Intermediate 10.5: 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed K2CO3 (800 mg, 0.50 equiv) and xylene (50 mL). This was followed by the addition of phenylmethanethiol (1.75 g, 1.00 equiv) dropwise with stirring at 0° C. The resulting mixture was then allowed to warm to room temperature and stirred for 1 h. Into another 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 4-(4-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (4.8 g, 0.80 equiv), Xantphos (200 mg, 0.08 equiv) and Pd2(dba)3 (200 mg, 0.08 equiv) in xylene (30 mL). The mixture was stirred at room temperature for 20 min and transferred to the previously formed potassium thiolate. The dark solution was then purged with nitrogen and heated to 130° C. for 15 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The crude product was then purified by silica gel chromatography with ethyl acetate/petroleum ether (1:80˜1:50) to afford 1.8 g (30%) of the title compound as yellow oil. MS (ES, m/z): 414 [M+H]+. Compound 10.6: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Into a 50-mL 3-necked round-bottom flask, was placed a solution of 4-(4-(benzylthio)phenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (250 mg, 0.60 mmol, 1.00 equiv) in acetic acid (8 mL), water (1 mL). To the above Cl2(g) was introduced and the resulting solution was stirred for 30 min at 25° C. The resulting mixture was concentrated under vacuum. This resulted in 200 mg (85%) of the title compound as a yellow solid. MS (ES, m/z): 390 [M−HCl+H]+. Compound 10: 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethylphosphonic acid Following the procedures outlined in Example 1, 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) was converted to compound 10. Purification by preparative HPLC gave a TFA salt of the title compound as a white solid. 1H-NMR (CD3OD, 300 MHz, ppm): 7.93 (d, J=8.4 Hz, 2H), 7.58˜7.51 (m, 3H), 6.89 (s, 1H), 4.89˜4.80 (m, 2H), 4.56˜4.51 (m, 1H), 3.95˜3.90 (m, 1H), 3.69˜3.65 (m, 1H), 3.21˜3.10 (m, 5H), 2.01˜1.89 (m, 2H). MS (ES, m/z): 479 [M+H]+. Example 11 (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Compound 11: (4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methylphosphonic acid Following the procedures outlined in Example 1, compound 11 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and diethyl aminomethylphosphonate (intermediate 5.3). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.87 (d, J=8.4 Hz, 2H), 7.68 (d, J=1.5 Hz, 1H), 7.48 (d, J=9.4 Hz, 2H), 6.80 (s, 1H), 4.74˜4.66 (m, 1H), 4.46˜4.40 (m, 1H), 3.82˜3.77 (m, 1H), 3.69˜3.39 (m, 1H), 3.01 (s, 3H), 2.91˜2.74 (m, 2H). MS 465 [M+H]+. Example 12 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Compound 12: 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propylphosphonic acid Following the procedures outlined in Example 1, compound 12 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 3-diethyl 3-aminopropylphosphonate (intermediate 4.1). Purification by preparative HPLC gave a TFA salt of the title compound 1H-NMR (300 MHz, CD3OD, ppm): 7.90 (d, J=8.4, 2H), 7.55 (s, 1H), 7.46 (d, J=8.1 Hz, 2H), 6.88 (s, 1H), 4.77˜4.82 (m, 1H), 4.71 (d, J=16.2 Hz, 1H), 4.47 (d, J=15.9 Hz, 1H), 3.80˜3.86 (m, 1H), 3.54˜3.61 (m, 1H), 3.11 (s, 3H), 2.95˜2.99 (m, 2H), 1.53˜1.71 (m, 4H). MS 493 [M+H]+. Example 13 (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic acid Compound 13: (4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenyl)methylphosphonic acid Following the procedures outlined in Example 1, compound 13 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-aminobenzylphosphonate (intermediate 3.2). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.69 (d, J=8.4 Hz, 2H), 7.46˜7.46 (m, 1H), 7.34 (d, J=8.4 Hz, 2H), 7.07 (d, J=7.8 Hz, 2H), 6.94 (d, J=8.1 Hz, 2H), 6.71˜6.71 (m, 1H), 4.36˜4.40 (m, 1H), 3.65˜3.80 (m, 2H), 2.95˜3.01 (m, 1H), 2.72˜2.79 (m, 3H), 2.41 (s, 3H). MS (ES, m/z): 541 [M+H]+. Example 14 (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic acid Compound 14: (4-((4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)methyl)phenyl)methylphosphonic acid Following the procedures outlined in Example 1, compound 14 was made using 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) and 4-(aminomethyl)benzylphosphonate (intermediate 6.1). Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO+D2O, ppm): 7.71 (d, J=8.4 Hz, 2H), 7.50 (m, 1H), 7.40 (d, J=8.4 Hz, 2H), 7.06˜7.15 (m, 4H), 6.86˜6.87 (m, 1H), 4.38˜4.40 (m, 1H), 3.95 (s, 2H), 3.75 (d, J=16.2 Hz, 1H), 3.53 (m, 1H), 2.85˜2.92 (m, 3H), 2.69˜2.75 (m, 1H), 2.41 (s, 3H). MS (ES, m/z): 555 [M+H]+. Example 15 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic acid Intermediate 15.1: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-phenylethanone (1 g, 5.05 mmol, 1.00 equiv) in 1,4-dioxane (20 mL) and (2,4-dichlorophenyl)-N-methylmethanamine (1.1 g, 5.82 mmol, 1.15 equiv). Triethylamine (2 g, 19.80 mmol, 3.92 equiv) was added dropwise with stirring at 20° C. The resulting solution was stirred for 1 h at 20° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.4 g (90%) of the title compound as a yellow oil. Intermediate 15.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol Into a 250 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanone (4.3 g, 14.01 mmol, 1.00 equiv) in methanol (50 mL). This was followed by the addition of NaBH4 (1.5 g, 39.47 mmol, 2.82 equiv) in several batches at 0° C. The resulting solution was stirred for 30 min at 0° C. in a water/ice bath. The reaction was then quenched by the addition of 20 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:80˜1:20). This resulted in 3.4 g (79%) of the title compound as a white solid. Intermediate 15.3: 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline Into a 100-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-phenylethanol (3.4 g, 11.00 mmol, 1.00 equiv) in dichloromethane (15 mL). This was followed by the addition of sulfuric acid (15 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. in a water/ice bath. The pH value of the solution was adjusted to 7 with 1M sodium hydroxide. The resulting solution was extracted with ethyl acetate (3×60 mL) and the combined organic layers dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether:ethyl acetate (80:1). This resulted in 1.6 g (50%) of the title compound as a colorless oil. Intermediate 15.4: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed chlorosulfonic acid (4 mL). This was followed by the dropwise addition of a solution of 6,8-dichloro-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (1.6 g, 5.5 mmol, 1.00 equiv) in dichloromethane (30 mL) at 0° C. The resulting solution was stirred for 1 h at 0° C. in a water/ice bath and for an additional 1 h at 25° C. in an oil bath. To this was added chlorosulfonic acid (16 mL) dropwise at 25° C. The resulting solution was stirred for an additional 1 h at 25° C. To the resulting mixture was cooled to 0° C. and aqueous ammonia (120 mL) was added dropwise. The resulting solution was stirred for an additional 3 h 90° C. in an oil bath. The resulting mixture was concentrated under vacuum. The residue was dissolved in 20 mL of water. The resulting solution was extracted with dichloromethane (3×30 mL) and the combined organic layers concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1). The crude product (0.5 g) was purified by preparative HPLC to give 53 mg (3%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CDCl3, ppm): 7.89 (1H, d, J=8.4 Hz), 7.35 (2H, d, J=8.4 Hz), 7.30 (1H, m), 6.77 (1H, s), 4.87 (1H, s), 4.39 (1H, s), 3.69 (2H, m), 2.98 (1H, t), 2.67 (1H, dd), 2.55 (3H, s). MS (ES, m/z): 371 [M+H]+. Intermediate 15.5: dimethyl 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 15.4, 100 mg, 0.27 mmol, 1.00 equiv) in acetonitrile (5 mL). Methyl but-3-enoate (40 mg, 0.40 mmol, 1.48 equiv) was added, along with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 20 mg, 0.13 mmol, 0.49 equiv). The resulting solution was stirred overnight at 25° C. in an oil bath. Removing the solvent under vacuum gave the title compound which was used without further purification. Compound 15: 3,3′-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonylazanediyl)dipropanoic acid Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of Intermediate 15.5 (140 mg, 0.26 mmol, 1.00 equiv, theoretical yield) in tetrahydrofuran (5 mL) and water (5 mL). LiOH (20 mg, 0.83 mmol, 3.23 equiv) was added and the resulting solution was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with dichloromethane/methanol (100:1˜20:1). This resulted in 0.015 g (11%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.84 (d, J=8.1 Hz, 2H), 7.41 (d, J=8.4 Hz, 2H), 7.35 (s, 1H), 6.84 (s, 1H), 4.39 (t, 1H), 3.77 (d, 1H), 3.67 (d, 1H), 3.45 (m, 1H), 3.33 (m, 4H), 2.69 (d, 1H), 3.0 (m, 1H), 2.47 (m, 6H). MS (ES, m/z): 515 [M+H]+. Example 16 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Compound 16: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.235 mmol) in DMF (1.5 mL) was added TEA (94.94 mg, 0.94 mmol) and a solution of N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (11.45 mg, 0.0783 mmol) in 0.1 mL DMF. The reaction was stirred for 40 minutes at which point LCMS indicated no starting material remained. The solvent was removed and the residue dissolved in 50% acetic acid in water and purified by preparative HPLC to yield the title compound (25.4 mg) as a TFA salt. 1H-NMR (400 MHz, d6-DMSO): δ7.77 (s, 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.59 (m, 3H), 6.76 (s, 1H), 4.70 (m, 1H), 4.38 (m, 1H), 3.90 (br m, 8H), 3.26 (m, 1H), 3.95 (s, 3H), 2.65 (m, 2H). MS (m/z): 1210.01 (M+H). Example 17 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 17: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (26.17 mg, 0.176 mmol) in chloroform (0.223 mL) at 0° C. was added diisopropylethylamine (DIEA, 182 mg, 1.412 mmol) and a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL). The resulting solution was stirred for 10 minutes at which point the solvent was removed and the residue taken up in 50% isopropanol/water mixture and purified by preparative HPLC. The title compound was obtained (44.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 1H), 7.78 (d, 1H), 7.64 (t, 1H), 7.55 (d, 1H), 7.51 (d, 1H), 6.81 (s, 1H), 4.47 (d, 1H), 3.83 (dd, 1H), 3.59 (t, 1H), 3.43 (m, 2H), 3.12 (s, 4H), 3.01 (q, 2H). MS (m/z): 857.17 (M+H). Example 18 N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 18: N,N′-(1,4-phenylenebis(methylene))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 18 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.67 (s, 2H), 7.52 (m, 4H), 7.49 (d, 2H), 7.09 (s, 4H), 6.82 (s, 2H), 4.78 (m, 7H), 4.43 (d, 2H), 4.00 (s, 4H), 3.82 (dd, 2H), 3.51 (t, 2H), 3.11 (s, 6H). MS (m/z): 845.03 (M+H). Example 19 N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 19: N,N′-(butane-1,4-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 19 was made using butane-1,4-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 2H), 7.80 (s, 2H), 7.63 (t, 2H), 7.54 (t, 4H), 6.82 (s, 2H), 4.49 (d, 1H), 3.88 (dd, 2H), 3.58 (t, 2H), 3.14 (s, 6H), 2.81 (m, 4H), 1.42 (m, 4H). MS (m/z): 797.19 (M+H). Example 20 N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 20: N,N′-(dodecane-1,12-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 17, compound 20 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.71 (s, 2H), 7.63 (t, 2H), 7.54 (m, 4H), 6.81 (s, 2H), 4.74 (m, 2H), 4.51 (d, 2H), 3.86 (dd, 2H), 3.29 (t, 2H), 3.13 (s, 7H), 2.79 (t, 4H), 1.39 (m, 4H), 1.22 (m, 20H). MS (m/z): 909.28 (M+H). Example 21 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 21: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (150 mg, 0.352 mmol) in THF/H2O (0.704 mL, 50% v/v) was added DIEA (181.6 mg, 1.41 mmol) and finally N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) (27.94 mg, 0.08825 mmol). The reaction mixture was stirred vigorously for 1 hour at which point the solvent was removed. The resulting residue was brought up in 50% acetonitrile/water and purified by preparative HPLC to give the title compound (117 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.85 (d, 2H), 7.78 (s, 2H), 7.62 (t, 2H), 7.36 (m, 4H), 6.79 (s, 2H), 4.78 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.55 (t, 2H), 3.12 (s, 6H), 2.94 (m, 4H), 1.90 (m, 4H), 1.85 (m, 2H). MS (m/z): 1732.90 (M+H). Example 22 N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 22: N,N′-(butane-1,4-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in chloroform (0.706 mL) was added DIEA (182 mg, 1.412 mmol) and a solution of butane-1,4-diamine (15.5 mg, 0.176 mmol) in chloroform (0.176 mL). The reaction was stirred overnight at which point the solvent was removed and the resulting residue brought up in 50% IPA/H2O. Purification by preparative HPLC gave the title compound (18.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.86 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.73 (m, 3H), 4.46 (d, 2H), 3.86 (dd, 2H), 3.57 (t, 2H), 3.12 (s, 6H), 2.84 (m, 4H), 1.41 (m, 4H). MS (m/z): 797.15 (M+H). Example 23 N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 23: N,N′-(dodecane-1,12-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in Example 22, compound 23 was made using dodecane-1,12-diamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 4H), 7.54 (m, 2H), 7.42 (m, 4H), 6.82 (s, 2H), 4.85 (m, 3H), 4.72 (d, 2H), 3.85 (dd, 2H), 3.59 (t, 2H), 3.13 (m, 8H), 2.85 (m, 4H), 1.89 (m, 5H), 1.33 (m, 23H). MS (m/z): 909.21 (M+H). Example 24 N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 24: N,N′,N″-(2,2′,2″-nitrilotris(ethane-2,1-diyl))tris(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 10.6) (150 mg, 0.353 mmol) in THF/H2O solution (50% v/v, 0.704 mL) was added DIEA (182.2 mg, 1.412 mmol) and N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (17.0 mg, 0.116 mmol). The reaction was stirred vigorously at room temperature for 40 minutes at which point the solvent was removed. The resulting residue was dissolved in acetonitrile/water (50% v/v) and purified by preparative HPLC to give the title compound (57.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.94 (d, 6H), 7.51 (t, 9H), 6.83 (s, 3H), 4.78 (m, 6H), 4.45 (d, 3H), 3.83 (dd, 3H), 3.49 (t, 3H), 3.30 (m, 6H), 3.29 (m, 21H), 3.12 (s, 9H). MS (m/z): 1208.09 (M+H). Example 25 N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 25: N,N′,N″,N′″-(3,3′,3″,3′″-(butane-1,4-diylbis(azanetriyl))tetrakis(propane-3,1-diyl))tetrakis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, Compound 25 was made using N1,N1′-(butane-1,4-diyl)bis(N1-(3-aminopropyl)propane-1,3-diamine) as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.88 (d, 8H), 7.51 (s, 4H), 7.48 (d, 8H), 6.81 (s, 4H), 4.75 (m, 8H), 4.47 (d, 4H), 3.85 (dd, 4H), 3.58 (t, 4H), 3.13 (s, 12H), 2.98 (t, 8H), 1.97 (m, 8H), 1.88 (m, 4H). MS (m/z): 1733.02 (M+H). Example 26 N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 26: N,N′-(1,4-phenylenebis(methylene))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 26 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.76 (d, 4H), 7.54 (s, 2H), 7.39 (d, 4H), 7.08 (s, 4H), 6.82 (s, 2H), 4.72 (m, 3H), 4.47 (d, 2H), 4.07 (s, 4H), 3.88 (dd, 2H), 3.61 (t, 2H), 3.16 (s, 6H). MS (m/z): 845.07 (M+H). Example 27 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 27: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedure outlined in Example 24, compound 27 was made using 2,2′-(ethane-1,2-diylbis(oxy))diethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d. 4H), 7.52 (s, 2H), 7.47 (d, 4H), 6.82 (s, 2H), 4.77 (m, 4H), 4.47 (d, 2H), 3.86 (dd, 2H), 3.59 (t, 2H), 3.43 (t, 8H), 3.13 (s, 6H), 3.06 (t, 4H). MS (m/z): 857.15 (M+H). Example 28 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 28.1 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (600 mg, 1.41 mmol) in chloroform (2.82 mL) was added DIEA (545.7 mg, 4.24 mmol) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (616.3 mg, 2.82 mmol). The reaction was stirred overnight at which point the mixture was diluted with 50 mL DCM and washed with NaHCO3 (50 mL). The aqueous layer was extracted with DCM (2×50 mL) and the combined organic fractions washed with water (200 mL), brine (200 mL), and dried over Na2SO4. Removing the solvent gave the title compound as an oil which was used without further purification. Compound 28: N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1) (1.035 g, assume 1.41 mmol) was dissolved in a 10:1 THF:water solution (26.5 mL) and placed under N2. PMe3 (165 mg, 2.18 mmol) was added and the reaction stirred overnight. The solvent was removed and the resulting residue brought up in EtOAc (100 mL) and washed with NaHCO3 (100 mL) and brine (100 mL). After drying the organic layer over Na2SO4, the solvent was removed to give 446 mg of the title compound (58% over two steps) as an oil. A portion of the crude product was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (m, 1H), 7.73 (m, 1H), 7.67 (t, j=7.7 Hz, 1H), 7.54 (m, 2H), 6.82 (s, 1H), 4.8-4.6 (m, 4H), 4.46 (m, 1H), 3.86 (m, 1H), 3.69 (m, 2H), 3.66 (s, 3H), 3.61 (m, 2H), 3.55 (m, 2H), 3.12 (m, 4H), 3.03 (t, j=5.4 Hz, 1H). MS (m/z): 546.18 (M+H). Example 29 N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide Compound 29: N1,N8-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)octanediamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (54.5 mg, 0.1 mmol) in DMF (0.20 mL) was added DIEA (15.5 mg, 0.12 mmol) and bis(2,5-dioxopyrrolidin-1-yl) octanedioate (18.4 mg, 0.05 mmol). The reaction was stirred at room temperature for 3 hours at which point an additional 0.03 mmol of compound 28 was added. After a further hour the solvent was removed and the resulting residue dissolved in acetonitrile/water (1:1) and purified by preparative HPLC to give the title compound (17.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): 7.89 (d, 2H), 7.78 (s, 2H), 7.64 (t, 2H), 7.52 (m, 4H), 6.83 (s, 2H), 4.81 (m, 4H), 4.45 (d, 2H), 3.89 (dd, 2H), 3.61 (m, 18H), 3.55 (m, 10H), 3.47 (m, 5H), 3.33 (m, 5H), 3.14 (s, 7H), 3.04 (t, 4H), 2.16 (t, 4H), 1.55 (m, 4H), 1.29 (m, 4H). MS (m/z): 1231.87 (M+H). Example 30 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Intermediate 30.1: 1-(4-aminophenyl)ethanone Into a 100-mL 3-necked round-bottom flask, was placed a solution of 1-(4-nitrophenyl)ethanone (6 g, 36.36 mmol, 1.00 equiv) in ethanol (100 mL), water (15 mL). This was followed by the addition of NH4Cl (3.85 g, 72.64 mmol, 2.00 equiv) in several batches. To this was added Fe (10.18 g, 181.79 mmol, 5.00 equiv) in several batches, while the temperature was maintained at reflux. The resulting mixture was heated to reflux for 2 h. The solids were filtered out and the resulting filtrate was concentrated under vacuum. The residue was diluted with 50 mL of water. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.1 g (60%) of 1-(4-aminophenyl)ethanone as a yellow solid. Intermediate 30.2: N-(4-acetylphenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-aminophenyl)ethanone (3.1 g, 22.96 mmol, 1.00 equiv) in dichloromethane (30 mL), triethylamine (4.64 g, 45.94 mmol, 2.00 equiv). This was followed by the addition of acetyl chloride (1.79 g, 22.95 mmol, 1.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 30 min at 0° C. The reaction was then quenched by the addition of 2 mL of water. The resulting mixture was washed with 3×50 mL of saturated aqueous sodium chloride. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum to give 3.0 g (74%) of N-(4-acetylphenyl)acetamide as a white solid. Intermediate 30.3: N-(4-(2-bromoacetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-acetylphenyl)acetamide (1 g, 5.65 mmol, 1.00 equiv) in acetic acid (10 mL). This was followed by the addition of a solution of bromine (910 mg, 5.69 mmol, 1.01 equiv) in acetic acid (2 mL) dropwise with stirring at 50° C. The resulting solution was stirred for 1.5 h at 50° C. The reaction was then quenched by the addition of 100 mL of water/ice. The solids were collected by filtration and dried under vacuum. This resulted in 0.5 g (33%) of N-(4-(2-bromoacetyl)phenyl)acetamide as a white solid. Intermediate 30.4: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-bromoacetyl)phenyl)acetamide (1 g, 3.91 mmol, 1.00 equiv) in 1,4-dioxane (40 mL). This was followed by the addition of triethylamine (1.58 g, 15.64 mmol, 4.00 equiv) dropwise with stirring at 20° C. To this was added (2,4-dichlorophenyl)-N-methylmethanamine (880 mg, 4.63 mmol, 1.19 equiv) dropwise with stirring at 20° C. The resulting solution was stirred for 4 h at 20° C. The solids were filtered out. The resulting mixture was concentrated under vacuum to give 1.5 g (84%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide as a white solid. Intermediate 30.5: N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)acetyl)phenyl)acetamide (1.5 g, 4.11 mmol, 1.00 equiv) in methanol (20 mL). This was followed by the addition of NaBH4 (300 mg, 7.89 mmol, 2.06 equiv) in several batches at 0-5° C. The resulting solution was stirred for 2 h at 0-5° C. The reaction was then quenched by the addition of 5 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 1.2 g (76%) of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide as yellow oil. Intermediate 30.6: N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide Into a 100-mL 3-necked round-bottom flask, was placed a solution of N-(4-(2-((2,4-dichlorobenzyl)(methyl)amino)-1-hydroxyethyl)phenyl)acetamide (500 mg, 1.36 mmol, 1.00 equiv) in dichloromethane (3 mL). This was followed by the addition of sulfuric acid (3 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 5 h at 0-5° C. The reaction was then quenched by the addition of 20 mL of water/ice. The pH value of the solution was adjusted to 7-8 with sodium hydroxide. The resulting solution was extracted with 3×20 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 25 mg (5%) of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide as a white solid. 1H-NMR (300 HMz, CDCl3, ppm): δ 7.46-7.49 (2H, d, J=8.4 Hz), 7.23-7.29 (1H, m), 7.12-7.15 (2H, d, J=8.4 Hz), 6.80 (1H, s), 4.314 (1H, s), 3.92 (1H, d), 3.58-3.63 (1H, d), 3.06 (1H, s), 2.61-2.68 (1H, m), 2.57 (3H, s), 2.20 (3H, s). MS (ES, m/z): 349 [M+H]+. Intermediate 30.7: 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acetamide (2 g, 5.73 mmol, 1.00 equiv) in ethanol (20 mL). This was followed by the addition of sodium methanolate (5 g, 92.59 mmol, 16.16 equiv) in several batches, while the temperature was maintained at reflux. The resulting solution was heated to reflux overnight. The reaction was then quenched by the addition of 50 mL of water/ice. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined and concentrated under vacuum. This resulted in 1.5 g (85%) of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.42-7.42 (1H, d, J=1.5 Hz), 6.83-6.86 (2H, d, J=8.1 Hz), 6.78-6.78 (1H, d, J=1.2 Hz), 6.48-6.51 (2H, d, J=8.4 Hz), 4.98 (2H, s), 4.02-4.06 (1H, m), 3.62-3.67 (1H, d, J=16.2 Hz), 3.43-3.48 (1H, d, J=15.9 Hz), 2.80-2.86 (1H, m), 2.37 (3H, s). MS (ES, m/z): 307 [M+H]+. Intermediate 30.8: diethyl 2-(chlorosulfonylamino)ethylphosphonate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of sulfuryl dichloride (1.1 g, 8.15 mmol, 1.47 equiv) in dichloromethane (10 mL). This was followed by the addition of a solution of diethyl 2-aminoethylphosphonate (intermediate 1.9) (1.0 g, 5.52 mmol, 1.00 equiv) and triethylamine (800 mg, 7.92 mmol, 1.43 equiv) in dichloromethane (20 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at 0° C. The reaction was then quenched by the addition of ice water. The organic layer was washed with saturated sodium chloride (20 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 0.5 g (crude) of the title compound as a colorless oil. Intermediate 30.9: diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed diethyl 2-(chlorosulfonylamino)ethylphosphonate (intermediate 30.8) (670 mg, 2.40 mmol, 1.47 equiv), 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (500 mg, 1.63 mmol, 1.00 equiv), N-ethyl-N-isopropylpropan-2-amine (400 mg, 3.10 mmol, 1.91 equiv) in acetonitrile (20 mL). The resulting solution was stirred for 3 h at 60° C. The resulting mixture was concentrated under vacuum and the residue was applied to a silica gel column and eluted with dichloromethane/methanol (20:1). This resulted in 150 mg (16%) of the title compound as a light yellow solid. Compound 30: 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl 2-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonate (100 mg, 0.18 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (275 mg, 1.80 mmol, 9.89 equiv). The resulting solution was stirred overnight at 39° C. The resulting mixture was concentrated under vacuum and the residue was dissolved in dichloromethane (5 mL). This was followed by the addition of a solution of sodium hydroxide (14.5 mg, 0.36 mmol, 2.00 equiv) in methanol (0.2 mL) dropwise with stirring. The solids were collected by filtration and dried under reduced pressure. This gave 40 mg (40%) of a sodium salt of the title compound as a white solid. 1H-NMR (300 MHz, d6-DMSO, ppm): δ 9.78 (1H, brs), 7.54 (1H, s), 7.47 (1H, brs), 7.09-7.17 (4H, m), 6.82 (1H, s), 4.31 (1H, brs), 3.88 (2H, brs), 3.13 (1H, brs), 3.04 (2H, brs), 2.90 (1H, brs), 2.58 (3H, s), 1.65-1.77 (2H, m). MS (m/z): 494 [M+H]+. Example 31 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Intermediate 31.1: 2-bromo-1-(3-nitrophenyl)ethanone Into a 500-mL 3-necked round-bottom flask, was placed a solution of 1-(3-nitrophenyl)ethanone (50 g, 303.03 mmol, 1.00 equiv) in acetic acid (300 mL), Br2 (53.5 g, 331.6 mmol, 1.00 equiv). The resulting solution was stirred for 2 h at 60° C. in an oil bath. The reaction was then quenched by the addition of ice and the solids were collected by filtration. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. This resulted in 25 g (34%) of 2-bromo-1-(3-nitrophenyl)ethanone as a white solid. Intermediate 31.2: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (2 g, 8.23 mmol, 1.00 equiv), triethylamine (3.4 g, 4.00 equiv), (2,4-dichlorophenyl)-N-methylmethanamine (1.9 g, 10.05 mmol, 1.20 equiv), 1,4-dioxane (50 mL). The resulting solution was stirred for 2 h at room temperature at which time it was judged to be complete by LCMS. The mixture was concentrated under vacuum and the residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:100˜1:50). This resulted in 1.5 g (50%) of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone as a yellow solid. Intermediate 31.3: 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanone (28 g, 1.00 equiv, Crude) in methanol (280 mL), NaBH4 (6.38 mg, 0.17 mmol, 2.00 equiv). The resulting solution was stirred for 0.5 h at 0° C. The reaction progress was monitored by LCMS. The reaction was then quenched by the addition of 10 mL of acetone. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 14 g of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol as a yellow solid. Intermediate 31.4: 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-((2,4-dichlorobenzyl)(methyl)amino)-1-(3-nitrophenyl)ethanol (14 g, 39.55 mmol, 1.00 equiv) in dichloromethane (140 mL), sulfuric acid (140 mL). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting solution was diluted with 100 mL of ice. The pH value of the solution was adjusted to 8-9 with sat. sodium hydroxide (100 mL). The resulting solution was extracted with 2×500 mL of ethyl acetate and the organic layers combined and dried over sodium sulfate. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:10˜1:5). This resulted in 7 g (51%) of 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as a yellow solid. Intermediate 31.5: 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine Into a 100-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed 6,8-dichloro-2-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (200 mg, 0.59 mmol, 1.00 equiv), Fe (360 mg, 6.43 mmol, 8.60 equiv), hydrogen chloride (0.02 mL), ethanol (0.6 mL), water (0.2 mL). The resulting solution was stirred for 0.5 h at 80° C. in an oil bath. The solids were filtered out. The resulting mixture was concentrated under vacuum. This resulted in 0.2 g (crude) of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Compound 31: 2-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)ethylphosphonic acid Following the procedures outlined in Example 30, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, D2O+DMSO-d6, ppm): δ 7.67 (s, 1H), 7.33 (t, J=8.1 Hz, 1H), 7.07-7.15 (m, 2H), 6.81-6.86 (m, 2H), 4.39-4.66 (m, 3H), 3.75-3.81 (m, 1H), 3.45-3.50 (m, 1H), 3.02-3.08 (m, 5H), 1.67-1.78 (m, 2H). MS (ES, m/z): 494.0 [M+H]+. Example 32 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Compound 32: 3-(N-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.28 (s, 4H), 6.81 (s, 1H), 4.73-4.77 (m, 2H), 4.57 (m, 1H), 3.81 (s, 1H), 3.66 (s, 1H), 3.18 (s, 3H), 3.06 (s, 2H), 1.74 (m, 4H), 1.20-1.35 (m, 1H). MS (ES, m/z): 508 [M+H]+ Example 33 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Compound 33: 3-(N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)sulfamoylamino)propylphosphonic acid Following the procedures outlined in Example 30, substituting 3-diethyl 3-aminopropylphosphonate (intermediate 4.1) for diethyl 2-aminoethylphosphonate and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.54 (s, 1H), 7.38 (s, 1H), 7.25 (s, 1H), 7.11 (s, 1H), 6.94 (m, 2H), 4.66 (s, 1H), 4.55-4.51 (m, 1H), 3.89 (s, 1H), 3.65 (m, 2H), 3.18 (s, 3H), 3.05 (s, 2H), 1.71 (m, 4H). MS (ES, m/z): 508 [M+H]+. Example 34 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Intermediate 34.1: (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (200 mg, 0.65 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (1.2 mL). This was followed by the addition of bis(trichloromethyl) carbonate (200 mg, 0.67 mmol, 1.03 equiv) slowly with stirring at 0-5° C. The resulting solution was stirred for 1 h at room temperature. To this was added triethylamine (1 mL) followed by (S)-dimethyl 2-aminosuccinate (200 mg, 1.24 mmol, 1.91 equiv) in several batches. The resulting solution was stirred for 2 h at room temperature. The resulting mixture was concentrated under vacuum and the residue was applied onto a silica gel column and eltued with ethyl acetate/petroleum ether (1:10-1:5). This resulted in 50 mg (15%) of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate as yellow oil. Compound 34: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of (2S)-dimethyl 2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinate (100 mg, 0.20 mmol, 1.00 equiv) in methanol (5 mL), water (1 mL), sodium hydroxide (30 mg, 0.75 mmol, 3.71 equiv). The resulting solution was stirred for 3 h at room temperature and then concentrated under vacuum. The pH of the solution was adjusted to 3-4 with 1N hydrochloric acid. The solids were collected by filtration and the residue was lyophilized. This resulted in 16 mg (16%) of (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.98 (s, 1H), 7.66 (s, 1H), 7.38-7.44 (d, J=17.1 Hz, 2H), 7.12-7.15 (d, J=8.4 Hz, 2H), 6.78 (s, 1H), 6.60-6.63 (s, 1H), 4.48-4.54 (m, 4H), 3.63-3.66 (s, 2H), 3.01 (s, 1H), 2.51-2.84 (m, 2H). MS (ES, m/z): 466 [M+H]+. Example 35 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Compound 35: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)succinic acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO, ppm): δ 8.88 (s, 1H), 7.54 (s, 1H), 7.31-7.18 (m, 3H), 6.83-6.78 (m, 2H), 6.53-6.51 (m, 1H), 4.49-4.47 (m, 1H), 4.29 (m, 1H), 3.87 (m, 2H), 3.32 (m, 2H), 2.76-2.59 (m, 2H), 2.50 (s, 3H). MS 466 [M+H]+. Example 36 (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Compound 36: (2S)-2-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Following the procedures outlined in Example 34, substituting (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave the title compound. 1H-NMR (300 MHz, DMSO, ppm) δ 12.32 (s, 2H), 8.63 (s, 1H), 7.47 (s, 1H), 7.30-7.33 (d, J=8.1 Hz, 2H), 7.06-7.09 (d, J=5.4 Hz, 2H), 6.79 (s, 1H), 6.45-6.48 (d, J=8.1 Hz, 1H), 4.19-4.20 (s, 2H), 3.68 (s, 2H), 2.95 (s, 1H), 2.68 (s, 1H), 2.45 (s, 3H), 2.27-2.30 (s, 2H), 1.99-2.02 (s, 1H), 1.76-7.78 (s, 1H). MS (ES, m/z): 480 [M+H]+. Example 37 (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Compound 37: (2S)-2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)pentanedioic acid Following the procedures outlined in Example 34, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline and (S)-diethyl 2-aminopentanedioate for (S)-dimethyl 2-aminosuccinate gave, after purification by preparative HPLC, the title compound as a TFA salt. 1H-NMR (300 MHz, DMSO-d6, ppm): δ 8.74 (s, 1H), 7.67 (s, 1H), 7.42 (m, 1H), 7.27-7.25 (m, 2H), 6.79 (m, 2H), 6.52-6.49 (m, 1H), 4.63-4.58 (m, 1H), 4.44 (m, 2H), 4.20-4.16 (m, 1H), 3.72-3.64 (m, 2H), 2.99 (s, 3H), 2.34-2.27 (m, 2H), 2.01-1.97 (m, 2H), 1.82-1.77 (m, 2H). MS 480 [M+H]+. Example 38 (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Intermediate 38.1: 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 30.7) (300 mg, 0.98 mmol, 1.00 equiv) in dichloromethane (10 mL). This was followed by the addition of 4-nitrophenyl chloroformate (230 mg, 1.14 mmol, 1.20 equiv) in several batches at room temperature. The resulting solution was stirred for 3 h at room temperature. The solids were collected by filtration. This resulted in 0.3 g (65%) of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate as a yellow solid. Intermediate 38.2: diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-nitrophenyl 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (200 mg, 0.42 mmol, 1.00 equiv) in N,N-dimethylformamide (6 mL), a solution of diethyl aminomethylphosphonate (144 mg, 0.63 mmol, 1.50 equiv) in N,N-dimethylformamide (1 mL) and triethylamine (64 mg). The resulting solution was stirred overnight at room temperature. The reaction was then quenched by the addition of 10 mL of water. The resulting solution was extracted with 3×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 40 mg (17%) of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate as a solid. Compound 38: (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of diethyl (3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonate (40 mg, 0.08 mmol, 1.00 equiv) in dichloromethane (5 mL) and bromotrimethylsilane (0.15 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. To the above was added methanol (5 mL) and sodium hydroxide (5 mg). The resulting mixture was stirred 0.5 h at room temperature. The solids were collected by filtration and the residue was lyophilized. This resulted in 17.4 mg (42%) a sodium salt of the title compound as a yellow solid. 1H-NMR (300 MHz, CD3OD+DCl, ppm): δ 7.46-7.49 (m, 3H), 7.20-7.23 (d, J=8.7 Hz, 2H), 6.80 (s, 1H), 4.77-4.83 (d, J=15.9 Hz, 1H), 4.65-4.71 (m, 1H), 4.50-4.55 (d, J=16.2 Hz, 1H), 3.79-3.85 (m, 1H), 3.56-3.69 (m, 3H), 3.32 (s, 3H). MS (ES, m/z): 444 [M+H]+. Example 39 (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Compound 39: (3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)methylphosphonic acid Following the procedures outlined in Example 38, substituting 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline (intermediate 31.5) for 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline gave the title compound as a sodium salt. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.47 (s, 1H), 7.37 (m, 3H), 6.96 (m, 1H), 6.82 (s, 1H), 4.81 (m, 1H), 4.70 (m, 1H), 4.54 (m, 1H), 3.83 (m, 1H), 3.65 (m, 3H), 3.19 (s, 3H). Example 40 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic acid Intermediate 40.1: ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate Following the procedures outlined in Example 34, substituting ethyl 3-aminopropanoate for (S)-dimethyl 2-aminosuccinate gave the title compound as a yellow oil. Intermediate 40.2: 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid Into a 50-mL round-bottom flask, was placed a solution of ethyl 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoate (150 mg, 0.33 mmol, 1.00 equiv) in methanol (10 mL), water (2 mL) and sodium hydroxide (80 mg, 2.00 mmol). The resulting solution was stirred for 2 h at 25° C. and the resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7-8 with hydrogen chloride. The resulting solution was extracted with chloroform (3×10 ml) and the organic layers combined and dried over sodium sulfate. This resulted in 31.5 mg (22%) of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.56 (1H, s), 7.45 (1H, s), 7.29-7.32 (2H, d, J=8.1 Hz), 7.04-7.07 (2H, d, J=8.4 Hz), 6.79 (1H, s), 6.21 (1H, s), 4.16 (1H, m), 3.56-3.58 (2H, d, J=5.4 Hz), 3.27-3.29 (2H, d, J=6 Hz), 2.82-2.87 (1H, m), 2.59 (2H, s), 2.38-2.40 (4H, m). MS (ES, m/z): 422 [M+H]+. Intermediate 40.3: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propanoic acid (200 mg, 0.47 mmol, 1.00 equiv) in dichloromethane (20 mL), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (136 mg, 0.71 mmol, 1.50 equiv) and 4-dimethylaminopyridine (115 mg, 0.94 mmol, 1.99 equiv). This was followed by the addition of a solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (102 mg, 0.71 mmol, 1.49 equiv) in dichloromethane (2 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was washed with KHSO4 (2×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 240 mg (92%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea as a yellow solid. Intermediate 40.4: 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-oxopropyl)urea (150 mg, 0.27 mmol, 1.00 equiv) in dichloromethane (10 mL) and acetic acid (1 mL) Sodium borohydride (42 mg, 1.11 mmol, 4.04 equiv) was added and the resulting solution was stirred overnight at room temperature. The resulting mixture was washed with saturated aqueous sodium chloride (3×10 mL). The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 30 mg (21%) of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea as a yellow solid. Compound 40: 2-(3-(3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)ureido)propyl)malonic acid Into a 50-mL round-bottom flask, was placed a solution of 1-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propyl)urea (100 mg, 0.19 mmol, 1.00 equiv) in 2,2,2-trifluoroacetic acid (10 mL), and water (2 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with methanol:water (60%). The residue was lyophilized. This resulted in 36.3 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.55 (s, 1H), 7.64 (s, 1H), 7.39-7.42 (d, J=8.7 Hz, 2H), 7.09-7.12 (d, J=8.4 Hz, 2H), 6.79 (s, 1H), 6.23-6.27 (m, 1H), 4.33-4.50 (m, 3H), 3.62 (s, 1H), 3.19 (m, 1H), 3.08-3.10 (d, J=5.7 Hz, 2H), 2.94 (s, 3H), 1.70-1.77 (d, J=23.1 Hz, 2H), 1.41-1.46 (d, J=12 Hz, 2H). MS (ES, m/z): 494 [M+H]+. Example 41 N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 41.1 (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate To a solution of dry DMF (50 mL) under N2 was added 3,4,5-trifluorobenzaldehyde (4.26 g, 26.6 mmol) followed by ethyl 2-(triphenylphosphoranylidene)propionate (10.6 g, 29.3 mmol) in portions, keeping the solution at room temperature. After 1 hour, TLC (10% EtOAC in Hexanes) showed complete conversion, and the solvent was removed by rotary evaporation. The resulting material was brought up in 50 mL methyl t-butyl ether (MBTE) and the precipitate removed by filtration and washed with additional MBTE (3×50 mL). After concentration, the resulting filtrate was applied onto a silica gel column (25% EtOAc in hexanes) resulting in 6.0 g of the title compound (93%) as a white powder. Intermediate 41.2 (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate To a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (Intermediate 41.1, 6.0 g, 24.56 mmol) in dry DMF (25 mL) under N2 was added phenol (2.774 g, 29.5 mmol) and K2CO3 (10.2 g, 73.68 mmol). The resulting solution was brought to 120° C. and stirred for 3 hours at which point TLC indicated complete conversion. The solvent was removed by rotary evaporation and the resulting residue brought up in EtOAc (200 mL) and washed with water (2×200 mL), 1N NaOH (2×200 mL) and brine (200 mL). The organic layer was dried over Na2SO4 and concentrated to yield 6.94 g (89%) of the title compound as tan crystals. Intermediate 41.3 (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (1 g, 3.14 mmol) in DCM (3.14 mL) under N2 was added chlorosulfonic acid (0.419 mL, 6.28 mmol) dropwise. After 1 hour an additional 0.209 mL chlorosulfonic acid was added. After an additional hour the reaction mixture was quenched with ice-water and extracted into EtOAc (2×200 mL). The combined organic layers were dried briefly (<10 min) over Na2SO4 and concentrated to recover 1.283 g of the title compound (98%) as a yellow oil. Intermediate 41.4 N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 41.3) (104.3 mg, 0.25 mmol) in chloroform (0.5 mL) was added DIEA (0.0869 mL, 0.5 mmol) and a solution of butane-1,4-diamine (12.6 uL, 0.125 mmol) and DIEA (0.087 mL, 0.5 mmol) in chloroform (0.125 mL). After one hour the solvent was removed and the resulting residue brought up in EtOAc (40 mL), washed with water (2×40 mL), brine (40 mL) and dried over Na2SO4. Removing the solvent gave 118 mg of the title compound which was used without further purification. Intermediate 41.5: N,N′-(butane-1,4-diyl)bis[4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide] To a solution of Intermediate 41.4 (118 mg, 0.139 mmol) in MeOH (1.39 mL) was added a NaOH (0.3M in water, 0.278 mL, 0.835 mmol). The reaction was placed under N2 and heated at 60° C. for 30 minutes. After cooling the reaction mixture was diluted with water (20 mL), partitioned with EtOAc (20 mL) and acidified with HCl. After extracting with EtOAc (2×20 mL) the combined organic phases were dried over Na2SO4 and the solvent removed to give 40.7 mg of the title compound. Compound 41: N,N′-(butane-1,4-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (2 mL) was added to intermediate 41.5 (40.7 mg, 0.051 mmol) and was heated at 80° under N2. After 70 minutes, the solvent was removed in vacuo. The residue was brought up in toluene (2 mL) and the toluene was also removed in vacuo. The bis-acid chloride was dissolved in DME (0.5 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (7.8 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.80 (d, 4H), 7.44 (s, 2H), 7.30 (d, 4H), 7.11 (d, 4H), 2.80 (m, 4H), 2.18 (s, 6H), 1.44 (m, 4H). MS (m/z): 875.16 (M+H). Example 42 N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 42: N,N′-(1,4-phenylenebis(methylene))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide]) Following the procedures outlined in Example 41, compound 42 was made using 1,4-phenylenedimethanamine as the amine. Purification by preparative HPLC gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.87 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.06 (d, 6H), 7.04 (s, 2H), 4.02 (s, 4H), 2.19 (s, 6H). MS (m/z): 924.21 (M+H) Example 43 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 43.1 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide) To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (225 mg, 0.54 mmol) in DCM (3 mL) was added a solution of 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (38 mg, 0.26 mmol) and triethylamine (101 mg, 1.0 mmol) in DCM (2 mL) dropwise. After 30 minutes, 1N HCl was added (10 mL) and the reaction mixture was extracted with DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (262 mg). Intermediate 43.2 N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis((E)-4-(2,6-difluoro-4-(2-carboxypropenyl)phenoxy)benzenesulfonamide) A solution of the intermediate 43.1 (262 mg, 0.29 mmol) and 3N NaOH (0.6 mL, 1.8 mmol) in methanol (3 mL) was heated at 65° C. for 1 hour. The reaction mixture was cooled to RT and the methanol removed at reduced pressure and 1N HCl (3 mL, 3 mmol) was added to the residue. The product was extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (173 mg). Compound 43: N,N′-(2,2′-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Thionyl chloride (1 mL) was added to intermediate 43.2 (63 mg, 0.074 mmol) and was heated at 80°. After 2 hours, the solvent was removed in vacuo. The bis-acid chloride was dissolved in DME (1 mL) and added to guanidine free base (1.4 mmol, prepared as follows: To a slurry of guanidine hydrochloride (480 mg, 5.0 mmol) was added 25% NaOMe in MeOH (1.03 mL, 4.5 mmol). The mixture was stirred for 30 minutes and then filtered. A portion of the filtrate (0.40 mL) was concentrated to dryness.) in DME (1 mL). After 15 minutes, water (10 mL) was added and the mixture was extracted with EtOAc (3×25 mL). The organic layer was dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (20 mg) as the TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.83 (d, j=8.8 Hz, 4H), 7.43 (s, 2H), 7.30 (d, j=8.9 Hz, 4H), 7.11 (d, j=8.6 Hz, 4H), 3.42 (t, j=5.5 Hz, 8H), 3.03 (t, j=5.4 Hz, 4H), 2.17 (s, 6H). MS (m/z): 935.08 (M+H). Example 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 44.1: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (250 mg, 0.60 mmol) in DCM (3 mL) was added a solution of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (157 mg, 0.72 mmol) and triethylamine (72 mg, 0.72 mmol) in DCM (2 mL). After 15 minutes, water (10 mL) was added and the reaction mixture was extracted with DCM (2×25 mL). The combined organic layers were washed with water (10 mL), brine (10 mL), dried (Na2SO4) and concentrated. The crude material was purified by flash chromatography on silica gel eluting with 50% EtOAc in DCM to give the title compound (169 mg). Intermediate 44.2: (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (169 mg, 0.28 mmol) in THF (6 ml) and water (0.6 mL) under nitrogen was added trimethylphosphine (26 mg, 0.34 mmol). After stirring for 3 hours, the solvents were removed at reduced pressure and. The residue was dissolved in water (5 mL) and extracted with EtOAc (3×25 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (162 mg). Intermediate 44.3: N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] A solution of (E)-ethyl 3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 41.3) (71 mg, 0.17 mmol) in EtOAc (1 mL) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (84 mg, 0.15 mmol) and triethylamine (22 mg, 0.22 mmol) in DCM (1 mL) with stirring. After 30 minutes, water (10 mL) was added and the product extracted into DCM (3×15 mL). The combined organic layers were dried (Na2SO4) and concentrated to give the title compound (177 mg). Compound 44 N,N′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures outlined in Example 43, intermediate 44.3 was converted to the bis-guanidine and gave, after purification by preparative HPLC, the title compound (21 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.8 Hz, 4H), 7.44 (s, 2H), 7.30 (d, j=8.8 Hz, 4H), 7.10 (d, j=8.8 Hz, 4H), 3.54 (m, 4H), 3.48 (m, 4H), 3.43 (t, j=5.5 Hz, 4H), 3.04 (t, j=5.5 Hz, 4H), 2.17 (d, j=1.2 Hz, 6H). MS (m/z): 979.05 (M+H). Example 45 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 45: (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide A 4.3 M solution of guanidine free base in methanol was prepared. A 25% solution of NaOMe in MeOH (1.03 mL, 4.5 mmol) was added to guanidine hydrochloride (480 mg, 5.0 mmol), and the mixture was stirred for 30 minutes. The mixture was filtered (0.2μ, PTFE) to give the guanidine free base solution. A portion (0.3 mL, 1.3 mmol) was added to (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (74 mg, 0.13 mmol) with stirring. After 15 minutes, water (10 mL) was added and the product extracted with DCM (4×20 mL). The combined organic layers were dried (Na2SO4) and concentrated. The crude product was purified by preparative HPLC to give the title compound (34 mg) as a TFA salt. 1H-NMR (400 mHz, d6-DMSO) δ 11.14 (s, 1H), 8.38 (br s, 4H), 7.78 (d, j=9.0 Hz, 2H), 7.5 (m, 3H), 7.45 (d, j=9.1, 2H), 7.42 (s, 1H), 7.19 (d, j=8.8 Hz, 2H), 3.55 (m, 6H), 3.44 (m, 4H), 3.36 (m, 2H), 2.95 (m, 2H), 2.87 (m, 2H), 2.11 (s, 3H). MS (m/z): 586.11 (M+H). Example 46 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Intermediate 46.1 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[4-(2,6-difluoro-4-(2-carboethoxypropenyl)phenoxy)benzenesulfonamide] Carbonyldiimidisole (16.2 mg, 0.10 mmol) was added to a solution of (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (intermediate 44.2) (125 mg, 0.22 mmol) in DMF (2 mL) and stirred for 23 hours at which time the solvent was removed under vacuum. The residue was dissolved in EtOAc, washed with water (4×10 mL), dried (Na2SO4) and concentrated to give the title compound (132 mg). Compound 46: N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] A solution of 4.4 M guanidine in methanol (Example 45) (0.5 mL, 2.2 mmol) was added to a solution of intermediate 46.1 (65 mg, 0.055 mmol) in DMF, and stirred for 4 hours. The reaction was quenched with 50% aqueous AcOH, and then concentrated to dryness. The residue was purified by preparative HPLC to give the title compound (35 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (d, j=8.2 Hz, 4H), 7.43 (d, j=1.4 Hz, 2H), 7.30 (d, j=9.0 Hz, 4H), 7.11 (d, j=9.0 Hz, 4H), 3.57 (m, 12H), 3.46 (m, 12H), 3.26 (t, J=5.4 Hz, 4H), 3.04 (t, j=5.4 Hz, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1197.07 (M+H). Example 47 N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12,21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 47: N,N′-(13,20 dioxo-3,6,9,24,27,30-hexaoxa-12,21-diazadotricontane-1,32-diyl)bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in Example 46, substituting subaric acid bis(N-hydroxysuccinimide ester) for carbonyldiimidazole gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.84 (m, 4H), 7.43 (m, 2H), 7.30 (m, 4H), 7.11 (m, 4H), 3.58 (m, 12H), 3.50 (m, 8H), 3.32 (m, 4H), 3.05 (t, j=5.4 Hz, 4H), 2.18 (d, j=1.6 Hz, 6H), 2.15 (m, 4H), 1.56 (m, 4H), 1.29 (m, 4H). MS (m/z): 1309.12 (M+H). Example 48 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 48.1: (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide To (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (250 mg, 0.42 mmol) was added 4.4 M guanidine in in methanol (as prepared in example 45) (1.0 mL, 4.4 mmol) and the reaction was stirred at RT. After 30 minutes, water (10 mL) was added, and the mixture was extracted with DCM (4×25 mL). The aqueous phase was adjusted to pH 7, and extracted with DCM (2×25 mL). The combined organic extracts were dried (Na2SO4) and concentrated to give the title compound (245 mg). Compound 48: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide To a mixture of (E)-3-(4-(4-(N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide (70 mg, 0.11 mmol) and propargyl alcohol (6.4 mg, 0.11 mmol) in t-butanol (0.22 mL) and water (0.22 mL) was added 1 M sodium ascorbate (11 μL, 0.011 mmol) and 0.3 M copper sulfate (3.6 μL, 0.0011 mmol) and the reaction was stirred at RT. After 14 hours, the product was purified by preparative HPLC to give the title compound (22 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.93 (s, 1H), 7.84 (m, 2H), 7.44 (s, 1H), 7.30 (m, 2H), 7.11 (m, 2H), 4.64 (d, j=0.6 Hz, 2H), 4.55 (t, j=5.0 Hz, 2H), 3.86 (t, j=5.0 Hz, 2H), 3.57 (m, 4H), 3.52-3.42 (m, 6H), 3.03 (t, j=5.4 Hz, 2H), 2.18 (d, j=1.3 Hz, 3H). MS (m/z): 668.14 (M+H). Example 49 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Compound 49: N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis[(E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide] Following the procedures in example 48, substituting propargyl ether for propargyl alcohol gave the title compound as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 8.00 (s, 2H), 7.83 (m, 4H), 7.43 (s, 2H), 7.30 (m, 4H), 7.10 (m, 4H), 4.61 (s, 4H), 4.55 (m, 4H), 3.86 (m, 4H), 3.58-3.50 (m, 8H), 3.50-3.40 (m, 12H), 3.01 (m, 4H), 2.17 (d, j=1.3 Hz, 6H). MS (m/z): 1317.09 (M+H). Example 50 N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) Intermediate 50.1: 2,2′-(piperazine-1,4-diyl)diacetonitrile To a solution of piperazine (6 g, 69.77 mmol, 1.00 equiv) in acetonitrile (150 mL) was added potassium carbonate (19.2 g, 139.13 mmol, 2.00 equiv) and the mixture was stirred. To this was added dropwise a solution of 2-bromoacetonitrile (16.7 g, 140.34 mmol, 2.00 equiv) in acetonitrile (100 mL) and the suspension was stirred for 4 h at room temperature. The solids were filtered out and the resulting solution was concentrated under vacuum. The crude product was purified by re-crystallization from methanol resulting in 7.75 g (68%) of Intermediate 50.1 as a white solid. Intermediate 50.2: 2,2′-(piperazine-1,4-diyl)diethanamine To a suspension of lithium aluminum hydride (LiAlH4; 700 mg, 18.42 mmol, 4.30 equiv) in tetrahydrofuran (40 mL) cooled to 0° C. was added dropwise a solution of Intermediate 50.1 (700 mg, 4.27 mmol, 1.00 equiv) in tetrahydrofuran (10 mL). The mixture was stirred for 15 minutes at 0° C. and heated to reflux for 3 h. The reaction was cooled, the pH adjusted to 8-9 with potassium hydroxide (50%), and the solids filtered out. The resulting mixture was concentrated under vacuum and the resulting solids washed with hexane to afford 0.3 g (41%) of Intermediate 50.2 as a yellow solid. Intermediate 50.3: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-(benzyloxy)benzenesulfonamide) To Intermediate 50.2 (500 mg, 2.91 mmol, 1.00 equiv) in dichloromethane (10 mL) was added triethylamine (1.46 g, 0.01 mmol, 2.00 equiv) and 4-(benzyloxy)benzene-1-sulfonyl chloride (2.0 g, 0.01 mmol, 2.40 equiv) and the resulting solution was stirred for 2 h at room temperature. The reaction was diluted with dichloromethane, washed with 3×10 mL of water, dried over sodium sulfate then filtered and concentrated under vacuum to afford 0.9 g (47%) of Intermediate 50.3 as a yellow solid. Intermediate 50.4: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-hydroxybenzenesulfonamide) To intermediate 50.3 (3 g, 4.52 mmol, 1.00 equiv) in N,N-dimethylformamide (500 mL) and methanol (100 mL) was added Palladium on carbon (1 g) and the suspension stirred under hydrogen gas for 4 h at room temperature. The solids were filtered out and the resulting mixture was concentrated under vacuum to afford 1.5 g (69%) of Intermediate 50.4 as a gray solid. Intermediate 50.5: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis((E)-ethyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate) To Intermediate 50.4 (1 g, 2.06 mmol, 1.00 equiv) in N,N-dimethylformamide (30 mL) was added Cs2CO3 (1.45 g, 4.45 mmol, 2.16 equiv) and the resulting suspension stirred for 2 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (1.1 g, 4.51 mmol, 2.19 equiv) in N,N-dimethylformamide (10 mL) dropwise with stirring. The reaction was stirred for 0.5 h at room temperature and then overnight at 90° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and then eluted with dichloromethane:methanol (100:1) to afford 390 mg (20%) of Intermediate 50.5 as a yellow solid. Intermediate 50.6: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic acid) To Intermediate 50.5 (170 mg, 0.16 mmol, 1.00 equiv, 90%) in 1:1 methanol/tetrahydrofuran (20 mL) was added lithium hydroxide (4 equiv, 30 mg) and the reaction was stirred for 2 h at 27° C. The pH value of the solution was adjusted to 1-2 with aqueous hydrochloric acid (6 mol/L) and the solids were collected by filtration. The residue was washed with ethyl acetate (2×5 mL) and then dried under vacuum to afford 150 mg (94%) of Intermediate 50.6 as a white solid. Compound 50: N,N′-(2,2′-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))di-((E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylamide) To a solution of Intermediate 50.6 (100 mg, 0.09 mmol, 1.00 equiv, 80%) in tetrahydrofuran (30 mL) was added carbonyl diimidazole (CDI; 58 mg, 0.36 mmol, 4.00 equiv) and the resulting solution was stirred for 1 h at 25° C. To this was added guanidine (2M in methanol, 10 ml) and the resulting solution was stirred for an additional 14 h at 30° C. The resulting mixture was concentrated under vacuum, the residue was applied onto a silica gel column and eluted with dichloromethane:methanol (10:1). The crude product (230 mg) was then purified by reverse-phase (C18) preparative-HPLC to afford 16 mg (17%) of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.89-7.92 (4H, d, J=8.7 Hz), 7.50 (2H, s), 7.34-7.36 (4H, d, J=8.7 Hz), 7.16-7.19 (4H, d, J=8.7 Hz), 2.88-3.16 (16H, m), 2.20 (6H, s); MS (ES, m/z): 959 [M+H]+ Example 51 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic acid Intermediate 51.1: (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylic acid To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (intermediate 41.2) (900 mg, 2.83 mmol, 1.00 equiv) in methanol (20 mL) was added methanolic 2M LiOH (50 mL) and the resulting solution stirred for 2 h. The resulting mixture was concentrated under vacuum, the pH value of the solution was adjusted to 5-6 with aqueous HCl (6 mol/L) and the mixture was extracted with 3×20 mL of ethyl acetate. The organic layers were combined, washed with 2×10 mL of sodium chloride (sat.) and then dried over anhydrous sodium sulfate. The solids were filtered out and the solution was concentrated to afford 0.7 g (85%) of Intermediate 51.1 as a white solid. Intermediate 51.2: (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To Intermediate 51.1 (1 g, 3.14 mmol, 1.00 equiv) in dichloromethane (15 mL) at 0-5° C. was added dropwise a solution of sulfurochloridic acid (8.5 g, 73.28 mmol, 23.00 equiv) in dichloromethane (5 mL). The reaction was stirred overnight at 25° C. in an oil bath, and then quenched by the addition of 200 mL of water/ice. The mixture was extracted with 4×50 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate to afford 1.1 g (90%) of Intermediate 51.2 as a yellow solid. Intermediate 51.3: (E)-3-(4-(4-(N-(4-(diethoxyphosphoryl)phenyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To diethyl 4-aminophenylphosphonate (intermediate 2.2) (150 mg, 0.66 mmol, 1.00 equiv) in pyridine (3 mL) was added Intermediate 51.2 (300 mg, 0.77 mmol, 1.22 equiv) in several portions. The mixture was stirred for 3 h at 30° C. and then concentrated, the pH value of the solution adjusted to 3 with aqueous HCl (1 mol/L) and the resulting mixture extracted with 3×30 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and eluted with dichloromethane:methanol (50:1) to afford 100 mg (26%) of Intermediate 51.3 as a yellowish solid. Intermediate 51.4: (E)-diethyl 4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonate To Intermediate 51.3 (150 mg, 0.26 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added CDI (120 mg, 0.74 mmol, 1.40 equiv) and the reaction stirred for 2 h at RT. To this was added guanidine (1M in DMF; 0.8 ml) and the reaction was stirred overnight at 30° C. The resulting mixture was concentrated under vacuum and the crude product was purified by reverse phase (C18) Prep-HPLC to afford 40 mg (25%) of Intermediate 51.4 as a White solid. Compound 51: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)phenylphosphonic acid To Intermediate 51.4 (40 mg, 0.06 mmol, 1.00 equiv) in tetrahydrofuran (2 mL) was added bromotrimethylsilane (15 mg, 0.09 mmol, 1.37 equiv) dropwise with stirring and the resulting solution was stirred at 40° C. overnight. The resulting mixture was concentrated, diluted with methanol (2 mL) and then concentrated under vacuum. This operation was repeated four times. The crude product (75 mg) was purified by reverse phase (C18) Prep-HPLC to afford 12.5 mg of a formate salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm): 10.54 (s, 1H), 7.82-7.79 (d, J=8.4 Hz, 2H), 7.52-7.40 (m, 5H), 7.18-7.10 (m, 4H), 2.08 (s, 3H); 31P-NMR (400 MHz, DMSO, ppm): 11.29; MS (ES, m/z): 567 [M+H]+ Example 52 (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic acid Intermediate 52.1: diethyl 4-((4-(benzyloxy)phenylsulfonamido)methyl)benzylphosphonate To 4-diethyl 4-(aminomethyl)benzylphosphonate (intermediate 6.1) (60 mg, 0.23 mmol, 1.00 equiv) in dichloromethane (10 mL), triethylamine (47 mg, 0.47 mmol, 2.00 equiv) was added dropwise a solution of 4-(benzyloxy)benzene-1-sulfonyl chloride (72 mg, 0.26 mmol, 1.10 equiv) in dichloromethane (5 mL) and the resulting solution was stirred for 1 h at 25° C. The reaction mixture was concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1). The isolated product was washed with 2×50 mL of n-hexane resulting in 50 mg (43%) of Intermediate 52.1 as a white solid. Intermediate 52.2: diethyl 4-((4-hydroxyphenylsulfonamido)methyl)benzylphosphonate To Intermediate 52.1 (1.2 g, 2.39 mmol, 1.00 equiv) in methanol (20 mL) in N,N-dimethylformamide (5 mL) was added Palladium on carbon (0.9 g) and the suspension stirred overnight at 30° C. under a hydrogen atmosphere. The reaction was filtered and concentrated under vacuum to afford 1 g (91%) of Intermediate 52.2 as brown oil. Intermediate 52.3: (E)-ethyl 3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)-sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate To Intermediate 52.2 (100 mg, 0.24 mmol, 1.00 equiv) in N,N-dimethylformamide (10 mL) was added Cs2CO3 (160 mg, 0.49 mmol, 2.10 equiv) and the mixture was stirred for 1.5 h at room temperature. To this was added a solution of (E)-ethyl 2-methyl-3-(3,4,5-trifluorophenyl)acrylate (intermediate 41.1) (60 mg, 0.25 mmol, 1.10 equiv) in N,N-dimethylformamide (5 mL) and the reaction was stirred overnight at 90° C. The solids were filtered out and the filtrate was concentrated under vacuum, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (200:1) to afford 50 mg (23%) of Intermediate 52.3 as yellow oil. Intermediate 52.4: (E)-3-(4-(4-(N-(4-((diethoxyphosphoryl)methyl)benzyl)sulfamoyl)-phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid To Intermediate 52.3 (700 mg, 1.10 mmol, 1.00 equiv) in tetrahydrofuran (20 mL) and water (20 mL) was added LiOH (700 mg, 29.17 mmol, 30.00 equiv) and the resulting solution was stirred for 1 h at 25° C. The reaction was concentrated, the pH value of the solution was adjusted to 4-5 with aqueous HCl (2 mol/L) and the mixture was extracted with 2×150 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:1-2:1) to afford 250 mg (35%) of Intermediate 52.4 as a white solid. Compound 52: (E)-4-((4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methyl)benzylphosphonic acid Compound 52 was prepared from Intermediate 52.4 using the procedures described under Example 51, except preparative HPLC was not required, affording 84 mg (89%) of a white solid.; 1H-NMR (300 MHz, CD3OD, ppm): 7.83-7.80 (d, J=8.7 Hz, 2H), 7.52 (s, 1H), 7.38-7.36 (d, J=8.7 Hz, 2H), 7.23-7.20 (m, 2H), 7.17-7.09 (m, 4H), 4.06 (s, 2H), 3.11 (s, 1H), 3.04 (s, 1H), 2.23-2.23 (s, 3H). MS (ES, m/z): 595 [M+H]+. Example 53 (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic acid Compound 53: (E)-4-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)benzylphosphonic acid Compound 53 was prepared from diethyl 4-aminobenzylphosphonate (intermediate 3.2) using the procedures described in Example 52 except the final product was purified by preparative HPLC. 1H-NMR (300 MHz, CD3OD, ppm): 7.77-7.74 (d, J=8.7 Hz, 2H), 7.46 (s, 1H), 7.33-7.31 (d, J=8.7 Hz, 2H), 7.21-7.19 (m, 2H), 7.06-7.11 (m, 4H), 3.04-2.97 (d, J=21.6 Hz, 2H), 2.19 (s, 3H); 31P-NMR (400 MHz, CD3OD, ppm): 22.49. MS (ES, m/z): 581 [M+H]+. Example 54 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic acid Compound 54: (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propylphosphonic acid Compound 54 was prepared from diethyl 3-aminopropylphosphonate (intermediate 4.1) using the procedures described under Example 51. 1H-NMR (400 MHz, DMSO, ppm): 7.81-7.78 (d, J=8.4 Hz, 2H), 7.57 (s, 1H), 7.42-7.39 (d, J=9.3 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 2.75-2.77 (q, 2H), 2.10 (s, 3H), 1.59-1.42 (m, 4H). MS (ES, m/z): 533 [M+H]+ Example 55 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic acid Compound 55: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethylphosphonic acid Compound 55 was prepared from diethyl 2-aminoethylphosphonate (intermediate 1.9) using the procedures described under Example 51, except purification of the final product by preparative HPLC was not required.; 1H-NMR (400 MHz, DMSO, ppm): 11.02 (s, 1H), 8.28 (s, 4H), 7.79-7.82 (d, J=9.2 Hz, 2H), 7.62-7.65 (t, 1H), 7.54-7.49 (m, 3H), 7.26-7.24 (d, J=8.8 Hz, 2H), 3.42-3.58 (m, 2H), 2.15 (s, 3H), 1.73-1.65 (m, 2H); 31P-NMR (400 MHz, DMSO, ppm): 21.36. MS (ES, m/z): 519 [M+H]+ Example 56 (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic acid Compound 56: (E)-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)methylphosphonic acid Compound 56 was prepared from diethyl aminomethylphosphonate (intermediate 5.3) using the procedures described under Example 51, except purification of the final product by Flash-Prep-HPLC with CH3CN:water (10:100). 1H-NMR (300 MHz, DMSO, ppm): δ 7.84-7.81 (d, J=8.1 Hz, 2H), 7.57 (s, 1H), 7.45-7.42 (d, J=9.3 Hz, 3H), 7.18-7.15 (d, J=8.4 Hz, 2H), 3.04-3.01 (m, 2H), 2.08 (s, 3H). MS (ES, m/z): 505 [M+H]+. Example 57 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Compound 57: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)-N-(phosphonomethyl)phenyl-sulfonamido)acetic acid Compound 57 was prepared from ethyl 2-((diethoxyphosphoryl)methylamino)acetate (intermediate 8.2) using the procedures described under Example 51. 1H-NMR (300 MHz, DMSO, ppm): δ 8.33 (s, 4H), 7.84-7.81 (d, J=8.1 Hz, 2H), 7.52-7.50 (d, J=7.8 Hz, 2H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.11 (s, 2H), 2.14 (s, 3H); MS (ES, m/z): 563 [M+H]+. Example 58 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.1: (E)-3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylic acid (E)-3-(4-(4-(chlorosulfonyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylic acid (Intermediate 51.2) was converted to intermediate 58.1 using procedures outlined in Example 58, with aqueous ammonia as the amine. The title compound was obtained as a yellow solid. Intermediate 58.2: (E)-methyl 3-(3,5-difluoro-4-(4-sulfamoylphenoxy)phenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.1 (2 g, 5.42 mmol, 1.00 equiv) in methanol (60 mL). This was followed by the addition of thionyl chloride (2.5 g, 21.19 mmol, 4.00 equiv) dropwise with stirring at 0° C. The resulting solution was stirred for 3 h at 50° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 7 with ammonia (2 mol/L). The resulting solution was extracted with 10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (30:1-1:1). This resulted in 2.1 g (97%) of the title compound as a white solid. Intermediate 58.3: (E)-methyl 3-(4-(4-(N-(ethoxycarbonyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Into a 50-mL round-bottom flask, was placed a solution of intermediate 58.2 (280 mg, 0.73 mmol, 1.00 equiv) in acetone (20 mL). This was followed by the addition of potassium carbonate (200 mg, 1.45 mmol, 2.00 equiv). The mixture was stirred for 3 h at room temperature. To this was added ethyl chloroformate (90 mg, 0.83 mmol, 1.20 equiv). The resulting solution was stirred for 6 h at 65° C. The resulting mixture was concentrated under vacuum. The pH value of the solution was adjusted to 2-3 with hydrogen chloride (1 mol/L). The resulting solution was extracted with 2×50 ml of ethyl acetate and the organic layers combined. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (72%) of the title compound as yellow oil. Intermediate 58.4: (E)-methyl 3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)-sulfamoyl)phenoxy)phenyl)-2-methylacrylate Into a 100-mL round-bottom flask, was placed a solution of intermediate 58.3 (300 mg, 0.66 mmol, 1.00 equiv) in toluene (20 mL), 2-methoxyethanamine (100 mg, 1.33 mmol, 1.10 equiv). The resulting solution was stirred for 1 h at 110° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with petroleum ether/ethyl acetate (1:1). This resulted in 0.3 g (92%) of the title compound as a yellow solid. Compound 58: (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-methoxyethylcarbamoyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Intermediate 58.4 was converted to compound 58 using the procedures described under Example 52. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (300 MHz, DMSO, ppm): δ10.62 (s, 1H), 8.33 (s, 3H), 7.94-7.91 (d, J=8.7 Hz, 2H), 7.55-7.52 (d, J=9 Hz, 2H), 7.45 (s, 1H), 7.26-7.22 (d, J=9 Hz, 2H), 6.55 (s, 1H), 3.37-3.27 (m, 2H), 3.21 (s, 3H), 3.15-3.12 (m, 2H), 2.16 (s, 3H). MS (ES, m/z): 512 [M+H]+. Example 59 (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic acid Intermediate 59.1: (E)-di-tert-butyl 2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinate Intermediate 59.1 was prepared from di-tert-butyl 2-aminosuccinate using the procedures described under Example 51. Compound 59: (E)-2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)succinic acid Into a 50-mL round-bottom flask, was placed a solution of intermediate 59.1 (100 mg, 0.16 mmol, 1.00 equiv) in tetrahydrofuran (5 mL). This was followed by the addition of 2,2,2-trifluoroacetic acid (10 mL) dropwise with stirring. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was concentrated under vacuum. This resulted in 63.6 mg (64%) of a TFA salt of the title compound as a light yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 8.26 (s, 4H), 7.82-7.79 (d, J=8.7 Hz, 2H), 7.49-7.45 (m, 3H), 7.19-7.16 (d, J=8.4 Hz, 2H), 4.00-3.96 (m, 1H), 2.65-2.60 (m, 1H), 2.48-2.41 (m, 1H), 2.13 (s, 3H). MS (ES, m/z): 527 [M+H]+. Example 60 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Intermediate 60.1: tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed copper(I) iodide (1.0 g, 5.26 mmol, 0.20 equiv), L-proline (930 mg, 8.09 mmol, 0.30 equiv) in DMSO (50 mL). The resulting solution was stirred for 15 min at room temperature. Then, tert-butyl piperazine-1-carboxylate (5 g, 26.88 mmol, 1.00 equiv), 1,3-dibromobenzene (9.5 g, 40.25 mmol, 1.50 equiv), potassium carbonate (7.4 g, 53.62 mmol, 1.99 equiv) was added. The resulting solution was stirred overnight at 90° C. The reaction was then quenched by the addition of 100 mL of water. The resulting solution was extracted with 2×100 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 2.9 g of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate as a white solid. Intermediate 60.2: 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 4-(3-bromophenyl)piperazine-1-carboxylate (3.8 g, 11.14 mmol, 1.00 equiv) in toluene/tetrahydrofuran=1:1 (40 mL). This was followed by the addition of n-BuLi (4.9 mL, 2.5M/L) dropwise with stirring at −70° C. The resulting solution was stirred for 30 min at −70° C. To this was added triisopropyl borate (2.5 g, 13.30 mmol, 1.19 equiv) dropwise with stirring at −70° C. The mixture was warmed to 0° C., the reaction was then quenched by the addition of 13 mL of saturated ammonium chloride and 3.4 mL of water. Phosphoric acid (85 wt %, 1.5 g, 1.2 equiv) was added and the mixture was stirred for 30 min. The organic layer was separated and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was dissolved in 20 mL of toluene. The product was precipitated by the addition of 80 mL of heptane. The solids were washed with 20 mL of heptane and collected by filtration. This resulted in 2.9 g (85%) of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid as a white solid. Intermediate 60.3: 6-chloroquinazoline-2,4(1H,3H)-dione Into a 500-mL 3-necked round-bottom flask, was placed a solution of 2-amino-5-chlorobenzoic acid (10 g, 58.48 mmol, 1.00 equiv) in water (100 mL), acetic acid (8 g, 133.33 mmol, 2.24 equiv). This was followed by the addition of NaOCN (8.2 g, 126.15 mmol, 2.13 equiv). The mixture was stirred for 30 mins at 30° C. To this was added sodium hydroxide (86 g, 2.15 mol, 37.00 equiv). The resulting solution was stirred overnight at 30° C. The solids were collected by filtration. The residue was dissolved in water. The pH value of the solution was adjusted to 7 with hydrogen chloride (12 mol/L). The solids were collected by filtration. This resulted in 5 g (44%) of 6-chloroquinazoline-2,4(1H,3H)-dione as a white solid. Intermediate 60.4: 2,4,6-trichloroquinazoline Into a 50-mL round-bottom flask, was placed a solution of 6-chloroquinazoline-2,4(1H,3H)-dione (2.2 g, 11.22 mmol, 1.00 equiv) in 1,4-dioxane (20 mL), phosphoryl trichloride (17 g, 111.84 mmol, 10.00 equiv). The resulting solution was stirred overnight at 120° C. in an oil bath. The resulting mixture was concentrated under vacuum. The reaction was then quenched by the addition of 200 mL of water. The resulting solution was extracted with 3×200 mL of ethyl acetate and the organic layers combined. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:50). This resulted in 1.8 g (69%) of 2,4,6-trichloroquinazoline as a white solid. Intermediate 60.5: tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(4-(tert-butoxycarbonyl)piperazin-1-yl)phenylboronic acid (intermediate 60.2) (960 mg, 3.14 mmol, 1.00 equiv), 2,4,6-trichloroquinazoline (800 mg, 3.43 mmol, 1.09 equiv), PdCl2(dppf). CH2Cl2 (130 mg, 0.16 mmol, 0.05 equiv), Potassium Carbonate (860 mg, 6.23 mmol, 1.99 equiv) in N,N-dimethylformamide (30 mL). The resulting solution was stirred for 3 h at 85° C. The reaction was then quenched by the addition of 50 mL of saturated brine. The resulting solution was extracted with 2×30 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:6). This resulted in 0.45 g (31%) of tert-butyl 4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazine-1-carboxylate as a yellow solid. Intermediate 60.6: 2,6-dichloro-4-(3-(piperazin-1-yl)phenyl)quinazoline 2,2,2-trifluoroacetate To intermediate 60.5 (100 mg, 0.22 mmol, 1.00 equiv) was added dichloromethane (10 mL) and 2,2,2-trifluoroacetic acid (124 mg, 1.09 mmol, 5.00 equiv) and the resulting solution was stirred for 3 h at 40° C. The reaction was then concentrated under vacuum to afford 70 mg of Intermediate 60.6 as yellow solid. Intermediate 60.7: tert-butyl (4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.6 (70 mg, 0.15 mmol, 1.00 equiv) in dichloromethane (10 mL) was added N-tert-butoxycarbonyl-N′-tert-butoxycarbonyl-N″-trifluoromethanesulfonylguanidine (91 mg, 0.23 mmol, 1.57 equiv) and triethylamine (38 mg, 0.38 mmol, 2.54 equiv) and the resulting solution was stirred for 3 h at 40° C. The mixture was then concentrated under vacuum, the residue applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:8) to afford 70 mg (77%) of Intermediate 60.7 as a yellow solid. Intermediate 60.8: tert-butyl (4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)methanediylidenedicarbamate To Intermediate 60.7 (70 mg, 0.12 mmol, 1.00 equiv) in NMP (1.5 mL) was added guanidine (0.24 mL, 2.00 equiv, 1 mol/L) and 1,4-diaza-bicyclo[2.2.2]octane (26 mg, 0.23 mmol, 1.99 equiv) and the resulting solution stirred for 1.5 h at 25° C. The reaction was quenched by the addition of 20 mL of water and the resulting solution was extracted with 2×20 mL of ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, concentrated, the residue applied onto a silica gel column and eluted with dichloromethane/methanol (5:1) to afford 30 mg (41%) of Intermediate 60.8 as a yellow solid. Compound 60: 4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide To Intermediate 60.8 (30 mg, 0.05 mmol, 1.00 equiv) in dichloromethane (5 mL) was added 2,2,2-trifluoroacetic acid (0.2 mL) and the resulting solution stirred for 6 h at 30° C. The mixture was then concentrated under vacuum and the residue lyophilized to afford 20 mg (75%) of a TFA salt of the title compound as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): 7.97-8.08 (m, 3H), 7.54-7.59 (m, 1H), 7.28-7.39 (m, 3H), 3.71 (d, J=4.8 Hz, 4H), 3.44 (d, J=4.8 Hz, 4H). MS (ES, m/z): 424.0 [M+H]+. Example 61 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Intermediate 61.1: 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride Following the procedures outlined in example 60, substituting 1,4-dibromobenzene for 1,3-dibromobenzene, 2,6-dichloro-4-(4-(piperazin-1-yl)phenyl)quinazoline hydrochloride was obtained as a red solid. Intermediate 61.2: methyl 2-(4-(4-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)acetate To methyl 2-bromoacetate (116 mg, 0.76 mmol, 3.00 equiv) in N,N-dimethylformamide (10 mL) was added potassium carbonate (140 mg, 1.01 mmol, 4.00 equiv) followed by the portion-wise addition of Intermediate 61.1 (100 mg, 0.25 mmol, 1.00 equiv) and the reaction was stirred for 4 h at 30° C. The mixture was concentrated under vacuum and the residue applied onto a silica gel column, eluting with ethyl acetate/petroleum ether (1:5) to afford 60 mg (55%) of Intermediate 61.2 as a yellow solid. Intermediate 61.3: methyl 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetate To Intermediate 61.2 (60 mg, 0.14 mmol, 1.00 equiv) in NMP (5 mL) was added 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 15 mg, 0.13 mmol, 1.00 equiv), guanidine (0.3 mL of a 1M solution in NMP, 2.00 equiv) and the resulting solution was stirred for 2 h at 30° C. The reaction was diluted with 10 mL of water, extracted with 4×10 mL of ethyl acetate and the organic layers combined and dried over anhydrous sodium sulfate and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with dichloromethane/methanol (50:1-20:1) to afford 30 mg (47%) of Intermediate 61.3 as a yellow solid. Compound 61: 2-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid To Intermediate 61.3 (20 mg, 0.04 mmol, 1.00 equiv) in methanol (5 mL) was added a solution of LiOH (32 mg, 1.33 mmol, 30.00 equiv) in water (1 mL) and the reaction was stirred for 3 h at 25° C. The solution was concentrated under vacuum, the pH value adjusted to 6 with aqueous HCl (1 mol/L) and the resulting solids were collected by filtration to afford 15.6 mg (80%) of compound 61 as a yellow solid. 1H-NMR (300 MHz, DMSO ppm): 8.07-8.06 (t, 1H), 7.96-7.93 (t, 2H), 7.72-7.69 (d, J=8.7 Hz, 2H), 7.22-7.19 (d, J=8.7 Hz, 2H), 3.58-3.54 (m, 4H), 3.43-3.36 (m, 6H). MS (ES, m/z): 440 [M+H]+. Example 62 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Compound 62: 2-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)acetic acid Compound 62 was prepared from intermediate 60.6, using the procedures described for Example 61. 1H-NMR (300 HHz, DMSO-d6, ppm): 7.80-7.86 (m, 3H), 7.41-7.46 (m, 1H), 7.16-7.22 (m, 2H), 7.08-7.10 (m, 1H), 3.13 (brs, 4H), 2.71 (brs, 4H). MS (ES, m/z): 440 [M+H]+; Example 63 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Intermediate 63.1: (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid Into a 50-mL 3-necked round-bottom flask, was placed ZnCl2 (0.5 g, 0.50 equiv), acetic anhydride (5 mL). To the above was added sodium (2S,3R,4S,5R)-2,3,4,5,6-pentahydroxyhexanoate (1.6 g, 6.97 mmol, 1.00 equiv, 95%) at −5° C. Anhydrous HCl was introduced in for 0.5 h at 0° C. The resulting solution was stirred overnight at room temperature. The reaction mixture was cooled to 0° C. The reaction was then quenched by the addition of 8 g of ice. The mixture was stirred for 1 h at room temperature. The resulting solution was diluted with 20 mL of water. The resulting solution was extracted with 3×20 mL of dichloromethane and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.0 g (35%) of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid as a yellow liquid. Intermediate 63.2: (2R,3R,4S,5R)-6-chloro-6-oxohexane-1,2,3,4,5-pentayl pentaacetate Into a 50-mL 3-necked round-bottom flask, was placed a solution of (2R,3S,4R,5R)-2,3,4,5,6-pentaacetoxyhexanoic acid (intermediate 63.1) (610 mg, 1.35 mmol, 1.00 equiv, 90%) in CCl4 (30 mL). This was followed by the addition of oxalyl dichloride (3 mL) dropwise with stirring. The resulting solution was heated to reflux for 3 h in an oil bath. The resulting mixture was concentrated under vacuum. This resulted in 0.62 g (crude) of intermediate 63.2 as yellow oil. Intermediate 63.3: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine 2,2,2-trifluoroacetate To Intermediate 60.6 (150 mg, 0.32 mmol, 1.00 equiv) in dichloromethane (5 mL) was added triethylamine (96 mg, 0.95 mmol, 2.99 equiv) and the solution cooled to 0° C. Intermediate 63.2 (407 mg, 0.96 mmol, 3.02 equiv) in dichloromethane (5 mL) was then added dropwise and the reaction was stirred for 1 h at room temperature. The resulting mixture was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:2) to afford 150 mg (62%) of Intermediate 63.3 as a yellow solid. Intermediate 63.4: (2R,3R,4S,5R)-6-(4-(3-(6-chloro-2-(diaminomethyleneamino)-quinazolin-4-yl)phenyl)piperazin-1-yl)-6-oxohexane-1,2,3,4,5-pentayl pentaacetate To Intermediate 63.3 (150 mg, 0.20 mmol, 1.00 equiv) in NMP (5 mL) was added guanidine (0.8 mL of a 1 mol/L solution in NMP; 4.0 equiv) and 1,4-diaza-bicyclo[2.2.2]octane (DABCO; 44.8 mg, 0.40 mmol, 2.00 equiv) and the resulting solution was stirred for 1.5 h at 30° C. The reaction was quenched by the addition of 10 mL of water and then extracted with 2×10 mL of ethyl acetate. The organic layers combined, dried over anhydrous sodium sulfate, concentrated, applied onto a silica gel column and then eluted with dichloromethane/methanol (10:1) to afford 30 mg (19%) of Intermediate 63.4 as a yellow solid. Compound 63: 2-(6-chloro-4-(3-(4-((2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine To Intermediate 63.4 (25 mg, 0.03 mmol, 1.00 equiv) in methanol (5 mL), was added a solution of LiOH (3.9 mg, 0.16 mmol, 5.03 equiv) in water (0.2 mL) and the resulting solution was stirred for 0.5 h at 0° C. The pH value of the solution was adjusted to 7 with aqueous HCl (5%), the resulting mixture was concentrated under vacuum and then purified by Prep-HPLC to afford 10 mg (45%) a TFA salt of compound 63 as a yellow solid. LCMS (ES, m/z): 560.0 [M+H]+; 1H-NMR (300 MHz, CD3OD, ppm): 7.96-8.09 (m, 3H), 7.52-7.57 (m, 1H), 7.25-7.39 (m, 3H), 4.73 (d, J=5.1 Hz, 1H), 4.07-4.09 (m, 1H), 3.62-3.89 (m, 8H). MS (ES, m/z): 560.0 [M+H]+ Example 64 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic acid Intermediate 64.1: methyl 3-(4-(3-(2,6-dichloroquinazolin-4-yl)phenyl)piperazin-1-yl)propanoate To Intermediate 60.6 (200 mg, 0.51 mmol, 1.00 equiv) in tetrahydrofuran (10 mL) was added methyl acrylate (253 mg, 2.94 mmol, 5.81 equiv) and triethylamine (253 mg, 2.50 mmol, 4.95 equiv) and the resulting mixture was stirred for 3 h at room temperature. The reaction was concentrated under vacuum, the residue applied onto a silica gel column and then eluted with ethyl acetate/petroleum ether (1:3) to afford 100 mg (44%) of Intermediate 64.1 as a yellow solid. Compound 64: 3-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)propanoic acid Compound 64 was prepared from Intermediate 64.1 using the procedures described in Example 61, affording 25 mg of the title compound as a yellow solid.; 1H-NMR (300 MHz, DMSO-d6, ppm): δ 7.89-7.92 (m, 3H), 7.42-7.47 (m, 1H), 7.35 (brs, 1H), 7.15-7.24 (m, 2H), 3.25 (brs, 4H), 2.63-2.74 (m, 6H), 2.31-2.35 (m, 2H). LCMS (ES, m/z): 454.0 [M+H]+ Example 65 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 65: 1-(4-(3-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of the title compound was prepared using procedures similar to those outlined in Example 61, starting with intermediate 60.6 and tert-butyl 3-bromopropylcarbamate. MS (ES, m/z): 439 [M+H]+ Example 66 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide Compound 66: 4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazine-1-carboximidamide A TFA salt of Compound 66 was prepared from Intermediate 61.1, using the procedures described in Example 60. MS (ES, m/z): 424 [M+H]+ Example 67 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Compound 67: 2-(4-(3-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine A hydrochloride salt of Compound 67 was prepared from Compound 65 using the procedures outlined in Example 60. MS (ES, m/z): 481 [M+H]+ Example 68 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 68: 2-(6-chloro-4-(3-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine A TFA salt of Compound 68 was prepared from Compound 60.6 and ethylene oxide using the procedures outlined in Example 61. MS (ES, m/z): 426 [M+H]+ Example 69 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine Compound 69: 2-(6-chloro-4-(4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)quinazolin-2-yl)guanidine a TFA salt of Compound 69 was prepared from Intermediate 61.1 using the procedures described in Example 68. MS (ES, m/z): 426 [M+H]+ Example 70 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid 2,2,2-trifluoroacetic acid salt Compound 70: 4-(4-(3-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid Compound 70 was prepared from Intermediate 60.6 and methyl 4-bromobutanoate using the procedures described in Example 61. Purification by silica gel column with methanol:water (0˜0.04) gave a TFA salt of the title compound as a yellow solid. 1H-NMR (300 MHz, DMSO, ppm): δ 11.33 (s, 1H), 8.09-8.19 (m, 2H), 7.96-7.96 (s, 1H), 7.53-7.58 (m, 1H), 7.25-7.37 (m, 3H), 4.0 (s, 4H), 3.16 (s, 6H), 2.34-2.39 (m, 2H), 1.92 (s, 2H); MS (ES, m/z): 468 [M+H] Examples 71-104 Examples 71-104 were prepared using methods described in Examples 1-70. Characterization data (mass spectra) for compounds 71-104 are provided in Table 3. Example 71 (E)-3-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)propane-1-sulfonic acid Example 72 2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(phosphonomethyl)phenylsulfonamido)acetic acid Example 73 4-(4-(4-(6-chloro-2-(diaminomethyleneamino)quinazolin-4-yl)phenyl)piperazin-1-yl)butanoic acid Example 74 (E)-N-(diaminomethylene)-3-(4-(4-(N-(ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 75 (E)-N-(diaminomethylene)-3-(4-(4-(N-(2-(dimethylamino)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylamide Example 76 4-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)phenylphosphonic acid Example 77 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-methyl-N-((2 S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 78 3-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propane-1-sulfonic acid Example 79 2-(4-(4-(4-(3-aminopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 80 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-(2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)benzenesulfonamide Example 81 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(4,4′-oxybis(methylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 82 N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 83 1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazole-4,5-dicarboxylic acid Example 84 (E)-3-(4-(4-(N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 85 2-(4-(4-(4-(2-aminoethyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 86 (E)-3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethylcarbamoyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 87 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 88 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Example 89 1-(4-(4-(4-(3-guanidinopropyl)piperazin-1-yl)phenyl)-6-chloroquinazolin-2-yl)guanidine Example 90 (E)-2-(4-(2-(4-(4-(3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethyl)piperazin-1-yl)acetic acid Example 91 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 92 N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 93 (E)-1-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)guanidine Intermediate 93.1 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol To a solution of (E)-ethyl 3-(3,5-difluoro-4-phenoxyphenyl)-2-methylacrylate (Intermediate 41.2) (800 mg, 2.51 mmol) in dry DCM (25 mL) under N2 at −78° C. was added a solution of DIBAL-H (8.79 mL, 1M in DCM) dropwise over several minutes. The reaction was allowed to warm to room temperature over 2 hours. The reaction mixture was cooled to 0° C., quenched with 25 mL of Rochelle's Salt solution (10% w/v in water), and stirred vigorously for 1 hour. The resulting suspension was diluted with water (20 mL) and extracted with DCM (3×30 mL). The combined organic layers were dried over Na2SO4 and concentrated. The resulting oil was applied onto a silica gel column (50% EtOAc in hexanes) to yield 566 mg of the title compound (82%) as a yellow oil. Intermediate 93.2 (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-ol (Intermediate 93.1) (410 mg, 1.49 mmol) in dry toluene (7.45 mL) under N2 was added PPh3 and phthalimide. The resulting solution was cooled to 0° C. and diethyl azodicarboxylate (DEAD, 0.748 mL) was added dropwise over several minutes. The reaction was allowed to warm to room temperature and stirred overnight. After diluting with EtOAc (20 mL), the organic layer was washed with water (2×30 mL), brine (30 mL) and dried over Na2SO4. After removal of solvent, the resulting residue was applied to a silica gel column (15% EtOAc in hexanes) to yield 385 mg of the title compound (63%) as an oil. Intermediate 93.3 (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine To a solution of (E)-2-(3-(3,5-difluoro-4-phenoxyphenyl)-2-methylallyl)isoindoline-1,3-dione (Intermediate 93.2, 100 mg, 0.25 mmol) in methanol (1 mL) was added hydrazine hydrate (25 mg, 0.5 mmol) and the reaction stirred at 50° C. overnight. The white solid was filtered with DCM, and the solvent removed from the filtrate. The residue was brought up in DCM and filtered. This was repeated until no further precipitate formed to give 49.5 mg of the title compound (71%) as a yellow oil, a 10 mg portion of which was diluted with 1N HCl and freeze dried to give 7.8 mg of the title compound as an HCl salt. 1H-NMR (400 MHz, d6-DMSO): δ 8.25 (s, 2H), 7.37 (t, 2H), 7.20 (d, 2H), 7.12 (t, 1H), 6.97 (s, 1H), 3.57 (s, 2H), 1.96 (s, 3H). MS (m/z): 258.96 (M-NH2). Intermediate 93.4: (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-3-(3,5-difluoro-4-phenoxyphenyl)-2-methylprop-2-en-1-amine (intermediate 93.3, 100 mg, 0.364 mmol) in DCM (0.364 mL, 1M) was added chlorosulfonic acid (2.91 mmol, 194.3 uL) in 4 portions dropwise every 20 minutes. The reaction was stirred an additional 20 minutes and then quenched into a solution of N1,N1-dimethylethane-1,2-diamine (3.78 mL) in DCM (12 mL) at 0° C. The resulting solution was warmed to room temperature and stirred for 30 minutes. Upon completion the solvent was removed and the residue brought up in 1:1 Acetonitrile:water solution and purified by preparative HPLC to give 74.5 mg of the title compound (31%) as a TFA salt. Compound 93: (E)-4-(2,6-difluoro-4-(3-guanidino-2-methylprop-1-enyl)phenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide To a solution of (E)-4-(4-(3-amino-2-methylprop-1-enyl)-2,6-difluorophenoxy)-N-(2-(dimethylamino)ethyl)benzenesulfonamide (Intermediate 93.4, 39.3 mg, 0.092 mmol) in dry THF (460 uL, 0.2M) under N2 was added TEA (0.276 mmol, 27.9 mg) and (1H-pyrazol-1-yl)methanediamine hydrochloride (0.102 mmol, 14.9 mg). The resulting solution was stirred for 1 hour, at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 1:1 ACN:water and purified by preparative HPLC to give 16.9 mg of the title compound (26%) as a TFA salt. 1H-NMR (400 MHz, CD4OD): δ 7.87 (d, 2H), 7.12 (d, 2H), 7.08 (d, 2H), 3.92 (s, 2H), 3.62 (m, 2H), 3.29 (m, 2H), 3.17 (t, 2H), 2.01 (s, 6H), 1.91 (s, 3H). MS (m/z): 468.12 (M+H)+. Example 94 N-(2-(2-(2-(2-(4,5-bis(hydroxymethyl)-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Example 95 N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 96 N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide Example 97 N1,N31-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 98 N1,N31-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 99 (E)-3-(4-(4-(N-(1-amino-1-imino-5,8,11-trioxa-2-azatridecan-13-yl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Example 100 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 101 (E)-N-(diaminomethylene)-3-(3,5-difluoro-4-(4-(N-(2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)sulfamoyl)phenoxy)phenyl)-2-methylacrylamide Example 102 N1,N31-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Example 103 N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Example 104 N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide TABLE 3 Analytical Data for Example Compounds 71-104 Example [M + H]+ 71 533 72 523 73 468 74 482 75 525 76 527 77 589 78 493 79 439 80 628 81 1239.1 82 546.3 83 686 84 542 85 425 86 629 87 604 [M + 2]/2 88 604 [M + 2]/2 89 481 90 581 91 588 92 588 94 658 95 588 96 588 97 1571 98 1571 99 628 100 1117 101 628 102 1649 103 1117 104 1549 Example 105 4-/3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-polyethylimino-sulfonamide Example 105 is prepared from polyethylamine according to the procedures in described in Examples 1-70, where “x,” “y,” “n” and “m” are determined by the stoichiometry of the sulfonylchloride and polyethylamine. Example 106 As illustrated below, other polymeric nucleophiles are employed using the procedures described in Examples 1-70 to prepare polyvalent compounds: Example 107 As illustrated below, polymeric electrophiles are used with nucleophilic Intermediates to prepare polyvalent compounds using, for example, the procedures outlined in Example 68. Example 108-147 General Procedure for Copolymerization of Intermediate 108.1 and Intermediate 108.2 with Other Monomers Intermediate 108.1: N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)acrylamide Intermediate 108.1 (Int 108.1) was prepared from intermediate 30.7 and acrylic acid using procedures described in Examples 1-70. MS (m/z): 361.1 (M+H) Intermediate 108.2: N-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethyl)acrylamide Intermediate 108.2 (Int 108.2) was prepared from intermediate 30.7 using procedures described in Examples 1-70. MS (m/z): 404.1 (M+H) A 20-mL vial is charged with a total of 1 g of Intermediate 108.1 or Intermediate 108.2 and other monomers, a total of 9 g of isopropanol/dimethylformamide solvent mixture, and 20 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and is sealed under a nitrogen atmosphere. The stoichiometry for each example is shown in Table 1. The reaction mixture is heated in an oil bath to 70° C. under stirring. After 8 h at 70° C. the reaction mixture is cooled down to ambient temperature and then 10 mL of water is added. The solution is then transferred to a dialysis bag (MWCO 1000) for dialysis against DI water for 2 days. The resulting solution is freeze-dried to afford copolymers. TABLE 4 Examples of conditions that can be used to create copolymers from acrylamide-functionalized NHE inhibitors and substituted acrylamides and methacrylates Monomer (mg) Int 108.1 Poly(ethylene Or glycol) methyl Solvent Exam- Int acryl ether butyl acrylic (g) ple 108.2 amide methacrylate acrylate acid IPA/DMF 108 10 990 0 0 0 0/9 109 50 950 0 0 0 0/9 110 100 900 0 0 0 0/9 111 250 750 0 0 0 0/9 112 500 500 0 0 0 0/9 113 10 990 0 0 0 2.25/6.75 114 50 950 0 0 0 2.25/6.75 115 100 900 0 0 0 2.25/6.75 116 250 750 0 0 0 2.25/6.75 117 500 500 0 0 0 2.25/6.75 118 10 990 0 0 0 4.5/4.5 119 50 950 0 0 0 4.5/4.5 120 100 900 0 0 0 4.5/4.5 121 250 750 0 0 0 4.5/4.5 122 500 500 0 0 0 4.5/4.5 123 10 990 0 0 0 6.75/2.25 124 50 950 0 0 0 6.75/2.25 125 100 900 0 0 0 6.75/2.25 126 250 750 0 0 0 6.75/2.25 127 500 500 0 0 0 6.75/2.25 128 10 990 0 0 0 9/0 129 50 950 0 0 0 9/0 130 100 900 0 0 0 9/0 131 250 750 0 0 0 9/0 132 500 500 0 0 0 9/0 133 10 0 990 0 0 6.75/2.25 134 50 0 950 0 0 6.75/2.25 135 100 0 900 0 0 6.75/2.25 136 250 0 750 0 0 6.75/2.25 137 500 0 500 0 0 6.75/2.25 138 100 775 0 25 0 6.75/2.25 139 100 750 0 50 0 6.75/2.25 140 100 700 0 100 0 6.75/2.25 141 100 650 0 150 0 6.75/2.25 142 100 600 0 200 0 6.75/2.25 143 100 800 0 0 10 6.75/2.25 144 100 800 0 0 25 6.75/2.25 145 100 800 0 0 50 6.75/2.25 146 100 800 0 0 100 6.75/2.25 147 100 800 0 0 150 6.75/2.25 Example 148 Synthesis of 2-Methyl-acrylic acid 3-trimethylsilanyl-prop-2-ynyl ester A solution of trimethylsilyl propyn-1-ol (1 g, 7.8 mmol) and Et3N (1.4 mL, 10 mmol) in Et2O (10 mL) is cooled to −20° C. and a solution of methacryloyl chloride (0.9 mL, 9.3 mmol) in Et2O (5 mL) is added dropwise over 1 h. The mixture is stirred at this temperature for 30 min, and then allowed to warm to ambient temperature overnight. Any precipitated ammonium salts can be removed by filtration, and volatile components can be removed under reduced pressure. The crude product is then purified by flash chromatography. Examples 149-154 General Procedure for synthesis of poly N-(2-hydroxypropyl)methacrylamide-co-prop-2-ynyl methacrylate General Procedure for copolymerization of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate A 100-mL round bottom flask equipped with a reflux condenser is charged with a total 5 g of N-(2-hydroxypropyl)methacrylamide and 3-(trimethylsilyl)prop-2-ynyl methacrylate, 45 g of isopropanol/dimethylformamide solvent mixture, and 100 mg of azobisisobutyronitrile. The mixture is degassed for 1 min and maintained under nitrogen atmosphere during the reaction. Stoichiometry for each example is shown in Table 5. The reaction mixture is heated in an oil bath to 70° C. under stirring, and after 8 h the reaction mixture is cooled to ambient temperature and then 30 mL of solvent is evaporated under vacuum. The resulting solution is then precipitated into 250 mL of Et2O. The precipitate is collected, redissolved in 10 mL of DMF, and precipitated again into 250 mL of Et2O. The resulting precipitate is dried under vacuum to afford copolymers. General Procedure for Removal of Trimethyl Silyl Group The trimethyl silyl protected polymer (4 g), acetic acid (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups), and 200 mL of THF is mixed in a 500 mL flask. The mixture is cooled to −20° C. under nitrogen atmosphere and followed by addition of 0.20 M solution of tetra-n-butylammonium fluoride trihydrate (TBAF.3H2O) in THF (1.5 equiv. mol/mol with respect to the alkyne-trimethylsilyl groups) over a course of 5 min. The solution is stirred at this temperature for 30 min and then warmed to ambient temperature for an additional 8 hours. The resulting mixture is passed through a short silica pad and then precipitated in Et2O. The resulting precipitate is dried under vacuum to afford copolymers. TABLE 5 Examples of copolymerization conditions that can be used to prepared polymethacrylates Monomer (g) 3-(trimethylsilyl) N-(2-hydroxypropyl) prop-2-ynyl Solvent (g) Example methacrylamide methacrylate IPA/DMF 149 2.5 2.5  0/45 150 2.5 2.5 11.25/33.75 151 2.5 2.5 22.5/22.5 152 2.5 2.5 33.75/11.25 153 2.5 2.5 45/0  Examples 154-167 General procedure for post-modification of Examples 149-153 by [2+3] cycloaddition Polymer 154 (54 mg) containing 0.1 mmol of alkyne moiety, a total of 0.1 mmol of azido-compounds (Intermediate 28.1, 13-azido-2,5,8,11-tetraoxatridecane, N-(2-azidoethyl)-3-(dimethylamino)propanamide and 1-azidodecane, corresponding ratios shown in Table 6), 0.05 mmol of diisopropylethylamine, and 1 mL of DMF is mixed at ambient temperature and degassed for 1 min. While maintaining a nitrogen atmosphere, copper iodide (10 mg, 0.01 mmol) is then added to the mixture. The solution is stirred at ambient temperature for 3 days and then passed through a short neutral alumina pad. The resulting solution is diluted with 10 mL of DI water, dialyzed against DI water for 2 days, and lyophilized to afford copolymers. TABLE 6 Examples of compounds that can be prepared from polymeric alkynes and varying ratios of substituted azides via [3 + 2] cycloaddition Azido compounds (mmol) Inter- 13-azido- N-(2-azidoethyl)- Exam- mediate 2,5,8,11- 3-(dimethylamino) 1- ple 28.1 tetraoxatridecane propanamide azidodecane 155 0.002 0.098 0 0 156 0.005 0.095 0 0 157 0.01 0.09 0 0 158 0.025 0.075 0 0 159 0.05 0.05 0 0 160 0.01 0.088 0.002 0 161 0.01 0.085 0.005 0 162 0.01 0.08 0.01 0 163 0.01 0.07 0.02 0 164 0.01 0.088 0 0.002 165 0.01 0.085 0 0.005 166 0.01 0.08 0 0.01 167 0.01 0.07 0 0.02 Example 168 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 168.1, bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate To a 500 ml 3-necked roundbottom flask was added 2,3-dihydroxysuccinic acid (10.0 g, 66.62 mmol, 1.00 equiv), N,N′-Dicyclohexyl carbodiimide (DCC; 30.0 g, 145.42 mmol, 2.18 equiv) and tetrahydrofuran (THF; 100 mL). This was followed by the addition of a solution of N-hydroxysuccinimide (NHS; 16.5 g, 143.35 mmol, 2.15 equiv) in THF (100 mL) at 0-10° C. The resulting solution was warmed to room temperature and stirred for 16 h. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from N,N-dimethylformamide (DMF)/ethanol in the ratio of 1:10. This resulted in 5.2 g (22%) of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 6.70 (d, J=7.8 Hz, 2H), 4.89 (d, J=7.2 Hz, 2H), 2.89 (s, 8H). MS (m/z): 367 [M+Na]+. Intermediate 168.2 N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a 50-mL 3-necked round-bottom flask was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3.2 g, 21.59 mmol, 21.09 equiv) and dichloromethane (DCM; 20 mL). This was followed by the addition of a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (Intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv) in DMF (5 mL) dropwise with stirring. The resulting solution was stirred for 5 h at which time it was diluted with 100 mL of ethyl acetate. The resulting mixture was washed successively with 2×10 mL of water and 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (58%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 168, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (300 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (92.5 mg, 0.27 mmol, 0.45 equiv) and triethylamine (TEA; 1.0 g, 9.88 mmol, 16.55 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (300 mg) was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (20% CH3CN up to 40% in 5 min, up to 100% in 2 min); Detector, uv 220&254 nm. This resulted in 192.4 mg (28%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, DMSO, ppm) δ 7.92 (d, J=7.8 Hz, 2H, 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119 [M+H]+. Example 169 N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Intermediate 169.1, N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (100 mg, 0.26 mmol, 1.00 equiv) in DCM (5 mL). This was followed by the addition of a solution of ethane-1,2-diamine (307 mg, 5.11 mmol, 19.96 equiv) in DCM/DMF (10/1 mL). The resulting solution was stirred for 5 h at room temperature. The mixture was concentrated under vacuum. The resulting solution was diluted with 50 mL of ethyl acetate and washed with 2×10 mL of water and then 1×10 mL of Brine. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to afford 90 mg (76%) of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 169, N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-aminoethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (250 mg, 0.60 mmol, 1.00 equiv) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (92 mg, 0.27 mmol, 0.44 equiv) and triethylamine (280 mg, 2.77 mmol, 4.55 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum, the residue diluted with 100 mL of ethyl acetate and then washed with 2×10 mL of water. The organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by Prep-HPLC with the following conditions: Column, SunFire Prep C18, 5 um, 19*150 mm; mobile phase, Water with 0.05% TFA and CH3CN (25% CH3CN up to 35% in 5 min, up to 100% in 2.5 min); Detector, uv 220&254 nm. This resulted in 88.4 mg (15%) of a TFA salt of N1,N4-bis(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, CD3OD, ppm) δ 7.67 (d, J=7.6 Hz, 2H), 7.61 (s, 2H), 7.44 (t, J=7.6 Hz, 2H), 7.37 (d, J=7.6 Hz, 2H), 7.25 (d, J=2 Hz, 2H), 6.72 (s, 2H), 4.33 (t, J=6.4 Hz, 2H), 4.30 (s, 2H), 3.64 (m, 4H), 3.21 (s, 4H), 2.98 (m, 2H), 2.90 (m, 4H), 2.65 (m, 2H), 2.42 (s, 6H). MS (m/z): 943 [M+H]+. Example 170 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 170.1, 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride Using procedures outlined in Example 1 to prepare intermediate 1.6, substituting N-(2,4-dichlorobenzyl)ethanamine for 1-(2,4-dichlorophenyl)-N-methylmethanamine, the title compound was prepared as a hydrochloride salt. Intermediate 170.2 N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (300 mg, 1.51 mmol, 1.00 equiv) in DCM (10 mL) was added TEA (375 mg, 3.00 equiv) followed by the portionwise addition of 3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (500 mg, 1.23 mmol, 1.00 equiv). The resulting solution was stirred for 1 h at room temperature and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 0.4 g (41%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Intermediate 170.3, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 100-mL round-bottom flask, was placed N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (400 mg, 0.68 mmol, 1.00 equiv), triphenylphosphine (400 mg, 2.20 equiv), THF (10 mL) and water (1 mL) and the reaction was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and applied onto a preparative thin-layer chromatography (TLC) plate, eluting with DCM:methanol (5:1). This resulted in 350 mg (73%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 170, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.18 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (25 mg, 0.07 mmol, 0.45 equiv) and triethylamine (75 mg, 4.50 equiv). The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The resulting mixture was concentrated under vacuum. The crude product was purified by Flash-Prep-HPLC with water: methanol (1:10-1:100). This resulted in 12.1 mg (5%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-ethyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as yellow oil. 1H-NMR (300 MHz, DMSO, ppm): δ 7.70-7.60 (m, 8H), 7.53-7.49 (m, 6H), 6.88 (s, 2H), 5.61-5.59 (m, 2H), 4.38 (m, 2H), 4.24-4.22 (m, 2H), 3.78-3.72 (m, 2H), 3.58-3.48 (m, 2H), 3.43 (m, 7H), 3.43-3.40 (m, 11H), 3.27-3.20 (m, 5H), 2.91-2.87 (m, 6H), 2.76-2.70 (m, 2H), 2.61-2.55 (m, 3H), 1.04-0.99 (m, 6H). MS (m/z): 1235 [M+H]+. Example 171 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline Intermediate 171.1, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanone Into a 250-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-bromo-1-(3-nitrophenyl)ethanone (10.0 g, 41.15 mmol, 1.00 equiv) in THF (150 mL), (2,4-dichlorophenyl)methanamine (7.16 g, 40.91 mmol, 1.00 equiv) and triethylamine (5.96 g, 59.01 mmol, 1.50 equiv). The resulting solution was stirred for 2 h at 25° C. The solids were filtered out. The filtrate was concentrated to dryness and used for next step, assuming theoretical yield. Intermediate 171.2, 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of intermediate 171.1 (40.91 mmol, 1.00 equiv) in methanol (150 mL). This was followed by the addition of NaBH4 (2.5 g, 65.79 mmol, 1.50 equiv) in several batches at 0° C. The resulting solution was stirred for 2 h at 25° C. The reaction was then quenched by the addition of aqueous NH4Cl. The resulting mixture was concentrated under vacuum, and the solids were collected by filtration. The crude product was purified by re-crystallization from ethyl acetate. This resulted in 3.5 g (23%) of 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol as a yellowish solid. Intermediate 171.3, 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 2-(2,4-dichlorobenzylamino)-1-(3-nitrophenyl)ethanol (intermediate 171.2) (500 mg, 1.47 mmol, 1.00 equiv) in DCM (10 mL) was added conc. sulfuric acid (4 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred for 12 h at room temperature. The reaction was then quenched by the addition of water/ice. The pH value of the solution was adjusted to 10 with sodium hydroxide. The resulting solution was extracted with 2×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 300 mg (63%) of 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline as yellow oil. Intermediate 171.4, 2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl)bis(4-methylbenzenesulfonate) Into a 250-mL 3-necked round-bottom flask, was placed a solution of tetraethylene glycol (10 g, 51.55 mmol, 1.00 equiv) in DCM (100 mL). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (21.4 g, 112.63 mmol, 2.20 equiv) in DCM (50 mL) dropwise with stirring at 5° C. To this was added N,N-dimethylpyridin-4-amine (15.7 g, 128.69 mmol, 2.50 equiv). The resulting solution was stirred for 2 h at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×100 mL of DCM and the organic layers combined. The resulting mixture was washed with 1×100 mL of brine and then concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:2) to afford 11 g (43%) of the title compound as white oil. Intermediate 171.5, 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline To 6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (intermediate 171.3) (171 mg, 0.53 mmol, 2.50 equiv) in DMF (2 mL) was added potassium carbonate (87 mg, 0.63 mmol, 3.00 equiv) and intermediate 171.4 (106 mg, 0.21 mmol, 1.00 equiv) and the resulting solution was stirred at 50° C. After stirring overnight, the resulting solution was diluted with 20 ml of water. The resulting mixture was extracted with 3×20 ml of ethyl acetate and the organic layers combined and concentrated under vacuum. The crude product was purified by Prep-HPLC with methanol:water (1:1). This resulted in 10 mg (2%) of 2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-4-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline) as a light yellow solid. Compound 171, 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline To intermediate 171.5 (50 mg, 0.06 mmol, 1.00 equiv) in ethanol (5 mL) was added iron (34 mg, 0.61 mmol, 9.76 equiv) followed by the addition of hydrogen chloride (5 mL) dropwise with stirring. The resulting solution was stirred for 2 h at room temperature and then for an additional 4 h at 55° C. The reaction progress was monitored by LCMS. The solids were filtered out and the resulting solution was diluted with 10 mL of water. The resulting mixture was concentrated under vacuum and the pH of the solution was adjusted to 9-10 with sodium carbonate. The resulting solution was extracted with 3×50 mL of ethyl acetate and the organic layers combined, washed with 50 mL of brine and then concentrated under vacuum. The crude product was purified by Prep-HPLC with H2O:CH3CN (10:1). This resulted in 5 mg (11%) of 3,3′-(2,2′-(2,2′-(2,2′-oxybis(ethane-2,1-diyl)bis(oxy))bis(ethane-2,1-diyl))bis(6,8-dichloro-1,2,3,4-tetrahydroisoquinoline-4,2-diyl))dianiline as a yellow solid.). 1H-NMR (400 MHz, CD3OD, ppm) δ 7.27 (m, 2H), 7.06 (m, 2H), 6.80 (s, 2H), 6.63 (d, 2H), 6.54 (m, 4H), 4.14 (m, 2H), 4.02 (d, 2H), 3.65 (m, 12H), 3.19 (m, 3H), 2.81 (s, 4H), 2.71 (m, 2H). MS (m/z): 745 [M+H]+. Example 172 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 28.1: N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (1.5 g, 6.87 mmol, 1.79 equiv) in DCM (20 mL) was added triethylamine (1.5 g, 14.82 mmol, 3.86 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (1.5 g, 3.84 mmol, 1.00 equiv). The reaction was stirred overnight at room temperature at which time the resulting mixture was concentrated under vacuum. The residue was dissolved in 100 mL of ethyl acetate and then was washed with 2×20 mL of water, dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 1.8 g (85%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 28, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (1.8 g, 3.26 mmol, 1.00 equiv) in THF (30 mL) was added triphenylphosphine (2.6 g, 9.91 mmol, 3.04 equiv). The resulting solution was stirred overnight at room temperature and then concentrated under vacuum. The crude product (5.0 g) was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. 1.2 g product was obtained. This resulted in 1.2 g (64%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. Compound 172, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (1.2 g, 2.28 mmol, 1.00 equiv) in DMF (8 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (intermediate 168.1) (393 mg, 1.14 mmol, 0.50 equiv) and triethylamine (1.5 g, 14.82 mmol, 6.50 equiv) and the resulting solution was stirred overnight at room temperature. The mixture was concentrated under vacuum and the crude product was purified by Flash-Prep-HPLC with the following conditions: Column, silica gel; mobile phase, methanol:water=1:9 increasing to methanol:water=9:1 within 30 min; Detector, UV 254 nm. This resulted in 591 mg (43%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H, 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 30H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 603 [½M+H]+. Example 173 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 173.1, N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4) (400 mg, 1.08 mmol, 1.00 equiv) in DMSO (6 mL), 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (236.11 mg, 1.08 mmol, 1.00 equiv), (S)-pyrrolidine-2-carboxylic acid (24.79 mg, 0.21 mmol, 0.20 equiv), copper(I) iodide (20.48 mg, 0.11 mmol, 0.10 equiv) and potassium carbonate (223.18 mg, 1.62 mmol, 1.50 equiv). The resulting solution was stirred at 90° C. in an oil bath and the reaction progress was monitored by LCMS. After stirring overnight the reaction mixture was cooled with a water/ice bath and then diluted with ice water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic extracts were combined and washed with 2×20 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (2:1). This resulted in 130 mg (24%) of N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine as yellow oil. Intermediate 173.2, N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline Into a 50-mL round-bottom flask, was placed a solution of intermediate 173.1 (350 mg, 0.69 mmol, 1.00 equiv) in THF/water (4/0.4 mL) and triphenylphosphine (205 mg, 0.78 mmol, 1.20 equiv). The resulting solution was stirred overnight at 40° C. in an oil bath. The resulting mixture was then concentrated under vacuum. The pH of the solution was adjusted to 2-3 with 1N hydrogen chloride (10 ml). The resulting solution was extracted with 2×10 mL of ethyl acetate and the aqueous layers combined. The pH value of the solution was adjusted to 11 with NH3.H2O. The resulting solution was extracted with 3×30 mL of DCM and the organic layers combined. The resulting mixture was washed with 30 mL of brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. This resulted in 250 mg (75%) of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)aniline as yellow oil. Compound 173, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To intermediate 173.2 (240 mg, 0.50 mmol, 1.00 equiv) in DMF (5 mL) was added TEA (233 mg, 2.31 mmol, 4.50 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (62 mg, 0.18 mmol, 0.35 equiv) and the resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with methanol:water (1:10). This resulted in 140 mg (26%) of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, DMSO, ppm): δ 7.65 (m, 4H), 7.11 (m, 2H), 6.83 (m, 2H), 6.58 (m, 2H), 6.41 (m, 4H), 4.09 (m, 32H), 3.45 (m, 17H), 3.43 (m, 5H), 3.31 (m, 9H), 2.51 (m, 6H). MS (m/z): 1079 [M+H]+. Example 174 N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Intermediate 174.1, 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea To 4-nitrophenyl 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylcarbamate (prepared by the procedure described in example 38) (200 mg, 0.40 mmol, 1.00 equiv, 95%) in DMF (5 mL) was added TEA (170 mg, 1.60 mmol, 4.00 equiv, 95%) and 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanamine (90 mg, 0.39 mmol, 1.00 equiv, 95%) and the resulting solution was stirred for 2 h. The mixture was then concentrated under vacuum, diluted with 10 mL of water and then extracted with 3×30 mL of ethyl acetate. The organic layers were combined, washed with 3×30 mL of brine, dried over anhydrous sodium sulfate and then evaporated. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜1:1). This resulted in 160 mg (72%) of 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Intermediate 174.2 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea Intermediate 174.2 was prepared from 1-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.1) using the procedure described to prepare intermediate 173.2. The crude product was purified by silica gel chromatography, eluting with DCM/methanol (50:1). This resulted in 230 mg of 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea as pale-yellow oil. Compound 174, N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide Compound 174 was prepared from 1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)urea (intermediate 174.2) using the procedures described in example 172. The crude product (400 mg) was purified by Prep-HPLC with methanol: acetonitrile=60:40. This resulted in 113 mg (23%) of N1,N4-bis(1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-1-oxo-5,8,11-trioxa-2-azatridecan-13-yl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (400 MHz, DMSO, ppm): δ 8.68 (s, 2H), 7.68 (s, 2H), 7.64 (t, 2H), 7.39 (s, 2H), 7.24-7.28 (m, 6H), 6.77-6.78 (m, 4H), 6.23 (s, 2H), 4.47 (s, 4H), 4.23 (s, 2H), 3.76 (s, 4H), 3.42-3.69 (m, 24H), 3.28-3.36 (m, 4H), 3.20-3.24 (m, 6H), 3.02 (s, 6H). MS (m/z): 583 [½M+1]+. Example 175 N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Intermediate 175.1, N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (intermediate 10.6) (9 g, 20.02 mmol, 1.00 equiv, 95%) in DCM (200 mL) was added 2-(2-(2-aminoethoxy)ethoxy)ethanamine (15.6 g, 105.41 mmol, 5.00 equiv) and triethylamine (4.26 g, 42.18 mmol, 2.00 equiv) and the resulting solution was stirred for 3 h at room temperature. The reaction mixture was diluted with 100 mL of DCM and then washed with 2×50 mL of Brine. The mixture was dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (10:1). This resulted in 3 g (28%) of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. Compound 175, N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (150 mg, 0.28 mmol, 2.50 equiv, 92%) in DMF (5 mL), bis(2,5-dioxopyrrolidin-1-yl) oxalate (34 mg, 0.12 mmol, 1.00 equiv) and triethylamine (49 mg, 0.49 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 97 mg (68%) of a TFA salt of N1,N2-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90 (m, 4H), 7.56 (s, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.77 (m, 4H), 4.53 (d, 2H), 3.90 (m, 2H), 3.88 (m, 10H), 3.58 (m, 12H), 3.31 (s, 6H), 3.12 (m, 4H). MS (m/z): 530 [½M+1]+. Example 176 N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 176.1, N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-(2-aminoethoxy)ethanamine dihydrochloride (1.0 g, 5.65 mmol, 5.52 equiv) in DMF (20 mL), potassium carbonate (2.0 g, 14.39 mmol, 14.05 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (400 mg, 1.02 mmol, 1.00 equiv). The resulting solution was stirred overnight at room temperature at which time it was diluted with 100 mL of water. The resulting solution was extracted with 3×30 mL of ethyl acetate and the organic layers were combined and dried over sodium sulfate and concentrated under vacuum. This resulted in 60 mg (13%) of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow solid. Compound 176, N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-aminoethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 176.1) (60 mg, 0.13 mmol, 1.00 equiv) in DMF (3 mL), bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxybutanedioate (intermediate 168.1) (21 mg, 0.06 mmol, 0.47 equiv) and triethylamine (50 mg, 0.49 mmol, 3.77 equiv). The resulting solution was stirred overnight at room temperature at which time the mixture was concentrated under vacuum. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 21 mg (13%) of a TFA salt of N1,N4-bis(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethyl)-2,3-dihydroxysuccinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (d, J=7.8 Hz, 2H), 7.81 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H), 6.85 (m, 2H), 4.78 (s, 2H), 4.77 (s, 2H), 4.54 (d, J=40.2 Hz, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 10H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 517 [½M+1]+. Example 177 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Intermediate 177.1, bis(2,5-dioxopyrrolidin-1-yl)succinate To succinic acid (3.0 g, 25.42 mmol, 1.00 equiv) in THF (50 mL) was added a solution of 1-hydroxypyrrolidine-2,5-dione (6.4 g, 55.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (11.5 g, 55.83 mmol, 2.20 equiv) in THF (50 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The reaction progress was monitored by LCMS. The solids were collected by filtration and the filtrate was concentrated to give the crude product. The resulting solids were washed with THF and ethanol. This resulted in 2.4 g (27%) of bis(2,5-dioxopyrrolidin-1-yl) succinate as a white solid. Compound 177, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 177 was prepared using the procedure described in example 175, substituting (2,5-dioxopyrrolidin-1-yl) succinate (intermediate 177.1) for bis(2,5-dioxopyrrolidin-1-yl) oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 32.8 mg (8%) of N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.93-7.91 (d, J=8.1 Hz, 4H), 7.57-7.56 (d, J=1.8 Hz, 2H), 7.50-7.47 (d, J=8.4 Hz, 4H), 6.86 (s, 2H), 4.78-4.73 (d, J=13.5 Hz, 4H), 4.52 (m, 2H), 3.85 (m, 2H), 3.59-3.47 (m, 18H), 3.15-3.09 (m, 10H), 2.49 (s, 4H). MS (m/z): 544 [½M+1]+. Example 178 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide Intermediate 178.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate Intermediate 178.1 was prepared using the procedure outlined in example 177, substituting 2,2′-oxydiacetic acid for succinic acid. The crude product was washed with ethyl acetate. This resulted in 1.5 g (19%) of Intermediate 178.1 as a white solid. Compound 178, 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 178 was prepared using the procedure described in example 175, substituting bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) for bis(2,5-dioxopyrrolidin-1-yl) oxalate. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%). This resulted in 39.1 mg (7%) of a TFA salt of 2,2′-oxybis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 552 [½M+1]+. Example 179 (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 179.1, tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate To triethyleneglycol (17.6 g, 117.20 mmol, 3.00 equiv) in anhydrous THF (70 mL), was added sodium (30 mg, 1.25 mmol, 0.03 equiv). Tert-butyl acrylate (5.0 g, 39.01 mmol, 1.00 equiv) was added after the sodium had dissolved. The resulting solution was stirred overnight at room temperature and then neutralized with 1.0 N hydrogen chloride. After removal of the solvent, the residue was suspended in 50 mL of brine and extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of the solvent, the tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (9.6 g) was isolated as a colorless oil, which was used directly for the next reaction step without further purification. Intermediate 179.2, tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)propanoate (intermediate 179.1) (9.6 g, 34.49 mmol, 1.00 equiv) in anhydrous pyridine (12 mL). The mixture was cooled to 0° C. and 4-methylbenzene-1-sulfonyl chloride (7.9 g, 41.44 mmol, 1.20 equiv) was added slowly in several portions. The resulting solution was stirred at 0° C. for 1-2 h and then the flask containing the reaction mixture was sealed and placed in a refrigerator at 0° C. overnight. The mixture was poured into 120 mL of water/ice, and the aqueous layer was extracted with 3×50 mL of DCM. The combined organic layers were washed with 2×50 mL of cold 1.0 N hydrogen chloride and saturated brine and dried over anhydrous sodium sulfate. The solvent was removed under vacuum to yield 13.4 g (90%) of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.3, tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(tosyloxy)ethoxy)ethoxy)ethoxy)propanoate (13.4 g, 30.98 mmol, 1.00 equiv) in anhydrous DMF (100 mL) followed by potassium phthalimide (7.5 g, 40.49 mmol, 1.31 equiv). The resulting solution was heated to 100° C. and stirred for 3 h. The reaction progress was monitored by LCMS. The DMF was removed under vacuum to afford a brown oil residue. To the residue was added 200 mL water and the mixture was extracted with 3×50 mL of ethyl acetate. The combined organic layers were washed with saturated brine and dried over anhydrous sodium sulfate. After evaporation of solvent, The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (0˜1:3). The solvent was removed from fractions containing phthalimide and the residue was washed with 20% ethyl acetate/petroleum ether to yield 10.1 g (78%) of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate as pale yellow oil. Intermediate 179.4, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid Into a 10-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of tert-butyl 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoate (intermediate 179.3) (1.5 g, 3.68 mmol, 1.00 equiv) in neat 2,2,2-trifluoroacetic acid (TFA; 2.0 mL). The resulting solution was stirred for 40 min at ambient temperature. Excess TFA was removed under vacuum to afford a pale-yellow oil residue which was purified on a silica gel column eluting with ethyl acetate/petroleum ether (1:5˜1:2˜2:1) to yield 1.1 g (84%) of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid as a white solid. Intermediate 179.5, 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoic acid (700 mg, 1.99 mmol, 1.00 equiv) in anhydrous DCM (30.0 mL), then oxalyl dichloride (0.7 mL) was added dropwise at room temperature. Two drops of anhydrous DMF were then added. The resulting solution was heated to reflux for 40 min. The solvent was removed under vacuum to yield 750 mg of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride as pale yellow oil, which was used directly for the next reaction step without further purification. Intermediate 179.6, N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide To 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenamine (intermediate 31.5) (600.0 mg, 1.95 mmol, 1.00 equiv) in anhydrous DCM (5.0 mL) was added N-ethyl-N,N-diisopropylamine (DIEA; 0.5 mL). Then a solution of 3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanoyl chloride (intermediate 179.5) (794 mg, 2.15 mmol, 1.10 equiv) was added dropwise with stirring at room temperature. The resulting solution was stirred for 2 h at ambient temperature and then concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1). This resulted in 870 mg (66%) of N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide as a pale yellow syrup. The other fractions was collected and evaporated to get an additional 200 mg of impure product. Intermediate 179.7, 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide Into a 100-mL round-bottom flask, was placed N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)-3-(2-(2-(2-(1,3-dioxoisoindolin-2-yl)ethoxy)ethoxy)ethoxy)propanamide (870.0 mg, 1.36 mmol, 1.00 equiv) and 1M hydrazine monohydrate in ethanol (30.0 mL, 30.0 mmol). The resulting solution was heated at reflux for 1 hour. The resulting mixture was cooled to room temperature and concentrated under vacuum. The residual solution was diluted with 30 mL of water and then extracted with 3×50 mL of DCM. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (100˜50:1˜10:1˜1:1). This resulted in 600 mg (85%) of 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide as a pale yellow syrup. Compound 179, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To 3-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)-N-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenyl)propanamide (intermediate 179.7) (270 mg, 0.53 mmol, 2.00 equiv) in anhydrous DMF (5.0 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91.0 mg, 0.26 mmol, 1.00 equiv) and triethylamine (0.3 mL) and the resulting solution was stirred for 2 h at 35° C. The resulting mixture was then concentrated under vacuum. The residue was purified by Prep-HPLC, to give 170 mg (56%) of a TFA salt of (2R,3R)—N1,N4-bis(2-(2-(2-(3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylamino)-3-oxopropoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide as an off-white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (s, 1H), 7.65 (s, 2H), 7.54 (d, J=1.5 Hz, 2H), 7.36-7.46 (m, 4H), 7.02 (dd, J=7.5, 1.2 Hz, 2H), 6.90 (s, 2H), 4.83-4.75 (m, 2H), 4.65-4.60 (m, 2H), 4.53 (s, 1H), 4.46 (m, 3H), 3.88-3.80 (m, 6H), 3.64-3.51 (m, 22H), 3.41-3.35 (m, 4H), 3.16 (s, 6H), 2.64 (t, J=6.0 Hz, 4H). MS (m/z): 1136 [M+H]+. Example 180 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 180, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide Compound 180 was prepared from compound 28 following the procedure outlined in example 175. The crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=39/100/0.05 increasing to CH3CN/H2O/CF3COOH=39/100/0.05 within min; Detector, UV 254 nm. This resulted in 113.4 mg (11%) of a TFA salt of N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.766 (d, J=7.5 Hz, 2H), 7.683 (s, 2H), 7.586˜7.637 (m, 4H), 7.537 (d, J=7.8 Hz, 2H), 6.644 (s, 2H), 4.834˜4.889 (m, 2H), 4.598 (d, J=16.2 Hz, 2H), 4.446 (d, J=15.0 Hz, 2H), 3.602˜3.763 (m, 4H), 3.299˜3.436 (m, 24H), 3.224˜3.263 (m, 4H), 2.975 (s, 6H), 2.825˜2.863 (m, 4H). MS (m/z): 574 [M/2+H]+. Example 181 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 181 was prepared from compound 28 and (2,5-dioxopyrrolidin-1-yl) succinate following the procedure outlined in example 175. The crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, CH3CN/H2O/CF3COOH=0.05/100/0.05 increasing to CH3CN/H2O/CF3COOH=90/100/0.05 within 19 min; Detector, UV 254 nm. This resulted in 201 mg (78%) of a TFA salt of N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, DMSO+DCl, ppm): δ 7.76 (d, J=7.5 Hz, 2H), 7.68 (s, 2H), 7.63˜7.52 (m, 6H), 6.64 (s, 1H), 4.88˜4.82 (m, 2H), 4.62˜4.42 (m, 4H), 3.76˜3.60 (m, 4H), 3.43˜3.30 (m, 25H), 3.14˜3.10 (m, 4H), 2.97 (s, 6H), 2.86˜2.82 (m, 4H), 2.27 (s, 4H). MS (m/z): 589 [M/2+1]+. Example 182 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 182 was prepared from compound 28 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product (250 mg) was purified by Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, MeCN/H2O/CF3COOH=39/100/0.05; Detector, UV 254 nm. This resulted in 152.3 mg (47%) of a TFA salt of N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CDCl3, ppm): δ 7.92˜7.89 (d, J=8.1 Hz, 2H), 7.79 (s, 2H), 7.6˜97.64 (m, 2H), 7.57˜7.55 (d, J=7.5 Hz, 4H), 3.68 (s, 2H), 4.87˜4.75 (m, 4H), 4.5˜44.49 (m, 2H), 3.90˜3.88 (m, 2H), 3.67˜3.45 (m, 20H), 3.3˜93.32 (m, 4H), 3.31 (s, 6H), 3.17˜3.05 (m, 4H), 1.41 (s, 1H). MS (m/z): 1189 [M+H]+. Example 183 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Example 183, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 183 was prepared from intermediate 175.1 and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared using the methods outlined in example 168) following the procedure outlined in example 175. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%). This resulted in 29.5 mg (5%) of a TFA salt of N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.92 (m, 4H), 7.57 (m, 2H), 7.51-7.49 (m, 4H), 6.87 (m, 2H), 4.83-4.74 (m, 4H), 4.55-4.50 (m, 2H), 3.92-3.87 (m, 2H), 3.67-3.48 (m, 8H), 3.40-3.38 (m, 4H), 3.18 (s, 6H), 3.14-3.00 (m, 4H), 1.41 (s, 6H). MS (m/z): 551 [½M+H]+. Example 184 N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 184.1, 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate Into a 250-mL round-bottom flask was placed a solution of tetraethylene glycol (50 g, 257.47 mmol, 9.81 equiv) in DCM (150 mL) and triethylamine (8 g, 79.05 mmol, 3.01 equiv). This was followed by the addition of a solution of 4-methylbenzene-1-sulfonyl chloride (5.0 g, 26.23 mmol, 1.00 equiv) in DCM (10 mL) dropwise with stirring at 0° C. The resulting solution was stirred for 2 h at room temperature, at which time it was diluted with 200 ml of hydrogen chloride (3N aq.). The resulting solution was extracted with 2×150 mL of DCM and the combined organic layers were washed with 3×150 mL of saturated sodium bicarbonate. The mixture was dried over sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/petroleum ether (1:5˜ethyl acetate). This resulted in 7.0 g (77%) of 2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate as colorless oil. Intermediate 184.2, 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol To intermediate 184.1 (2.0 g, 5.74 mmol, 1.00 equiv) in DMF (40 mL) was added sodium azide (700 mg, 10.77 mmol, 1.88 equiv) and sodium bicarbonate (800 mg, 9.52 mmol, 1.66 equiv). The resulting solution was stirred for 2 h at 80° C. at which time the mixture was concentrated under vacuum. The residue was diluted with 100 mL of water and then extracted with 3×100 mL of DCM. The organic layers were combined and concentrated under vacuum to afford 1.3 g of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethanol as light yellow oil. Intermediate 184.3, 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine Into a 50-mL round-bottom flask, was placed a solution of intermediate 184.2 (220 mg, 1.00 mmol, 2.38 equiv) in DMF (10 mL) and sodium hydride (40 mg, 1.00 mmol, 2.37 equiv, 60%). The resulting solution was stirred for 30 min at room temperature, at which time 2,6-dibromopyridine (100 mg, 0.42 mmol, 1.00 equiv) was added. The resulting solution was stirred for an additional 2 h at 80° C., and then was concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (50:1-30:1). This resulted in 180 mg (83%) of 2,6-bis(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethoxy)pyridine as light yellow oil. Intermediate 184.4, 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine To intermediate 184.3 (180 mg, 0.35 mmol, 1.00 equiv) in THF/water (30/3 mL) was added triphenylphosphine (400 mg, 1.52 mmol, 4.35 equiv) and the resulting solution was stirred overnight at 40° C. After cooling to room temperature, the reaction mixture was extracted with 4×50 mL of DCM and the organic layers combined and dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was applied onto a silica gel column with DCM/methanol (80:1˜20:1). This resulted in 100 mg (62%) of 2-(2-(2-(2-(6-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethoxy)pyridin-2-yloxy)ethoxy)ethoxy)ethoxy)ethanamine as light yellow oil. Compound 184, N,N′-(2,2′-(2,2′-(2,2′-(2,2′-(pyridine-2,6-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To intermediate 184.4 (100 mg, 0.22 mmol, 1.00 equiv) in DCM (50 mL) was added triethylamine (70 mg, 0.69 mmol, 3.20 equiv) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (350 mg, 0.90 mmol, 4.13 equiv). The resulting solution was stirred overnight at room temperature, and then concentrated under vacuum. The residue was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)=35%-40%. This resulted in 88.4 mg (29%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (d, 2H), 7.78 (s, 2H), 7.67-7.50 (m, 7H), 6.86 (s, 2H), 6.34-6.31 (d, 2H), 4.90-4.75 (m, 4H), 4.52-4.46 (m, 2H), 4.42-4.39 (t, 4H), 3.90-3.81 (m, 6H), 3.71-3.43 (m, 22H), 3.16 (s, 6H), 3.07-3.03 (t, 4H). MS (m/z): 1170 [M+H]+ Example 185 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)tris(2,2,2-trifluoroacetate) Intermediate 185.1, bis(2,5-dioxopyrrolidin-1-yl) 2,2′-(methylazanediyl)diacetate To 2-[(carboxymethyl)(methyl)amino]acetic acid (2.0 g, 13.60 mmol, 1.00 equiv) in THF (30 mL) was added DCC (6.2 g, 30.05 mmol, 2.21 equiv) and a solution of NHS (3.5 g, 30.41 mmol, 2.24 equiv) in THF (30 mL) and the reaction stirred at 0-10° C. for 2 h. The resulting solution was allowed to warm to room temperature and stirred for 16 h. The solids were then filtered out, and the resulting mixture was concentrated under vacuum. The crude product was re-crystallized from ethyl acetate/petroleum ether in the ratio of 1:10. to afford 2.0 g (21%) of the title compound as a white solid. Compound 185, 2,2′-(methylazanediyl)bis(N-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-acetamide)tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 185.1 (106 mg, 0.15 mmol, 0.50 equiv, 48%) and triethylamine (150 mg, 1.48 mmol, 4.97 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 26.4 mg (12%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.92 (m, 4H), 7.5 (m, 2H), 7.50 (m, 4H), 6.85 (s, 2H), 4.81 (m, 4H), 4.50 (m, 2H), 4.06 (s, 4H), 3.89 (m, 2H), 3.66-3.44 (m, 22H), 3.32 (s, 6H), 3.15 (m, 4H), 3.01 (s, 3H). MS (m/z): 559 [(M+2H)/2]+ Example 186 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) Intermediate 186.1, bis(2,5-dioxopyrrolidin-1-yl) 5-aminoisophthalate Into a 50-mL 3-necked round-bottom flask, was placed a solution of 5-aminoisophthalic acid (300 mg, 1.66 mmol, 1.00 equiv) in THF (5 mL) and 1-hydroxypyrrolidine-2,5-dione (420 mg, 3.65 mmol, 2.20 equiv). This was followed by the addition of a solution of DCC (750 mg, 3.64 mmol, 2.20 equiv) in THF (5 mL) dropwise with stirring at 0° C. The resulting solution was stirred overnight at room temperature. The solids were removed by filtration and the filtrate was concentrated under vacuum. The crude product was purified by re-crystallization from ethanol. This resulted in 70 mg (11%) of the title compound as a light yellow solid. Compound 186, 5-amino-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide tris(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (100 mg, 0.20 mmol, 1.00 equiv) in DMF (5 mL) was added intermediate 186.1 (44.8 mg, 0.12 mmol, 0.60 equiv) and triethylamine (60.4 mg, 0.60 mmol, 3.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH) to afford 32.4 mg (19%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.90-7.87 (d, J=8.4 Hz, 4H), 7.60-7.54 (3H, m), 7.46-7.44 (d, J=8.4 Hz, 4H), 7.34 (d, J=1.2 Hz, 2H), 6.82 (s, 2H), 4.89-4.71 (m, 4H), 4.53-4.48 (d, J=16.2 Hz, 2H), 3.91-3.85 (m, 2H), 3.67-3.45 (m, 22H), 3.33-3.32 (m, 6H), 3.18-3.01 (m, 4H). MS (m/z): 575 [(M+2H)/2]+ Example 187 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 187, 2,2′-oxybis(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Into a 50-mL round-bottom flask, was placed a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (150 mg, 0.28 mmol, 1.00 equiv) in DMF (5 mL), triethylamine (56 mg, 0.55 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (44 mg, 0.14 mmol, 0.49 equiv). The resulting solution was stirred overnight at room temperature, at which time the mixture was concentrated under vacuum. The crude product (150 mg) was purified by preparative HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 19 min; Detector, UV 254 nm. This resulted in 72.4 mg (44%) of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.2 Hz, 2H), 7.71 (s, 2H), 7.4˜97.58 (m, 4H), 7.36˜7.37 (m, 2H), 6.82 (s, 2H), 4.39˜4.44 (m, 2H), 4.06 (s, 4H), 3.80 (d, J=16.2 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55˜3.61 (m, 16H), 3.4˜33.52 (m, 12H), 3.0˜23.08 (m, 6H), 2.65˜2.70 (m, 2H), 2.49 (s, 6H). MS (m/z): 1190 [M+H]+ Example 188 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate) Intermediate 188.1, 5-bromoisophthalic acid Into a 100-mL round-bottom flask, was placed a solution of isophthalic acid (10 g, 60.24 mmol, 1.00 equiv) in 98% H2SO4 (60 mL). This was followed by the addition of N-bromosuccinimide (12.80 g, 72.32 mmol, 1.20 equiv), in portions at 60° C. in 10 min. The resulting solution was stirred overnight at 60° C. in an oil bath. The reaction was cooled to room temperature and then quenched by the addition of water/ice. The solids were collected by filtration, and washed with 2×60 mL of hexane. The solid was dried in an oven under reduced pressure. The crude product was purified by re-crystallization from ethyl acetate to give 3 g (20%) of 5-bromoisophthalic acid as a white solid. Intermediate 188.2, bis(2,5-dioxopyrrolidin-1-yl) 5-bromoisophthalate Into a 100-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 5-bromoisophthalic acid (3 g, 11.76 mmol, 1.00 equiv, 96%) in THF (20 mL) followed by NHS (3 g, 26.09 mmol, 2.20 equiv) at 0-5° C. To this was added a solution of DCC (5.6 g, 27.18 mmol, 2.20 equiv) in THF (20 mL) dropwise with stirring at 0-5° C. The resulting solution was stirred overnight at room temperature. The solids were filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from DCM/ethanol in the ratio of 1:10. This resulted in 4 g (75%) of the title compound as a white solid. Compound 188, 5-bromo-N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)isophthalamide bis(2,2,2-trifluoroacetate Into a 50-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.19 mmol, 2.50 equiv, 95%) in DMF (8 mL), intermediate 188.1 (35 mg, 0.08 mmol, 1.00 equiv, 98%) and triethylamine (32 mg, 0.32 mmol, 4.00 equiv). The resulting solution was stirred overnight at room temperature and then concentrated to dryness. The crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)=30%˜42%. This resulted in 86 mg (75%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.26 (s, 1H), 8.13 (s, 2H), 7.90 (d, J=9 Hz, 4H), 7.55 (s, 2H), 7.48 (d, J=9 Hz, 4H), 6.84 (s, 2H), 4.76 (m, 4H), 4.54 (m, 2H), 3.89 (m, 2H), 3.68 (m, 18H), 3.53 (m, 4H), 3.33 (s, 6H), 3.18 (m, 4H). MS (m/z): 609 [(M+2H)/2]+ Example 189 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) Intermediate 189.1, bis(2,5-dioxopyrrolidin-1-yl) 2-hydroxymalonate Into a 100 ml 3-necked roundbottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of 2-hydroxymalonic acid (1.6 g, 13.32 mmol, 1.00 equiv) in THF (30 mL) and DCC (6.2 g, 30.05 mmol, 2.26 equiv). This was followed by the addition of a solution of NHS (3.5 g, 30.41 mmol, 2.28 equiv) in THF (30 mL) at 0-10° C. in 2 h. The resulting solution was stirred for 16 h at room temperature. The solids were then filtered out and the filtrate was concentrated under vacuum. The crude product was re-crystallized from ethanol to give 0.5 g (12%) of the title compound as a white solid. Compound 189, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2-hydroxymalonamide bis(2,2,2-trifluoroacetate) To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL), was added Intermediate 189.1 (29 mg, 0.10 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred for 3 h at 30° C. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (10%-100%) to afford 36.5 mg (30%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.94-7.91 (m, 4H), 7.57-7.56 (m, 2H), 7.51-7.48 (m, 4H), 6.87 (m, 2H), 4.82-4.76 (m, 4H), 4.54-4.49 (m, 2H), 3.93-3.91 (s, 4H), 3.89-3.87 (m, 2H), 3.66-3.42 (m, 22H), 3.17 (s, 6H), 3.13-3.09 (m, 4H). MS (m/z): 546 [(M+2H)/2]+ Example 190 N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide Compound 190, N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 168.2) (200 mg, 0.40 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (81 mg, 0.80 mmol, 2.01 equiv) and bis(2,5-dioxopyrrolidin-1-yl) oxalate (57 mg, 0.20 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product (200 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 72.3 mg (34%) of N1,N2-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)oxalamide as a light yellow solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.81 (m, 2H), 7.72 (s, 2H), 7.48-7.57 (m, 4H), 7.35-7.36 (m, 2H), 6.81-6.82 (m, 2H), 4.39-4.43 (m, 2H), 3.79 (d, J=16.5 Hz, 2H), 3.65 (d, J=16.2 Hz, 2H), 3.55-3.60 (m, 8H), 3.43-3.50 (m, 12H), 3.02-3.09 (m, 6H), 2.64-2.71 (m, 2H), 2.49 (s, 6H). MS (m/z): 1059 [M+H]+ Example 191 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide Compound 191, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 168.2) (150 mg, 0.30 mmol, 1.00 equiv) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol, 1.98 equiv) and intermediate 177.1 (47 mg, 0.15 mmol, 0.50 equiv) and the resulting solution was stirred overnight. The mixture was then concentrated under vacuum and the crude product (150 mg) was purified by Flash-Prep-HPLC with the following conditions: column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min; Detector, UV 254 nm. This resulted in 53.1 mg (33%) of N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.77-7.80 (m, 2H), 7.71 (s, 2H), 7.48-7.57 (m, 4H), 7.36-7.37 (m, 2H), 6.82 (s, 2H), 4.39-4.44 (m, 2H), 3.79 (d, J=15.9 Hz, 2H), 3.66 (d, J=16.2 Hz, 2H), 3.45-3.57 (m, 16H), 3.35-3.37 (m, 4H), 3.03-3.08 (m, 6H), 2.65-2.71 (m, 2H), 2.49-2.50 (m, 10H). MS (m/z): 1089 [M+H]+ Example 192 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylcarbamoyl)benzenesulfonic acid Intermediate 192.1, sodium 3,5-bis((2,5-dioxopyrrolidin-1-yloxy)carbonyl)benzenesulfonate To sodium 3,5-dicarboxybenzenesulfonate (1 g, 3.73 mmol, 1.00 equiv) and NHS (940 mg, 8.17 mmol, 2.20 equiv) in DMF (10 mL) at 0° C. was added dropwise a solution of DCC (1.69 g, 8.20 mmol, 2.20 equiv) in THF (10 mL) and the reaction stirred overnight. The solids were removed by filtration and the filtrate was concentrated under vacuum to afford 500 mg (29%) of the title compound as a white solid. Compound 192, 3,5-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl-carbamoyl)benzenesulfonic acid To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added intermediate 192.1 (45 mg, 0.10 mmol, 0.50 equiv) and triethylamine (90 mg, 4.50 equiv) and the resulting solution was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30.6 mg (22%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 8.35-8.34 (m, 3H), 7.84-7.81 (m, 4H), 7.48 (m, 2H), 7.41-7.38 (m, 4H), 6.75 (m, 2H), 4.87-4.70 (m, 4H), 4.56-4.50 (m, 2H), 3.92-3.85 (m, 2H), 3.70-3.42 (m, 22H), 3.37-3.32 (m, 6H), 3.20-3.06 (m, 4H). MS (m/z): 608 [[(M+2H)/2]+ Example 193 N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide Intermediate 193.1, 5-hydroxyisophthalic acid To dimethyl 5-hydroxyisophthalate (4.0 g, 19.03 mmol, 1.00 equiv) in THF (10 mL) was added lithium hydroxide (20 mL, 2M in water) and the resulting solution was stirred overnight at 40° C. The mixture concentrated under vacuum to remove the organic solvents and then the pH of the solution was adjusted to ˜2 with 6N hydrochloric acid. The resulting solids were collected by filtration and dried in a vacuum oven to afford 2.0 g (58%) of 5-hydroxyisophthalic acid as a white solid. Intermediate 193.2, bis(2,5-dioxopyrrolidin-1-yl) 5-hydroxyisophthalate To 5-hydroxyisophthalic acid (Intermediate 193.1; 1 g, 5.49 mmol, 1.00 equiv) and NHS (1.39 g, 2.20 equiv), in THF (5 mL) at 0° C. was added dropwise a solution of DCC (2.4 g, 2.20 equiv) in THF (5 mL). The resulting solution was stirred overnight at room temperature, then filtered and concentrated under vacuum to give 0.5 g (22%) of the title compound as a white solid. Compound 193, N1,N3-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-5-hydroxyisophthalamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (100 mg, 0.20 mmol, 1.00 equiv) in DMF (2 mL) was added Intermediate 193.2 (34 mg, 0.09 mmol, 0.45 equiv) and triethylamine (90 mg, 4.50 equiv) and the reaction was stirred overnight. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(10%-100%) to afford 30 mg (24%) of a TFA salt of the title compound as a white solid. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.91-7.88 (m, 4H), 7.71-7.70 (m, 1H), 7.56-7.55 (m, 2H), 7.47-7.44 (m, 4H), 7.37-7.36 (m, 2H), 6.84 (m, 2H), 4.87-4.70 (m, 4H), 4.53-4.48 (m, 2H), 3.92-3.85 (m, 2H), 3.67-3.46 (m, 22H), 3.37-3.32 (m, 6H), 3.17-3.07 (m, 4H). MS (m/z): 576 [[(M+2H)/2]+ Example 194 (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide Intermediate 194.1, N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N1-(3-aminopropyl)-N1-methylpropane-1,3-diamine (560 mg, 3.85 mmol) dissolved in DCM (20 mL), was added triethylamine (300 mg, 2.96 mmol) and 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.77 mmol). The resulting solution was stirred for 3 h at room temperature. After removing the solvent, the resulting residue was diluted with EtOAc (50 mL), washed with water (2×10 mL) and dried over anhydrous sodium sulfate. The crude product was purified by Flash-Prep-HPLC with H2O:MeOH (1:4) to afford 300 mg (74%) of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. Compound 194, (2R,3R)—N1,N4-bis(3-((3-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)propyl)(methyl)amino)propyl)-2,3-dihydroxysuccinamide To a solution of N-(3-((3-aminopropyl)(methyl)amino)propyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 194.1, 300 mg, 0.60 mmol) in DMF (2 mL) was added (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (prepared from (2R,3R)-tartaric acid as described in example 168) (91 mg, 0.27 mmol) and triethylamine (270 mg, 2.67 mmol) and the resulting solution was stirred for 2 h at room temperature and the reaction progress was monitored by LCMS. Upon completion, the mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH) (20%-29%) to afford 30.9 mg (8%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.90-7.88 (m, 2H), 7.80 (m, 2H), 7.69-7.65 (m, 2H), 7.58-7.56 (m, 4H), 6.85 (m, 2H), 4.87-4.71 (m, 4H), 4.54-4.44 (m, 4H), 3.88-3.82 (m, 2H), 3.62-3.53 (m, 4H), 3.22 (m, 6H), 3.13-3.09 (m, 6H), 3.01-2.97 (m, 4H), 2.88 (m, 6H), 2.00-1.96 (m, 8H). LCMS (ES, m/z): 1114 [M+H]+. Example 195 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) Compound 195, 2,2′-oxybis(N-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. After removal of the solvent, the crude product (150 mg) was purified by Flash-Prep-HPLC (C18 silica gel; methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 44.4 mg (27%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3CD, ppm): 7.79˜7.76 (m, 2H), 7.70 (s, 2H), 7.57-7.50 (m, 4H), 7.36 (d, J=Hz, 2H), 4.89-4.41 (m, 2H), 4.06 (m, 4H), 3.81-3.62 (m, 5H), 3.59-3.42 (m, 11H), 3.33-3.31 (m, 8H), 3.07-3.01 (m, 6H), 2.71-2.64 (m, 2H), 2.48 (s, 6H). LCMS (ES, m/z): 1103[M+H]+. Example 196 N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide Compound 196, N1,N3-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,2-dimethylmalonamide To N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (150 mg, 0.30 mmol) in DMF (2 mL) was added triethylamine (60 mg, 0.59 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,2-dimethylmalonate (prepared from 2,2-dimethylmalonic acid as described in Example 168) (49 mg, 0.15 mmol) and the resulting solution was stirred overnight. The mixture was concentrated and then purified by Flash-Prep-HPLC (C18 silica gel, methanol/water=0.05/100 increasing to methanol/water=90/100 within 25 min) to give 75.1 mg of the title compound (46%) as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.80˜7.77 (m, 2H), 7.71 (s, 2H), 7.57-7.48 (m, 4H), 7.36-7.35 (d, J=2.1 Hz, 2H), 6.81 (d, J=1.2 Hz, 2H), 4.43-4.38 (m, 2H), 3.82-3.62 (m, 4H), 3.57-˜3.31 (m, 18H), 3.07-3.02 (m, 6H), 2.71-2.64 (m, 2H), 2.49 (s, 6H), 1.41 (s, 6H). LC-MS (ES, m/z): 1101 [M+H]+. Example 197 N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)oxalamide Compound 197, N1,N2-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)oxalamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (148 mg, 0.26 mmol) in DMF (5 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl) oxalate (prepared from oxalic acid as described in Example 168) (31 mg, 0.11 mmol) and triethylamine (44 mg, 0.44 mmol) and the resulting solution was stirred overnight. The crude product was purified by Prep-HPLC with CH3CN:H2O (0.05% CF3COOH)(28%-35%) to afford 101.8 mg (68%) of the title compound as a TFA salt. 1H-NMR (300 Hz, CD3OD, ppm): 7.94 (d, J=9 Hz, 4H), 7.58 (s, 2H), 7.50 (d, J=9 Hz, 4H), 6.88 (s, 2H), 4.80 (m, 4H), 4.53 (m, 2H), 3.90 (m, 2H), 3.59 (m, 16H), 3.52 (m, 2H), 3.49 (m, 12H), 3.13 (s, 6H), 3.09 (m, 4H). LC-MS (ES, m/z): 574 [(M+2H)/2]+. Example 198 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 198, 2,2′-oxybis(N-(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82) (200 mg, 0.37 mmol) in DMF (2 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,2′-oxydiacetate (intermediate 178.1) (60 mg) and triethylamine (184 mg). The resulting solution was stirred for 2 h at room temperature at which point LCMS indicated complete conversion. The mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(25%-35%). This resulted in 79.6 mg (31%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.94-7.91 (m, 4H), 7.58-7.57 (m, 2H), 7.51-7.48 (m, 4H), 6.88 (m, 2H), 4.82-4.74 (m, 4H), 4.52-4.47 (m, 2H), 4.06 (m, 4H), 3.90 (m, 2H), 3.64-3.42 (m, 34H), 3.15-3.13 (s, 6H), 3.11-3.09 (m, 4H). LC-MS (ES, m/z): 596 [(M+2H)/2]+. Example 199 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 199, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)succinamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 82) (200 mg, 0.37 mmol) in dry DMF (10 mL) under N2 was added bis(2,5-dioxopyrrolidin-1-yl) succinate (intermediate 177.1) (57.1 mg, 0.18 mmol) and triethylamine (111 mg, 1.10 mmol). The resulting solution was stirred for 4 h at 25° C. in an oil bath and monitored by LCMS. The resulting mixture was concentrated under vacuum and the crude product was purified by Prep-HPLC with acetonitrile:water (0.05% CF3COOH)(28%-35%). This resulted in 113.8 mg (45%) of the title compound as a TFA salt. 1H-NMR (300 MHz, CD3OD, ppm): 7.93-7.91 (d, J=8.1 Hz, 4H), 7.58-7.57 (m, 2H), 7.50-7.48 (m, 4H), 6.87 (s, 2H), 4.88-4.74 (m, 4H), 4.55-4.49 (d, J=16.2 Hz, 2H), 3.94-3.88 (m, 2H), 3.67-3.59 (m, 14H), 3.55-3.45 (m, 12H), 3.35-3.09 (m, 10H), 2.48 (s, 4H). LC-MS (ES, m/z): 588 [(M+2H)/2]+. Example 200 N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt Intermediate 200.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 175.1 (3 g) was purified by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (50%), iso-propanol (50%); Detector, UV 254 nm This resulted in 1 g of (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 200.1) as a yellow solid. Compound 200, N1,N4-bis(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)succinamide bis-hydrochloride salt To Intermediate 200.1 (280 mg, 0.56 mmol, 2.00 equiv) in DMF (10 mL) was added intermediate 177.1 (87 mg, 0.28 mmol, 1.00 equiv) and triethylamine (94.3 mg, 0.93 mmol, 4.00 equiv) and the reaction was stirred overnight. The resulting mixture was concentrated under vacuum and the crude product (300 mg) was purified by Prep-HPLC with CH3CN:H2O (35-55%). The product was then dissolved in 15 mL of dichloromethane and gaseous hydrochloric acid was introduced for 20 minutes, then the mixture was concentrated under vacuum. The crude product was washed with 3×10 mL of ether to afford 222.4 mg of Compound 200 as a light yellow solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (d, J=8 Hz, 4H), 7.56-7.52 (m, 6H), 6.82 (s, 2H), 4.89-4.84 (m, 4H), 4.52-4.48 (d, J=16.4 Hz, 2H), 3.91-3.90 (d, J=4 Hz, 2H), 3.62-3.48 (m, 18H), 3.39-3.32 (m, 4H), 3.19-3.10 (m, 10H), 2.57-2.55 (d, J=5.2 Hz, 4H). LCMS (ES, m/z): 544 [M-2HCl]/2+H+. Example 201 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride salt Compound 201, 2,2′-oxybis(N-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)acetamide)bis-hydrochloride salt To intermediate 200.1 (500 mg, 1.00 mmol, 1.00 equiv) in DMF (3 mL) was added intermediate 178.1 (150 mg, 0.46 mmol, 0.45 equiv) and triethylamine (0.4 g, 4.50 equiv) and the resulting solution was stirred for 2 h. The crude product was purified by Prep-HPLC with CH3CN/H2O (0.05% TFA) (28%-34%). The product was dissolved in 15 mL of dichloromethane and then gaseous hydrochloric acid was introduced for 20 mins. The mixture was concentrated under vacuum and the crude product was washed with 3×10 mL of ether to afford 101.1 mg (18%) of Compound 201 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.94-7.92 (m, 4H), 7.57-7.51 (m, 6H), 6.84 (s, 2H), 4.88-4.70 (m, 4H), 4.50 (s, 2H), 4.08 (s, 4H), 3.92-3.91 (m, 2H), 3.90-3.54 (m, 9H), 3.50-3.49 (m, 5H), 3.47-3.44 (m, 8H), 3.18 (s, 6H), 3.12-3.10 (m, 4H). LCMS (ES, m/z): 552 [M-2HCl]/2+H+. Example 202 (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt Intermediate 202.1, (S or R)—N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide bis(2,2,2-trifluoroacetate) To 2-(2-(2-aminoethoxy)ethoxy)ethanamine (30.4 g, 205.41 mmol, 8.01 equiv) in dichloromethane (1000 mL) was added triethylamine (5.2 g, 51.49 mmol, 2.01 equiv). This was followed by the addition of (S)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (10 g, 23.42 mmol, 1.00 equiv; prepared from intermediate 244.1 and the procedures described in Example 1) in portions at 10° C. in 1 h. The resulting solution was stirred for 15 min at room temperature. The resulting mixture was washed with 3×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water/TFA (4/100/0.0005) increasing to 8/10/0.0005 within 30 min; Detector, UV 254 nm. This resulted in 7.2 g (42%) of intermediate 202.1 as a white solid Compound 202, (S or R)—N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt To intermediate 202.1 (500 mg, 0.69 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (138 mg, 1.37 mmol, 1.99 equiv) followed by the addition of 1,4-diisocyanatobutane (48 mg, 0.34 mmol, 0.50 equiv) in portions. The resulting solution was stirred for 10 min at room temperature then the crude product (500 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water=0.05/100 increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 246.7 mg (59%) of Compound 202 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.92 (d, J=7.2 Hz, 2H), 7.83 (s, 2H), 7.69-7.65 (m, 2H), 7.60-7.55 (m, 4H), 6.81 (s, 2H), 4.87-4.83 (m, 4H), 4.54-4.50 (m, 2H), 3.94-3.91 (m, 2H), 3.69-3.49 (m, 18H), 3.39-3.32 (m, 4H), 3.21-3.15 (m, 10H), 3.08-3.05 (m, 4H), 1.57 (s, 4H). LCMS (ES, m/z): 1145 [M-2HCl+1]+. Example 203 (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt Compound 203, (S or R)—N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis-(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide)bis-hydrochloride salt To intermediate 202.1 (400 mg, 0.55 mmol, 1.00 equiv) in DCM (10 mL) was added triethylamine (111 mg, 1.10 mmol, 2.00 equiv) followed by the portionwise addition of 1,4-diisocyanatobenzene (44 mg, 0.28 mmol, 0.50 equiv). The resulting solution was stirred for 10 min and the crude product (400 mg) was purified by Flash-Prep-HPLC with the following conditions: Column, C18 silica gel; mobile phase, methanol/water (0.05/100) increasing to 90/100 within 30 min; Detector, UV 254 nm. To the product was added 0.2 mL of hydrochloric acid (2 N) and the solution lyophilized to afford 201.7 mg (59%) of Compound 203 as a white solid. 1H-NMR (400 MHz, CD3OD, ppm): 7.84 (d, J=7.6 Hz, 2H), 7.71 (s, 2H), 7.60-7.56 (m, 2H), 7.48-7.45 (m, 4H), 7.16 (s, 4H), 6.76 (s, 2H), 4.70-4.66 (m, 4H), 4.42-4.38 (m, 2H), 3.78-3.74 (m, 2H), 3.53-3.48 (m, 18H), 3.44-3.26 (m, 4H), 3.06-2.99 (m, 10H). LCMS (ES, m/z): 1163[M-2HCl+1]+. Example 204 N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1, 2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetic acid To a slurry of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride hydrochloride (Intermediate 1.6) (283 mg, 0.66 mmol) and triglycine (152 mg, 0.80 mmol) in THF (1.5 mL) at 0° C. was added water (1.0 mL) followed by triethylamine (202 mg, 2.0 mmol). The reaction was allowed to warm to room temperature and stirred for 15 hours. The solvents were removed at reduced pressure and the residue was purified by preparative HPLC to give Intermediate 204.1 (122 mg) as a TFA salt. Compound 204, N,N′-(butane-1,4-diyl)bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)acetamido)acetamido)acetamide) Intermediate 204.1 (60 mg, 0.091 mmol) was dissolved in DMF (0.90 mL) followed by N-hydroxysuccinimide (12.6 mg, 0.11 mmol) and 1,4-diaminobutane (4.0 mg, 0.045 mmol). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (21 mg, 0.11 mmol) was added and the reaction was stirred at room temperature for 16 hours, at which time additional 1,4-diaminobutane (1 uL) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (5 mg) were added. Two hours after the addition, solvent was removed at reduced pressure and the residue was purified by preparative HPLC. The title compound was obtained as a TFA salt (26 mg). 1H-NMR (400 mHz, CD3OD) δ 7.90 (d, j=8.6 Hz, 4H), 7.52 (d, j=1.8 Hz, 2H), 7.47 (d, j=8.6 Hz, 4H), 6.84 (s, 2H), 7.75 (m, 6H), 4.44 (d, J=15.6 Hz, 2H), 3.86 (s, 4H), 3.81 (s, 4H), 3.61 (s, 4H), 3.54 (m, 2H), 3.16 (m, 4H), 3.16 (s, 6H), 1.49 (m, 4H). MS (m/z): 1636.98 [M+H]+. Example 205 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 205, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide To a solution of N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 175.1) (110 mg, 0.22 mmol) in DMF (2.0 mL) was added bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (Intermediate 168.1) (34 mg, 0.10 mmol) and the reaction was stirred for 10 minutes. The solvent was removed under vacuum and the residue was purified by preparative HPLC to give the title compound (23 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.81 (m, 4H), 7.44 (s, 1H), 7.37 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.72 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.02 [M+H]+. Example 206 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 206.1, N,N′-(1,4-phenylenebis(methylene))bis(2-(2-(2-aminoethoxy)ethoxy)ethanamine) A solution of terephthalaldehyde (134 mg, 1.0 mmol) and 2,2′-(ethane-1,2-diylbis(oxy))diethanamine (1.48 g, 10.0 mmol) in DCM (10 mL) was stirred at room temperature. After 15 minutes sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added and the reaction was stirred for 1.5 hours. Acetic acid (600 mg, 10 mmol) was then added. After stirring for an additional 1.5 hours, acetic acid (600 mg, 10 mmol) and sodium triacetoxyborohydride (636 mg, 3.0 mmol) were added, and stirring was continued at room temperature. One hour later an additional portion of sodium triacetoxyborohydride (636 mg, 3.0 mmol) was added. Twenty hours later the reaction was quenched with 1N HCl (5 mL) and concentrated to dryness. Methanol (10 mL) and 12N HCl (3 drops) were added and the mixture was concentrated to dryness. The residue was dissolved in water (10 mL) and a portion (1.0 mL) was purified by preparative HPLC to give a TFA salt of the title compound (25 mg) as a TFA salt. Compound 206, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(methylene))bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of intermediate 206.1 (25 mg, 0.029 mmol) in DCM (0.5 mL) was added of 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (intermediate 1.6) (25 mg, 0.06 mmol) followed by triethylamine (24.2 mg, 0.24 mmol) and the reaction was allowed to stir at room temperature for 18 hours. The reaction was concentrated to dryness, and then purified by preparative HPLC to give the title compound (8 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.85 (m, 2H), 7.74 (m, 2H), 7.62 (m, 6H), 7.53 (m, 4H), 6.80 (s, 1H), 4.74 (m, 6H), 4.44 (m, 2H), 4.30 (s, 4H), 3.83 (m, 2H), 3.76 (m, 4H), 3.62 (m, 8H), 3.50 (m, 4H), 3.23 (m, 4H), 3.10 (s, 6H), 3.02 (m, 4H). MS (m/z): 1105.05 [M+H]+. Example 207 (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 207, (2R,3R)—N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Following the procedures outlined in example 205, compound 207 was prepared using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.82 (m, 4H), 7.45 (m, 1H), 7.38 (m, 2H), 6.75 (s, 1H), 4.64 (m, 4H), 4.37 (m, 4H), 3.74 (m, 2H), 3.46 (m, 10H), 3.38 (m, 12H), 3.02 (m, 10H). MS (m/z): 1117.07 [M+H]+. Example 208 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 208, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) To a solution of a TFA salt of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (compound 28) (47 mg, 0.061 mmol) in DMF (0.20 mL) was added 1,4-diisocyanatobutane (4.0 mg, 0.03 mmol) followed by diisopropylethylamine (15 mg, 0.12 mmol). After stirring at room temperature for 30 minutes, the reaction was purified by preparative HPLC to give the title compound (31 mg) as a TFA salt. 1H-NMR (400 mHz, CD3OD) δ 7.88 (m, 2H), 7.75 (m, 2H), 7.63 (m, 2H), 7.54 (m, 4H), 6.83 (m, 2H), 4.74 (m, 4H), 4.48 (m, 2H), 3.87 (m, 2H), 3.62-3.55 (m, 14H), 3.51-3.43 (m, 12H), 3.24 (m, 4H), 3.14 (s, 6H), 3.05 (m, 8H), 1.43 (m, 4H). MS (m/z): 1230.99 [M+H]+. Example 209 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 209, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Following the procedures outlined in example 208, compound 209 was prepared using 1,4-diisocyanatobenzene. Purification by preparative HPLC gave a TFA salt of the title compound. 1H-NMR (400 mHz, CD3OD) δ 7.78 (m, 2H), 7.64 (m, 2H), 7.53 (m, 2H), 7.43 (m, 2H), 7.39 (m, 2H), 7.10 (s, 4H), 6.71 (s, 2H), 4.58 (m, 4H), 4.39 (m, 2H), 3.68 (m, 2H), 3.54 (s, 8H), 3.50-3.44 (m, 8H), 3.42 (m, 6H), 3.35 (m, 4H), 2.99 (s, 6H), 2.95 (m, 4H). MS (m/z): 1250.98 [M+H]+. Example 210 (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.1, (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Intermediate 210.1 was prepared following the procedure outlined in Example 44.2 using 20-azido-3,6,9,12,15,18-hexaoxaicosan-1-amine. The title compound was recovered in 64% yield as a yellow oil. Intermediate 210.2, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-4-(2-carboxyprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Intermediate 210.2 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (22.4 mg, 0.065 mmol) and (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (91.5 mg, 0.13 mmol). The title compound was recovered in 60% yield as a clear semi-solid. Compound 210, (2R,3R)—N1,N4-bis(20-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)-3,6,9,12,15,18-hexaoxaicosyl)-2,3-dihydroxysuccinamide Compound 210 was prepared following the procedure outlined in Example 45 using Intermediate 210.2 (59.6 mg). Purification by preparative HPLC gave the title compound (10 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ7.64 (d, 4H), 7.48 (s, 1H), 7.32 (d, 4H), 7.12 (d, 4H), 3.62-3.58 (m, 17H), 3.55-3.52 (m, 9H), 3.48-3.41 (m, 13H), 3.06 (s, 3H), 2.72 (s, 6H). MS (m/z): 1549.23 [M+H]+. Compound 211 (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211, (E)-3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-N-(diaminomethylene)-2-methylacrylamide Compound 211 was prepared following the procedure outlined in Example 45 using (E)-ethyl 3-(4-(4-(N-(20-amino-3,6,9,12,15,18-hexaoxaicosyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate (Intermediate 210.2, 13.2 mg). Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.84 (d, 2H), 7.52 (s, 1H), 7.35 (d, 2H), 7.12 (d, 2H), 3.74-3.70 (m, 2H), 3.69-3.58 (m, 24H), 3.55-3.51 (m, 2H), 3.49-3.46 (m, 2H), 3.15-3.12 (m, 2H), 3.07-3.04 (m, 2H). MS (m/z): 718.28 [M+H]+. Example 212 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 212.1, (E)-ethyl 3-(4-(4-(N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)sulfamoyl)phenoxy)-3,5-difluorophenyl)-2-methylacrylate Compound 44.2 (100 mg, 0.175 mmol) and (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (30.1 mg, 0.087 mmol) were dissolved in DMF (0.35 mL) with DIEA (67.7 mg, 0.525 mmol) and stirred for 2 hours at room temperature. The solvent was removed and the resulting material partitioned between EtOAc (20 mL) and water (20 mL). The organic layer was washed with saturated NaHCO3 (20 mL), brine (20 mL) and dried over Na2SO4 to give the product (87.7 mg) as a yellow oil that was used without further purification. Compound 212, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-(4-((E)-3-(diaminomethyleneamino)-2-methyl-3-oxoprop-1-enyl)-2,6-difluorophenoxy)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 212 was prepared following the procedures outlined in Example 45. Purification by preparative HPLC gave 9.6 mg of the title compound as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, 4H), 7.44 (s, 2H), 7.31 (d, 4H), 7.11 (d, 4H), 4.44 (s, 2H), 3.61-3.53 (m, 21H), 3.50-3.41 (m, 15H), 3.05 (t, 4H), 2.17 (s, 6H). MS (m/z): 1286.11 [M+H]+. Example 213 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)acetamide) Compound 213, 2,2′,2″-nitrilotris(N-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)acetamide) Compound 213 was prepared following the procedure outlined in Example 168 using tris(2,5-dioxopyrrolidin-1-yl) 2,2′,2″-nitrilotriacetate (75 mg, 0.156 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 254 mg, 0.467 mmol). Purification by preparative HPLC gave the title compound (32.0 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 3H), 7.75 (s, 3H), 7.63 (t, 3H), 7.54 (t, 6H), 6.82 (s, 3H), 4.84-4.75 (m, 6H), 4.48 (d, 3H), 3.86 (m, 3H), 3.85-3.37 (m, 54H), 3.14 (s, 9H), 3.02 (t, 6H). MS (m/z): 1777.07 [M+H]+. Example 214 N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Intermediate 214.1, N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide A solution of 32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontan-1-amine (436.9 mg, 0.777 mmol) in dry DMF (3.5 mL) under N2 was cooled to 0° C. A solution of 3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzene-1-sulfonyl chloride (300 mg, 0.706 mmol) and DIEA (273.2 mg, 2.118 mmol) in DMF (3 mL) was added dropwise. After 60 minutes LCMS indicated complete conversion and the solvent was removed to give N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (620 mg) as a yellow oil which was used without further purification. Compound 214, N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide To a solution of N-(32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 214.1, 620 mg, 0.706 mmol) in THF/H2O (10:1 v/v, 14.3 mL) under N2 was added trimethylphosphine (214.8 mg, 2.82 mmol). The resulting solution was stirred overnight at which point LCMS indicated complete conversion. The solvent was removed to give 819 mg of an orange oil, a portion of which was purified by preparative HPLC to give the title compound as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 1H), 7.68 (s, 1H), 7.62 (t, 1H), 7.55 (m, 2H), 6.82 (s, 1H), 3.85 (m, 1H), 3.78 (q, 3H), 3.70-3.58 (m, 55H), 3.52 (m, 2H), 3.46 (t, 3H), 3.18 (t, 3H), 3.11 (s, 3H), 3.03 (t, 2H). MS (m/z): 855.24 [M+H]+. Example 215 N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide Compound 215, N1,N3,N5-tris(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3,5-tricarboxamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968) in DMF (0.5 mL) was added benzene-1,3,5-tricarboxylic acid (6.7 mg, 0.0319 mmol), DIEA (37.5 mg, 0.291 mmol), and finally HATU (40.4 mg, 0.107 mmol). The reaction was stirred for 60 minutes at room temperature at which point LCMS indicated complete conversion. The resulting solution was diluted with acetonitrile/water solution (1:1 v/v) and filtered. Purification by preparative HPLC gave the title compound (37.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.37 (s, 3H), 7.84 (d, 2H), 7.83 (s, 2H), 7.62 (t, 2H), 7.51-7.50 (m, 4H), 6.79 (s, 2H), 4.83-4.70 (m, 5H), 4.46 (d, 2H), 3.86 (q, 2H), 3.67-3.53 (m, 27H), 3.45 (t, 5H), 3.39 (t, 5H), 3.14 (s, 7H), 2.98 (t, 4H). MS (m/z): 1797.15 [M+H]+. Example 216 N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 216, N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 216 was prepared following the procedure outlined in Example 215 using terephthalic acid (10.7 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 100 mg, 0.129 mmol). Purification by preparative HPLC gave the title compound (46.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (m, 6H), 7.73 (s, 2H), 7.59 (t, 2H), 7.52-7.49 (m, 4H) m, 6.80 (s, 2H), 4.77-4.69 (m, 4H), 4.49 (d, 2H), 3.587 (qs, 2H), 3.67-3.54 (m, 27H), 3.45 (t, 5H), 3.40 (t, 5H), 3.13 (s, 7H), 2.99 (t, 4H). MS (m/z): 1224.34 [M+H]+. Example 217 N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217, N1,N31-bis(32-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-diamide Compound 217 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 4,7,10,13,16,19,22,25,28-nonaoxahentriacontane-1,31-dioate (69.1 mg, 0.0975 mmol) and N-(32-amino-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 214, 166.2 mg, 0.195 mmol). Purification by preparative HPLC gave the title compound (106.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.76 (s, 2H), 7.66 (t, 2H), 7.56 (m, 4H), 6.86 (s, 2H), 3.90 (m, 2H), 3.82 (t, 2H), 3.76 (m, 6H), 3.62-3.41 (m, 28H), 3.38 (m, 6H), 3.35-3.28 (m, 56H), 3.15 (s, 6H), 3.05 (t, 4H), 2.43 (t, 4H). MS (m/z): 1094.37 [(M+2H)/2]+. Example 218 2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218, (2R,3R)—N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 218 was prepared following the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (10.2 mg, 0.0298 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 30 mg, 0.0597 mmol). Purification by preparative HPLC gave the title compound (5.1 mg) as the TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.92 (d, J=7.8 Hz, 2H), 7.82 (m, 2H), 7.67 (t, J=7.8 Hz, 2H), 7.57 (m, 2H), 7.55 (d, J=6.9 Hz, 2H0, 6.86 (m, 2H), 4.84 (s, 2H), 4.79 (s, 2H), 4.54 (d, 2H), 4.48 (s, 2H), 3.92 (m, 2H), 3.53 (m, 22H), 3.18 (s, 6H), 3.07 (t, J=5.4 Hz, 4H). MS (m/z): 1119.04 [M+H]+. Example 219 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide Compound 219, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)benzene-1,3-disulfonamide To a solution of N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol) and DIEA (35.5 mg, 0.275 mmol) in dry DCM (0.183 mL) under N2 was added benzene-1,3-disulfonyl dichloride (12.7 mg, 0.0459 mmol) in DCM (0.183 mL). The reaction mixture was stirred at room temperature for 60 minutes at which point LCMS indicated complete conversion. The solvent was removed and the resulting residue brought up in 4 mL ACN/H2O solution (1:1). Filtration and purification by preparative HPLC gave the title compound (16.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.28 (s, 1H), 8.06 (d, 1H), 7.85 (d, 2H), 7.75 (d, 2H), 7.70 (s, 1H), 7.63 (t, 2H), 7.53 (m, 3H), 6.82 (s, 1H), 4.52 (d, 1H), 3.85 (d, 1H), 3.61-3.46 (m, 28H), 3.13 (s, 6H), 3.09-3.03 (m, 7H). MS (m/z): 1294.99 [M+H]+. Example 220 N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)biphenyl-4,4′-disulfonamide Compound 220, N4,N4′-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)biphenyl-4,4′-disulfonamide Compound 220 was prepared following the procedure outlined in Example 219 using biphenyl-4,4′-disulfonyl dichloride (16.1 mg, 0.0459 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0917 mmol). Purification by preparative HPLC gave the title compound (16.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.96 (d, 4H), 7.88-7.85 (m, 5H), 7.78 (s, 2H), 7.61 (t, 2H), 7.47 (d, 2H), 6.78 (s, 2H), 4.74-4.69 (m, 3H), 4.45 (d, 2H), 3.88-3.83 (m, 2H), 3.62-3.59 (m, 2H), 3.55-3.53 (m, 9H), 3.52-3.43 (m, 17H), 3.13 (s, 6H), 3.11-3.03 (m, 8H). MS (m/z): 1371.02 [M+H]+. Example 221 (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic acid Compound 221, (14R,15R)-1-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-14,15-dihydroxy-13-oxo-3,6,9-trioxa-12-azahexadecan-16-oic acid Compound 221 was prepared by isolating the mono-addition byproduct from the procedure outlined in Example 168 using (2R,3R)-bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (70.4 mg, 0.205 mmol) and Compound 28 (223 mg, 0.409 mmol). Purification by preparative HPLC gave the title compound (44.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 1H), 7.81 (d, 1H), 7.63 (t, 1H), 7.55 (s, 1H), 7.50 (t, 1H), 6.84 (s, 0.5H), 3.88-3.84 (m, 1H), 3.64-3.34 (m, 22H), 3.14 (s, 4H), 3.07 (m, 2H). MS (m/z): 677.36 [M+H]+. Example 222 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 222 was prepared following the procedure outlined in Example 215 using (2S,3S)-2,3-dihydroxysuccinic acid (15.5 mg, 0.103 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 112 mg, 0.206 mmol). Purification by preparative HPLC gave the title compound (39.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.54-7.50 (m, 4H), 6.82 (s, 2H), 4.34 (s, 2H), 3.90-3.85 (m, 1H), 3.62-3.30 (m, 47H), 3.14 (m, 8H), 3.05 (t, 4H). MS (m/z): 1206.95 [M+H]+. Example 223 N1,N4-bis(2-(2-(2-(2-(3-((R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 223.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and 223.1b (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 28.1, 4.5 g, 7.88 mmol, 1.00 equiv) was separated into its enantiomers by chiral phase preparative Supercritical Fluid Chromatography (Prep-SFC) with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), methanol (20%); Detector, UV 254 nm. This resulted in 1.61 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.79 (d, J=7.5 Hz, 1H), 7.711 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=16.2 Hz, 1H), 3.58-3.69 (m, 9H), 3.40-3.52 (m, 4H), 3.33-3.38 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. This also gave 1.81 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as yellow oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.78-7.81 (m, 1H), 7.71 (s, 1H), 7.49-7.58 (m, 2H), 7.36-7.37 (m, 1H), 6.83 (s, 1H), 4.40-4.44 (m, 1H), 3.80 (d, J=15.9 Hz, 1H), 3.57-3.70 (m, 9H), 3.44-3.53 (m, 4H), 3.37-3.40 (m, 3H), 3.03-3.09 (m, 3H), 2.66-2.72 (m, 1H), 2.50 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 223.2, (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1a was converted to Intermediate 223.2. Compound 223, N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 223 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 223.2, 239 mg, 0.439 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (75.5 mg, 0.219 mmol). Purification by preparative HPLC gave the title compound (135.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.68 (s, 2H), 7.63 (t, 2H), 7.54-7.52 (m, 4H), 6.83 (s, 2H), 4.83-4.75 (m, 5H), 4.50-4.48 (m, 2H), 4.43 (d, 2H), 3.89-3.82 (m, 2H), 3.63-3.35 (m, 34H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.11 [M+H]+. Example 224 N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 224.1, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 223.1b was converted to Intermediate 224.1. Compound 224, N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 224 was prepared following the procedures outlined in Example 223 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 274 mg, 0.502 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (86.4 mg, 0.251 mmol). Purification by preparative HPLC gave the title compound (159 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 6.54-6.51 (m, 4H), 6.83 (s, 2H), 4.84-4.75 (m, 4H), 4.50-4.43 (m, 4H), 3.90-3.85 (m, 4H), 3.62-3.28 (m, 35H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1207.11 [M+H]+. Example 225 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 225.1a, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide and intermediate 225.1b, (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (5 g, 8.76 mmol, 1.00 equiv) was separated into its enantiomers by Prep-SFC with the following conditions: Column, Chiralpak IA, 2*25 cm, 5 um; mobile phase, CO2 (80%), ethanol (20%); Detector, UV 254 nm. This resulted in 1.69 g of (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as a brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.85 (d, J=8.4 Hz, 2H), 7.40 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.43 (t, 1H), 3.81 (m, 1H), 3.67 (m, 9H), 3.48 (m, 4H), 3.33 (m, 2H), 3.01 (m, 1H), 2.71 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Also isolated was 1.65 g of (S or R)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide as brown oil. 1H-NMR (300 MHz, CD3OD, ppm): δ 7.84 (d, J=8.4 Hz, 2H), 7.43 (d, J=8.1 Hz, 2H), 7.36 (s, 1H), 6.82 (s, 1H), 4.42 (t, 1H), 3.81 (m, 1H), 3.67 (m, 10H), 3.59 (m, 4H), 3.49 (m, 2H), 3.11 (m, 2H), 2.72 (m, 1H), 2.49 (s, 3H). MS (m/z): 572 [M+H]+. Intermediate 225.2, (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1b was converted to Intermediate 225.2. Compound 225, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 225 was prepared following the procedures outlined in Example 168 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 302.4 mg, 0.555 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (95.5 mg, 0.277 mmol). Purification by preparative HPLC gave the title compound (97.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.46 (d, 4H), 6.84 (s, 2H), 4.88-4.72 (m, 3H), 4.43-4.42 (m, 2H), 3.85-3.80 (m, 1H), 3.63-3.35 (m, 24H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.05 [M+H]+. Example 226 N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Intermediate 226.1, (R or S)—N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide Following the procedure outlined in example 170, intermediate 225.1a was converted to intermediate 226.1. Compound 226, N1,N4-bis(2-(2-(2-(2-(4-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 226 was prepared following the procedures outlined in Example 168 using (R or S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 226.1, 267.5 mg, 0.491 mmol) and bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (84.5 mg, 0.245 mmol). Purification by preparative HPLC gave the title compound (145.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 5H), 7.54 (s, 2H), 7.48 (d, 4H), 6.84 (s, 2H), 4.84-4.73 (m, 4H), 4.50-4.43 (d, 2H), 4.18 (d, 2H), 3.85-3.80 (m, 2H), 3.64-3.40 (m, 32H), 3.13 (s, 6H), 3.08 (t, 3H). MS (m/z): 1207.10 [M+H]+. Example 227 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 227 was prepared following the procedure outlined in Example 168 using bis(2,5-dioxopyrrolidin-1-yl) 2,3-dihydroxysuccinate (49.6 mg, 0.144 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 157 mg, 0.288 mmol). Purification by preparative HPLC gave the title compound (34.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.77-4.74 (m, 6H), 4.46 (d, 2H), 4.43 (t, 2H), 3.89-3.84 (m, 2H), 3.62-3.53 (m, 19H), 3.49-3.41 (m, 13H), 3.14 (s, 6H), 3.08 (t, 4H). MS (m/z): 1206.94 [M+H]+. Example 228 N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)isophthalamide Compound 228, N1,N3-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)isophthalamide Compound 228 was prepared following the procedure outlined in Example 215 using isophthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (45.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 8.25 (s, 1H), 7.92 (d, 2H), 7.85 (d, 2H), 7.73 (s, 2H), 7.58 (t, 2H), 7.49 (m, 5H), 6.81 (s, 2H), 4.83-4.71 (m, 4H), 4.49 (d, 2H), 3.87 (m, 2H), 3.67-3.54 (m, 28H), 3.45 (t, 5H), 3.44 (q, 5H), 3.14 (s, 7H), 2.99 (t, 4H). MS (m/z): 1223.19 [M+H]+. Example 229 (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 229, (2R,3S)—N1,N4-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 25 mg, 0.0322 mmol) was dissolved in DMF (0.161 mL) with DIEA (12.4 mg, 0.0966 mmol) and (2R,3S)-2,3-dihydroxysuccinic acid (2.7 mg, 0.0161 mmol). Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (18.4 mg, 0.0354 mmol) was added and the resulting solution stirred for 60 minutes, at which point LCMS indicated complete conversion. The reaction mixture was diluted to 2 mL with acetonitrile/water (1:1) and filtered. Purification by preparative HPLC gave the title compound (8.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.80 (d, 2H), 7.69 (s, 2H), 7.55 (t, 2H), 7.43 (m, 4H), 6.75 (s, 2H), 4.80-4.75 (m, 3H), 4.39 (d, 2H), 4.24 (d, 2H), 3.76 (m, 2H), 3.64-3.25 (m, 33H), 3.04 (s, 7H), 2.95 (t, 4H). MS (m/z): 1207.10 [M+H]+. Example 230 N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)phthalamide Compound 230, N1,N2-bis(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)phthalamide Compound 230 was prepared by following the procedure outlined in Example 215 using phthalic acid (8.0 mg, 0.0484 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (35.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.76 (s, 2H), 7.63 (t, 2H), 7.50 (m, 8H), 6.79 (s, 2H), 4.83-4.73 (m, 4H), 4.65 (d, 2H), 3.85 (q, 2H), 3.62-3.39 (m, 36H), 3.10 (s, 6H), 3.02 (t, 4H). MS (m/z): 1223.00 [M+H]+. Example 231 N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 231, N1,N4-bis(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 231 was prepared following the procedure outlined in Example 215 using terephthalic acid (11.4 mg, 0.0684 mmol) and 4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)-N-(2-(2-(2-hydroxyethoxy)ethoxy)-ethyl)benzenesulfonamide (Compound 175.1, 100 mg, 0.136 mmol). Purification by preparative HPLC gave the title compound (9.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86-7.85 (m, 9H), 7.83 (s, 2H), 7.50 (s, 1H), 7.41 (d, 4H), 6.80 (s, 1H), 3.68-3.42 (m, 26H), 3.34 (m, 2H), 3.09-3.01 (m, 12H). MS (m/z): 1135.07 [M+H]+. Example 232 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 232, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 80 mg, 0.110 mmol) and DIEA (42.1 mg, 0.330 mmol) were dissolved in dry DCM (0.5 mL) under N2 and cooled to 0° C. A solution of triphosgene (4.9 mg, 0.0165 mmol) in DCM (0.2 mL) was added dropwise and the resulting solution was warmed to room temperature over 30 minutes. The solvent was removed; the resulting residue was brought up in 4 mL of acetonitrile/water (1:1) solution and filtered. Purification by preparative HPLC gave the title compound (8.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.90 (d, 4H), 7.60 (s, 2H), 7.47 (d, 4H), 6.84 (s, 2H), 3.58-3.42 (m, 24H), 3.12-3.05 (m, 17H). MS (m/z): 1031.96 [M+H]+. Example 233 N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)terephthalamide Compound 233, N1,N4-bis(2-(2-(2-(2-(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)-ethyl)terephthalamide Compound 233 was prepared following the procedures outlined in Example 215 using terephthalic acid (10.4 mg, 0.0628 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 97.2 mg, 0.1255 mmol). Purification by preparative HPLC gave the title compound (38.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.83 (m, 10H), 7.85 (s, 2H), 7.42 (d, 4H), 6.83 (s, 1H), 3.66-3.55 (m, 28H), 3.46-3.39 (m, 11H), 3.12 (s, 7H), 3.04 (t, 4H). MS (m/z): 1223.14 [M+H]+. Example 234 N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)terephthalamide Compound 234, N1,N4-bis(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-terephthalamide Compound 234 was prepared following the procedures outlined in Example 215 using terephthalic acid (13.8 mg, 0.0833 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 121.7 mg, 0.167 mmol). Purification by preparative HPLC gave the title compound (60.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (m, 6H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51 (m, 4H), 6.80 (s, 2H), 4.88-4.75 (m, 4H), 4.75 (d, 2H), 4.74 (m, 2H), 3.85-3.42 (m, 25H), 3.12 (s, 6H), 2.99 (t, 4H). MS (m/z): 1135.11 [M+H]+. Example 235 N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235, N,N′-(10-oxo-3,6,14,17-tetraoxa-9,11-diazanonadecane-1,19-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 235 was prepared following the procedures outlined in Example 232 using N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 56.6 mg, 0.0775 mmol). Purification by preparative HPLC gave the title compound (25.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.75 (s, 2H, 7.65 (t, 2H), 7.53 (m, 4H), 6.83 (s, 2H), 4.89-4.68 (m, 2H), 3.88 (m, 2H), 3.62-3.43 (m, 21H), 3.30-3.27 (m, 6H), 3.11 (s, 7H), 3.03 (t, 4H). MS (m/z): 1031.07 [M+H]+. Example 236 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 236 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (5.24 mg, 0.0374 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 54.7 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (27.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88-7.86 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 4.48 (m, 2H), 3.38-3.31 (m, 1H), 3.61-3.42 (m, 17H), 3.35-3.30 (m, 4H), 3.13 (s, 6H), 3.08-3.02 (m, 7H), 1.45 (m, 2H). MS (m/z): 1145.04 [M+H]+. Example 237 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 237 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (8.79 mg, 0.0549 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 168.2, 80.2 mg, 0.110 mmol). Purification by preparative HPLC gave the title compound (37.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 2H), 7.73 (s, 2H), 7.61 (t, 2H), 7.52 (d, 2H), 7.48 (d, 2H), 7.18 (s, 5H), 6.78 (s, 2H), 4.71-4.63 (m, 6H), 4.45-4.40 (m, 2H), 3.81-3.77 (m, 2H), 3.58-3.55 (m, 6H), 3.53-3.50 (m, 14H), 3.47-3.44 (m, 6H), 3.35-3.33 (m, 6H), 3.09 (s, 8H), 3.03 (t, 5H). MS (m/z): 1165.06 [M+H]+. Example 238 N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238, N,N′-(10,17-dioxo-3,6,21,24-tetraoxa-9,11,16,18-tetraazahexacosane-1,26-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 238 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (5.64 mg, 0.402 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 58.8 mg, 0.805 mmol). Purification by preparative HPLC gave the title compound (13.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.86 (d, J=8 Hz, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.52 (s, 2H), 7.47 (d, J=7 Hz, 2H), 7.18 (s, 5H), 7.78 (s, 2H), 4.77-4.68 (m, 5H), 4.48-4.40 (m, 2H), 3.35-3.28 (m, 2H), 3.56-3.51 (m, 16H), 3.45 (t, J=5 Hz, 5H), 3.35-3.32 (m, 10H), 3.09 (s, 6H), 3.03 (t, J=5 Hz, 3H). MS (m/z): 1145.01 [M+H]+. Example 239 N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239, N,N′-(2,2′-(2,2′-(2,2′-(1,4-phenylenebis(azanediyl))bis(oxomethylene)bis(azanediyl)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(oxy)bis(ethane-2,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 239 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (12.5 mg, 0.078 mmol) and N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 175.1, 113.9 mg, 0.156 mmol). Purification by preparative HPLC gave the title compound (48.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, J=8 Hz, 4H), 7.52 (s, 2H), 7.40 (d, J=8 Hz, 4H), 7.18 (s, 4H), 7.69 (s, 2H), 4.70-4.62 (m, 3H), 4.48-4.40) (m, 2H), 3.82-3.76 (m, 2H), 3.58-3.43 (m, 21H), 3.35-3.30 (m, 4H), 3.11-3.06 (m, 11H). MS (m/z): 1165.12[M+H]+. Example 240 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 240 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (9.6 mg, 0.057 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 88.6 mg, 0.114 mmol). Purification by preparative HPLC gave the title compound (24.5 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.94 (t, 1H), 7.87 (d, 2H), 7.77 (s, 2H), 7.63 (t, 2H), 7.53-7.50 (m, 4H), 6.82 (s, 2H), 4.479-4.45 (m, 2H), 4.44 (s, 2H), 3.88-3.84 (m, 2H), 3.62-3.53 (m, 22H), 3.50-3.48 (m, 5H), 3.45-3.40 (m, 9H), 3.13 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.02 [M+H]+. Example 241 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(3-((R or S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 241 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.7 mg, 0.0519 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1, 80.5 mg, 0.104 mmol). Purification by preparative HPLC gave the title compound (25.7) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 3H), 7.76 (s, 2H), 7.63 (t, 2H), 7.54-7.51 (m, 4H), 6.83 (s, 2H), 4.78-4.73 (m, 4H), 4.49-4.42 (m, 4H), 3.89-3.85 (m, 2H), 3.62-3.53 (m, 22H), 3.51-48 (m, 5H), 3.46-3.38 (m, 9H), 3.14 (s, 6H), 3.04 (t, 4H). MS (m/z): 1208.21 [M+H]+. Example 242 (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242, (2S,3S)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 242 was prepared following the procedures outlined in Example 229 using (2S,3S)-2,3-dihydroxysuccinic acid (6.3 mg, 0.0374 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 58.0 mg, 0.0749 mmol). Purification by preparative HPLC gave the title compound (21.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 3H), 6.84 (s, 1H), 4.772-4.69 (m, 3H), 4.43 (s, 2H), 3.86-3.81 (m, 1H), 3.59-3.53 (m, 16H), 3.49-3.39 (m, 11H), 3.12 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.14 [M+H]+. Example 243 (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243, (2R,3R)—N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-2,3-dihydroxysuccinamide Compound 243 was prepared following the procedures outlined in Example 229 using (2R,3R)-2,3-dihydroxysuccinic acid (8.4 mg, 0.0.0499 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 77.3 mg, 0.0999 mmol). Purification by preparative HPLC gave the title compound (23.4 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.53 (s, 2H), 7.45 (d, 4H), 6.83 (s, 2H), 4.81-4.71 (m, 4H), 4.49-4.41 (m, 4H), 3.89-3.83 (m, 2H), 3.60-3.53 (m, 17H), 3.49-3.38 (m, 12H), 3.13 (s, 5H), 3.08 (t, 4H). MS (m/z): 1208.09 [M+H]+. Example 244 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Intermediate 244.1, (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline Into a 2000-mL round-bottom flask, was placed a solution of 4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 1.4; 20 g, 54.20 mmol, 1.00 equiv) in ethanol (500 mL). This was followed by the addition of D-(+)-dibenzoyl tartaric acid (19 g, 53.07 mmol, 0.98 equiv), water (160 mL) and ethanol (1440 mL) at 45° C. The resulting solution was stirred for 30 min at 45° C. in an oil bath. After cooling to room temperature over 24 hours, the solids were collected by filtration. The filter cake was dissolved in potassium carbonate (saturated.) and was extracted with 2×500 mL of ethyl acetate. The combined organic layers were washed with 2×500 mL of brine, dried over anhydrous sodium sulfate and concentrated under vacuum. This gave (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline as a colorless oil. Intermediate 224.1 (alternate synthesis), (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (S or R)-4-(3-bromophenyl)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinoline (intermediate 244.1) was converted to (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 224.1) following the procedures outlined for the racemic substrates in Example 1 and the reduction described in Example 170. Compound 244, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 244 was prepared following the procedures outlined in Example 208 using 1,4-diisocyanatobutane (6.5 mg, 0.0471 mmol) and (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 72.9 mg, 0.0941 mmol). Purification by preparative HPLC gave the title compound (34.9 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 2H), 7.75 (s, 2H), 7.63 (t, 2H), 7.55-7.51 (m, 4H), 6.83 (s, 2H), 4.48 (d, 2H), 3.90-3.85 (m, 2H), 3.59-3.55 (m, 17H), 3.51-3.43 (m, 14H), 3.31-3.23 (m, 6H), 3.14 (s, 7H), 3.04 (m, 9H), 1.43 (m, 4H). MS (m/z): 1232.99 [M+H]+. Example 245 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(3-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 245 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 79.1 mg, 0.102 mmol) and 1,4-diisocyanatobenzene (8.2 mg, 0.0511 mmol). Purification by preparative HPLC gave the title compound (43.2 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 2H), 7.72 (s, 2H), 7.61 (t, 2H), 7.51-7.46 (m, 4H), 7.17 (s, 4H), 6.78 (s, 2H), 4.44-4.39 (m, 2H), 3.82-3.77 (m, 2H), 3.61 (s, 11H), 3.57-3.53 (m, 13H), 3.49-3.48 (m, 6H), 3.44 (t, 5H), 3.35-3.29 (m, 6H), 3.09 (s, 7H), 3.03 (t, 4H). MS (m/z): 1253.01 [M+H]+. Compound 246 N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246, N1,N4-bis(2-(2-(2-(2-(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-terephthalamide Compound 246 was prepared following the procedures outlined in Example 215 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 224.1, 65.1 mg, 0.0841 mmol) and terephthalic acid (6.98 mg, 0.042 mmol). Purification by preparative HPLC gave the title compound (19.3 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89-7.85 (m, 6H), 7.52 (s, 2H), 7.43 (d, 4H), 6.81 (s, 2H), 4.73-4.66 (m, 3H), 4.47-4.42 (m, 1H), 3.84-3.79 (m, 2H), 3.64-3.59 (m, 14H), 3.57-3.54 (m, 11H), 3.46-3.39 (m, 8H), 3.12 (s, 6H), 3.03 (t, 4H). MS (m/z): 1233.04 [M+H]+. Example 247 N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247, N1-(2-(2-(2-(2-(3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethoxy)ethyl)succinamide Compound 247 was prepared following the procedure outlined in Example 215 using 4-amino-4-oxobutanoic acid (7.6 mg, 0.0646 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-3-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 28, 50 mg, 0.0646 mmol). Purification by preparative HPLC gave the title compound (27.8 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 1H), 7.75 (s, 1H), 7.64 (t, 1H), 7.55 (s, 1H), 7.51 (d, 1H), 6.84 (s, 1H), 4.78-4.71 (m, 2H), 4.55-4.48 (m, 1H), 3.81-3.75 (m, 1H), 3.63-3.55 (m, 10H), 3.51-4.45 (m, 5H), 3.44-3.41 (m, 3H), 3.38-3.31 (m, 3H), 3.13 (s, 3H), 3.07-3.02 (t, 2H), 2.48-2.43 (m, 4H). MS (m/z): 645.32 [M+H]+. Example 248 N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248, N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 248 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobutane (7.64 mg, 0.545 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 84.4 mg, 0.109 mmol). Purification by preparative HPLC gave the title compound (43.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.89 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.71 (m, 4H), 3.89-3.85 (dd, 2H), 3.59-3.56 (m, 17H), 3.49-3.43 (m, 14H), 3.28-3.23 (m, 5H), 3.14 (s, 7H), 3.09-3.04 (m, 9H), 1.42 (s, 4H). MS (m/z): 1233.03 [M+H]+. Example 249 N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249, N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 249 was prepared following the procedure outlined in Example 208 using 1,4-diisocyanatobenzene (7.95 mg, 0.0495 mmol) and N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Compound 82, 76.7 mg, 0.099 mmol). Purification by preparative HPLC gave the title compound (39.6 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.40 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.88-4.83 (m, 4H), 4.65-4.50 (m, 2H), 3.81-3.77 (m, 2H), 3.61-3.59 (m, 9H), 3.58-3.54 (m, 11H), 3.53-3.48 (m, 5H), 3.47-3.42 (m, 5H), 3.35-3.30 (m, 4H), 3.11 (s, 6H), 3.07 (t, 4H). MS (m/z): 1253.04 [M+H]+. Example 250 (S or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250, (S- or R)—N,N′-(13-oxo-3,6,9,17,20,23-hexaoxa-12,14-diazapentacosane-1,25-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 250 was prepared following the procedures outlined in Example 232 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (Intermediate 225.2, 75 mg, 0.0968 mmol). Purification by preparative HPLC gave the title compound (26.0 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.88 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.79-4.72 (m, 5H), 4.48-4.42 (m, 2H), 3.87-3.83 (m, 2H), 3.58-3.54 (m, 17H), 3.49-3.43 (m, 15H), 3.24-3.22 (m, 6H), 3.12 (s. 6H), 3.08 (t, 4H). MS (m/z): 1118.96 [M+H]+. Example 251 (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251, (S or R)—N,N′-(13,20-dioxo-3,6,9,24,27,30-hexaoxa-12,14,19,21-tetraazadotriacontane-1,32-diyl)bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 251 was prepared following the procedures outlined in Example 208 using (S or R)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 88.1 mg, 0.114 mmol) and 1,4-diisocyanatobutane (7.9 mg, 0.0569 mmol). Purification by preparative HPLC gave the title compound (56.1 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.85 (d, 4H), 7.54 (s, 2H), 7.45 (d, 4H), 6.84 (s, 2H), 4.77-4.74 (m, 4H), 4.50-4.46 (m, 2H), 3.89-3.84 (m, 2H), 3.61-3.56 (m, 17H), 3.50-3.43 (m, 14H), 3.26-3.23 (m, 6H), 3.14 (s, 7H), 3.09-3.04 (m, 10H), 1.48 (s, 4H). MS (m/z): 1233.01 [M+H]+. Example 252 (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252, (S or R)—N,N′-(1,1′-(1,4-phenylenebis(azanediyl))bis(1-oxo-5,8,11-trioxa-2-azatridecane-13,1-diyl))bis(4-((S or R)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide) Compound 252 was prepared following the procedures outlined in Example 208 using (S)—N-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)benzenesulfonamide (intermediate 225.2, 45.2 mg, 0.0584 mmol) and 1,4-diisocyanatobenzene (4.7 mg, 0.0292 mmol). Purification by preparative HPLC gave the title compound (20.7 mg) as a TFA salt. 1H-NMR (400 MHz, CD3OD): δ 7.87 (d, 4H), 7.51 (s, 2H), 7.39 (d, 4H), 7.16 (s, 4H), 6.79 (s, 2H), 4.72-4.61 (m, 4H), 4.46-3.99 (m, 1H), 3.81-3.73 (m, 1H), 3.62-3.42 (m, 33H), 3.35-3.33 (m, 5H), 3.09-3.06 (m, 13H). MS (m/z): 1252.95 [M+H]+. Topological Polar Surface Area Data Topological Polar Surface Area (tPSA) values for representative compounds in the disclosure are shown in Table 7, below. The tPSA values were calculated using the method of Ertl et al., Journal of Medicinal Chemistry, 43:3714-3717 (2000). TABLE 7 tPSA Values of Compounds Topological polar Example # surface area ({acute over (Å)}2) Example 01 125 Example 02 125 Example 03 125 Example 04 125 Example 05 125 Example 06 125 Example 07 121 Example 08 154 Example 09 132 Example 10 125 Example 11 125 Example 12 125 Example 13 125 Example 14 125 Example 15 124 Example 16 177 Example 17 134 Example 18 116 Example 19 116 Example 20 116 Example 21 238 Example 22 116 Example 23 116 Example 24 177 Example 25 238 Example 26 116 Example 27 134 Example 28 112 Example 29 229 Example 30 137 Example 31 137 Example 32 137 Example 33 137 Example 34 119 Example 35 119 Example 36 119 Example 37 119 Example 38 112 Example 39 112 Example 40 119 Example 41 291 Example 42 291 Example 43 309 Example 44 318 Example 45 199 Example 46 387 Example 47 404 Example 48 224 Example 49 417 Example 50 297 Example 51 213 Example 52 213 Example 53 213 Example 54 213 Example 55 213 Example 56 213 Example 57 241 Example 58 184 Example 59 220 Example 60 147 Example 61 134 Example 62 134 Example 63 215 Example 64 134 Example 65 123 Example 66 147 Example 67 161 Example 68 117 Example 69 117 Example 70 134 Example 71 208 Example 72 154 Example 73 134 Example 74 174 Example 75 178 Example 76 125 Example 77 238 Example 78 121 Example 79 123 Example 80 136 Example 81 242 Example 82 112 Example 83 191 Example 84 190 Example 85 123 Example 86 228 Example 87 270 Example 88 270 Example 89 159 Example 90 189 Example 91 147 Example 92 147 Example 93 74 Example 94 157 Example 95 115 Example 96 115 Example 97 312 Example 98 312 Example 99 235 Example 100 212 Example 101 202 Example 102 487 Example 103 212 Example 104 500 Example 168 251 Example 169 214 Example 170 270 Example 171 86 Example 172 270 Example 173 185 Example 174 243 Example 175 211 Example 176 233 Example 177 211 Example 178 220 Example 179 219 Example 180 229 Example 181 229 Example 182 229 Example 183 211 Example 184 202 Example 185 214 Example 186 237 Example 187 238 Example 188 211 Example 189 231 Example 190 211 Example 191 211 Example 192 273 Example 193 231 Example 194 221 Example 195 220 Example 196 211 Example 197 229 Example 198 238 Example 199 229 Example 200 211 Example 201 220 Example 202 235 Example 203 235 Example 204 290 Example 205 251 Example 206 177 Example 207 251 Example 208 253 Example 209 253 Example 210 500 Example 211 227 Example 212 445 Example 213 347 Example 214 176 Example 215 344 Example 216 229 Example 217 441 Example 218 251 Example 219 280 Example 220 280 Example 221 192 Example 222 270 Example 223 270 Example 224 270 Example 225 270 Example 226 270 Example 227 270 Example 228 229 Example 229 270 Example 230 229 Example 231 211 Example 232 194 Example 233 229 Example 234 211 Example 235 194 Example 236 235 Example 237 235 Example 238 235 Example 239 235 Example 240 270 Example 241 270 Example 242 270 Example 243 270 Example 244 253 Example 245 253 Example 246 229 Example 247 158 Example 248 253 Example 249 253 Example 250 212 Example 251 253 Example 252 253 Pharmacological Data 1. Pharmacological Test Example 1 Cell-Based Assay of NHE-3 Activity Rat NHE-3-mediated Na+-dependent H+ antiport was measured using a modification of the pH sensitive dye method originally reported by Tsien (Proc. Natl. Acad. Sci. USA. (1984) 81(23): 7436-7440). Opossum kidney (OK) cells were obtained from the ATCC and propagated per their instructions. The rat NHE-3 gene was introduced into OK cells via electroporation, seeded into 96 well plates and grown overnight. Medium was aspirated from the wells, cells were washed twice with NaCl-HEPES buffer (100 mM NaCl, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4), then incubated for 30 min at room temperature with NH4Cl-HEPES buffer (20 mM NH4Cl, 80 mM NaCl, 50 mM HEPES, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) containing 5 uM BCECF-AM (Invitrogen). Cells were washed twice with Ammonium free, Na+-free HEPES (100 mM choline, 50 mM HEPES, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) and incubated in the same buffer for 10 minutes at room temperature to lower intracellular pH. NHE-3-mediated recovery of neutral intracellular pH was initiated by addition of Na-HEPES buffer containing 5 uM ethyl isopropyl amiloride (EIPA, a selective antagonist of NHE-1 activity that does not inhibit NHE-3) and 0-30 uM test compound, and monitoring the pH sensitive changes in BCECF fluorescence (λex 505 nm, λem, 538 nm) normalized to the pH insensitive BCECF fluorescence (λex 439 nm, λem 538 nm). Initial rates were plotted as the average 3-6 replicates, and pIC50 values were estimated using GraphPad Prism. The inhibitory data of many of the example compounds illustrated above are shown in Table 8, below. TABLE 8 Inhibitory data of compounds against rat NHE-3 rat NHE-3 Example # Average pIC50 1 Example 171 <5.0 Example 174 <5.0 Example 175 <5.0 Example 223 <5.0 Example 231 <5.0 Example 232 <5.0 Example 233 <5.0 Example 235 <5.0 Example 30 5 to 6 Example 31 5 to 6 Example 52 5 to 6 Example 54 5 to 6 Example 63 5 to 6 Example 64 5 to 6 Example 176 5 to 6 Example 196 5 to 6 Example 209 5 to 6 Example 219 5 to 6 Example 234 5 to 6 Example 28 6 to 7 Example 29 6 to 7 Example 45 6 to 7 Example 46 6 to 7 Example 60 6 to 7 Example 65 6 to 7 Example 66 6 to 7 Example 67 6 to 7 Example 68 6 to 7 Example 69 6 to 7 Example 97 6 to 7 Example 100 6 to 7 Example 102 6 to 7 Example 104 6 to 7 Example 169 6 to 7 Example 170 6 to 7 Example 178 6 to 7 Example 207 6 to 7 Example 210 6 to 7 Example 211 6 to 7 Example 213 6 to 7 Example 217 6 to 7 Example 218 6 to 7 Example 225 6 to 7 Example 228 6 to 7 Example 47 >7 Example 81 >7 Example 87 >7 Example 88 >7 Example 98 >7 Example 103 >7 Example 172 >7 Example 177 >7 Example 191 >7 Example 195 >7 Example 200 >7 Example 201 >7 Example 202 >7 Example 203 >7 Example 204 >7 Example 205 >7 Example 206 >7 Example 208 >7 Example 212 >7 Example 215 >7 Example 216 >7 Example 222 >7 Example 224 >7 Example 229 >7 Example 230 >7 Example 236 >7 Example 237 >7 Example 244 >7 Example 250 >7 Example 251 >7 1 pIC50 is the negative log the IC50 value (an IC50 value of 1 micromolar corresponds to a pIC50 value of 6.0) 2. Pharmacological Test Example 2 Parallel Artificial Membrane Permeability Assay (PAMPA) The model consists of a hydrophobic filter material coated with a mixture of lecithin/phospholipids creating an artificial lipid membrane. BD Gentest PAMPA 96-well plates (cat #353015) are warmed for 1 hr at room temperature. 1 mL of 20 uM control compounds (pooled mix of 10 mM atenolol, ranitidine, labetalol, and propranolol) in transport buffer (10 mM HEPES in HBSS pH 7.4) are prepared along with 1 mL of 20 uM test compounds in transport buffer. The PAMPA plates are separated, and 0.3 mL of compound are added in duplicate to apical side (bottom/donor plate=“AP”), and 2 mL buffer are placed in the basolateral chamber (top/receiver plate=“BL”). The BL plate is placed on the AP plate and incubated for 3 hrs in 37° C. incubator. At that time, samples are removed from both plates, and analyzed for compound concentration using LC/MS. A “Pe” (effective permeability) value is calculated using the following formula. Pe=(−ln [1−CA(t)/Ceq])/[A*(1/VD+1/VA)*t where CA=concentration in acceptor well, CD=concentration in donor well VD=donor well volume (mL), VA=acceptor well volume (mL) A=filter area=0.3 cm2, t=transport time (seconds) Ceq=equilibrium concentration=[CD(t)*VD+CA(t)*VA]/(VD+VA) Pe is reported in units of cm/sec×10−6. Results from PAMPA testing are shown in Table 9. TABLE 9 Papp values as determined using the PAMPA assay Avg Papp, A→ B, Example # cm/sec × 10−6 Example 01 0.53 Example 03 0.8 Example 07 0.5 Example 08 0.2 Example 13 0.3 Example 14 0.4 Example 15 0.05 Example 16 <0.02 Example 23 <0.04 Example 24 0.03 Example 26 <0.02 Example 27 <0.02 Example 30 0.56 Example 31 0.61 Example 34 0.2 Example 35 0.17 Example 36 0.2 Example 37 0.1 Example 38 0.1 Example 44 0.1 Example 47 <0.01 Example 48 0.9 Example 51 0.2 Example 52 1.61 Example 53 1.6 Example 54 1.3 Example 56 0.5 Example 57 1.65 Example 58 0.2 Example 59 0.1 Example 60 0.99 Example 61 0.1 Example 63 0.43 Example 68 0.35 Example 69 0.3 Example 70 0.4 Example 71 0.45 Example 72 0.2 Example 73 0.27 Example 74 0.45 Example 75 0.4 Example 76 0.2 Increasing values of tPSA are typically associated with lower permeability. FIG. 1 illustrates the Relationship between tPSA and Permeability (Papp, as measured in the PAMPA assay) of Example compounds. Compounds with higher tPSA values trend toward lower permeability. 3. Pharmacological Test Example 3 Pharmacodynamic Model: Effect of Test Compounds on Fluid Content of Intestinal Compartments Normal female Sprague Dawley rats, 7 weeks old, were acclimated for at least 2 days. The animals were fed ad lib through the experiment. Groups of 5 rats were orally gavaged with 1.5 mL of water containing a negative control compound or test compounds, adjusted to a concentration that results in a dose of 10 mg/kg. Six hours after dosing, rats were euthanized with isofluorane. The cecum and colon were ligated and then removed. After a brief rinse in saline and pat-drying, the segments were weighed. The segments were then opened, and the contents collected and weighed. The collected contents were then dried, and weighed again. The % water content was reported as 100×((Ww−Wd)/Ww) where Ww is the weight of the wet contents, and Wd is the weight of the contents after drying. The differences between groups are evaluated by one way ANOVA with Bonferroni post tests. Examples are shown in FIGS. 2A and 2B (wherein rats were dosed orally with 10 mg/kg of compound (Example or Control), and then after 6 hours, cecum and colon contents were removed, weighed and dried, and the % water in the contents was determined: *, P<0.05 and ***, P<0.01 compared to control in ANOVA analysis). 4. Pharmacological Test Example 4 Determination of Compound Cmax and AUC Sprague-Dawley rats were orally gavaged with test article (2.5 mg/kg) and serum was collected at 0.5, 1, 2 and 4 h. Serum samples were treated with acetonitrile, precipitated proteins removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. Table 10 illustrates data from the pharmacokinetic profiling of selected example compounds. All compounds were orally dosed at the dosage shown, and pharmacokinetic parameters determined as described in the text. TABLE 10 Pharmacokinetic Profiling of Selected Example Compounds Actual Oral Dose Cmax AUC Example (mg/kg) (ng/mL) (ng × hr/mL) Example 01 2.1 21 53 Example 16 1.6 71 159 Example 31 1.3 11 56 Example 35 2.2 2.4 5 Example 50 2.3 93 242 Example 52 4.6 14 9 Example 55 2.2 9 23 Example 60 2.4 2 0 Example 63 2.4 0 0 Example 211 0.7 <2.3 <3.0 Example 212 1.5 <2.7 <4.4 Example 213 9.5 <5.0 <5.0 Example 214 2.6 <5.0 <5.0 Example 215 7.7 <2.0 <2.0 Example 216 1.9 <4.0 <8.3 Example 217 9.1 <10.0 <10.0 Example 204 10.9 <2.0 <2.0 Example 218 9 <1.0 <1.0 Example 169 11 <3.5 <4.0 Example 205 10.7 <2.0 <2.0 Example 225 27 <3.5 <5.3 Example 226 31 <3.0 <5.0 Example 172 26 <2.0 <2.0 Example 228 23 <5.0 <5.0 Example 230 17 <5.0 <5.0 Example 173 28 23 19 Example 174 27 <5.4 <5.0 Example 208 12 <5.0 <5.0 Example 231 23 <2.5 <3.0 Example 232 17 <2.0 <2.0 Example 233 19 <2.6 <6.8 Example 234 22 <2.0 <2.0 Example 235 11 <5.0 <5.0 Example 175 28 8 6 Example 177 14 <3.2 <4.0 Example 178 18 <2.0 <2.0 Example 179 27 <16.0 <35.0 Example 180 25 <10.0 <19.0 Example 181 28 <2.0 <2.0 Example 185 17 <2.0 <2.0 Example 186 15 <3.4 <5.0 Example 244 16 <7.0 <15.0 Example 245 21 <2.0 <2.0 5. Pharmacological Test Example 5 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: CRF/ESRD Model Male Sprague-Dawley rats with subtotal (⅚th) nephrectomy, 7 weeks old and weighing 175-200 g at surgery time, are purchased from Charles River Laboratories. The animals are subjected to acclimation for 7 days, and randomly grouped (using random number table) before proceeding to experiments. During acclimation, all animals are fed with base diet HD8728CM. The rats are housed in holding cages (2/cage) during the acclimation period and the time between sample collections. The rats are transferred to metabolic cages on the days of sample collections. Food and water is provided ad libitum. Chronic renal failure is induced in the rats by subtotal (⅚th) nephrectomy (Nx) followed by intravenous (IV) injection of adriamycin (ADR) at 2 weeks post-nephrectomy, at a dose of 3.5 mg/kg body weight. Animals are then randomized into control and treatment groups with 10 rats per group. Rats in untreated group are fed with base diet and rats in the treatment groups are fed the same chow supplemented with NHE-3 inhibitor/fluid holding polymer at various doses. All the groups are maintained for 28 days. Serum samples are collected at day (−1) (1 days before ADR injection), days 14 and 28 post ADR treatment. Twenty four hour urine and fecal samples are collected at day (−1), days 14 and 28 post ADR treatment and stored at −20° C. for later analysis. Body weight, food and water consumption are measured at the same time points as urine collections. Serum and urine chemistry (Na, K, Ca, Cl) are determined using an ACE Clinical Chemistry System (ALFA WASSER MANN Diagnostic Technologies, LLC). Fecal electrolyte (Na, K, Ca, Cl) excretions are determined by IC. Fluid balance are also determined via amount of fluid intake (in drinking water) subtracted by combined fecal water amount and urine volume. Tissues (heart, kidney and small intestine) are harvested at the end of experiments for later histopathological analysis. The third space (pleural fluids and ascites) body fluid accumulation are scored semi-quantitatively as follows: grade 0, no fluid accumulation; grade 1, trace amount of fluids; grade 2, obvious amount of fluids; grade 3, both cavities full of fluids; grade 4, fluids overflowed once the cavities are opened. Each score of body fluid accumulation is confirmed and agreed on by 2 investigators. Animals treated with NHE-3 inhibitor/fluid holding polymer show decreased serum aldosterone, decreased 24 hr urine volume and decreased urine K excretion, and increased urine Na excretion compared to no treatment group. Treated animals also have increased fecal Na and fluid excretion, compared to control group. Compared to untreated rats which show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 5 g per day. Treatment of NHE-3 inhibitor/fluid holding polymer in CRF rats is associated with less edema in heart, kidney and small intestine tissues, less hypertrophy in heart, less third space fluid accumulation, and lower body weight at the end of experiment compared to untreated group. 6. Pharmacological Test Example 6 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Congestive Heart Failure Model CHFs are introduced to male Sprague Dawley rats, 7-8 weeks old fed ad lib regular diet and ad lib 10% ethanol in drinking water, and gavaged with a daily dose of 6.3 mg cobalt acetate for 7 days. Then CHF rats are gavaged with a daily dose of 4 mg of furosemide for 5 days, inducing resistance to furosemide diuretic effects. The rats are then randomly divided into 2 groups, control and treatment, and the treatment group administered NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer have decreased serum aldosterone levels, decreased 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to control group. Animals treated with NHE-3 inhibitor/fluid holding polymer have, for example, increased fecal Na and fluid excretion. Compared to untreated rats, which show a positive fluid balance of, for example, 4 g per day, treated animals demonstrate a fluid loss of 5 g per day. 7. Pharmacological Test Example 7 Evaluation of NHE-3-Inhibitory Compounds in Disease Models with Na/H2O Retention: Hypertension Model Male Dahl salt-sensitive rats are obtained from Harlan Teklad. After acclimation, animals are randomly grouped and fed diet containing 8% NaCl±NHE-3 inhibitor/fluid holding polymer for 7 days. Day 0 and day 7 post treatment systolic BP, serum aldosterone levels, urine volume, urine Na and K excretions are measured. Fluid balance is also determined via amount of fluid intake (in drinking water) subtracted by combined fecal fluid amount and urine volume. Animals treated with NHE-3 inhibitor/fluid holding polymer would show decreased systolic BP, serum aldosterone levels, 24 hr urine volume and urine K excretion, and increased urine Na excretion compared to no treatment group. Animals treated with NHE-3 inhibitor/fluid holding polymer would also show increased fecal fluid excretion. Compared to untreated rats which would show positive fluid balance of 4 g per day, animals treated with NHE-3 inhibitor/fluid holding polymer demonstrate a fluid loss of 2 g per day. 8. Pharmacological Test Example 8 Na Transport Inhibition Study on Colonic Tissues Immediately following euthanasia and exsanguinations of the rats, the entire distal colon is removed, cleansed in ice-cold isotonic saline, and partially stripped of the serosal muscularis using blunt dissection. Flat sheets of tissue are mounted in modified Ussing chambers with an exposed tissue area of 0.64 cm2. Transepithelial fluxes of 22Na+ (Perkin Elmer Life Sciences, Boston, Mass.) are measured across colonic tissues bathed on both sides by 10 ml of buffered saline (pH 7.4) at 37° C. and circulated by bubbling with 95% O2−5% CO2. The standard saline contains the following solutes (in mmol/1): 139.4 Na+, 5.4 K, 1.2 Mg2+, 123.2 Cl−, 21.0 HCO3−, 1.2 Ca2+, 0.6 H2PO4−, 2.4 HPO2−, and 10 glucose. The magnitude and direction of the net flux (Jnet Na) is calculated as the difference between the two unidirectional fluxes (mucosal to serosal, Jms Na and serosal to mucosal, Jsm Na) measured at 15-min intervals for a control period of 45 min (Per I), under short-circuit conditions. In some series, Per I is followed by a second 45-min flux period (Per II) to determine the acute effects of NHE inhibitors. 9. Pharmacological Test Example 9 Pharmacodynamic Model: Effect of Test Compounds and FAP on Consistency and Form of Rat Stools Normal rats are given a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer mixed in their diet at escalated doses. Distilled water is available at libitum. Clinical data monitored are body weight, food intake, water intake, fecal and urinary output. Urinary Na, K and creatinine are measured by a Clinical Analyzer (VetAce; Alfa Wassermann Diagnostic Technologies, LLC, West Caldwell, N.J.). The consistency of the stools expelled within 24 h after the administration of each drug or vehicle is reported as follows: when the feces are unformed, i.e., muddy or watery, this is judged to be diarrhea and the percentage diarrhea is reported as the ratio of the number of animals producing unformed stools to the number tested. All of the feces is collected just after each evacuation and put into a covered vessel prepared for each animal in order to prevent the feces from drying. To investigate the duration of activity of each drug, the feces collected over each 8-h period is dried for more than 8 h at 70° C. in a ventilated oven after the wet weight is measured. The fecal fluid content is calculated from the difference between the fecal wet weight and the dry weight. Fecal Na and K is analyzed by ion Chromatography (Dionex) after acid digestion of the feces specimen. 10. Pharmacological Test Example 10 Effect of Test Compounds and FAP on CKD Rats Male Sprague-Dawley rats (275-300 g; Harlan, Indianapolis, Ind.) are used and have free access to water and Purina rat chow 5001 at all times. A ⅚ nephrectomy is performed to produce a surgical resection CRF model and the treatment study is performed 6 wk after this procedure. In one control group, CRF rats are given access to Purina rat chow; in treated groups, CRF rats are given access to Purina rat chow mixed with the article, i.e. a NHE-3 inhibiting compound and optionally a fluid-absorbing or -holding polymer. The treatment period is 30 days. Systolic blood pressure is monitored in all animals with the use of a tail sphygmomanometer (Harvard Apparatus, South Natick, Mass.). All rats are euthanatized by an intraperitoneal injection of pentobarbital (150 mg/kg body wt), and blood is collected by cardiac puncture for serum Na+ (Roche Hitachi Modular P800 chemistry analyzer; Roche Diagnostics, Indianapolis, Ind.) and creatinine determination (kit 555A; Sigma Chemical, St. Louis, Mo.). Sodium and creatinine is also determined in a urine specimen collected over 24 h immediately before euthanasia. 11. Pharmacological Test Example 11 Effect of Test Compounds on Intestinal Fluid Accumulation in Suckling Mice Institute of Cancer Research/Harlan Sprague-Dawley (ICR-HSD) suckling mice, 2 to 4 days old (2.1±1.0 g), are dosed orally with 0.1 mL of test solution (vehicle (1 mmol/L HEPES) or NHE inhibitor dissolved in vehicle). After dosing, the mice are kept at room temperature for 3 hours, then killed, the intestinal and body weights measured, and a ratio of the intestinal weight to remaining body weight is calculated. A ratio of 0.0875 represents one mouse unit of activity, indicating significant fluid accumulation in the intestine. 12. Pharmacological Test Example 12 Determination of Water-Absorbing Capacity This test is designed to measure the ability of a polymer to absorb 0.9% saline solution against a pressure of 50 g/cm2 or 5 kPa. The superabsorbent is put into a plastic cylinder that has a screen fabric as bottom. A weight giving the desired pressure is put on top. The cylinder arrangement is then placed on a liquid source. The superabsorbent soaks for one hour, and the absorption capacity is determined in g/g. This test principle is described in the European Disposables And Nonwovens Association (EDANA) standard EDANA ERT 442—Gravimetric Determination of Absorption under Pressure or Absorbency Under Load (AUL), or in the AUL-test found in column 12 in U.S. Pat. No. 5,601,542, the entire contents of which are incorporated herein by reference for all relevant and consistent purposes. Any of these two methods can be used, or the simplified method described below. Equipment: A plastic cylinder having a screen fabric made of steel or nylon glued to the bottom. The fabric can have mesh openings of 36 μm (designated “400 mesh”), or in any case smaller than the smallest tested particles. The cylinder can have an internal diameter of 25.4 mm, and a height of 40 mm. A larger cylinder can also be used, such as the apparatus in the EDANA standard ERT 442—Gravimetric Determination of Absorption under Pressure. A plastic piston or spacer disc with a diameter slightly smaller than the cylinder's inner diameter. For a cup with a 25.4 mm inner diameter the disc can be 25.2 mm wide, 8 mm high, and weigh about 4.4 g. A weight that exerts a 50 g/cm2 pressure on the superabsorbent (in combination with the piston). For a 25.4 mm inner diameter cylinder (=5.067 cm2) and a 4.4 g piston, the weight should have a mass of 249 g. Glass or ceramic filter plate (porosity=0). The plate is at least 5 mm high, and it has a larger diameter than the cylinder. Filter paper with a larger diameter than the cylinder. Pore size <25 μm. Petri dish or tray 0.9% NaCl solution Procedure: Put the glass filter plate in a Petri dish, and place a filter paper on top. Fill the Petri dish with 0.9% NaCl solution—up to the edge of the filter plate. Weigh a superabsorbent sample that corresponds to a 0.032 g/cm2 coverage on the cylinder's screen fabric (=0.16 g for a cylinder with a 25.4 mm inner diameter). Record the exact weight of the sample (A). Carefully distribute the sample on the screen fabric. Place the plastic piston on top of the distributed sample, and weigh the cylinder assembly (B). Then mount the weight onto the piston. Place the assembly on the filter paper, and let the superabsorbent soak for 60 minutes. Remove the weight, and weigh the assembly with the swollen superabsorbent (C). Calculate the AUL in g/g according to this formula: C−B. 13. Pharmacological Test Example 13 Pharmacodynamic Model: Effect of Test Compounds on Fecal Water Content Normal female Sprague Dawley rats (Charles-River laboratories international, Hollister, Calif.), 7-8 weeks old with body weight 175-200 g were acclimated for at least 3 days before proceeding to experiments. The animals were provided food (Harlan Teklad 2018c) and water ad lib. through the experiment. Animals were randomly grouped with 6 rats per group. The experiments were initiated by orally dosing test compounds at 3 mg/kg in volume of 10 ml/kg. Rats from control group were gavaged with the same volume of vehicle (water). After dosing, rats were placed in metabolic cages for 16 hrs (overnight). Food and water consumption were monitored. After sixteen hours, feces and urine were collected. The percent of fecal water was measured by weighing fecal samples before and after drying. Representative data of % fecal water content are shown in Table 11 (data are expressed as means, with 6 animals per data point). The differences between control and treated groups were evaluated by one way ANOVA with Dunnett post tests. Results are significant if p<0.05. TABLE 11 % Fecal % Fecal water (% of Example water control) Significant? 224 65% 125% Y 234 58% 117% Y 239 58% 114% Y 178 59% 118% Y 237 60% 120% Y 238 60% 121% Y 177 60% 121% Y 244 61% 118% Y 236 64% 128% Y 250 60% 120% Y 200 62% 124% Y 201 63% 127% Y 202 63% 134% Y 203 61% 130% Y 14. Pharmacological Test Example 14 Pharmacodynamic Model: Effect of Test Compounds on Urinary Sodium Levels It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in reduced levels of sodium in the urine. To test this, the protocols in Example 13 were repeated, but urine was collected in addition to feces. Urine sodium levels were analyzed by ion chromatography (IC), and the amount of sodium excreted in the urine was corrected for variations in sodium intake by measuring food consumption. In addition, test compounds were administered at several dose levels to demonstrate a dose-response relationship. As shown in FIGS. 3A and 3B for Examples 201, 244, and 260, where as rats excrete about half the sodium they consume in urine, in rats treated with increasing doses of NHE-3 inhibitor, the amount of sodium excreted in the urine diminishes significantly and dose dependently. 15. Pharmacological Test Example 15 Pharmacodynamic Model: Dose Dependent Effect of Test Compound on Fecal Water Content Rats were monitored for fecal water content as in Example 13, and the test compound was administered at several dose levels to demonstrate a dose-response relationship. As shown in FIG. 4, in rats treated with increasing doses of the NHE-3 inhibitor tested (i.e., Example 87), the fecal water content increased significantly and dose dependently. 16. Pharmacological Test Example 16 Pharmacodynamic Model: Addition of a Fluid Absorbing Polymer to Chow Rats were monitored for fecal water content as in Example 13, with the addition of a second group that were fed chow with the addition of 1% Psyllium to their diet. In addition to fecal water and urinary sodium, fecal form was monitored on a scale of 1-5, where 1 is a normal pellet, 3 indicates soft and unformed pellets, and 5 indicates watery feces. As shown in FIGS. 5A, 5B and 5C, supplementing the diet with Psyllium resulted in a slight reduction of fecal stool form, but without impacting the ability of the test compound (i.e., Example 224) to increase fecal water content or decrease urinary sodium. 17. Pharmacological Test Example 17 Pharmacodynamic Model: Effect of Test Compounds on Acute Stress-Induced Visceral Hypersensitivity in Female Wistar Rats Female Wistar rats weighing 220-250 g were prepared for electromyography. The animals were anaesthetized, and three pairs of nichrome wire electrodes were implanted bilaterally in the striated muscles at 3 cm laterally from the midline. The free ends of electrodes were exteriorised on the back of the neck and protected by a glass tube attached to the skin. Electromyographic recordings (EMG) were begun 5 days after surgery. The electrical activity of the abdominal striated muscles were recorded with an electromyograph machine (Mini VIII; Alvar, Paris, France) using a short time constant (0.03 sec.) to remove low-frequency signals (<3 Hz). Partial restraint stress (PRS), a relatively mild stress, was performed as follows. Briefly, animals were lightly anaesthetized with ethyl-ether, and their freeholders, upper forelimbs and thoracic trunk were wrapped in a confining harness of paper tape to restrict, but not prevent their body movements and placed in their home cage for 2 hours. Control sham-stress animals were anaesthetized but not wrapped. PRS was performed between 10:00 and 12:00 AM. Colorectal distension (CRD) was accomplished as follows: rats were placed in a plastic tunnel, where they were not allowed to move or escape daily during 3 consecutive days (3 h/day) before any CRD. The balloon used for distension was 4 cm in long and made from a latex condom inserted in the rectum at 1 cm of the anus and fixed at the tail. The balloon, connected to a barostat was inflated progressively by steps of 15 mmHg, from 0, 15, 45 and 60 mmHg, each step of inflation lasting 5 min. CRD was performed at T+2 h15 as a measure of PRS induced visceral hyperalgesia±test compound or vehicle. To determine the antinociceptive effect of test compounds on stress-induced visceral hypersensitivity, test compounds were administered 1 h before CRD in 6 groups of 8 female rats. For each parameter studied (the number of abdominal contractions for each 5-min period during rectal distension) data is expressed as mean±SEM. Comparisons between the different treatments were performed using an analysis of variance (ANOVA) followed by a Dunnett post test. The criterion for statistical significance is p<0.05. FIG. 6 shows the results of this test using the compound illustrated in Example 224 dosed orally at 10 mg/kg, and shows that at 45 and 60 mm Hg, inhibition of NHE-3 in rats surprisingly reduces visceral hypersensitivity to distension (p<0.05). 18. Pharmacological Test Example 18 Pharmacodynamic Model: Effect of Test Compounds on Fecal Sodium Levels It is anticipated that the reduction of absorption of sodium from the intestine will be reflected in increase levels of sodium in the feces. To test this, the protocols in Example 13 were repeated. After drying of feces to determine water content, 1M HCl was added to dried ground feces to a concentration of 50 mg/mL and extracted at room temperature on rotator for 5 days. Sodium content was analyzed by ion chromatography (IC). As shown in FIGS. 7A and 7B for Example 224, in rats treated with an NHE-3 inhibitor, the amount of sodium excreted in the feces significantly (p<0.05 by t-test). 19. Pharmacological Test Example 19 Determination of Compound Remaining in Feces Sprague-Dawley rats were orally gavaged with test article. A low dose of compound (0.1 mg/kg) was selected so that feces would remain solid and practical to collect. For both Examples 202 and 203, three rats were dosed, and following dosage of compounds, the rats were placed in metabolic cages for 72 hours. After 72 hours, fecal samples were recovered and dried for 48 hours. Dried fecal samples were ground to a powdered from, and for each rat, 10 replicates of 50 mg samples were extracted with acetonitrile. Insoluble materials were removed by centrifugation and supernatants analyzed by LC/MS/MS and compared against a standard curve to determine compound concentration. The amount of compound actually dosed was determined by LC/MS/MS analysis of the dosing solutions. The total amount of compound present in the 72-hour fecal samples was compared to the total amount of compound dosed, and reported as percentage of total dose recovered. The results, shown in Table 12, demonstrate near quantitative recovery of Examples 202 and 203 in 72-hour fecal samples. TABLE 12 Recovery of dosed compounds from 72-hour fecal samples % Recovery ± SD Example 202 Example 203 Rat 1 93.8 ± 11.8 100.3 ± 6.7 Rat 2 90.5 ± 5.5   75.8 ± 8.2 Rat 3 92.4 ± 10.6 104.4 ± 7.1 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety to the extent not inconsistent with the present description. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. 14592200 ardelyx, inc. USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:04PM Mar 30th, 2022 06:04PM Ardelyx Health Care Pharmaceuticals & Biotechnology

Request a demo to view additional historical data, and much more.

Make fast
queries

No longer rely on engineers to access data; build and share queries with intuitive tools, and derive insights in real time.

Bookmark queries with your team

Save and share custom queries using a private bookmarking feature, accessible to your whole team.

Be first to know with alerts

Scan data points across millions of companies and receive emails when relevant metrics cross critical thresholds.

Visualize data for quick insights

Create custom keyword-based word clouds, charts, and advanced visualizations to quickly analyze the data.

Map competitor locations

Analyze competitor presence and growth over time by overlaying store locations with the Nearby Competitor feature.

Add widgets to your dashboards

Access existing maps, charts, word clouds, and other visualizations to understand your data quickly. Or build custom widgets to view data just the way you want it.