Patent Grants Data

Patents granted to organizations.
Ticker Symbol Entity Name Publication Date Filing Date Patent ID Invention Title Abstract Patent Number Claims Number of Claims Description Application Number Assignee Country Kind Code Kind Code Description url Classification Code Length of Grant Date Added Date Updated Company Name Sector Industry
private:theranos Theranos Nov 20th, 2018 12:00AM Aug 3rd, 2015 12:00AM https://www.uspto.gov?id=US10130283-20181120 Medical device for analyte monitoring and drug delivery The invention relates to an ingestible, implantable or wearable medical device comprising a microarray which comprises a bioactive agent capable of interacting with a disease marker biological analyte; a reservoir which comprises at least one therapeutic agent and is capable of releasing the therapeutic agent(s) from the medical device; and a plurality of microchips comprising a microarray scanning device capable of obtaining physical parameter data of an interaction between the disease marker biological analyte with the bioactive agent; a biometric recognition device capable of comparing the physical parameter data with an analyte interaction profile; optionally a therapeutic agent releasing device capable of controlling release of the therapeutic agent from the reservoirs; an interface device capable of facilitating communications between the microarray scanning device, biometric recognition device and the therapeutic agent releasing device; and an energy source to power the medical device. Specifically, the invention relates to a medical device capable of detecting an analyte in a bodily fluid comprising at least one microneedle capable of obtaining a sample of a bodily fluid, a first microchannel through which the sample flows and is in fluid communication with the at least one microneedle, a second microchannel in fluid communication with the first microchannel, through which a buffer flows, wherein the second channel comprises a microarray with a bioactive agent, a microarray scanning device to detect an interaction between the bioactive agent and the analyte in the bodily fluid; and an interface device. 10130283 1. An ingestible medical device, comprising: a microchip enclosed in the ingestible medical device, the microchip comprising an interface device that is configured to wirelessly transmit a signal that is generated upon interaction of the device with gastric fluid to an external device located outside the subject, and is configured to transmit a physiological condition of the subject and a biocompatible coating covering at least a portion of the device, wherein a portion of the coating is characterized by interconnected pores of sufficient size to allow for flow of bodily fluids into the ingestible medical device and another portion of the coating covering a larger portion of device that is not porous, wherein in response to being ingested by a subject, the device is configured to interact with a gastric fluid, and wherein the device is configured to measure the physiological condition of the subject. 2. The device of claim 1, further comprising a therapeutic agent releasing device having a reservoir to control the release of a therapeutic agent. 3. The device of claim 2, wherein the therapeutic agent releasing device signals the external device a status of therapeutic agent release. 4. The device of claim 1, wherein the external device is a computer. 5. The device of claim 4, wherein the external device is in communication with an external network. 6. The device of claim 1, wherein the interface device comprises a personal area network. 7. The device of claim 1, wherein the signal indicates a bio-electric, bio-magnetic, or biochemical characteristic of the device's interaction with the gastric fluid. 8. The device of claim 1, further comprising: an identifier that identifies an analyte at a target site, wherein the interface device is configured to transmit a signal that identifies the analyte. 9. The device of claim 8, wherein the identifier identifies the analyte in real time. 10. The device of claim 8, wherein the analyte is a drug or drug metabolite. 11. The device of claim 8, wherein the target site is along a path of digestion where the device interacts with gastric juices. 12. The device of claim 8, further comprising: a therapeutic agent releasing device having a reservoir configured to control the release of a therapeutic agent. 13. The device of claim 8, wherein the therapeutic agent releasing device signals the external device a status of therapeutic agent release. 14. The device of claim 8, wherein the external device is worn on the skin as a patch. 14 This application is a continuation application of U.S. Ser. No. 11/202,206, filed on Aug. 12, 2005, which is a divisional application of U.S. patent application Ser. No. 10/937,872, filed on Sep. 10, 2004, now U.S. Pat. No. 7,291,497, which claims the priority of U.S. provisional application 60/501,847, filed on Sep. 11, 2003. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the fields of diagnosis and drug delivery. More particularly it relates to medical devices and methods capable of monitoring levels of a bodily fluid analyte and optionally releasing of appropriate therapeutic agents. 2. Background “Point of care” devices that are capable of detecting biological macromolecular activity or drug concentration levels are in high demand because they eliminate the need for patient lab visits, thus providing savings in both time and expense. One of the most valuable aspects of modern microarray technology is the ability to detect biological macromolecular dysfunction, malformation or mutation resulting in disease. However, this capability has not been fully exploited because such arrays have not been incorporated into ingestible, implantable or wearable point of care devices. Modern microarray technology is limited to characterization of biological macromolecules and their metabolites by analysis of immobilized analytes stabilized on slides to be inserted into a machine or analyzed manually outside of living organisms. Because whole blood contains cells, platelets, a myriad of proteins and other macromolecules, assays involving blood typically require pre-processing of the sample to remove these components. Integrating pre-processing steps into a point of care device drives up the cost of the device itself, thus making use of the device financially unviable. For example, some devices currently on the market using whole blood in their assays; among them are Boehringer Mannheim's Reflotron™ system for measuring blood borne analytes (most notably cholesterol) and the iStat™ (iStat Inc.), which performs a number of critical care assays, including electrolytes, general chemistries, blood gases and hematology. The Reflotron™ relies on dry chemistry technology in which enzymes or other reactive elements are immobilized on the surface of a test strip. The assay is a calorimetric activity assay in which the reaction produces a color change and is thus indicative of the amount of analyte present. The iStat™ relies on electrochemical detection to produce a signal. In either case, a blood sample is taken separately (typically by a finger prick) and then placed on the chip (or cartridge in the case of the iStat), where the reaction occurs and is analyzed by an external detection unit. These existing monitoring systems are insufficient and inconvenient as they usually require the user to prick themselves and multiple steps to obtain a result. As such, there is a need for a wearable device that can repeatedly, automatically and accurately monitor bodily fluids such as blood. Point of care devices are also useful in certain situations where systemic biological samples such as blood, urine or stool, cannot provide adequate information as to subtle molecular changes at the situs of disease. In such a case, even if the clinician could pinpoint the exact situs of an ailment, obtaining a biological sample for analysis comes only at great risk, pain and expense for the patient. Additionally, a point of care device would be desirable where the systemic administration of drug agents, such as by transdermal or intravenous means, treats the body as a whole even though the disease to be treated may be localized. Here, systemic administration may not be desirable because the drug agents often have unwanted effects on parts of the body that are not intended to be treated, or because treatment of the diseased part of the body requires a high concentration of drug agent that may not be achievable by systemic administration. For example, when administered to a patient systemically, some drugs (e.g., chemotherapeutic drugs such as those used to treat cancer and other proliferative disorders) may cause undesirable side effects. It is therefore often desirable to detect disease and administer drug agents at a localized sites within the body. As such there is a demand for point of care devices capable of detecting biological macromolecular activity or drug concentration levels that may also administer a specific therapeutic agent at a localized site within the body in response to changes in biological macromolecular activity or drug concentration levels. All articles, publications and patents cited herein are incorporated by reference in their entirety for all purposes. Additionally, provisional patent application Ser. No. 60/501,847 filed Sep. 11, 2003, is hereby incorporated by reference. SUMMARY OF THE INVENTION One aspect of the invention relates to a medical device comprising a microarray which comprises a bioactive agent capable of interacting with a disease marker biological analyte; a reservoir which comprises at least one therapeutic agent and is capable of releasing the therapeutic agent(s) from the medical device; and a plurality of microchips comprising a microarray scanning device capable of obtaining physical parameter data of an interaction between the disease marker biological analyte with the bioactive agent; a biometric recognition device capable of comparing the physical parameter data with an analyte interaction profile; a therapeutic agent releasing device capable of controlling release of the therapeutic agent from the reservoirs; an interface device capable of facilitating communications between the microarray scanning device, biometric recognition device and the therapeutic agent releasing device; and an energy source to power the medical device. In one embodiment of this aspect of the invention the device is coated and the coating is a biostable polymer which may have channels. In another embodiment of this aspect of the invention, the polymer is porous. In a different embodiment, bodily fluids are transported through microfluidic lanes which move molecules by means of pressure differences over the microarray. In one embodiment, an osmotic pump is used to propel the fluids through the top portion of the device. In another embodiment fluid transport is powered by natural electric currents in the body conducted through Personal Area Network technology. In yet another embodiment of this aspect of the invention, the microarray comprises microbeads. In another embodiment, the bioactive agent is a nucleic acid. In yet another embodiment, the bioactive agent is a polypeptide. In yet another embodiment, the bioactive agent is an immunoglobulin. In an additional embodiment of the medical devices of the invention, the bioactive agent is fluorescently labeled. In another embodiment, the bioactive agent is fluorescently labeled with a nanocrystal. In yet another embodiment, the disease marker biological analyte is a nucleic acid. In a further embodiment, the disease marker biological analyte is a polypeptide. In another embodiment, the disease marker biological analyte is an immunoglobulin. In yet a further embodiment, the plurality of microchips comprise silicon germanium. In another embodiment, the microarray scanning device comprises fiber optic elements. In an additional embodiment, the analyte interaction profile is stored in the biometric recognition device. In an alternative embodiment, the analyte interaction profile is stored externally from the medical device. In another embodiment, the medical device has a plurality of reservoirs. In an additional embodiment, the interface device comprises a personal area network. In an additional embodiment, the energy source is a battery. In an alternate embodiment, the energy source is provided by a personal area network. Another aspect of the invention relates to a method of detecting and treating a disease in a patient comprising administering to the patient a coated medical device comprising a microarray comprising a bioactive agent capable of interacting with a disease marker biological analyte; at least one reservoir comprising at least one therapeutic agent and capable of releasing the at least one therapeutic agent from the medical device; a plurality of microchips comprising a microarray scanning device capable of obtaining physical parameter data of an interaction between the disease marker biological analyte with the bioactive agent; a biometric recognition device capable of comparing the physical parameter data with an analyte interaction profile; a therapeutic agent releasing device capable of controlling release of the therapeutic agent from the reservoir; and an interface device capable of facilitating communications between the microarray scanning device, the biometric recognition device and the therapeutic agent releasing device; an energy source to power the medical device; and biocompatible coating enabling the medical device to be swallowed, pass through the patient's intestinal tract and be naturally excreted. In one embodiment of the method the coating is a biostable polymer which may have channels. In another embodiment, the polymer is porous. In yet another embodiment of the method, the microarray comprises microbeads. In another embodiment, the bioactive agent is a nucleic acid. In yet another embodiment, the bioactive agent is a polypeptide. In yet another embodiment, the bioactive agent is an immunoglobulin. In an additional embodiment of the method of the invention, the bioactive agent is fluorescently labeled. In another embodiment, the bioactive agent is a fluorescently labeled with a nanocrystal. In yet another embodiment of the method, the disease marker biological analyte is a nucleic acid. In a further embodiment, the disease marker biological analyte is a polypeptide. In another embodiment, the disease marker biological analyte is an immunoglobulin. In yet a further embodiment of the method, the plurality of microchips comprise silicon germanium. In another embodiment of the method, the microarray scanning device comprises fiber optic elements. In an additional embodiment of the method, the analyte interaction profile is stored in the biometric recognition device. In an alternative embodiment, the analyte interaction profile is stored externally from the medical device. In another embodiment of the method utilizes a plurality of reservoirs. In an additional embodiment of the method, the interface device comprises a personal area network. In an additional embodiment of the method, the energy source is a battery. In an alternate embodiment, the energy source is provided by a personal area network. In an additional embodiment of the method, the communications are monitored by an external computer. In another embodiment, the external computer directs release of the therapeutic agent. Another aspect of the invention relates to a medical device capable of detecting an analyte in a bodily fluid comprising at least one microneedle capable of obtaining a sample of a bodily fluid, a first microchannel through which the sample flows and is in fluid communication with the at least one microneedle, a second microchannel in fluid communication with the first microchannel, through which a buffer flows, wherein the second channel comprises a microarray with a bioactive agent, a microarray scanning device to detect an interaction between the bioactive agent and the analyte in the bodily fluid; and an interface device capable of facilitating communications between said microarray scanning device and a biometric recognition device. In one embodiment, the bodily fluid is blood. In another embodiment, the at least one microneedle is a plurality of microneedles. In yet another embodiment the microneedle is between about 10 and about 200 microns in diameter. In a further embodiment, the microneedle is capable of drawing about 100 microliters of blood. In another embodiment, the first microchannel is about 100 micrometers in diameter. In an additional embodiment, the second microchannel is about 100 micrometers in diameter. In still a further embodiment, the analyte in the bodily fluid flowing through the first microchannel diffuses into the second microchannel and interacts with the bioactive agent. In another embodiment, the analyte in the bodily fluid flowing through the first microchannel diffuses into the second microchannel and competitively displaces labeled analyte from binding the bioactive agent. In a further embodiment, the labeled analyte is provided in a predetermined amount. In another embodiment, the labeled analyte is labeled with a fluorescent moiety. In yet another embodiment, the microarray is a portion of the second microchannel having a coating of an antibody specifically binding the analyte in the bodily fluid. In a further embodiment, the microarray scanning device comprises a total internal reflection fluorescence (TIRF) spectrometer. In another embodiment of this aspect of the invention the biometric recognition device is located outside of the device and the communication is through wireless transmission. In another embodiment, the analyte is insulin and the bioactive agent is an antibody specific for insulin. In yet a further embodiment, the analyte is glucose and the bioactive agent is an antibody specific for glucose. In still another embodiment, the device is a worn on the skin as a patch. In a further embodiment of this aspect of the invention, the analyte is indicative of disease. In another embodiment of this aspect of the invention, the medical device further comprises a reservoir having a therapeutic agent therein and a therapeutic agent releasing device, capable of controlling release of a therapeutic agent from a reservoir in response to an instruction from the biometric recognition device. In another embodiment, the analyte is glucose and the therapeutic agent is insulin. In a further embodiment, the analyte and the therapeutic agent are the same. In another embodiment of this aspect of the invention, the medical device has at least one disposable assay device which comprises the at least one microneedle, the first microchannel and the second channel and has a non-disposable assay reader device comprising the microarray scanning device the interface device. In a further embodiment, the assay device and assay reader device are in optical communication with one another. In yet a further embodiment there are a plurality of disposable assay devices fitted in a single assay reader device. In another embodiment, the microarray comprises an uncladded portion of a single glass optical fiber functionalized with the bioactive agent wherein the uncladded portion of single glass optical fiber is in fluid contact with the second microchannel. Alternatively, the microarray may comprise a plurality a uncladded portions of single glass optical fibers functionalized with the bioactive agent wherein the uncladded portions of single glass optical fibers are in fluid contact with the second microchannel. Additional advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only the preferred embodiment of the invention is shown and described, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail, in order not to unnecessarily obscure the present invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is schematic drawing of an exemplary medical device of the invention. The device has a biostable polymer coating 1 as well as an osmotic pump in this preferred embodiment 2 to facilitate fluid movement through the device's porous coating 3. The device comprises a microarray 4 comprising a bioactive agent capable of interacting with a disease marker biological analyte; a reservoir 10 comprising a therapeutic agent and capable of releasing therapeutic agent from the medical device; and a plurality of microchips 5, 7, 8, 9, 6,10, 12, 13 & 14 comprising; a microarray scanning device 7 capable of obtaining physical parameter data of an interaction between the disease marker biological analyte with the bioactive agent(s); a biometric recognition device 9 capable of comparing the physical parameter data with an analyte interaction profile; a therapeutic agent releasing device 10 capable of controlling release of therapeutic agent(s) from a plurality of reservoirs and checkpoints 13 & 14; and an interface device 8 capable of facilitating communications between the microarray scanning device 7, biometric recognition device 9 and the therapeutic agent releasing device 10; and an energy source to power the medical device 15. Additionally, the exemplary device contains transmitters for a personal area network 5 & 6 and transmission pathways for communication between the PAN and a hand-held computer monitor 15 or external computer network 16. Additionally, the exemplary device contains a compartment 11 for the mixing of therapeutic agents prior to release. FIG. 2. illustrates the inventive device in its external patch embodiment. It is worn on the skin and may be capable of releasing a therapeutic agent. Additionally, it is capable of interfacing with an external network. FIG. 3. illustrates a plurality of medical devices, here in the form of patches, in wireless communication with an external server. The external server may contain a biometric recognition device and pharmacokinetic database of physical parameters of the interaction between a bioactive agent and an analyte. FIG. 4(a) 100 micrometer diameter microneedle is roughly the diameter of human hair. FIG. 4(b) An array of silicon microneedles. FIG. 5(a) Illustrates various views of the inventive device in its patch embodiment 100. The exemplary patch is 2 cm in length and 0.5 cm in width. It is also has a thickness of about 1.5 mm. The patch contains a plurality of micro-needles 12. FIG. 5(b) Illustrates the internal features of the patch device. The device has a reservoir 13 into which a blood is pumped from the microneedles 12, a second reservoir containing a buffer 14 and common microchannel for laminar flow 15 which is the confluence of a buffer 15a and a blood inlet 15b, as well as a receptacle for waste 16. Additionally, the figure shows that the device may be separable in two components: A disposable layer having microneedles, microchannels and a microarray 100a and a non-disposable portion 100b in optical communication with the disposable portion having the microarray scanning device and other electronics. FIG. 6. Illustrates how the patch 100 may be packaged prior to application to a patient. The patch may be covered with a protective layer 17 and have a patch base 18 through with the microneedles will penetrate upon application. The base 18 provides the added benefit of maintaining sterility of the microneedles prior to application. An adhesive 19 serves to fasten the patch to the skin of the subject. Additionally, a protective cover 20 is provided which is removed to expose the adhesive layer 19. FIG. 7. Illustrates how a plurality of patches 100 may simultaneously be applied to a patient. Such a plurality of patches may then be sequentially activated to provide analyte detection of an extended period of time. FIG. 8(a) Side view of an exemplary laminar flow microchannel 15 in which blood is fed into one inlet 15b of a two inlet microchannel. The blood contains cells 21, a variety of proteins 25, and the analytes to be measured 22. The fluids flow in parallel streams with molecules passing across the interface only by diffusion. As shown in FIG. 8(b), only the small molecule analytes 22 reach the opposite wall where an equilibrium exchange takes place with fluorescently labeled analyte molecules 24 pre-bound to bioactive agents 23 on the surface. In this example, the channel wall coated with bioactive agents 23 constitutes the microarray. FIG. 9. Shows the concept of an evanescent field arising during total internal reflection. The evanescent field extends no more than one wavelength beyond the medium in which the light beam is traveling. FIG. 10. Illustrates how an optical fiber 26 utilizes total internal reflection fluorescence to detect changes in fluorescence indicative of an interaction between a bioactive agent and an analyte that occur at the microarray. The optical fiber may have multiple configurations. For example, it may run parallel along the length of the laminar flow channel 15. Alternatively, a plurality fibers may terminate in the channel and themselves be coated with bioactive agent. The first 15a and second 15b microchannels are in fluid communication with one another. Only small molecules will diffuse across the diffusional interface to the microarray i.e. functionalized sensor surface. Fluorescent detection by a TIRF spectrometer does not extend beyond one wavelength beyond the surface. FIG. 11. Illustrates an optical fiber 26 that is part of an microarray. The optical fiber has a cladded 31 and an uncladded portion 27. The distal uncladded portion 27 is functionalized with a bioactive agent that interacts with a target analyte in the bodily fluid being assayed. The proximal end of the fiber 26 is in optical communication with a portion of the microarray scanning device. This contact is facilitated by a connector 28. Beyond the connector an input directs light to fiber splitter 31 which directs light returning to through the fiber to a detector such as a photodiode detector 30. As discussed elsewhere, the functionalized uncladded portion of the fiber 27 may constitute a portion of the wall of the laminar flow micro-channel 15 or a plurality of fibers may protrude into the channel 15. FIG. 12. Illustrates an exemplary portion of a microarray and microarray scanning device utilizing a TIRF sensor. Incoming laser light from a laser 33 is directed through a multimode fiber 26 and the output leg of a 50:50 fiber optic splitter 31 onto the functionalized unlcad fiber 27. In the case of one assay the fluorophore-labeled analyte displaced from the bioactive agent by a competitive binding process resulting from the presence of analyte in the bodily fluid, and as a result the photonic energy coupled into the fiber at the evanescent wave is reduced. This reduction in light intensity is detected by the photo diode and associated amplifier. Emitted fluorescence characteristic of the interaction between an analyte 22 and a bioactive agent 23 couples back into the fiber and propagates towards the detector 30 with little interference from the laser light. A laser coupled to a fiber provides light at 660 nm. In one example, the system works with either a 200 μm core functionalized fiber and splitter or a 62.5 μm core functionalized fiber and splitter. The fiber core diameter is the same for the entire system. In either a 62.5 or 200 μm core system, higher order modes of the fiber (the edges of the core) are excited to both maximize the evanescent wave energy and make the 1×2 coupler perform more uniformly. This is different based on the fiber core diameter. FIG. 13. Illustrates the fluorescence and absorbance of the Atto 655 fluorophore. FIG. 14. An image of a model assay reader device worn on the human arm. FIG. 15. Is an image of a two the convergence in a microchannel of a stream of PBS flowing at 0.1 μl/s and a stream of blood at 0.02 μl/min. Visually, there is little mixing between the streams at the diffusional interface. However, molecules with higher diffusional coefficients will traverse the diffusional interface. FIG. 16. Is an image of the diffusional coefficients of cells, bovine serum albumin and vancomycin. FIGS. 17(a)-17(c) are illustrations of an exemplary device of the invention. FIG. 17(a) The figure shows that the device may be separable in two components: A disposable layer having microneedles, microchannels and a microarray 100a and a non-disposable portion 100b in optical communication with the disposable portion having the microarray scanning device and other electronics. FIG. 17(b) The disposable portion 100a of the patch contains a reservoir 13 into which a blood is pumped from the microneedles, a second reservoir containing a buffer 14 and common microchannel for laminar flow 15 which is the confluence of a buffer 15a and a blood inlet 15b, as well as a receptacle for waste 16. Additionally, the uncladed portion of a fiber optic comprising the microarray is shown 26. FIG. 17(c) shows several disposable and non-disposable portions together. DETAILED DESCRIPTION OF THE INVENTION In its most basic form, the invention relates to a medical device which acts as a sensor to qualitatively and/or quantitatively detect analytes in bodily fluids. Such analytes may potentially be indicative of disease or be drugs or drug metabolites. Additionally, the device may be capable of releasing therapeutic agent(s) in response to sensory inputs. As such, it may further provide continuous diagnosis and medication. The inventive devices may be implantable, ingestible or worn on the skin as a patch. The devices are capable of sampling analytes in biological fluids. Biological fluids include but are not limited to blood, serum, urine, gastric and digestive juices, tears, saliva, stool, semen, and interstitial fluids derived from tumorous tissues. Bodily fluid drawn into the medical device is brought into contact with a microarray which samples biological analytes in bodily fluids. Fluid may be released from the medical device and can contain therapeutic agent(s) released in response to the presence or absence of a particular analyte. Most preferably, bodily fluid movement into or out of the medical device is facilitated by a pump, such as a microfluidic or osmotic pump. In another embodiment, molecular transport is conducted through pressurized microfluidic lanes which cause fluids to flow over a microarray. In yet another embodiment molecules are transported by natural electric currents conducted by Personal Area Network (PAN) transmitters or piezoelectric or magnetic sensors. With respect to implantable embodiments, the device may be sealed to the tip of a catheter endoscope for realtime analysis and modeling of drug concentrations inside the body. For example the devices may associated with a vascular, gastric or biliary stent, for example. In another embodiment, the device is sealed to the inside of the stent. In another embodiment the devices are packaged in a polymer system which allows it to be implanted into the body, lenses which could be placed in the back of the eye, external sensors of gases and air pollution, and other objects in which real time monitoring is called for. In one embodiment, the device is in the form of a patch. FIG. 2. Preferably, the device is an adhesive patch that is applied externally to the skin to be used as a monitor of whole blood analytes. More preferably, blood analytes are drugs whose levels are monitored by the patch. Such drugs have narrow therapeutic ranges and are present in micromolar concentrations in the blood. Most preferably, the concentration and/or identity of target analyte molecules in the blood is measured directly on the patch and such information can then be transmitted to internal or external data storage systems. It is envisaged that the patch draws blood through the skin using at least one, if not a plurality, of microneedles. FIG. 4. Preferably, the microneedles are about the size of a human hair and have an integrated microreservoir or cuvette. The microneedle painlessly penetrates the skin and draws a tiny blood sample. More preferably, the microneedles collect about 0.01 to about 1 microliter, preferably, 0.05 to about 0.5 microliters and most preferably about 0.1-0.3 microliters of capillary blood and deliver them to a reservoir in the patch. Preferably, the microneedles are constructed out of silicon and are about 10 to about 200, preferably about 50 to 150 and most preferably 100 microns in diameter, making their application to the skin virtually painless. As the patch may most likely be placed on an area of the body less well perused than a fingertip, for example, capillary density is likely to be fairly low. In order to ensure that a capillary is actually struck by the needles, a plurality will be used for blood collection, as shown in FIG. 4. Preferably such microneedles are of the type marketed by Pelikan (Palo Alto, Calif.) and/or Kumetrix (Union City, Calif.) see also U.S. Pat. No. 6,503,231. In one embodiment envisages using polymer needles, some of which are coated in porous gels and polymers which enable separation of targeted molecules based on size and or specificity. Gels include but are not limited to polychlorimeride and porous polycarbonate elastomers. In general, microfabrication processes that may be used in making the microneedles disclosed herein include lithography; etching techniques, such as wet chemical, dry, and photoresist removal; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes, such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition, such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography. Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997). Alternatively, needles can be molded in silicon wafers and then plated using conventional wire cutting techniques with nickel, gold, titanium or various other biocompatible metals. In another embodiment, needles can be fashioned from biopolymers. Microneedles may be fabricated and employed for the claimed devices according to the methods of Mukerjee et al., Sensors and Actuators A: Physical, Volume 114, Issues 2-3, 1 Sep. 2004, Pages 267-275, which is hereby incorporated by reference in its entirety. It is also preferable that although the device is capable of taking multiple measurements, a micro-needle is only to be used once. Preferably, multiple blood draws are carried out by a mechanical actuator that inserts and withdraws the needle and also disposes the used needle and reloads a new needle. The mechanical technologies developed and manufactured in very high volumes for very small disk drives (e.g. IBM micro drive) have a similar set of motion and low cost requirements. Preferably, a micro actuator is a MEMS (micro machined electromechanical system) device fabricated using semiconductor-like batch processes. Such actuators include nickel titanium alloy, neumatic, or piezo electric devices. The smallest needles are about 1-10, preferably about 2-6 and most preferably about 4 microns in thickness but over about 10-100, preferably about 30-60, and most preferably about 40 microns in height. Alternatively, the needles are actuated by a spring-solenoid system in which a pin triggers the release of a miniaturized spring coiled tightly enough to generate sufficient force and range of motion necessary for actuation. In one embodiment, the inventive patch device has two separable components: a disposable component having a plurality of microneedles, microchannels and a microarray (assay device); as well as a non-disposable component having a microarray scanning device and the ability to transmit results of an analyte interaction with a bioactive agent on a microarray to a biorecognition device, preferably by wireless communications, e.g., by Bluetooth® (assay reader device)(see FIG. 5). In this embodiment, a used disposable component may be removed from the non-disposable component while the non-disposable portion remains in place on the subject's body. A fresh disposable component having fresh needles may then be applied to the non-disposable portion already in place on a patient's body. The fresh disposable component may be capable to quantitatively or qualitatively detecting the same or a different analyte as the previously used disposable component. FIG. 7. In this embodiment it is preferable to apply fresh disposable components once the micro-needles of the used disposable component become clogged with blood clots, for example. The non-disposable component may also contain one or more disposable components. In this set up, each of the disposable components is capable simultaneously detecting a different analyte. Alternatively, the disposable components each detect the same analyte yet are sequentially actuated in such a manner as to sample bodily fluid, e.g. blood, in discrete periods of time. In this set up, the device detects analyte over an extended period of time by deploying one disposable component after the other over a period of time. Preferably, the device has 12 disposable components and can detect an analyte over a 24 hour period by deploying a new disposable component every 2 hours. In swallowable or implantable embodiments, it is preferable to coat the device with a “biostable polymer,” which refers to those materials that do not undergo significant degradation upon prolonged exposure (e.g., up to one week, six months, a year, or longer) to bodily fluids, tissues, and the like and thus enables the device to pass through the entirety of the intestinal tract. It is preferred that fluid is drawn into and released from the medical device either through pores or channels in the polymer. FIG. 1. The biostable coating materials of certain embodiments of this aspect of the invention are porous polymer materials that are characterized by interconnected pores of sufficient size to allow for the flow of bodily fluids into the medical device and the release therefrom, of therapeutic agents. The porous polymer materials are preferably characterized by an average pore diameter of at least about 5 microns, more preferably at least about 8 microns, and more preferably at least about 10 microns. Suitable polymers for use in embodiments wherein a porous structure is obtained by freeze-drying include any suitable biostable polymer, such as polyurethanes (including polyurethane dispersions), ethylene vinylacetate polymers, hydrogels such as crosslinked gelatin, dextran, polycarboxylic acids, cellulosic polymers, gelatin, polyvinylpyrrolidone, maleic anhydride polymers, acrylic latex dispersions, polyamides, polyvinyl alcohols, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters, polyacrylamides, polyethers, and blends and copolymers thereof. The term “analyte” as used herein refers to antibodies, serum proteins, cholesterol, polysaccharides, nucleic acids, drugs and drug metabolites, etc., found in bodily fluids and tissues of the body. In another embodiment, the analyte is any biological analyte, marker, gene, protein, metabolite, or hormone or combination therein indicative of a biological state desirable for analysis to determine a physical state or condition. It is the purpose of the inventive device to qualitatively and/or quantitatively “detect” analytes in the bodily fluids. Preferably, such detection occurs periodically. Most preferably, it occurs in real time. In one embodiment, the analytes are present in micromolar to nanomolar concentrations and are highly potent chemotherapeutics, such as aminoglycocides or antibiotics, e.g., vancomycin, for which minute to minute monitoring is highly desirable because the analytes have narrow therapeutic ranges. Through continuous monitoring of analyte levels in the body, the inventive devices allow the investigator to optimize therapeutic and dosage regimens and quickly develop pharmacokinetic models for experimental drugs. Target validation, lead optimization, and compound optimization (therapeutic range and toxicity studies) can now be done in a much faster and more accurate manner because monitoring trough concentrations enables rapid target elimination or validation of dosing schemes in addition to development of target leads. Thus, the inventive devices are useful in reducing the uncertainty as to whether to enter Phase II and III clinical trials thereby decreasing the time to registration and the overall costs of drug development. Moreover, the inventive devices provide a way of sensing drug concentrations of novel compounds in a fluorescent based assay, which remains the gold standard of sensitivity, and for the first time provides a targeted fluorescence based solution for monitoring of novel compounds. The term “disease marker” as referred to herein is a detectable analyte, e.g., antibodies, serum proteins, cholesterol, polysaccharides, nucleic acids, drugs and drug metabolites, etc., found in bodily fluids and tissues which is present or absent in the body and known to be correlated with disease. Analytes, which allow for the detection of certain physiological conditions, can also be indicative of normal healthy physiology. These are referred to herein as “normal” or “healthy” biological analytes. Preferably, the biorecognition device of the invention detects a disease marker based on physical parameter data discerning between the physical characteristics of an interaction between 1) a disease marker biological analyte and a bioactive agent on the microarray and 2) a normal biological analyte with a bioactive agent on the microarray. Disease marker biological analytes allow for the detection of certain physiological conditions, e.g., infection, inflammation, autoimmune disease, cancer, etc. Disease markers presently known to those of skill and disease markers that will be known in the future are encompassed by this invention. The presence of a disease marker indicates the presence of disease and warrants the release of a therapeutic agent. The disease marker biological analytes may be genes or their products which are over-expressed or over-active in cells undergoing unwanted proliferation. For example, the inventive device may be implanted into a tumor or a tissue suspected of containing a tumor such as a cavity or space left behind following a biopsy procedure. If the invention detects increased concentrations of such biological analytes or mutated over-active forms of such analytes, e.g., disease markers, a release of therapeutic agent(s) such as a cytotoxic agent is warranted. These disease marker biological analytes can be indicative of unwanted cellular proliferation such as cancer, neointimal proliferation resulting in arterial stenosis, psoriasis, etc. Disease marker biological analytes may be detected by analyzing gene expression in tissues and matching it to known tumor-gene expression patterns or comparing them to known normal expression patterns. In a preferred embodiment, the microarrays are used to detect the presence of a disease marker biological analyte as defined by the presence, absence or over-abundance of a particular nucleotide sequence, including a single nucleotide polymorphism (SNP), mRNA or a particular protein, such as an enzyme, an antibody or an antigen. In one embodiment, the disease marker biological analytes are tumor specific antigens. For example, such antigens are expressed on the surface of or released from cancer cells, for example the tumor specific antigen MUC-1. Detection of MUC-1 expression through nucleic acid detection or by protein activity, can trigger the release of cytotoxic agents as therapeutic agents. Another example relates to receptor tyrosine kinases (RTKs), which are important in the transduction of mitogenic signals. RTKs are large membrane spanning proteins which possess an extracellular ligand binding domain for growth factors such as epidermal growth factor (EGF), an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acid residues on cytosol proteins thereby mediating cell proliferation. Various classes of receptor tyrosine kinases are known based on families of growth factors which bind to different receptor tyrosine kinases. Class I kinases such as the EGF-R family of receptor tyrosine kinases include the EGF, HER2-neu, erbB, Xmrk, DER and let23 receptors. These receptors are frequently present in common human cancers such as breast cancer, squamous cell cancer of the lung, bladder cancer, oesophageal cancer, gastrointestinal cancer such as colon, rectal or stomach cancer, leukaemia and ovarian, bronchial or pancreatic cancer. As further human tumor tissues are tested for the EGF family of receptor tyrosine kinases it is expected that its widespread prevalence will be established in other cancers such as thyroid and uterine cancer. Specifically, EGFR tyrosine kinase activity is rarely detected in normal cells whereas it is more frequently detectable in malignant cells. It has been more recently shown that EGFR is overexpressed in many human cancers such as brain, lung squamous cell, bladder, gastric, breast, head and neck, oesophageal, gynecological and thyroid tumours: Receptor tyrosine kinases are also important in other cell-proliferation diseases such as psoriasis. EGFR disorders are those characterized by EGFR expression by cells normally not expressing EGFR, or increased EGFR activation leading to unwanted cell proliferation, and/or the existence of inappropriate EGFR levels. The EGFR is known to be activated by its ligand EGF as well as transforming growth factor-alpha (TGF-α). The Her2-neu protein is also a member of the class I receptor tyrosine kinase (RTK) family. Her2-neu protein is structurally related to EGFR. These receptors share a common molecular architecture and contain two cysteine-rich regions within their cytoplasmic domains and structurally related enzymatic regions within their cytoplasmic domains. Accordingly, detection of abnormally high levels of RTK expression or signaling activity through nucleic acid detection or by protein activity can constitute a disease marker and can warrant the release of RTK inhibitors or cytotoxic agents as therapeutic agents. The relatively high expression of genes that directly or indirectly inhibit chemotherapeutics constitute a disease marker for purposes of the invention. For example, high tumor expression of the DNA repair gene ERCC1 warrants release of genotoxic chemotherapeutic agents to a high local yet low systemic concentration. Thus, achieving concentrations that would not be safely sustained systemically. Additionally, high tumor levels of the gene DPD are known to inhibit 5-FU based chemotherapeutic regimen. Similarly, high tumor expression of the DPD warrants release of 5-FU chemotherapeutic agents to a high local yet low systemic concentration. Alternatively, the skilled artisan would also realize that high levels of ERCC1 or DPD may be indicative of chemotherapeutic resistance and that the use of genotoxic agents or 5-FU, respectively, may not be appropriate. In such a case, cytotoxic therapeutic agents other than genotoxic agents or 5-FU should be released from the device, respectively. Alternatively, the device can be set up as to detect a panel of disease markers indicative of a disease such as cancer and release high local concentrations of cytotoxic agents such as a therapeutic agent. In a further embodiment, disease marker biological analytes can be indicative of inflammation, which plays a crucial role in the etiology of inflammatory bowel disease, multiple sclerosis, childhood-onset diabetes, psoriasis, rheumatoid arthritis, etc. Such diseases previously required regular large systemic doses of potentially harmful steroids to address only localized inflammation. High localized concentrations of biological analytes such as TNF-alpha, IL-1, IL-8, IL-2, IL-3, MIF (IL-4), GM-CSF, INF-gamma, and TNF-beta are indicative of inflammation. The detection of abnormally high concentration of such biological analytes constitutes a disease marker and warrants localized release of anti-inflammatory drugs or antibodies as therapeutic agents. In another embodiment, disease marker biological analytes can be indicative of infection by a microorganism. As such, disease markers can include viral or bacterial proteins or nucleic acids or fragments thereof. For example, detection of biological analytes such as bacterial toxins including exotoxins and enterotoxins as well as TSST-1, or other bacterial superantigen, or botulinum toxin, diphtheria toxin, anthrax protective antigen, anthrax edema factor, and anthrax lethal factor, etc., as well as viral proteins such as influenza hemagglutinin or neuraminidase, would constitute a disease marker indicative of infection and warrant localized release of anti-microbial drugs or toxin-specific antibodies as therapeutic agents. Another aspect of the invention relates to a microarray. The microarray is the portion of the inventive devices that facilitates an interaction between an analyte and a bioactive agent. It its most basic embodiment, a “microarray” as defined herein may constitute any surface e.g. the wall of a microfluidic channel, covered or functionalized by a bioactive agent such that a microarray scanning device can detect interactions between a bioactive agent and an analyte. FIGS. 8, 10, 11. In another embodiment, the microarray is a collection of miniaturized test sites arranged on a surface that permits many tests, or assays, to be performed in parallel. In this context, the microarray is directly exposed to bodily fluids and/or tissues and may be able to simultaneously process a plurality of different assays and provide for the interaction of one or more bioactive agents with one or more biological analytes. For example, the ability of a fluorescence-based array biosensor to measure and quantify the binding of an antigen to an immobilized antibody has been demonstrated using the four different immunoassay formats: direct, competitive, displacement, and sandwich. Sapsford et al., Anal Chem. 2002 March 1; 74(5):1061-8 (incorporated by reference it its entirety), used a patterned array of antibodies specific for 2,4,6-trinitrotoluene (TNT) immobilized onto the surface of a planar waveguide and measured signals from different antigen concentrations simultaneously. For direct, competitive, and displacement assays, which are one-step assays, measurements were obtained in real time. Dose-response curves were calculated for all four assay formats, demonstrating the array biosensor's ability to quantify the amount of antigen present in solution. In one embodiment of this aspect of the invention, the microarray is an area on a glass optical fiber that is functionalized with a bioactive agent. FIG. 11. In another embodiment, the microarray can have a plurality of glass optical fibers each functionalized with the same or different bioactive agents. In one particular embodiment, the bioactive agent of the microarray is a protein such as an antibody specific for an analyte. Two exemplary procedures may be employed for attaching protein bioactive agents to the glass optical fibers. The first is based on that developed by Bhatia et al. 1998, Analytical Biochemistry, 178 408-13. This involves functionalizing a surface with 3-mercaptopropyltrimethoxysilane. Following that, a cross-linker of N-γ-malemidobutylryloxysuccimide ester is used to attach the protein bioactive agent to the functionalized surface. The second procedure involves using a Dextran-based method described by Tedeschi et al. 2003, Biosensors and Bioelectronics, 19 85-93. This method uses glycidyl 3-(trimethoxysilyl)propyl ether to link the free hydroxyl groups on clean glass to the Dextran polymer. Protein bioactive agents are bound to the Dextran matrix following acidification of the carboxylic acid groups therein. Optionally, the fiber may be coated with a steric membrane which separates targeted analytes. Preferably, the fiber is directly inserted into the microneedle and the walls of the microneedles are coated with polymer gels for selectivity and specificity based binding events. In embodiments utilizing glass optical fibers, a light source is utilized to excite fluorescently labeled bioactive agents and/or analytes such that fluorescence is detectably altered upon interaction with target analytes in bodily fluids. FIG. 11. A light source for excitation may be a laser module. Light may be launched into the optical fiber that contains a functionalized region, i.e. a region stripped of fiber cladding and chemically prepared for bioactive agent coating. FIGS. 9, 11. Due to the lack of cladding, an evanescent wave emanates from the fiber at point and incites fluorescence from fluorescent tagged bioactive agents or fluorescent tagged analytes bound to bioactive agents meant to be competitively displaced analytes in the bodily fluid being sampled. FIGS. 8, 11. Emitted light reenters the through the same fiber. Light returning into the fiber is detected by the microarray scanning device which may have a fiber optic splitter, bandpass filters capable of removing ambient background light, and a photodiode detector. A schematic of the described setup can be seen in FIG. 11. Preferably, the bioactive agent is an antibody that is capable of specifically binding an analyte drug. Alternatively, the bioactive agent is an antigen that is capable of specifically binding serum antibodies. In this latter embodiment, the inventive devices can detect the production of specific types of antibodies produced in response to certain immunological stimuli, for example HIV or tuberculosis infection. In another embodiment, the microarray facilitates interaction between 1) a disease marker biological analyte and a bioactive agent on the microarray and 2) a normal biological analyte with a bioactive agent on the microarray. In this context the bioactive agent differentially interacts with normal biological analyte and a disease marker biological analyte. In another embodiment of the microarray, microbead arrays are used. By “microspheres” or “beads” or “particles” or grammatical equivalents herein is meant small discrete particles. The composition of the beads will vary, depending on the class of bioactive agent and the method of synthesis. Suitable bead compositions include those used in peptide, nucleic acid and organic moiety synthesis, including, but not limited to, plastics, ceramics, glass, polystyrene, methylstyrene, acrylic polymers, paramagnetic materials, thoria sol, carbon graphited, titanium dioxide, latex or cross-linked dextrans such as Sepharose, cellulose, nylon, cross-linked micelles and teflon may all be used. “Microsphere Detection Guide” from Bangs Laboratories, Fishers Ind. is a helpful guide, and is incorporated by reference in its entirety. The beads need not be spherical; irregular particles may be used. In addition, the beads may be porous, thus increasing the surface area of the bead available for either bioactive agent attachment or tag attachment. The bead sizes range from nanometers, e.g. 100 nm, to millimeters, e.g., 1 mm, with beads from about 0.2 micron to about 200 microns being preferred, and from about 0.5 to about 5 microns being particularly preferred, although in some embodiments smaller or larger beads may be used. Preferably, each microsphere comprises a bioactive agent. Another aspect of the invention relates to a “bioactive agent”. As used herein, it describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc. which is used in the microarray and can interact with an analyte or differentially interact with normal and disease marker biological analytes present in bodily fluids or tissues. Bioactive agents may be labeled in such a way as to allow the microarray scanning device to ascertain certain physical parameters specific to the bioactive agent that are altered upon interaction with biological analytes. In one embodiment, bioactive agents are fluorescently labeled and their fluorescence is detectably altered upon interaction with target analytes in bodily fluids. Alternatively, bioactive agents are pre-associated with labeled analytes such that the labeled analytes are competitively displaced by analytes in bodily fluids. In either case, the fluorescent characteristics of the microarray are altered upon microarray interaction with analytes in bodily fluids in such a manner that can be detected by a microarray scanning device. Most preferably, either analytes or the bioactive agents are labeled with fluorescent nanocrystals. In comparison to organic dyes such as rhodamine, nanocrystals are approximately at least 20 times as bright, approximately at least 100 times as stable against photobleaching, and are approximately one-third as wide in the emission spectral linewidth. See, for example, Bruchez, et al., Science, 281:2013-2016 (1998); Chan and Nie, Science, 281:2016-2018 (1998); Bawendi et al., Annu. Rev. Phys. Chem. 41:477-496 (1990), and references cited therein, all of which are expressly incorporated by reference. The brightness, stability and narrowness of emission bandwidth all contribute to the ability to use a relatively large number of different colors as further described below (i.e. different size nanocrystals) while preserving the ability to resolve them from each other, and to resolve different quantities of each nanocrystal. In addition, the broad excitation spectrum allows many different nanocrystals to be excited by a common light source. Bioactive agents may comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, and preferably at least two of the functional chemical groups. The bioactive agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Bioactive agents are also found among biomolecules including peptides, nucleic acids, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are nucleic acids and proteins. “Interact with,” as used herein refers to the ionic, covalent or hydrogen bonding, protein binding, nucleic acid hybridization, magnetic or hydrophobic attraction or other detectable and/or quantifiable association of an analyte and a bioactive agent on the microarray. “Differentially interact with,” refers to the fact that a disease marker biological analyte will interact with a bioactive agent differently than a biological analyte indicative of normal physiology. For example, the physical differences in interaction between 1) a disease marker biological analyte and a bioactive agent and 2) a normal biological analyte with a bioactive agent, are detectable by comparing the physical characteristics of the bioactive agent before, during or after interaction with the biological analyte. The detectable and/or quantifiable changes in bioactive agents upon interaction with a biological analyte are measurable through a series of physical parameters that depend on the nature of the bioactive agent employed. For example a detectable and/or quantifiable association may be evidenced by a shift in fluorescence intensity or wavelength due to binding or hybridization of the bioactive agent with a biological analyte. In another embodiment, the binding (interaction), of a fluorescence-associated antibody on a microarray (bioactive agent), specific for a particular tumor-specific protein (disease marker biological analyte), results in a detectable shift in the intensity of the fluorescence of the bioactive agent. This stereotyped shift is indicative of the presence of a particular disease marker has previously been empirically determined while selecting the appropriate bioactive agent and target disease marker. Whereas non-specific binding may alter the fluorescence of the bioactive agent, it will not do so in a predicable and stereotyped way consistent with empirically determined results, and as such, will not be indicative of the presence of a disease marker biological analyte. One feature of the invention relates to a “microarray scanning device”. The physical parameter data of an interaction between analytes and the bioactive agents of the microarray are preferably “read” by a microarray scanning device and transmitted to a biorecognition device to determine the presence, absence, or quantity of analytes in bodily fluids. Preferably, a change in the physical characteristics of the microarray is detected upon interaction between the analyte and the bioactive agent. Alternatively, the scanning device is able to discern between the physical characteristics of an interaction between 1) a disease marker biological analyte and a bioactive agent on the microarray and 2) a normal biological analyte with a bioactive agent on the microarray. “Physical parameter data” as referred to herein include information relating to interaction between analytes with bioactive agents on the microarray gathered by the microarray scanning device. Physical parameter data are transmitted to the biometric recognition device for analysis. The scanning device measures the physical, e.g., bio-electric, bio-magnetic, or biochemical, characteristics of interactions between biological analytes and the bioactive agent of the microarray by collecting data on one or more physical parameters relating to the interaction. Such parameters can include but are not limited to: fluorescence, binding strength, binding specificity, charge, etc. Preferably, physical parameter data is stored in or compared to store profiles of physical parameter data in a bioinformatics system incorporating pharmacogenomic and pharmacokinetic data into its models for the determination of toxicity and dosing. Not only does this enable generation of data for clinical trials years prior to current processes but also enables the elimination of current disparities between apparent efficacy and actual toxicity of drugs through realtime continuous monitoring. For use in clinical trials during the go/no go decision process large scale comparative population studies can be conducted with the data stored on the data base through the information stored on the sever. This allows more patients to enter clinical trials in a safe fashion earlier. In another embodiment biomarkers discovered in human tissue studies can be targeted by the device for improved accuracy in determining drug pathways and efficacy in cancer studies. In one embodiment of this feature, the microarrays are designed such that fiber optical elements are capable of emitting and receiving light at a particular wavelength to enable physical parameter data acquisition relating to interaction between the bioactive agent and analyte. In one example, the bioactive agents in the microarray are substantially saturated with a predetermined amount of fluorescently labeled analyte such that when they interact with unlabeled target analyte from a bodily fluid, the unlabeled analyte competitively displaces labeled analyte on the microarray to an extent commensurate with its concentration within the bodily fluid. As such, the microarray scanning device will detect and transmit a corresponding decrease in fluorescence on the microarray. In another example, once the light has been absorbed by a dye on the bioactive agent, some light of varying wavelength and intensity returns, and is conveyed through either the same fiber or collection fiber(s) to the microarray scanning device for quantification. The interactions between the light conveyed by the optical fiber and the properties of a light absorbing dye provide an optical basis for both qualitative and quantitative determinations of changes in physical characteristics evidenced by the interaction between analytes and bioactive agents. See U.S. Pat. Nos. 6,482,593 and 6,544,732, which are incorporated by reference in their entirety. The biometric recognition device receives optical and fluorescence reception signal data, i.e. physical parameter data, and may instruct the therapeutic agent release device which dispenses specified therapeutic agents. An example of a suitable microarray scanning device is available commercially from several sources such as Illumina, Inc. San Diego, Calif. One possibility for detecting differences in fluorescence resulting from interactions between analytes and bioactive agents, is by detecting emissions with a detector in the vicinity of the emitting molecules. Another possibility is coupling emissions into a fiber to be detected at the distal end by a detector. The fiber detecting the fluorescence may be the same fiber that delivers incoming light or a separate fiber exclusively for fluorescence detection. In the case of the latter, the detection fiber of the microarray must be stripped of cladding and treated for optimal coupling. Coupling back into a fiber may be more efficient using lenses adjacent to the fiber to focus emitted light more accurately. Detectors, as previously described, can include CCDs, PMTs, and most preferably photodiodes. The detectors will most likely be selective to the wavelength of emission by use of a bandpass filter. This detector may be located at the distal end of the delivery fiber An exemplary microarray optical glass fiber connected to a portion of a microarray scanning device is shown in FIG. 11. The figure depicts a functionalized uncladded fiber that extends into the micro-channels of the device and constitutes a portion of the microarray. The microarray of the inventive devices may include at least one or a plurality of optical fibers which can be in a bifurcated fiber optic system. In the figure, the optic fiber is functionalized with an antibody bioactive agent and is set up to function as displacement assay similar to that of a fluorescence polarization immunoassay. Since fibers propagate light using the principles of total internal reflection(TIR), evanescent waves are emitted perpendicular to the fiber at bare regions (i.e. the functionalized region). An evanescent wave will be absorbed by any molecules present on the surface of the fiber, and a Stokes-shifted spectra is emitted by fluorophores (if present). The fiber is in optic communication with a fiber splitter which allows for light to pass into the functionalized uncladded fiber and re-routes light returning from the functionalized uncladded fiber to a photodiode detector. In the patch embodiment of the inventive device having a disposable and a non-disposable component, the disposable component has micro-needles, micro-channels and a microarray. When inserted, the optic fibers of the microarray of the disposable component are in optical communication with a corresponding fiber splitter and photodiode detector, constituting a portion of the microarray scanning device of non-disposable component of the patch. In another embodiment of the microarray scanning device, a change in the fluorescence of the microarray is detected upon its interaction with an analyte using a total internal reflection fluorescence (TIRF) spectrometer. The principle of TIRF is depicted schematically in FIG. 9, 10. Total internal reflection is an optical phenomenon which occurs when light propagating in a dense medium (such as glass) meets an interface with a less dense medium, such as the buffer depicted in FIG. 9. If the light meets the interface at a small angle, some of the light passes through the interface (is refracted) and some is reflected back into the dense medium. At a certain angle, all of the light is reflected. This angle is known as the critical angle, and its value depends on the refractive indices of the media. However, some of the energy of the beam propagates a short distance (preferably a few hundred nanometers) into the buffer, generating an evanescent wave. If this energy is not absorbed, it passes back into the glass where it can be detected. However, if a fluorophore molecule associated with a bioactive agent or labeled analyte, is within the evanescent wave it can absorb photons and be excited. In this way, it is possible to get fluorescence with a very low background of excitation light. The levels of fluorescence from a single fluorophore are extremely low (hundreds to thousands of photons per second). However, it is preferably detected in two ways. The first is to use an intensified CCD camera which can produce an image, in which bound fluorophores will appear as bright spots. Alternatively, it is possible to image the fluorophore through a pinhole onto a photomultiplier tube (PMT), with which one can count the number of photons detected. Preferably, such a microarray scanning device utilizes an integrated optics system is employed such as the Texas Instruments Spreeta™ sensor. More preferably, the microarray scanning device makes use of surface plasmon resonance, a similar evanescent wave based technique to TIRF. In such a sensor, a polarized LED light source is used along with a photodetector array for measuring the position of reflected light. Another feature of this aspect of the invention relates to a biometric recognition device which through analysis of the physical parameter data e.g. for example fluorophore image or photon counts, collected by the microarray scanning device determines the absence, presence or quantity of an analyte. When an analyte interacts with a bioactive agent on the microarray, the microarray scanning device conveys data on the physical parameters of the interaction to the biorecognition device which in turn, matches that data with a known analyte interaction profile to determine the presence, absence and/or quantity of an analyte. In one embodiment, disease marker biological analytes interact with a bioactive agent on a microarray in stereotyped and predicable fashion and the interaction is evidenced by reproducible and predictable physical parameter data. Known data are referred to herein as an “analyte interaction profile.” Such profiles will have been empirically established in vitro and the biometric recognition device may have access to both analyte interaction profiles of disease markers and normal analytes. The biometric recognition device receives raw physical parameter data from the microarray scanning device and compares that information with stored analyte interaction profiles. The biometric recognition device may have access to both analyte interaction profiles of disease markers and normal analytes. The biometric recognition device is either located in the inventive medical device or it is located externally. Communication between the microarray scanning device and the biometric recognition device may be facilitated by a local area network (LAN) or a wireless local area network (WLAN), e.g. by Bluetooth® technology. Additionally, the biometric recognition device can also store analyte interaction profiles and build a pharmacokinetic database of accessible information in the form of analyte interaction profiles. In a particularly preferred configuration for detecting and quantifying the presence of analytes, the device is a patch with microfluidic channels as shown in FIG. 5. The device has at least two inlets feeding into a main channel. Sample blood (containing the analyte) is fed into one inlet and the opposing inlet is fed by a buffer solution. At small dimensions, fluids flow in the absence of inertia and turbulent mixing; thus, the blood and buffer flow in parallel streams. The microchannels are preferably between about 50 and about 200 μm, more preferably about 75 and about 150 μm and most preferably about 100 μm in diameter. Preferably, pumping the fluids through the channels in a controlled manner is done by wicking or a vacuum in which a membrane is broken by activation of the microneedles to create a pressurized pulling force which brings the fluid through. Channels may be produced by precision injection molding or laser etching. Channel size as well as microarray surface chemistry may be adjusted to account for the size of the analytes measures. The addition of a pneumatic pumping system and fluid valves or a micro-PCR system and novel chemistries may be further included for enhancement of sensitivity. The microchannel system enables a diffusion controlled binding event to occur either on the surface of a functionalized channel or on a functionalized fiber threaded in the middle of the channel for optimization of optical surface area. This allows an evanescent wave based sensor to detect analyte from fluid such as whole blood, by penetrating only about 1000 angstroms into the surface. Alternatively, in the case of the fiber imbedded in the middle of the stream, diffusion and separation can allow for an even simpler system in which readings can be taken on either sides of the fiber. The fabrication of microfluidics in the inventive devices may be undertaken using technology from Micronics, Inc of Redmond, Wash. Specifically, thin film plastic laminate technology allows the creation of three dimensional microfluidic devices by laser cutting. Features are cut in plastic films and then subsequently layered together in the proper orientation to form a microfluidic network. Alternatively, the channels can be made in polydimethylsiloxane (PDMS), for example, using soft lithography techniques (Duffy et al., Anal Chem., 1998). Additionally, channels may directly be etched in silicon. Once the channels are fabricated, the bioactive agents may then be introduced to the device by immobilizing them to a glass surface. A glass surface may bonded to the channel forming the “cap” or top surface of the channel, such that the buffer stream comes in contact with the antibody laden surface. Alternatively, the glass surface is a glass optic fiber. The fiber optic may be either a single mode or preferably a multimode fiber. One or more fibers can be threaded through the center of the channel. In this case, the channel can be split into two blood streams surrounding a central buffer stream and diffusion would occur from both directions. As opposed to cellular material and macromolecules, molecules such as the target analytes may pass across the blood/buffer fluid/fluid interface by diffusion. Because diffusion rate is inversely proportional to molecular size, a small molecule drug will migrate much farther than either blood-borne proteins or cells. This effectively creates a separation by size. In one embodiment, the channel is designed such that only the drug molecules diffuse as far as the opposite wall of the microchannel (adjacent to the buffer stream). This wall constitutes a microarray as defined herein, as it may be coated with a predetermined amount of anti-drug antibodies that are pre-bound with fluorescently labeled drug molecules. An equilibrium exchange arises such that some of the labeled drug molecules are competitively displaced by the unlabeled drugs that have diffused to the wall (FIGS. 8, 19). The rate of exchange is concentration dependent, thus giving a measure of the concentration of drug in the blood. It is important to recognize that as an immunoassay, the forgoing may be adaptable to detect virtually any analyte for which an antibody can be generated. In the foregoing embodiment, the interaction between the bioactive agent and analyte being detected, takes place on the buffer side of the channel, a fluorescence measurement can be done per TIRF spectrometer using a whole blood sample. As such, the fluorescence detection takes place on the buffer side of the channel and is not obscured by fluorescent moieties in the whole blood sample. Additionally, since the measurement is done in microchannels, only very small volumes of sample are needed. In the preferred patch embodiment having a microarray of anti-glucose antibodies, glucose concentration may be measured in a sample of about 0.01 to about 0.4 μl, preferably, about 0.05 to about 0.3 μl and most preferably 0.1 to 0.2 μl of blood. In another preferred patch embodiment having a microarray of anti-vancomycin antibodies, vancomycin concentration may be measured in a sample of about 0.01 to about 0.4 μl, preferably, about 0.05 to about 0.3 μl and most preferably 0.1 to 0.2 μl of blood. Additionally, in these embodiments, very rapid measurement of less than about a minute can be conducted. In yet a further embodiment, the device monitors the concentration of an analyte and releases therapeutic agent in response to the analyte's concentration. Preferably, the analyte and is a particular drug or a metabolite of that drug and the therapeutic agent is the same drug. This configuration is particularly desirable when a drug has a narrow therapeutic range and it is important to maintain a certain concentration of the analyte/drug in the blood stream or at a particular site within the body. Accordingly, when the device detects a drop in concentration of the drug or one of its metabolites in the blood stream or at a particular site within the body, the device can release a certain amount of the same drug to adjust the systemic or local drug concentration back to the desired level. For example, insulin or antibiotics such as vancomycin, maybe both the target analyte and the therapeutic agent. The invention also contemplates a medical device capable of the localized delivery of one or more therapeutic agents upon detection of an analyte indicative of disease, i.e., a disease marker analyte. In another embodiment of this aspect of the invention, the device releases a single therapeutic agent in response to detection of several disease markers. Alternatively, the device may release different therapeutic agents appropriate for the detection of different disease markers. In another embodiment, drug is released through microneedles. In another embodiment, a therapeutic agent can be released into a saline solution compartment within the device which serves as a carrier fluid. In yet another embodiment of this aspect of the invention, liposomes are filled with a therapeutic agent and the liposomes are coated with antibodies specifically binding a specific cell-type. This method permits delivery of large amounts of drug to the appropriate cell type upon detection of a disease marker. The device may contain one or more reservoirs comprising therapeutic agent(s). The reservoir holds therapeutic agent until it is directed by the biorecognition device upon detection of a disease marker, to release therapeutic agent in a controlled fashion, e.g., receives instruction as to release rate and quantity of agent to be released. Alternatively, a single release rate or dose may be programmed into the device. The reservoir can contain a mixture of one or more therapeutic agents. Alternatively, the device can comprise several reservoirs of one or more therapeutic agents. Preferably there are a plurality of reservoirs. A “therapeutic agent,” as used herein refers to compounds that are useful in or appropriate for treating a disease associated with a particular biological anomaly indicative of disease, e.g., disease marker analyte. Therapeutic agents of the invention are any therapeutic substance for the treatment of diseases including for example: pharmaceutical compounds that are preferably delivered locally such as chemotherapeutics, steroids, therapeutic nucleic acids including DNA, RNA, double stranded RNA (by means of RNA interface) and antisense RNA, or proteins such as immunoglobulins, growth factors, anti-inflammatory agents, or enzyme inhibitors, etc. By release of therapeutic agent from the device, it may be preferable to establish an effective local concentration of the drug. For example in investigable and implantable embodiments of the device, the local concentration may substantially exceed the safe systemic concentration for the same drug, thus sparing the patient substantial discomfort yet maximizing efficacy. The localized release of corticosteroids appropriate for the treatment of localized inflammation is encompassed herein. Additionally, the localized release of pathogen-specific antibodies for the treatment of infection, is encompassed herein. The exact formulation and dosage can be chosen by the individual clinician in view of the patient's condition. (See e.g. Fingl et al., in The Pharmacological Basis of Therapeutics, 1975, Ch. 1 p. 1). In another embodiment, a biological analyte indicative of unwanted cellular proliferation is detected and it is preferable to locally release therapeutic agent(s) that have an anti-proliferative effect. For example, sirolimus (rapamycin) or paclitaxel are very effective in inhibiting smooth muscle cell proliferation during neointimal hyperplasia. In another example for responding to the presence of biological analytes indicative of unwanted proliferation, 5-FU-based chemotherapy comprises administration of 5-FU, its derivatives, alone or with other chemotherapeutics, such as leucovorin or with a DPD inhibitor such as uracil, 5-ethynyluracil, bromovinyluracil, thymine, benzyloxybenzyluracil (BBU) or 5-chloro-2,4-dihydroxypyridine, is released from the medical device. Furthermore, it has been found that co-administration of a 5′-deoxy-cytidine derivative of the formula (I) with 5-FU or a derivative thereof significantly improves delivery of a chemotherapeutic agent selectively to tumor tissues as compared with the combination of 5-FU or a derivative thereof with a DPD inhibitor 5-ethynyluracil. Alternatively, genotoxic agents are those that form persistent genomic lesions and are preferred for use as chemotherapeutic agents in the clinical management of unwanted cellular proliferation. The rate of cellular repair of genotoxin-induced DNA damage, as well as the rate of cell growth via the cell division cycle, affects the outcome of genotoxin therapy. A general class of genotoxic compounds that are used for treating many cancers are DNA alkylating agents and DNA intercalating agents. Psoralens are genotoxic compounds known to be useful in the photochemotherapeutic treatment of cutaneous diseases such as psoriasis, vitiligo, fungal infections and cutaneous T cell lymphoma. Harrison's Principles of Internal Medicine, Part 2 Cardinal Manifestations of Disease, Ch. 60 (12th ed. 1991). Another general class of genotoxic compounds, members of which can alkylate or intercalate into DNA, includes synthetically and naturally sourced antibiotics. Of particular interest herein are antineoplastic antibiotics, which include but are not limited to the following classes of compounds represented by: amsacrine; actinomycin A, C, D (alternatively known as dactinomycin) or F (alternatively KS4); azaserine; bleomycin; carminomycin (carubicin), daunomycin (daunorubicin), or 14-hydroxydaunomycin (adriamycin or doxorubicin); mitomycin A, B or C; mitoxantrone; plicamycin (mithramycin); and the like. Still another general class of genotoxic agents that are commonly used and that alkylate DNA, are those that include the haloethylnitrosoureas, especially the chloroethylnitrosoureas. Representative members of this broad class include carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine and streptozotocin. Haloethylnitrosourea first agents can be analogs or derivatives of any of the foregoing representative compounds. Tumors currently manageable by platinum coordination compounds such as cisplatin or oxaliplatin include testicular, endometrial, cervical, gastric, squamous cell, adrenocortical and small cell lung carcinomas along with medulloblastomas and neuroblastomas. Other cytotoxic anti-cancer therapeutic agents include, for example, BEP (bleomycin, etoposide, cisplatin) for testicular cancer, MVAC (methotrexate, vinblastine, doxorubicin, cisplatin) for bladder cancer, MVP (mitomycin C, vinblastine, cisplatin) for non-small cell lung cancer treatment. Yet another general class of genotoxic agents, members of which alkylate DNA, includes the sulfur and nitrogen mustards. These compounds damage DNA primarily by forming covalent adducts at the N7 atom of guanine. Representative members of this broad class include chlorambucil, cyclophosphamide, ifosfamide, melphalan, mechloroethamine, novembicin, trofosfamide and the like. Oligonucleotides or analogs thereof that interact covalently or noncovalently with specific sequences in the genome of selected cells can also be used as genotoxic agents, if it is desired to select one or more predefined genomic targets as the locus of a genomic lesion. Another class of agents, members of which alkylate DNA, include the ethylenimines and methylmelamines. These classes include altretamine (hexamethylmelamine), triethylenephosphoramide (TEPA), triethylenethiophosphoramide (ThioTEPA) and triethylenemelamine, for example. Additional classes of DNA alkylating agents include the alkyl sulfonates, represented by busulfan; the azinidines, represented by benzodepa; and others, represented by, e.g., mitoguazone, mitoxantrone and procarbazine. Each of these classes includes analogs and derivatives of the respective representative compounds. Additional examples of cytotoxic therapeutic agents are antibodies complexing with a cell-specific antibody activates serum complement and/or mediate antibody-dependent cellular cytotoxicity. The antibodies which bind the cell can also be conjugated to a toxin (immunotoxins). The cytotoxic moiety of the immunotoxin may be a cytotoxic drug or an enzymatically active toxin of bacterial or plant origin, or an enzymatically active fragment of such a toxin. Enzymatically active toxins and fragments thereof used are diphtheria, nonbinding active fragments of diphtheria toxin, exotoxin (from Pseudomonas aeruginosa), ricin, abrin, modeccin, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolacca americana proteins (DAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, and enomycin. In another embodiment, the antibodies are conjugated to small molecule anticancer drugs. Conjugates of the monoclonal antibody and such cytotoxic moieties are made using a variety of bifunctional protein coupling agents. Examples of such reagents are SPDP, IT, bifunctional derivatives of imidoesters such a dimethyl adipimidate HCl, active esters such as disuccinimidyl suberate, aldehydes such as glutaraldehyde, bis-azido compounds such as bis(p-azidobenzoyl) hexanediamine, bis-diazonium derivatives such as bis-(p-diazoniumbenzoyl)-ethylenediamine, diisocyanates such as tolylene 2,6-diisocyanate, and bis-active fluorine compounds such as 1,5-difluoro-2,4-dinitrobenzene. The lysing portion of a toxin may be joined to the Fab fragment of the antibodies. Cytotoxic radiopharmaceuticals for treating cancer may be made by conjugating radioactive isotopes to the antibodies. The term “cytotoxic moiety” as used herein is intended to include such isotopes. In one embodiment, therapeutic agents are inhibitors of receptor tyrosine kinases such as EGFR and HER2-neu and are employed as selective inhibitors of the growth of proliferative cells such as mammalian cancer cells. For example, erbstatin, an EGF receptor tyrosine kinase inhibitor, reduces the growth of EGFR expressing human carcinoma cells. Various derivatives of styrene are also stated to possess tyrosine kinase inhibitory properties and to be of use as anti-tumour agents. Two such styrene derivatives are Class I RTK inhibitors whose effectiveness have been demonstrated by attenuating the growth of human squamous cell carcinoma injected into nude mice. Certain 4-anilinoquinazoline derivatives are useful as inhibitors of receptor tyrosine kinases. The very tight structure-activity relationships shown by these compounds suggests a clearly-defined binding mode, where the quinazoline ring binds in the adenine pocket and the anilino ring binds in an adjacent, unique lipophilic pocket. Three 4-anilinoquinazoline analogues (two reversible and one irreversible inhibitor) have been evaluated clinically as anticancer drugs. Additionally, the monoclonal antibody trastazumab (Herceptin™) for the treatment of HER2-neu overexpressing metastatic breast cancers. Scheurle, et al., Anticancer Res 20:2091-2096, 2000. In another embodiment, when a biological analyte indicative of a microbial pathogen is detected, it is preferable to locally release therapeutic agent(s) that have an antimicrobial effect. For example, it is preferable to release an antibiotic such as beta-Lactam Antibiotics, Aminoglycosides, Macrolides, Lincomycin, and Clindamycin Tetracyclines, Quinolones, Sulfonamides, Trimethoprim-Sulfamethoxazole and specifically: Amoxicillan, amoxicillian, Amoxicillin, ampicillin, Augmentin, Bactrim, BIAXIN, Ceclor, CEFTIN, Cipro, Clindamycin, Decadron, Diflucan, Doxycycline, erythromyacin, erythromycin, Erythromycin, flagyl, Floxin, Keflex, levoxil, macrobid, Metronizadole(Flagyl), Minocin, Minocyclin/Minocin, nizarol, norfloxacin, Nystatin, Penicillin, Polarol, Rocefin, Sulfa, Septra, Streptomycin, Tequinn, Tetracycline, tinnidazole, Valtrex, vibramcin, Zithromax, or zithromycin. Upon detection of biological analytes indicative of viral infection, it is preferable to release antiviral compounds including protease inhibitors such as Invirase, Norvir, Viracept, Crixivan, or Frotovase, Saquinavir or other antivirals such as amantadine, rimantadine, zanamivir, oseltamivir, ribavirin, AZT, Didanosine, Zalcitabine, Stavudine, Lamivudine, Nevirapine, Delavirdine, Idoxuridine, Vidarabine, Trifluridine, Acyclovir, Famciclovir, Penciclovir, Valacyclovir, Ganciclovir, Foscarnet, Ribavirin, Amantadine and Rimantadine, Cidofovir, Interferons. In another embodiment, when a biological analyte indicative of inflammation is detected, it is preferable to locally release therapeutic agent(s) that have an anti-inflammatory effect. Preferably such therapeutic agents are steroids such as prednisone/prednisolone, or non-steroidal an anti-inflammatory drugs (NSAIDs) such as Aspirin, Ibuprofen, Naproxen, Nabumetone, Celecoxib, Rofecoxib, or Valdecoxib. Such agents are particularly appropriate for the treatment of inflammation related diseases as Inflammatory Bowel Disease, Rheumatoid Arthritis and the like. In another embodiment, when a biological analyte indicative of hyperglycemia is detected, it is preferable that the device release a therapeutic agent that will reduce serum glucose levels. For example, when excessively high levels of glucose are detected by the device, the device will responded by releasing a sufficient amount of insulin to bring the excessively high levels of glucose in the blood back to normal. The invention envisages the medical device to have a plurality of microchips. Preferably, the microchips have the greatest currently available processing ability. Preferably, the plurality of microchips are all in communication with one another. Most preferably, the microchips are made of silicon germanium. Even more preferably, the microchips are International Business Machines (IBM)'s CMOS 9S low-k dielectric insulation high-performance chips to further provide for the highest efficiency, speed and power available in operating the medical device. The skilled artisan can readily appreciate that the device can have varying number of microchips because of the fact the devices listed below are capable of being embedded on a variable numbers of microchips. Furthermore, each technological component of the device is optimized by the method in which it is uniquely integrated into this system. Recently, low-k dielectric insulation and silicon germanium technology has maximized microchip processing capabilities and efficiency. These chips are ideal for optical communication networks and by combining them with microarray bead technology, which conducts data by means of photo-optic signaling, the power behind both systems is optimized. Another feature of the invention relates to a therapeutic agent releasing device capable of controlling release of therapeutic agent from a reservoir. For example, when the biometric recognition device determines the presence of a disease marker, the therapeutic agent releasing device is signaled to release therapeutic agent from a reservoir in a controlled fashion, i.e., it receives instruction as to release rate and/or quantity of drug to be released. In one embodiment, the therapeutic agent releasing device is a microchip located below microchips containing the device listed above and includes reservoirs for the controlled release of therapeutic agents. The substrate of the microchip contains the etched, molded, or machined reservoirs and serves as the support for the microchip. Any material that can serve as a support, is suitable for etching, molding, or machining, and is impermeable to the molecules to be delivered and to the surrounding fluids, for example, water, organic solvents, blood, electrolytes or other solutions, may be used as a substrate. Examples of substrate materials include ceramics, semiconductors, and degradable and non-degradable polymers. It is preferred that the substrate itself is non-toxic, sterile, and biocompatible. Nevertheless, toxic or otherwise non-biocompatible materials may be encapsulated in a biocompatible material, such as poly(ethylene glycol) or tetrafluoroethylene-like materials, before use. See U.S. Pat. No. 6,491,666 which is incorporated by reference in its entirety. A suitable therapeutic agent releasing device is available from MicroChips (Cambridge, Mass.). Preferably, the therapeutic agent releasing device has a plurality of reservoirs. In another embodiment of this aspect of the invention, the therapeutic agent releasing device signals the other devices or an external database as to the status of appropriate therapeutic agent release. In yet another embodiment, therapeutic agent release is in small doses serving as preliminary treatment while the therapeutic agent passes through additional microchips with independent wireless signaling systems which serve as checkpoints to ensure correct dosage prior to delivery. Another feature of the invention relates to an interface device capable of facilitation communications between the microarray scanning device, the biorecognition device, and optionally, the therapeutic agent releasing device. Preferably, the interface device receives information regarding the presence; absence or quantity of an analyte from the biorecognition device and signals therapeutic agent releasing device to release a therapeutic agent or mixture of agents from one or more reservoirs. In one embodiment, the interface device has a wireless local area network (WLAN) transmitter and receiver. In particular see U.S. Pat. Nos. 5,832,296 or 6,542,717 which are hereby incorporated by reference in their entirety. In another embodiment the invention contemplates the use of a Personal Area Network (PAN) electrostatic communication to transmit signals between microchips and utilizes a therapeutic agent releasing device associated with reservoirs for therapeutic agent release in order to deliver drugs into the body upon receiving respective signals from the analysis in the biorecognition device. Preferably, in implantable and ingestible embodiments, two bordering PAN transmitters are located underneath the microarray—one bordering the microarray scanning device and the other bordering the therapeutic agent releasing device controlling the reservoir below. PAN transmitters signal for release of therapeutic agent as specified by array results. Appropriate hardware may be obtained from Interval Research Corp., Palo Alto, Calif. and PAN transmitters from International Business Machines Corp., Armonk, N.Y. In another embodiment of this aspect of the invention, the plurality of microchips transmit their information to external sources such as a hand held monitoring device or computers at network headquarters operated by wireless data communications systems. In a further embodiment, where the device is a patch for treating diabetes, the patch measures insulin levels and communicates with a second device measuring carbohydrate levels or third device measuring sweat glands or arithmic levels. A process control decision through a comparison of the interactions between analytes and the different devices and the database of physical parameter data will determine whether a release an amount of glucose or insulin is appropriate, forming a closed loop system which accounts for other factors imperative in determining glucose/insulin release. In one embodiment the invention has an energy source to power the medical device. For example, the device is powered by a battery. In another embodiment, the power source is provided by a Personal Area Network. Applications of this invention range from military to commercial use. For instance, the device could be used by civilians in nations afflicted by viruses such as SARS where real-time diagnosis acquires a substantial importance. With the rise of bioterrorism methods of detecting pathogens are of increasing value to defense departments worldwide. Likewise, the invention could be used to detect bacterial infections or other gut-related diseases and to deliver an immediate real time diagnosis of protein activity as it travels through the intestinal system seeing as the gut is one of the largest centers for the growth of infectious diseases. Likewise, applications of protein microarray technology which are currently limited by problems such as isolating high affinity and specificity protein ligands or BSA obscuring peptides of interest on aldehyde slides could be maximized by using selective protein arrays in vivo and dispensing antibodies or drugs corresponding to targeted protein classes. Additionally, the inventive devices could be particularly useful for clinical trial research purposes for efficient monitoring the levels and effects of experimental drugs to develop pharmacokinetic models. Indeed, there could be commercial, medical, research/educational, and military and community service/humanitarian applications of this device. EXAMPLES Example 1 Fiber-Optic Total Internal Reflection Fluorescence Biosensor Specifications A fiber-optic total internal reflection fluorescence (TIRF) biosensor was constructed and constitutes a microarray and microarray scanning device as defined in this specification. See Preininger et al. (Analytica Chimica Acta, 2000, 403, 67-76). The laser light is directed from the laser light source to the flow cell to the detector all via a series of optical fibers. A schematic of this fiber optic based unit is shown in FIG. 12. In the sensor, incoming laser light is directed through the output leg of a 50:50 fiber optic splitter onto the functionalized fiber. Emitted fluorescence couples back into the fiber and propagates towards the detector with little interference from the laser light. This design has several advantages: The start-to-finish use of the fibers eliminates losses due to free space coupling; the fibers are robust transporters of light and thus are insensitive to vibration and multiple fibers can readily be joined together by commercially available fiber optic connectors. Therefore, a microarray can be either the functionalized surface of one fiber or the functionalized surfaces of a plurality of fibers. The expected output fluorescence intensity delivered to the photodiode as a function of input laser power and fiber characteristics of the Atto 655 fluorophore (see FIG. 13), using the methodology described in Celebre et al. (Measurement Science and Technology, 1992, 3, 1166-1173) are shown in Table 1 with the following system parameters: a surface concentration of ˜200 ng/cm2 [Tedeschi et al., Biosensors and Bioelectronics, 2003, 19(2), 85-93] the fluorophore Atto 655 (Sigma Aldrich) with spectral characteristics QY=0.3ε=110,000 TABLE 1 Fluorescence output as a function of laser power and fiber characteristics. Fiber Fiber Output Length Input Laser Diameter Power (cm) Power (mW) (μm) (pW) 1 0.5 62.5 82 1 0.5 200 163 1 1.0 62.5 163 1 1.0 200 327 1 3.0 62.5 489 1 3.0 62.5 489 1 3.0 200 980 1 3.0 200 980 1 5.0 62.5 815 1 5.0 200 1,630 3 0.5 62.5 244 3 0.5 200 490 3 3.0 62.5 1,470 3 3.0 200 2,940 5 0.5 62.5 407 5 0.5 200 817 5 3.0 62.5 2,440 5 3.0 200 4,900 A typical photodiode (e.g. Pacific Sensor part 1-6-T052S1) accurately measures signals in the picowatt range. It is clear that even with a conservative estimate of 50% losses in the system, the parameters of the biosensor can be adjusted such that the output power is two orders of magnitude greater than the sensitivity floor of the detector. Example 2 Integrated Patch System The exemplary patch device represents a painless method of automatically drawing and sampling 0.1 ml of blood for vancomycin. Each patch consists of two parts, a disposable portion (Assay Device) that contains the single use microneedles and micro channel, and a reusable part that contains the remaining optics, electronics and mechanics (Assay Reader Device). FIGS. 5, 7 Micro-needles automatically draw small quantities of blood painlessly. A mechanical actuator inserts and withdraws the needle. The inventive devices makes several measurements after the patch is applied. However, each micro-needle is only used once to avoid clotting. The requirement for multiple blood draws calls for a mechanical actuator that can not only insert and withdraw the needle but also dispose the used needle and reload a new needle. The micro needles are sharp, robust and minute enough to penetrate the outer layer of the skin in a completely painless manner. Their design contributes to the low-cost, disposable, self-employed, biocompatible nature of the device. Needles are produced photolithographically in molds at SNF. Microchannels on the “top” assay device portion of the patch device contain laminar flow and reservoir elements, along with the necessary structures to capture the fiber sensor. Two separate fluid flow elements operate of the patch—blood flow through the needle into a reservoir and blood/buffer flow through the channel. FIG. 5. The following table shows the design specifications for the channel. TABLE 2 Blood Blood Cells Proteins Vancomycin Hydrodynamic ~5 μm ~8 nm ~1 nm Size Diffusion ~1 × 10−9 ~1 × 10−6 1 × 10−5 Coefficient (cm2/s) Diffusion ~1 ~32 ~100 Distance (μm) Length 1 cm Height 100 μm Thickness 25 μm Stripe Height 50 μm Cross Sec. Area 2500 μm2 Stripe Cross Sec. Area 1250 μm2 Channel Volume 0.125 μl Flow Rate 0.15 μl/min Total Sample Size 0.1 μl Flow Velocity 0.1 cm/s Diffusion Time 10 s Viscosity of Buffer 0.01 cm2/s Reynolds Number 0.11 The non-disposable component (Assay Reader Device) of the patch contains 12 single use disposable components (Assay Devices) which will be mounted on it. FIG. 7. Custom microfluidics fabrication is obtained from Micronics. Specifications are as follows: Specifications Item Specifications 1 Sample Loading Whole blood, 100 nl 2 Functionalized Glass surface immobilized with fluorescent sensor surface molecules (microarray) Prepared after card fabrication by Client 3 Reagents Buffer (Phosphate buffer saline), 1-2 μl 4 Fluid actuation Active pumping 5 Sensing channel Capped on one side by functionalized surface Channel is about 100 μm deep orthogonal from functionalized surface Channel length is about 1 cm 6 Detection Fluorescent measurements (photomultiplier or equivalent detector). 7 Time of Assay Less than 2 minutes 8 User Interface to WLAN device 9 Card Materials low auto-fluorescent 1 The optical sensor microarray scanning device provides an electronic signal to a biorecognition device based on the fluorescence of the interaction between bioactive agent and analyte excited by an evanescent wave produced by the laser. The optical sensor frequency is determined based on a cost tradeoff between laser, PIN diode, and fluorescent molecule costs. The non-disposable evanescent sensor fiber (microarray scanning device within the Assay Reader Device) is attached to the disposable blood draw fluidics subsystem (containing the microarray in the Assay Device) to create a complete single use assay device. The assay device is packaged in groups of 6 and 12 per assay reader device. For testing the maximum size of an integrated system is similar to the body media device which is show in FIG. 14. Blood flows through the micro needles into the blood reservoir. The buffer and blood form a laminar flow through the channel (FIG. 5; shown in black). A 660 nm laser excites fluorophore, which are bound to the surface of the fiber (in gray). Drugs in blood displace the labeled drugs on the fiber, and the intensity of the fluorescence is decreased. A sensor on the end of the fiber in the Reader detects a reduction in signal level. This reduction is reported to the biometric recognition device's associated database. The devices are formed into a comb like structure; the 12-unit assay model is shown in FIG. 7. In the figures the control electronics are mounted in the top portion of the device (assay reader device). The actuation mechanisms are in the bottom of the device (assay device). The end view of the reader shows the cavity for the assay device in the bottom of the reader. An optical and mechanical interface exists between the two components. Along the top of the cavity are 12 springs which are used to force the micro needles into the skin. Also there is a solenoid that releases the spring. Each spring presses on the top of one of the 12 disposable components. One end of each of the assay device fingers forms a hinge within the assay device, so the spring forces the assay device down through a layer of film, which covers the bottom of the assay device. The optical fiber passes over the hinge and terminates at an optical splitter, which is mounted on the bottom of the electronics printed circuit board. The interface between the assay device and the assay reader device is a small air gap. This end view of one of the 12 assay device fingers shows the package. The assay device is inside a sterile patch package. Under the micro needles there is a portion of the patch that is designed to allow the needles to penetrate and enter skin. The patch is held in place with an adhesive as shown in FIG. 6. Finally there is a protective cover. The top of the patch is designed to allow insertion into the reader. The optical signal passes through a portion of this seal between the end of the fiber and the splitter. In this disclosure there is described only the preferred embodiments of the invention and but a few examples of its versatility. It is to be understood that the invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. Thus, for example, those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such equivalents are considered to be within the scope of this invention, and are covered by the following claims. 14816426 theranos, ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos May 28th, 2019 12:00AM Oct 7th, 2014 12:00AM https://www.uspto.gov?id=US10302643-20190528 Image analysis and measurement of biological samples Methods, devices, apparatus, and systems are provided for image analysis. Methods of image analysis may include observation, measurement, and analysis of images of biological and other samples; devices, apparatus, and systems provided herein are useful for observation, measurement, and analysis of images of such samples. The methods, devices, apparatus, and systems disclosed herein provide advantages over other methods, devices, apparatus, and systems. 10302643 1. A system for analyzing a sample, the system comprising: a single dark field illumination source; a detector; an objective lens with an aperture; a sample holder comprising a cover, a base having a first side and a second side, and a sample chamber wherein the dark field illumination source and the detector are both located on the same side of the sample holder, wherein the dark field illumination source is positioned so that light from the dark field illumination source to the sample holder is directed only at an oblique angle with respect to the base, wherein said sample holder is shaped to provide a plurality of light paths, said plurality of light paths including both a direct light path comprising encountering the sample chamber before encountering an outer surface of the cover and an indirect light path comprising a point of internal reflection within the sample holder before encountering the sample chamber, effective that said light from the illumination source simultaneously provides both epi-illumination and trans-illumination to the sample chamber sufficient for dark field microscopy, wherein the aperture of the objective passes only scattered light from the sample to the detector sufficient for dark field microscopy. 2. The system of claim 1, wherein the cover has an exterior surface coated with an optically absorbent material. 3. The system of claim 2, wherein said indirect light path comprising a point of internal reflection within the sample holder comprises at least one point of total internal reflection of light within the sample holder. 4. The system of claim 1, wherein the cover has an exterior surface coated with an optically absorbent ink. 5. The system of claim 1, wherein said indirect light path comprising a point of internal reflection within the sample holder comprises at least one point of total internal reflection of light at a surface of the sample holder cover. 6. The system of claim 1, wherein the sample holder comprises two or more sample chambers for holding sample. 7. The system of claim 1, wherein the sample holder has a rectangular, cross-sectional shape. 8. The system of claim 1, wherein the sample holder has a circular horizontal, cross-sectional shape. 9. The system of claim 1, wherein the sample holder has a saw tooth vertical cross-sectional shape. 10. The system of claim 1, wherein the sample holder has a step-shaped vertical cross-sectional shape. 11. The system of claim 1, wherein said sample holder is movable relative to said illumination source to a plurality of locations, wherein said optically transmissive surface of the sample holder may be illuminated by the illumination source at each of said locations. 12. The system of claim 1, wherein said dark field illumination source comprises a ringlight. 13. The system of claim 12, wherein said ringlight is selected from the group consisting of a light emitting diode (LED)-based ringlight and a laser-based ringlight. 14. The system of claim 1, further comprising a support structure comprising an optically transmissive surface shaped to engage an optically transmissive surface of the sample holder. 15. The system of claim 1, further comprising a compression device configured to retain the sample holder in a desired location for illumination by the dark field illumination source. 16. The system of claim 1, wherein said sample holder comprises a channel configured to contain at least a portion of the sample, and wherein the detector is configured to image at least a portion of said channel in the sample holder. 17. The system of claim 16, wherein said channel comprises an elongated channel configured to contain at least a portion of the sample, said elongated channel having a length, and wherein said detector is configured to image the entire length of the elongated channel in the sample holder. 18. The system of claim 17, wherein said elongated channel of the sample holder is sized and configured to hold the sample in a static, non-flowing manner effective that the sample remains separate from said detector. 19. The system of claim 18, wherein the sample holder comprises a first fluid circuit sized and configured to hold one portion of the sample in a static, non-flowing manner and the sample holder comprises a second fluid circuit sized and configured to hold another portion of the sample in a flowing manner. 20. The system of claim 16, wherein said dark field illumination source is movable relative to the sample holder. 21. The system of claim 16, wherein said sample holder further comprises a fluid circuit fully confined in the sample holder, and wherein the sample is located in said fluid circuit, effective that the sample remains separate from said detector. 22. The system of claim 21, wherein said sample holder is movable relative to the detector. 23. The system of claim 21, wherein said detector is movable relative to the sample holder. 24. The system of claim 1, wherein the sample holder comprises a fluid circuit sized and configured to hold and fully confine the sample within said fluid circuit, effective that the sample remains separate from said detector. 25. The system of claim 1, wherein said sample holder and said dark field illumination source comprise at least part of an optical analysis unit, said system further comprising a clinical analysis unit configured to perform clinical analysis on said sample. 26. The system of claim 25, wherein each of said optical analysis unit and said clinical analysis unit are sized and configured to receive an aliquot of a single sample, effective that both an optical analysis and a clinical analysis may be performed on portions of a sample at the same time. 27. The system of claim 25, wherein said clinical analysis unit is sized and configured to perform at least one clinical analysis selected from the group consisting of general chemical analysis, nucleic acid analysis, and enzyme-linked binding analysis. 28. The system of claim 1 further comprising an automated stage for receiving the sample holder, wherein the automated stage is configured to create relative motion between the sample holder and the detector in a pattern to visualize individual portions of the sample holder, and wherein both the dark field illumination source and the detector are located below a plane where the automated stage receives the sample holder. 28 BACKGROUND Analysis of biological samples from a subject may be important for health-related diagnosing, monitoring, or treating of the subject. A variety of methods are known for the analysis of biological samples. However, in order to provide better diagnosing, monitoring, or treating of subjects, improvements in the analysis of biological samples are desired. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. SUMMARY Methods, devices, systems, and apparatuses described herein are useful for optical and image analysis or measurement of biological and other samples. Embodiments disclosed herein include sample holders suitable for holding samples, including biological samples, for optical examination, for optical measurement, and for other examinations and measurements. In embodiments, a sample holder having an optically transmissive portion and a portion configured to provide internal reflection of light within the sample holder is provided. In embodiments, internal reflections may include partial internal reflection and may include total internal reflection of light. Incident light from an external light source, and directed from one side of the sample holder, is effective to illuminate a sample within the sample holder from a plurality of directions. In embodiments, an external light source disposed on one side of the sample holder may provide epi-illumination of a sample within the sample holder; may provide trans-illumination of a sample within the sample holder; or may provide both epi-illumination and trans-illumination of a sample within the sample holder. Embodiments disclosed herein include systems including sample holders suitable for holding samples. Such systems are suitable for use in examining and measuring samples, including biological samples, by, e.g., optical examination, optical measurement, and for other examinations and measurements. In embodiments, a system disclosed herein comprises a sample holder having an optically transmissive portion and a portion configured to provide internal reflection of light within the sample holder is provided. In embodiments, internal reflections within a sample holder of a system disclosed herein may include partial internal reflection and may include total internal reflection of light. Systems disclosed herein may include light sources. Incident light from a light source external to a sample holder, and directed from one side of the sample holder, is effective to illuminate a sample within the sample holder from a plurality of directions. In embodiments, a light source disposed external to, and on one side of, the sample holder may provide epi-illumination of a sample within the sample holder; may provide trans-illumination of a sample within the sample holder; or may provide both epi-illumination and trans-illumination of a sample within the sample holder. Systems disclosed herein may include a detector, or detectors; such detectors may include optical detectors, and may include other detectors. Such detectors are suitable for, and are configured to, make measurements of a sample and of objects and characteristics of a sample and objects in a sample within a sample holder; such measurements may include qualitative measurements and quantitative measurements. Embodiments of systems as disclosed herein may include filters, apertures, gratings, lenses, and other optical elements. Embodiments of systems as disclosed herein may include mechanical apparatus for locating, moving, and adjusting a sample holder, a light source, a lens, a filter, or other element or component of a system as disclosed herein. Embodiments of systems as disclosed herein may include components and elements for transferring, aliquotting, holding, heating, mixing, staining, conditioning, or otherwise preparing, manipulating or altering a sample. Embodiments of systems as disclosed herein may include components and elements for transporting, securing, filling, or otherwise manipulating a sample holder. Embodiments of systems as disclosed herein may include components and elements for physical manipulation and treatment of a sample, and for physical manipulation of a sample holder, where such components and elements may include, without limitation, a pipette, a pump, a centrifuge, other mechanical apparatus for moving and manipulating a sample, a sample holder, pipette tips, vessels, and reagents for use with a sample, or portion thereof. Embodiments of systems as disclosed herein may include components and elements for chemical analysis, including nucleic acid analysis, protein analysis, general chemistry analysis, electrochemical analysis, and other analyses of a sample or portion thereof. Sample holders and systems disclosed herein may be used, and methods disclosed herein may be performed, at any location, including a clinical laboratory, a research laboratory, a clinic, a hospital, a doctor's office, a point of service location, and any other suitable location. Samples held by sample holders disclosed herein, and samples examined using systems and methods disclosed herein, include any biological sample, and may be small biological samples. In embodiments, a sample may be a small blood or urine sample, and may have a volume of less than about 250 μL, or less than about 150 μL, or less than about 100 μL, or less than about 50 μL, or less than about 25 μL, or less than about 15 μL, or may be the same as or less than the volume of blood obtained from a finger-stick. In one embodiment, a method for the measurement of a component of interest in cells of a cellular population in a sample is provided, including: a) obtaining a quantitative measurement of a marker present in cells of the cellular population in the sample; b) based on the measurement of part a), determining, with the aid of a computer, an approximate amount of cells in the cellular population present in the sample; c) based on the results of part b), selecting an amount of reagent to add to the sample, wherein the reagent binds specifically to the component of interest in cells of the cellular population and is configured to be readily detectable; d) based on the results of part c), adding the selected amount of the reagent to the sample; e) assaying cells in the sample for reagent bound to the component of interest; and f) based on the amount of reagent bound to the component of interest, determining the amount of the component of interest in cells of the cellular population of the sample. In an embodiment of the method, the reagent of part c) is an antibody. Applicants further disclose herein a method for the measurement of a component of interest in cells of a cellular population in a sample, comprising: a) obtaining a quantitative measurement of a marker present in cells, or of a property of cells, of the cellular population in the sample; b) determining, with the aid of a computer, an approximate amount of cells in the cellular population present in the sample based on the measurement of part a); c) adding an amount of a cell marker to the sample, where the amount of said cell marker added is based on the results of part b), and wherein the cell marker binds specifically to the component of interest in cells of the cellular population and is configured to be readily detectable; d) assaying cells in the sample for marker bound to the component of interest; and e) determining the amount of the component of interest in cells of the cellular population of the sample based on the amount of marker bound to the component of interest. In another embodiment, a method for focusing a microscope is provided, including: a) mixing a sample containing an object for microscopic analysis with a reference particle having a known size, to generate a mixture containing the sample and reference particle; b) positioning the mixture of step a) into a light path of a microscope; c) exposing the mixture of step a) to a light beam configured to visualize the reference particle; and d) focusing the microscope based on the position of the reference particle within the mixture, or based on the sharpness of the image of the reference particle. In yet another embodiment, provided herein is a method for identifying a cell in a sample containing a plurality of cells, including: a) assaying a cell of the plurality of cells for at least one of: (i) the presence of a cell surface antigen; (ii) the amount of a cell surface antigen; or (iii) cell size; b) assaying the cell of a) for at least one of: (i) nuclear size; or (ii) nuclear shape; and c) assaying the cell of a) and b) for quantitative cell light scatter, wherein the combination of information from steps a), b) and c) is used to identify the cell in the sample containing a plurality of cells. In yet another embodiment, provided herein is a system comprising a detector assembly for use with a sample holder that holds a sample to be examined. In one non-limiting example, the sample holder is a cuvette that has features or materials in it that enable the cuvette to be engaged and moved from one location to the detector assembly. In some embodiments, the detector assembly has a first surface that is configured to engage a surface of the sample holder in a manner such that the interface between the two does not create optical interference in the optical pathway from the detector assembly to the sample in the sample holder. In one embodiment, there may be more than one location on the detector assembly for one or more of the sample holders. Some embodiments may have the same sample holder for each of the locations. Optionally, some embodiments may have different sample holders for at least some of the locations associated with the detector assembly. In one embodiment described herein, a sample holder is provided herein such as but not limited to a cuvette with optical properties, dimensions, materials, or physical features that allow for it to hold the sample for analysis by the detector assembly while keeping it physically separate from and not in direct contact with the detector assembly. This can be particularly useful for sample fluids that contain shaped members therein. In one embodiment described herein, the detector assembly may be a multi-channel microscopy unit that is configured to detect, obtain, or measure the shape, and physical, optical, and biochemical properties of a cell or cells in a sample, all in the same device. It can provide both quantitative information, and descriptive information. One embodiment of the detector assembly may use multiple markers of the same color or wavelength, where the detector assembly is configured to deconvolute signals originating from such markers in a sample (e.g., bound to cells in a sample), allowing for a reduction in number of spectral channels and light sources required in the assembly. It should be understood that some embodiments herein may include a sample holder such as but not limited to a cuvette with physical features in the shape of the cuvette material that increase dark field illumination where some features are configured to provide for light reflectance (including, but not limited to, reflectance of light within the cuvette), and some features may optionally be configured for mechanical support; in embodiments, some features may provide mechanical support and also provide for light reflectance. In embodiments, a sample holder is configured to provide trans-illumination of a sample by reflection of light within the sample holder. In embodiments, a sample holder is configured to provide trans-illumination of a sample by reflection of light within the sample holder; such reflectance may include partial internal reflection (PIR, also known as Fresnel reflection), and such reflectance may include total internal reflectance (TIR). In embodiments, a sample holder is configured to provide trans-illumination of a sample by reflection of light within the sample holder, wherein the source of the reflected light is disposed on the same side of the sample holder as the optics used to detect or measure the light. The system herein can simultaneously use both epi (direct) and trans (reflected) illumination in dark field imaging. This differs from traditional dark field imaging which uses either epi-illumination, or trans-illumination, but not both types of illumination, and not both types of illumination from a single source or single direction or location. Thus, the combination of epi- and trans-illumination disclosed herein, wherein the trans-illumination originates from the same light source as the epi-illumination, differs from known systems. Optionally, the use of a shaped sample holder such as the cuvette can be used to provide the trans-illumination. In embodiments, a shaped sample holder is configured to provide trans-illumination by reflection of light. In embodiments, a shaped sample holder is configured to provide trans-illumination by reflection of light within the sample holder. In embodiments, one or more of the size, shape, surface, materials, or other feature of a shaped sample holder is effective to provide internal reflection of light within the shaped sample holder. In embodiments, one or more of the size, shape, surface, materials, or other feature of a shaped sample holder is effective to provide partial internal reflection (PIR) of light within the shaped sample holder. In embodiments, one or more of the size, shape, surface, materials, or other feature of a shaped sample holder is effective to provide total internal reflection (TIR) of light within the shaped sample holder. Optionally, the intensity of trans-illumination is non-negligible. In embodiments, a shaped sample holder may include a reflective surface effective to increase trans-illumination light intensity. The dark field light source may be a light-emitting diode (LED), laser, or other illumination source that can provide the desired illumination or excitation wavelength(s). In one embodiment, the combination of the microscope objective and light source such as but not limited to a ringlight (for dark field microscopy) is at a physical distance between them that enables a compact size for the detector assembly. In one embodiment, only light at a desired wavelength or within a desired range of wavelengths are directed to the sample. In one embodiment, the light is non-polarized light. In another embodiment, the light is polarized light. In yet another embodiment, information from the cytometry assay, either from the sample preparation phase or from the analysis phase, is used to guide or trigger a secondary procedure. In embodiments, such a secondary procedure may be to provide an alert for direct human review. In embodiments, such a secondary procedure may be to use an estimated cell count or other information obtained during a sample preparation step of a procedure in order to guide the performance of an assay, where such assay may be an assay in a later step of the procedure, or may be an assay in another procedure. Techniques for counting cells can also provide ways to deal with sample holders with uneven shapes or chamber surfaces. One method comprises using: a) a volume-metered channel technique to introduce a known volume of a sample into an analysis area, such as a channel in the sample holder. The method may include counting all cells in the sample holder. Since one knows the volume of sample, one also knows the concentration of cells in volume (this may be performed in hydrophobic containers or cuvettes or sample holders with chambers with such surfaces). Another method comprises: b) a ratio-based metric technique to mix sample with a known amount of beads, which is used to calculate the concentration of cells in the sample based on the number of beads observed. In yet another embodiment described herein, a method is provided comprising measuring formed blood components such as but not limited to measuring red blood cell (RBC) volume in a blood sample by causing the RBCs to assume substantially spherical shapes, and measuring the RBC volume using dark field microscopy. In yet another embodiment described herein, a method is provided comprising measuring platelet volume. The method may include labeling platelets with a fluorescent dye and measuring the size of the platelets observed; adding beads of known size to the sample; and comparing the observed size of images of the beads to the observed images of the platelets, using the beads as calibration to determine the size of the platelets and to determine the platelet volume in the sample. In yet further embodiments described herein, methods are provided for detecting and measuring, in a sample, cell morphology; measurement of cell numbers; detection of particles; measurement of particle numbers; detection of crystals; measurement of crystal numbers; detection of cell aggregates; measurement of numbers of cell aggregates; and other properties and quantities of or in a sample. Accordingly, Applicants disclose herein: A system for analyzing a sample, the system comprising: a sample holder comprising a sample chamber configured to hold said sample, at least a portion of said sample holder comprising an optically transmissive material, said optically transmissive material comprising an optically transmissive surface and a reflective surface; and an illumination source configured to provide light that illuminates and passes through said optically transmissive surface; wherein said sample holder is configured effective that said light from said illumination source simultaneously provides both epi-illumination and trans-illumination to a sample in the sample holder, where epi-illumination comprises light traveling from said illumination source to said sample without reflection at a surface of the optically transmissive material of the sample holder, and where trans-illumination comprises light traveling within the optically transmissive material and to the sample following at least one reflection from at least one surface of said optically transmissive material. In embodiments, a sample holder of a system having the features disclosed herein may comprise a cuvette having an elongated channel configured for holding a sample. In embodiments, the sample holder may have one or more optically non-transmissive surfaces. In embodiments of systems disclosed herein, said trans-illumination may be provided at least in part by internal reflection of light at a surface, and may be provided at least in part by total internal reflection of light within the cuvette. In embodiments of systems disclosed herein, said trans-illumination may be provided at least in part by partial internal reflection of light at a surface, and may be provided at least in part by partial internal reflection of light within the cuvette. In embodiments, a sample holder may have two or more sample chambers for holding sample. A sample holder, e.g., a cuvette, having feature disclosed herein may have a rectangular horizontal, cross-sectional shape; may have a circular horizontal, cross-sectional shape; may have a saw tooth vertical cross-sectional shape; may have a step-shaped vertical cross-sectional shape; or may have another shape. In embodiments, a sample holder may be movable relative to an illumination source, and may be movable to a plurality of locations, wherein an optically transmissive surface of the sample holder may be illuminated by the illumination source at each location. In embodiments, an illumination source may include a ringlight. In embodiments, a ringlight may be selected from a light emitting diode (LED)-based ringlight and a laser-based ringlight. In embodiments, a system as disclosed herein may include a support structure having an optically transmissive surface shaped to engage an optically transmissive surface of the sample holder. In embodiments, a system as disclosed herein may have a compression device configured to retain the sample holder in a desired location for illumination by the illumination source. In embodiments, a system as disclosed herein may include a detector configured to image at least a portion of a channel in the sample holder. In embodiments, a sample holder as disclosed herein may include an elongated channel configured to contain at least a portion of the sample, and wherein a detector is configured to image an entire elongated channel in the sample holder. In embodiments, a sample holder as disclosed herein may be configured to hold the sample in a static, non-flowing manner during imaging; in embodiments, a sample holder may be configured to hold one portion of the sample in a static, non-flowing manner and another portion in a flowing manner. In embodiments, an illumination source as disclosed herein may be movable relative to the sample holder. In embodiments, a sample holder as disclosed herein may be configured to hold the sample in a flowing manner during imaging. In embodiments, a sample holder as disclosed herein may include a fluid circuit fully confined in the sample holder, and wherein the sample is located in said fluid circuit, effective that the sample remains separate from said detector. In embodiments, a sample holder as disclosed herein is movable relative to the detector. In embodiments, a detector as disclosed herein is movable relative to the sample holder. In embodiments, a sample holder and an illumination source as disclosed herein comprise at least part of an optical analysis unit, and the system further includes a clinical analysis unit configured to perform clinical analysis on a sample. In embodiments, a system as disclosed herein is configured to provide an aliquot of a single sample to an optical analysis unit and to a clinical analysis unit, effective that the clinical analysis unit and the optical analysis unit may perform optical analysis and clinical analysis on portions of a sample at the same time. In embodiments, such a clinical analysis may be selected from general chemical analysis, nucleic acid analysis, and enzyme-linked binding analysis. In embodiments, a system as disclosed herein may include a plurality of clinical analysis units, wherein each of such clinical analysis units is configured to provide a clinical analysis selected from general chemical analysis, nucleic acid analysis, and enzyme-linked binding analysis. Applicants further provide a cuvette comprising a sample chamber configured to hold a sample, at least a portion of said cuvette comprising an optically transmissive material, said optically transmissive material comprising an optically transmissive surface and a reflective surface, wherein said optically transmissive surface and said reflective surface are configured effective that light passing through the optically transmissive surface simultaneously provides both epi-illumination and trans-illumination to said sample in the sample chamber, where epi-illumination comprises light traveling from said illumination source to the sample without reflection at a surface of the optically transmissive material, and where trans-illumination comprises light traveling within the optically transmissive material and to the sample following at least one reflection from at least one surface of said optically transmissive material. In embodiments, a cuvette as disclosed herein has a sample chamber comprising an elongated channel. In embodiments, a cuvette as disclosed herein comprises two or more sample chambers for holding sample. In embodiments, a cuvette may comprise a curved, including U-shaped, channel. In embodiments, a cuvette may comprise a plurality of channels. In embodiments, a sample chamber comprises an inlet port. In embodiments, a sample chamber comprises a vent effective to allow air or gas to pass in or out (e.g., during filling of the chamber with a sample). In embodiments, an inlet port may comprise, or may serve as, a vent. In embodiments, a vent may comprise or be covered with a membrane effective to reduce or prevent evaporation of fluid held within the channel. In embodiments, an elongated channel of a cuvette may comprise a vent covered with a porous membrane effective to reduce or prevent evaporation of fluid held within the channel. In embodiments, an adhesive; a membrane coated on one or two sides with an adhesive layer; ultrasonic welding; or combinations thereof may be used in the fabrication of a cuvette. In embodiments, a cuvette as disclosed herein may have one or more optically non-transmissive surfaces. In embodiments, trans-illumination may be provided in a cuvette as disclosed herein, at least in part by internal reflection of light within the cuvette. In embodiments, trans-illumination may be provided in a cuvette as disclosed herein, at least in part by partial internal reflection of light at a surface of the cuvette. In embodiments, trans-illumination may be provided in a cuvette as disclosed herein, at least in part by total internal reflection of light at a surface of the cuvette. In embodiments, a cuvette as disclosed herein may have a rectangular horizontal, cross-sectional shape; in embodiments, a cuvette as disclosed herein may have a circular horizontal, cross-sectional shape. In embodiments, a cuvette as disclosed herein may have a saw tooth vertical cross-sectional shape; in embodiments, a cuvette as disclosed herein may have a step-shaped vertical cross-sectional shape. Applicants disclose methods herein. For example, Applicants disclose herein a method of identifying a cell in a sample containing a plurality of cells, comprising: (a) placing said sample in a sample holder comprising a sample chamber configured to hold the sample, at least a portion of said sample holder comprising an optically transmissive material, said optically transmissive material comprising an optically transmissive surface and a reflective surface, wherein said optically transmissive surface and said reflective surface are configured effective that light passing through the optically transmissive surface simultaneously provides both epi-illumination and trans-illumination to the sample in the sample chamber, where epi-illumination comprises light traveling from said illumination source to the sample without reflection at a surface of the optically transmissive material, and where trans-illumination comprises light traveling within the optically transmissive material and to the sample following at least one reflection from at least one surface of said optically transmissive material; (b) illuminating said sample holder effective to simultaneously provide both epi-illumination and trans-illumination of the sample; and (c) identifying a cell in the sample. In embodiments, methods disclosed herein include methods wherein said identifying comprises identifying said cell with a detector configured to image at least a portion of said sample chamber. In embodiments disclosed herein, a sample chamber for use in such methods may comprise an elongated channel. Applicants further disclose herein a method for focusing a microscope, comprising: a) mixing a sample containing an object for microscopic analysis with a reference particle having a known size, effective to generate a mixture containing the sample and reference particle; b) positioning the mixture of step a) into a light path of a microscope; c) exposing the mixture of step a) to a light beam configured to visualize the reference particle; and d) focusing the microscope based on the position of the reference particle within the mixture or based on the sharpness of an image of the reference particle. Applicants further disclose herein methods for processing samples, comprising mixing a sample directly with a reagent comprising beads and antibodies, wherein the beads are of a known size and at a known concentration, and the antibodies are useful for labeling targets within the sample. In embodiments, Applicants disclose methods for processing blood samples, comprising mixing a sample of whole blood with a reagent comprising beads and antibodies, wherein the beads are of a known size and at a known concentration, and the antibodies are useful for labeling blood cells within the sample. Such methods provide improved accuracy and precision of sample analysis, e.g., improved accuracy and precision of blood cell numbers and characteristics, and reduce the sensitivity of sample analysis to inaccuracies derived from sample transfer, mixing, and aliquotting. In one non-limiting example, by analyzing the number of beads in a sample, one can infer the number of cells if the ratio of cells-to-beads is known and that ratio is maintained during each dilution step. It should be understood that every dilution step could have variance due to sample dispense and diluent dispense. By starting with a solution of beads and reagents into which an undiluted sample is added, the system becomes insensitive to inaccuracies of the dispense steps so long as the ratio of formed components such as but not limited beads and cells does not change. Applicants disclose herein a method of identifying a cell in a sample containing a plurality of cells, comprising: (a) assaying a cell of the plurality of cells for at least one of: (i) the presence of a cell surface antigen; (ii) the amount of a cell surface antigen; or (iii) cell size; (b) assaying the cell of (a) for at least one of: (i) nuclear size; or (ii) nuclear shape; and (c) assaying the cell of (a) and (b) for quantitative cell light scatter, wherein the combination of information from steps (a), (b), and (c) is used to identify the cell in the sample containing a plurality of cells. In at least one embodiment described herein, a system for imaging a sample, the system comprising: a sample vessel containing said sample, a stage having a sample vessel receiver with an optically transparent surface; a light source for illuminating formed components in the sample through the stage, wherein the sample vessel has an interface surface configured to engage the optically transparent surface of the sample vessel receiver whereby the interface surface conforms to the optically transparent surface without significant distortion of light passing through the interface surface. It should be understood that embodiments herein may be configured to include one or more of the following features. For example, the interface surface of the sample vessel may be formed from a polymer material. Optionally, this may be a transparent material. Optionally, the interface surface of the sample vessel is formed of a material softer than a material used to form the optically transparent surface of the sample vessel receiver. Optionally, a compression unit is provided for applying pressure to conform the interface surface to a shape configured to conform with the optically transparent surface of the sample vessel receiver. Optionally, a handling unit may be configured to be coupled to the sample vessel to facilitate transport of sample vessel on and off the stage, and increase mechanical rigidity of the sample vessel. Optionally, the handling unit may be an optically opaque unit configured to be coupled to the sample vessel. Optionally, the handling unit may be formed with physical features, protrusions, or the like to facilitate engagement with a robotic manipulator, pipette unit, or other mechanical mover. Optionally, the handling unit may be formed with magnetic, electromagnetic, or other features to facilitate engagement or disengagement. Optionally, all imaging of the sample may be done without passing light in a substantially straight line through one surface and out an opposing surface to a detector. Optionally, the light source is not located on one side of the sample vessel to deliver light to a detector on an opposite side of the sample vessel. In one non-limiting example, the cuvette may have a plurality of channels wherein at least some of the channels have different cross-sectional widths or other cross-sectional dimensions. Optionally, some cuvettes may also have many different shapes of channels. Optionally, some embodiments may have at least one channel when viewed from top-down has a spiral configuration. Optionally, some embodiment may have a plurality of channels formed as concentric circles, concentric ovals, and/or concentric polygons. Some embodiments may have cuvette channels wherein at least two are of different lengths. In embodiments, hydrophilic modes of filling or hydrophobic modes of filling may be used with the cuvette. Most microfluidics rely on capillary action (hydrophilic) for filling channels in a cuvette. In contrast, at least some embodiments herein may use hydrophobic filling modes. In one non-limiting example of hydrophobic mode of filling, a liquid dispensing tip forms a seal with at least one port of the cuvette, and the tip can be used to push the liquid into the cuvette channel under positive pressure, wherein there is typically a vent at the end or other portion of the channel in the cuvette to facilitate this type of liquid filling. By using a hydrophobic surface in all or portions of the channel, one can control how far the liquid goes into the channel by controlling the pressure. In one non-limiting example of a cuvette for use in hydrophobic mode of filling, the top layer of the cuvette may be acrylic and the bottom portion of the cuvette is a different material. In one embodiment, the bottom portion of the cuvette may define three sides of the channel (bottom and two sides) while a cover layer define the top surface of the channel. Most optically clear materials are hydrophobic, so to work with these materials, use of the pressure based filling technique may facilitate filling of these types of channels. It should be understood that embodiments in this disclosure may be adapted to have one or more of the features described in this disclosure. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A shows a plot of side scatter intensity (x-axis) vs. fluorescence intensity of a mixture cells including natural killer cells and neutrophils labeled with a fluorescent binder that recognizes CD16. FIG. 1B shows a bar graph showing the ratio of nuclear area to total cell area of natural killer cells (“NK”) and neutrophils (“Neu”). FIG. 1C shows natural killer cells stained with anti-CD16 antibody (left column) and a nuclear stain (right column). FIG. 1D shows neutrophils stained with anti-CD16 antibody (left column) and a nuclear stain (right column). FIG. 2A shows platelets labeled with fluorescently conjugated CD41 and CD61 antibodies (bright dots). FIG. 2B shows intensity distribution of images of fluorescently labeled platelets at 10× (left) and 20× (right) magnification. FIG. 2C shows intensity distribution of an image of a fluorescently labeled platelet showing measured intensity (light grey) and curve fit to the measured intensity (dark grey). FIG. 3 shows: a plot of curve of showing the relationship between the nominal diameter of standard particles in μm (x-axis) and fluorescence intensity-based size measure in arbitrary units (a.u.; y-axis). The figure also shows representative beads at different points along the curve. FIG. 4A shows sphered red blood cells imaged by dark field microscopy in cuvettes that allow only epi-illumination. FIG. 4B shows sphered red blood cells imaged by dark field microscopy in cuvettes that allow a mixture of epi- and trans-illumination. FIG. 5A shows putative band neutrophils stained with anti-CD16 antibody and a nuclear stain. FIG. 5B shows putative segmented neutrophils stained with anti-CD16 antibody and a nuclear stain. FIG. 6A shows an embodiment of an optical system suitable as part of device or system as disclosed herein, and suitable for use in methods disclosed herein, including exemplary optics (e.g., a light-source shown as a ringlight, and an objective), cuvette, and a support structure configured to hold and position a cuvette for imaging. In this embodiment, the cuvette has a rectangular horizontal cross-sectional shape. FIG. 6B shows an embodiment of an optical system suitable as part of device or system as disclosed herein, and suitable for use in methods disclosed herein, including exemplary optics (e.g., a light-source shown as a ringlight, and an objective), cuvette, and a support structure configured to hold and position a cuvette for imaging. In this embodiment, the cuvette has a circular horizontal cross-sectional shape. FIG. 7A shows embodiments of elements of an optical system suitable for use in a device or system as disclosed herein, and suitable for use in methods disclosed herein. FIG. 7B shows embodiments of elements of an optical system suitable for use in a device or system as disclosed herein, and suitable for use in methods disclosed herein, comprising a further lens and an aperture suitable for limiting the range of angles of scattered light which reach a detector. FIG. 8A provides a view of an embodiment of an optical system including a support structure for holding a cuvette for imaging of a sample, in which light from a ringlight illumination system falls directly on the sample (epi-illumination), and light is also reflected from feature of the cuvette so as to provide trans-illumination as well. In this embodiment, the cuvette has a step-shaped vertical cross-sectional shape. FIG. 8B provides a view of an embodiment of an optical system including a support structure for holding a cuvette for imaging of a sample, in which light from a ringlight illumination system falls directly on the sample (epi-illumination), and light is also reflected from feature of the cuvette so as to provide trans-illumination as well. As shown, incident light may be completely reflected at a surface (total internal reflection, TIR) or only a portion of incident light may be reflected at a surface (partial internal reflection, PIR). In this embodiment, the cuvette has a saw tooth vertical cross-sectional shape. FIG. 8C shows an embodiment of an optical system suitable as part of device or system as disclosed herein, and suitable for use in methods disclosed herein, including exemplary optics (e.g., a light-source shown as a ringlight, and an objective), cuvette, and a support structure configured to hold and position a cuvette for imaging. In this embodiment, the cuvette includes features which affect the path of light illuminating the cuvette and the sample within the cuvette. FIG. 8D shows an embodiment of an optical system suitable as part of device or system as disclosed herein, and suitable for use in methods disclosed herein, including exemplary optics (e.g., a light-source directing light from a transverse direction), cuvette, and a support structure configured to hold and position a cuvette for imaging. In this embodiment, the cuvette includes features which affect the path of light illuminating the cuvette and the sample within the cuvette. FIG. 8E provides a schematic representation of transport of a cuvette from a sample preparation location to a sample observation location near an optical detector (labeled “D”). FIG. 8F provides a further, detailed schematic representation of system including a transport mechanism for transporting a cuvette from a sample preparation location to a sample observation location near an optical detector. FIG. 9A is a dark-field image showing images of representative blood cells taken from whole blood. FIGS. 9B-9F are also representative images of blood cells taken from whole blood, using different imaging techniques and dyes. FIG. 9B is an image showing fluorescence from labeled anti-CD14 antibodies attached to monocytes. FIG. 9C is an image showing fluorescence from labeled anti-CD123 antibodies attached to basophils. FIG. 9D is an image showing fluorescence from labeled anti-CD16 antibodies attached to neutrophils. FIG. 9E is an image showing fluorescence from labeled anti-CD45 antibodies attached to leukocytes. FIG. 9F is an image showing leukocyte and platelet cells stained with nuclear stain DRAQ5® (red blood cells, lacking nuclei, are not stained by DRAQ5®). FIG. 10 is composite image which shows representative images of blood cells taken from whole blood, showing a monocyte, a lymphocyte, an eosinophil, and a neutrophil. FIG. 11A shows identification of monocytes by plotting CD14 label intensity (FL-17) versus scatter intensity (FL-9). This image, and the other images in FIGS. 11B-11D show plots of fluorescence detected on cells labeled with different markers (labeled antibodies directed at different cell-surface or other markers); such multiple labeling is useful for identifying cells. FIG. 11B shows identification of basophils by plotting CD123 intensity (FL-19) versus CD16 intensity (FL-15). FIG. 11C shows identification of lymphocytes by plotting CD16 intensity (FL-15) versus CD45 intensity (FL-11). FIG. 11D shows identification of neutrophils and eosinophils by plotting CD16 intensity (FL-15) versus scatter intensity (FL-9). FIG. 12A plots white blood cell counts obtained by the present methods versus white blood cell counts obtained by the commercial blood analyzer. FIGS. 12A-12F show comparisons of cell counts (measured from aliquots of the same blood sample) obtained by the present methods, and those obtained by other methods (using a commercial blood analyzer). FIG. 12B plots red blood cell counts obtained by the present methods versus red blood cell counts obtained by the commercial blood analyzer. FIG. 12C plots platelet counts obtained by the present methods versus platelet counts obtained by the commercial blood analyzer. FIG. 12D plots neutrophil counts obtained by the present methods versus neutrophil counts obtained by the commercial blood analyzer. FIG. 12E plots monocyte counts obtained by the present methods versus monocyte counts obtained by the commercial blood analyzer. FIG. 12F plots lymphocyte counts obtained by the present methods versus lymphocyte counts obtained by the commercial blood analyzer. FIG. 13A shows dark field images of white blood cells (WBCs) obtained using microscopy. FIGS. 13A-13E show WBC images obtained using microscopy, for use in performing sequential segmentation analysis to determine contours for each cell and to thus differentiate the cell images from the background images. FIG. 13B is a fluorescence image showing cell labelling by anti-CD45 antibodies. FIG. 13C is a fluorescence image cells labelling by the nuclear stain DRAQ5®. FIG. 13D is a fluorescence image showing cell labelling by anti-CD16 antibodies. FIG. 13E is a fluorescence image showing cell labelling by anti-CD123 antibodies. FIG. 14A is a dark field image, obtained using microscopy, of white blood cells (WBCs). FIGS. 14A-14E show WBC images obtained using microscopy, as in FIGS. 13A-13E, for performing sequential segmentation analysis to determine external (e.g., cell membrane) and internal (e.g., nucleus) contours for each cell and to thus identify the cell nucleus as well as to differentiate the cell regions of interest (cell ROIs) from the background regions. The lines within the cell images identify the boundaries of the WBC nucleus for each cell as determined by sequential segmentation analysis. FIG. 14B is a fluorescence image showing cell labelling by anti-CD45 antibodies. FIG. 14C is a fluorescence image cells labelling by the nuclear stain DRAQ5®. FIG. 14D is a fluorescence image showing cell labelling by anti-CD16 antibodies. FIG. 14E is a fluorescence image showing cell labelling by anti-CD123 antibodies. FIG. 15A is a composite image of the cells shown in FIGS. 13A-13E and 14A-14E, with cell contours obtained by watershed segmentation performed once. FIGS. 15A and 15B show composite images of white blood cells (WBCs) shown in FIGS. 13A-13E and 14A-14E. FIG. 15B is a the result of sequential segmentation as described herein applied to the composite image of the cells shown in FIGS. 13A-13E and 14A-14E, showing cell contours obtained by that analysis. DETAILED DESCRIPTION Description and disclosure which may aid in understanding the full extent and advantages of the devices, systems, and methods disclosed herein may be found, for example, in U.S. Pat. Nos. 7,888,125; 8,088,593; 8,158,430; 8,380,541; PCT Application No. PCT/US2013/052141, filed Jul. 25, 2013; PCT Application No. PCT/US2012/057155, filed Sep. 25, 2012; PCT Application No. PCT/US2011/053188, filed Sep. 25, 2011; PCT Application No. PCT/US2011/053189, filed Sep. 25, 2011; U.S. patent application Ser. No. 14/098,177, filed Dec. 5, 2013; U.S. patent application Ser. No. 13/951,063, filed Jul. 25, 2013; U.S. patent application Ser. No. 13/951,449, filed Jul. 25, 2013; U.S. patent application Ser. No. 13/769,798, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,779, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,818, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,820, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/355,458, filed Jan. 20, 2012; U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011; U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,949, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,950, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,951, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,952, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,953, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,954, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,956, filed Sep. 26, 2011; U.S. Application Ser. No. 61/673,245, filed Sep. 26, 2011; U.S. Patent Application Ser. No. 61/675,811, filed Jul. 25, 2012; U.S. Patent Application Ser. No. 61/676,178, filed Jul. 26, 2012; U.S. Patent Application 61/697,797, filed Sep. 6, 2012; U.S. Patent Application 61/766,113, filed Feb. 18, 2013; U.S. Patent Application 61/766,116, filed Feb. 18, 2013; U.S. Patent Application 61/766,076, filed Feb. 18, 2013; U.S. Patent Application 61/786,351, filed Mar. 15, 2013; U.S. Patent Application Ser. No. 61/802,194, filed Mar. 15, 2013; U.S. Patent Application Ser. No. 61/837,151, filed Jun. 19, 2013; U.S. Patent Application 61/933,270, filed Jan. 29, 2014; U.S. Patent Application 61/930,419, filed Jan. 22, 2014; U.S. patent application Ser. No. 14/161,639, filed Jan. 22, 2014; and U.S. patent application Ser. No. 14/167,264, filed Jan. 29, 2014, the disclosures of which patents and patent applications are all hereby incorporated by reference herein in their entireties. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a compound” may include multiple compounds, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification. As used herein, unless explicitly stated otherwise, or unless otherwise made clear by the context, the meaning of the term “or” includes both the disjunctive (“or”) and the conjunctive (“and”). In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings: “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for a sample collection unit, this means that the sample collection unit may or may not be present, and, thus, the description includes both structures wherein a device possesses the sample collection unit and structures wherein sample collection unit is not present. As used herein, the terms “substantial” means more than a minimal or insignificant amount; and “substantially” means more than a minimally or insignificantly. Thus, for example, the phrase “substantially different”, as used herein, denotes a sufficiently high degree of difference between two numeric values such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the characteristic measured by said values. Thus, the difference between two values that are substantially different from each other is typically greater than about 10%, and may be greater than about 20%, greater than about 30%, greater than about 40%, or greater than about 50% as a function of the reference value or comparator value. As used herein, “internal reflection” refers to reflection of light, within a material (the first material), at a boundary between the first material and another material (the second material). For example, a first material may be a solid such as a glass or plastic, and the second material may be, e.g., air. The light that is internally reflected is traveling within the first material before it is reflected. Internal reflection may be partial (partial internal reflection: PIR) or total (total internal reflection: TIR). Thus, internal reflection where all of the light incident at a surface is reflected back within the first material is TIR, while internal reflection where not all light incident at a surface is reflected within a material is PIR. (With PIR, some light may pass through the boundary, and some light is reflected at the surface back into the material.) The angle of the incidence is an important factor in determining the extent of internal reflection; it is the angle of an incident light ray measured versus a line perpendicular to the boundary surface. Whether or not TIR occurs depends upon the angle of incidence of the light with respect to the surface at the boundary between the first and the second material; the index of refraction of the first material; the index of refraction of the second material; and other factors (e.g., the wavelength of light may affect TIR since the index of refraction typically varies with wavelength). The angle at which light is totally internally reflected is termed the critical angle; incident light having an angle of incidence greater than the critical angle will be totally internally reflected (will remain within the material: TIR). However, with PIR, a portion of incident light having an angle of incidence less than the critical angle will also be internally reflected (the remaining light being refracted and passing out of the first material into the second material). As used herein, a “sample” may be but is not limited to a blood sample, or a urine sample, or other biological sample. A sample may be, for example, a blood sample (e.g., a sample obtained from a finger-stick, or from venipuncture, or an arterial blood sample, and may be whole blood, serum, plasma, or other blood sample), a urine sample, a biopsy sample, a tissue slice, stool sample, or other biological sample; a water sample, a soil sample, a food sample, an air sample; or other sample (e.g., nasal swab or nasopharyngeal wash, saliva, urine, tears, gastric fluid, spinal fluid, mucus, sweat, earwax, oil, glandular secretion, cerebral spinal fluid, tissue, semen, cervical fluid, vaginal fluid, synovial fluid, throat swab, breath, hair, finger nails, skin, biopsy, placental fluid, amniotic fluid, cord blood, lymphatic fluids, cavity fluids, sputum, mucus, pus, a microbiota sample, meconium, breast milk or other excretions). Thus, as used herein, a “sample” includes a portion of a blood, urine, or other biological sample, may be of any suitable size or volume, and is preferably of small size or volume. In some embodiments of the systems, assays and methods disclosed herein, measurements may be made using a small volume blood sample, or no more than a small volume portion of a blood sample, where a small volume comprises no more than about 5 mL; or comprises no more than about 3 mL; or comprises no more than about 2 mL; or comprises no more than about 1 mL; or comprises no more than about 500 μL; or comprises no more than about 250 μL; or comprises no more than about 100 μL; or comprises no more than about 75 μL; or comprises no more than about 50 μL; or comprises no more than about 35 μL; or comprises no more than about 25 μL; or comprises no more than about 20 μL; or comprises no more than about 15 μL; or comprises no more than about 10 μL; or comprises no more than about 8 μL; or comprises no more than about 6 μL; or comprises no more than about 5 μL; or comprises no more than about 4 μL; or comprises no more than about 3 μL; or comprises no more than about 2 μL; or comprises no more than about 1 μL; or comprises no more than about 0.8 μL; or comprises no more than about 0.5 μL; or comprises no more than about 0.3 μL; or comprises no more than about 0.2 μL; or comprises no more than about 0.1 μL; or comprises no more than about 0.05 μL; or comprises no more than about 0.01 μL. In embodiments, the volume of sample collected via finger-stick may be, e.g., about 250 μL or less, or about 200 μL or less, or about 150 μL or less, or about 100 μL or less, or about 50 μL or less, or about 25 μL or less, or about 15 μL or less, or about 10 μL or less, or about 10 μL or less, or about 5 μL or less, or about 3 μL or less, or about 1 μL or less. As used herein, the term “point of service location” may include locations where a subject may receive a service (e.g. testing, monitoring, treatment, diagnosis, guidance, sample collection, ID verification, medical services, non-medical services, etc.), and may include, without limitation, a subject's home, a subject's business, the location of a healthcare provider (e.g., doctor), hospitals, emergency rooms, operating rooms, clinics, health care professionals' offices, laboratories, retailers [e.g. pharmacies (e.g., retail pharmacy, clinical pharmacy, hospital pharmacy), drugstores, supermarkets, grocers, etc.], transportation vehicles (e.g. car, boat, truck, bus, airplane, motorcycle, ambulance, mobile unit, fire engine/truck, emergency vehicle, law enforcement vehicle, police car, or other vehicle configured to transport a subject from one point to another, etc.), traveling medical care units, mobile units, schools, day-care centers, security screening locations, combat locations, health assisted living residences, government offices, office buildings, tents, bodily fluid sample acquisition sites (e.g. blood collection centers), sites at or near an entrance to a location that a subject may wish to access, sites on or near a device that a subject may wish to access (e.g., the location of a computer if the subject wishes to access the computer), a location where a sample processing device receives a sample, or any other point of service location described elsewhere herein. The term “cells,” as used in the context of biological samples, encompasses samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), cells, virions, and substances bound to small particles such as beads, nanoparticles, or microspheres. As used herein, the term “binds” refers to a reaction, or interaction, between two materials which lead to the close combination of the two; e.g., a reaction between a ligand and a receptor, in which the ligand becomes tightly linked to the receptor, provides an example of binding. The combination of an antibody with its target antigen, and of a carrier protein with its cargo, such as intrinsic factor with vitamin B12, are further examples of reactions in which one material binds to another. The term “binder” as used herein refers generally to any compound or macromolecule, such as an antibody, which tightly or specifically binds to a target. Binders include, but are not limited to, antibodies (whether monoclonal or polyclonal, antibody fragments, immunoadhesins, and other such antibody variants and mimics), natural binding proteins (e.g., intrinsic factor protein which is specific for vitamin B12), ligands which bind their target receptors, substrates which bind to particular enzymes, binding pairs such as avidin and biotin, small molecules which tightly and specifically bind to target molecules, and the like. Bacteria, viruses, synthetic scaffolds, and other objects and materials that bind or adhere to specific targets may be used as binders. A binder may be, or may include, or may be linked to, a marker such as a dye, or fluorophore, or other detectable moiety. As used herein, a “marker” is a detectable material whose presence makes a target visible or otherwise detectable, or whose presence in a position or location is indicative of the presence of a target in that position or location. A marker may be used to label a cell, structure, particle, or other target, and may be useful to detect, determine the presence of, locate, identify, quantify, or otherwise measure a target in, or property of, a sample. Markers may include, without limitation, stains, dyes, ligands, antibodies, particles, and other materials that may bind or localize to specific targets or locations; bacteria, viruses or cells that may grow in or localize to specific targets or locations may also be used as markers. Detectable attributes or properties of cells or other targets may be used as markers. As used herein, the terms “stain” and “dye” may be interchangeable, and refer to elements, compounds, and macromolecules which render objects or components of a sample more detectable than in the absence of treatment with the stain or dye. For example, treatment of a blood sample with a DNA dye such as propidium iodide renders the nuclei of nucleated cells more visible, and makes detection and quantification of such cells easier than otherwise, even in the presence of non-nucleated cells (e.g., red blood cells). As used herein, the term “surfactant” refers to a compound that is effective to reduce the surface tension of a liquid, such as water. A surfactant is typically an amphiphilic compound, possessing both hydrophilic and hydrophobic properties, and may be effective to aid in the solubilization of other compounds. A surfactant may be, e.g., a hydrophilic surfactant, a lipophilic surfactant, or other compound, or mixtures thereof. Some surfactants comprise salts of long-chain aliphatic bases or acids, or hydrophilic moieties such as sugars. Surfactants include anionic, cationic, zwitterionic, and non-ionic compounds (where the term “non-ionic” refers to a molecule that does not ionize in solution, i.e., is “ionically” inert). Exemplary commercially available amphiphilic compounds include Tergitol™ nonionic surfactants; Dowfax™ anionic surfactants; polyethylene glycols and derivatives thereof, including Triton™ surfactants; polysorbates (polyethylenesorbitans) such as the TWEEN® compounds, and poloxamers (e.g., ethylene oxide/propylene oxide block copolymers) such as Pluronics® compounds; stearates and derivatives thereof; laurates and derivatives thereof; oleates and derivatives thereof; phospholipids and derivatives thereof; lysophospholipids and derivatives thereof; sterols and derivatives thereof; and combinations thereof. As used herein, a “detector” may be any device, instrument, or system which provides information derived from a signal, image, or other information related to a target, such as a sample. Detectable signals and information may include, for example, optical, electrical, mechanical, chemical, physical, or other signals. A detector may be, for example, an optical detector, or an electrical detector, or a chemical detector, or an electrochemical detector, or an acoustic detector, or a temperature detector, or a mechanical detector, or other detector. As used herein, an “optical detector” detects electromagnetic radiation (e.g., light). An optical detector may detect an image or be used with an image, or may detect light intensity irrespective of an image, or both. An optical detector may detect, or measure, light intensity. Some optical detectors may be sensitive to, or restricted to, detecting or measuring a particular wavelength or range of wavelengths. For example, optical detectors may include, for example, photodiode detectors, photomultipliers, charge-coupled devices, laser diodes, spectrophotometers, cameras, microscopes, or other devices which measure light intensity (of a single wavelength, of multiple wavelengths, or of a range, or ranges, of wavelengths of light), form an image, or both. The term “ploidy” as used herein refers to the amount of DNA in a cell, and to assays and measurements of the DNA content of cells in a sample. Ploidy measurements provide a measure of whether or not a cell, or a population of cells, has a normal or an abnormal amount of DNA, or, since DNA is duplicated during cell division and proliferation, if abnormal numbers of cells in a population are proliferating. Ploidy measurements may be made by imaging techniques following staining of nucleated cells in a sample with a DNA-specific dye. Quantitative Microscopy In some embodiments, methods, systems, and devices are provided herein for quantitative microscopy. Quantitative microscopy may involve one or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy methods to measure one or more cellular attributes. Any of these methods may provide morphometric information regarding cells. Such information may be measured quantitatively. In some embodiments, for quantitative microscopy, a sample is analyzed by two or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy. Quantitative microscopy may include use of image analysis techniques or statistical learning and classification methods to process images obtained by microscopy. Multiple different cellular attributes may be measured during quantitative microscopy. Cellular attributes that may be measured include, without limitation: Physical attributes: e.g. cell size, volume, conductivity, low and high angle scatter, and density. Other physical attributes that may be measured or quantified include, without limitation, circularity of a cell or particle; aspect ratio of a cell or particle; perimeter of a cell or particle; convexity of a cell or particle; granularity of a cell or particle; intensity of an image of a cell or particle; height (e.g., size through several focal planes) of a cell or particle; flatness of a cell or particle; and other physical attributes. Morphological attributes: e.g. cell shape, area, size, and lobularity; nucleus shape area, size, and lobularity; mitochondria shape, area, size, and lobularity; and ratio of nuclear volume to cell volume. Intracellular attributes: e.g. nucleus centroid/cell centroid distance (i.e. distance between the center of the nucleus and the center of the cell), nucleus lobe centroid distance (i.e. distance between the center of different lobes of the nucleus), distribution of proteins within the cells (e.g. actin, tubulin, etc.), distribution of organelles within the cells (e.g. lysosomes, mitochondria, etc.), colocalization of proteins with other proteins and organelles, and other attributes. Biochemical attributes: e.g. expression level of cellular proteins, cell surface proteins, cytoplasmic proteins, nuclear proteins, cellular nucleic acids, cell surface nucleic acids, cytoplasmic nucleic acids, nuclear nucleic acids, cellular carbohydrates, cell surface carbohydrates, cytoplasmic carbohydrates, and nuclear carbohydrates. In some embodiments, methods, systems, and devices are provided herein for the quantitative measurement of two, three, four, five or more attributes of cells in a sample, wherein the attributes are selected from physical attributes, morphological attributes, intracellular attributes, and biochemical attributes. In some embodiments, methods, systems, and devices are provided herein for the quantitative measurement of two, three, four, five or more attributes of cells in a sample, wherein the attributes are selected from: cell size, cell volume, cell conductivity, cell low angle light scatter, cell high angle light scatter, cell density, cell shape, cell area, cell lobularity, nucleus shape, nucleus area, nucleus size, nucleus lobularity, mitochondria shape, mitochondria area, mitochondria size, mitochondria lobularity, ratio of nuclear volume to cell volume, nucleus centroid/cell centroid distance, nucleus lobe centroid distance, distribution of proteins with the cells (e.g. actin, tubulin, etc.), distribution of organelles within the cells (e.g. lysosomes, mitochondria, etc.), expression level of a cellular protein, expression level of a cell surface protein, expression level of a cytoplasmic protein, expression level of a nuclear protein, expression level of a cellular nucleic acid, expression level of a cell surface nucleic acid, expression level of a cytoplasmic nucleic acid, expression level of a nuclear nucleic acid, expression level of a cellular carbohydrate, expression level of a cell surface carbohydrate, expression level of a cytoplasmic carbohydrate, and expression level of a nuclear carbohydrate. In some embodiments, methods are provided for the quantitative measurement of two, three, four, five, or more attributes of cells in a biological sample by microscopy, wherein the method may include one or more of the following steps or elements. The attributes of the cells quantitatively measured may be selected from the attributes listed in the immediately above paragraph. The biological sample may be pre-treated prior to microscopy. Pre-treatment may include any procedure to aid in the analysis of the sample by microscopy, including: treatment of the sample to enrich for cells of interest for microscopy, treatment of the sample to reduce components in the sample which may interfere with microscopy, addition of material to the sample to facilitate analysis of the sample by microscopy (e.g. diluents, blocking molecules to reduce non-specific binding of dyes to cells, etc.). Optionally, prior to microscopy, a sample may be contacted with one or more binders that specifically bind to a cellular component. Binders may be directly linked to a dye or other particle for the visualization of the binder. A sample may also be contacted with a secondary binder, which binds to the binder which binds to the cellular component. A secondary binder may be directly linked to a dye or other particle for the visualization of the binder. Prior to microscopy, a sample may be assayed in a spectrophotometer. For microscopy, a biological sample containing or suspected of containing an object for microscopic analysis may be introduced into a sample holder, such as a slide or a cuvette. The sample holder containing a sample may be introduced into a device configured to perform quantitative microscopy on the sample. The microscope may be coupled with an image sensor to capture images generated through the microscope objective. In the device, multiple images of the sample may be acquired by microscopy. Any one or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy may be used to obtain images of the sample. Optionally, images of the entire sample in the sample holder may be acquired by microscopy. Multiple fields of view of the microscope may be required to capture images of the entire sample in the sample holder. The sample holder may move relative to the microscope or the microscope may move relative to the sample holder in order to generate different field of views in order to examine different portions of the sample in the sample holder. Multiple images of the same field of view of the sample in the sample holder may be acquired. Optionally, multiple filters may be used with the same type of microscopy and the same field of view of the sample, in order to acquire different images of the same sample which contain different information relating to the sample. Filters that may be used include, without limitation bandpass and long pass filters. Filters may permit the passage of certain wavelengths of light, and block the passage of others. Optionally, multiple types of microscopy (e.g. fluorescence, dark field, bright field, etc.) may be used to acquire images of the same field of view of the sample, in order to acquire different images of the same sample which contain different information relating to the sample. Optionally, video may be used to collect microscopy images. Optionally, microscopy images may be collected in 3-D. For microscopy performed as described herein, the device or system may be configured to link information relating to a cell in one image of the sample to the same cell in a different image of the sample. Based on different images of the same sample or same cells, multiple attributes of cells in the sample may be determined. In some aspects, the combination of multiple attributes/multiple pieces of information about cells in a sample may be used to reach a clinical decision or to draw a conclusion about the cells that would not be possible based on information from only a single attribute of the cells. In some embodiments, devices and systems are provided for the quantitative measurement of two, three, four, five, or more attributes of cells in a biological sample by microscopy. In some embodiments, the device or system contains both a microscope or cytometer and a spectrophotometer. The device or system may further contain a fluid handling apparatus, which is configured to move sample between a spectrophotometer and a microscope or cytometer. In some embodiments, devices and systems for performing the methods disclosed herein are configured as described in U.S. patent application Ser. Nos. 13/244,947 and 13/769,779, which are each hereby incorporated by reference in their entireties. Although the foregoing has been described in the context of a cell, it should also be understood that some or all of the foregoing may also be applied to crystals, particles, filaments, or other cell-sized objects that may be found in a sample. Dynamic Dilution In some embodiments, methods, systems, and devices are provided herein for dynamic dilution of cell-containing samples. By way of non-limiting example, a method for dynamic dilution of a sample may include one or more of the following steps or elements such that a desired number or concentration of cells or objects in the sample is determined and this information is used as a factor in adjusting downstream sample processing. In this non-limiting example, one or more stains or dyes may be added to a biological sample containing cells. The mixture of stain and sample may be incubated. The cells in the mixture of stain and sample may be washed to remove excess (unbound) stain. The stained, washed cells may be prepared in a desired volume for further analysis. The stained, washed cells may be analyzed to determine the approximate number or concentration of cells in the sample or a portion thereof. Based on the number or concentration of stained cells in the sample or portion thereof, a volume of sample may be obtained for further analysis, such that a desired number or concentration of cells for further analysis is obtained. In some embodiments, samples may be diluted as described in U.S. patent application Ser. No. 13/355,458, which is hereby incorporated by reference in its entirety. In one embodiment as described herein, it is desirable to provide another detection technique such as but not limited to fluorescence-based method for enumerating cells, to estimate cell concentration in place of using a cell counter. This estimate is described because, for accurate and reproducible staining of patient samples, it is often desirable that stains (DNA dyes/antibodies/binders/etc.) are optimally titered for a specific number/concentration of cells. For example, a known concentration of stain will be applied to a specific number of cells (e.g. 0.2 micrograms of stain per one thousand white blood cells (WBCs)). After an incubation period, the sample will be washed to remove excess (unbound) dye, prepared at the appropriate cell density, and imaged. In this non-limiting example, to make an estimate of cell concentration for a targeted cell type, a sample is non-destructively measured with a different modality from that used for cytometry, such as but not limited to a spectrophotometer, in order to inform sample processing for the cytometric assay. The method may comprise selecting another marker unique to the cell population of interest. In one non-limiting example, for B-cells, one may choose CD20. The process comprises labeling the sample with anti-CD20 binders conjugated to a different colored fluorophore than CD5. One then measures the fluorescent signal of this sample non-destructively and rapidly using a device such as but not limited to a fluorescence spectrophotometer. Using calibration, it is possible to predict the concentration of B-cells with limited accuracy to provide the estimate. In one non-limiting example, the calibration may correlate signal strength with the number of cells for that type of signal. The creation of these calibration curves can be used to estimate the number of cells or object. Other techniques for estimating number of cells based on an overall signal strength such as but not limited to optical, electrical, acoustical, or the like are not excluded. Based on the approximate concentration of B-cells, the system can estimate the appropriate amount and concentration of anti-CD5 binder so that proportional relationship between CD5 expression and CD5 fluorescence is maintained. In this manner, the stain and staining procedure can be optimized/normalized for a particular cell number. To maximize the use of patient samples (which may be low volume samples, such as, e.g., blood obtained from a finger-stick, having a volume equal to or less than about 120 μL), it is desirable to develop methods whereby the number of WBCs contained within a given volume of blood can be enumerated (e.g., the concentration WBCs/μL determined). This allows the number of WBCs to be determined, or at least estimated, prior to adding stains. Once determined, a desired number of cells can be aliquotted for incubation with a known concentration of stain(s), yielding optimal resolution of cell subpopulations. In an application where measurement of ploidy of cells is desired, cells in a sample may be stained with a DNA dye, and then the intensity of staining may be quantified (where “the intensity of staining” means the intensity of an optical signal due to the dye). The intensity of the dye signal due to such staining depends upon the ratio of DNA/dye (that is, of the amount of DNA stained by the dye to the amount of dye added). If a preset amount of dye is added to every sample, regardless of the characteristics of the sample, then samples with very high cell concentration will each be less bright as compared to samples with low cell concentration. This situation would confound the quantification of the amount of DNA in each cell. As disclosed herein, obtaining an estimate of the number of nucleated cells in a sample prior to adding the dye allows one to adjust the amount of dye so that quantification of the DNA, and of the amount of DNA per cell in the sample, may be performed. Thus, for example, a sample, or an aliquot of a sample, may be treated with a stain or dye directed at a cell-surface marker indicative of the cell or cells to be quantified, and that surface marker used to non-destructively estimate the concentration of cells in the sample. This estimated concentration may then be used to calculate the amount of dye that needs to be added to the sample so as to always maintain a consistent DNA:Dye ratio (mole to mole) for subsequent measurements. In a first example of a fluorescence-based method for enumerating cells, a method may comprise determining the ploidy of cells (e.g., enumerating cells via fluorophore-conjugated antibody staining) In this non-limiting example, it is desired to enumerate the WBCs in a blood sample so that a specific number of WBCs can be stained with a predetermined concentration of DNA dye (e.g., 4′-6-diamidino-2-phenylindole (DAPI), or 1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthracene-9,10-dione (DRAQ5®), or propidium iodide, or other DNA-staining dye). The method of this example comprises counting WBCs using a fluorophore-conjugated antibody and a spectrophotometer. It should be understood that this approach may be helpful when staining cells with a DNA dye and determining ploidy, where the ratio of cell number to DNA dye concentration (cell#:[DNA dye]) is desirable for generating comparable and consistent data. Given that the number of cells per microliter of blood vary within a healthy population, it is typically desirable to determine the number of WBCs per microliter before attempting to stain for ploidy. In an embodiment, the procedure comprises using cells that are first stained with a fluorophore-conjugated antibody (where the antibody is preferably directed to a ubiquitously expressed antigen, such as CD45, or to a subpopulation specific antigen, such as CD3 for T cells), or fluorescent dye which labels all cells (e.g., a membrane or cytoplasmic stain such as eosin, or a lectin or other stain or dye) where the wavelength of the fluorescence from the fluorophore is spectrally distinct (and preferably distant) from the emission wavelength of the DNA dye. After an incubation period, the sample is washed to remove excess (unbound) antibody, prepared in the appropriate volume, and analyzed via a spectrophotometer. The resulting data allows the numbers of WBCs in a blood sample to be determined, so that a specific volume of blood can be aliquotted (yielding a particular/desired number of WBCs) and stained with a DNA dye. The resulting data is useful to calculate and to adapt the amount of DNA dye to be used in staining a sample, according to the number of WBCs determined using the fluorophore-conjugated antibody as described. A further embodiment comprises determining the number of cells (via DNA staining) prior to surface staining of the cells. Additional details may also be found in the cell enumeration section herein below. It is sometimes desirable to enumerate the WBCs in a blood sample so that a specific number of WBCs can be stained with optimal concentrations of antibodies. In one embodiment, the method comprises counting WBCs using a DNA dye and a spectrophotometer, e.g., as discussed above. Alternatively, if the number of cells per microliter was determined prior to staining, then a known number of cells could be aliquotted and stained for each sample, regardless of (i) variation within a healthy population and (ii) disease state. To determine the number of cells per microliter of blood, it may be possible to use DNA dyes such as DAPI, DRAQ5®, or propidium iodide. Optionally, unbound dye may be washed away. A spectrophotometer can be used to determine the number of nucleated (e.g., DRAQ5® positive) cells per microliter of blood. The number and concentration of white blood cells (WBCs) in equal-sized aliquots of blood may vary from subject to subject. However, for adequate analysis of WBCs in a blood sample, sufficient amounts of reagents (such as antibodies targeting particular WBC-specific antigens) may be added, and the amount that is sufficient depends upon the number and concentration of WBCs in a blood sample. A procedure termed “dynamic dilution” may be used to ensure that the sufficient antibody reagent is added to a sample. In one non-limiting example, the procedure treats blood cells in order to obtain a provisional cell count used to gauge the proper amount of reagent (e.g., an antibody cocktail for staining white blood cells (WBCs)) to be used with the sample in order to provide complete staining of the cells. In the procedure, the cells are stained with a DNA dye (e.g., DAPI, DRAQ5, or propidium iodide) that is spectrally distinct/distant from the emission of the fluorophore-conjugated antibodies that will be used in subsequent steps or assays. Optionally, the sample may be washed to remove excess (unbound) DNA dye after an incubation period. After an incubation period, the sample may be prepared in the appropriate volume, and imaged or measured using a spectrophotometer. The resulting data allows the number of WBCs in the known volume of sample to be enumerated/determined, so that a specific volume of blood can be aliquotted (yielding a particular/desired number of WBCs) and stained with the proper amount of antibodies (i.e., based on the estimated number of WBCs determined using the DNA dye, the amount of antibodies may be determined that are required in order to provide the desired saturation of antibody staining) Thus, the estimate provided by the DNA staining allows calculation and addition of the proper amount of antibody dye required for the number of WBCs in the sample aliquot. Dynamic Dilution Protocol: In one embodiment, a dynamic dilution protocol involves taking an aliquot of a blood sample containing white blood cells (WBCs) (e.g., whole blood, or a blood portion containing WBCs) in order to estimate the amount of reagent containing antibodies targeting the WBCs that is needed for analysis of the sample. In this non-limiting example, a known volume of a blood sample is taken. A known amount of nuclear dye (e.g., a DNA-staining dye such as propidium iodide, DAPI, or Draq5®) is added to this known volume sample. The mixture is then incubated for a period of 2 to 10 minutes at a temperature between 25° C. to 40° C. Next a red blood cell (RBC) lysis buffer is added. In this non-limiting example, the mixture is then incubated for a period of 2 to 10 minutes at a temperature between 25° C. to 40° C. (lower temperatures may also be used). A suitable lysis buffer may be, for example, a hypotonic saline solution; a hypotonic sucrose solution; an isotonic ammonium chloride solution; an isotonic solution including a gentle surfactant such as saponin or other buffer in which RBCs will lyse. Other surfactants disclosed herein may be used; for example, surfactants which may be suitable for use in a lysis buffer include, without limitation, polysorbates (e.g., TWEEN™), polyethylene glycols (e.g., Triton™ surfactants), poloxamers (e.g., PLURONICS™), detergents, and other amphiphilic compounds. In embodiments, such lysis buffers will include a fixative (such as, e.g., formaldehyde, paraformaldehyde, glutaraldehyde, or other fixative) to aid in stabilizing WBCs. A surfactant such as saponin causes a large number of holes to be formed in the membranes of cells. Red blood cells, due to their unique membrane properties, are particularly susceptible to this hole formation and lyse completely, their contents leaking out into the liquid around. The presence of a fixative prevents unintentional lysis of the white blood cells. Platelets also remain unlysed. The purpose of this step is to remove intact red blood cells from the mixture as they outnumber white blood cells by about 1000:1. Platelets do not interfere with imaging and hence are not a consideration in this process. In embodiments, a lysis buffer may also contain non-fluorescent beads at a known concentration; these beads may serve as size or concentration markers. The lysis of the RBCs, along with the subsequent steps of this protocol, substantially removes any RBC interference to imaging or to optical measurements of the WBCs. Such optimization of the ratio of lytic agent to fixative (e.g., saponin to paraformaldehyde) provides effective lysis of RBCs with a minimal volume of lysis buffer and with minimal adverse effects on WBCs (or platelets) in a sample. By increasing both lytic agent and fixative concentration (e.g., saponin and paraformaldehyde concentrations, respectively) Applicants have been able to reduce the concentration of lysis buffer to sample volume from approximately 20:1 to about 4:1 (lysis buffer volume:sample volume). Further increases in lytic agent concentration risks excessive increasing of WBC lysis as well as the desired lysis of RBCs. Next the treated sample is separated, where the separation may be performed by any suitable method, such as but not limited to spinning the treated sample in a centrifuge at 1200×g for 3 minutes. Following separation (e.g., centrifugation), the supernatant is removed; the remaining pellet is then resuspended. In embodiments, the pellet is resuspended in some or all of the supernatant. A known volume of solution containing the resuspended pellet results from this step. If desired, a further separation step, and a further resuspension step, may be performed. These steps provide a concentrated sample with cells that are approximately 10-fold concentrated (ignoring any possible cell losses at each step). The amount of DNA-staining dye in the resuspended, concentrated sample is then measured. For example, the fluorescence from a fluorescent DNA-staining dye such as DRAQ5® may be measured in a spectrophotometer. In embodiments, the sample may be illuminated by light at a wavelength of 632 nm (the excitation wavelength of DRAQ5®), the light emitted by the cell suspension may be filtered by a 650 nm long pass filter, and then the emitted light may be measured in a spectrophotometer. This emission measurement is then correlated with a previously generated calibration curve to estimate a rough concentration of white blood cells in the cell suspension. Typically, cell concentrations have ranged from about 1000 cells per microliter to about 100,000 cells per microliter. The estimate of WBC number obtained in this way may be used to calculate an appropriate dilution factor to ensure that the concentration of cells in the sample, when used in subsequent quantitative measurements, is constrained to within a range (e.g., a two-fold or other range) around a pre-defined target concentration. The sample is then diluted per the calculated dilution factor to provide a sample with a WBC concentration within the desired concentration range. The purpose of this “dynamic dilution” step is to ensure that WBCs are not present at too high or too low a concentration in the sample. If the cell concentration is too high, the accuracy of image processing algorithms is compromised, and if the cell concentration is too low, an insufficient number of cells are sampled. Dilution of a concentrated sample as disclosed herein provides WBC concentrations within a desired range and ensures that signals from the sample during analysis will fall within an optimum range for detection and analysis. In addition, estimation of the number of WBCs in this way allows the calculation (within a small range) of the amounts of reagents required for further assays and method steps applied to the sample, since the numbers of WBCs in a sample may vary, yet the amount of reagent required for the various assays may depend upon the number of WBCs in the sample to be assayed. For example, the reagents to be added after estimation of WBC number by the dynamic dilution protocol include antibodies that target specific antigens found on different types of WBCs, or, if these antigens are found on multiple types of WBCS, which are present in differing amounts on different types of WBCs. In the absence of such an estimate of the number of WBCs in a sample, predetermined amounts of dyes and other reagents must be used in subsequent assays of the sample, leading to incorrect amounts of reagents and inaccurate or incomplete assay results. Thus, this Dynamic Dilution Protocol serves as an important and useful initial step in the full assessment of a blood sample from a patient, and allows for more precise and accurate measurements to be made than would be possible otherwise. Dynamic Staining In some embodiments, methods, systems, and devices are provided herein for dynamic staining of cell-containing samples. Measurement of a Component of Interest in Cells of a Cellular Population In one embodiment, a method for dynamically staining a cell sample relates to a method for the measurement of a component of interest in cells of a cellular population in a sample. As used herein, a “component of interest” refers to any type of molecule that may be present in a cell. “Components of interest” include proteins, carbohydrates, and nucleic acids. Typically, a “component of interest” is a specific species of molecule, such as a particular antigen. Non-limiting examples of “components of interest” of a cell include: CD5 protein, CD3 protein, etc. As used herein, a “cellular population” refers to any grouping of cells, based on one or more common characteristics. A “cellular population” may have any degree of breadth, and may include a large number of cells or only a small number of cells. Non-limiting examples of “cellular populations” include: red blood cells (RBCs), white blood cells, B-cells, CD34+ B-cells, etc. In some circumstances, it may be desirable to quantitatively measure a component of interest in cells of a certain cellular population in a sample from a subject. For example, it may be desirable to measure the extent of CD5 (the “component of interest”) expression in B-cells (the “cellular population”) in a sample of cells from a subject having chronic lymphocytic leukemia. Detection or measurement of the level of a component of interest may involve use of a binder molecule that has affinity for the specific component of interest, such an antibody or single chain variable fragment (“scFv”). In order to accurately measure the level of a specific component of interest in cells in a method involving the use of a binder molecule, it may be advantageous to expose the cells to the binder molecule at a specific ratio or range of ratios of binder molecule to target component of interest. For example, it may be desirable to provide an amount of binder to a collection of cells such that there is a linear relationship between the amount of component of interest in the cells and the amount of binder which binds to the component of interest in the cells. For example, it may be undesirable to have too little binder (such that there is not enough binder to bind to all of the components of interest in the cells) or to have too much binder (such that the binder binds non-specifically to the cells). Using traditional methods, it may be difficult to provide an appropriate level of binder to a sample in order to accurately measure the amount of component of interest in a cellular population in the sample, due to the fact that the size of the cellular population or component of interest in the sample may vary significantly between different samples. In contrast, provided herein are methods, devices, and systems for dynamically staining cell samples to accommodate samples containing a wide range of cellular populations and components of interest. In one embodiment, a method for the measurement of a component of interest in cells of a cellular population in a sample is provided. The method is not limited to but may include one or more of the following steps. First, a quantitative or semi-quantitative measurement of a marker present in cells of the cellular population may be obtained. The marker may be any marker which is present in the cellular population of interest, and it may be a marker exclusively present in the cellular population of interest (i.e. not present in any other cell types in the sample). Measurement of the marker may be by any method, provided the method does not destroy the sample, and may use any system or device. A binder which recognizes the marker may be mixed with the sample. The binder may have a molecule attached to facilitate detection of the binder (e.g. a fluorescent marker). In an example, the marker may be detected or measured by fluorescence spectrophotometry. In embodiments in which the binder has a fluorescent label and the marker is measured by fluorescence spectrophotometry, fluorescence spectrophotometry may be used to measure a bulk fluorescence from the sample or a portion thereof, rather than to measure fluorescence from individual cells. Second, based on the quantitative or semi-quantitative measurement of the marker present in cells of the cellular population, an approximate amount or concentration of cells of the cellular population present in the sample may be determined. The approximate number or concentration of cells in the cellular population present in the sample may be determined, for example, through the use of a calibration curve. Calibration curves may be prepared or may be available for different markers/binder combinations. Calibration curves may be developed, for example, by measuring the signal from known numbers of cells having a certain marker and bound with a certain binder. In some embodiments, the approximate amount or concentration of cells of the cellular population present in the sample may be determined with the aid of a computer. In some aspects, the approximate number or concentration of cells in the cellular population present in the sample may be determined, with such a determination being no more than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, or 500% off the true concentration. Third, based on the determined amount or concentration of cells in the cellular population present in the sample, an amount of a reagent to add to the sample may be selected, wherein the reagent binds specifically to the component of interest in cells of the cellular population. The reagent may be or include any molecule that binds specifically to the component of interest. For example, the reagent may be a binder, such as an antibody. The reagent may be configured such that it may be readily detected (e.g. by fluorescence or luminescence) or such that under at least some circumstances, it produces a detectable signal. In some embodiments, the reagent may be attached to a molecule to facilitate detection of the reagent. The amount of reagent added to the sample may be any amount. In some embodiments, an amount of reagent may be added to the sample such that there is an approximately linear relationship between the level of the component of interest in individual cells of the cellular population and the signal produced by the reagents bound to the components of interest in individual cells of the cellular population. Fourth, after the amount of a reagent to add to the sample is selected, the selected amount of reagent may be added to the sample. Fifth, cells in the sample may be assayed for reagent bound to the component of interest. Sixth, based on the amount of reagent bound to the component of interest, the amount of the component of interest in cells of the cellular population of the sample may be determined. In some embodiments, the fifth and sixth steps may be performed together such that the measurement of the amount of reagent bound to the component of interest is sufficient to identify the amount of the component of interest in cells of the cellular population of the sample. In other embodiments, provided herein are systems and devices for the dynamic staining of samples. The systems and devices may contain, without limitation, a spectrophotometer and a fluorescence microscope. In an embodiment, a system or method for dynamic staining of samples may be configured as described in U.S. patent application Ser. No. 13/244,947 or 13/355,458, which are hereby incorporated by reference in their entirety. In an embodiment, the systems and devices may be automated to determine an amount of a reagent to add to a sample to determine the amount of a component of interest in cells of a cellular population in a sample, based on a measurement of an amount of a marker present in cells of the cellular population. In another embodiment, the systems and devices may be automated to determine an amount of a reagent to add to a sample to determine the amount of a first component in cells of a cellular population in a sample, based on a measurement of an amount of a second component in the cells of the cellular population in a sample. Context-Based Autofocus In some embodiments, methods, systems, and devices are provided herein for context-based microscopy autofocus. The size (e.g., length, height, or other measure) of many clinically relevant objects in biological samples spans a wide range. For example, bacteria are commonly about 1 μm in length, erythrocytes are commonly about 6-8 μm in length, leukocytes are commonly about μm 10-12 in length, epithelial cells may be about 100 μm in length, and cast and crystals may be about 200-300 μm in length. In addition, there are many amorphous elements such as urinary mucus which exist as strands or filaments which may range from about 10-400 μm in length. A challenge in microscopy is to acquire precise images of fields of view that contain an unknown and arbitrary composition of objects of various sizes, such as those described above. Since the depth of focus of many microscopy objectives is limited (typically about 1-10 μm), for a given field of view containing elements of various sizes, multiple focal planes for the given field of view may need to be acquired in order to obtain accurate sharp images of the various elements within the field of view. A problem with many traditional autofocus methods is that they are designed to focus on the dominant feature in a field of view, so that the sharpness of that feature can be maximized. Such methods may be ineffective for capturing elements of various sizes in a sample. In one embodiment, a method is provided for context-based microscopy autofocus, which includes mixing a reference particle of a known size with a sample for microscopy. In embodiments, more than one reference particle is added to the sample; preferably all, or substantially all, of such reference particles are of the same known size. In embodiments, the number of reference particles added to a particular volume of sample is known. The reference particles may be detected during microscopy, and used to achieve focusing. By use of the reference particles to achieve focusing, focal planes may be selected independent from the overall image composition. In one aspect, the method may be useful to achieve focusing on a sample having an unknown composition of elements. In another aspect, the method may support the generation of precise planes of focus, independent of the precision of the microscope or microscopy-related hardware. For example, when a plane of focus is selected based on feedback from the sharpness of the reference particles within a field of view, precise focusing on various elements within a sample may be achieved, regardless of the level of accuracy or precision of the focusing hardware [e.g. the microscope objective actuation, the shape of a sample holder (e.g. a cuvette or slide), or the non-uniformity of a sample holder]. In an embodiment, a reference particle may contain or be labeled with a molecule to facilitate detection of the particle during microscopy. In one example, a reference particle may be labeled with or contain a fluorescent molecule. The fluorescent molecule may absorb light at a first wavelength of light, and, in response to the absorbance of the first wavelength of light, it may emit light at a second wavelength. In an embodiment, a sample mixed with a reference particle may be exposed to a wavelength of light capable of exciting a fluorescent molecule in a reference particle of interest and emitted light from the fluorescent molecule may be measured. Specific fluorescence from a reference particle may be used to detect reference particles, and information from detected reference particles in a sample may be used for autofocusing. Reference particles may be of any shape, such as spherical or cuboid. Reference particles include, without limitation, beads and microspheres. Reference particles may be of any size, such as with a diameter or length of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, or 500 μm. Reference particles may be made of, or may contain, any suitable material, such as polystyrene, polyethylene, latex, acrylic, or glass. For example, a reference particle may be a polystyrene bead, e.g., a polystyrene bead having a diameter of between about 0.1 μm and about 50 μm; or between about 1 μm and about 20 μm; or between about 5 μm and about 15 μm; or having a diameter of about 10 μm. In one embodiment, a method for focusing a microscope is provided, which may include one or more of the following steps. First, a sample containing an object for microscopic analysis (e.g. bacteria, erythrocytes, etc.) may be mixed with a reference particle. The reference particle may contain or be labeled with a molecule to facilitate the detection of the particle, such as a fluorophore. Second, the mixture containing the reference particle and the sample may be positioned into a light path of a microscope, for example in cuvette or slide. Optionally, the reference particle may sink to the bottom of the sample in the cuvette or slide, such that the reference particle rests on the lowest surface of the cuvette or slide which is in contact with the sample. The microscope may be of any type, including a fluorescent microscope. Third, the mixture may be exposed to a light beam configured to visualize the reference particle. The light beam may be of any type, and may be of any orientation relative to the reference particle. For example, the light beam may be at a wavelength capable of exciting a fluorophore within or attached to the reference particle. Exposure of the reference particle to the light beam may result in, for example, the generation and emission of light at a particular wavelength from the reference particle or scattering of light from the reference particle. Fourth, light emitted or scattered from the reference particle may be detected by the microscope, and this information may be used in order to determine the position of the reference particle within the mixture or to focus the microscope. Optionally, the microscope may be focused into a plane of focus suited for objects of similar size to the reference particle. An image from the microscope may be obtained by an image sensor. The image may be saved or used for image analysis. In some embodiments, a plurality of reference particles may be added to a sample. The reference particles may be all of the same size, or they may be of different sizes. In some embodiments, reference particles of different sizes contain different fluorophores. Different fluorophores may have different absorption wavelengths, different emission wavelengths, or both. In an embodiment, a method for focusing a microscope is provided, including mixing more than one reference particle of known size with a sample for microscopy, wherein at least two of the reference particles are of different sizes and contain different fluorophores. The method may include one or more of the following steps. First, a sample containing an object for microscopic analysis may be mixed with two or more reference particles, wherein at least two of the reference particles are of different sizes and contain different fluorophores (i.e. the “first reference particle” and the “second reference particle”). Second, the mixture containing the reference particles and the sample may be positioned into the light path of a microscope. The microscope may be of any type, including a fluorescent microscope. Third, the mixture may be exposed to a light beam configured to visualize the first reference particle. The light beam may be of any type, and may be of any orientation relative to the first reference particle. For example, the light beam may be at a wavelength capable of exciting a fluorophore within or attached to the first reference particle. Exposure of the first reference particle to the light beam may result in the generation and emission or scattering of light at a particular wavelength from the first reference particle. Fourth, light emitted or scattered from the first reference particle may be detected, and this information may be used in order to determine the position of the first reference particle within the mixture or to focus the microscope into a first plane of focus suited for objects of similar size to the first reference particle. Optionally, an image of the first focal plane may be obtained by an image sensor. The image may be saved or used for image analysis. Fifth, the mixture may be exposed to a light beam configured to visualize the second reference particle. The light beam may be of any type, and may be of any orientation relative to the second reference particle. Exposure of the second reference particle to the light beam may result in the generation and emission or scattering of light at a particular wavelength from the second reference particle. Sixth, light emitted or scattered from the second reference particle may be detected, and this information may be used in order to determine the position of the second reference particle within the mixture or to focus the microscope into a second plane of focus suited for objects of similar size to the second reference particle. Optionally, an image of the second focal plane may be obtained by an image sensor. The image may be saved or used for image analysis. In other embodiments, provided herein are systems and devices for context-based microscopy autofocus. The systems and devices may contain, without limitation, a fluorescence microscope. In an embodiment, the systems and devices may be automated to add a reference particle having a known size to a sample for microscopic analysis to form a mixture, to position the mixture into the light path of a microscope, to expose the mixture to a light beam configured to visualize the reference particle, to determine the position of the reference particle within the mixture or to focus the microscope based on the position of the reference particle within the mixture. In an embodiment, a system or method for context-based microscopy autofocus may be configured as described in U.S. patent application Ser. No. 13/244,947 or 13/355,458, which are hereby incorporated by reference in their entireties. Locating a Sample Holder In some embodiments, methods, systems, and devices are provided herein for determining the location of a sample holder, or of a portion of, or indicial mark on, a sample holder. Such a determination is preferably a precise determination, and is useful for identifying cells, particles, or other objects in a field of view within a sample holder even after a sample holder has been moved, or a field of view has been altered (e.g., by changing focus, or by inspection of different areas in a sample holder). In embodiments, an image based feedback mechanism may be used to accurately and precisely determine a certain location in a cuvette, e.g., in a channel or other region containing a sample (see, e.g., an analysis area 608 shown in FIGS. 7 and 8). Such determination, particularly when the sample holder is moved, and then returned to a previous position, is important for comparison of images and optical measurements taken before such movement, and after such movement. Variability from multiple sources may affect the position of the sample relative to the axis of the imaging system; for example, variability in cuvette parts, variability in cuvette assembly, variability in cuvette positioning on the imaging system, and other possible sources of variability may affect the position of a sample with respect to the imaging system even if the sample remains in the same position within the sample holder. Methods for identifying and characterizing the position of a sample holder with respect to an imaging system are disclosed herein. For example, in order to accurately and reproducibly image an area of interest in a cuvette, a cuvette registration program may be run. In embodiments, such a program begins by analyzing images taken at a predefined location in a sample holder, the predefined location being close to a registration feature or fiducial marker within the field of view, or otherwise detectable by the program. A cuvette registration program comprises an image processing program, which image processing program searches for the existence of the fiducial marker in the image and returns either a yes/no answer (regarding whether or not the fiducial marker is found within the inspected region) or a probability of the marker being in the image. In instances where the fiducial marker is not found in the area that has been inspected, a search algorithm is then used, which moves the area of inspection to a different location on or in the sample holder, and repeats the imaging. This process is repeated until the program finds the fiducial marker (i.e. gets a “yes” to the question of whether or not the fiducial marker is found within the inspected region, or maximizes the probability of the marker being within that region). Once the position of the fiducial marker is identified, all other positions in or on the sample holder may be determined, since the dimensions and layout of the sample holder are known. Thus, following identification of the location of the fiducial marker, any point of interest for imaging can be found and imaged, as the location of the point of interest is thus known also (i.e., its distance and orientation from the fiducial marker is known, and, since the position of the fiducial marker is known, the point of interest is also known). In embodiments, a fiducial marker can be or include a specially engineered feature on the cuvette itself (e.g., may be a hole, a protrusion, a printed or molded pattern, or other feature) which can be manufactured to be in the same location for every part to any desired tolerance. In embodiments, a fiducial marker may be or include a feature of the cuvette (e.g., the edge of a channel) that is always at a fixed distance from the point of interest (e.g., where the fiducial marker is the edge of channel, the fiducial marker is always a fixed distance from the central axis of the channel). Cell Counting/Enumerating Cells In some embodiments, methods, systems, and devices are provided herein for enumerating cells in a sample. Certain traditional methods for staining cell-containing samples involve staining a specific volume of a sample (e.g. blood) with a particular concentration or amount of stain. This may be referred to as “volumetric staining” Volumetric staining has a number of shortcomings, including: (i) it fails to address normal variations in cell subpopulations between different subjects (e.g. different healthy subjects may have widely different numbers of subpopulations of cells, such as CD3+ T cells (where “CD3+” indicates that the T cells express the CD3 marker)) and (ii) it fails to address that pathological samples may have dramatically different cellular composition when compared to healthy samples (e.g. the percent and number of CD3+ T cells in blood are greatly elevated in patients with T cell leukemia over the percent and number in healthy subjects). For accurate and reproducible staining of cell-containing samples, it may be desirable to add a specific amount of a cellular stain (e.g. DNA dyes, antibodies, binders, etc.) to a specific number or concentration of cells. For example, it may be desirable to add 0.2 micrograms of a particular stain for white blood cells per 1000 white blood cells in a sample. After an incubation period of the dye with the cells, a sample may be washed to remove excess (unbound) dye, prepared to an appropriate cell density for microscopy, and imaged. In this manner, a stain and staining procedure can be optimized or normalized for a particular cell number. In one embodiment, a method is provided for enumerating the number of cells of interest in a sample. The method may include one or more of the following steps or elements. A first stain that will bind to the cells of interest in a sample may be added to the sample. The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. For example, the first stain may be a fluorescent dye which binds to nucleic acids, and the spectrophotometer may include a light source which emits light at an excitation wavelength of the fluorescent dye, and a light sensor which can detect light in the emission wavelength of the fluorescent dye. In this example, based on the fluorescent signal from the dye, the approximate amount of nucleic acid in the sample may be calculated, and from this approximate amount of nucleic acid in the sample, the approximate number of cells in the sample may be determined. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. In embodiments, the amount of second stain added to the sample may be determined in view of the approximate number of cells determined using the first stain. In embodiments, the amount of second stain added to the sample may be calculated using the number of cells determined by use of the first stain, in order that a desired ratio of second stain per cell be obtained. The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed by microscopy. Enumerating Cells in a Sample Prior to Determining the Ploidy of Cells In one embodiment, a method for enumerating cells in a sample prior to determining the ploidy of the cells is provided, wherein the method includes one or more of the following steps or elements. A first stain which binds to the cells of interest in the sample and that is spectrally distinct from the emission of a DNA dye may be added to the sample. The cells of interest may be, for example, white blood cells. The first stain may be, for example, a fluorophore-conjugated antibody. A fluorophore-conjugated antibody may bind to, for example, a widely expressed antigen (e.g. CD45), or it may bind to an antigen expressed by a specific sub-population of cells (e.g. CD3 for T cells). The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. The second stain may be a DNA dye, such as propidium iodide or 4′,6-diamidino-2-phenylindole (“DAPI”). In embodiments, the amount of second stain added to the sample may be determined in view of the approximate number of cells determined using the first stain. In embodiments, the amount of second stain added to the sample may be calculated using the number of cells determined by use of the first stain, in order that a desired ratio of second stain per cell be obtained. The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed for ploidy by microscopy. In methods for determining the ploidy of cells, it may be important to combine a given number of cells for ploidy analysis with a certain amount or concentration of DNA stain, in order to generate accurate and consistent data regarding the ploidy of the cells. In one example, the number of white blood cells per volume of blood may vary within a healthy population, and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for ploidy analysis. The methods provided above for determining the ploidy of cells may also be performed for any method in which enumerating cells in a sample prior to determining an attribute related to the nucleic acid content of a cell is desired. For example, the above method may be used with methods involving enumerating cells in a sample prior to determining the morphology of nuclei of cells, the size of the nuclei of cells, the ratio of nuclei area to total cell area, etc. Enumerating Cells in a Sample Prior to Cell Surface Staining In one embodiment, a method for enumerating cells in a sample prior to cell surface staining is provided, wherein the method includes one or more of the following steps or elements. A first stain which binds to the cells of interest in the sample and that is spectrally distinct from the emission of a dye to be used to stain the surface of the cells of interest may be added to the sample. The cells of interest may be, for example, white blood cells. The first stain may be, for example, a DNA dye (e.g. propidium iodide, DRAQ5® or DAPI). The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. In embodiments, the amount of second stain added to the sample may be determined in view of the approximate number of cells determined using the first stain. In embodiments, the amount of second stain added to the sample may be calculated using the number of cells determined by use of the first stain, in order that a desired ratio of second stain per cell be obtained. The second stain may be, for example, a fluorophore-conjugated antibody. A fluorophore-conjugated antibody may bind to, for example, a widely expressed antigen (e.g. CD45), or it may bind to an antigen expressed by a specific sub-population of cells (e.g. CD3 for T cells). The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed for a cell surface antigen by microscopy. In methods for cell surface antigen staining of cells, it may be important to combine a given number of cells for analysis with a certain amount or concentration of cell surface antigen stain, in order to generate accurate and consistent data regarding the content of the cell surfaces. In one example, the number of white blood cells per volume of blood may vary within a healthy population (blood from healthy subjects typically has between about 3000 and 10,000 WBCs per microliter (μL)), and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for cell surface antigens. In another example, the number of white blood cells per volume of blood may vary between healthy and sick subjects (e.g., lymphoma patients may have up to 100,000 WBCs per μL of blood), and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for cell surface antigens. Thus, as a theoretical example, a healthy patient may have 5000 cells per μL of blood, and 500 of these are CD3+ T cells, while a lymphoma patient may have 50,000 cells per microliter of blood and 45,000 of these are CD3+ T cells. If 100 microliters of blood is traditionally stained, then a sample from a healthy subject would contain about 500,000 total cells, of which about 50,000 cells would be CD3+ T cells. A 100 microliter sample from a lymphoma subject would contain about 5,000,000 total cells, of which about 4,500,000 cells would be CD3+ T cells. In this theoretical example, the pathological sample contains ten times the number of total cells and ninety times the number of CD3+ T cells, when compared to a sample from a healthy subject. If the pathological sample would be stained with a traditional “volumetric staining” approach that is optimized for samples from healthy subjects, the sample from the lymphoma subject may be insufficiently stained. For this reason, for example, the present methods in which a prior estimate of the number of cells in a sample is used to adjust the amount of dye applied to a sample provide advantages over traditional volumetric staining methods. Accordingly, methods provided herein may be used to enumerate cells in a sample before cell staining, in order to generate accurate or consistent data regarding samples. Method Speeds Methods, systems, and devices provided herein may support the rapid acquisition of sample analysis results. Methods provided herein may provide analysis results in less than, for example, about 6 hours, 4 hours, 3 hours, 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes from the initiation of the method. Rapid analysis results may be used to provide real-time information relevant to the treatment, diagnosis, or monitoring of a patient. For example, rapid analysis results may be used to guide a treatment decision of a surgeon operating on a patient. During surgery, a surgeon may obtain a biological sample from a patient for analysis. By receiving rapid analysis of a sample by a method provided herein, a surgeon may be able to make a treatment decision during the course of surgery. In another example, rapid analysis results provided by the methods, systems, and devices provided herein may support a patient receiving information regarding a biological sample provided by the patient at a point of service during the same visit to the point of service location in which the patient provided the biological sample. For example, Applicants describe herein a rapid assay which may be used to prepare a sample of whole blood for analysis of white blood cells for the presence of multiple markers and cell types. Such an assay is useful for preparing samples of whole blood for imaging analysis; the samples are ready for imaging in less than about 20 minutes, or in less than about 15 minutes. Rapid White Blood Cell Assay from Whole Blood This assay prepares samples of whole blood for cytometric analysis of white blood cells in less than about 15 minutes or less than about 20 minutes. Automated cytometric analysis of such prepared cells may also be done rapidly, so that cytometric WBC analysis can be performed from whole blood in about half an hour or less. In addition, this assay uses only a small volume of the blood sample, so is sparing of resources, and less inconvenient or uncomfortable to a subject than assays which require larger volumes of blood. Reagents used in this assay include: phosphate buffered saline, Lyse Fix buffer, beads, resuspension buffer, and reagent cocktails which contain dyes and dye-conjugated antibodies. The antibodies are directed to specific WBC markers. Phosphate buffered saline (PBS): 137 mM NaCl, 3 mM KCl, 8 mM, Na2HPO4, 1.5 mM KH2PO4, pH adjusted to pH to 7.2 to pH 7.4 (with HCl). Resuspension buffer (RSB): 5% bovine serum albumin in PBS. Lyse Fix buffer: 0.0266% saponin in PBS with 10% paraformaldehyde (PFA), where “%” indicates grams/100 mL (final ratio is approximately 13:1 saponin PBS:PFA). Reagent Cocktail 1: DRAQ5®, anti-CD14 antibody conjugated to Pacific Blue™ dye, Fc block (e.g., immunoglobulin such as mouse IgG), in 0.2% BSA in PBS. Reagent Cocktail 2: anti-CD16 antibody conjugated to phycoerythrin (PE) dye, anti-CD45 antibody conjugated to Alexa Fluor® 647 dye, anti-CD123 antibody conjugated to PECy5 dye, Fc block (e.g., immunoglobulin), in 15% BSA in PBS. Assay steps include: Obtain whole blood from a subject. Place 50 μL of whole blood in a tube. If desired, the blood sample may be acquired directly to a tube. Where 50 μL is the total amount of blood taken from the subject, then the entire sample is added or acquired to a tube; where more than 50 μL is acquired from a subject, then the 50 μL is an aliquot of the sample. Centrifuge the sample at 1200×g for 3 minutes. Remove 20 μL of plasma from the tube. Place the tube on heat block (to raise the temperature to 37° C.), add 20 μL of RSB, and mix thoroughly. Add Cocktail 1 (approximately 5 μL). (In embodiments, Cocktail 1 may be added directly to whole blood, and the previous steps of centrifugation, removal of an aliquot of plasma and replacement with RSB may be omitted.) Incubate the sample at 37° C. for 2 minutes. Add Lyse Fix buffer (at a 6:1 ratio of (Lyse Fix buffer) to (stained blood); approximately 300-350 μL). A known concentration of beads may be included in the Lyse Fix buffer to provide targets (reference particles) for focusing and to provide a calibration for the concentration of the sample (e.g., as described above under the heading “Context-based Autofocus”). Polystyrene or other beads, having diameters of about 1 micron to about 30 microns, may be used. For example, 10 micron polystyrene beads at a concentration of about 100 beads to about 2000 beads per microliter (μL), or of about 150 beads to about 1500 beads per μL, or of about 200 beads to about 1000 beads per μL, may be used. Incubate in the Lyse Fix buffer at 37° C. for a total of 3 minutes; at about 1.5 minutes after addition of the buffer, mix by pipetting the solution up and down five times. Centrifuge the sample mixture at 1200×g for 3 minutes. Remove the supernatant (approximately 350 μL). Save the supernatant to adjust the volume, if needed, in later steps. Add Cocktail 2 (approximately 15 μL) to provide the final mixture. Load the final mixture on a pre-warmed imaging cuvette (37° C.). Incubate the cuvette at 37° C. for 5 minutes before imaging. Image the sample. Thus, the sample is ready for imaging in less than about 15 minutes. In embodiments, some of the steps may be shortened (e.g., in alternative embodiments, a centrifugation step or an incubation step may be shortened). Since the methods disclosed above prepare the sample using cocktails which include multiple dyes, analysis of these samples for the presence of several cell-type markers may be performed within a single field of view, providing efficient imaging of the samples with minimal duplication of effort. Light scatter images of these same fields of view provides yet another aspect of analysis which may be applied efficiently without requiring separate samples or separate fields of view for the several modes of image analysis of the samples. Inclusion of reference particles of a known size further aids imaging by allowing use of automatic focusing and, since the concentration of the reference particles is known, provides an independent measure of sample dilution and cell concentration in each image. The imaging of the prepared sample may also be done rapidly; for example, such imaging may be performed in about 10 minutes (typically between about 2 minutes and about 12 minutes) by automatic devices having features as described herein and, for example, in U.S. patent application Ser. Nos. 13/244,947, 13/769,779, and related applications. Thus, in embodiments, the entire analysis, including preparation of the blood sample and imaging of the prepared sample, may be performed in about 30 minutes or less. The images and image analysis obtained from samples prepared according to the methods discussed above (and similar methods discussed below) are suitable for identifying different populations of WBCs from whole blood. Such identification and quantification is done rapidly on the same sample by illumination of the sample (e.g., sequentially) with different wavelengths of light and recording and analyzing the resulting images and light intensities. Such methods are suitable for providing the images and plots as shown, for example, in FIGS. 9A-9F, 10, and 11, which were prepared using methods as disclosed herein (e.g., methods discussed both supra and infra). The comparisons shown in FIG. 12 demonstrate that these methods are accurate and reliable, and correlate well with other methods (e.g., analysis by an Abbott CELL-DYN Ruby System (Abbott Diagnostics, Lake Forest, Ill., USA)) the reference analyzer used for the comparisons shown in FIG. 12. Analysis of Pathology Samples Any of the methods provided herein may be used to analyze cell-containing pathology samples. If a pathology sample is a tissue sample, the sample may be treated to separate the cells of the tissue into individual cells for analysis by methods provided herein. Analysis of pathology samples by any of the methods provided herein may support rapid pathology analysis, and the rapid integration of pathology analysis results into a treatment decision for a patient. Additional Procedures in Response to Analysis Results In some embodiments, the devices and systems provided herein may be configured to trigger an additional procedure in response to a result obtained by an analysis method provided herein. In one example, a device or system may be programmed to provide an alert to a user if a result is outside of an expected range. The alert may prompt a user or medical personnel to, for example, manually analyze a sample, check the device or system for proper operation, etc. In another example, a device or system may be programmed to automatically run one or more additional tests on a sample if a result is within or outside of a certain range. In some examples, devices and systems provided herein are capable of performing multiple different assays, and the device or system may run an addition assay to verify or further investigate a result generated by a method provided herein. Analysis Using Non-Specific Dyes One non-limiting example to accelerate imaging is to use a “high light” situation, where cells are labeled with very high concentration of dyes. In the present embodiment, non-specific dyes are used that label the DNA, the membranes, or other portion of the cells. This example does not use antibody dyes that target specific and rare proteins or other markers. With the non-specific dye, it is possible to obtain cell information without requiring a separation step (such as, e.g., separation by centrifugation or by performing physical separation). Without this separation step, one can more rapidly move directly to imaging the sample, such as but not limited imaging a large area of cells that may include both a) non-target cells such as red blood cells (RBCs) and b) target cells or objects of interest such as white blood cells (WBCs). Thus, in one non-limiting example of imaging a blood sample, one can image five million RBCs and five thousand or other number of WBCs therein. The targeted cells can be differentiated based on what is inside the cell such as but not limited to the shape of the nucleus of a cell. In one embodiment, a nuclear stain is used to stain the nuclei of cells in a sample, and based on the kind and amount of staining a particular cell has (e.g., the presence of nuclear staining, or the shape of a stained nucleus, or other characteristic), one can determine its cell type based on this staining, even though the dye is non-specific. In other examples, other internal shapes in the cell (such as, e.g., whether or not the cytoplasm has granules or other objects therein) can be indicative or characteristic and be used to identify and quantify cells in a sample. For a urine sample, any cells present, and crystal shapes in the sample can be used to identify a sample and to determine whether or not abnormalities are found. In this manner, the use of non-specific dyes can be used to rapidly image cells in a manner that can be used to determine cells as desired. Analysis Using a Plurality of Excitation or Detection Channels In the context of using even smaller sample volumes for cytometry, in embodiments of advanced cytometry assays, an additional excitation or detection wavelength may be used. For example, for classification of WBCs in a lymphocyte subset assay, the various cells such as T cells, B cells, K cells, and other cells are to be counted. In this case, one uses two markers merely to identify that the cell is a lymphocyte. To further sub-classify the cells in a blood sample, for example, one may again use two markers. Thus, if one has a system that can only detect two colors at a time, there is an insufficient number of wavelengths for the analysis. In one embodiment, one can aliquot the sample to make two separate sample portions and then one can image one combination in one part and another combination in another part of the system, using different parts of the sample. Unfortunately, this can cause a doubling of volume and time. The more independent channels that are built into a system, the lesser the number of these sample parts or volume used. EXAMPLES Cell Processing In embodiments, it is often useful to process biological samples for imaging, testing, and analysis. For example, it is often useful to process biological samples containing cells for imaging, testing, and analysis. Processing of a biological sample may include pre-processing (e.g., preparation of a sample for a subsequent processing or measurement), processing (e.g., alteration of a sample so that it differs from its original, or previous, state), and post-processing (e.g., disposal of all or a portion of a sample following its measurement or use). A biological sample may be divided into portions, such as aliquots of a blood or urine sample, or such as slicing, mincing, or dividing a tissue sample into two or more pieces. Processing of a biological sample, such as blood sample, may include mixing, stirring, sonication, homogenization, or other processing of a sample or of a portion of the sample. Processing of a biological sample, such as blood sample, may include centrifugation of a sample or a portion thereof. Processing of a biological sample, such as blood sample, may include providing time for components of the sample to separate or settle, and may include filtration (e.g., passing the sample or a portion thereof through a filter). Processing of a biological sample, such as blood sample, may include allowing or causing a blood sample to coagulate. Processing of a biological sample, such as blood sample, may include concentration of the sample, or of a portion of the sample (e.g., by sedimentation or centrifugation of a blood sample, or of a solution containing a homogenate of tissue from a tissue sample) to provide a pellet and a supernatant. Processing of a biological sample, such as blood sample, may include dilution of a portion of the sample. Dilution may be of a sample, or of a portion of a sample, including dilution of a pellet or of a supernatant from sample. A biological sample may be diluted with water, or with a saline solution, such as a buffered saline solution. A biological sample may be diluted with a solution which may or may not include a fixative (e.g., formaldehyde, paraformaldehyde, glutaraldehyde, or other cross-linking agent). A biological sample may be diluted with a solution effective that an osmotic gradient is produced between the surrounding solution and the interior, or an interior compartment, of such cells, effective that the cell volume is altered. For example, where the resulting solution concentration following dilution is less than the effective concentration of the interior of a cell, or of an interior cell compartment, the volume of such a cell will increase (i.e., the cell will swell). A biological sample may be diluted with a solution which may or may not include an osmoticant (such as, for example, glucose, sucrose, or other sugar; salts such as sodium, potassium, ammonium, or other salt; or other osmotically active compound or ingredient). In embodiments, an osmoticant may be effective to maintain the integrity of cells in the sample, by, for example, stabilizing or reducing possible osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells. In embodiments, an osmoticant may be effective to provide or to increase osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells, effective that the cells at least partially collapse (where the cellular interior or an interior compartment is less concentrated than the surrounding solution), or effective that the cells swell (where the cellular interior or an interior compartment is more concentrated than the surrounding solution). A biological sample may be contacted with a solution containing a surfactant, which may disrupt the membranes of cells in the sample, or have other effects on cell morphology. For example, contacting RBCs with a low concentration of a surfactant causes the RBCs to lose their disc-like shape and to assume a more spherical shape. A biological sample may be dyed, or markers may be added to the sample, or the sample may be otherwise prepared for detection, visualization, or quantification of the sample, a portion of a sample, a component part of a sample, or a portion of a cell or structure within a sample. For example, a biological sample may be contacted with a solution containing a dye. A dye may stain or otherwise make visible a cell, or a portion of a cell, or a material or molecule associated with a cell in a sample. A dye may bind to or be altered by an element, compound, or other component of a sample; for example a dye may change color, or otherwise alter one of more of its properties, including its optical properties, in response to a change or differential in the pH of a solution in which it is present; a dye may change color, or otherwise alter one of more of its properties, including its optical properties, in response to a change or differential in the concentration of an element or compound (e.g., sodium, calcium, CO2, glucose, or other ion, element, or compound) present in a solution in which the dye is present. For example, a biological sample may be contacted with a solution containing an antibody or an antibody fragment. For example, a biological sample may be contacted with a solution that includes particles. Particles added to a biological sample may serve as standards (e.g., may serve as size standards, where the size or size distribution of the particles is known, or as concentration standards, where the number, amount, or concentration of the particles is known), or may serve as markers (e.g., where the particles bind or adhere to particular cells or types of cells, to particular cell markers or cellular compartments, or where the particles bind to all cells in a sample). Cytometry includes observations and measurements of cells, such as red blood cells, platelets, white blood cells, including qualitative and quantitative observations and measurements of cell numbers, cell types, cell surface markers, internal cellular markers, and other characteristics of cells of interest. Where a biological sample includes or is a blood sample, the sample may be divided into portions, and may be diluted (e.g., to provide greater volume for ease of handling, to alter the density or concentration of cellular components in the sample to provide a desired diluted density, concentration, or cell number or range of these, etc.). The sample may be treated with agents which affect coagulation, or may be treated or handled so as to concentrate or precipitate sample components (e.g., ethylene diamine tetraacetic acid (EDTA) or heparin may be added to the sample, or the sample may be centrifuged or cells allowed to settle). A sample, or portion of a sample, may be treated by adding dyes or other reagents which may react with and mark particular cells or particular cellular components. For example, dyes which mark cell nuclei (e.g., hematoxylin dyes, cyanine dyes, drag dyes such as DRAQ5®, and others); dyes which mark cell cytoplasm (e.g., eosin dyes, including fluorescein dyes, and others) may be used separately or together to aid in visualization, identification, and quantification of cells. More specific markers, including antibodies and antibody fragments specific for cellular targets, such as cell surface proteins, intracellular proteins and compartments, and other targets, are also useful in cytometry. Biological samples may be measured and analyzed by cytometry using optical means, including, for example, photodiode detectors, photomultipliers, charge-coupled devices, laser diodes, spectrophotometers, cameras, microscopes, or other devices which measure light intensity (of a single wavelength, of multiple wavelengths, or of a range, or ranges, of wavelengths of light), form an image, or both. A field of view including a sample, or portion of a sample, may be imaged, or may be scanned, or both, using such detectors. A biological sample may be measured and analyzed by cytometry prior to processing, dilution, separation, centrifugation, coagulation, or other alteration. A biological sample may be measured and analyzed by cytometry during or following processing, dilution, separation, centrifugation, coagulation, or other alteration of the sample. For example, a biological sample may be measured and analyzed by cytometry directly following receipt of the sample. In other examples, a biological sample may be measured and analyzed by cytometry during or after processing, dilution, separation, centrifugation, coagulation, or other alteration of the sample. For example, a blood sample or portion thereof may be prepared for cytometry by sedimentation or centrifugation. A sedimented or pellet portion of such a sample may be resuspended in a buffer of choice prior to cytometric analysis (e.g., by aspiration, stirring, sonication, or other processing). A biological sample may be diluted or resuspended with water, or with a saline solution, such as a buffered saline solution prior to cytometric analysis. A solution used for such dilution or resuspension may or may not include a fixative (e.g., formaldehyde, paraformaldehyde, or other agent which cross-links proteins). A solution used for such dilution or resuspension may provide an osmotic gradient between the surrounding solution and the interior, or an interior compartment, of cells in the sample, effective that the cell volume of some or all cells in the sample is altered. For example, where the resulting solution concentration following dilution is less than the effective concentration of the interior of a cell, or of an interior cell compartment, the volume of such a cell will increase (i.e., the cell will swell). A biological sample may be diluted with a solution which may or may not include an osmoticant (such as, for example, glucose, sucrose, or other sugar; salts such as sodium, potassium, ammonium, or other salt; or other osmotically active compound or ingredient). In embodiments, an osmoticant may be effective to maintain the integrity of cells in the sample, by, for example, stabilizing or reducing possible osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells. In embodiments, an osmoticant may be effective to provide or to increase osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells, effective that the cells at least partially collapse (where the cellular interior or an interior compartment is less concentrated than the surrounding solution), or effective that the cells swell (where the cellular interior or an interior compartment is more concentrated than the surrounding solution). For example, a biological sample may be measured or analyzed following dilution of a portion of the sample with a solution including dyes. For example, a biological sample may be measured or analyzed following dilution of a portion of the sample with a solution including antibodies or antibody fragments. For example, a biological sample may be measured or analyzed following dilution of a portion of the sample with a solution including particles. Particles added to a biological sample may serve as standards (e.g., may serve as size standards, where the size or size distribution of the particles is known, or as concentration standards, where the number, amount, or concentration of the particles is known), or may serve as markers (e.g., where the particles bind or adhere to particular cells or types of cells, to particular cell markers or cellular compartments, or where the particles bind to all cells in a sample). For example, a biological sample may be measured or analyzed following processing which may separate one or more types of cells from another cell type or types. Such separation may be accomplished by gravity (e.g., sedimentation); centrifugation; filtration; contact with a substrate (e.g., a surface, such as a wall or a bead, containing antibodies, lectins, or other components which may bind or adhere to one cell type in preference to another cell type); or other means. Separation may be aided or accomplished by alteration of a cell type or types. For example, a solution may be added to a biological sample, such as a blood sample, which causes some or all cells in the sample to swell. Where one type of cell swells faster than another type or types of cell, cell types may be differentiated by observing or measuring the sample following addition of the solution. Such observations and measurements may be made at a time, or at multiple times, selected so as to accentuate the differences in response (e.g., size, volume, internal concentration, or other property affected by such swelling) and so to increase the sensitivity and accuracy of the observations and measurements. In some instances, a type or types of cells may burst in response to such swelling, allowing for improved observations and measurements of the remaining cell type or types in the sample. Observation, measurement and analysis of a biological sample by cytometry may include photometric measurements, for example, using a photodiode, a photomultiplier, a laser diode, a spectrophotometer, a charge-coupled device, a camera, a microscope, or other means or device. Cytometry may include preparing and analyzing images of cells in a biological sample (e.g., two-dimensional images), where the cells are labeled (e.g., with fluorescent, chemiluminescent, enzymatic, or other labels) and plated (e.g., allowed to settle on a substrate) and imaged by a camera. The camera may include a lens, and may be attached to or used in conjunction with a microscope. Cells may be identified in the two-dimensional images by their attached labels (e.g., from light emitted by the labels). An image of cells prepared and analyzed by a cytometer as disclosed herein may include no cells, one cell, or multiple cells. A cell or cell in an image of a cytometer, as disclosed herein, may be labeled, as disclosed above. A cell or cell in an image of a cytometer, as disclosed herein, may be labeled, as disclosed above, effective to identify the image, and the subject from whom the sample was taken. In some embodiments, the assay system is configured to perform cytometry assays. Cytometry assays are typically used to optically, electrically, or acoustically measure characteristics of individual cells. For the purposes of this disclosure, “cells” may encompass non-cellular samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), small groups of cells, virions, bacteria, protozoa, crystals, bodies formed by aggregation of lipids or proteins, and substances bound to small particles such as beads or microspheres. Such characteristics include but are not limited to size; shape; granularity; light scattering pattern (or optical indicatrix); whether the cell membrane is intact; concentration, morphology and spatio-temporal distribution of internal cell contents, including but not limited to protein content, protein modifications, nucleic acid content, nucleic acid modifications, organelle content, nucleus structure, nucleus content, internal cell structure, contents of internal vesicles (including pH), ion concentrations, and presence of other small molecules such as steroids or drugs; and cell surface (both cellular membrane and cell wall) markers including proteins, lipids, carbohydrates, and modifications thereof. By using appropriate dyes, stains, or other labeling molecules either in pure form, conjugated with other molecules or immobilized in, or bound to nano- or micro-particles, cytometry may be used to determine the presence, quantity, or modifications of specific proteins, nucleic acids, lipids, carbohydrates, or other molecules. Properties that may be measured by cytometry also include measures of cellular function or activity, including but not limited to phagocytosis, antigen presentation, cytokine secretion, changes in expression of internal and surface molecules, binding to other molecules or cells or substrates, active transport of small molecules, mitosis or meiosis; protein translation, gene transcription, DNA replication, DNA repair, protein secretion, apoptosis, chemotaxis, mobility, adhesion, antioxidizing activity, RNAi, protein or nucleic acid degradation, drug responses, infectiousness, and the activity of specific pathways or enzymes. Cytometry may also be used to determine information about a population of cells, including but not limited to cell counts, percent of total population, and variation in the sample population for any of the characteristics described above. The assays described herein may be used to measure one or more of the above characteristics for each cell, which may be advantageous to determine correlations or other relationships between different characteristics. The assays described herein may also be used to independently measure multiple populations of cells, for example by labeling a mixed cell population with antibodies specific for different cell lines. A microscopy module may permit the performance of histology, pathology, or morphological analysis with the device, and also facilitates the evaluation of objects based on both physical and chemical characteristics. Tissues can be homogenized, washed, deposited on a cuvette or slide, dried, stained (such as with antibodies), incubated and then imaged. When combined with the data transmission technologies described elsewhere herein, these innovations facilitate the transmission of images from a CMOS/CDD or similar detector to, e.g., a licensed pathologist for review, which is not possible with traditional devices that only perform flow cytometry. The cytometer can measure surface antigens as well as cell morphology; surface antigens enable more sensitive and specific testing compared to traditional hematology laboratory devices. The interpretation of cellular assays may be automated by gating of one or more measurements; the gating thresholds may be set by an expert or learned based on statistical methods from training data; gating rules can be specific for individual subjects or populations of subjects. In some embodiments, the incorporation of a cytometer module into a point of service device provides the measurement of cellular attributes typically measured by common laboratory devices and laboratories for interpretation and review by classically-trained medical personnel, improving the speed or quality of clinical decision-making A point of service device may, therefore, be configured for cytometric analysis. Example 1 A sample of cells containing blood leukocytes including natural killer cells and neutrophils was obtained. The sample was treated with a fluorescently labeled identity binder (anti-CD16 binder), which binds to both natural killer cells and neutrophils. The sample was also treated with a nuclear dye (DRAQ5®). The sample was imaged by fluorescence microscopy and dark field microscopy. The level of fluorescence and light side scatter of different cells in the sample was recorded and analyzed. Segmented images containing the anti-CD16 binder signal provided quantitative information on the fluorescence intensity of each cell (corresponding to the CD16 expression level), and also the size of each cell. The dark field image provided quantitative information on the scatter properties of each cell. Images containing the DNA dye signal were segmented to determine the fluorescent intensity, size, and shape of the nucleus. As shown in FIG. 1A, two major groupings cells were identified based on the measurement of CD16 fluorescence and light scatter of the different cells. The group of cells with bright/high CD16 fluorescence signal and high scatter (FIG. 1A, right circle) are neutrophils. The group of cells with intermediate CD16 fluorescence signal and low scatter (FIG. 1A, left circle) are natural killer cells. While the measurement of fluorescence and light scatter of the different cells provides enough information to classify most cells in the sample as either natural killer cells or neutrophils, for some cells, measurement of these attributes does not provide enough information to classify the cells with a high degree of accuracy. For example, the measurement of fluorescence and light scatter of cells does not provide enough information to accurately classify the small group of cells in the smallest circle in FIG. 1A (i.e. the middle circle). In order to identify whether the cells in the smallest circle were natural killer cells or neutrophils, images of the nuclear (DRAQ5®) and total cell (anti-CD16) staining of these were examined. Quantitative measurements of the area of the nucleus and the total cell volume of the cells were obtained, and the ratio of nuclear area to total cell area was determined. As shown in FIG. 1B, there is a clear difference in the ratio of nuclear area to total cell area between natural killer cells (“NK”) and neutrophils (“Neu”). Thus, the use of quantitative microscopy to examine multiple attributes of cells in the sample was used to allow for unambiguous classification of cells. FIG. 1C shows images of natural killer cells from the smallest circle in FIG. 1A. All images have the same length scale. The images on the left are cells stained for total cell area (anti-CD16), and the images on the right are the same cells with just nuclear staining (DRAQ5®). The images on the top and bottom row are different examples of the natural killer cells. FIG. 1D shows images of neutrophils from the smallest circle in FIG. 1A. All images have the same length scale. The images on the left are cells stained for total cell area, and the images on the right are the same cells with just nuclear staining. The images on the top and bottom row are different examples of the natural killer cells. In addition, the nucleus of a neutrophil has a distinctive multi-lobed shape, whereas the nucleus of a natural killer cell (and other lymphocytes) is round, even, and smooth. Image segmentation algorithms may be used to identify and classify cells based on the shape of the nucleus itself. Image segmentation is discussed further in Example 7 below. Example 2 A sample containing platelets was obtained. The platelets were labeled with fluorescently conjugated anti-CD41 and anti-CD61 antibodies. Beads having a diameter of 3 μm were also added to the sample. The sample was imaged at 10× and 20× magnifications (FIG. 2A). The intensity of fluorescence distribution for individual platelets was measured (from both antibodies), and determined have a Gaussian shape (FIG. 2B). The measured values of fluorescence of individual platelets was plotted, and a fit for the intensity distribution was determined (FIG. 2C). In FIG. 2C, the grey line is the measured fluorescence intensity across an individual platelet, and the black line is the fit. Parameters of the fit, such as the mean of the Gaussian, the variance, the volume, the width, and the area of the base, etc., can be evaluated as predictors of platelet volume. The volume of the Gaussian and the width of the fit have been determined to correlate closely with mean platelet volume. For the above measurements, the 3 μm beads served as references and fiducials for controlling variance in accurately determining the best plane of focus, and the effect of this variance on the measurement of volume. In addition, platelet size estimated based on fitting a 2D model can be calibrated to be in the normal range (FIG. 3). Example 3 A sample containing red blood cells (“RBCs”) was obtained. The RBCs were treated with a low concentration of a surfactant (DDAPS or SDS), causing the RBCs to assume a sphere-like shape. The RBCs were imaged by dark field microscopy in two different cuvettes: (A) a cuvette that allowed only pure epi-illumination (FIG. 4A); and (B) a cuvette that allowed a mixture of both epi and trans-illumination (FIG. 4B). The RBCs were much more visible in the cuvette that allowed a mixture of both epi and trans-illumination over the cuvette that allowed only pure epi-illumination (FIGS. 4A-4B). Example 4 A sample containing neutrophils was obtained. In neutrophils, the shape and chromatin morphology of the nucleus may indicate whether it is an immature “band” neutrophil or a mature “segmented” neutrophil. Band neutrophils are immature neutrophils that have recently emerged from the bone marrow. An increase in the proportion of band neutrophils may indicate an ongoing infection or inflammation. The sample was mixed with a fluorescently labeled anti-CD16 antibody, which recognizes CD16, a cell surface receptor on neutrophils. The sample was also stained with a fluorescent nuclear dye. The sample was imaged by fluorescence microscopy, to obtain both nuclear staining and CD16 staining data from the cells. Band neutrophils generally have similar expression levels of CD16 as mature segmented neutrophils, and thus cannot be distinguished by virtue of fluorescence intensity from CD16 staining alone. Image analysis including image segmentation is used to recognize nuclear staining and morphologies of band neutrophils and segmented neutrophils, thereby allowing classification of the cells. The size, shape, and fluorescence intensity of the nucleus of cells are examined. In addition, the nuclei are analyzed to determine the number of lobes (peaks in intensity within the nuclear area), distance between the lobes of the nucleus, and the changes in curvature (second derivative) of the nuclear outline. FIG. 5A shows representative images of band neutrophils. In these images, the nucleus appears as a light grey, and the cell cytoplasm appears as a darker grey. As neutrophils differentiate through the myeloid lineage, they develop a characteristic “U” shaped nucleus prior to reaching full maturity. FIG. 5B shows representative images of segmented neutrophils. In these images, the nucleus appears as a light grey, and the cell cytoplasm appears as a darker grey. The nuclei of segmented neutrophils have multiple segments/lobes (typically about 3-5). Thus, this analysis supports identification and quantification of different subpopulations of neutrophils in the blood. Image segmentation is discussed further in Example 7 below. Example 5 A sample of cells from a subject with chronic lymphocytic leukemia (CLL) is obtained. The objective is to quantify the extent of CD5 expression on B-cells from the subject. Anti-CD20 antibodies are selected as the binder for B-cells. Anti-CD20 antibodies labeled with a first colored fluorophore are mixed with the sample. After an appropriate incubation time, the sample is washed and the unbound anti-CD20 antibodies are removed. The sample is exposed to a light source capable of exciting the first fluorophore, and fluorescent signal is measured using a spectrophotometer. Based on the fluorescent signal, the approximate concentration of B-cells in the sample is determined. The determined approximate concentration of B-cells is, in fact, within 1.5 fold of the true concentration of B-cells in the sample. Based on the approximate concentration of B-cells in the sample, an appropriate amount of anti-CD5 binder is added to the sample so that a proportional relationship between CD5 expression and CD5 fluorescence is maintained. The anti-CD5 binder is coupled to a second fluorophore, which has a different peak excitation wavelength than the first fluorophore (attached to the anti-CD20 binder). The anti-CD5 antibody is added to the sample, and then individual cells of the sample are exposed to a light source capable of exciting the second fluorophore, and fluorescent signal from individual cells is measured. Based on the fluorescent signal from cells, the average amount of CD5 in B-cells in the sample is determined. Although this example is described in the context of CD5, it should be understood that this concept of obtaining an approximate count to guide an addition of a desired amount of material for use in a subsequent step, is not limited to CD5 and use of this concept with other types of cells, analytes, or objects is not excluded. Example 6 Blood cells may be imaged, identified, and quantified according to the methods disclosed herein. For example, two-dimensional images of cells in a biological sample, where the cells are labeled (e.g., with fluorescent, chemiluminescent, enzymatic, or other labels) and plated (e.g., allowed to settle on a substrate) and imaged by a camera, may be prepared and analyzed as described in the present example. The camera may include a lens, and may be attached to or used in conjunction with a microscope. Cells may be identified in the two-dimensional images by their attached labels (e.g., from light emitted by the labels). 80 microliters of whole blood obtained from a fingerstick was loaded into a capped sample container preloaded with 2 mg/ml EDTA. In this instance an enclosed sample container was used (with a removable or pierceable cap); it will be understood that any suitable vessel for holding such a small volume sample may be used, including, but not limited to, a capped vessel or an uncapped vessel. The sample container was centrifuged at 1200×g for 5 minutes, to separate the blood cells from the blood plasma. Centrifugation of the sample container resulted in the separation of the blood sample in the sample container into two major components (from top of the sample container to the bottom): 1) blood plasma and 2) packed blood cells. This process ensures that no droplets of blood remain isolated, but coalesce with the main body of the liquid. In addition, this process separates the cells from elements of the plasma thus reducing metabolism and allowing for longer storage of the sample. The centrifuged sample container was loaded into a cartridge containing multiple fluidically isolated reagents, tips, and a cytometry cuvette. The cartridge contained all the reagents required for the assay. The cartridge was loaded into a device equipped with at least a centrifuge, a pipette and a platform to load the cuvette. The pipette in the device has a plurality of nozzles, some nozzles being of a different size than some other nozzles. Inside the device, a nozzle on the pipette was lowered on a cuvette carrier tool causing it to engage a corresponding hole on the carrier tool. This tool was subsequently moved to the cartridge and lowered on the cytometer cuvette. Pins on the tool were then able to engage corresponding holes on the cuvette and pick it up. The cuvette was transferred to a loading station elsewhere in the device. Next, inside the device, a larger nozzle of the pipette was lowered into the cartridge to engage a pipette tip stored in the cartridge. The pipette and tip together were then used to mix the cells and plasma in the sample container by positioning the pipette tip within the sample in the sample container and repeatedly aspirating material into and dispensing material from the tip. Once the cells were resuspended in the plasma so that the whole blood sample was thoroughly mixed, 5 microliters of the mixed whole blood was aspirated to provide an aliquot for measurements of properties of the blood sample. This 5 microliter aliquot was used for measurements directed to the red blood cells and platelets in the sample. As discussed below, a portion of the sample remaining after removal of this 5 microliter aliquot was used for measurements directed at white blood cells in the sample. The 5 microliters of whole blood was dispensed into a vessel containing a mixture of phosphate buffered saline and 2% by weight of bovine serum albumin, to dilute the whole blood twenty-fold (resulting in 100 microliters of diluted sample). After mixing vigorously, 5 microliters of this sample was transferred to another vessel containing a cocktail of labeling antibody reagents: anti-CD235a conjugated to Alexa Fluor® 647 (AF647), anti-CD41 and anti-CD61 conjugated to phycoerythrin (PE). The mixture was incubated for 5 minutes. Subsequently, 10 microliters of this mixture was mixed with 90 microliters of a buffer containing a zwitterionic surfactant at <0.1% by weight. The surfactant molecules modify bending properties of the red cell membrane such that all cells assume a stable spherical shape. This transformation is isovolumetric as the buffer used is isotonic with cytoplasm; thus no osmotically driven exchange of fluid can occur across the cell membrane. After incubating this for another 2 minutes, 30 microliters of this solution was mixed with a solution containing glutaraldehyde, a fixative and non-fluorescent beads of 10 micron (μm) diameter. The mixture had a final concentration of 0.1% glutaraldehyde and 1000 beads per microliter. Glutaraldehyde rapidly fixes cells thus preventing cell lysis and other active biological processes. In this non-limiting example, the pipette then engaged a tip in the cartridge, aspirated 7 μL of the above mixture of and loaded the 7 μL into a channel within the cuvette placed on a platform with the carrier tool. After the mixture was loaded in into cuvette, the pipette aspirated 10 μL of mineral oil from a vessel in the cartridge, and placed a drop of mineral oil on both open ends of the loaded channel of the cuvette. Hexadecane was added to the ends of the open channel to prevent evaporation of liquid from the loaded cuvette channel (mineral oil would also work). Next, the device-level sample handling apparatus engaged the cuvette carrier/cuvette combination, and transported the cuvette carrier/cuvette combination from the module containing the cartridge to the cytometry module of the device. At the cytometry module, the device-level sample handling apparatus placed the cuvette carrier/cuvette combination on the microscopy stage of the cytometry module. The time required for these operations, in addition to a 2 minute wait time allowed the swelled cells to settle to the floor of the cuvette prior to imaging. After the cuvette carrier/cuvette was placed on the microscopy stage, the stage was moved to pre-determined location so that the optical system of the cytometer could view one end of the channel containing the sample. At this location, the optical system relayed images of the sample acquired with dark field illumination from a ringlight. These images coupled with actuation of the optical system on an axis perpendicular to the plane of the cuvette were used to find the plane of best focus. Once focused, the optical system was used to acquire fluorescence images of the sample at different wavelengths, commensurate with the fluorophores that were being used. For example, to visualize red blood cells that had been labeled with anti-CD235 conjugated to Alexa Fluor® 647, a red (630 nm wavelength) light source was used to excite the sample and wavelengths between 650 nm and 700 nm were used to image the sample. A combination of a polychroic mirror and a bandpass emission filter was used to filter out unwanted wavelengths from the optical signal. Since the cells had settled on the floor of the cuvette, images at a single plane of focus were sufficient to visualize all cells in the region. Data from the images was processed by a controller associated with the sample processing device. The image processing algorithms employed here utilized fluorescence images of cells to detect them using a combination of adaptive thresholding and edge detection. Based on local intensity and intensity gradients, regions of interest (RoI) were created around each cell. Using dark field images, beads in the sample were also identified and RoIs were created around the beads. All the RoIs in each field of view were enumerated and their intensity in each image of that field of view were calculated. The information output by the image processing algorithm consisted of shape or morphometric measurements and fluorescence and dark field intensities for each RoI. This information was analyzed using statistical methods to classify each object as either a red blood cell (positive for CD235a, but negative for CD41/CD61), a platelet (positive for CD41/CD61 and negative CD235a) or a bead. The shape descriptors such as perimeter, diameter and circularity were used to calculate the volume of each red blood cell and platelet. Since the beads were added at a known concentration, the average ratio of beads to cells over the whole channel was used to calculate cell concentration in terms of cells/microliter. Based on the steps performed for processing the sample, this concentration was corrected for dilution to arrive at concentration of cells in the original whole blood sample. The following quantities were calculated from a sample: 1) number of red blood cells in the cuvette; 2) average volume of red blood cells in the cuvette; 3) red blood cell distribution width (RDW) of red blood cells in the cuvette; 4) number of platelets in the cuvette; and 5) average volume of platelets in the cuvette. Based on these calculations, the following was calculated for the original blood sample. Exemplary Measured Value Result Range Concentration of red blood cells 4.8 4-6 (million cells per microliter) Mean volume of red blood cells, femtoliter 88  80-100 red blood cell distribution width (RDW), (%) 12   11-14.6 Concentration of platelets 254 150-400 (thousand cells per microliter) Mean volume of platelets, femtoliter 10.4  7.5-11.5 After removal of the 5 microliter aliquot used for analysis of RBC and platelet information, the remaining 75 microliters of sample was used to analyze the white blood cell population of the whole blood sample. The remaining 75 microliters of whole blood had also been mixed by repeatedly aspirating and dispensing the sample within the same the vessel by the pipette. Approximately 40 microliters of the remaining 75 microliters of mixed whole blood was aspirated into a pipette tip, and transferred by the pipette to a centrifuge tube in the cartridge. The centrifuge tube containing the blood sample was engaged by the pipette, and transferred to and deposited in a swinging bucket in a centrifuge within the module. The centrifuge was spun to provide 1200×g for 3 minutes, separating the blood into EDTA-containing plasma as the supernatant and packed cells in the pellet. After centrifugation, the centrifuge tube was removed from the centrifuge and returned to the cartridge. The plasma supernatant was removed by the pipette and transferred to a separate reaction vessel in the cartridge. From a reagent vessel in the cartridge, 16 microliters of resuspension buffer was aspirated by the pipette, and added to the cell pellet in the centrifuge tube. The pipette then resuspended the cell pellet in the resuspension buffer by repeatedly aspirating and dispensing the mixture in the centrifuge tube. Next, the pipette aspirated 21 microliters of the resuspended whole blood and added it to another vessel containing 2 microliters of anti CD14-Pacific Blue™ and DRAQ5®, mixed, and incubated for 2 minutes. Twenty microliters of this mixture was then added to 80 microliters of a lysis buffer. The lysis buffer was a solution including saponin (a gentle surfactant; other surfactants which may be used include anionic, cationic, zwitterionic, and non-ionic surfactant compounds, e.g., as discussed above) and paraformaldehyde (a fixative; other fixatives which may be used include formaldehyde, glutaraldehyde, and other cross-linking agents). The detergent causes a large number of holes to be formed in the membranes of cells. Red blood cells, due to their unique membrane properties, are particularly susceptible to this hole formation and lyse completely, their contents leaking out into the liquid around. The presence of the fixative prevents unintentional lysis of the white blood cells. Platelets also remain unlysed. The purpose of this step is to remove intact red blood cells from the mixture as they outnumber white blood cells by about 1000:1. Platelets do not interfere with imaging and hence are irrelevant to this process. The lysis buffer also contained 10 μM non-fluorescent beads at a known concentration. After a 5 minute incubation, the vessel was spun again at 1200×g for 3 minutes. The supernatant was aspirated by a pipette tip, removing the red blood cell ghosts and other debris, and deposited into a waste area in the cartridge. Approximately 15 microliters of liquid with packed white blood cells were present in the cell pellet. In order to determine a rough approximation of the number of white blood cells present in the cell pellet, the pipette first resuspended the white blood cells in the vessel and then aspirated the liquid for transport to and inspection by a spectrophotometer. The white blood cell suspension was illuminated with light at a wavelength of 632 nm, which is the excitation wavelength for Alexa Fluor® 647 dye and DRAQ5®. The light emitted by the cell suspension was filtered by a 650 nm long pass filter and measured in the spectrophotometer. This measurement was correlated with previously generated calibration curve to estimate a rough concentration of white blood cells in the cell suspension. Typically, cell concentrations ranged from about 1000 cells per microliter to about 100,000 cells per microliter. This estimate was used to calculate an appropriate dilution factor to ensure that the concentration of cells in the cuvette was constrained to within a two-fold range around a pre-defined target concentration. The purpose of this step was to ensure that cells are not present at too high or too low a density on the cuvette. If the cell density is too high, the accuracy of image processing algorithms is compromised, and if the cell density is too low, an insufficient number of cells are sampled. Based on the dilution factor calculated in the above step, a diluent containing labeled antibodies against CD45 (pan-leukocyte marker), CD16 (neutrophil marker) and CD123 (basophil marker) was added to the cell suspension and mixed. Once the cuvette in complex with cuvette carrier was placed on the cuvette carrier block, 10 microliters of the mixture of white blood cells resuspended in cytometry buffer was loaded into each of two channels in the cuvette. After the mixture was loaded into channels of the cuvette, the pipette aspirated 10 μl of hexadecane from a vessel in the cartridge, and placed a drop of mineral oil on both open ends of both channels in the cuvette loaded with white blood cells. Next, the device-level sample handling apparatus engaged the cuvette carrier/cuvette combination, and transported the cuvette carrier/cuvette combination from the module containing the cartridge to the cytometry module of the device. At the cytometry module, the device-level sample handling apparatus placed the cuvette carrier/cuvette combination on the microscopy stage of the cytometry module. After the cuvette carrier/cuvette was placed on the microscopy stage, the two channels of the cuvette containing white blood cells were imaged as described above for the RBC/platelet mixture. Dark field images of the white blood cells were used to count the numbers of cells in a field (as shown in FIG. 9A). Cell surface markers were used to determine the cell type of individual white blood cells in an image; for example, CD14 marks monocytes; CD123 marks basophils; CD16 marks neutrophils; and CD45-AF647 were used to mark all leukocytes (FIGS. 9B-9E). The nuclear stain DRAQ5® was used to mark cell nuclei, and so to differentiate nucleated cells (such as white blood cells) from mature red blood cells, which have no nucleus (FIG. 9F). The image processing algorithms employed here utilized fluorescence images of cells to detect them using a combination of adaptive thresholding and edge detection. Based on local intensity and intensity gradients, boundaries of regions of interest (RoI) were created around each cell. Using dark field images, beads in the sample were also identified and RoI boundaries were created around the beads. All the RoIs in each field of view were enumerated and their intensity in each image of that field of view were calculated. The information output by the image processing algorithm consisted of shape or morphometric measurements and fluorescence and dark field intensities for each RoI. This information was analyzed using statistical methods to classify each object as a lymphocyte, monocyte, basophil, eosinophil, neutrophil or a bead. Based on enumeration of cells of different types, the corresponding bead count and the dilution ratio implemented during sample processing, an absolute concentration of cells per microliter of original whole blood was calculated. This was calculated for all white blood cells and each subtype, and reported as both absolute concentration (cells per microliter) and proportion (%). Examples of images and plots of results of such measurements are presented in FIGS. 9A-9F, 10, and 11A-11D. FIGS. 9A-9F show representative images of blood cells from a sample of whole blood; these images were taken using different imaging techniques and dyes. The image shown in FIG. 9A was taken of cells from whole blood using dark-field illumination. The image shown in FIG. 9B was taken of cells from whole blood showing fluorescence from anti-CD14 antibodies labeled with Pacific Blue dye; the fluorescent cells are monocytes. The image shown in FIG. 9C was taken of cells from whole blood showing fluorescence from anti-CD123 antibodies labeled with PECy5 dye; the fluorescent cells are basophils. The image shown in FIG. 9D was taken of cells from whole blood showing fluorescence from anti-CD16 antibodies labeled with PE dye; the fluorescent cells are neutrophils. The image shown in FIG. 9E was taken of cells from whole blood showing fluorescence from anti-CD45 antibodies labeled with AF647 dye; all leukocytes fluoresce under these conditions. The image shown in FIG. 9F was taken of cells from whole blood dyed with DRAQ5® to stain cell nuclei. Thus, leukocytes and platelets are stained and fluoresce under these conditions, but red blood cells (lacking nuclei) are not stained and do not fluoresce. FIG. 10 shows a representative composite image of cell-types in whole blood from images acquired according to the methods disclosed herein. Images of a monocyte (labeled and seen in the upper left quadrant of the figure, with a reddish center surrounded by a blue-purple ring), a lymphocyte (labeled and seen in the center of the figure, with a bright red center surrounded by a dimmer red ring), an eosinophil (labeled and seen in the lower left quadrant of the figure, with a green center surrounded by a red border), and a neutrophil (labeled and seen in the lower right quadrant of the figure, with a green center surrounded by a yellow and green border) are shown in the figure. It is of interest to identify and quantify various cell types found in such blood samples. There may be multiple ways to approach such a classification process, which, in some embodiments, may be considered as being a statistical problem for multi-dimensional classification. It will be understood that a wide variety of methods are available in the field to solve these types of classification problems. A particular embodiment of such an analysis is provided below. FIGS. 11A-11D show plots of various cell types identified and quantified by the cytometric assays described in this example. FIG. 11A shows a plot of spots (cells) by intensity of the marker FL-17 (anti-CD14 antibody labeled with pacific blue dye) versus intensity of FL-9 (dark field scatter signal) to identify monocytes. FIG. 11B shows a plot of spots (cells) by intensity of the marker FL-19 (anti-CD123 antibody labeled with PE-CY5 dye) versus intensity of the marker FL-15 (anti-CD16 labeled with PE dye) to identify basophils. FIG. 11C shows a plot of spots (cells) by intensity of the marker FL-15 (anti-CD16 labeled with PE dye) versus intensity of the marker FL-11 (anti-CD45 antibody labeled with AF647 dye) to identify lymphocytes. FIG. 11D shows a plot of spots (cells) by intensity of the marker FL-15 (anti-CD16 labeled with PE dye) versus intensity of FL-9 (dark field scatter signal) to identify neutrophils and eosinophils. The initial identification of monocytes (9.6%, as shown in FIG. 11A) is used to guide the subsequent identification of basophils (0.68%, as shown in FIG. 11B). The identification of monocytes and basophils as shown in FIGS. 11A and 11B is used to guide the subsequent identification of neutrophils and eosinophils (68% neutrophils, 3.2% eosinophils, of the WBCs shown in FIG. 11D). Finally, lymphocytes are identified as shown in FIG. 11C (93% of the WBCs plotted in FIG. 11C, corresponding to 18% of the cells in the original sample). The present methods correlate well with other methods. Counts of white blood cells, red blood cells, and platelets were made with samples of EDTA-anti coagulated whole blood. The white blood cells were further counted to determine the numbers of neutrophils, monocytes, and lymphocytes in the sample. In the measurements shown in FIG. 12, EDTA-anti coagulated whole blood samples were split into two, and one part of the samples were run on the system disclosed herein, using the methods disclosed herein. The other part of the samples was run on an Abbott CELL-DYN Ruby System (Abbott Diagnostics, Lake Forest, Ill., USA), a commercial multi-parameter automated hematology analyzer. A comparison of the results obtained with both methods is shown in FIGS. 12A-12F. As shown in FIGS. 12A-12C, the numbers of white blood cells (“WBCs”, FIG. 12A), red blood cells (“RBCs”, FIG. 12B) and platelets (FIG. 12C) measured by the present methods correlate well with the numbers of WBCs, RBCs, and platelets measured by other methods in corresponding aliquots of the same samples as were analyzed by the present methods. As shown in FIGS. 12D-12F, the numbers of neutrophils, monocytes, and lymphocytes measured by either method were very similar, and correlated well with each other. In embodiments of the methods disclosed herein, blood samples may be diluted to reduce or eliminate red blood cell overlap. For example, samples in which red blood cell counts were obtained were typically diluted by about 400-fold to about 1000-fold so that the red blood cells would be sufficiently separated for accurate counting. Where advantageous or required, such dilutions were performed by sequential dilution (e.g., where a sample or portion thereof was diluted a first time to provide a first diluted sample, and that first diluted sample (or portion thereof) was further diluted one, two, or more times, as needed to provide the desired dilution). As discussed above, beads may be incorporated into such diluted samples to provide an independent measure of the dilution: since the number of beads added is known, a count of the number or concentration of beads in the final (diluted) sample may be used to calculate the actual amount of dilution that was obtained. Typically, a ratio of about 5-7 RBCs per bead provides a desirable ratio of RBCs to beads. Optionally, the solution may also have a component that prevents the beads for adhering to each other. In one non-limiting example, the use of a known number or concentration of reference bodies such as beads or other structures can be particularly useful when they are added to undiluted sample prior to dilution step, especially in serial dilution steps used to create 200-fold or higher dilutions. As long as the sample and beads are well mixed before each aspiration step, this reduces the impact of inaccuracies in dilution steps and makes the method insensitive to dispense errors in these multiple dilution steps. Optionally, some embodiment may add the reference bodies after the first dilution step of a multiple step dilution process. Optionally, some embodiment may add the reference bodies after the second dilution step of a multiple step dilution process. In aspects of the term as used herein, the term “cytometry” refers to observations, analysis, methods, and results regarding cells of a biological sample, where the cells are substantially at rest in a fluid or on a substrate. Cells detected and analyzed by cytometry may be detected and measured by any optical, electrical or acoustic detector. Cytometry may include preparing and analyzing images of cells in or from a biological sample (e.g., two-dimensional images). The cells may be labeled (e.g., with fluorescent, chemiluminescent, enzymatic, or other labels) and plated (e.g., allowed to settle on a substrate) and, typically, imaged by a camera. A microscope may be used for cell imaging in cytometry; for example, cells may be imaged by a camera and a microscope, e.g., by a camera forming an image using a microscope. An image formed by, and used for, cytometry typically includes more than one cell. Example 7 This example presents a method and results of sequential segmentation of white blood cell images from samples of blood. Other suitable methods include summing images, including providing weighted averages of multiple images, to provide images for use in determining cell boundaries. Nuclear staining dyes and other dyes may be used, including labeled antibodies for binding to specific cell markers, either together or separately, to obtain images for analysis. For example, cell size and cell boundary estimates may be obtained using images obtained with each dye or marker separately, or some or all images may be combined for analysis. The present methods provide related and improved methods for estimating cell size and for determining boundaries of cells imaged by devices and systems as disclosed herein. It will be understood that these methods are useful for the analysis of cells imaged by other devices and systems as well. Segmentation is useful for determining contours of images, e.g., for determining contours (e.g., boundaries, such as optimal outlines) of images of objects within a larger image containing one or more objects and (typically) background or other features as well. Sequential segmentation is an iterative process which, when applied to images of cells in a biological sample, may be used to provide progressively better cell contours by use of successive procedures which result in a final, optimal (or sufficiently accurate) result. The results presented in the present example demonstrate the use of sequential segmentation of fluorescence images of individual white blood cells using nuclear stains to provide regions of interest within the cells (e.g., to provide images of cell nuclei) which are used as the seed upon which to base the sequential segmentation process for determining the outer boundaries of the cells containing those nuclei. Dyes and stains useful for such images and the analysis thereof include the dyes and markers disclosed herein, such as, e.g., DAPI, DRAQ5®, propidium iodide, or other DNA-staining dye; PE, Pacific Blue™, allophycocyanin (APC), Alexza Fluor®, and other dyes. Segmentation was applied to WBC images obtained using fluorescence microscopy images to find contours (e.g., optimal cell outlines) for each cell that separated them from the image background. A cell region of interest (ROI) was defined as the region interior to the contour, and was used to compute shape and size metrics such as area, volume, and circularity, as well as intensity measures such as mean, median, minimum and maximum intensity. In FIG. 15B, examples of cells (bright), background (dark), and contours (red) are shown. The contours shown in FIG. 15B were determined by sequential segmentation as described in this example. For each field of view (FoV), multiple fluorescence images were acquired with different filters, each emphasizing different WBC types. Examples of different fluorescent image types can be seen in FIG. 13A-E); FIG. 13A is a dark-field image, FIG. 13B is from labeled anti-CD45 antibodies, FIG. 13C imaged with nuclear stain DRAQ5®, FIG. 13D is from labeled anti-CD16 antibodies, and FIG. 13E is from labeled anti-CD123 antibodies. FIGS. 13A-13E show white blood cell (WBC) images obtained using microscopy, for use in performing sequential segmentation analysis to determine contours for each cell and to thus differentiate the cell images from the background images. FIG. 13A is a dark field image; FIG. 13B is a fluorescence image showing cell labelling by anti-CD45 antibodies; FIG. 13C is a fluorescence image cells labelling by the nuclear stain DRAQ5®; FIG. 13D is a fluorescence image showing cell labelling by anti-CD16 antibodies; and FIG. 13E is a fluorescence image showing cell labelling by anti-CD123 antibodies. The assumption of the segmentation method was that the desired cell contour for a given nucleus could be found in the image in which the cell area was the largest. The method consisted of the following steps: 1) Segmentation of cell nuclei using the image stained with DRAQ5®. 2) For each acquired image: grow cell regions using watershed segmentation, initialized with the segmented cell nuclei. 3) For each nucleus: find the cell ROI with the largest area across all images and register that as the final segmentation for that cell. Cell nuclei were detected using the image stained with DRAQ5®. ROIs were found using adaptive thresholding, where a pixel's intensity was set as foreground if its intensity was a certain amount higher than the mean intensity in the pixel neighborhood. Pixel intensity varied across images; for example, pixel intensity decreased with distance from local maximal intensity values. The rate of change in such decrease of pixel intensity (with increasing distance from local maxima) was used to determine boundaries, or edges, of the imaged objects. Sizes of imaged objects (e.g., cell nuclei when DRAQ® or other nuclear stain was used) were then calculated using the boundaries. An ROI was classified as a nucleus if it was within an allowable size range. FIG. 14C shows an image stained with DRAQ5®, showing nuclei contours identified in this way in blue. Each nucleus ROI was assumed to be in the interior of a cell ROI. Cell segmentation in an image was performed by growing the regions around the already segmented nucleus ROIs. The stopping criteria can be based on gradient magnitude, intensity information, or other factors or a combination of factors. Examples of segmentation techniques that can be used are active contours, geodesic active contours, and watershed. The watershed algorithm was used, and the ROI growing was stopped either when it reached a maximum in the intensity gradient magnitude, a significant intensity decrease, or when it encountered a neighboring ROI. The watershed segmentation was performed on each image acquired for the FoV, and the cell ROIs were stored. For each nucleus in the image the cell ROI areas were compared across all images, and the ROI with the largest area was recorded as the final cell ROI for that nucleus. All cell ROIs with maximum area were then combined into a final WBC segmentation. An example of a final sequential WBC segmentation is shown in FIG. 15B. This method determines cell regions more accurately than do other methods, e.g., more accurately finds cell regions than does a one-pass segmentation of a weighted average of fluorescence images. The contours shown in FIG. 15A were determined by watershed segmentation performed once on the composite cell images, while the contours shown in FIG. 15B were determined by sequential WBC segmentation as described herein. FIGS. 14A-14E show the images in FIGS. 13A-13E with segmentation results. Nucleus ROIs are plotted using blue contours and cell ROIs have red contours. FIG. 14A is a dark-field image with nuclei ROIs overlaid in blue and the generated cell segmentation in red, FIG. 14B is from labeled anti-CD45 antibodies with nuclei ROIs overlaid in blue and the resulting cell segmentation in red, FIG. 14C imaged with nuclear stain DRAQ5® with segmented nuclei ROIs in blue, FIG. 14D is from labeled anti-CD16 antibodies with nuclei ROIs in blue and the resulting cell segmentation in red, and FIG. 14E is from labeled anti-CD123 antibodies with nuclei ROIs overlaid in blue and the resulting cell segmentation in red. FIGS. 14A-14E show white blood cells (WBCs) images obtained using microscopy, as in FIGS. 13A-13E, for performing sequential segmentation analysis to determine external (e.g., cell membrane) and internal (e.g., nucleus) contours for each cell and to thus identify the cell nucleus as well as to differentiate the cell ROIs from the background regions. The lines within the cell images identify the boundaries of the WBC nucleus for each cell as determined by sequential segmentation analysis. FIG. 14A is a dark field image; FIG. 14B is a fluorescence image showing cell labelling by anti-CD45 antibodies; FIG. 14C is a fluorescence image cells labelling by the nuclear stain DRAQ5®; FIG. 14D is a fluorescence image showing cell labelling by anti-CD16 antibodies; and FIG. 14E is a fluorescence image showing cell labelling by anti-CD123 antibodies. Another approach to WBC segmentation was to perform a weighted average of all the fluorescent and the dark-field image and perform watershed segmentation once on that composite image. This method may create a bias towards cells that had more staining across the images. FIG. 15A shows a composite image. ROIs from watershed segmentation performed once on the composite image are show in red contours. FIG. 15B shows a composite image with the described sequential WBC segmentation plotted with red contours. The main contributors to the final segmentation were from FIG. 14B and FIG. 14D in this case. FIGS. 15A-15B show composite images of white blood cells (WBCs) shown in FIGS. 13A-13E and 14A-14E. FIG. 15A is a composite image of the cells shown in FIGS. 13A-13E and 14A-14E, with cell contours obtained by watershed segmentation performed once. FIG. 15B is a the result of sequential segmentation as described herein applied to the composite image of the cells shown in FIGS. 13A-13E and 14A-14E, showing cell contours obtained by that analysis. The sequential segmentation analysis illustrated in FIG. 15B appears to better identify cell contours than does the watershed segmentation performed once as shown in FIG. 15A. Optical Systems Referring now to FIGS. 6A and 6B, embodiments of an optical system suitable for use herein will now be described. Although these embodiments of the system are described in the context of being able to perform cytometry, it should also be understood that embodiments of the system may also have uses and capabilities beyond cytometry. By way of example and not limitation, the imaging and image processing capabilities of the systems disclosed herein may be used for many applications, including applications outside of cytometry. Since images of the sample being analyzed are captured, and image information is typically linked or associated in the system to quantitative measurements, one can further analyze the images associated with the quantitative information to gather clinical information in the images that would otherwise be unreported. A sample to be analyzed, e.g., by cytometry or other optical or imaging means, may be held in a sample holder for analysis. For example, a cuvette may serve as such a sample holder. The embodiment shown in FIG. 6A shows a perspective view of a cuvette 600 that has a plurality of openings 602 for receiving a sample or portion thereof for analysis. For example, an opening 602 may be used as an entry port to provide a sample, such as a fluid sample, to a channel, conduit, or chamber (e.g., a sample chamber) for analysis. The horizontal cross-sectional shape of the embodiment of FIG. 6A is a rectangular horizontal cross-sectional shape. Although the system is described in the context of a cuvette, it should be understood that other sample holding devices may also be used in place of or in combination with the cuvette 600. As seen in the embodiment of FIG. 6A, the openings 602 may allow for a sample handling system (not shown) or other delivery system to deposit sample into the opening 602 which may be connected with, and may lead to, an analysis area 608 in the cuvette where the sample can be analyzed. In one non-limiting example, an analysis area 608 may be a chamber. In another non-limiting example, an analysis area 608 may be a channel. In embodiments, an analysis area 608 that is configured as a channel may connect two entry ports 602. In a still further non-limiting example, an analysis area 608 may be a channel wherein the sample is held in a non-flowing manner. In any of the embodiments herein, the system can hold the samples in a non-flowing manner during analysis. Optionally, some alternative embodiments may be configured to enable sample flow through the analysis area before, during, or after analysis. In some embodiments, after analysis, the sample is extracted from the cuvette 600 and then delivered to another station (in a system having multiple stations) for further processing or for further processing or analysis. Some embodiments may use gate(s) in the system to control sample flow. FIG. 6A shows that, in some embodiments of a cuvette 600, a cuvette 600 may have a plurality of openings 602. Sample may be added to the sample holder via entry ports 602. An opening 602 may be operably connected with (e.g., in fluid continuity with) an analysis area 608. An analysis area 608 may be operably connected with (e.g., in fluid continuity with) a plurality of openings 602. It will be understood that some embodiments may have more, or may have fewer, openings 602 in the cuvette 600. Some embodiments may link certain openings 602 such that selected pairs or other sets of openings 602 can access the same channel (e.g., analysis area 608 that is configured as a channel). By way of non-limiting example, there may an opening 602 at each end of an analysis area 608. Optionally, more than one opening 602 may be at one end of an analysis area 608. Embodiments of a cuvette 600 may have structures 610 that allow for a sample handling system to engage and transport the cuvette 600. A cuvette 600 as illustrated in FIG. 6A and FIG. 6B may be engaged by a sample handling system via an element 610, effective that the cuvette 600 may be transported from one location to another. An element 610 may also be used to secure a cuvette 600 at a desired location, e.g., prior to, or following transport to a location (such as over a detector for optical imaging and analysis), a cuvette 600 may be held in position by an element 610 or by a tool or device which uses an element 610 to hold a cuvette 60 in position. In one non-limiting example, the structures 610 can be openings in the cuvette 600 that allow for a pipette or other elongate member to engage the cuvette 600 and transport it to the desired location. Optionally, in place of or in combination with said opening(s), the structures 610 can be, or may include, a protrusion, a hook, a magnet, a magnetizable element, a metal element, or other feature that can be used to engage a cuvette transport device. In embodiments, force (e.g., compression, or other force) may be applied to a cuvette 600; for example, compression may be applied to a cuvette 600 in order to press a cuvette 600 onto a substrate or surface (e.g., a surface of a base support 620), effective to place the cuvette 600 in effective optical contact with the surface. In embodiments, such force (e.g., compression) may aid in providing desired optical properties, such as providing good contact between a cuvette 600 and a base support 620, effective to allow passage of light without significant distortion at the interface, or without significant reflection at the interface, or other desired optical property. In embodiments, such force (e.g., compression) may be applied, at least in part, via a structure 610 or via multiple structures 610. As shown in FIG. 6B (in perspective view), a cuvette 600 may have a circular horizontal cross-sectional shape. An opening 602 (or multiple openings 602, which may be present in similar embodiments, not shown in the figure) may allow sample handling system or other delivery system to deposit sample into the opening 602 which may then lead to an analysis area 608 in the cuvette where the sample can be analyzed. Non-limiting examples of suitable analysis areas 608 include an analysis area 608 comprising a chamber, and an analysis area comprising a channel. In embodiments, such an analysis area 608 may be located within an annular structure such as the annular structure 604 shown in FIG. 6B. In embodiments, an opening 602 may be connected with an analysis area 608. In embodiments, an analysis area 608 within a structure 604 may form a continuous ring-shaped chamber, connecting with an opening 608 effective to allow flow within the chamber in either of two directions away from an opening 602. In embodiments, an analysis area 608 within a structure 604 may form a ring-shaped channel or chamber, with one end connecting with an opening 608, and another end separated or blocked off from the opening 602, effective to allow flow within the chamber in only one direction away from an opening 602. In embodiments, such a one-way ring-shaped channel or chamber may have a vent or other aperture at a location distal to an opening 602. In a still further non-limiting example, the analysis area may be or include a channel wherein the sample is held in a non-flowing manner; a sample may be held in a non-flowing manner in an analysis area 608 that comprises a ring-shaped channel, whether the ring-shaped channel is connected to an opening 602 from two directions, or whether the ring-shaped channel is connected to an opening 602 from only a single direction. In any of the embodiments herein, the system can hold the samples in a non-flowing manner during analysis. Optionally, some alternative embodiments may be configured to enable sample flow through the analysis area before, during, or after analysis. In some embodiments, after analysis, the sample is extracted from the cuvette 600 and then delivered to another station (in a system having multiple stations) for further processing or analysis. Some embodiments may use gate(s) in the system to control sample flow. FIG. 6B shows only a single annular structure 604; however, it will be understood that, in further embodiments of a cuvette 600 shaped as illustrated in FIG. 6B, a cuvette 600 may have a plurality of annular structures 604. For example, a cuvette 600 having a plurality of annular structures 604 may have concentric annular structures 604, of different sizes, with an outer annular structure 604 surrounding one or more inner annular structures 604. Such annular structures 604 may include analysis areas 608 within each annular structure 604. FIG. 6B shows only a single opening 602; however, it will be understood that, in further embodiments of a cuvette 600 shaped as illustrated in FIG. 6B, a cuvette 600 may have a plurality of openings 602. For example, a cuvette 600 having a plurality of annular structures 604 (e.g., having a plurality of concentric annular structures 604) may have a plurality of openings 602 (e.g., each annular structure 604 may have at least one opening 602). It will be understood that some embodiments may have more, or may have fewer, openings 602 in a cuvette 600. Some embodiments may link certain openings 602 such that selected pairs or other sets of openings 602 can access the same channel or chamber. By way of non-limiting example, there may an opening 602 at each end of an analysis area. Optionally, more than one opening 602 may be at one end of an analysis area 608. Some embodiments of cuvettes as illustrated in FIGS. 6A and 6B may provide structures 604 over select areas of a cuvette 600. In one embodiment, the structures 604 are ribs that provide structural support for areas of the cuvette that are selected to have a controlled thickness (e.g., areas 613). For example, the thickness may be selected to provide desired optical properties, including desired pathways for light to follow before and after reflection within the cuvette 600. Such reflection may be partial internal reflection (PIR) or total internal reflection (TIR). Whether such reflection occurs depends on many factors, including the light wavelength; the angle of incidence of the light reaching a surface; the composition of the material (of area 613 and of an environment or material outside the boundary of an area 613); and other factors. In the embodiments shown in FIG. 6A, the structures 604 are rectangular in shape, and have a rectangular cross-section. In the embodiments shown in FIG. 6B, the structures 604 are annular in shape, and may have a rectangular cross-section, or a trapezoidal cross-section, or other shaped cross-section. Such structures may have any suitable cross-sectional shape. As illustrated in FIG. 8B, such structures 604 may have a triangular cross-section (e.g., forming a saw-tooth shaped cross-section when multiple ribs are present). It will be understood that such structures 604 may have other shapes and cross-sections as well (e.g., semi-circular, elliptical, irregular, or other shape), and that, in embodiments, more than one shape may be present in the same system (e.g., a cuvette may include rectangular, triangular, or other shaped structures). The structures 604 may be used when the controlled thickness areas 613 are at a reduced thickness relative to certain areas of the cuvette and thus could benefit from mechanical support provided by structures 604. In addition to providing structural support, structures 604 may be useful to provide material and pathways for internal reflection of light within a cuvette 600. As shown in FIGS. 8A-8D, light reflected within a cuvette 600 may include pathways for light reflected within a structure 604 (e.g., a rib, or a structure having a triangular cross-section, as shown in the figures, or any other shape, such as a circular or semi-circular cross-section, or other cross-sectional shape). Structures 604 may thus provide convex features extending outwardly from a surface 614 of a cuvette 600; or may provide concave features extending inwardly from a surface 614 of a cuvette 600; or may provide both concave and convex features on a surface 614 of a cuvette 600. Thus structures 604 thus may provide mechanical support to a cuvette 600, may provide desired optical properties, including optical pathways, to a cuvette 600, and may provide other desirable and useful features and capabilities to a cuvette 600 as disclosed herein. Support structures 604 thus may be useful to provide structural support, including, e.g., stiffness, to a cuvette 600. The optical properties of a cuvette 600 may be important to their use in optical imaging and other optical measurements of samples in an analysis area 608 and of cells, particles, and other components of such samples. Maintenance of the proper flatness of a surface of a cuvette 600, including maintenance of the flatness of a base portion 606, or a surface 614 or 618; maintenance of proper orientation and configuration of a cuvette 600 (e.g., without twisting, flexing, or other distortion); and maintenance of proper positioning of a cuvette 600 (e.g., on a base support 620, or within an optical set-up) may be important to the integrity of optical measurements and images obtained using the cuvette 600. Thus, for example, the design and construction of support structures 604 and base portion 606 may be important factors in providing and maintaining the proper optical properties of a cuvette 600. Maintenance of the proper dimensions of an analysis area 608, including maintenance of the proper distances and relative angles of upper and lower surfaces (or of side walls) of an analysis area 608 may be important to providing correct and consistent illumination of a sample within an analysis area 608. Maintenance of the proper dimensions of an analysis area 608 may also be important to insuring that the volume of an analysis area 608, and so the volume of sample within the analysis area 608, is correct. As discussed herein, force (e.g., compression) may be applied to a cuvette 600 to further insure proper flatness, or to decrease twisting or distortion, or otherwise to insure proper shape, size, and orientation of a cuvette during use. It will be understood that compression may not be required to insure such proper flatness and proper shape, size, and orientation of a cuvette during use. For example, in embodiments, structures 604 alone may be sufficient to aid or insure that a cuvette 600 has the proper flatness and proper shape, size, and orientation during use. In addition, it will be understood that, in embodiments, compression alone may be sufficient to aid or insure such proper flatness and proper shape, size, and orientation of a cuvette 600 during use. It will be understood that, in embodiments, the combination of structures 604 and compression may aid or insure the maintenance of proper flatness and proper shape, size, and orientation of a cuvette during use. A cuvette 600, including a support structure 606 and cover portion 612, may be made of any material having suitable optical properties. In embodiments, a cuvette 600, including a support structure 606 and cover portion 612, may be made of glass (e.g., quartz, or borosilicate glass, or aluminosilicate glass, or sodium silicate glass, or other glass). In embodiments, a cover portion 612 or a base support 620 may be made of an acrylic, or a clear polymer (e.g., a cyclo-olefin, a polycarbonate, a polystyrene, a polyethylene, a polyurethane, a polyvinyl chloride, or other polymer or co-polymer), or other transparent material. In addition to the optical properties of such materials, the physical properties (e.g., hardness, stiffness, melting point, ability to be machined, and other properties), compatibility with other materials, cost, and other factors may affect the choice of material used to fabricate a cuvette 600. As discussed above, the presence of structures 604, the availability of compression (e.g., as may be applied via a structure 610, or directly to at least a portion of a support structure 606 and cover portion 612), and other factors, may allow the use of materials that may be less rigid than quartz, for example, yet may still provide the requisite optical and mechanical properties for use in the systems and methods disclosed herein. In addition, the presence of structures 604, the availability of compression, and other factors, may allow the use of manufacturing techniques and tolerances that might otherwise not be possible (e.g., due to the possibility of deformation or other factors) in the absence of such structure, compression, and other factors. In addition, the presence of structures 604, the availability of compression, and other factors, may allow the use of materials, including less costly materials, than might otherwise be used in the absence of such structure, compression, and other factors. Thus, proper design, construction, and materials for support structures 604 and base portions 606 are important for cuvettes 600 and their use. In some embodiments, these controlled thickness areas 613 (see, e.g., FIGS. 8A, 8B, and 8D) are selected to be positioned over the analysis areas 608. In some embodiments, these controlled thickness areas 613 can impart certain optical properties over or near the analysis areas. Some embodiments may configure the structures 604 to also impart optical properties on light passing through the cuvette 600. Optionally, in some embodiments, the structures 604 may be configured to not have an impact on the optical qualities of the cuvette 600. In such an embodiment, the structures 604 may be configured to have one or more optically absorbent surfaces. For example and without limitation, certain surfaces may be black. Optionally, some embodiments may have the structures 604 formed from a material to absorb light. Optionally, the structures 604 can be positioned to provide mechanical support but do not interact with the optical properties of cuvette 600 near the analysis areas. For example, certain surfaces, including a surface 614 of a controlled thickness area 613, and a surface 618 of a structure 604, may be coated with a black, or other color, coating. Such a coating may include one layer, and may include multiple, layers. For example, suitable coatings of a surface 614 or 618 may include 2, 3, 4, 5, 6, 7, or more layers. In embodiments, e.g., a surface of a structure 604 (e.g., a surface 618) or a surface 614 may be covered by 3 or 5 layers of coating. Such a coating may include a dye, an ink, a paint, a surface treatment, a colored tape, or other coating or surface treatment. In embodiments, a black or other color marker (e.g., a Paper Mate®, or Sharpie®, or Magic Marker®, or other marker) may be used to coat a surface 614 of a controlled thickness area 613 or a surface 618 of a structure 604. For example, an extra-large black marker may be used to apply multiple coats of black ink to a surface 614 or to the outer surface 618 of a structure 604 to provide an optically absorbent surface and so to improve the optical qualities of a cuvette 600. In embodiments, a surface 614 or 618 may be coated or treated so as to affect or reduce reflectance (whether PIR or TIR) at the surface. A reduction in reflectance at a surface may affect (e.g., reduce) background illumination from a surface. In embodiments, certain surfaces, including a surface 614 of a controlled thickness area 613, and a surface 618 of a structure 604, may be coated or covered with a material which enhances reflectance at the surface. Reflectance at a surface may be increased, for example, by coating a surface, or attaching a material to a surface; suitable materials for increasing reflectance include aluminum, silver, gold, and dielectric materials (e.g., magnesium fluoride, calcium fluoride, or other salt or metal oxide; or other reflective or dielectric material). Such a coating or covering may include one layer, and may include multiple, layers. For example, suitable coatings and coverings of a surface 614 or 618 may include 2, 3, 4, 5, 6, 7, or more layers. An increase in reflectance at a surface may affect (e.g., increase) trans-illumination from a surface. An increase in reflectance at a surface may aid or enhance imaging of a sample within an analysis area 608, or may aid or enhance optical analysis of a sample within an analysis area 608. It should be understood that the cuvette 600 is typically formed from an optically transparent or optically transmissive material. Optionally, only select portions of the cuvette 600 (such as, e.g., the analysis areas or areas associated with the analysis areas) are optically transparent or optically transmissive. Optionally, select layers or areas in the cuvette 600 can also be configured to be non-light transmissive. A portion or area of a cuvette may be covered or coated so as to be light absorbing; for example, a surface (or portion thereof) may be coated with a dark, or a light-absorbing, dye or ink. In a further example, a surface (or portion thereof) may be covered with a dark, or a light-absorbing, coating, such as a dark or light-absorbing material, e.g., tape, or cloth, or paper, or rubber, or plastic. FIGS. 6A, 6B, and 8A-8D illustrate embodiments in which the cuvette 600 rests on a base support 620 wherein some or all of the base support 620 is formed from an optically transparent or transmissive material. In some embodiments, the optically transparent or transmissive portions are configured to be aligned with the analysis areas of the cuvette 600 to allow for optical interrogation of the sample in the analysis area. In one non-limiting example, the base support 620 can be movable in the X, Y, or Z axis to move the cuvette 600 to a desired position for imaging. In some embodiments, the base support 620 comprises a platform or stage that moves only in two of the axes. Optionally, some support structures may move only in a single axis. The cuvette 600 can be configured to be operably coupled to the support structure 600 through friction, mechanical coupling, or by retaining members mounted to one or both of the components. In embodiments, compression, or other force may be applied to a cuvette 600 or a base support 620, or both, in order to ensure adequate contact and proper fit between a cuvette 600 and a base support 620. In embodiments, such compression may aid in ensuring that an optically transmissive surface of a cuvette 600, or of a base support 620, or such surfaces of both, is optically flat and substantially free of distortion. For example in embodiments, a cuvette 600 may be pressed against a base support 620 in order to reduce or obviate any possible optical distortion which might be caused by imperfections or abnormalities in an optical surface of a cuvette 600. In embodiments, such force (e.g., compression) may aid in providing desired optical properties, effective to allow passage of light with distortion at the interface than might otherwise be produced. In embodiments, such force (e.g., compression) may be applied, at least in part, via a structure 610 or via multiple structures 610. FIGS. 6A, 6B, 8A, 8B, 8C, and 8D further show embodiments in which illumination for dark field or brightfield observation may be provided by an illumination source 650 (such as but not limited to a ringlight as shown) placed below the base support 620 to locate illumination equipment below the level of the cuvette 600. This configuration leaves the upper areas of the cuvette 600 available for pipettes, sample handling equipment, or other equipment to have un-hindered access to openings or other features on a top surface of the cuvette 600. Optionally, some embodiments may locate an illumination source 660 (shown in phantom) above the cuvette 600 to be used in place of, in single, or in multiple combination with underside illumination (e.g., an underside illumination source 650 as shown). An objective 670 can be positioned as shown, or in other configurations, to observe the sample being illuminated. It should be understood that relative motion between the cuvette 600 and the optical portions 650 and 670 can be used to allow the system to visualize different analysis areas in the cuvette 600. Optionally, only one of such components is placed in motion in order to interrogate different areas of the cuvette 600. Referring now to FIG. 7A, one embodiment of a suitable imaging system will now be described in more detail. FIG. 7A shows a schematic cross-sectional view of various components positioned below the base support 620. The cross-section is along the area indicated by bent arrows 7 in FIG. 6A. FIG. 7A shows an embodiment in which the cuvette 600 comprises a base portion 606 and analysis areas 608 defined by a cover portion 612. Optionally, the analysis areas 608 may be defined within a single piece. Optionally, the analysis areas 608 may be defined by using more than two pieces, such as but not limited a discrete cover piece for each of the analysis areas 608. In one embodiment, the layer 606 comprises optically clear plastic such as but not limited to cyclo-olefin polymer thermoplastic which deliver superior optical components and applications. In some embodiments, one or more layers or components may be formed from glass, acrylic, clear polymer, or other transparent material. The cuvette 600 illustrated in FIG. 7A includes five separate analysis areas 608; these areas are shown in cross-section in the figure; analysis areas 608 having such a cross-section may be rectangular, or square, or other shape. For example, analysis areas 608 may comprise elongated channels providing shallow chambers with relatively large amounts of surface area though which samples may be observed. In embodiments, analysis areas 608 may have curved, or polygonal, or irregular shapes, and may be separate, or may be connected by connecting channels. It will be understood that a cuvette 600 may include a single analysis area 608; or may include two analysis areas 608; or may include three analysis areas 608; or may include four analysis areas 608; or may include five (as shown in FIG. 7A) or more analysis areas 608. In embodiments, a channel in a cuvette 600, such as an analysis area 608, may have an irregular shape so that a cross-sectional dimension differs along the length of the channel; for example, a channel in a cuvette 600 may have a narrow end portion and a wider middle portion. In embodiments, a channel in a cuvette 600, such as an analysis area 608, may have U-shape or other shape in which a first elongated portion of a single analysis area is disposed near to, or alongside, a second elongated portion of the same analysis area 608. For example, in such an embodiment, the rectangle indicated by the lead line labeled “608” in FIG. 7A may be a portion of same analysis area illustrated by the rectangle immediately to the left of the rectangle indicated by the lead line labeled “608”. In embodiments, a sample to be interrogated can be held in whole or in part in an analysis area 608. In embodiments, more than one portion of a sample, or more than one sample, or portions of more than one sample, may be held in an analysis area 608. In embodiments, portions of a sample, or portions of different samples, within a channel of a cuvette too, e.g., within an analysis area 608, may be separated by an air bubble, or by an oil droplet, or by another material or materials. In embodiments, analysis of a sample held in an analysis area 608 may comprise optical observation, measurement, or imaging of at least a portion of an analysis area 608. In embodiments, optical observation, measurement, or imaging of at least a portion of an analysis area 608 may comprise optical observation, measurement, or imaging of an entire analysis area 608. In embodiments, analysis of a sample held in an analysis area 608 may comprise optical observation, measurement, or imaging of only a portion of an analysis area 608. In embodiments, analysis of a sample held in an analysis area 608 may comprise optical observation, measurement, or imaging of a region of interest (ROI) within at least a portion of an analysis area 608. In embodiments, analysis of a sample held in an analysis area 608 may comprise optical observation, measurement, or imaging of multiple ROIs within an analysis area 608. For example, where a channel in a cuvette 600 has a narrow end portion and a wider middle portion, multiple ROIs may be observed, measured, or imaged in the wider middle portion, while, for example, only a single ROI (or no ROI) may be observed, measured, or imaged in the narrower end portion. By way of non-limiting example, the optics below the base support 620 may include a ringlight 650 that comprises a toroidal reflector 652 and a light source 654. Other illumination components suitable for dark field illumination may be used; thus the optics may include other sources of illumination, alone or in combination with such a ringlight. Some embodiments may use a mirror. Some embodiments may use a coated reflective surface. Some embodiments may use a different reflector than the ones shown in the figure (e.g., may not use toroidal reflection in illuminating a sample). Some embodiments may use a parabolic reflector. Some embodiments may use a parabolic reflector in the shape of an elliptic paraboloid. Some embodiments may use a plurality of individual reflector pieces. Some embodiments may not use any reflector. Some embodiments obtain oblique illumination through the use of angled light sources positioned to direct light with or without further assistance from one or more external reflectors. Multiple wavelengths of light may be emitted by a light source or light sources, either simultaneously or sequentially. The embodiment illustrated in FIG. 7A shows excitation energy sources 680, 682, and 684 such as but not limited laser diodes at specific wavelengths that are mounted to direct light into the sample in analysis area 608. In one non-limiting example to facilitate compact packaging, the energy sources 680, 682, and 684 may direct light to a dichroic element 690 (e.g., a dichroic mirror or beamsplitter) that then directs the excitation wavelengths into the analysis area 608. The excitation wavelength(s) cause fluorescence wavelengths to be emitted by fluorophores in marker(s), dye(s), or other materials in the sample. The emitted fluorescence wavelengths are funneled through the objective 670, through the dichroic element 690, through an optional filter wheel 692, and into a detector 700 such as but not limited to a camera system. By way of non-limiting example, the dichroic element 690 is configured to reflect excitation wavelengths but pass fluorescence wavelengths and any wavelengths desired for optical observation. Multiple wavelengths of light may be acquired either simultaneously or sequentially. In one embodiment, all fluorescence excitation wavelengths illuminate the sample in analysis area 608 simultaneously. For example, a detector 700 may be coupled to a programmable processor 710 that can take the captured signal or image and deconstruct which wavelengths are associated with which fluorophores that are fluorescing. In some embodiments, excitation sources may illuminate the sample sequentially or in subsets of the entire number of excitation sources. Of course, it should be understood that the system is not limited to fluorescence-based excitation of fluorophores in a sample, and that other detection techniques and excitation techniques may be used in place of, or in single or multiple combination with fluorescence. For example, some embodiments may also collect dark field illumination scatter information simultaneously or sequentially in combination with fluorescence detection. In a further embodiment, illumination of a sample is accomplished over a period of time by scanning a spot, or spots, of light, over the sample (e.g., within an analysis area 608 or within an ROI within, or comprising, an analysis area 608). Such a spot, or spots, may comprise points of light, or may comprise lines of light, or may comprise other shapes, or may comprise combinations thereof. Such a scan may be, e.g., a raster scan (e.g., where illuminated regions form a series of adjacent (dotted or dashed) lines), a rectangular scan (e.g., where illuminated regions form nested square or rectangular shapes delimited by (dotted or dashed) lines), a spiral scan (e.g., where illuminated regions form a (dotted or dashed) spiral line pattern), or other shape or pattern scan. Similarly, examination of a sample may be accomplished at one time, or may be accomplished over a period of time by measuring light from a spot, or spots, of light, over the sample (e.g., within an analysis area 608 or within an ROI within, or comprising, an analysis area 608). Such measurements may be recorded. Such a spot, or spots, may comprise points of light, or may comprise lines of light, or may comprise other shapes, or may comprise combinations thereof. Such a scan may be, e.g., a raster scan (e.g., where illuminated regions form a series of adjacent (dotted or dashed) lines), a rectangular scan (e.g., where illuminated regions form nested square or rectangular shapes delimited by (dotted or dashed) lines), a spiral scan (e.g., where illuminated regions form a (dotted or dashed) spiral line pattern), or other shape or pattern scan. Such scanning (whether for illumination, measurement, or both) may be accomplished, for example, by use of piezoelectric, electromechanical, hydraulic, or other elements operably connected to, e.g., optical element 690, a mirror or mirrors (e.g., a mirror associated with excitation energy sources 680, 682, or 684), or to other reflectors, gratings, prisms, or other optical elements. Light scattered by an object in a sample within a sample holder (e.g., a cell, or a bead, or a crystal) will be scattered at a plurality of scatter angles, where a scatter angle may be measured with respect to a ray of incident light passing from a light source to the object. Such a plurality of scatter angles comprises a range of scatter angles. Such a sample holder may have features as disclosed herein, and may be configured to provide pathways for internal light reflections. An objective lens configured to image the object will gather and focus the scattered light, where the light may be passed to a detector. Such light focused by an objective lens and focused on a detector may form a spot of light on the detector. In embodiments, the light passing from the objective lens to the detector may be focused by a further lens; such focusing may reduce the size of the spot of light formed on the detector. The light focused on a detector, whether or not it passes through a further lens, will comprise light scattered at a plurality of scatter angles from the object within the sample holder. Applicants disclose herein methods, systems, and devices (e.g., sample holders) which allow detection of a smaller range of scatter angles than otherwise possible, thereby providing greater resolution and better imaging of samples and of objects within a sample. Applicants disclose herein design features for cuvettes which may be used to control the angles and intensities of light rays incident on the sample, e.g., via PIR and TIR, effective to control the angles at which scattered light is measured. Due to constraints imposed by non-imaging optics of many systems (e.g. etendue, or the extent of the spread of light passing through the system) the scatter angles of light arriving at a detector can be wider than desired. For example, in some ringlight-cuvette combinations using LEDs as light sources, light rays striking the sample may be spread out to at least 20 degrees around the principal angle. In other words, if the principal ray strikes the sample at 60 degrees, the other rays of the bundle of light rays may strike the sample at scatter angles of about 50 degrees to about 70 degrees. It will be understood that the spread of the cone of scatter angles of light collected by an objective depends upon the numerical aperture of the lens. In such a case, the light collected by the objective lens (e.g., having a numerical aperture of 40 degrees) would be in a cone of about 30-70 degrees. Consequently, light scattered over a wide range of scatter angles will arrive at the detector; for example, such a system will measure all the light scattered by the sample in a large cone centered around 60 degrees+/−40 degrees. However, as disclosed herein, some applications require detection of light within a narrower range of scatter angles, e.g., within a very narrow range of angles (say 60+/−5 degrees). Applicants disclose herein that, in order to provide light measurements from within this narrower range, an aperture can be placed in the Fourier (or back focal plane) of the objective lens (or any plane conjugate with this plane). In the Fourier plane, the angle information is spatially coded. Therefore, depending upon the shape and size of this aperture, light coming from the sample at specific angles can be prevented from reaching the detector (e.g., blocked or filtered out). An annular aperture will block or filter out the inner angles (say 60+/−30 degrees). The resultant measurement can therefore be tailored to the desired angles. In embodiments, an aperture may be provided through which light from an objective lens passes prior to contacting a detector. In embodiments, an aperture may be provided through which light from a further lens (after passing through an objective lens) passes prior to contacting a detector. Where such an aperture is configured to limit the light which passes through to the detector, the light which passes through will be will be reduced to light from fewer scatter angles, and to light from a smaller range of scatter angles, than the light which passes through in the absence of such an aperture. In embodiments, such an aperture may comprise a single hole, such as a circular hole. In embodiments, such an aperture may comprise a single annulus, such as a circular ring through which light may pass, and having a central area (e.g., a circular area) through which light does not pass. In embodiments, such an aperture may comprise two, or three, or more, concentric annuli through which light may pass, and may include a central area (e.g., a circular area) through which light does not pass. In embodiments, such an aperture may comprise a shape other than a circular or annular shape. Such an aperture disposed between an objective and a detector, e.g. disposed between a further lens and a detector (where light passes through an objective lens prior to passing through the further lens), provides the advantage of sharper discrimination of the light scattered from the sample, improving the resolution of light-scatter images (e.g., dark field images) obtained from the sample. In embodiments where light intensity may be a factor, the intensity of light applied (e.g., from a light source, or from multiple light sources) may be increased in configurations having an aperture as disclosed herein, as compared to configurations lacking an aperture as disclosed herein. A system may include a sample holder having features as discussed and described herein, and light sources, dichroic mirrors, and other elements as shown in FIG. 7A. As illustrated in FIG. 7B, systems having similar features (e.g., similar to those shown in FIG. 7A and other figures herein) may include a sample holder 600, a light source 650 (e.g., light sources 654, or an excitation source 680, or both), an objective lens 670, an aperture 694, a further lens 696, and a Fourier lens 698. An aperture 694 may have a single passage for allowing light to pass thorough to a detector 700. A detector 700 may be operably linked to a processor (e.g., a programmable processor) 710. In embodiments, an aperture 694 may comprise two passages for allowing light to pass thorough to a detector 700. In embodiments, an aperture 694 may comprise three passages for allowing light to pass thorough to a detector 700. In embodiments, an aperture 694 may comprise four, or more, passages for allowing light to pass thorough to a detector 700. In embodiments, a passage in an aperture 694 may comprise a circular hole allowing light to pass thorough to a detector 700. In embodiments, a passage in an aperture 694 may comprise two, or three, or four or more circular holes allowing light to pass thorough to a detector 700. In embodiments, a passage in an aperture 694 may comprise an annulus configured to allow light to pass thorough to a detector 700, and may include a central portion which does not allow light to pass through to a detector 700. In embodiments, a passage in an aperture 694 may comprise two or more annuli (e.g., in embodiments, concentric annuli) each of which is configured to allow light to pass thorough to a detector 700; and such an aperture 694 may include a central portion which does not allow light to pass through to a detector 700. Such an annulus, and such annuli, may have a circular, or elliptical, or other annular shape. Accordingly, Applicants disclose systems for imaging a sample, comprising: a sample holder, a light source for illuminating an object held within said sample holder, an objective lens configured to collect and focus light scattered from an object held within said sample holder, wherein said scattered light comprises light scattered at a plurality of scatter angles, an optical aperture for passing light from said objective lens, and a further lens configured to focus light from said objective lens onto said optical aperture, wherein said optical aperture is configured to allow only a portion of light focused by said objective lens to pass through the aperture, whereby said portion of light allowed to pass through said aperture consists of light scattered at only a portion of said plurality of scatter angles. As used herein, the terms “epi” and “epi-illumination” refer to illumination of a sample by light traveling in a direction that is generally away from an objective or other optical element used to observe or image the sample. Thus, in the absence of fluorescence, an image of a sample illuminated by epi-illumination is formed with light reflected or scattered from the sample (light travels from the light source to the sample, and is reflected or scattered by the sample back to the optical elements for observation, imaging, or measurement). As used herein, the terms “trans” and “trans-illumination” refer to illumination of a sample by light traveling in a direction that is generally towards an objective or other optical element used to observe or image the object (light travels from the light source to and through the sample, and continues on to the optical elements for observation, imaging, or measurement). Thus, in the absence of fluorescence, an image of a sample illuminated by trans-illumination is formed with light passing through, or scattered by, the sample. Where a light source is disposed on the same side of a sample as the objective or other optical elements used to observe or image a sample, light from the light source travels directly to the sample, and the sample is thus typically observed or imaged by epi-illumination. However, even where a sole light source is placed on the same side of a sample as the objective or optical elements, a sample holder as disclosed herein is able to provide trans-illumination of a sample in addition to epi-illumination. Thus, both directions of illumination are enabled without requiring placement of light sources on both sides of a sample. Such a configuration is compact, sparing of resources, and, since the light source and other optical elements are disposed on only one side of the sample holder, the configuration allows unimpeded access to the side of the sample holder without interference by the optical elements. Thus, such a configuration provides the advantage of enabling loading, mixing, and removal of a sample and reagents in the sample holder without interference with optical imaging or measurements, or the apparatus and elements used for optical imaging or measurements. As illustrated by the images shown in FIGS. 4A and 4B, adding trans-illumination to dark field images greatly enhances the image and greatly enhances the information available from the image. The methods and systems disclosed herein provide such greatly enhanced images by combining both epi-illumination and trans-illumination, using illumination from a single direction, and, in embodiments, from only a single light source. As disclosed herein, a sample holder such as a cuvette 600 (e.g., as illustrated in FIGS. 8A-8D) is configured to allow internal reflection of light from a light source (whether PIR or TIR), so that a sample held in an analysis area 608 of a cuvette 600 is illuminated by direct light (epi-illumination; e.g., light travelling along path 830) and is also illuminated by indirect, reflected light (trans-illumination; e.g., light travelling along a path 820 or 825). As disclosed herein, light from a light source disposed on the same side of a cuvette 600 as optical elements 670, 690, 700, etc., may provide both epi- and trans-illumination of a sample. Referring now to FIGS. 8A-8D, a still further embodiment will now be described. FIGS. 8A-8D show a schematic of a cross-section of a portion of a cuvette 600 and the dark field scatter illumination source such as but not limited to the ringlight 650 shown in FIGS. 6A and 6B. Base support 620 is also shown in FIGS. 8A-8D. FIGS. 8A-8D include brackets and arrows to indicate structures or portions of structures; for example, the bracket labeled 600 indicates the entire cuvette 600 shown in the figure; the bracket labeled 612 indicates the cover portion 612 of the cuvette 600. The arrows 621 to 626 in FIG. 8A indicate dimensions for the indicated portions of the cover portion 612. It will be understood that these dimensions may vary in different embodiments of a cuvette 600, and that such variations may depend upon the size, application, materials, optical wavelengths, samples, and other elements and factors related to the construction and use of a cuvette 600. For example, in embodiments, the distance 621 between support structures 604 may be between about 0.1 millimeter (mm) to about 1 centimeter (cm), and in embodiments may be between about 1 mm to about 100 mm, or between about 1.5 mm to about 50 mm, or between about 2 mm to about 20 mm. In further embodiments, the distance 621 between support structures 604 may be between about 0.5 mm to about 10 mm, or between about 1 mm to about 5 mm. In embodiments, the height 622 of a support structure 604 may be between about 0.1 mm to about 100 mm, or between about 0.5 mm to about 50 mm, or between about 1 mm to about 25 mm. In further embodiments, the height 622 of a support structure 604 may be between about 0.1 mm to about 10 mm, or between about 1 mm to about 5 mm. Similarly, in embodiments, the height 623 of a controlled thickness area 613 may be between about 0.1 mm to about 100 mm, or between about 0.5 mm to about 50 mm, or between about 1 mm to about 25 mm. In further embodiments, the height 623 of a controlled thickness area 613 may be between about 0.1 mm to about 10 mm, or between about 1 mm to about 5 mm. In embodiments, the thickness 624 of a layer 800 may be between about 0.01 mm to about 10 mm, or between about 0.05 mm to about 1 mm, or between about 0.1 mm to about 0.5 mm. In embodiments, the width 625 of an analysis area 608 may be between about 0.05 mm to about 100 mm, or between about 0.5 mm to about 50 mm, or between about 1 mm to about 25 mm. In further embodiments, the width 625 of an analysis area 608 may be between about 0.1 mm to about 10 mm, or between about 1 mm to about 5 mm. In embodiments, the width 626 of a support structure 604 may be between about 0.1 mm to about 100 mm, or between about 0.5 mm to about 50 mm, or between about 1 mm to about 25 mm. In further embodiments, the width 626 of a support structure 604 may be between about 0.05 mm to about 10 mm, or between about 0.5 mm to about 5 mm. It will be understood that optical components and arrangements for illumination, for excitation, for observation of emission, and the like, as illustrated in any one figure herein, may suggest components and arrangements that may be applied in embodiments of other figures, even if such particular components or arrangements are not explicitly shown in each figure. For example, although a ringlight 650 or other source of illumination 650 is not included in FIG. 8D, in any of the embodiments shown, and in other embodiments, a ringlight 650 or other source of illumination 650 (see, e.g., FIGS. 8A, 8B, and 8C) may be used to illuminate the analysis area 608 (analysis area 608 is shown in FIGS. 8A and 8B). As examples of optical components which are suitable for use with a cuvette 600, ringlight components 652 and 654 are shown in FIGS. 8A, 8B, and 8D; in embodiments, other, or other numbers of, illumination components may be used. For example, light source 654 may be white light or light sources such as but not limited to light emitting diodes (LEDs) or laser diodes with specific wavelength output or output ranges. Optionally, the ring of light source 654 could be fiber optic cable configured to provide a ring of light (e.g., with many splices). Optionally, the light source 654 may be an LED which has a specific narrow divergence angle controlled by the reflector. It may be desirable to control the divergence angle from a ringlight through the selection of the light source or through the design of the reflector. By way of non-limiting example, a light source 654 may use laser illumination to provide a narrow light pattern, resulting in lower trans-illumination background in the present epi-style lighting configuration (where illumination components are all on one side of the sample) because the light source: provides a narrow spot of light (directed within the sample analysis area 608); provides light of narrow spectral width (e.g., light of wavelengths within a narrow range centered around a particular main wavelength); and is a coherent source. Optionally, use of a LED as the illumination source 654 may also provide a small spot size (e.g., a small spot size within an analysis area 608) and so provide some of the beneficial properties achieved by a laser light source. For these, and other reasons, a laser light source (or an LED providing a small spot size) is effective to lower background signal levels as compared with other illumination configurations. Laser illumination may reduce scattered light as compared to that which typically occurs with more diffuse light sources, and so may reduce the background in one channel (e.g., within a first analysis area 608) by reducing light scattered into that channel from an adjacent channel (e.g., from an adjacent, second analysis area 608). Thus, laser illumination can result in less trans-illumination background than would be expected from illumination by more diffuse light sources. Of course, it is desirable that the decrease in trans-illumination is less than the decrease in background, where the more significant drop in background results in a more distinguishable signal. Optionally, use of a LED as the illumination source 654 provides a diffuse light pattern, with increased background and increased trans-illumination. Of course, it is desirable that the increase in trans-illumination is greater than the increase in background. Some cuvette embodiments may include cuvettes formed from a plurality of individual layers adhered together, having the cuvette molded from one or more materials, or having reflective layers added to the cuvette at different surfaces to enhance single or multiple internal reflections (e.g., to enhance TIR or PIR). In embodiments, systems, cuvettes, and optical elements disclosed herein may be operating in combination with fluorescence, it may be desirable that dark field illumination used with such systems and cuvettes not be white light illumination. However, some embodiments may use just white light, e.g., if fluorescence detection is not used in combination with dark field or brightfield microscopy. FIGS. 8A and 8B shows that in some embodiments, the device may have layers in the cuvette 600 that are optically non-transmissive such as layer 800. This may be useful in embodiments where the light source 654 is diffuse and light is not directed to specific locations. The layer 800 can block light that is not entering the cuvette 600 at desired angles or locations. The layer 800 can be configured to be positioned to prevent illumination except through the area below the analysis areas 608. Some may only have specific areas that are blacked out nearest the analysis areas 608. Some embodiments may have blacked out or non-transmissive material in more than one layer. Some may have blacked out or non-transmissive material in different orientations, such as but not limited to one being horizontal and one being vertical or non-horizontal. It will be understood that, in embodiments, a layer 800 may be optically transmissive. For example, FIG. 8D presents an embodiment in which a layer 800 is optically transmissive. In some embodiments, a layer 800 may comprise an optically transmissive material having an index of refraction that is different than the index of refraction of a controlled thickness area 613, or of a base support 620, or of both. In some embodiments, a layer 800 may comprise an optically transmissive material having an index of refraction that is the same as the index of refraction of a controlled thickness area 613, or of a base support 620, or of both. In FIGS. 8A, 8B, and 8C, a light source is shown located below a cuvette 600 (near to optics 652 and 654) and provides light directed from below base portion 606. Such a light source may be understood to be in place in the example illustrated in FIG. 8D as well. As shown in these figures, a light source 650 may include a ringlight 654 and a toroidal reflector 652. Other elements, including without limitation lenses, filters, gratings, mirrors and other reflective surfaces, optical fibers, prisms, and other elements may be included. In embodiments, a light source may comprise a laser, or a LED, or other light source; and may comprise a fiber optic which carries light from such a source to another location, or which directs light towards an optical element. One design criterion for optical systems is the divergence, or divergence angle, of light from the light source; a light beam of width D with low divergence provides a smaller spot at a given distance from the source than does a light beam of width D with high divergence. In general, a light source 650 which provides light with low divergence is preferred. Such optical elements and configurations may be designed so as to provide light which is substantially collimated, e.g., most or all light is directed along substantially parallel paths towards the sample (e.g., towards an analysis area 608). However, in embodiments where diffuse or scattered light is preferred, a light source 650 with high divergence may be used. As shown in FIG. 8C, an embodiment of an optical system suitable as part of device or system as disclosed herein may include optics (e.g., a light-source 650, e.g., as shown in FIG. 8C as a ringlight 654, and an objective 670), a cuvette 600, and a base support 620 configured to hold and position a cuvette for imaging. In embodiments as shown in FIG. 8C, a base support 620 may include optical features 802 configured to refract (or diffract, or otherwise alter the path of) light from a light-source 650. As illustrated in FIG. 8C, optical features 802 may comprise an array of lenslets. It will be understood that optical features 802 may comprise any suitable optical feature. In embodiments, optical features 802 may comprise lenslets, or diffraction gratings, or Fresnel lenses, or convexities, or concavities, or other shapes and features which may refract, diffract, or otherwise alter light, or combinations thereof. In embodiments, such optical features 802 may comprise different material than base support 620, and may have a different index of refraction than base support 620. For example, light affected by optical features 802 may be directed towards an analysis area 608, either directly, or indirectly via reflection (e.g., internal reflection) suitable for use in methods disclosed herein, e.g., so as to provide both epi-illumination and trans-illumination of a sample in an analysis area 608. As illustrated in the embodiment shown in FIG. 8C, such embodiments may also include a light path which bypasses optical features 802. Such a light path may be better suited for imaging of a sample within an analysis area 608 than paths which would require imaging through an optical feature 802. In embodiments, both types of light paths (i.e., bypassing optical features 802 and passing through optical features 802) may be provided at the same time, thus providing suitable optics for image analysis of a sample illuminated by both epi-illumination and trans-illumination from a light source situated on the same side of a cuvette 600 as a light source 650. The cuvette 600 includes features which affect the path of light illuminating the cuvette and the sample within the cuvette. Such trans-illumination may be effected by light reflected within a cuvette 600 (e.g., by internal reflection, including or primarily by partial internal reflection (PIR) or total internal reflection (TIR) from, for example, a surface 612, a surface 604, or other surfaces or combinations of surfaces. Other examples of pathways of light undergoing TIR are shown, for example, in FIGS. 8A, 8B, and 8D. As illustrated in FIG. 8D, in embodiments, a cuvette 600 of an optical system of a device or system as disclosed herein, and suitable for use in methods disclosed herein, may include features which affect the path of light illuminating internal portions of the cuvette 600, such as light illuminating an analysis area 608, and the sample within an analysis area 608 of a cuvette 600. As shown in FIG. 8D, a layer 800 may include features which refract, diffract, or otherwise affect or alter the path of light entering an analysis area 608. Such alteration of light paths may affect, and may improve, the illumination of sample within an analysis area 608. In the example shown in FIG. 8D, light enters layer 800 from a transverse direction; the light paths are altered by the shape (and material properties) of the layer 800, and are directed as desired into analysis area 608. For example, an external surface of a layer 800 may be flat (e.g., external surface 674) or may be curved (e.g., external surface 676). For example, an internal surface of a layer 800 may be flat (not shown in FIG. 8D; see, however, such surfaces in FIGS. 8A and 8B (although layers 800 in FIGS. 8A and 8B are not optically transmissive, these surfaces are shown as being flat) or may be curved (e.g., internal surface 678 shown in FIG. 8D). In embodiments, such alteration of light paths is effective to provide both epi-illumination and trans-illumination of samples in an analysis area 608. FIGS. 8A, 8B, 8C, and 8D illustrate light paths within a sample holder providing examples of TIR and PIR within a cover portion 612 at an upper surface 614 or at surface 618 in a support structure 604. A sample holder, such as a cuvette 600, may have an optically transmissive surface through which light may pass; in embodiments, such an optically transmissive surface may allow light to pass without significant distortion or diminution in light intensity. A sample holder, such as a cuvette 600, may be made of optically transmissive material, effective that light may pass within the sample holder. In embodiments where a sample holder is at least partially made of optically transmissive material, light may pass through an optically transmissive surface of a sample holder, and may travel within the sample holder. In embodiments, light traveling within a sample holder may be reflected at one or more surfaces, and travel along a reflection path within a sample holder. Where light from a light source disposed outside a sample holder enters a sample holder through an optically transmissive surface of a sample holder, such light may travel within the sample holder away from the light source, and may be reflected at a surface of the sample holder, so that the reflected light may travel in a direction towards the light source after being reflected. Such reflections may be by PIR or TIR. That is, light passing within a cuvette 600 may reflect off a surface (e.g., a surface 614 or surface 618 as shown in FIGS. 8A and 8B). Such internal reflections may be effective to illuminate a sample within an analysis area 608 with indirect light; in combination with direct illumination (where the light is not reflected prior to impinging on a sample), the sample may in this way receive epi-illumination (illumination from the same side as the optical detection elements) and trans-illumination (illumination from the side opposite the optical detection elements). Where a surface 614, or a surface 618, or both, are configured to absorb light (e.g., are painted or coated black), an epi-illumination source alone may be used to provide dark field images. Where a surface 614, or a surface 618, or both, are configured to scatter light (e.g., are not polished or have rough surfaces), an epi-illumination source alone may be used to provide such scattered light suitable for obtaining bright-field images. It will be understood that light wavelengths, material, surfaces, and configurations that promote or enhance PIR may not be suitable or effective to promote or enhance TIR. It will be understood that light wavelengths, material, surfaces, and configurations that promote or enhance TIR may not be suitable or effective to promote or enhance PIR. Thus, there are designs and constructions where one or the other of PIR and TIR may be promoted, in the absence of the other. In embodiments, there are designs and constructions where both of PIR and TIR may be promoted. In embodiments, there are designs and constructions in which neither PIR nor TIR are promoted. As illustrated in FIG. 8A, support structures 604 may have rectangular or square cross-sections. It will be understood that a support structure 604 may have a cross-sectional shape other than square or rectangular; for example, as shown in FIG. 8B, a support structure 604 may have a triangular cross-sectional shape; other cross-sectional shapes (e.g., rounded or semi-circular, or jagged, or irregular) may also be suitable for use with systems and cuvettes disclosed herein. PIR and TIR are tunable features that can selected based on the material used for the cuvette 600, any coatings, cladding, or coverings applied, and the geometry or thickness of the controlled thickness area 613 of the cuvette 600. In embodiments, PIR may be preferred, and light, materials, and configurations may be selected to enhance PIR. In embodiments, TIR may be preferred. In embodiments, the wavelength or wavelengths of light from a light source 650 may be selected to enhance TIR. In embodiments, the material, thickness, surface configuration, and other features of a cuvette 600 may be selected to enhance TIR. For example, the height (as measured from the base of cover portion 612 in contact with layer 800) of the controlled thickness area 613 will affect the angle and intensity of light reflected by TIR that arrives at analysis area 608. Configuration of a cuvette 600 so as to enable TIR of light within the cuvette which allows for oblique angle illumination of a sample (illumination coming from above the sample) is desirable, particularly for dark field microscopy. In some embodiments, it is desirable to maximize TIR from above the sample. Optionally, in some embodiments a cuvette 600 may be configured to provide TIR only from surfaces over the analysis areas 608. Optionally, some embodiments may be configured to provide TIR only from surfaces over the controlled thickness area 613 (e.g., in the embodiments shown in FIGS. 8A and 8B, generally above analysis area 608). Optionally, in some embodiments, a cuvette 600 may be configured so as to provide TIR of light from other surfaces in the cuvette 600; for example, TIR of light from other surfaces in the cuvette 600 may be provided so as to scatter light at oblique angles, effective that the light is directed back to the analysis area 608. The design and materials used to construct a cuvette 600 may be selected and configured so as to provide TIR of light. For example, in some embodiments, configurations which provide TIR, or which provide increased or enhanced amounts of TIR, include, without limitation: configurations in which the dimensions of controlled thickness area 613 are compatible with, or which promote, TIR; configurations in which the angle or angles of a surface 614 or a surface 618 (e.g., with respect to incident light) are compatible with, or which promote, TIR; configurations in which the shape, texture, or coating of a surface 614 or a surface 618 is compatible with, or which promotes, TIR; configurations in which the difference between the index of refraction of the material making up a controlled thickness area 613 and that of the material or space in contact with a surface 614 that forms a boundary of a controlled thickness area 613 is compatible with, or which promotes, TIR; configurations in which the difference between the index of refraction of the material making up a support structure 604 and that of the material or space in contact with a surface 618 that forms a boundary of a support structure 604 is compatible with, or which promotes, TIR; and other configurations and designs. In order to enhance the TIR, the first material, within which the light is to be (internally) reflected should have a higher index than that of the second material into which the light would pass if it were not internally reflected; since this second material is usually air, with an index of refraction near 1, this is not usually difficult to ensure. The angle of incidence must be greater than the critical angle in order to provide TIR. For example, referring to embodiments shown in FIG. 8, the materials making up controlled thickness area 613 and structures 604 (e.g., the regions outside surfaces 614 and 618) should have an index of refraction that is greater than that of air. In embodiments where TIR is desired within a layer 800, the material of the layer 800 should have a lower index of refraction than that of controlled thickness area 613 to ensure TIR occurs at the walls illustrated in FIGS. 8A, 8B, and 8D. In alternative embodiments, the material of a layer 800 may have an index of refraction that is higher than the index of refraction of the material of controlled thickness area 613, which will create TIR at that boundary (between a layer 800 and a controlled thickness area 613) effective that the angles and materials may be adjusted so as to optimize the trans-illumination component of light directed at a sample in an analysis area 608. In embodiments, a surface 614 or 618 may be coated or treated so as to affect or reduce reflectance (whether PIR or TIR) at the surface. In embodiments, a surface 614 or 618 may be coated or treated so as to reduce light leakage out of the surface. For example, even where a surface 614 or 618 is compatible with, or enhances the amount of, TIR, some light may also be transmitted or refracted out of the surface 614 or 618. A light-absorbing coating or material may be placed or applied to such a surface 614 or 618, or to a portion or portions thereof, in order to reduce the amount of stray light leaking from a cuvette 600. Such a light-absorbing coating may be, for example, a dye, an ink, a paint, a surface treatment, a black or colored tape, or other coating or surface treatment. In embodiments, a black or other light-absorbing solid material may be placed against or adjacent to a surface 614 or 618 to provide an optically absorbent surface. Optionally, in some embodiments, a cuvette 600 may be configured so as not to provide TIR of light (or to provide only insignificant amounts of TIR), or so as not to provide PIR (or only insignificant amounts of PIR), from a portion, or portions, of the cuvette. For example, in some embodiments, a cuvette 600 may be configured so as not to provide TIR or PIR of light (or to provide only insignificant amounts of TIR or PIR) from the support structures 604. Optionally, in some embodiments, a cuvette 600 may be configured so as not to provide TIR or PIR of light (or to provide only insignificant amounts of TIR or PIR) from a surface 618. Configurations which do not provide TIR or PIR, or which provide only insignificant amounts of TIR or PIR, include, without limitation: configurations in which the dimensions of controlled thickness area 613 are incompatible with, or do not promote, TIR or PIR; configurations in which the angle or angles of a surface 614 or a surface 618 (e.g., with respect to incident light) are incompatible with, or do not promote, TIR or PIR; configurations in which the shape, texture, or coating of a surface 614 or a surface 618 is incompatible with, or does not promote, TIR or PIR; configurations in which the difference between the index of refraction of the material making up a controlled thickness area 613 and that of the material or space in contact with a surface 614 that forms a boundary of a controlled thickness area 613 is incompatible with, or does not promote, TIR or PIR; configurations in which the difference between the index of refraction of the material making up a support structure 604 and that of the material or space in contact with a surface 618 that forms a boundary of a support structure 604 is incompatible with, or does not promote, TIR or PIR; and other configurations and designs. Optionally, in some embodiments a reflective material may be placed at, or attached to, a surface 614 or a surface 618. Such a reflective material may be, for example, a metal such as silver, or gold, or aluminum; may be a dielectric, such as magnesium or calcium fluoride, or other salt or metal oxide; or other reflective material. Typically, such a reflective coating may be very thin (e.g., may be less than about 0.1 micron, or may be up to about 100 microns thick). Optionally, a reflective material (e.g., a reflective coating) may be placed at, or attached to, only surface 614. Optionally, a reflective material may be placed at, or attached to, only surface 618. Optionally, surface 618 may be treated to be black so as to be light absorbing. In other embodiments, a surface 614 may be treated to be black so as to be light absorbing. Some embodiments may select the width of the controlled thickness area 613 to be wider than the analysis area 608. For some embodiments using laser illumination, the layer 800 may be removed or be light transmitting as the laser illumination is sufficiently focused so as not to require blackout between analysis areas 608. By way of example and not limitation, the use of PIR, TIR, or both, can also enable light traveling along path 820 from adjacent areas to be directed into the analysis area 608. As shown in FIGS. 8A, 8B, and 8D, light traveling along path 820 is reflected towards analysis area 608, and light traveling along path 825 undergoes multiple reflections as it travels within cuvette 600 and ultimately to analysis area 608. As shown, light traveling along path 820 in FIG. 8B undergoes multiple reflections as it travels within cuvette 600 and ultimately to analysis area 608. As illustrated in FIG. 8B, such reflections may be PIR or may be TIR. Under traditional terminology, the illumination shown in FIG. 8A by light traveling along paths 820 and 825, and the illumination shown in FIG. 8B by light traveling along path 820, is trans-illumination. The illumination shown in FIGS. 8A and 8B by light traveling along paths 830 shows light coming directly from the ringlight and not by way of TIR: this is epi-illumination. The combination of both types of light components from a light source located below the sample (or only one side of the sample) allows for improved performance as compared to sources that can only provide one of those lighting components. This is particularly useful for dark field microscopy. One non-limiting example of the use of the embodiments shown in FIGS. 8A-8D is dark field illumination to measure scatter properties of cells in the sample. Dark field microscopy is an established method that has been used mainly as a contrast-enhancing technique. In dark field microscopy, the image background is fully dark since only the light scattered or reflected by the sample is imaged. Quantitative dark field microscopy has not been used to measure scatter properties of cells in a manner comparable to the use of traditional “side scatter” parameter in flow cytometers. From the hardware perspective, illumination for dark field microscopy is desired to be oblique, i.e. no rays of light from the illumination light source should be able to enter the objective without contacting the sample first. By way of example and not limitation, illumination should be at a wavelength that does not excite any other fluorophores already present in the sample. Optionally, this illumination allows for the use of high numerical aperture (NA) lenses for imaging. By way of example and not limitation, for traditional lens sizes associated with optical microscopes, the NA may be at least about 0.3. Optionally, the NA is at least 0.4. Optionally, the NA is at least 0.5. Optionally, some embodiments may use oil immersion objective lenses to obtain a desired NA, particularly when lens size is limited below a certain level. Traditional methods for dark field illumination have used trans-illumination, where the sample is between the imaging lens and dark field light source. Thus, in this traditional arrangement, the detection and illumination components are not on the same side of the sample. The traditional epi-illumination methods (where the imaging lens/objective and the light source are on the same side of the sample) require the use of specially manufactured objectives and typically do not allow the use of high NA objectives, thus limiting the capabilities of the whole system. By contrast, at least some embodiments of dark field illumination systems described herein have the following attributes. In terms of hardware, the scheme of the embodiments of FIGS. 8A-8D is “epi” in that the ringlight used for dark field illumination is on the same side of the sample as the objective. This can be desirable from the system-perspective, although alternative embodiments with light sources on the other side may be used alone or in combination with the embodiments described herein. In one non-limiting example, the ringlight is designed such that the LEDs or lasers of the light source 654 are all in the same plane and have the same orientation (light sources in the same horizontal plane and directing light upwards). Some embodiments may have light in the sample plane but directing light in a non-parallel manner, such as but not limited to a cone-like manner. Some embodiments may have light in different planes but directing light in the same orientation. Some embodiments may have light in different planes but directing light in a non-parallel manner, such as but not limited to a cone-like manner. In some embodiments, the light is reflected by a toroidal mirror 652 to achieve oblique illumination of the sample. In addition to the optical properties of the ringlight and the toroidal reflector, the optical properties of the cuvette 600 shown in the embodiments of FIGS. 8A-8D also significantly affects dark field illumination. In this embodiment, the cytometry cuvette 600 is designed such that light coming from the ringlight 650 falls directly on the sample; but in addition to this, light is also “reflected” on the sample from features of the cuvette so as to emulate “trans” illumination. This reflection can be by way of TIR or true reflection. Note that any trans-illumination scheme allows one to measure forward scattered light from a sample whereas an epi-scheme allows one to measure only the back-scattered light from the sample. Forward scattered light is generally two orders of magnitude greater in intensity than the back-scattered light. Thus, use of trans-illumination allows the use of much lower illumination intensities and reduces harmful side-effects on the sample. As seen in the embodiment of FIG. 8A, the ringlight 650 (or other source of illumination) and cuvette 600 provide a system that can be tuned such that the intensities of trans and epi-illumination are adjusted for improved performance over traditional epi-illumination. Similarly, the ringlight 650 (or other illumination source) and cuvette 600 provide a system in the embodiment of FIG. 8B that can be tuned such that the intensities of trans and epi-illumination are adjusted for improved performance over traditional epi-illumination. This tuning can be achieved by virtue of the materials chosen (e.g., for their optical properties) and design of cuvette geometry to control angles and extent of total internal reflection. As shown in FIG. 8C, features 802 may alter the path of incident light, and so be used to enhance both trans-illumination and epi-illumination. As shown in FIG. 8D, the shape and configuration of surfaces 674, 676, and 678 may alter the path of incident light (e.g. transverse illumination), and so be used to provide or enhance trans-illumination, epi-illumination, or both. FIG. 8E provides a schematic representation of transport of a cuvette 600 from a sample preparation location to a sample observation location near an optical detector D. As indicated in the figure, a sample holder 600 may be moved from one location to a location adjacent to, or on, a detector D. A detector D may include a stage configured to receive, hold, and position a cuvette 600. Sample may be added to the sample holder via entry ports 602 (e.g., six entry ports 602 are shown in the example shown in FIG. 8E), and may then be in a position for optical observation and measurement within an analysis area 608 (not shown, as interior to the surfaces (e.g., of a support structure 604) of cuvette 600 shown in FIG. 8E. Sample that is held within an analysis area 608 may be illuminated, and may be detected by a detector D. In embodiments, a detector D may be configured to make qualitative observations or images, and in embodiments a detector D may be configured to make quantitative observations or images. A detector D as shown in FIG. 8E may comprise, or be part of, a cytometry unit or cytometry module. Such a cytometry unit or cytometry module may comprise an independent unit or module for sample analysis. In embodiments, other analysis capabilities and devices may be included in a detector D, or may be housed together with, or may be configured for use in conjunction with, a detector D. In embodiments, systems for sample analysis as disclosed herein may comprise such a cytometry unit or cytometry module, e.g., comprising a detector D used to analyze a sample in a cuvette 600. In embodiments, systems for sample analysis as disclosed herein may comprise such a cytometry unit or cytometry module and other units or modules which provide other analysis capabilities and devices in addition to that of a detector D used to analyze a sample in a cuvette 600. In such systems, such other units or modules may be housed together with, or may be configured for use in conjunction with, a detector D. Such other analysis capabilities and devices may be applied to a sample; for example, such analysis capabilities and devices may be used to analyze the sample or portion of a sample that is present in a cuvette 600. In embodiments, such analysis capabilities and devices may be used to analyze a different portion of the sample present in a cuvette 600 (e.g., a sample may be divided into two or more aliquots, where one aliquot is placed in a cuvette 600 for cytometric analysis, and one or more other aliquots are analyzed by other devices housed in, or near, or operated in conjunction with a cytometry unit or cytometry module. Thus, for example, independent of the analysis performed by such a cytometry module, a sample (or portion thereof) may be measured or analyzed in a chemical analysis unit, or in a nucleic acid analysis unit, or in a protein analysis unit (e.g., a unit using antibodies or other specifically binding molecules to analyze a sample), or other such unit or combination of units and capabilities. Such analysis may include analysis for small molecules and elements present in a sample (e.g., by a general chemistry unit); analysis for nucleic acid molecules present in a sample (e.g., by a nucleic acid unit); analysis for proteins or antibody-reactive antigens present in a sample (e.g., by an enzyme-linked immunosorptive assay (ELISA) unit); or combinations of these. In addition, systems as illustrated in FIG. 8E and as discussed herein may include a controller to control and schedule operations in one or more of the units or modules. FIG. 8F provides a further, detailed schematic representation of system including a transport mechanism for transporting a cuvette from a sample preparation location to a sample observation location near an optical detector D. A system such as a system of the embodiment shown in FIG. 8F may include multiple sample analysis modules, which may be configured to work independently, or, in embodiments, may be configured to work together. The system shown in FIG. 8F includes a single cytometry unit 707, with a detector D; in embodiments, samples (or portions thereof) analyzed in any or all of the analysis modules 701, 702,703,704, 705, and 706 may be transported to cytometry module 707, for observation and measurement by detector D. Independent of the analysis performed by cytometry module 707, a sample (or portion thereof) may be measured or analyzed in a chemical analysis unit 715. Such analysis in a chemical analysis unit 715 may include analysis for small molecules and elements present in a sample (e.g., by a general chemistry unit); analysis for nucleic acid molecules present in a sample (e.g., by a nucleic acid unit); analysis for proteins or antibody-reactive antigens present in a sample (e.g., by an ELISA assay unit); or combinations of these. Systems as illustrated in FIG. 8F may include a controller to control and schedule operations in one or more of the modules 701-707. Samples may be loaded onto sample holders or other elements for analysis in systems as illustrated in the example shown in FIG. 8E. Such systems, and modules of such systems, include, e.g., sample handling systems 708; pipettes for obtaining, moving, and aliquotting samples, including suction-type pipettes 711 and positive displacement pipettes 712; centrifuges 713; spectrophotometers 714; chemical analysis units 715; photomultiplier tubes (PMTs) 716; cartridges 717 for holding disposable supplies and tools, such as, e.g., pipette tips and other tips; and other elements. Modules and other elements may be supported by a rack 709 or other support structure. Samples, disposables, tools, and other elements may be transported within a module, and may be transported between modules (e.g., between a module 701-706 and a cytometry module 707). FIGS. 8E and 8F show that the sample holder such as cuvette 600 may be transported from one location (such as where sample preparation may occur) and then to another location (such as to the detector D as seen in FIGS. 8E and 8F). The cuvette 600 does not release fluids into or onto the detector D, but instead is self-contained unit that keeps all of the sample therein. There may be one or more, two or more, or three or more locations on or near to the detector D on which there is transparent surface on which the cuvette 600 or other sample holder can engage to provide a transparent interface for sample signal detection to occur. Elements of FIG. 8F and further disclosure regarding such elements and their uses can be found in U.S. patent application Ser. No. 13/769,779, which is hereby fully incorporated by reference herein. Dark Field At least some embodiments herein include a dark field illumination source and cuvette. The relevant features of the cuvette 600 relate to designing the cuvette dimensions and optical materials and the geometry of the cuvette. The cuvette increases the extent of dark field illumination through reflection (e.g., through TIR, or PIR, or both). In one embodiment, the system may simultaneously use trans dark field and epi dark field illumination of a sample. In some embodiments disclosed herein, the cuvette 600 combined with the light source 650 enables trans and epi-illumination using a physical system in the epi configuration (i.e., with the light source and the objective on the same side of sample). The basic cuvette is designed to contain the biological sample and present it for visualization. In embodiments, the cover portion 612 may have a specific design. It is known that different materials may have different indices of refraction; material having a desired index of refraction may be selected for use in fabricating a cover portion 612, or a base support 620, or other elements and components of a cuvette 600 and associated elements and components. For example, in some embodiments, a cover portion 612 or a base support 620 may be made of glass. For example, in some embodiments, a cover portion 612 or a base support 620 may be made of quartz. For example, in some embodiments, a cover portion 612 or a base support 620 may be made of an acrylic, or a clear polymer (e.g., a cyclo-olefin, a polycarbonate, a polystyrene, a polyethylene, a polyurethane, a polyvinyl chloride, or other polymer or co-polymer), or other transparent material. One can design the material of the top cover portion 612 to facilitate illumination and image collection. In embodiments, to illuminate a sample, the light source 650 may be a ringlight 650 (i.e., may be circular), may have light sources 654 position in a discrete or continuous pattern, and may use a curved reflector 652 to direct light to the sample. In dark field microscopy, the sample is illuminated by oblique rays. In dark field microscopy, the light going into the microscope optics is light scattered by the sample, allowing the measurement of the scatter properties of cells, particles, and other objects and structures in the sample. If no cells, particles, structures, or other objects are present in the sample, then the dark field image is black. In the present non-limiting example, the reflector 652 and LED 654 of the ringlight 650 are designed to reflect light so that a minimum fraction of light goes directly back into the objective as non-specific background. The system is designed to direct light by TIR at cuvette surfaces back into the analysis area 608. Light reflected from a surface, whether by TIR or other reflection, is thus directed to illuminate a sample in the analysis area 608. The cells, particles, and structures in the sample in analysis area 608 receive light directly from the ringlight from underneath the cell (i.e., via epi-illumination). In addition, as disclosed herein, light coming from the top surfaces (reflected) is also directed to the analysis area 608 (i.e., via trans-illumination). Thus, according to the systems and methods disclosed herein, with the ringlight 650 in the same position, light may be directed to illuminate analysis area 608 from two directions (both epi-illumination and trans-illumination) from a single ringlight source. In embodiments, this illumination is all oblique illumination. One can control the relative strengths of the two light components by design of the cuvette and material used for the cuvette. This dark field illumination is different from conventional dark field. For example, in embodiments disclosed herein, dark field illumination is provided by light reflected at a cuvette surface by TIR. By way of non-limiting example, in embodiments, a system as disclosed herein may use a reflective layer on the backside of certain surfaces of the cover portion 612 to reflect all of the light. By way of non-limiting example, in embodiments, a system as disclosed herein may use a reflective layer on the backside of certain surfaces of a cuvette 600 to reflect all of the light. Some embodiments may use a full or selectively reflective background. For example, in embodiments, it is desirable to direct the light at an oblique angle, which keeps illumination dark field. In some embodiments light sources 654 may direct light at an angle, and thus may not require or may not use the reflector 652. The reflector 652 may improve manufacturability of the light source 654 since all lights are in the same plane, directed in the same direction. Optionally, the angled light sources 654 may also be used in place of or in combination with a reflector. It should be understood that even though the light intensity of a trans-illumination component of illumination may be, e.g., 10 times weaker than a corresponding epi-illumination component, the intensity of light scattered from the cells or other objects in the sample due to trans-illumination may be 200 times stronger. That is, where scatter from an amount of epi-illumination is compared to scatter from the same amount of trans-illumination, the intensity of light scattered due to trans-illumination may be 200 times stronger than the light scattered by epi-illumination of cells or other objects in the sample. Thus, a small amount of trans-illumination can significantly enhance the light scatter from cells. With epi-illumination alone, light collected by an objective is only that light reflected from a sample. However, diffraction is a substantial component of scatter and the use of trans-illumination provides for some amount diffraction (e.g., light diffracted by the sample). However, the light collected from epi-illumination does not include light diffracted by the sample (without reflection of the light back towards the light source following diffraction). Thus, when using trans and epi-illumination there are reflective, refractive, and diffractive components to the light collected by an objective. Traditional methods use all trans dark field illumination which takes a significant amount of space to configure, due to the placement of optical components on both sides of the sample. In contrast, systems and methods as disclosed herein provide both epi-illumination and trans-illumination using optical elements configured for epi-illumination alone. The embodiments disclosed herein may obtain the space savings of an epi-illumination configuration while providing the benefits of both epi- and trans-illumination of the sample. Designing the sample holder and the light source together can enable an epi-illumination configuration to increase the amount of trans-illumination of the sample, and in particular may provide uniform trans-illumination. Some embodiments may use mirrored surfaces. Some embodiments use TIR, which can be tuned to create the desired trans-illumination, including trans-illumination that is uniform and at oblique angles into the analysis area 608 for dark field illumination of the sample. A cuvette 600 may be configured so as to provide trans-illumination of an analysis area 608 solely from a light source in an epi-illumination configuration using reflection, e.g., using TIR or PIR, or both. In one non-limiting example, a thicker cover portion 612 allows the light undergoing TIR (or PIR, or both) to reflect back into the target area 608. Additionally, the systems and methods disclosed herein not only provide light that, due to TIR (or PIR, or both), comes back into an analysis area 608. but light that comes back into an analysis area 608 uniformly. The embodiments of FIGS. 8A, 8B, and 8D have certain surfaces at certain angles, have certain black surface(s), and certain reflective surface(s) so that the light comes back uniformly to an analysis area 608 effective to provide uniform trans-illumination of a sample in an analysis area 608. Optionally, one could put a fully reflective surface on a top (such as but not limited to a flat cover portion 612 as shown in FIGS. 7A and 7B, and optionally over select areas of a top of an area 613 of FIGS. 8A, 8B, and 8C). In contrast, light traveling within traditional hardware may undergo some reflection, including possibly some TIR (or PIR, or both), but the light may not come back into the area 608. By way of non-limiting example, embodiments disclosed herein take an imaging based platform and instead of using a high complication, high cost system which may for example have 16 laser light sources, the present embodiment leverages a more integrated detection system to be able to image and identify the differentials of cells and types in a sample. In one non-limiting example, the combination of all these different types of information is useful and effective to achieve the desired goals of the analysis. This may include quantitative measurements or qualitative measurements linked to quantitative measurements, or images linked to quantitative measurements. The methods and systems disclosed herein provide different channels of fluorescence where each channel may have one or more specific molecular markers targeted (i.e., quantitative information). The methods and systems disclosed herein may include, and may be used with, microscopy, embodiments herein may provide the ability to observe and measure the background that staining forms inside the cell (e.g., whether it is in the cytoplasm, is it concentrated on the surface, in the nucleus, or elsewhere) that can link image or qualitative information that is generated to quantitative measurements that are generated. In this manner, the linkage of the original images that created the quantitative results are available for further analysis if it turns out that the quantitative measurements trigger alarms or meet thresholds the suggest further analysis is desired. Embodiments herein can interrogate background images and information that staining creates in a cell in a sample within an analysis area 608. Such images and information allow the determination of whether or not the staining is in the cell, e.g., in the cytoplasm, in the nucleus, in the membrane, or other organelle or cellular location. In some embodiments of the methods and systems disclosed herein, combinations of the quantitative scatter properties of the cell, the shape of the cell, or the size of the cell may be observed and measured, and used to identify or characterize a sample. In some embodiments of the methods and systems disclosed herein, the physical properties, optical properties, and bio/biochemical properties of a sample or portion thereof may be observed and may be measured all in the same device at the same time. All such measurements and observations can be combined in a programmable processor or other processing system to link the various types of information to achieve the goals of the assays (e.g., to achieve a clinical goal of the assays). Although traditional devices may be suitable for one or the other kind of observation or measurement, they are not suitable for both epi-illumination and trans-illumination from a single light source; there is also no linkage between such different types of information. For example, in some embodiments disclosed herein, where image information that generated the quantitative measurements is retrievable, the systems and method may be used for tissue morphology measurements. Optionally, the system can be applied to pap smear, which is more similar to traditional cytology. It can be extended to anything done using traditional microscopy. In urine, at least some of the present embodiments can look at and analyze crystals and not just cells. One can look at crystals of inorganic salts and chemicals from urine samples that had created certain quantitative readings on one portion of a graph. In addition, one can look at and analyze cells and particles present in blood, including analysis of different types and populations of blood cells, such as but not limited what may be seen in FIG. 1A where different regions of data are circled. Image information for certain data regions can be retrieved to further analyze the underlying cell images that created the measurements plotted on the graph or chart. Some embodiments herein combine the imaging features with the pathology features. For example, tissue preparation may occur inside a device or system configured to include the optical elements disclosed herein (a system may be, or include, for example, a module or multiple modules configures for optical and other analysis of a sample), and such prepared material can be imaged in this platform. Then the image or analysis may be sent to servers to do image analysis, to do diagnosis, or to perform digital pathology effective to aid or enable a pathologist to analyze a sample. Embodiments of methods, systems and devices as disclosed herein, including, e.g., systems and devices illustrated in FIGS. 8C and 8D, provide a wide range of cytometry capabilities which may be applied together to analyze a sample. Such cytometry capabilities include cytometric imaging such as is typically confined to microscopy; such microscopic imaging and image analysis of biological samples is provided by the devices, systems, and methods disclosed herein. In addition, the systems and devices as disclosed herein are configured to provide spectrophotometric analysis of biological samples. Such image analysis includes dark field, brightfield, and other image analysis. Novel and improved methods for applying both epi-illumination and trans-illumination from a single light source are disclosed, which allow more sensitive and accurate images and analysis of blood samples. In conjunction with the methods disclosed herein, separate measurements regarding RBCs, WBCs, and sub-categories of these may be obtained. Image and spectrophotometric analysis as disclosed herein may be used to identify and quantify different populations of WBCs useful for the characterization of a blood sample and for the diagnosis of many clinical conditions. Devices and systems as disclosed herein may be used to provide clinical reports which include general chemical analysis information, nucleic acid-based analysis information, antibody- (or protein or epitope)-based analysis information, spectrophotometric analysis information, and in addition provide images of the cells and samples analyzed. The ability to produce such information and to provide such reports, including images as well as other clinical information, is believed to provide novel and unexpected capabilities and results. In addition, this information, and these reports, may be produced in a short amount of time (e.g., in less than an hour, or less than 50 minutes, or less than 40 minutes, or less than 30 minutes, or other short amount of time). In addition, this information, and these reports, may be produced from small samples, e.g., small samples of blood or urine. Such small samples may have sizes of no more than about 500 μL, or less than about 250 μL, or less than about 150 μL, or less than about 100 μL, or less than about 75 μL, or less than about 50 μL, or less than about 40 μL, or less than about 20 μL, or less than about 10 μL, or other small volume. In embodiments where a sample is a blood sample, such small sample may be collected from a finger-stick. Typically, only a small amount of blood is collected from a finger-stick (e.g., the amount of blood may be about 250 μL or less, or about 200 μL or less, or about 150 μL or less, or about 100 μL or less, or about 50 μL or less, or about 25 μL or less, or other small amount). Clinical reports which include cytometric information and images, as disclosed herein (including images, scatter plots, and other optical and imaging information), and which also include general chemical analysis information, nucleic acid-based analysis information, antibody- (or protein or epitope)-based analysis information, and spectrophotometric analysis information, are believed to provide broad and clinically rich information useful for the diagnosis and characterization of many clinical conditions, and to provide advantages over the art. Such reports may be prepared rapidly at a point of service (or point of care) location, and may be rapidly communicated (e.g, electronically by wireless, land-line, optical fiber, or other communication link) to a pathologist or other clinical expert for analysis and interpretation. Such expert analysis and interpretation may then in turn be rapidly communicated (e.g, electronically by wireless, land-line, optical fiber, or other communication link) to a clinician caring for the subject, or back to the point of service (or point of care) location, or both, for rapid feedback. Such rapid feedback enables timely treatment, if necessary, or prevents unnecessary treatment, by providing information and analysis based on samples which may be acquired, may be analyzed, or both, at a point of service or point of care location. Such rapid analysis, reporting, and feedback provides advantages over time-consuming methods, and, by allowing timely treatment and by avoiding unnecessary treatment, may provide more effective, more efficient, and less costly clinical services and treatment. Such more time-consuming methods which may be obviated by the devices, systems and methods disclosed herein include, but are not limited to: delay and inconvenience due to a subject being required to travel to a laboratory or clinic remote from the subject's home, and remote from the clinician entrusted with the care of the subject; delays and possible sample degradation due to transport of a sample from a collection location to a location where the sample may be analyzed; delays due to transmission of the results of such analysis to a pathologist or other expert; delays due to transmission of an expert opinion to the subject's clinician; delays in transmission of clinician diagnosis and treatment of the subject following transmission of an expert opinion to the clinician. These delays, inconveniences, and possible sample degradation may be reduced or eliminated by use of the methods, devices, and systems disclosed herein. Embodiments of systems and devices as illustrated in FIGS. 6A, 6B, 7, 8A, 8B, 8C, and 8D, and other figures and as disclosed herein, provide cytometry capabilities in a compact format, including in compact formats for use with one or more other sample analysis capabilities. Applicants disclose herein novel devices and systems which include the novel cytometry capabilities as disclosed herein in devices and systems along with other sample analysis capabilities. For example, Applicants disclose herein devices and systems which provide novel cytometry capabilities as disclosed herein in conjunction with devices and systems for sample analysis by a general chemistry unit; in conjunction with devices and systems for sample analysis by a nucleic acid analysis unit; in conjunction with devices and systems for sample analysis using antibody assays (e.g., ELISA) unit); and combinations of these. Thus, a sample processing device as disclosed herein may be configured to perform a plurality of assays on a sample. Such a sample may be a small sample. In embodiments, all sample assay actions or steps are performed on a single sample. In embodiments, all sample assay actions or steps are performed by a single device or system and may be performed within a housing of a single device. Such systems and devices including cytometry, particularly cytometry which provides image analysis as well as spectrophotometric or other optical analysis in a single unit, are believed to be novel and unexpected. Providing systems and devices including cytometry, particularly cytometry which provides image analysis as well as spectrophotometric or other optical analysis in a single unit, is believed to provide advantages previously unavailable in the art. Embodiments of systems and devices as illustrated in FIGS. 6A, 6B, 7, 8A, 8B, 8C, and 8D, and other figures and as disclosed herein, provide cytometry capabilities in a portable format, where such devices and systems may be housed in enclosures small enough for easy transport from one location to another. For example, such devices and systems may be readily transported for use at a point of care location (e.g., a doctor's office, a clinic, a hospital, a clinical laboratory, or other location). For example, such devices and systems may be readily transported for use at a point of service location (in addition to such points of care locations discussed above, e.g., a pharmacy, a supermarket, or other retail or service location). A point of service location may include, for example, any location where a subject may receive a service (e.g. testing, monitoring, treatment, diagnosis, guidance, sample collection, ID verification, medical services, non-medical services, etc.). Point of service locations include, without limitation, a subject's home, a subject's business, the location of a healthcare provider (e.g., doctor), hospitals, emergency rooms, operating rooms, clinics, health care professionals' offices, laboratories, retailers [e.g. pharmacies (e.g., retail pharmacy, clinical pharmacy, hospital pharmacy), drugstores, supermarkets, grocers, etc.], transportation vehicles (e.g. car, boat, truck, bus, airplane, motorcycle, ambulance, mobile unit, fire engine/truck, emergency vehicle, law enforcement vehicle, police car, or other vehicle configured to transport a subject from one point to another, etc.), traveling medical care units, mobile units, schools, day-care centers, security screening locations, combat locations, health assisted living residences, government offices, office buildings, tents, bodily fluid sample acquisition sites (e.g. blood collection centers), sites at or near an entrance to a location that a subject may wish to access, sites on or near a device that a subject may wish to access (e.g., the location of a computer if the subject wishes to access the computer), a location where a sample processing device receives a sample, or any other point of service location described elsewhere herein. Esoteric Cytometry and Specialty Cytometry Markers Many traditional advanced or esoteric cytometric assays require a traditional system to measure a large number of markers on cells; typically, these markers are measured simultaneously. The general approach in the field has been tied to high capability instruments including, for example, six or more lasers and 18 different PMT tubes to measure all of these markers simultaneously. However, in many clinical settings, simultaneous measurements of multiple markers are not required. In many clinical requirements, for example, one is interested in seeing how many cells are positive for one marker, or how many are positive for a combination of two or three markers, or other such combination of a few markers. Some embodiments herein provide for multiple combinations of staining schemes where one may have a set of, for example, 10 markers, where one can combine them in sets of 3-4 or 5-6 markers where one can combine them such that even if combining two markers in the same color, some embodiments of the present system can de-convolute the images and information in order to determine which signal came from which marker. This allows some embodiments of the present system to reduce the hardware requirements in terms of the number of light sources, the number of channels used for sample analysis, and other simplifications and efficiencies. Thus, using subsets of a number of markers, or using or measuring markers in non-simultaneous manner in a pre-determined pairing can be useful to enable esoteric cytometry. For example, some markers may be considered to be “gating” markers; such markers are measured first, and if the results of such initial measurements are negative (e.g., the markers are not present, or are present only in low amounts, in a sample), then measurements using other, follow-on markers may not be needed. In embodiments such non-simultaneous methods and systems may reduce the sample volume required for analysis, and may reduce the amounts of markers needed for analysis (e.g., if a follow-on marker is typically used in only a small fraction of samples analyzed). It should be understood that the use of imaging for cytometric analyses of samples, such as blood or urine samples, enables one to obtain an actual cell count, and so may be more accurate than traditional cytometry methods which do not include such measurements. Imaging of samples, including imaging of cells (and particles or structures) in a sample can actually be more accurate than other methods, such as traditional flow cytometry. For example, traditional flow cytometry gating does not allow for actual counts. The gating in flow cytometry is subjective and thus this can vary from system to system. In addition, traditional flow cytometry does not provide images of cells in a sample. Some embodiments herein may also gate, but the gating is based algorithmically based on various factors including but not limited to patient health. Classification means is trained on a population of patients knowing if they are healthy or diseased. Some embodiments here can flag a patient that is abnormal and flagging it for review. Self-learning gating can determine if different gating is desired based on information conveyed regarding the patient health. Thus, the gating for the sample for some embodiments disclosed herein is done algorithmically, possibly with a programmable processor, and the gating changes based on patient health. In embodiments of methods and systems for imaging, one may want to minimize the amount and complexity of hardware required, and one may wish to re-use some or all of the sample if possible, in order to minimize the sample volume required. Thus, the more capability one can extract from the imaging of a sample, the better in terms maximizing the information obtained from a sample, and where possible, from smaller amounts of sample. Thus, the more information one can get to differentiate different cell types from a minimum number of pictures, the more one may minimize the sample volume required. Optionally, in one non-limiting example, the cuvette for use in the microscopy stage can be configured as follows (with reference to the embodiments and elements shown in FIGS. 7, 8A, and 8B). A middle channel layer comprises a core of thin plastic membrane 800 with pressure-sensitive-adhesive (psa) on both sides. One side adheres to the window-layer 606 and the other side to the molded-top-layer cover portion 612. The core is an extruded film that is black in color, primarily due to optical reasons of preventing light scatter and optical cross-talk between the different liquid channels. The thickness of the core membrane preferably is uniform along its length and width, and may be formed, for example, from an extruded film of black PET or black HDPE (polyethylene). The psa sub-layers on both sides are preferably as thin as possible for preserving the tight and uniform dimensions of the overall liquid channel (e.g., analysis area 608), yet are preferably thick enough to provide a good fluidic seal around the liquid channel. In embodiments, the psa adhesives useful for such sample holders are acrylic in nature and have high adhesion strength for low-surface-energy plastics. The liquid channels, ports and other alignment features on the middle layer may be fabricated using laser-cutting or die-cutting processes. In embodiments, heating of material to near, but not above, the melting point of the material may be used in the fabrication of cuvettes, and cuvette chambers. In embodiments, diffusion bonding may be used in the fabrication of cuvettes, and cuvette chambers (e.g., cuvette components may be heated to their materials' glass transition temperature, allowing or enhancing diffusion of material between previously separate components of a cuvette); for example, acrylic to acrylic bonds may be made using diffusion bonding. In embodiments, ultrasonic welding may be used in the fabrication of cuvettes, and cuvette chambers. For example, bonding methods including, but not limited to use of heating, use of adhesives, use of diffusion bonding, use of ultrasonic welding, and other suitable techniques and methods, may be used to bond a support structure to a cover portion of a cuvette (e.g., a support structure 606 to a cover portion 612 of FIGS. 7A and 7B). Sonically welding cuvettes, such as but not limited to ultrasonically welding them, may involve make multiple layers of the cuvette and putting them together, rather than molding or using adhesives for the multiple layers. In embodiments, various techniques may be combined for manufacturing of the cuvette such as but not limited to ultrasonically welding certain layers while using adhesives or other bonding techniques on other layers. Optionally, some embodiments may use one technique to bond perimeter portions of the cuvette while another technique may be used to bond structures or layers that will come in contact with sample or liquids when the cuvette is in use. A channel in a cuvette may have an entry port (e.g., an entry port 602 as shown in FIG. 6A) for filling, and may have two or more entry ports 602 for filling. An entry port 602 may have any shape or configuration suitable for transfer of sample into the interior of the channel. In embodiments, an entry port may have a round, or oval, or other shape suitable to allow a pipette (e.g., a pipette with a conical or similarly tapered end-portion) to transfer a fluid sample to and into a channel. For example, a round entry port may be suitable to accept a tip of a conical pipette where the pipette is oriented substantially perpendicular to the plane of the entry port. For example, an oval entry port may be suitable to accept a tip of a conical pipette where the pipette is oriented at an angle from the perpendicular to the plane of the entry port. For example, an entry port may be configured to allow space for an end-portion of a pipette (e.g., a pipette tip) to be positioned over the entry port effective that fluid exiting the pipette tip falls or otherwise flows into the entry port; in embodiments, a space may remain between at least a portion of the entry port and at least a portion of the pipette tip. In embodiments, an entry port may be configured to contact or otherwise engage with at least one portion of the liquid dispensing tip such as but not limited to an end-portion of a pipette (e.g., a pipette tip) so as to form a seal between the end-portion of the pipette and the walls of that entry port. In embodiments, an entry port may have an internal taper (e.g., the diameter or other cross-sectional length of the outer-most portion of an entry port may differ from the diameter or other cross-sectional length of the inner-most portion of that entry port). In embodiments of an entry port with an internal taper, the inner diameter or other cross-sectional length of the entry port may be smaller than the diameter or other cross-sectional length of the outer-most portion of that entry port, effective to complement the taper of a pipette tip (e.g., a conical pipette tip) positioned in the entry port. In embodiments, a pipette tip may engage with an entry port effective to prevent fluid (e.g., sample) delivered by the pipette from flowing out of the channel via the entry port. Optionally, the port in the cuvette may be sized or otherwise designed to form a seal against at least some portion of the pipette tip. Optionally, the material may be a hydrophobic material so that liquid only enters the cuvette when sufficient force dispenses the liquid from the tip, and not primarily due to any hydrophilic force. In embodiments, a channel in a cuvette may have a vent effective to allow air or other gas to flow (e.g., to exit) aiding filling of a channel with sample (e.g., a fluid sample such as blood, or plasma, or other fluid). In embodiments, an entry port may serve as a vent, or, in embodiments, a channel may have a vent separate from, and in addition to, an entry port. In embodiments, a vent may comprise a porous membrane configured to allow passage of air or gas yet to reduce or prevent evaporation of liquid from the channel (e.g., from a sample within the channel). Such a vent may be covered with a porous membrane, or may include a porous membrane at or near the opening of the vent. Porous membranes made with hydrophobic materials may be more effective to mitigate evaporation from a sample than porous membranes made with hydrophilic materials. Such a porous membrane may be made with, e.g., a cyclo-olefin polymer such as Zeonex® or Zeonor® (Zeon Chemicals, Louisville, Ky., USA); polyethylene (PE); polyvinylidene fluoride (PVDF); combinations of PE and PVDF such as Porex® (Porex Corporation, Fairburn, Ga., USA); or with other porous materials and combinations of materials. A channel in a cuvette may be filled, for example, by providing sample to an entry port of a channel. It will be understood that by “filling a channel” both complete, and partial, filling of the channel is meant; thus “filling a channel” as used herein refers to filling a channel, or portion of a channel, whether the channel becomes completely or only partially filled. A fluid sample may be provided to a channel by gravity flow into the channel, e.g., via an open entry port. A fluid sample may be drawn into a channel by capillary action; for example, contact of a drop or portion of sample provided by a pipette tip with a wall of a channel via an entry port may initiate and provide capillary flow of sample into a channel. Such a capillary means of filling a channel is more effective, and more readily accomplished, where the walls of the channel, or at least the interior surfaces of the channel, comprise hydrophilic materials or coatings. In embodiments, filling a channel may be accomplished using pressure, where fluid is forced into the channel by application of force (e.g., by hydraulic or air pressure, which may be supplied by a piston, a pump, compressed gas, osmotic pressure, or other means). Where a channel is filled by pressure, hydrophobic materials may be used to form, or coat, the interior walls of the channel. Such hydrophobic materials (e.g., including acrylics, olefins, cyclo-olefins, and other polymers and plastics) may provide better optical properties than other (e.g., than some hydrophilic) materials. Where a channel is to be filled using pressure, a tight seal between a pipette (used to deliver the fluid, e.g., the sample) and the entry port of the channel may be preferred. Where a channel is to be filled using pressure, a vent (or vents) configured to allow exit of gas (e.g., air) or liquid previously occupying some or all of the channel interior may be provided. Use of pressure to fill a channel allows for control of the rate and volume of fluid delivered; such rate and volume control may be greater than the control of rate and volume accomplished when using capillary or gravity flow to fill a channel. In embodiment as disclosed herein, magnetic elements may be incorporated into the cuvette (such as but not limited to magnetic pucks or discs, or metal pucks or discs that may be held by a magnet). For example, such magnetic elements may be included in, or may comprise, the molded top layer of a sample holder or cuvette. Magnetic elements can be used to simplify hardware used to transport the cuvette. For example, the handling system can engage the magnetic features in the cuvette to transport it without having to add an additional sample handling device. While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, different materials may be used to create different reflective surfaces in the cuvette or other surfaces along a light pathway in the optical system. Optionally, the reflective surface is selected so that the reflection is only diffusive. Optionally, the reflective surface is selected so that the reflection is only specular. Some embodiment may use a flat top illumination scheme as set forth in Coumans, F. A. W., van der Pol, E., & Terstappen, L. W. M. M. (2012), Flat-top illumination profile in an epifluorescence microscope by dual microlens arrays. Cytometry, 81A: 324-331. doi: 10.1002/cyto.a.22029, fully incorporated herein by reference for all purposes. Optionally, some embodiments may have all channels having a bottom surface in one plane, but due to different channel sizes, have top surfaces in different planes. Optionally, some embodiments may have channels in different vertical planes. Although most embodiments herein show imaging in a vertical top-down configuration, it should be understood that some embodiments may arrange channels in a vertically stacked configuration and image channels from the side. Some embodiments may use multiple cuvettes on an imaging platform. For example, although FIG. 8E shows a single cuvette thereon, it is possible to place multiple cuvettes onto the imaging platform for processing in sequential or simultaneous manner. Although the cuvettes herein are typically shown as formed from transparent materials, some embodiments may form at least some portions of the cuvette from non-transparent material. This can be provided to provide improved structural rigidity to portions of the cuvette and/or optionally, provide different light handling properties. Optionally, some embodiments may be used with a non-transparent carrier that engages at least a portion of the cuvette and is moved with the cuvette to an imaging platform to facilitate handling and/or provide a desired optical effect. Additionally, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the explicitly recited limits of about 1 nm and about 200 nm, but also to include individual sizes such as 2 nm, 3 nm, 4 nm, and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, and other ranges. The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures or methods in connection with which the publications are cited. While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. As used herein, the term “or” may include “and/or”; thus, the meaning “or” includes both the conjunctive and disjunctive unless the context expressly dictates otherwise. This document contains material subject to copyright protection. The copyright owner (Applicant herein) has no objection to facsimile reproduction of the patent documents and disclosures, as they appear in the US Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice shall apply: Copyright 2013 and 2014 Theranos, Inc. 14508137 theranos ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Jan 7th, 2020 12:00AM Aug 29th, 2017 12:00AM https://www.uspto.gov?id=US10527554-20200107 Fluidic medical devices and uses thereof This invention is in the field of medical devices. Specifically, the present invention provides fluidic systems having a plurality of reaction sites surrounded by optical barriers to reduce the amount of optical cross-talk between signals detected from various reaction sites. The invention also provides a method of manufacturing fluidic systems and methods of using the systems. 10527554 1. A system configured to detect the presence of an analyte in a biological fluid of a subject, comprising: an external device including a protocol stored thereon; a cartridge, comprising: a plurality of reaction sites, each reaction site having a wall comprising an optically opaque material; a plurality of reactant chambers in fluid communication with a corresponding plurality of reaction sites: a system of fluidic channels to allow the biological fluid and reactants to flow in the cartridge; and an identifier on the cartridge corresponding to the protocol stored on the external device; and a reader assembly for receiving the cartridge, comprising: an analyte detector; a controller; an identifier detector configured to detect the identifier on the cartridge; and a communication assembly configured to transmit information based on the identifier to the external device, and configured to receive the protocol stored on the external device that includes instructions for the controller of the reader assembly; wherein the external device is external to the cartridge and reader assembly and configured to receive the information based on the identifier, and in response to receiving the information based on the identifier, transmit a protocol stored on the external device that includes instructions to the controller of the reader assembly that includes both instructions for an a particular assay to be run and a detection method to be performed. 2. The system of claim 1, the analyte detector comprising: an optical detector. 3. The system of claim 1, the cartridge further comprising: a pressure burstable seal sealing at least one of the reactant chambers. 4. The system of claim 1, the cartridge further comprising: a layer of burstable foil enclosing at least one of the reactant chambers. 5. The system of claim 1, the reader assembly further comprising: a valve actuation plate. 6. The system of claim 5, the valve actuation plate comprising a non-coring needle. 7. The system of claim 1, the cartridge further comprising: an elastomeric cover. 7 CROSS-REFERENCE This application is a continuation application of U.S. application Ser. No. 14/727,547, now U.S. Pat. No. 9,772,291, which is a continuation application of U.S. application Ser. No. 12/625,430, now U.S. Pat. No. 9,075,046, which is a continuation application of U.S. application Ser. No. 11/388,723, filed Mar. 24, 2006, which claims the benefit of U.S. Provisional Application No. 60/678,801, filed May 9, 2005 and U.S. Provisional Application No. 60/705,489, filed Aug. 5, 2005 and U.S. Provisional Application No. 60/717,192, filed Sep. 16, 2005, and U.S. Provisional Application No. 60/721,097, filed Sep. 28, 2005 which are incorporated herein by reference in their entirety. BACKGROUND OF THE INVENTION Point-of-Care (POC) testing systems and fluidic devices or cartridges are becoming more common because of the advancement in microfabrication technology such as MEMS technology, which enables the fabrication of reliable and inexpensive fluidic based cartridges. Generally, such systems use microvalves, micropumps, microneedles, etc. for moving the fluids through the fluidic system. A common system contains a reagent reservoir, a mixing chamber, an analytical chamber and waste chamber. Fluids must therefore be moved from one chamber to another. Some challenges in moving such fluids in a fluidic device include mixing the reagents with the sample, and washing unbound reagents from a detection site. One of the common challenges is washing the unbound conjugates after the incubation period, particularly removing conjugates that remain stuck to the edges of the reaction site walls. U.S. Pat. No. 5,600,993 provides a good summary of such exemplary problems. Various approaches that have been described to cause fluid movement in a fluidic device include electrical, osmotic, and capillary. U.S. Pat. No. 6,440,725 describes different fluid motive sources for moving liquids through the chambers. One such example uses a fluid inside a sealed pouch wherein the fluid is converted to gas by an electrical current. This action pressurizes and expands the fluid pouch. This sealed pumping pouch, or e-pump, is positioned against a reagent pouch and forces the contents of the reagent pouch into the fluidic circuit as the pumping pouch expands. The '725 patent also describes various other fluid motive sources such as pressure or vacuum source, or using a solenoid or stepper motor to provide a force to press against a reagent pouch. US Patent Application No. 20050130292 describes using mechanical energy to move fluids within a fluidic device. In this application the inventors describe minimal or no external power to force the fluid through various chambers. A sample is loaded on to a biochip and this biochip is inserted into a custom designed socket. The work done in inserting the socket is converted to the energy required for the fluidic flow. Subsequent steps of directing the sample to the desired chamber, mixing it, and assaying it are, according to the inventors, accomplished with minimal power consumption. Such a device has several valves and pumps, even if the pumps are not driven by external electrical energy, which are difficult to include in a small disposable fluidic system. Generally, reagents in a POC system are stored in a dry state to improve shelf-like. Buffers are generally stored separately until the assay is to be performed, at which time the reagents are hydrated. However, dry reagents may become wet or hydrated before they are intended to do so. Buffers may leak from their holding areas and mix with the dry reagents. It may thus be beneficial to keep the dry reagents in a dry state until the assay is initiated. Cartridge or fluidic based POC systems may handle small volumes of fluids. Nanoliter or even picoliter amounts of fluids are sometimes forced to flow within fluidic channels. Either during the sample introduction or a venting process, there is a substantial likelihood that a bubble will be introduced into the microfluidics system. A bubble introduced into the system can cause an inaccurate measurement if the bubble is located in the detection site during the detection step. Current fluidic devices may experience optical cross-talk when there are multiple reaction sites adjacent to one another. When assays with different luminescent intensities are run in adjacent reaction wells or chambers, photons (representing the signal generated) can travel from one well to others comprising the accuracy of measurement from each well. The photons can travel through construction materials of the wells and through the fluidic channels that connect the wells. This problem may become worse the longer the incubation time of the assay. Thus, there remains a considerable need for new designs of fluidic cartridges with reduced optical interference from adjacent reaction sites. The present invention satisfies this need and provides related advantages as well. SUMMARY OF THE INVENTION The present invention provides an apparatus for detecting an analyte in a biological fluid of a subject. The apparatus comprises a sample collection unit for introducing a biological fluid in fluid communication with a plurality of reaction sites, a plurality of reactant chambers carrying a plurality of reactants in fluid communication with said reaction sites wherein said plurality of reaction sites comprise a plurality of reactants bound thereto for detecting said analyte, and a system of fluidic channels to allow said biological fluid and said plurality of reactants to flow in said apparatus, wherein at least one channel located between said plurality of reaction sites comprises an optical barrier to reduce the amount of optical cross-talk between said plurality of said reaction sites during detection of said analyte. In one aspect, the apparatus further comprising a plurality of waste chambers in fluid communication with at least one of said reaction sites. In another aspect, each channel located between said plurality of reaction sites comprises an optical barrier. The present invention also provides an apparatus for detecting an analyte in a biological fluid of a subject comprises a sample collection unit for introducing a biological fluid in fluid communication with a plurality of reaction sites, wherein said plurality of reaction sites comprise a plurality of bound reactants for detecting said analyte, a plurality of reactant chambers carrying a plurality of reactants in fluid communication with said reaction sites, and a system of fluidic channels to allow said biological fluid and said plurality of reactants to flow in said apparatus wherein said bound reactants in at least one reaction site are unevenly distributed. The present invention further provides a method of manufacturing a fluidic device for detecting an analyte in a biological fluid of a subject. The method comprises providing a plurality of layers of a fluidic device, and ultrasonically welding said layers together such that a fluidic network exists between a sample collection unit, at least one reactant chamber, at least one reaction site, and at least one waste chamber. INCORPORATION BY REFERENCE All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which: FIG. 1 illustrates exemplary multiple components of the present system. FIG. 2 shows different layers of an exemplary fluidic device prior to assembly. FIGS. 3 and 4 illustrate the fluidic network within an exemplary fluidic device. FIG. 5 shows a top, side, and bottom view of exemplary reagent chambers of the present invention. FIG. 6 illustrates an exemplary side view of a reagent chamber in fluidic communication with a fluidic device. FIG. 7 illustrates exemplary reagent chambers being filled with reagents. FIGS. 8 and 9 illustrate a side view of an exemplary fluidic device in combination with actuating elements of the reader assembly. FIG. 10 illustrates a two-step assay and a competitive binding assay. FIG. 11 shows an exemplary two-step chemiluminescence enzyme immunoassay. FIG. 12 illustrates the increased sensitivity of the two-step chemiluminescence enzyme immunoassay. FIGS. 13A-C illustrate exemplary fluidic channels between reaction sites. FIGS. 14A and 14B illustrate reaction sites to reduce the signal from unbound conjugates remaining in reaction sites. FIG. 15 shows an exemplary bubble trapper or remover to prevent bubbles from entering the reaction sites. DETAILED DESCRIPTION OF THE INVENTION One aspect of the present invention is a system for detecting an analyte in a sample of bodily fluid. The subject system has one or more of the following components: a) a sample collection unit for introducing a biological fluid in fluid communication with a plurality of reaction sites, b) a plurality of reactant chambers carrying a plurality of reactants in fluid communication with said reaction sites wherein said plurality of reaction sites comprise a plurality of reactants bound thereto for detecting said analyte, and c) a system of fluidic channels to allow said biological fluid and said plurality of reactants to flow in said apparatus, wherein at least one channel located between said plurality of reaction sites comprises an optical barrier to reduce the amount of optical cross-talk between said plurality of said reaction sites during detection of said analyte. Where desired, the system may further comprise a reader assembly and a communication assembly. The sample collection unit typically allows a sample of bodily fluid collected from a subject to react with reactants contained within the assay assembly for generating a signal indicative of the presence of the analyte of interest. The reader assembly detects the signal, which is then transmitted via the communication assembly to an external device for further processing. Any bodily fluids suspected to contain an analyte of interest can be used in conjunction with the subject system or devices. Commonly employed bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid. In a preferred embodiment, the bodily fluids are used directly for detecting the analytes present therein with the subject fluidic device without further processing. Where desired, however, the bodily fluids can be pre-treated before performing the analysis with the subject fluidic devices. The choice of pre-treatments will depend on the type of bodily fluid used and/or the nature of the analyte under investigation. For instance, where the analyte is present at low level in a sample of bodily fluid, the sample can be concentrated via any conventional means to enrich the analyte. Methods of concentrating an analyte include but are not limited to drying, evaporation, centrifugation, sedimentation, precipitation, and amplification. Where the analyte is a nucleic acid, it can be extracted using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (“Molecular Cloning: A Laboratory Manual”), or using nucleic acid binding resins following the accompanying instructions provided by manufactures. Where the analyte is a molecule present on or within a cell, extraction can be performed using lysing agents including but not limited to denaturing detergent such as SDS or non-denaturing detergent such as thesit, sodium deoxylate, triton X-100, and tween-20. The volume of bodily fluid to be used with a fluidic device of the present invention is generally less than about 500 microliters, typically between about 1 to 100 microliters. Where desired, a sample of 1 to 50 microliters or 1 to 10 microliters can be used for detecting an analyte using the subject fluidic device. A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or as a stand alone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In another embodiment where no active mechanism is required, a patient can simply provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly. In some embodiments a microneedle is about the size of a human hair and has an integrated microreservoir or cuvette. The microneedle may painlessly penetrate the skin and draw a small blood sample. More preferably, the microneedle collects about 0.01 to about 1 microliter, preferably about 0.05 to about 0.5 microliters and more preferably about 0.1 to about 0.3 microliters of capillary blood. In some embodiments a microneedle may be constructed out of silicon and is about 10 to about 200 microns in diameter, preferably about 50 to about 150 microns in diameter, and most preferably about 100 microns in diameter, making their application to the skin virtually painless. To ensure that a capillary is actually struck by a needle, a plurality of microneedles may be used for sample collection. Such microneedles may be of the type marketed by Pelikan (Palo Alto, Calif.) and/or Kumetrix (Union City, Calif.). U.S. Pat. No. 6,503,231 discloses microneedles which may be used with the present invention. Microfabrication processes that may be used in making the microneedles disclosed herein include without limitation lithography; etching techniques such as wet chemical, dry, and photoresist removal; thermal oxidation of silicon; electroplating and electroless plating; diffusion processes such as boron, phosphorus, arsenic, and antimony diffusion; ion implantation; film deposition such as evaporation (filament, electron beam, flash, and shadowing and step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase, and molecular beam), electroplating, screen printing, and lamination. See generally Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading Mass. 1988); Runyan, et al., Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading Mass. 1990); Proceedings of the IEEE Micro Electro Mechanical Systems Conference 1987-1998; Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997). Alternatively, microneedles may be molded in silicon wafers and then plated using conventional wire cutting techniques with nickel, gold, titanium or various other biocompatible metals. In some embodiments microneedles can be fashioned from biopolymers. In some embodiments microneedles may be fabricated and employed for the claimed devices according to the methods of Mukerjee et al., Sensors and Actuators A: Physical, Volume 114, Issues 2-3, 1 Sep. 2004, Pages 267-275. In preferred embodiments a microneedle is only used once and then discarded. In some embodiments a mechanical actuator can insert and withdraw the microneedle from the patient, discard the used needle, and reload a new microneedle. The mechanical technologies developed and manufactured in very high volumes for very small disk drives have a similar set of motion and low cost requirements. In preferred embodiments the actuator is a MEMS (micro machined electromechanical system) device fabricated using semiconductor-like batch processes. Such actuators include without limitation nickel titanium alloy, neumatic, or piezo electric devices. In some embodiments the microneedles are about 1 micron to about 10 microns in thickness, preferably about 2 microns to about 6 microns in thickness, and most preferably about 4 microns in thickness. In some embodiments the microneedles are about 10 microns to about 100 microns in height, preferably about 30 microns to about 60 microns in height, and most preferably about 40 microns in height. FIG. 1 illustrates an exemplary system of the present invention. As illustrated, a fluidic device provides a bodily fluid from a patient and can be inserted into a reader assembly. The fluidic device may take a variety of configurations and in some embodiments the fluidic device may be in the form of a cartridge. An identifier (ID) detector may detect an identifier on the fluidic device. The identifier detector communicates with a communication assembly via a controller which transmits the identifier to an external device. Where desired, the external device sends a protocol stored on the external device to the communication assembly based on the identifier. The protocol to be run on the fluidic device may comprise instructions to the controller of the reader assembly to perform the protocol on the fluidic device, including but not limited to a particular assay to be run and a detection method to be performed. Once the assay is performed on the fluidic device, a signal indicative of an analyte in the bodily fluid sample is generated and detected by a detection assembly. The detected signal may then be communicated to the communications assembly, where it can be transmitted to the external device for processing, including without limitation, calculation of the analyte concentration in the sample. FIG. 2 illustrates exemplary layers of a fluidic device according to the present invention prior to assembly of the fluidic device which is disclosed in more detail below. FIGS. 3 and 4 illustrate the fluidic network within an exemplary fluidic device. The different layers are designed and assembled to form a three dimensional fluidic channel network. A sample collection unit 4 provides a sample of bodily fluid from a patient. As will be explained in further detail below a reader assembly comprises actuating elements (not shown) can actuate the fluidic device to start and direct the flow of a bodily fluid sample and assay reagents in the fluidic device. In some embodiments actuating elements first cause the flow of sample in the fluidic device 2 from sample collection unit 4 to reaction sites 6, move the sample upward in the fluidic device from point G′ to point G, and then to waste chamber 8. The actuating elements then initiate the flow of reagents from reagent chambers 10 to point B′, point C′, and point D′, then upward to points B, C, and D, respectively. The reagents then move to point A, down to point A′, and then to waste chamber 8 in a manner similar to the sample. The fluidic device 2 also includes reagent chambers 32, reactions sites 34, a waste chamber 36, and fluidic channels 38. A sample collection unit 4 in a fluidic device 2 may provide a bodily fluid sample from a patient by any of the methods described above. If necessary, the sample may first be processed by diluting the bodily fluid in a dilution chamber, and or may be filtered by separating the plasma from the red blood cells in a filtration chamber. In some embodiments the sample collection unit, diluting chamber, and filtration chamber may be the same component, and in some embodiments they may be different components, or any two may be the same component and the other may be a separate component. In some embodiments there may be more than one sample collection unit in the fluidic device. In some embodiments it may be desirable to detect the presence of analytes on a cell surface, within a cell membrane, or inside a cell. The difficulty of detecting such analytes is that cells and other formed elements are particulate and components of cells do not readily interact with traditional assay chemistries which are designed to operate on analytes in solution. Cell-surface analytes react slowly and inefficiently with surface bound probes, and analytes inside the cell can not react at all with bound probes. To allow the detection of such analytes, in some embodiments the fluidic device may include a lysing assembly to lyse cells present in the bodily fluid sample. The lysing assembly may be incorporated with the sample collection unit, a dilution chamber, and/or a filtration chamber. In some embodiments the sample collection unit, dilution chamber, and lysing component are within the same element in the fluidic device. In some embodiments the lysing component may be incorporated with an assay reagent described below. Where desired, lysing agents may be impregnated and then dried into porous mats, glass fiber mats, sintered frits or particles such as Porex, paper, or other similar material. Lysing agents may be dried onto flat surfaces. Lysing agents may also be dissolved in liquid diluents or other liquid reagents. In preferred embodiments porous materials are used to store the lysing agents because they can store a lysing agent in dry form likely to be very stable. They also facilitate the mixing of the bodily fluid sample with the lysing agent by providing a tortuous path for the sample as it moves through the porous material. In preferred embodiments such porous materials have a disc shape with a diameter greater than its thickness. In some embodiments lysing agents may be dried onto porous materials using lyophilization, passive evaporation, exposure to warm dry flowing gas, or other known methods. A variety of lysing agents are available in the art and are suitable for use in connection with the subject fluidic device. Preferred lysing agents are non-denaturing, such as non-denaturing detergents. Non-limiting examples of non-denaturing detergents include thesit, sodium deoxylate, triton X-100, and tween-20. The agents are preferably non-volatile in embodiments where the agents are impregnated into a solid porous materials. In some embodiments lysing agents are mixed together. Other materials may be mixed with the lysing agents to modify the lytic effects. Such exemplary materials may be, without limitation, buffers, salts, and proteins. In preferred embodiments lysing agents will be used in amounts that are in excess of the minimum amount required to lyse cells. In some embodiments lysing agents will be used that can lyse both white and red cells. One of the advantages of the present invention is that any reagents necessary to perform an assay on a fluidic device according to the present invention are preferably on-board, or housed within the fluidic device before, during, and after the assay. In this way the only inlet or outlet from the fluidic device is preferably the bodily fluid sample initially provided by the fluidic device. This design also helps create an easily disposable fluidic device where all fluids or liquids remain in the device. The on-board design also prevents leakage from the fluidic device into the reader assembly which should remain free from contamination from the fluidic device. In a preferred embodiment there is at least one reagent chamber. In some embodiments there may be two, three, four, five, six, or more, or any number of reagent chambers as are necessary to fulfill the purposes of the invention. A reagent chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated as described herein, reagents contained in said reagent chambers are released into the fluidic channels within the fluidic device. Reagents according to the present invention include without limitation wash buffers, enzyme substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies, or other materials necessary to run an assay on a fluidic device. An enzyme conjugate can be either a polyclonal antibody or monoclonal antibody labeled with an enzyme that can yield a detectable signal upon reaction with an appropriate substrate. Non-limiting examples of such enzymes are alkaline phosphatase and horseradish peroxidase. In some embodiments the reagents comprise immunoassay reagents. In some embodiments a reagent chamber contains approximately about 50 μl to about 1 ml of fluid. In some embodiments the chamber may contain about 100 μl of fluid. The volume of liquid in a reagent chamber may vary depending on the type of assay being run or the sample of bodily fluid provided. In some embodiments the reagents are initially stored dry and liquified upon initiation of the assay being run on the fluidic device. In a preferred embodiment there is at least one reagent chamber. In some embodiments there may be two, three, four, five, six, or more, or any number of reagent chambers as are necessary to fulfill the purposes of the invention. A reagent chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated as described herein, reagents contained in said reagent chambers are released into the fluidic channels within the fluidic device. Reagents according to the present invention include without limitation wash buffers, substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies or other materials necessary to run an assay on a fluidic device. An enzyme conjugate can be either a polyclonal antibody or monoclonal antibody labeled with an enzyme, such as alkaline phosphatase or horseradish peroxidase. In some embodiments the reagents are immunoassay reagents. In some embodiments a reagent chamber contains approximately about 50 μl to about 1 ml of fluid. In some embodiments the chamber may contain about 100 μl of fluid. The volume of liquid in a reagent chamber may vary depending on the type of assay being run or the sample of bodily fluid provided. In some embodiments the reagents are initially stored dry and liquified upon initiation of the assay being run on the fluidic device. FIG. 5 illustrate a different embodiment of a sealed reagent chamber. FIG. 5 shows a top, side, and bottom view of a reagent chamber. A top layer 11 contains a plurality of bubbles or pouches 13. A bottom layer 15 has a bottom surface that is bonded to the fluidic device base 17 as shown in FIG. 6. The bottom layer 15 has a plurality of fluidic channels 19 dispersed through the entire surface, where each channel traverses the bottom layer 15. The fluid in the reagent chamber is contained within the chamber by pressure burstable seal 21 between the fluidic channel 19 and the chamber 13. The burstable seal 21 is designed such that at a pre-determined pressure the seal bursts allowing the fluid in the chamber 13 to flow out into a fluidic channel 19. FIG. 7 shows an exemplary process of filling the reagent chambers 13 with, for example, reagents. Reagent chambers 13 may be filled with fluid using a fill channel and a vacuum draw channel. The process of filling the reagents involves first removing all the air from the chamber. This is done by drawing a vacuum through the vacuum draw channel. Once the vacuum is drawn, a permanent seal is placed between the fill channel and the vacuum draw channel. Next, required reagents are dispensed into the chamber through the fill channel. Then, a permanent seal is placed between the chamber and the fill channel. This ensures that when the chamber is compressed, the fluid can flow in only one direction, towards the burstable seal. If the compression imparts a pressure larger than the burst pressure of seal, the seal bursts and the fluid flows into the fluidic channel. FIGS. 8 and 9 illustrate an embodiment of a fluidic device in operation with actuating elements as described herein. Fluidic device 2 contains a reagent chamber 10 and a layer of burstable foil 12 enclosing the reagent chamber. Above the burstable foil 12 is a portion of the microfluidic circuit 14. A tough, but elastomeric top cover 16 acts as the top layer of the fluidic device 2. The reader assembly includes a valve actuation plate 18. Securely attached to the plate 18 is a non-coring needle 20 such that when the plate is lowered, the sharp edge of the needle contacts the elastomeric cover 16. The top cover could also be made of flexible silicone material that would act as a moisture impermeable seal. This embodiment also provides a solution to liquid evaporation and leakage from a fluidic device by isolating any liquid reagents in the fluidic device from any dry reagents until the assay is initiated. In preferred embodiments the reagent chamber and sample collection unit are fluidly connected to reaction sites where bound reactant can detect an analyte of interest in the bodily fluid sample using the assay. A reaction site could then provide a signal indicative of the presence of the analyte of interest, which can then be detected by a detection device described in detail herein below. In some embodiments the reactions sites are flat but they may take on a variety of alternative surface configurations. The reaction site preferably forms a rigid support on which a reactant can be immobilized. The reaction site surface is also chosen to provide appropriate light-absorbing characteristics. For instance, the reaction site may be functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other appropriate materials may be used in accordance with the present invention. A reactant immobilized at a reaction site can be anything useful for detecting an analyte of interest in a sample of bodily fluid. For instance, such reactants include without limitation nucleic acid probes, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with a specific analyte. Various commercially available reactants such as a host of polyclonal and monoclonal antibodies specifically developed for specific analytes can be used. One skilled in the art will appreciate that there are many ways of immobilizing various reactants onto a support where reaction can take place. The immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety. These methods are well known in the field of solid phase synthesis and micro-arrays (Beier et al., Nucleic Acids Res. 27:1970-1-977 (1999). Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidin/biotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others. In addition, a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using methods known in the art. In some embodiments there are more than one reaction sites which can allow for detection of multiple analytes of interest from the same sample of bodily fluid. In some embodiments there are two, three, four, five, six, or more reaction sites, or any other number of reaction sites as may be necessary to carry out the intent of the invention. In embodiments with multiple reaction sites on a fluidic device, each reaction site may contain a probe different from a probe on a different reaction site. In a fluidic device with, for example, three reaction sites, there may be three different probes, each bound to a different reaction site to bind to three different analytes of interest in the sample. In some embodiments there may be different probes bound to a single reaction site if, for example, a CCD with multiple detection areas were used as the detection device, such that multiple different analytes could be detected in a single reaction site. The capability to use multiple reaction sites in addition to multiple different probes on each reaction site enables the high-throughput characteristics of the present invention. The present invention allows for the detection of multiple analytes on the same fluidic device. If assays with different luminescent intensities are run in adjacent reaction sites, photons (signals that emanate from the reactions) may travel from one reaction site to an adjacent reaction site, as reaction sites may be constructed of materials that allow photons to travel through the fluidic channels that connect the sites. This optical cross talk may compromise the accuracy of the detected photons. FIGS. 13B and 13C illustrate different embodiments of this invention that can eliminate or reduce the amount of optical cross-talk. Non-linear channels 22 will not allow photons (light) to pass through. Hence, embodiments such as those shown in FIGS. 13B and 13C would not allow signals from a reaction site to contaminate a signal produced from an adjacent site from which a detection device may be detecting. Additionally, the edges or walls of a reaction site may be constructed using optically opaque materials so that light will not escape the wells. In some embodiments the reaction sites are white or opaque. In one exemplary configuration, the bound reactants in the at least one reaction site are localized around the center of said reaction site. In another exemplary configuration, an outer edge of the at least one reaction site is at a distance sufficiently far from said bound reactants to reduce signals unrelated to the presence of said analyte. Distancing the edge of the reaction site from the center area where bound reactants are concentrated allows reduction of interfering signals from the background that does not relate to the presence of the analyte of interest. At least one of these channels will typically have small cross sectional dimensions. In some embodiments the dimensions are from about 0.01 mm to about 5 mm, preferably from about 0.03 mm to about 3 mm, and more preferably from about 0.05 mm to about 2 mm. Fluidic channels in the fluidic device may be created by, for example without limitation, precision injection molding, laser etching, or any other technique known in the art to carry out the intent of the invention. One of the common problems encountered in a microfluidic based assay system is the presence of air or gas bubbles. It is extremely difficult to remove a bubble once it is trapped within a fluidic channel. Bubbles present anywhere in the fluidic circuit, particularly in the reaction sites can compromise the assay capabilities. A bubble may end up occupying part of all of the surface area of a reaction site. Consequently the reader may end up reading a muted signal or no signal at all. FIG. 15 illustrates an embodiment where a bubble could be trapped in a filter 28 before it reaches a reaction site 6. A bubble trapper 28 can be positioned between a sample collection unit 4 and reaction site 6. The bubble trapper can have such a geometry that the bubbles tend to migrate towards the edges of this surface and remain stuck at that service, thereby not entering into the reaction sites. Manufacturing of the fluidic channels may generally be carried out by any number of microfabrication techniques that are well known in the art. For example, lithographic techniques are optionally employed in fabricating, for example, glass, quartz or silicon substrates, using methods well known in the semiconductor manufacturing industries such as photolithographic etching, plasma etching or wet chemical etching. Alternatively, micromachining methods such as laser drilling, micromilling and the like are optionally employed. Similarly, for polymeric substrates, well known manufacturing techniques may also be used. These techniques include injection molding or stamp molding methods where large numbers of substrates are optionally produced using, for example, rolling stamps to produce large sheets of microscale substrates or polymer microcasting techniques where the substrate is polymerized within a micromachined mold. In some embodiments at least one of the different layers of the fluidic device may be constructed of polymeric substrates. Non limiting examples of polymeric materials include polystyrene, polycarbonate, polypropylene, polydimethysiloxanes (PDMS), polyurethane, polyvinylchloride (PVC), and polysulfone. The fluidic device may be manufactured by stamping, thermal bonding, adhesives or, in the case of certain substrates, for example, glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components. In some embodiments the fluidic device is manufactured by ultrasonic or acoustic welding. FIG. 2 shows one embodiment of the invention in which fluidic device 2 is comprised of seven layers. Features as shown are, for example, cut in the polymeric substrate such that when the layers are properly positioned when assembly will form a fluidic network. In some embodiments more or fewer layers may be used to construct a fluidic device to carry out the purpose of the invention. One goal of the present invention is to prevent fluid inside a fluidic device from contacting the components of a reader assembly which may need to remain dry and or uncontaminated, and also to prevent contamination to a detection device within the reader assembly. A leak in the fluidic device could result in liquids, for example reagents or waste, escaping from the fluidic device and contaminating the reader. In other embodiments a liquid absorbing material, such as polymeric materials found in diapers, could be placed within a portion of the fluidic channel or waste chamber to absorb the waste liquid. A non-limiting example of such a polymer is sodium polyacrylate. Such polymers can absorb fluids hundreds of times their weight. Hence, only minute quantities of such polymeric materials may be required to accomplish the goal of absorbing leaked fluids. In some embodiments a waste chamber is filled with a superabsorbent material. In some embodiments leaked liquid may be converted into a gel or other solid or semi-solid form. FIGS. 8 and 9 illustrate an exemplary sequence to initiate the flow of a reagent within the fluidic device. An actuation plate 18 in the reader assembly comprises a non-coring needle or pin 20 which when lowered flexes the top cover 16, as it is preferably made of strong, flexible elastomeric material. However, the easily rupturable foil 12 then ruptures due to the stress induced by the flexing of top cover 16. Valves located downstream to the reagent chamber puncture different areas of foil in the fluidic device and can then work in tandem with a pump within the reader assembly to create a vacuum force to pull the reagent out of the reagent chamber 6 into a fluidic channel and then direct the flow of the reagent to a reaction site. At least one valve is preferably fluidically connected to a pump housed within the reader assembly. The non-coring needle or pin 20 is removed from the fluidic device when the device is removed from the reader assembly. One of the advantages of this embodiment is that no on-chip pump is required, which, at least, decreases the size and cost of the fluidic device, and allows the device to be disposable. In some embodiments a method of manufacturing a fluidic device for detecting an analyte in a biological fluid of a subject comprises providing a plurality of layers of a material, wherein at least one of said layers comprises a sample collection unit, wherein at least one of said layers comprises a filtration site, wherein at least one of said layers comprises a reactant chamber, wherein at least one of said layers comprises a fluidic channel, wherein at least one of said layers comprises a reaction site, wherein at least one of said layers comprises a waste chamber; and ultrasonically welding said layers together such that a fluidic network of channels exists between said sample collection unit, said reactant chambers, said filtration site, said reaction sites, said fluidic channel, and said waste chamber. In preferred embodiments the different layers of the fluidic device are ultrasonically welded together according to methods known in the art. The layers may also be coupled together using other methods, including without limitation stamping, thermal bonding, adhesives or, in the case of certain substrates, for example, glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components The subject system provides an effective means for high throughput and real-time detection of analytes present in a bodily fluid from a subject. The detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. As such, the subject apparatus and systems have a broad spectrum of utility in, e.g. drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification. The subject apparatus and systems are also particularly useful for advancing preclinical and clinical stage of development of therapeutics, improving patient compliance, monitoring ADRs associated with a prescribed drug, and developing individualized medicine. As used herein, the term “subject” or “patient” is used interchangeably herein, which refers to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. In some embodiments a sample of bodily fluid can first be provided to the fluidic device by any of the methods described herein. The fluidic device can then be inserted into the reader assembly. An identification detector housed within the reader assembly can detect an identifier of the fludic device and communicate the identifier to a communication assembly, which is preferably housed within the reader assembly. The communication assembly then transmits the identifier to an external device which transmits a protocol to run on the fluidic device based on the identifier to the communication assembly. A controller preferably housed within the reader assembly controls actuating elements including at least one pump and one valve which interact with the fluidic device to control and direct fluid movement within the device. In some embodiments the first step of the assay is a wash cycle where all the surfaces within the fluidic device are wetted using a wash buffer. The fluidic device is then calibrated using a calibration assembly by running the same reagents as will be used in the assay through the calibration reaction sites, and then a luminescence signal from the reactions sites is detected by the detection means, and the signal is used in calibrating the fluidic device. The sample containing the analyte is introduced into the fluidic channel. The sample may be diluted and further separated into plasma or other desired component at a filter. The separated sample now flows through the reaction sites and analytes present therein will bind to reactants bound thereon. The plasma of sample fluid is then flushed out of the reaction wells into a waste chamber. Depending on the assay being run, appropriate reagents are directed through the reaction sites to carry out the assay. All the wash buffers and other reagents used in the various steps, including the calibration step, are collected in wash tanks. The signal produced in the reaction sites is then detected by any of the methods described herein. The term “analytes” according to the present invention includes without limitation drugs, prodrugs, pharmaceutical agents, drug metabolites, biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol, polysaccharides, nucleic acids, biological analytes, biomarker, gene, protein, or hormone, or any combination thereof. At a molecular level, the analytes can be polypeptide glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. Of particular interest are biomarkers are associated with a particular disease or with a specific disease stage. Such analytes include but are not limited to those associated with autoimmune diseases, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, endocrine disorders, any combinations thereof. Of interest also are biomarkers that are present in varying abundance in one or more of the body tissues (i.e., tissue-specific) including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are affected by various disease, such as different types of cancer (malignant or non-metastatic), autoimmune diseases, inflammatory or degenerative diseases. Also of interest are analytes that are indicative of a microorganism. Exemplary microorganisms include but are not limited to bacterium, virus, fungus and protozoa. Analytes that can be detected by the subject method also include blood-born pathogens selected from a non-limiting group that consists of Staphylococcus epidermidis, Escherichia coli, methicillin-resistant Staphylococcus aureus (MSRA), Staphylococcus aureus, Staphylococcus hominis, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus capitis, Staphylococcus warneri, Klebsiella pneumoniae, Haemophilus influnzae, Staphylococcus simulans, Streptococcus pneumoniae and Candida albicans. Analytes that can be detected by the subject method also encompass a variety of sexually transmitted diseases selected from the following: gonorrhea (Neisseria gorrhoeae), syphilis (Treponena pallidum), clamydia (Clamyda tracomitis), nongonococcal urethritis (Ureaplasm urealyticum), yeast infection (Candida albicans), chancroid (Haemophilus ducreyi), trichomoniasis (Trichomonas vaginalis), genital herpes (HSV type I & II), HIV I, HIV II and hepatitis A, B, C, G, as well as hepatitis caused by TTV. Additional analytes that can be detected by the subject methods encompass a diversity of respiratory pathogens including but not limited to Pseudomonas aeruginosa, methicillin-resistant Staphlococccus aureus (MSRA), Klebsiella pneumoniae, Haemophilis influenzae, Staphlococcus aureus, Stenotrophomonas maltophilia, Haemophilis parainfluenzae, Escherichia coli, Enterococcus faecalis, Serratia marcescens, Haemophilis parahaemolyticus, Enterococcus cloacae, Candida albicans, Moraxiella catarrhalis, Streptococcus pneumoniae, Citrobacter freundii, Enterococcus faecium, Klebsella oxytoca, Pseudomonas fluorscens, Neiseria meningitidis, Streptococcus pyogenes, Pneumocystis carinii, Klebsella pneumoniae Legionella pneumophila, Mycoplasma pneumoniae, and Mycobacterium tuberculosis. A variety of assays may be performed on a fluidic device according to the present invention to detect an analyte of interest in a sample. A wide diversity of labels are available in the art that can be employed for conducting the subject assays. In some embodiments labels are detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful nucleic acid labels include 32P, 35S, fluorescent dyes, electron-dense reagents, enzymes, biotin, dioxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available. A wide variety of labels suitable for labeling biological components are known and are reported extensively in both the scientific and patent literature, and are generally applicable to the present invention for the labeling of biological components. Suitable labels include radionucleotides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, bioluminescent labels, calorimetric labels, or magnetic particles. Labeling agents optionally include, for example, monoclonal antibodies, polyclonal antibodies, proteins, or other polymers such as affinity matrices, carbohydrates or lipids. Detection proceeds by any of a variety of known methods, including spectrophotometric or optical tracking of radioactive or fluorescent markers, or other methods which track a molecule based upon size, charge or affinity. A detectable moiety can be of any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of gel electrophoresis, column chromatograpy, solid substrates, spectroscopic techniques, and the like, and in general, labels useful in such methods can be applied to the present invention. Thus, a label includes without limitation any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical thermal, or chemical means. In some embodiments the label is coupled directly or indirectly to a molecule to be detected such as a product, substrate, or enzyme, according to methods well known in the art. As indicated above, a wide variety of labels are used, with the choice of label depending on the sensitivity required, ease of conjugation of the compound, stability requirements, available instrumentation, and disposal provisions. Non radioactive labels are often attached by indirect means. Generally, a ligand molecule is covalently bound to a polymer. The ligand then binds to an anti-ligand molecule which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound. A number of ligands and anti-ligands can be used. Where a ligand has a natural anti-ligand, for example, biotin, thyroxine, and cortisol, it can be used in conjunction with labeled, anti-ligands. Alternatively, any haptenic or antigenic compound can be used in combination with an antibody. In some embodiments the label can also be conjugated directly to signal generating compounds, for example, by conjugation with an enzyme or fluorophore. Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidoreductases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, and umbelliferone. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, such as luminol. Methods of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence by, for example, microscopy, visual inspection, via photographic film, by the use of electronic detectors such as digital cameras, charge coupled devices (CCDs) or photomultipliers and phototubes, or other detection device. Similarly, enzymatic labels are detected by providing appropriate substrates for the enzyme and detecting the resulting reaction product. Finally, simple colorimetric labels are often detected simply by observing the color associated with the label. For example, conjugated gold often appears pink, while various conjugated beads appear the color of the bead. In some embodiments the detectable signal may be provided by luminescence sources. “Luminescence” is the term commonly used to refer to the emission of light from a substance for any reason other than a rise in its temperature. In general, atoms or molecules emit photons of electromagnetic energy (e.g., light) when then move from an “excited state” to a lower energy state (usually the ground state); this process is often referred to as “radioactive decay”. There are many causes of excitation. If exciting cause is a photon, the luminescence process is referred to as “photoluminescence”. If the exciting cause is an electron, the luminescence process is referred to as “electroluminescence”. More specifically, electroluminescence results from the direct injection and removal of electrons to form an electron-hole pair, and subsequent recombination of the electron-hole pair to emit a photon. Luminescence which results from a chemical reaction is usually referred to as “chemiluminescence”. Luminescence produced by a living organism is usually referred to as “bioluminescence”. If photoluminescence is the result of a spin-allowed transition (e.g., a single-singlet transition, triplet-triplet transition), the photoluminescence process is usually referred to as “fluorescence”. Typically, fluorescence emissions do not persist after the exciting cause is removed as a result of short-lived excited states which may rapidly relax through such spin-allowed transitions. If photoluminescence is the result of a spin-forbidden transition (e.g., a triplet-singlet transition), the photoluminescence process is usually referred to as “phosphorescence”. Typically, phosphorescence emissions persist long after the exciting cause is removed as a result of long-lived excited states which may relax only through such spin-forbidden transitions. A “luminescent label” may have any one of the above-described properties. Suitable chemiluminescent sources include a compound which becomes electronically excited by a chemical reaction and may then emit light which serves as the detectible signal or donates energy to a fluorescent acceptor. A diverse number of families of compounds have been found to provide chemiluminescence under a variety or conditions. One family of compounds is 2,3-dihydro-1,4-phthalazinedione. A frequently used compound is luminol, which is a 5-amino compound. Other members of the family include the 5-amino-6,7,8-trimethoxy- and the dimethylamino[ca]benz analog. These compounds can be made to luminesce with alkaline hydrogen peroxide or calcium hypochlorite and base. Another family of compounds is the 2,4,5-triphenylimidazoles, with lophine as the common name for the parent product. Chemiluminescent analogs include para-dimethylamino and -methoxy substituents. Chemiluminescence may also be obtained with oxalates, usually oxalyl active esters, for example, p-nitrophenyl and a peroxide such as hydrogen peroxide, under basic conditions. Other useful chemiluminescent compounds that are also known include —N-alkyl acridinum esters and dioxetanes. Alternatively, luciferins may be used in conjunction with luciferase or lucigenins to provide bioluminescence. In some embodiments immunoassays are run on the fluidic device. While competitive binding assays, which are well known in the art, may be run in some embodiments, in preferred embodiments a two-step method is used which eliminates the need to mix a conjugate and a sample before exposing the mixture to an antibody, which may be desirable when very small volumes of sample and conjugate are used, as in the fluidic device of the present invention. A two-step assay has additional advantages over the competitive binding assays when use with a fluidic device as described herein. It combines the ease of use and high sensitivity of a sandwich (competitive binding) immunoassay with the ability to assay small molecules. In an exemplary two-step assay shown in FIG. 10, the sample containing analyte (“Ag”) first flows over a reaction site containing antibodies (“Ab”). The antibodies bind the analyte present in the sample. After the sample passes over the surface, a solution with analyte conjugated to a marker (“labeled Ag”) at a high concentration is passed over the surface. The conjugate saturates any of the antibodies that have not yet bound the analyte. Before equilibrium is reached and any displacement of pre-bound unlabelled analyte occurs, the high-concentration conjugate solution is washed off. The amount of conjugate bound to the surface is then measured by the appropriate technique, and the detected conjugate is inversely proportional to the amount of analyte present in the sample. An exemplary measuring technique for a two-step assay is a chemiluminescence enzyme immunoassay as shown in FIG. 11. As is known in the field, the marker can be a commercially available marker such as dioxitane-phosphate, which is not luminescent but becomes luminescent after hydrolysis by, for example, alkaline phosphatase. An enzyme such as alkaline phosphatase is also passed over the substrate to cause the marker to luminesce. In some embodiments the substrate solution is supplemented with enhancing agents such as, without limitation, fluorescein in mixed micelles, soluble polymers, or PVC which create a much brighter signal than the luminophore alone. Moreover, an alkaline phosphatase conjugate with a higher turnover number than that used in the commercial assay is employed. This allows signal generation to proceed much more rapidly and a higher overall signal is achieved. The increased sensitivity of the two-step chemiluminescent enzyme immunoassay (TOSCA) is illustrated in FIG. 12. FIG. 12 shows that for analytes in the picomolar concentration, TOSCA is able to provide a more robust signal (higher sensitivity) than a competitive binding assay. Use of a two-step binding assay thus contributes to higher sensitivity capabilities of the present invention. In some embodiments, unbound conjugates may need to be washed from a reaction site to prevent unbound conjugates from activating the substrate and producing and inaccurate signal. It may be difficult to remove conjugates sticking to the edges of the reaction sites in such a fluidic device if, for example, there is not an excess of a wash solution. To decrease the signal contributed from unbound conjugates stuck to the edge of a reaction site, it may be advantageous to expand the reaction site edge or wall radius in order to distance stuck conjugate from the desired actual detection area, represented by bound probes. FIGS. 14A and 14B illustrates this concept. Reaction site 6 contains reaction surface 24 and edge or wall surface 26. An edge surface 26 is shown at a greater distance from the center of the reaction site 6 than is the edge surface of the prior art design. This allows unbound conjugates to adhere to the edge surfaces and be distanced from bound conjugates, which are concentrated closer to the center of the reaction site 6. In preferred embodiments of the invention the fluidic device includes at least one waste chamber to trap or capture all liquids after they have been used in the assay. In preferred embodiments, there is more than one waste chamber, at least one of which is to be used with a calibration assembly described herein below. On-board waste chambers also allow the device to be easily disposable. The waste chamber is preferably in fluidic communication with at least one reaction site. The subject system is capable of detecting a plurality of analytes. In one aspect, the system can be used to identify and quantify analytes present varying concentrations that differ by more than 3 orders of magnitude. 15689905 theranos ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Jul 9th, 2019 12:00AM Jun 16th, 2016 12:00AM https://www.uspto.gov?id=US10345303-20190709 Image analysis and measurement of biological samples Methods, devices, systems, and apparatuses are provided for the image analysis of measurement of biological samples. 10345303 1. A method for focusing a microscope, comprising: a) mixing a sample containing an object for microscopic analysis with a plurality of reference particles of known sizes, wherein at least two of the reference particles are of different known sizes and contain different fluorophores, to generate a mixture containing the sample and the reference particles; b) positioning the mixture of step a) into a light path of the microscope; c) exposing the mixture of step b) to a light beam of a first wavelength to generate emission of light at a particular wavelength from a first fluorophore of a first of the reference particles of a first of the different known sizes; d) detecting the light emitted from the first fluorophore at the particular wavelength to determine a position of the first of the reference particles; e) focusing the microscope into a first plane of focus suited for objects of similar size to the first of reference particles based on the position of the first of the reference particles within the mixture; f) exposing the mixture of step b) to a second light beam of a second wavelength to generate emission of light at another particular wavelength from a second fluorophore of a second of the reference particles of a second of the different known sizes; g) detecting the light emitted from the second fluorophore at the another particular wavelength to determine a position of the second of the reference particles; and h) focusing the microscope into a second plane of focus suited for objects of similar size to the second of reference particles based on the position of the second of the reference particles within the mixture. 2. The method of claim 1 wherein the microscope comprises a fluorescence microscope. 3. The method of claim 1 wherein said mixing of the sample occurs in a sample chamber of a cuvette. 4. The method of claim 1 wherein the references particles have a cuboidal shape. 5. The method of claim 1 wherein the references particles comprise microspheres. 6. The method of claim 1 wherein the references particles comprise polystyrene. 7. The method of claim 1 wherein said mixing of the sample occurs automatically in a sample processing device. 8. The method of claim 1 wherein the fluorophores are contained within the reference particles. 9. The method of claim 1 wherein the fluorophores are attached to the reference particles. 9 BACKGROUND Analysis of biological samples from a subject may be important for health-related diagnosing, monitoring and/or treating of the subject. A variety of methods are known for the analysis of biological samples. However, in order to provide better diagnosing, monitoring, and/or treating of subjects, improvements in the analysis of biological samples are desired. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. SUMMARY Methods, devices, systems, and apparatuses are described herein for image analysis and/or measurement of biological samples. In one embodiment, a method for the measurement of a component of interest in cells of a cellular population in a sample is provided, including: a) obtaining a quantitative measurement of a marker present in cells of the cellular population in the sample; b) based on the measurement of part a), determining, with the aid of a computer, an approximate amount of cells in the cellular population present in the sample; c) based on the results of part b), selecting an amount of reagent to add to the sample, wherein the reagent binds specifically to the component of interest in cells of the cellular population and is configured to be readily detectable; d) based on the results of part c), adding the selected amount of the reagent to the sample; e) assaying cells in the sample for reagent bound to the compound of interest; and f) based on the amount of reagent bound to the compound of interest, determining the amount of the component of interest in cells of the cellular population of the sample. In an embodiment of the method, the reagent of part c) is an antibody. In another embodiment, a method for focusing a microscope is provided, including: a) mixing a sample containing an object for microscopic analysis with a reference particle having a known size, to generate a mixture containing the sample and reference particle; b) positioning the mixture of step a) into a light path of a microscope; c) exposing the mixture of step a) to a light beam configured to visualize the reference particle; and d) focusing the microscope based on the position of the reference particle within the mixture. In yet another embodiment, provided herein is a method for identifying a cell in a sample containing a plurality of cells, including: a) assaying a cell of the plurality of cells for at least one of: (i) the presence of a cell surface antigen; (ii) the amount of a cell surface antigen; or (iii) cell size; b) assay the cell of a) for at least one of: (i) nuclear size; or (ii) nuclear shape; and c) assaying the cell of a) and b) for quantitative cell light scatter, wherein the combination of information from steps a), b) and c) is used to identify the cell in the sample containing a plurality of cells. It should be understood that embodiments in this disclosure may be adapted to have one or more of the features described in this disclosure. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, FIG. 1A shows a plot of side scatter intensity (x-axis) vs. fluorescence intensity of a mixture cells including natural killer cells and neutrophils labeled with a fluorescent binder that recognizes CD16. FIG. 1B shows a bar graph showing the ratio of nuclear area to total cell area of natural killer cells (“NK”) and neutrophils (“Neu”). FIG. 1C shows natural killer cells stained with anti-CD16 antibody (left column) and a nuclear stain (right column). FIG. 1D shows neutrophils stained with anti-CD16 antibody (left column) and a nuclear stain (right column). FIG. 2A shows platelets labeled with fluorescently conjugated CD41 and CD61 antibodies (bright dots). FIG. 2B shows the intensity distribution of images of fluorescently labeled platelets at 10× (left) and 20× (right) magnification. FIG. 2C shows the intensity distribution of an image of a fluorescently labeled platelet showing measured intensity (light grey) and curve fit to the measured intensity (dark grey). FIG. 3 shows: a plot of curve of showing the relationship between the nominal diameter of standard particles in μm (x-axis) and fluorescence intensity-based size measure in a.u. (y-axis). The figure also shows representative beads at different points along the curve. FIG. 4A shows sphered red blood cells imaged by dark field microscopy in cuvettes that allow only epi-illumination. FIG. 4B shows sphered red blood cells imaged by dark field microscopy in cuvettes that allow a mixture of epi- and trans-illumination. FIG. 5A shows putative band neutrophils stained with anti-CD16 antibody and a nuclear stain. FIG. 5B shows putative segmented neutrophils stained with anti-CD16 antibody and a nuclear stain. FIG. 6 shows a schematic perspective view of an embodiment of an exemplary imaging system. FIG. 7 shows a schematic side view (indicating cross-sections of some elements) of an embodiment of an exemplary imaging system. FIG. 8 shows a schematic cross-sectional side view an embodiment of an exemplary imaging system. DETAILED DESCRIPTION It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a compound” may include multiple compounds, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings: “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for a sample collection well, this means that the sample collection well may or may not be present, and, thus, the description includes both structures wherein a device possesses the sample collection well and structures wherein sample collection well is not present. The term “cells,” as used in the context of biological samples, encompasses samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), cells, virions, and substances bound to small particles such as beads, nanoparticles, or microspheres. Quantitative Microscopy In some embodiments, methods, systems, and devices are provided herein for quantitative microscopy. Quantitative microscopy may involve one or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy methods to measure one or more cellular attributes. Any of these methods may provide morphometric information regarding cells. Such information may be measured quantitatively. In some embodiments, for quantitative microscopy, a sample is analyzed by two or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy. Quantitative microscopy may include use of image analysis techniques and/or statistical learning and classification methods to process images obtained by microscopy. Multiple different cellular attributes may be measured by during quantitative microscopy. Cellular attributes that may be measured include, without limitation: Physical attributes: e.g. cell size, volume, conductivity, low and high angle scatter, and density. Morphological attributes: e.g. cell shape, area, size, and lobularity; nucleus shape area, size, and lobularity; mitochondria shape, area, size, and lobularity; and ratio of nuclear volume to cell volume. Intracellular attributes: e.g. nucleus centroid/cell centroid distance (i.e. distance between the center of the nucleus and the center of the cell), nucleus lobe centroid distance (i.e. distance between the center of different lobes of the nucleus), distribution of proteins with the cells (e.g. actin, tubulin, etc.), and distribution of organelles within the cells (e.g. lysosomes, mitochondria, etc.). Biochemical attributes: e.g. expression level of cellular proteins, cell surface proteins, cytoplasmic proteins, nuclear proteins, cellular nucleic acids, cell surface nucleic acids, cytoplasmic nucleic acids, nuclear nucleic acids, cellular carbohydrates, cell surface carbohydrates, cytoplasmic carbohydrates, and nuclear carbohydrates. In some embodiments, methods, systems, and devices are provided herein for the quantitative measurement of two, three, four, five or more attributes of cells in a sample, wherein the attributes are selected from physical attributes, morphological attributes, intracellular attributes, and biochemical attributes. In some embodiments, methods, systems, and devices are provided herein for the quantitative measurement of two, three, four, five or more attributes of cells in a sample, wherein the attributes are selected from: cell size, cell volume, cell conductivity, cell low angle light scatter, cell high angle light scatter, cell density, cell shape, cell area, cell lobularity, nucleus shape, nucleus area, nucleus size, nucleus lobularity, mitochondria shape, mitochondria area, mitochondria size, mitochondria lobularity, ratio of nuclear volume to cell volume, nucleus centroid/cell centroid distance, nucleus lobe centroid distance, distribution of proteins with the cells (e.g. actin, tubulin, etc.), distribution of organelles within the cells (e.g. lysosomes, mitochondria, etc.), expression level of a cellular protein, expression level of a cell surface protein, expression level of a cytoplasmic protein, expression level of a nuclear protein, expression level of a cellular nucleic acid, expression level of a cell surface nucleic acid, expression level of a cytoplasmic nucleic acid, expression level of a nuclear nucleic acid, expression level of a cellular carbohydrate, expression level of a cell surface carbohydrate, expression level of a cytoplasmic carbohydrate, and expression level of a nuclear carbohydrate. In some embodiments, methods are provided for the quantitative measurement of two, three, four, five, or more attributes of cells in a biological sample by microscopy, wherein the method may include one or more of the following steps or elements. The attributes of the cells quantitatively measured may be selected from the attributes listed in the immediately above paragraph. The biological sample may be pre-treated prior to microscopy. Pre-treatment may include any procedure to aid in the analysis of the sample by microscopy, including: treatment of the sample to enrich for cells of interest for microscopy, treatment of the sample to reduce components in the sample which may interfere with microscopy, addition of material to the sample to facilitate analysis of the sample by microscopy (e.g. diluents, blocking molecules to reduce non-specific binding of dyes to cells, etc.). Optionally, prior to microscopy, a sample may be contacted with one or more binders that specifically bind to a cellular component. Binders may be directly linked to a dye or other particle for the visualization of the binder. A sample may also be contacted with a secondary binder, which binds to the binder which binds to the cellular component. A secondary binder may be directly linked to a dye or other particle for the visualization of the binder. Prior to microscopy, a sample may be assayed in a spectrophotometer. For microscopy, a biological sample containing or suspected of containing an object for microscopic analysis may be introduced into a sample holder, such as a slide or a cuvette. The sample holder containing a sample may be introduced into a device configured to perform quantitative microscopy on the sample. The microscope may be coupled with an image sensor to capture images generated through the microscope objective. In the device, multiple images of the sample may be acquired by microscopy. Any one or more of quantitative fluorescence microscopy, quantitative dark field microscopy, quantitative bright field microscopy, and quantitative phase contrast microscopy may be used to obtain images of the sample. Optionally, images of the entire sample in the sample holder may be acquired by microscopy. Multiple fields of view of the microscope may be required capture images of the entire sample in the sample holder. The sample holder may move relative to the microscope or the microscope may move relative to the sample holder in order to generate different field of views in order to examine different portions of the sample in the sample holder. Multiple images of the same field of view of the sample in the sample holder may be acquired. Optionally, multiple filters may be used with the same type of microscopy and the same field of view of the sample, in order to acquire different images of the same sample which contain different information relating to the sample. Filters that may be used include, without limitation band-pass and long pass filters. Filters may permit the passage of certain wavelengths of light, and block the passage of others. Optionally, multiple types of microscopy (e.g. fluorescence, dark field, bright field, etc.) may be used to acquire images of the same field of view of the sample, in order to acquire different images of the same sample which contain different information relating to the sample. Optionally, video may be used to collect microscopy images. Optionally, microscopy images may be collected in 3-D. For microscopy performed as described herein, the device or system may be configured to link information relating to a cell in one image of the sample to the same cell in a different image of the sample. Based on different images of the same sample and/or same cells, multiple attributes of cells in the sample may be determined. In some aspects, the combination of multiple attributes/multiple pieces of information about cells in a sample may be used to reach a clinical decision and/or to draw a conclusion about the cells that would not be possible based on information from only a single attribute of the cells. In some embodiments, devices and systems are provided for the quantitative measurement of two, three, four, five, or more attributes of cells in a biological sample by microscopy. In some embodiments, the device or system contains both a microscope or cytometer and a spectrophotometer. The device or system may further contain a fluid handling apparatus, which is configured to move sample between a spectrophotometer and a microscope or cytometer. In some embodiments, devices and systems for performing the methods disclosed herein are configured as described in U.S. patent application Ser. No. 13/244,947, which is hereby incorporated by reference in its entirety. Dynamic Dilution In some embodiments, methods, systems, and devices are provided herein for dynamic dilution of cell-containing samples. In one embodiment, a method for dynamic dilution of a sample may include one or more of the following steps or elements. One or more stains may be added to a biological sample containing cells. The mixture of stain and sample may be incubated. The cells in the mixture of stain and sample may be washed to remove excess (unbound) stain. The stained, washed cells may be prepared in a desired volume for further analysis. The stained, washed cells may be analyzed to determine the approximate number or concentration of cells in the sample or a portion thereof. Based on the number or concentration of stained cells in the sample or portion thereof, a volume of sample may be obtained for further analysis, such that a desired number or concentration of cells for further analysis is obtained. In some embodiments, samples may be diluted as described in U.S. patent application Ser. No. 13/355,458, which is hereby incorporated by reference in its entirety. Dynamic Staining In some embodiments, methods, systems, and devices are provided herein for dynamic staining of cell-containing samples. Measurement of a Component of Interest in Cells of a Cellular Population In one embodiment, a method for dynamically staining a cell sample relates to a method for the measurement of a component of interest in cells of a cellular population in a sample. As used herein, a “component of interest” refers to any type of molecule that may be present in a cell. “Components of interest” include proteins, carbohydrates, and nucleic acids. Typically, a “component of interest” is a specific species of molecule, such as a particular antigen. Non-limiting examples of “components of interest” of a cell include: CD5 protein, CD3 protein, etc. As used herein, a “cellular population” refers to any grouping of cells, based on one or more common characteristics. A “cellular population” may have any degree of breadth, and may include a large number of cells or only a small number of cells. Non-limiting examples of “cellular populations” include: red blood cells (RBCs), white blood cells, B-cells, CD34+ B-cells, etc. In some circumstances, it may be desirable to quantitatively measure a component of interest in cells of a certain cellular population in a sample from a subject. For example, it may be desirable to measure the extent of CD5 (the “component of interest”) expression in B-cells (the “cellular population”) in a sample of cells from a subject having chronic lymphocytic leukemia. Detection and/or measurement of the level of a component of interest may involve use of a binder molecule that has affinity for the specific component of interest, such an antibody or single chain variable fragment (“scFv”). In order to accurately measure the level of a specific component of interest in cells in a method involving the use of a binder molecule, it may be advantageous to expose the cells to the binder molecule at a specific ratio or range of ratios of binder molecule to target component of interest. For example, it may be desirable to provide an amount of binder to a collection of cells such that there is a linear relationship between the amount of component of interest in the cells and the amount of binder which binds to the component of interest in the cells. For example, it may be undesirable to have too little binder (such that there is not enough binder to bind to all of the components of interest in the cells) or to have too much binder (such that the binder binds non-specifically to the cells). Using traditional methods, it may be difficult to provide an appropriate level of binder to a sample in order to accurately measure the amount of component of interest in a cellular population in the sample, due to the fact that the size of the cellular population and/or component of interest in the sample may vary significantly between different samples. In contrast, provided herein are methods, devices, and systems for dynamically staining cell samples to accommodate samples containing a wide range of cellular populations and components of interest. In one embodiment, a method for the measurement of a component of interest in cells of a cellular population in a sample is provided. The method is not limited to but may include one or more of the following steps. First, a quantitative or semi-quantitative measurement of a marker present in cells of the cellular population may be obtained. The marker may be any marker which is present in the cellular population of interest, and it may be a marker exclusively present in the cellular population of interest (i.e. not present in any other cell types in the sample). Measurement of the marker may be by any method, provided the method does not destroy the sample, and may use any system or device. A binder which recognizes the marker may be mixed with the sample. The binder may have a molecule attached to facilitate detection of the binder (e.g. a fluorescent marker). In an example, the marker may be detected and/or measured by fluorescence spectrophotometry. In embodiments in which the binder has a fluorescent label and the marker is measured by fluorescence spectrophotometry, fluorescence spectrophotometry may be used to measure a bulk fluorescence from the sample or a portion thereof, rather than to measure fluorescence from individual cells. Second, based on the quantitative or semi-quantitative measurement of the marker present in cells of the cellular population, an approximate amount or concentration of cells of the cellular population present in the sample may be determined. The approximate number or concentration of cells in the cellular population present in the sample may be determined, for example, through the use of a calibration curve. Calibration curves may be prepared and/or may be available for different markers/binder combinations. Calibration curves may be developed, for example, by measuring the signal from known numbers of cells having a certain marker and bound with a certain binder. In some embodiments, the approximate amount or concentration of cells of the cellular population present in the sample may be determined with the aid of a computer. In some aspects, the approximate number or concentration of cells in the cellular population present in the sample may be determined at no more than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, or 500% off the true concentration. Third, based on the determined amount or concentration of cells in the cellular population present in the sample, an amount of a reagent to add to the sample may be selected, wherein the reagent binds specifically to the component of interest in cells of the cellular population. The reagent may be any molecule that binds specifically to the component of interest. For example, the reagent may be a binder, such as an antibody. The reagent may be configured such that it may be readily detected (e.g. by fluorescence or luminescence) and/or such that under at least some circumstances, it produces a detectable signal. In some embodiments, the reagent may be attached to a molecule to facilitate detection of the reagent. The amount of reagent added to the sample may be any amount. In some embodiments, an amount of reagent may be added to the sample such that there is an approximately linear relationship between the level of the component of interest in individual cells of the cellular population and the signal produced by the reagents bound to the components of interest in individual cells of the cellular population. Fourth, after the amount of a reagent to add to the sample is selected, the selected amount of reagent may be added to the sample. Fifth, cells in the sample may be assayed for reagent bound to the compound of interest. Sixth, based on the amount of reagent bound to the component of interest, the amount of the component of interest in cells of the cellular population of the sample may be determined. In some embodiments, the fifth and sixth steps may be performed together such that the measurement of the amount of reagent bound to the component of interest is sufficient to identify the amount of the component of interest in cells of the cellular population of the sample. In other embodiments, provided herein are systems and devices for the dynamic staining of samples. The systems and devices may contain, without limitation, a spectrophotometer and a fluorescence microscope. In an embodiment, a system or method for dynamic staining of samples may be configured as described in U.S. patent application Ser. No. 13/244,947 or 13/355,458, which are hereby incorporated by reference in their entirety. In an embodiment, the systems and devices may be automated to determine an amount of a reagent to add to a sample to determine the amount of a component of interest in cells of a cellular population in a sample, based on a measurement of an amount of a marker present in cells of the cellular population. In another embodiment, the systems and devices may be automated to determine an amount of a reagent to add to a sample to determine the amount of a first component in cells of a cellular population in a sample, based on a measurement of an amount of a second component in the cells of the cellular population in a sample. Context-Based Autofocus In some embodiments, methods, systems, and devices are provided herein for context-based microscopy autofocus. The length of many clinically relevant objects in biological samples spans a wide range. For example, bacteria are commonly about 1 μm in length, erythrocytes are commonly about 6-8 μm in length, leukocytes are commonly about μm 10-12 in length, epithelial cells may be about 100 μm in length, and cast and crystals may be about 200-300 μm in length. In addition, there are many amorphous elements such as urinary mucus which exist as strands or filaments which may range from about 10-400 μm in length. A challenge in microscopy is to acquire precise images of fields of view that contain an unknown and arbitrary composition of objects of various sizes, such as those described above. Since the depth of focus of many microscopy objectives is limited (typically about 1-10 μm), for a given field of view containing elements of various sizes, multiple focal planes for the given field of view may need to be acquired in order to obtain accurate sharp images of the various elements within the field of view. A problem with many traditional autofocus methods is that they are designed to focus on the dominant feature in a field of view, so that the sharpness of that feature can be maximized. Such methods may be ineffective for capturing elements of various sizes in a sample. In one embodiment, a method is provided for context-based microscopy autofocus, which includes mixing a reference particle of a known size with a sample for microscopy. The reference particle may be detected during microscopy, and used to achieve focusing. By use of the reference particles to achieve focusing, focal planes may be selected independent from the overall image composition. In one aspect, the method may be useful to achieve focusing on a sample having an unknown composition of elements. In another aspect, the method may support the generation of precise planes of focus, independent of the precision of the microscope or microscopy-related hardware. For example, when a plane of focus is selected based on feedback from the sharpness of the reference particles within a field of view, precise focusing on various elements within a sample may be achieved, regardless of the level of accuracy or precision of the focusing hardware [e.g. the microscope objective actuation, the shape of a sample holder (e.g. a cuvette or slide), or the non-uniformity of a sample holder]. In an embodiment, a reference particle may contain or be labeled with a molecule to facilitate detection of the particle during microscopy. In one example, a reference particle may be labeled with or contain a fluorescent molecule. The fluorescent molecule may absorb light at a first wavelength of light, and, in response to the absorbance of the first wavelength of light, it may emit light at a second wavelength. In an embodiment, a sample mixed with a reference particle may be exposed to a wavelength of light capable of exciting a fluorescent molecule in a reference particle of interest and emitted light from the fluorescent molecule may be measured. Specific fluorescence from a reference particle may be used to detect reference particles, and information from detected reference particles in a sample may be used for autofocusing. Reference particles may be of any shape, such as spherical or cuboid. Reference particles include, without limitation, beads and microspheres. Reference particles may be of any size, such as with a diameter or length of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, or 500 μm. Reference particles may contain any material, such as polystyrene, polystyrene, latex, acrylic, or glass. In one embodiment, a method for focusing a microscope is provided, which may include one or more of the following steps. First, a sample containing an object for microscopic analysis (e.g. bacteria, erythrocytes, etc.) may be mixed with a reference particle. The reference particle may contain or be labeled with a molecule to facilitate the detection of the particle, such as a fluorophore. Second, the mixture containing the reference particle and the sample may be positioned into a light path of a microscope, for example in cuvette or slide. Optionally, the reference particle may sink to the bottom of the sample in the cuvette or slide, such that the reference particle rests on the lowest surface of the cuvette or slide which is in contact with the sample. The microscope may be of any type, including a fluorescent microscope. Third, the mixture may be exposed to a light beam configured to visualize the reference particle. The light beam may be of any type, and may be of any orientation relative to the reference particle. For example, the light beam may be at a wavelength capable of exciting a fluorophore within or attached to the reference particle. Exposure of the reference particle to the light beam may result in, for example, the generation and emission of light at a particular wavelength from the reference particle and/or scattering of light from the reference particle. Fourth, light emitted or scattered from the reference particle may be detected by the microscope, and this information may be used in order to determine the position of the reference particle within the mixture and/or to focus the microscope. Optionally, the microscope may be focused into a plane of focus suited for objects of similar size to the reference particle. An image from the microscope may be obtained by an image sensor. The image may be saved and/or or used for image analysis. In some embodiments, a plurality of reference particles may be added to a sample. The reference particles may be all of the same size, or they may be of different sizes. In some embodiments, reference particles of different sizes contain different fluorophores. Different fluorophores may have different absorption wavelengths, different emission wavelengths, or both. In an embodiment, a method for focusing a microscope is provided, including mixing more than one reference particle of known size with a sample for microscopy, wherein at least two of the reference particles are of different sizes and contain different fluorophores. The method may include one or more of the following steps. First, a sample containing an object for microscopic analysis may be mixed with two or more reference particles, wherein at least two of the reference particles are of different sizes and contain different fluorophores (i.e. the “first reference particle” and the “second reference particle”). Second, the mixture containing the reference particles and the sample may be positioned into the light path of a microscope. The microscope may be of any type, including a fluorescent microscope. Third, the mixture may be exposed to a light beam configured to visualize the first reference particle. The light beam may be of any type, and may be of any orientation relative to the first reference particle. For example, the light beam may be at a wavelength capable of exciting a fluorophore within or attached to the first reference particle. Exposure of the first reference particle to the light beam may result in the generation and emission or scattering of light at a particular wavelength from the first reference particle. Fourth, light emitted or scattered from the first reference particle may be detected, and this information may be used in order to determine the position of the first reference particle within the mixture and/or to focus the microscope into a first plane of focus suited for objects of similar size to the first reference particle. Optionally, an image of the first focal plane may be obtained by an image sensor. The image may be saved and/or or used for image analysis. Fifth, the mixture may be exposed to a light beam configured to visualize the second reference particle. The light beam may be of any type, and may be of any orientation relative to the second reference particle. Exposure of the second reference particle to the light beam may result in the generation and emission or scattering of light at a particular wavelength from the second reference particle. Sixth, light emitted or scattered from the second reference particle may be detected, and this information may be used in order to determine the position of the second reference particle within the mixture and/or to focus the microscope into a second plane of focus suited for objects of similar size to the second reference particle. Optionally, an image of the second focal plane may be obtained by an image sensor. The image may be saved and/or or used for image analysis. In other embodiments, provided herein are systems and devices for context-based microscopy autofocus. The systems and devices may contain, without limitation, a fluorescence microscope. In an embodiment, the systems and devices may be automated to add a reference particle having a known size to a sample for microscopic analysis to form a mixture, to position the mixture into the light path of a microscope, to expose the mixture to a light beam configured to visualize the reference particle, to determine the position of the reference particle within the mixture and/or to focus the microscope based on the position of the reference particle within the mixture. In an embodiment, a system or method for context-based microscopy autofocus may be configured as described in U.S. patent application Ser. No. 13/244,947 or 13/355,458, which are hereby incorporated by reference in their entirety. Cell Counting/Enumerating Cells In some embodiments, methods, systems, and devices are provided herein for enumerating cells in a sample. Certain traditional methods for staining cell-containing samples involve staining a specific volume of a sample (e.g. blood) with a particular concentration or amount of stain. This may be referred to as “volumetric staining.” Volumetric staining has a number of shortcomings, including: (i) it fails to address normal variations in cell subpopulations between different subjects (e.g. different healthy subjects may have widely different numbers of subpopulations of cells, such as CD3+ T cells) and (ii) it fails to address that pathological samples may have dramatically different cellular composition when compared to healthy samples (e.g. the percent and number of CD3+ T cells in blood are greatly elevated in patients with T cell leukemia over the percent and number in healthy subjects). For accurate and reproducible staining of cell-containing samples, it may be desirable to add a specific amount of a cellular stain (e.g. DNA dyes, antibodies, binders, etc.) to a specific number or concentration of cells. For example, it may be desirable to add 0.2 micrograms of a particular stain for white blood cells per 1000 white blood cells in a sample. After an incubation period of the dye with the cells, a sample may be washed to remove excess (unbound) dye, prepared to an appropriate cell density for microscopy, and imaged. In this manner, a stain and staining procedure can be optimized or normalized for a particular cell number. In one embodiment, a method is provided for enumerating the number of cells in a sample. The method may include one or more of the following steps or elements. A first stain that will bind to the cells of interest in a sample may be added to the sample. The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed by microscopy. Enumerating Cells in a Sample Prior to Determining the Ploidy of Cells In one embodiment, a method for enumerating cells in a sample prior to determining the ploidy of the cells is provided, wherein the method includes one or more of the following steps or elements. A first stain which binds to the cells of interest in the sample and that is spectrally distinct from the emission of a DNA dye may be added to the sample. The cells of interest may be, for example, white blood cells. The first stain may be, for example, a fluorphore-conjugated antibody. A fluorphore-conjugated antibody may bind to, for example, a widely expressed antigen (e.g. CD45), or it may bind to an antigen expressed by a specific sub-population of cells (e.g. CD3 for T cells). The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. The second stain may be a DNA dye, such as propidium iodide or 4′,6-diamidino-2-phenylindole (“DAPI”). The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed for ploidy by microscopy. In methods for determining the ploidy of cells, it may be important to combine a given number of cells for ploidy analysis with a certain amount or concentration of DNA stain, in order to generate accurate and consistent data regarding the ploidy of the cells. In one example, the number of white blood cells per volume of blood may vary within a healthy population, and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for ploidy analysis. The methods provided above for determining the ploidy of cells may also be performed for any method in which enumerating cells in a sample prior to determining an attribute related to the nucleic acid content of a cell is desired. For example, the above method may be used with methods involving enumerating cells in a sample prior to determining the morphology of nuclei of cells, the size of the nuclei of cells, the ratio of nuclei area to total cell area, etc. Enumerating Cells in a Sample Prior to Cell Surface Staining In one embodiment, a method for enumerating cells in a sample prior to cell surface staining is provided, wherein the method includes one or more of the following steps or elements. A first stain which binds to the cells of interest in the sample and that is spectrally distinct from the emission of a dye to be used to stain the surface of the cells of interest may be added to the sample. The cells of interest may be, for example, white blood cells. The first stain may be, for example, a DNA dye (e.g. propidium iodide or DAPI). The mixture of first stain and sample may be incubated. The cells in the mixture of first stain and sample may be washed to remove excess (unbound) stain. The washed cells stained with a first stain may be prepared in a desired volume for further analysis. The washed cells stained with a first stain may be analyzed by a spectrophotometer. Data from the spectrophotometer may be used to enumerate the approximate number of cells in the sample. Based on the number of cells in the sample, a second stain that will bind to cells of interest in a sample may be added to the sample. The second stain may be, for example, a fluorphore-conjugated antibody. A fluorphore-conjugated antibody may bind to, for example, a widely expressed antigen (e.g. CD45), or it may bind to an antigen expressed by a specific sub-population of cells (e.g. CD3 for T cells). The mixture of second stain and sample may be incubated. The cells in the mixture of second stain and sample may be washed to remove excess stain. The washed cells stained with a second stain may be prepared in a desired volume for further analysis. The washed cells stained with a second stain may be analyzed for a cell surface antigen by microscopy. In methods for cell surface antigen staining of cells, it may be important to combine a given number of cells for analysis with a certain amount or concentration of cell surface antigen stain, in order to generate accurate and consistent data regarding the content of the cell surfaces. In one example, the number of white blood cells per volume of blood may vary within a healthy population, and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for cell surface antigens. In another example, the number of white blood cells per volume of blood may vary between healthy and sick subjects, and thus, it may be desirable to determine the number of white blood cells in a volume of blood before attempting to stain the white blood cells for cell surface antigens. As a theoretical example, a healthy patient may have 100 cells per microliter of blood, and 10 of these are CD3+ T cells, while a lymphoma patient may have 1000 cells per microliter of blood and 900 of these are CD3+ T cells. If 100 microliters of blood is traditionally stained, then a sample from a healthy subject would contain 10,000 total cells/1000 CD3+ T cells, and a sample from a lymphoma subject would contain 100,000 total cells/90,000 CD3+ T cells. In this theoretical example, the pathological sample contains ten times the number of total cells and ninety times the number of CD3+ T cells, when compared to a sample from a healthy subject. If the pathological sample would be stained with a traditional “volumetric staining” approach that is optimized for samples from healthy subjects, the sample from the lymphoma subject may be insufficiently stained. Accordingly, methods provided herein may be used to enumerate cells in a sample before cell staining, in order to generate accurate and/or consistent data regarding samples. Method Speeds Methods, systems, and devices provided herein may support the rapid development of sample analysis results. Any of the methods provided herein may provide analysis results in less than about 6 hours, 4 hours, 3 hours, 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes from the initiation of the method. Rapid analysis results may be used to provide real-time information relevant to the treatment, diagnosis, or monitoring of a patient. For example, rapid analysis results may be used to guide a treatment decision of a surgeon operating on a patient. During surgery, a surgeon may obtain a biological sample from a patient for analysis. By receiving rapid analysis of a sample by a method provided herein, a surgeon may be able to make a treatment decision during the course of surgery. In another example, rapid analysis results provided by the methods, systems, and devices provided herein may support a patient receiving information regarding a biological sample provided by the patient at a point of service during the same visit to the point of service location in which the patient provided the biological sample. Analysis of Pathology Samples Any of the methods provided herein may be used to analyze cell-containing pathology samples. If a pathology sample is a tissue sample, the sample may be treated to separate the cells of the tissue into individual cells for analysis by methods provided herein. Analysis of pathology samples by any of the methods provided herein may support rapid pathology analysis, and the rapid integration of pathology analysis results into a treatment decision for a patient. Additional Procedures in Response to Analysis Results In some embodiments, the devices and systems provided herein may be configured to trigger an additional procedure in response to a result obtained by an analysis method provided herein. In one example, a device or system may be programmed to provide an alert to a user if a result is outside of an expected range. The alert may prompt a user or medical personnel to, for example, manually analyze a sample, check the device or system for proper operation, etc. In another example, a device or system may be programmed to automatically run one or more additional tests on a sample if a result is within or outside of a certain range. In some examples, devices and systems provided herein are capable of performing multiple different assays, and the device or system may run an addition assay to verify or further investigate a result generated by a method provided herein. EXAMPLES Example 1 A sample of cells containing blood leukocytes including natural killer cells and neutrophils was obtained. The sample was treated with a fluorescently labeled identity binder (anti-CD16 binder), which binds to both natural killer cells and neutrophils. The sample was also treated with a nuclear dye (DRAQ5). The sample was imaged by fluorescence microscopy and dark field microscopy. The level of fluorescence and light side scatter of different cells in the sample was recorded and analyzed. Segmented images containing the anti-CD16 binder signal provided quantitative information on the fluorescence intensity of each cell (corresponding to the CD16 expression level), and also the size of each cell. The darkfield image provided quantitative information on the scatter properties of each cell. Images containing the DNA dye signal were segmented to determine the fluorescent intensity, size, and shape of the nucleus. As shown in FIG. 1A, two major groupings cells were identified based on the measurement of CD16 fluorescence and light scatter of the different cells. The group of cells with bright/high CD16 fluorescence signal and high scatter (FIG. 1A, right circle) are neutrophils. The group of cells with intermediate CD16 fluorescence signal and low scatter (FIG. 1A, left circle) are natural killer cells. While the measurement of fluorescence and light scatter of the different cells provides enough information to classify most cells in the sample as either natural killer cells or neutrophils, for some cells, measurement of these attributes does not provide enough information to classify the cells with a high degree of accuracy. For example, the measurement of fluorescence and light scatter of cells does not provide enough information to accurately classify the small group of cells in the smallest circle in FIG. 1A (i.e. the middle circle). In order to identify whether the cells in the smallest circle were natural killer cells or neutrophils, images of the nuclear (DRAQ5) and total cell (anti-CD16) staining of these were examined. Quantitative measurements of the area of the nucleus and the total cell volume of the cells were obtained, and the ratio of nuclear area to total cell area was determined. As shown in FIG. 1B, there is a clear difference in the ratio of nuclear area to total cell area between natural killer cells (“NK”) and neutrophils (“Neu”). Thus, the use of quantitative microscopy to examine multiple attributes of cells in the sample was used to allow for unambiguous classification of cells. FIG. 1C shows images of natural killer cells from the smallest circle in FIG. 1A. All images have the same length scale. The images on the left are cells stained for total cell area (anti-CD16), and the images on the right are the same cells with just nuclear staining (DRAQ5). The images on the top and bottom row are different examples of the natural killer cells. FIG. 1D shows images of neutrophils from the smallest circle in FIG. 1A. All images have the same length scale. The images on the left are cells stained for total cell area, and the images on the right are the same cells with just nuclear staining. The images on the top and bottom row are different examples of the natural killer cells. In addition, the nucleus of a neutrophil has a distinctive multi-lobed shape, whereas the nucleus of a natural killer cell (and other lymphocytes) is round, even, and smooth. Image segmentation algorithms may be used to identify and classify cells based on the shape of the nucleus itself. Example 2 A sample containing platelets was obtained. The platelets were labeled with fluorescently conjugated anti-CD41 and anti-CD61 antibodies. Beads having a diameter of 3 μm were also added to the sample. The sample was imaged at 10× and 20× magnifications (FIG. 2A). The intensity of fluorescence distribution for individual platelets was measured (from both antibodies), and determined have a Gaussian shape (FIG. 2B). The measured values of fluorescence of individual platelets was plotted, and a fit for the intensity distribution was determined (FIG. 2C). In FIG. 2C, the grey line is the measured fluorescence intensity across an individual platelet, and the black line is the fit. Parameters of the fit, such as the mean of the Gaussian, the variance, the volume, the width, and the area of the base, etc., can be evaluated as predictors of platelet volume. The volume of the Gaussian and the width of the fit have been determined to correlate closely with mean platelet volume. For the above measurements, the 3 μm beads served as references and fiducials for controlling variance in accurately determining the best plane of focus, and the effect of this variance on the measurement of volume. In addition, platelet size estimated based on fitting a 2D model can be calibrated to be in the normal range (FIG. 3). Example 3 A sample containing red blood cells (“RBCs”) was obtained. The RBCs were treated to swell the RBCs into a sphere-like shape, by treating the RBCs with a low concentration of a surfactant (DDAPS or SDS). The RBCs were imaged by dark field microscopy in two different cuvettes: (A) a cuvette that allowed only pure epi-illumination (FIG. 4A); and (B) a cuvette that allowed a mixture of both epi and trans-illumination (FIG. 4B). The RBCs were much more visible in the cuvette that allowed a mixture of both epi and trans-illumination over the cuvette that allowed only pure epi-illumination (FIG. 4). Example 4 A sample containing neutrophils was obtained. In neutrophils, the shape and chromatin morphology of the nucleus may indicate whether it is an immature “band” neutrophil or a mature “segmented” neutrophil. Band neutrophils are immature neutrophils that have recently emerged from the bone marrow. An increase in the proportion of band neutrophils may indicate an ongoing infection or inflammation. The sample was mixed with a fluorescently labeled anti-CD16 antibody, which recognizes CD16, a cell surface receptor on neutrophils. The sample was also stained with a fluorescent nuclear dye. The sample was imaged by fluorescence microscopy, to obtain both nuclear staining and CD16 staining data from the cells. Band neutrophils generally have similar expression levels of CD16 as mature segmented neutrophils, and thus cannot be distinguished by virtue of fluorescence intensity from CD16 staining alone. Image analysis including image segmentation is used to recognize nuclear staining and morphologies of band neutrophils and segmented neutrophils, thereby allowing classification of the cells. The size, shape, and fluorescence intensity of the nucleus of cells are examined. In addition, the nuclei are analyzed to determine the number of lobes (peaks in intensity within the nuclear area), distance between the lobes of the nucleus, and the changes in curvature (second derivative) of the nuclear outline. FIG. 5A shows representative images of band neutrophils. In these images, the nucleus appears as a light grey, and the cell cytoplasm appears as a darker grey. As neutrophils differentiate through the myeloid lineage, they develop a characteristic “U” shaped nucleus prior to reaching full maturity. FIG. 5B shows representative images of segmented neutrophils. In these images, the nucleus appears as a light grey, and the cell cytoplasm appears as a darker grey. The nuclei of segmented neutrophils have multiple segments/lobes (typically about 3-5). Thus, this analysis supports identification and quantification of different subpopulations of neutrophils in the blood. Example 5 A sample of cells from a subject with chronic lymphocytic leukemia (CLL) is obtained. The objective is to quantify the extent of CD5 expression on B-cells from the subject. Anti-CD20 antibodies are selected as the binder for B-cells. Anti-CD20 antibodies labeled with a first colored fluorphore are mixed with the sample. After an appropriate incubation time, the sample is washed and the unbound anti-CD20 antibodies are removed. The sample is exposed to a light source capable of exciting the first fluorophore, and fluorescent signal is measured using a spectrophotometer. Based on the fluorescent signal, the approximate concentration of B-cells in the sample is determined. The determined approximate concentration of B-cells is, in fact, within 1.5 fold of the true concentration of B-cells in the sample. Based on the approximate concentration of B-cells in the sample, and appropriate amount of anti-CD5 binder to add to the sample so that a proportional relationship between CD5 expression and CD5 fluorescence is maintained is selected. The anti-CD5 binder is coupled to a second fluorophore, which has a different peak excitation wavelength than the first fluorophore (attached to the anti-CD20 binder). The anti-CD5 antibody is added to the sample, and then individual cells of the sample are exposed to a light source capable of exciting the second fluorophore, and fluorescent signal from individual cells is measured. Based on the fluorescent signal from cells, the average amount of CD5 in B-cells in the sample is determined. Optical Systems Referring now to FIG. 6, one embodiment of an optical system suitable for use herein will now be described. Although this embodiment of the system is described in the context of being able to perform cytometry, it should also be understood that at least embodiments of the system also has capability beyond cytometry. By way of example and not limitation, the system can have application outside of cytometry due to the imaging and image processing capabilities associated with some embodiments. Since images are captured of the sample being analyzed and image information is typically linked or associated in the system to quantitative measurements, one can further analyze the images associated with the quantitative information to gather clinical information in the images that would otherwise be unreported. The embodiment shown in FIG. 6 shows a perspective view of a cuvette 600 that has a plurality of openings 602 for receiving sample for analysis. Although the system is described in the context of a cuvette, it should be understood that other sample holding devices may also be used in place of or in combination with the cuvette 600. As seen in the embodiment of FIG. 6, the openings 602 may allow for a sample handling system (not shown) or other deliver system to deposit sample into the opening 602 which may then lead to an analysis area in the cuvette where the sample can be analyzed. In one nonlimiting example, the analysis area may be a chamber. In another nonlimiting example, the analysis area may be a channel. In a still further nonlimiting example, the analysis area may be a channel wherein the sample is held in a non-flowing manner. In any of the embodiments herein, the system can hold the samples in a non-flowing manner during analysis. Optionally, some alternative embodiments may be configured to enable sample flow through the analysis area before, during, or after analysis. In some embodiments, after analysis, the sample is extracted from the cuvette 600 and then delivered to another station for further processing and/or analysis. Some embodiments may use gate(s) in the system to control sample flow. FIG. 6 shows that some embodiments of cuvette 600 have a plurality of openings 602. Embodiments having more or fewer openings 602 in the cuvette 600 are not excluded. Some embodiments may link certain openings 602 such that select pairs or other sets of openings 602 can access the same channel. By way of nonlimiting example, there may an opening 602 at each end of an analysis area. Optionally, more than one opening 602 may be at one end of the analysis area. Some embodiments may provide structures 604 over select areas of the cuvette 600. In one embodiment, the structures 604 are ribs that provide structural support for areas of the cuvette that are selected to have a defined thickness. The structures 604 may be use when the defined thickness areas are at a reduced thickness relative to certain areas of the cuvette and thus could benefit from mechanical support provided by structures 604. In some embodiments, these controlled thickness areas are selected to be positioned over the analysis areas. In some embodiments, these controlled thickness areas can impart certain optical properties over or near the analysis areas. Some embodiments may configure the structures 604 to also impart optical properties on light passing through the cuvette 600. Optionally, some embodiments may configure the structures 604 to not have an impact on the optical qualities of the cuvette 600. In such an embodiment, the structures 604 may be configured to have one or more optically absorbent surfaces. For example and not limitation, certain surfaces may be black. Optionally, some embodiments may have the structures 604 formed from a material to absorb light. Optionally, the structures 604 can be positioned to provide mechanical support but do not interact with the optical properties of cuvette 600 near the analysis areas. Some embodiments of cuvette 600 can be configured to have structures 610 that allow for a sample handling system to transport the cuvette 600. In one nonlimiting example, the structures 610 can be openings in the cuvette 600 that allow for a pipette or other elongate member to engage the cuvette 600 and transport it to the desired location. Optionally, in place of or in combination with said opening(s), the structures 610 can be a protrusion, hook, and/or other non-negative feature that can be used to engage a cuvette transport device. It should be understood that the cuvette 600 is typically formed from an optically transparent or transmissive material. Optionally, only select portions of the cuvette 600 such as the analysis areas or areas associated with the analysis areas are optically transparent. Optionally, select layers or areas in the cuvette 600 can also be configured to be non-light transmissive. FIG. 6 shows that in this embodiment, the cuvette 600 rests on a support structure 620 wherein at some or all of the support structure 620 is formed from an optically transparent or transmissive material. In some embodiments, the optically transparent or transmissive portions are configured to be aligned with the analysis areas of the cuvette 600 to allow for optical interrogation of the sample in the analysis area. In one nonlimiting example, the support structure 620 can be movable in the X, Y, and/or Z axis to move the cuvette 600 to a desired position for imaging. In one some embodiments, the support structure 620 comprises a platform or stage that moves only in two of the axes. Optionally, some support structures may move only in a single axis. The cuvette 600 can be configured to be operably coupled to the support structure 600 through friction, mechanical coupling, or by retaining members mounted to one or both of the components. FIG. 6 further shows that for illumination for darkfield and/or brightfield observation, there may be an illumination source 650 such as but not limited to a ringlight below the support structure 620 to locate illumination equipment below the level of the cuvette 600. This leaves the upper areas of the cuvette 600 available for pipettes, sample handling equipment, or other equipment to have un-hindered access to openings or other features on a top surface of the cuvette 600. Optionally, some embodiment may locate an illumination source 660 (shown in phantom) above the cuvette 600 to be used in place of, in single, or in multiple combination with underside illumination source 650. An objective 670 can be positioned to observe the sample being illuminated. It should be understood that relative motion between the cuvette 600 and the optical portions 650 and 670 can be used to allow the system to visualize different analysis areas in the cuvette 600. Optionally, only one of components is in motion to interrogate different areas of the cuvette 600. Referring now to FIG. 7, one embodiment of a suitable imaging system will now be described in more detail. FIG. 7 shows a schematic cross-sectional view of various components positioned below the support structure 620. The cross-section is along the area indicated by bent arrows 7 in FIG. 6. FIG. 6 shows that in the present embodiment, the cuvette 600 comprises a base portion 606 and analysis areas 608 defined by a cover portion 612. Optionally, the analysis areas 608 may be defined within a single piece. Optionally, the analysis areas 608 may be defined by using more than two pieces, such as but not limited a discrete cover piece for each of the analysis areas 608. In one embodiment, the layer 606 comprises optically clear plastic such as but not limited to cyclo olefin polymer thermoplastic which deliver superior optical components and applications. Some may form one or more layers or components from glass, acrylic, clear polymer, or other transparent material. In this nonlimiting example, the sample to be interrogated can be housed in whole or in part in the area 608. By way of non-limiting example, the optics below the support structure 620 may include a ringlight 650 that comprises a toroidal reflector 652 and a light source 654. Other illumination components suitable for darkfield illumination are not excluded. Some embodiments may use a mirror. Some embodiments use a coated reflective surface. Some embodiments may use a different reflector and not a toroidal reflection. Some embodiments may use a parabolic reflector. Some embodiments may use a parabolic reflector in the shape of an elliptic paraboloid. Some embodiments may use a plurality of individual reflector pieces. Some embodiments may not use any reflector. Some embodiments obtain oblique illumination through the use of angled light sources positioned to direct light with or without further assistance from one or more external reflectors. The embodiment of FIG. 6 shows excitation energy sources 680, 682, and 684 such as but not limited laser diodes at specific wavelengths that are mounted to direct light into the sample in analysis area 608. In one nonlimiting example to facilitate compact packaging, the energy sources 680, 682, and 684 may direct light to a dichroic 690 that then directs the excitation wavelengths into the analysis area 608. The excitation wavelength(s) cause fluorescence wavelengths to be emitted by fluorophores in marker(s), dye(s), and/or other materials in the sample. The emitted fluorescence wavelengths are funneled through the objective 670, through the dichroic 690, through an optional filter wheel 692, and into a detector 700 such as but not limited to a camera system. By way of nonlimiting example, the dichroic 690 is configured to reflect excitation wavelengths but pass fluorescence wavelengths and any wavelengths desired for optical observation. In one embodiment, all fluorescence excitation wavelengths are illuminating the sample in analysis area 608 simultaneously. The detector 700 may be coupled to a programmable processor 710 that can take the captured signal and/or image and deconstruct which wavelengths are associated with which fluorophores that are fluorescencing. Some embodiments may have the excitation sources illuminate the sample sequentially or in subsets of the entire number of excitation sources. Of course, it should be understood that the system is not limited to fluorescence based excitation and that other detection techniques and excitation techniques may be used in place of or in single or multiple combination with fluorescence. For example, some embodiments may also collect darkfield illumination scatter information simultaneously or sequentially in combination with fluorescence detection. Referring now to FIG. 8, a still further embodiment will now be described. FIG. 8 shows a schematic of a cross-section of a portion of the cuvette 600 and the dark field scatter illumination source such as but not limited to the ringlight 650. For ease of illustration, the support structure 620 is not shown. As seen in FIG. 8, the ringlight 650 provides illumination for the analysis area 608. In the present embodiment, the ringlight components 652 and 654 are shown. The light source 654 may be white light or light sources such as but not limited to LEDs or laser diodes with specific wavelength output or output ranges. Optionally, the ring of light source 654 could be fiber optic cable with many splice to create a ring of light. Optionally, the light source 654 may be an LED which has specific narrow divergence angle controlled by the reflector. It may be desirable to control divergence angle from the ringlight through the selection of light source and/or design of the reflector. By way of nonlimiting example, laser illumination as the source 654 provides for narrow light pattern with results in lower trans illumination in the present epi-style lighting configuration (where illumination components are all on one side of the sample) but because the source is a coherent source, it also lowers background signal levels. Laser illumination may not have adjacent channel illumination that typically occurs with more diffuse light sources and thus less, laser illumination can result in less trans illumination. Of course, it is desirable that the decrease in trans illumination is less than the decrease in background, where the more significant drop in background results in a more distinguishable signal. Optionally, LED as the illumination source 654 provides for a diffuse light pattern, with increased background and increased trans illumination. Of course, it is desirable that the increase in trans illumination is greater than the increase in background. Some cuvette embodiments may include cuvettes formed from a plurality of individual layers adhered together, having the cuvette molded from one or more materials, and/or having reflective layers added to the cuvette at different surfaces to enhance multiple TIR. Because the present embodiment may be operating in combination with fluorescence, desirable that our darkfield illumination is not white light. Some alternative embodiments may use just white light if their system is not using fluorescence detection in combination with darkfield and/or brightfield microscopy. FIG. 8 shows that in some embodiments, the device may have layers in the cuvette 600 that are optically non-transmissive such as layer 800. This may be useful in embodiments where the light source 654 is diffuse and light is not directed to specific locations. The layer 800 can block light that are not entering the cuvette 600 at desired angles and/or locations. The layer 800 can be configured to be positioned to prevent illumination except through the area below the analysis areas 608. Some may only have specific areas that are blacked out nearest the analysis areas 608. Some embodiments may have blacked out or non-tranmissive material in more than one layer. Some may have blacked out or non-tranmissive material in different orientations, such as but not limited to one being horizontal and one being vertical or non-horizontal. FIG. 8 shows that total-internal-reflection (TIR) may be present at an upper surface 614 and/or at surface 618 in one or more of the support structures 604. TIR is a tunable feature that can selected based on the material used for the cuvette 600 and the geometry and/or thickness of the controlled thickness area 613 of the cuvette 600. The presence of TIR which allows for oblique angle illumination coming from above the sample is desirable, particularly for darkfield microscopy. In some embodiments, it is desirable to maximize TIR from above the sample. Optionally, some embodiments may only have TIR from surfaces over the analysis areas 608. Optionally, some embodiments may only have TIR from surfaces over the controlled thickness areas 613. Optionally, some embodiments not have TIR from the support structures 604. Optionally, some embodiments not have TIR from surface 618. Optionally, some embodiments may have TIR from other surfaces in the cuvette 600, so long as it is scatter light as oblique angles being directed back to the analysis area 608. Optionally, some embodiments may put reflective material at surfaces 614 and/or 618. Optionally, only surface 614 has reflective material on the surface. Optionally, surface 618 may be treated to be black so as to be light absorbing. Some embodiments may select the width of the controlled thickness area 612 to be wider than the analysis area 608. For some embodiments using laser illumination, the layer 800 may be removed or be light transmitting as the laser illumination is sufficiently focused so as not to require blackout between analysis areas 608. By way of example and not limitation, the use of TIR can also enable light 820 from adjacent areas to be directed into the analysis area 608. Under traditional terminology, this is trans illumination. Line 830 shows light coming directly from the ringlight and not by way of TIR, and this is epi illumination. The combination of both types of light components from a light source located below the sample (or only one side of the sample) allows for improved performance as compared to sources that can only provide one of those lighting components. This is particularly useful for darkfield microscopy. One nonlimiting example of the use of the embodiment shown in FIG. 8 is darkfield illumination to measure scatter properties of cells in the sample. Darkfield microscopy is an age old method that has been used mainly as a contrast enhancing technique. Since only the light scatter or reflected by the sample is imaged, the image background is fully dark. Quantitative darkfield microscopy has not been used to measure scatter properties of cells comparable to the traditional “side scatter” parameter in flow cytometers. From the hardware perspective, illumination for darkfield microscopy is desired to be oblique, i.e. no rays of light from the illumination light source should be able to enter the objective without contacting the sample first. By way of example and not limitation, illumination should be at a wavelength that does not excite any other fluorophores already present in the sample. Optionally, this illumination allows for the use of high numerical aperture (NA) lenses for imaging. By way of example and not limitation, for traditional lens sizes associated with optical microscopes, the NA may be at least 0.3. Optionally, the NA is at least 0.4. Optionally, the NA is at least 0.5. Optionally, some embodiments may use oil immersion objective lenses to obtain a desired NA, particularly when lens size is limited below a certain level. Traditional methods for darkfield illumination have used trans-illumination, where the sample is between the imaging lens and darkfield light source. Thus, in this embodiment, the detection and illumination components are not on the same side of the sample. The epi-illumination methods (where the imaging lens/objective and the darkfield light source are on the same side of the sample) require the use of specially manufactured objectives and typically do not allow the use of high NA objectives, thus limiting the capabilities of the whole system. By contrast, at least some embodiments of darkfield illumination systems described herein have the following attributes. In terms of hardware, the scheme of this embodiment of FIG. 8 is “epi” in that the ringlight used for darkfield illumination is on the same side of the sample as the objective. This can be desirable from the system-perspective, although alternative embodiments with light sources on the other side may be used alone or in combination with the embodiments described herein. In one nonlimiting example, the ringlight is designed such that the LEDs and/or lasers of the light source 654 are all in the same plane and have the same orientation (horizontal plane and directing light upwards). Some embodiments may have light in the sample plane but directing light in a non-parallel manner, such as but not limited to a cone-like manner. Some embodiments may have light in different planes but directing light in the same orientation. Some embodiments may have light in different planes but directing light in a non-parallel manner, such as but not limited to a cone-like manner. The light is reflected by a toroidal mirror 652 to achieve oblique illumination of the sample. In addition to the ringlight and the toroidal reflector, the optical properties of the cuvette 600 shown in the embodiment of FIG. 8 also significantly affects darkfield illumination. In this embodiment, the cytometry cuvette 600 is designed such that light coming from the ringlight 650 is allowed to fall directly on the sample; but in addition to this, light is also “reflected” on the sample from features of the cuvette so as to emulate “trans” illumination. This reflection can be by way of TIR and/or true reflection. Note that any trans-illumination scheme allows one to measure forward scattered light from a particle whereas an epi-scheme allows one to measure only the back-scattered light. Forward scattered light is generally two orders of magnitude greater in intensity than the back-scattered light. Trans-scheme thus allows the use of much lower illumination intensities and reduces harmful side effects on the sample. As seen in the embodiment of FIG. 8, the ringlight 650 and cuvette 600 provide a system that can be tuned such that the intensities of trans and epi illumination are adjusted for improved performance over traditional epi illumination. This tuning can be achieved by virtue of cuvette geometry to control angles and extent of total internal reflection and material properties. Darkfield At least some embodiments herein include a dark field illumination source and cuvette. The relevant features of the cuvette 600 relate to designing the cuvette dimensions and optical materials and the geometry of the cuvette. The cuvette increases the extent of darkfield illumination through total internal reflection (TIR) and/or pure reflection. In one embodiment, the system may simultaneously use trans darkfield and epi darkfield. In some embodiments herein, the cuvette combined with the light source enables trans and epi illumination using only physical system in epi configuration (light source on one side of sample). The basic cuvette is designed to contain the biological sample and present it for visualization. In one embodiment, the coverslip 612 may have a specific design. Materials have different index of refraction. Some embodiments may make cover slip 612 of glass. One can design the material of the top coverslip 612 to facilitate illumination and image collection. To get light to the cells, the ringlight 650 may be circular, have light sources 654 position in a discrete or continuous pattern, and use a curved reflector 652 to direct light to the sample. In darkfield microscopy, the sample is illuminated by oblique rays. The light going into the microscopy is the light scattered by the sample. Measuring scatter properties of the cells. If nothing is there, the image is black. In the present non-limiting example, the reflector 652 and LED 654 of the ringlight 650 are designed to reflect so that a minimum fraction goes directly back into the objective as non-specific background. The system is designed to give TIR surface and reflection from other surfaces back into the target area 608. The cells in the sample in 608 is getting light directly from the ringlight from underneath the cell (this is epi). There is also light coming from the top surfaces (reflected) and this is trans. With the ringlight 650 in the same position, one now has light coming from two directions from a single ringlight source. This is all oblique. One can control the relative strengths of the two light components by design of the cuvette and material used for the cuvette. This darkfield illumination is different from conventional darkfield. By way of nonlimiting example, this embodiment may use a reflective layer on the backside of certain surfaces of the coverslip 612 to reflect all of the light. Some embodiments may use a full or selectively reflective background. In the present embodiment, the light is desirable at an oblique angle which keeps illumination darkfield. Some may angle the light sources 654 at an angle and thus not use the reflector 652. The reflector 652 may improve manufacturability of the light source 654 since all lights are in the same plane, directed in the same direction. Optionally, the angled light sources 654 may also be used in place of or in combination with a reflector. It should be understood that here even though trans component may be in one example 10 times weaker than epi illumination component, the scatter from the cells in the sample due to trans may be 200 times stronger from the same amount of epi versus scatter from the same amount of trans. And thus, the small amount of trans can significantly enhance the scatter from cells. The light collected from epi illumination also does not include defraction. Defraction is a substantial component of scatter and the use of trans illumination provides for some amount diffraction. Thus, there is reflective, refractive, and defractive components when using trans and epi illumination. With epi alone, there may be only reflective. Traditional methods uses all trans darkfield illumination which takes significant amount of space to configure, due to components being on both sides of the sample. The present embodiment may obtain the space savings of an epi configuration but still have epi and trans illumination components on the sample. Designing the sample holder and the light source together can enable an epi configuration to increase the amount of trans illumination, particularly uniform trans illumination. Some embodiment may use mirrored surfaces but TIR can be tuned to create the desired trans lighting that is uniform and at oblique angles into the analysis area for darkfield illumination of the sample. In one nonlimiting example, a thicker top 612 allows the TIR to come back into the target area 608. Traditional hardware may have some TIR but the light may not come back into the area 608. Additionally, not just that TIR illumination comes back into the channel but that it comes back uniformly. This embodiment of FIG. 8 has certain surfaces at certain angles, has certain black surface(s), and certain reflective surface(s) so that the light comes back uniformly. Optionally, one could put a fully reflective surface on a top (such as but not limited to a flat top but optionally over select areas of top 612 such as area 613). By way of nonlimiting example, embodiments here take an imaging based platform and instead of using a high complication, high cost system which may for example have 16 laser, the present embodiment leverages a more integrated detection system to be able to pick-up the differentials of cells and types. In one nonlimiting example, it is the combination of all these different types of information to achieve the clinical goals. This may include quantitative and/or qualitative linked to quantitative, or images linked to quantitative measurements. Not only different channels of fluorescence where each channel may have one or more specific molecular markers targeted and that is quantitative information, but with microscopy, some embodiments herein have the ability to look at the background that staining forms inside the cell (whether it is in the cytoplasm, is it concentrated on the surface, in the nucleus) that can link image and/or qualitative information that generated the quantitative measurements. In this manner, the linkage of the original images that created the quantitative results are available for further analysis if it turns out that the quantitative measurements trigger alarms or meet thresholds the suggest further analysis is desired. Embodiments herein can interrogate background staining creates in the cell. One can image if the staining is in the cell, the cytoplasm, etc. . . . . Some embodiments herein may be combining the quantitative scatter properties of the cell, the shape of the cell, and/or the size of the cell. Some embodiments here measure the physical properties, optical properties, and bio/biochemical properties all in the same device at the same time. All can be combined in a programmable processor or other processing system link the various types of information to achieve the clinical goal of the assays. Many traditional devices do one or the other. They do not do both and there is also no linkage between different types of information. Some embodiments herein, where image information is retrievable that generated the quantitative measurements, can be extended to tissue morphology measurement. It can be applied to pap smear, which is traditional cytology. It can be extended to anything done using traditional microscopy. In urine, the present embodiments can look at and analyze crystals and not just cells. One can look at crystals of inorganic salts and chemicals from urine samples that had created certain quantitative readings on one portion of a graph, such as but not limited what may be seen in FIG. 1A where different regions of data are circled. Image information for certain data regions can be retrieved to further analyze the underlying cell images that created the measurements plotted on the graph or chart. Some embodiments herein combine the imaging features with the pathology features. For example, tissue prep may occur inside a blade or module, and such prepped material can be imaged in this platform. Then the images or analysis is sent to servers to do image analysis to do diagnosis or digital pathology to enable a pathologist to do analysis. Esoteric Cytometry and Specialty Cytometry Marker Many traditional advanced or esoteric cytometric assays require a traditional system to measure a large number of markers on cells, typically simultaneously. The general approach in the field have been tied to high capability instruments such as six or other multiple numbers of lasers and 18 different PMT tubes to measure all of these parameters simultaneously. Part of it has been dictated by traditional methodology of identifying all markers on a cell at the same time, which has driven it. However, in many clinical settings, this simultaneous measurement is not the requirement. In many clinical requirements, one is interested in seeing how many cells are positive for one marker, how many are positive for a combination of two or three markers. Some embodiments herein provide for multiple combinations of staining schemes where one may have a set of, for example, 10 markers, where one can combine them in sets of 3-4 or 5-6 markers where one can combine them such that even if combining two markers in the same color, some embodiments of the present system can de-convolute which signal came from which marker. This allows some embodiments of the present system to reduce the hardware requirements in terms of the number of light sources, the number of channels used for sample analysis. Thus, using subsets or markers in non-simultaneous manner in a pre-determined pairing can be useful to enable esoteric cytometry. Perhaps certain markers are “gating” markers and they can be tested first and if the results are negative, then other follow-on markers may not be need. Some embodiments herein using this non-simultaneous system also reduces the sample volume requirement. It should be understood that by using imaging, the ability to get an actual count, it may be more accurate than traditional cytometry. Traditional flow cytometry gating does not allow for actual count. Imaging can actually be more accurate. The gating in flow cytometry is subjective and thus this can vary from system to system. Some embodiments herein may also gate, but the gating is based algorithmically based on various factors including but not limited to patient health. Classification means is trained on a population of patients knowing if they are healthy or diseased. Some embodiments here can flag a patient that is abnormal and flagging it for review. Self learning gating can determine if different gating is desired based on information conveyed regarding the patient health. Thus, the gating for some embodiments herein for the sample is done algorithmically, possibly with a programmable processor, and the gating changes based on patient health. Imaging: in many cases, one may want to minimize hardware capability and to re-use the sample volume. Thus, the more capability one can extract from the imaging, the better in terms maximizing information from even less sample. Thus, the more information one can get to differentiate different cell types from minimum number of pictures, the more one may minimize the sample volume required. While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, different materials may be used to create different reflective surfaces in the cuvette or other surfaces along a light pathway in the optical system. Optionally, the reflective surface is selected so that the reflection is only diffusive. Optionally, the reflective surface is selected so that the reflection is only specular. Additionally, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the explicitly recited limits of about 1 nm and about 200 nm, but also to include individual sizes such as 2 nm, 3 nm, 4 nm, and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, etc. . . . . The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. The following applications are fully incorporated herein by reference for all purposes: While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context expressly dictates otherwise. Thus, in contexts where the terms “and” or “or” are used, usage of such conjunctions do not exclude an “and/or” meaning unless the context expressly dictates otherwise. 15184923 theranos ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Jul 3rd, 2018 12:00AM Oct 21st, 2015 12:00AM https://www.uspto.gov?id=USD0822222-20180703 Sample processing device D822222 The ornamental design for a sample processing device, as shown and described. 1 FIG. 1 is a left-side perspective view of a first embodiment of a sample processing device; FIG. 2 is a right-side perspective view of the first embodiment. FIG. 3 is a left-side perspective view of a second embodiment of a sample processing device; FIG. 4 is a right-side perspective view of the second embodiment. FIG. 5 is a left-side perspective view of a third embodiment of a sample processing device; FIG. 6 is a right-side perspective view of the third embodiment. FIG. 7 is a left-side perspective view of a fourth embodiment of a sample processing device; FIG. 8 is a right-side perspective view of the fourth embodiment. FIG. 9 is a left-side perspective view of a fifth embodiment of a sample processing device; FIG. 10 is a right-side perspective view of the fifth embodiment. FIG. 11 is a left-side perspective view of a sixth embodiment of a sample processing device; FIG. 12 is a right-side perspective view of the sixth embodiment. FIG. 13 is a left-side perspective view of a seventh embodiment of a sample processing device; FIG. 14 is a right-side perspective view of the seventh embodiment. FIG. 15 is a left-side perspective view of a eighth embodiment of a sample processing device; FIG. 16 is a right-side perspective view of the eighth embodiment. FIG. 17 is a left-side perspective view of a ninth embodiment of a sample processing device; FIG. 18 is a right-side perspective view of the ninth embodiment. FIG. 19 is a rear view for all embodiments of the sample processing device; and, FIG. 20 is a bottom view for all embodiments of the sample processing device. The broken lines immediately adjacent the shaded areas represent the bounds of the claim, while all other broken lines are directed to environment and are for illustrative purposes only; the broken lines form no part of the claimed design. 29543206 theranos ip company, llc USA S1 Design Patent Open D24/216 15 Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Dec 18th, 2018 12:00AM Feb 26th, 2016 12:00AM https://www.uspto.gov?id=US10156579-20181218 Methods for the detection of analytes in small-volume blood samples This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications. 10156579 1. A method of detecting an analyte in a small-volume blood sample obtained from a subject, comprising: a) obtaining a sample of blood from a subject by lancing or pipetting, said blood sample having a volume of less than about 500 μL; b) pre-treating the blood sample by one or more of diluting, mixing, drying, evaporating, centrifuging, and extracting; c) introducing the blood sample into a fluidic device comprising a sample collection unit and an assay assembly, said assay assembly comprising reactants that are capable of reacting with said analyte; d) allowing the blood sample to react with said reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source located within said fluidic device; e) transmitting the at least one wavelength to the fluidic device from said light source, wherein said light source comprises a luminescent paint; and f) detecting a change in absorption of light of the at least one wavelength transmitted to the fluidic device, wherein said change in absorption is indicative of the presence of the analyte in the blood sample. 2. The method of claim 1, wherein the amount of absorption is related to the analyte concentration in the blood sample. 3. The method of claim 1, wherein the amount of absorption is stoichiometrically related to the analyte concentration in the blood sample. 4. The method of claim 1, wherein the light source further comprises a light emitting diode. 5. The method of claim 1, wherein said luminescent paint is coated in said assay assembly. 6. The method of claim 1, wherein the analyte is selected from the group consisting of drugs, drug metabolites, biomarkers indicative of a disease, tissue specific markers, and tissue specific enzymes. 7. The method of claim 1, wherein the analyte is selected from the group consisting of HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes. 8. The method of claim 1, wherein the wavelength is in a range of about 400 to about 800 nm. 9. The method of claim 1, wherein said fluidic device detects a plurality of analytes and said fluidic device comprises reactants for said plurality of analytes. 10. The method of claim 1, wherein said assay assembly is configured to i) run an enzymatic assay yielding a colored product, or ii) run an immunoassay, or iii) both i) and ii). 11. The method of claim 1, wherein the reactants are selected from the group of enzymes, enzyme substrates, and combinations thereof. 12. The method of claim 1, wherein said sample of bodily fluid is less than about 50 ul. 13. The method of claim 1, further comprising the step of quantifying the amount of said analyte present in said bodily fluid after said detecting step. 14. The method of claim 1, wherein said introducing comprises metering a predetermined portion of said sample to be assayed in said sample collection unit, wherein said predetermined portion of the sample consists of a portion of the sample having a volume determined by the dimensions of an element of said sample collection unit. 15. The method of claim 14, further comprising diluting and mixing said predetermined portion of said sample with a diluent in said fluidic device after the metering step to yield a diluted sample. 16. The method of claim 15, wherein said predetermined portion of said sample is less than 50 ul. 17. The method of claim 15, wherein said predetermined portion of said sample is less than 20 ul. 18. The method of claim 15, wherein said predetermined portion of said sample is about 10 ul. 19. The method of claim 15, further comprising filtering said diluted sample before allowing said diluted sample to react with said reactants. 19 CROSS REFERENCE This application is a continuation application of U.S. Ser. No. 11/939,509, filed on Nov. 13, 2007, which claims the benefit of U.S. Provisional Application No. 60/865,805 filed Nov. 14, 2006, which is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION Many medical procedures require tests to be performed with a sample of a patient's fluid. The ability to rapidly and accurately detect a wide range of analytes present in a bodily fluid is often critical for diagnosis, prognosis, and treatment of diseases. Traditionally, detecting a range of analytes present in a bodily fluid such as blood has been performed in laboratories by trained technicians. Performing such assays is usually time-consuming and costly. The desire for rapid turnaround time creates a need to facilitate testing that can be delivered at the point-of-care. Point-of-care testing is particularly desirable because it rapidly delivers results to medical practitioners, enables faster consultation, and avoids unattended deterioration of a patient's condition. Although several point of care testing devices are available, the majority of which is adapted to detect a single analyte, or one type of analytes for a single indication. Examples of such point of care devices are tests for glucose, drugs of abuse, serum cholesterol, pregnancy, or ovulation. Thus, there remains a need for alternative designs of point of care systems that are capable of detecting a range of analytes from bodily fluid. A desirable system would allow quantitative and qualitative measurements of analytes in a more cost effective and timely fashion. The present invention addresses this need and provides related advantages as well. SUMMARY OF THE INVENTION One aspect of the present invention is the design of a system to effect detection of different analytes in a bodily fluid. In one embodiment, the present invention provides a system that typically comprises a) a fluidic device comprising a cartridge, said cartridge comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; b) a light source transmitting the at least one wavelength to the assay assembly; and c) a detector that detects absorption of light of the at least one wavelength, wherein said absorption is indicative of the presence of the analyte in said bodily fluid. In general, the amount of absorption is related to the concentration of the analyte in the bodily fluid. Preferably, the amount of absorption is stoichiometrically related to the concentration of the analyte in the bodily fluid. The subject system is preferably configured to be a point-of-care system. In a related but separate embodiment, the present invention provides a fluidic device capable of detecting the presence or absence of an analyte in a bodily fluid from a subject. The fluidic device can be part of the system described above. The subject fluidic device typically comprises (a) a cartridge, said cartridge comprising a sample collection unit, an assay assembly, and (b) a light source, wherein said sample collection unit is configured to collect a sample of bodily fluid from said subject and wherein said assay assembly comprises at least one reaction site containing a reactant that reacts with said analyte to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from said light source. Where desired, the fluidic device can be employed to detect a plurality of analytes. The assay assembly employed in the subject fluidic device or system is generally configured to run an enzymatic assay yielding a colored product. The assay assembly can be configured to run assays capable of detecting a wide variety of analytes. Non-limiting exemplary analytes include drug, drug metabolite, biomarker indicative of a disease, tissue specific marker, and tissue specific enzyme. Preferred analytes for detection include without limitation HDL cholesterol, LDL cholesterol, total cholesterol, lipids, and glucose. Where desired, the assay assembly is configured to run an immunoassay. The light source employed in the subject fluidic device or system typically produces at least one wavelength corresponding to the absorbance spectrum of the colored product generated by an assay. A suitable light source can comprise a light emitting diode and/or luminescent paint. Where luminescent paint is used as the light source, it is typically coated on the assay assembly. The present invention also provides a method of detecting an analyte in a bodily fluid from a subject. The method typically involves the steps of a) introducing a sample of bodily fluid into a fluidic device comprising a sample collection unit and an assay assembly, said assay assembly comprising reactants that are capable of reacting with said analytes; b) allowing said sample of bodily fluid to react with said reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; c) transmitting the at least one wavelength to the fluidic device from said light source; and d) detecting absorption of light of the at least one wavelength transmitted to the fluidic device, wherein said absorption is indicative of the presence of the analyte in said bodily fluid. The method can be employed to detect analytes in a sample of bodily fluid that is less than about 500 ul, less than about 50 ul, or less than about 20 ul, or even less than about 10 ul. Where desired, the methods can be applied to detect analytes in a predetermined amount of bodily fluid that can be undiluted, unprocessed or diluted or processed by, e.g., filtration, centrifugation and other like processes. INCORPORATION BY REFERENCE All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which: FIG. 1 depicts an exemplary point-of-care system of the present invention. FIG. 2 shows a perspective view of various layers of an exemplary fluidic device of the present invention. FIGS. 3 and 4 illustrate the fluidic network within an exemplary fluidic device. FIG. 5 illustrates an exemplary sample collection unit of the present invention. FIG. 6 illustrates an exemplary sample collection well in fluidic communication with a metering channel, and a metering element. FIG. 7 shows an exemplary fluidic network between a metering channel, a mixing chamber and a filter. FIG. 8 shows an absorption spectrum of a Trinder product. FIG. 9 shows the spectral response of an assay simulation using a light source having an emission spectrum that perfectly overlaps with an absorption spectrum of an absorbing species. FIG. 10 shows a light attenuation response for a cholesterol assay. FIG. 11 shows simulation of the signal modulation for an assay in which a light emission spectrum and an absorption spectrum of the absorbing species overlaps, and the λ max varies between the two spectrums by 50 nm. FIG. 12 shows simulation of the signal modulation for an assay in which a light emission spectrum and an absorption spectrum of the absorbing species overlaps, and the λ max varies between the two spectrums by 50 nm, where an edge filter with a cut-off below the lower λ max is used on either the emission or detection side of the optical system. DETAILED DESCRIPTION OF THE INVENTION System and Fluidic Device One aspect of the present invention is a system for detecting an analyte in a sample of bodily fluid from a subject. The terms “subject” and “patient” are used interchangeably herein, which refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. The system is capable of detecting and/or quantifying analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. The subject system typically comprises a fluidic device having one or more of the following components: a sample collection unit, an assay assembly, a light source, a detector, and optionally a communication assembly. In one embodiment, the subject system comprises: a) a fluidic device comprising a cartridge, said cartridge comprising a sample collection unit and an assay assembly, wherein said sample collection unit allows a sample of bodily fluid to react with reactants contained within said assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; b) a light source transmitting the at least one wavelength to the assay assembly; and c) a detector that detects absorption of light of the at least one wavelength, wherein said absorption is indicative of the presence of the analyte in said bodily fluid. Sample Collection Unit: The sample collection unit typically allows a sample of bodily fluid to be collected from a subject to react with reactants contained within the assay assembly for generating a signal indicative of the presence of the analyte of interest. The sample collection unit may take a variety of configurations so long as it collects and delivers the sample of bodily fluid to the assay assembly. In some embodiments, the sample collection unit is in fluidic communication with one or more components of the subject system or fluidic device. Where desired, the sample collection unit is configured to collect a sample of bodily fluid from the subject and to deliver a predetermined portion of the sample to be assayed by the assay assembly. In this manner, the device automatically meters the appropriate volume of the sample that is to be assayed. The sample collection unit can comprise a sample collection well, a metering channel, and a metering element. Generally, the sample collection well collects the bodily fluid from the patient. The metering channel is in fluidic communication with the sample collection well and is dimensioned to collect the predetermined portion of the sample to be assayed. The metering element is adapted to prevent a volume of sample larger than the predetermined portion of the sample from being assayed. FIG. 5 illustrates a top view of an exemplary sample collection unit (SCU) showing sample collection well (SCW) in fluidic communication with metering channel (MC), and metering element (ME). As shown, the sample collection well (SCW) comprises a through hole with a larger diameter at the top tapering to a smaller diameter at the bottom. The through hole is intended to be the location where the sample is provided to the fluidic device, such as by fingerstick or pipetted blood. The sample collection well (SCW) may be any inlet which allows for a sample to be received by the fluidic device. The metering channel (ME) can be in fluidic communication with the sample collection well (SCW) to receive the sample. The metering channel (MC) has a proximal end (PE) and a distal end (DE). The distal end (DE) of the metering channel (MC) can include a stop junction (SJ) as will be described below. In some illustrative embodiments the metering channel (MC) is about 10 mm long and has a cross section of about 1 mm2. In other embodiments the metering channel (MC) is about 12.5 mm long and is about 0.9 mm wide and about 0.9 mm high. A predetermined portion of sample as used herein can generally refer to the volume of sample inside the metering channel (MC) between the stop junction (SJ) and the metering element (ME) after it has closed the fluidic connection between the sample collection well (SCW) and the metering channel (MC). In some embodiments the dimensions of the metering channel (MC) typically determines the volume of the predetermined portion of sample. The volume of a predetermined portion in a subject sample collection unit (SCU) may be less than 50, less than 40, less than 30 or 20 microliters. In a preferred embodiment, the volume of a predetermined portion is about 10 microliters. The metering channel (MC) is preferably capable of holding, prior to actuation of the metering element (ME), a volume of sample greater than the predetermined portion such that the stop junction (SJ) does not allow sample to flow into the mixing chamber (MiC) when stressed by a hydrostatic pressure of sample from the sample collection unit (SCU). In some embodiments the metering element is adapted to prevent a volume of sample greater than the predetermined portion from being assayed. Generally, the metering element (ME) can be adapted to pinch off the sample inside the metering channel (MC) from the sample collection well (SCW). The metering element (ME) can be a one-time valve initially open and adapted to be actuated by mechanical action by the reader assembly, as described herein. FIG. 6 is a perspective view of the metering element (ME) as a pin shown in an open, or unactuated, position that can be mechanically actuated by the reader assembly to close off the fluidic connection between the sample collection well (SCW) and the metering channel (MC). The metering element (ME) can take any shape and can be of any size, and can be moved into a position to prevent a volume of sample greater than the predetermined portion from being assayed by any technique, e.g., manual force or magnetic force. In some embodiments the metering channel (MC) has a stop junction (SJ) at its distal end (DE). In FIG. 5, stop junction (SJ) comprises metering channel (MC) opening into the larger mixing chamber (MiC), thereby creating an abrupt end to the capillary dimensions of metering channel (MC). The stop junction (SJ) is shown comprising a right-angled junction between the metering channel (MC) and the mixing chamber (MiC). The stop junction (SJ) can be adapted to prevent sample from flowing into the mixing chamber (MiC) before the predetermined portion of sample has been metered. While the stop junction (SJ) as shown in FIG. 5 does not comprise any moveable elements, the stop junction (SJ) may also comprise a valve or other blocking element that prevents the predetermined portion of sample from flowing from the metering channel (MC) into the mixing chamber (MiC). An alternative method of loading the sample into the fluidic device is by side loading rather than loading the sample onto the top of the fluidic device. In such an embodiment, the metering channel (MC) terminates on the side or preferably, at a corner, of the cartridge. The metering channel (MC) can be in direct communication with the mixing chamber (MiC) and the diluent chamber (DC) can be connected by a channel to the metering channel (MC) similar to the top loading embodiment above. The sample can be drawn into the metering channel (MC) by capillary action but does not enter the diluent flush channel (DFC) as that channel is initially sealed from the metering channel (MC). The user or an automated mechanism in the reader assembly then seals the proximal end (PE) of the sample capillary prior to actuating the dilution operation as described above. In some embodiments the inner surface of the sample collection well (SCW) and/or the metering channel (MC) may be coated with a surfactant and/or an anti-coagulant solution. The surfactant provides a wetting surface to the hydrophobic layers of the fluidic device and facilitate filling of the metering channel (MC) with the fluid sample, e.g., blood, such that the wetness of the metering channel (MC) can not be so large that the stop junction (SJ) cannot contain the blood at the distal end (DE) of the metering channel (MC). The anti-coagulant solution can help prevent the sample, e.g., blood, from clotting when provided to the fluidic device. Exemplary surfactants that can be used include without limitation, Tween, Triton, Pluronic and other non-hemolytic detergents that provide the proper wetting characteristics of a surfactant. EDTA is a non-limiting anti-coagulant that can be used. In one embodiment the solution comprises 2% Tween, 25 mg/mL EDTA in 50% Methanol/50% H2O, which is then air dried. A methanol/water mixture provides a means of dissolving the EDTA and Tween, and also dries quickly from the surface of the plastic. The solution can be applied to the layers of the fluidic device by any means that will ensure an even film over the surfaces to be coated, such as, e.g., pipetting, spraying, or wicking. In some embodiments the sample collection unit (SCU) also comprises a dilution chamber (DC) in fluidic communication with the metering channel (MC), wherein the dilution chamber (DC) is configured to store a diluent and comprises a port for engaging pressure means for transferring the diluent from the dilution chamber (DC) into the metering channel (MC). FIG. 5 shows dilution chamber (DC) and diluent flush channel (DFC) fluidly connecting dilution chamber (DC) with the metering channel (MC). The diluent flush channel (DFC) can be adapted to be filled with diluent from the dilution chamber (DC). In some embodiments the sample collection unit (SCU) further comprises a mixing chamber (MiC) in fluidic communication with the metering channel (MC), wherein the mixing chamber (MiC) is configured to mix the predetermined portion of the sample with the diluent to yield a diluted sample. An exemplary mixing chamber (MiC) is shown in FIG. 5. The mixing chamber (MiC) is preferably dimensioned such that the intersection between the metering channel (MC) and the mixing chamber (MiC) creates a stop junction (SJ) to prevent the predetermined portion of sample from entering the mixing chamber (MiC) until the diluent flushes the sample into the mixing chamber (MiC). In some embodiments the mixing chamber (MiC) includes a movable mixing element (MME) that causes the mixing of the predetermined portion of the sample with the diluent. Exemplary moveable mixing element (MME) is shown in FIG. 5 with a general ball shape. In one embodiment the movable mixing element (MME) is magnetically controlled, e.g., a magnetically controlled ball in the mixing chamber (MiC) that, when magnetically controlled, will cause the mixing of the predetermined portion of the sample and the diluent. The ball can be about 5% of the combined volume of the sample and diluent. The ball can be magnetically controlled to move in a reciprocal, linear fashion, within the mixing chamber (MiC). The moveable mixing element (MME) is shown inside the mixing chamber (MiC), however, it is contemplated that the mixing element may operate outside of the fluidic device, for example when the reader assembly is adapted to agitate the fluidic device and thereby mixing the predetermined portion of sample and the diluent. In some embodiments the sample collection unit (SCU) further comprises a filter (F) configured to filter the diluted sample before it is assayed. Exemplary filter (F) is shown in FIG. 5. In some embodiments the filter (F) is fluidly connected to and downstream to the mixing chamber (MiC) as shown in FIG. 5. While the sample collection unit (SCU) can include a dilution chamber (DC), mixing chamber (MiC), and a filter (F), it is contemplated that some or all of these components may not be included in the sample collection unit (SCU). It may, for example, be unnecessary to filter a sample and thus the sample collection unit (SCU) may not have a filter. FIG. 7 shows an exemplary fluidic network between a metering channel, a mixing chamber and a filter. In some embodiments it may be desirable to detect the presence of analytes on a cell surface, within a cell membrane, or inside a cell. The difficulty of detecting such analytes is that cells and other formed elements are particulate and components of cells do not readily interact with traditional assay chemistries which are designed to operate on analytes in solution. Cell-surface analytes react slowly and inefficiently with surface bound probes, and analytes inside the cell can not react at all with bound probes. To allow the detection of such analytes, in some embodiments the fluidic device may include a lysing assembly to lyse cells present in the bodily fluid sample. The lysing assembly may be incorporated with the sample collection unit, a dilution chamber, and/or a filtration chamber. In some embodiments the sample collection unit, dilution chamber, and lysing component are within the same element in the fluidic device. In some embodiments the lysing component may be incorporated with an assay reagent described below. Where desired, lysing agents may be impregnated and then dried into porous mats, glass fiber mats, sintered frits or particles such as Porex, paper, or other similar material. Lysing agents may be dried onto flat surfaces. Lysing agents may also be dissolved in liquid diluents or other liquid reagents. In some embodiments porous materials are used to store the lysing agents because they can store a lysing agent in dry form likely to be very stable. They can also facilitate the mixing of the bodily fluid sample with the lysing agent by providing a tortuous path for the sample as it moves through the porous material. In some embodiments such porous materials have a disc shape with a diameter greater than its thickness. In some embodiments lysing agents may be dried onto porous materials using lyophilization, passive evaporation, exposure to warm dry flowing gas, or other known methods. A variety of lysing agents are available in the art and are suitable for use in connection with the subject fluidic device. Preferred lysing agents are non-denaturing, such as non-denaturing detergents. Non-limiting examples of non-denaturing detergents include thesit, sodium deoxylate, triton X-100, and tween-20. The agents are preferably non-volatile in embodiments where the agents are impregnated into a solid porous materials. In some embodiments lysing agents are mixed together. Other materials may be mixed with the lysing agents to modify the lytic effects. Such exemplary materials may be, without limitation, buffers, salts, and proteins. In some embodiments lysing agents will be used in amounts that are in excess of the minimum amount required to lyse cells. In some embodiments lysing agents will be used that can lyse both white and red cells. The sample collection unit can be adapted to receive any bodily fluids suspected to contain an analyte of interest, such bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid. The volume of bodily fluid to be received in the sample collection unit is generally less than about 500 microliters, or may be less than about 50 microliters. In some embodiments, the bodily fluids are used directly for detecting the analytes present therein with the subject fluidic device without further processing. Where desired, however, the bodily fluids can be pre-treated before performing the analysis with the subject fluidic devices using any methods described herein or known in the art. The choice of pre-treatments will depend on the type of bodily fluid used and/or the nature of the analyte under investigation. For instance, where the analyte is present at low level in a sample of bodily fluid, the sample can be concentrated via any conventional means to enrich the analyte. Methods of concentrating an analyte include but are not limited to drying, evaporation, centrifugation, sedimentation, precipitation, and amplification. Where the analyte is a nucleic acid, it can be extracted using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (“Molecular Cloning: A Laboratory Manual”), or using nucleic acid binding resins following the accompanying instructions provided by manufactures. Where the analyte is a molecule present on or within a cell, extraction can be performed using lysing agents including but not limited to denaturing detergent such as SDS or non-denaturing detergent such as thesit, sodium deoxylate, triton X-100, and tween-20. In some embodiments, pretreatment can include diluting and/or mixing the sample, and filtering the sample to remove, e.g., red blood cells from a blood sample. A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or a stand alone component. In another embodiment where no active mechanism is required, a patient can simply provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly. A sample collection unit in a fluidic device may provide a bodily fluid sample from a patient by any of the methods described above. If necessary, the sample may first be processed by diluting the bodily fluid in a dilution chamber, and/or may be filtered by separating the plasma from the red blood cells in a filtration chamber as described above. In some embodiments the sample collection unit, diluting chamber, and filtration chamber may be the same component, and in some embodiments they may be different components, or any two may be the same component and the other may be a separate component. In some embodiments there may be more than one sample collection unit in the fluidic device or system. Assay Assembly: The assay assembly contained in the subject system or fluidic device comprises reactants capable of reacting with analytes to yield colored products that are indicative of the presence of the analytes. As used herein, the term “analytes” refers to any substances in a bodily fluid that can be used for generating colored products for detection. Exemplary analytes include without limitation drugs, prodrugs, pharmaceutical agents, drug metabolites, a biomarker indicative of a disease, a tissue specific marker, a tissue specific enzyme biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol, polysaccharides, nucleic acids, gene, protein, or hormone, or any combination thereof. At a molecular level, the analytes can be polypeptide glycoprotein, polysaccharide, lipid, nucleic acid, and a combination thereof. Preferred detectable analytes include but are not limited to HDL cholesterol, LDL cholesterol, total cholesterol, lipids, glucose, and enzymes. As noted above, the assay assembly of the subject system or fluidic device is configured to detect analytes based on formation of a colored product from a reaction scheme that is indicative of its presence. Exemplary classes of analytes that can be detected in this manner include: a) analytes that can be converted chemically to a colored product via a color-producing reaction; b) analytes that catalyze the formation of colored products from chemical reactants; and c) analytes that can be detected through binding of an agent that then participates in a color-producing reaction, either as a chemical reagent or a promoter of a chemical reaction. Additional examples of analytes that can yield colored products are illustrated in e.g., Tietz Textbook of Clinical Chemistry (Second Ed., Burtis and Ashwood, Saunders, 1994). Analytes that can be converted chemically to a colored product via a color-producing reaction include enzyme substrates and co-factors. Non-limiting examples of such analytes include glucose, cholesterol, and triglycerides. In particular, levels of total cholesterol (i.e., the sum of free and esterified cholesterol) in a bodily fluid can be spectrophotometrically measured by well-known color-forming assays by reacting the fluid with reactants including cholesterol esterase, cholesterol oxidase, an oxidizable dye such as n,n-bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase. A vast number of analytes can catalyze the formation of a colored products from chemical reactants, thus are amenable for detection by optical means. Examples of such analytes include alanine aminotransferase (ALT) and aspartate aminotransferase. Alanine aminotransferase (ALT) is an analyte indicative of liver function. The reactants for use in this assay may include alphaketoglutarate, pyruvate oxidase, an oxidizable dye such as N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase. The third class of analytes is typically detected via a color-producing immunoassay, such as an enzyme-linked immunosorbent assay (ELISA). In a typical ELISA, an analyte is specifically bound by an antibody, which in turn is detected by a secondary, enzyme-linked antibody. The linked enzyme catalyzes a color-producing reaction. Such enzymes include but are not limited to β-galactosidase, alkaline phophatase, and horse radish peroxidase. The choice of suitable reactants will depend on the particular analytes being examined. In general, any reactants capable of reacting with analytes either directly or indirectly to generate colored products, which can then be detected optically, are suited for use in the subject system. Exemplary reactants include but are not limited to one or more enzymes, co-factors, dyes, and other reagents as needed to convert these and analytes to a colored product. Of particular interest are several color forming reactants for use in the present invention. In one embodiment, peroxidase reactions are preferably used to generate colored products. Peroxidase chromogens are well known in the art, as exemplified by Trinder reagents such as TODB or TOOS (N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline, sodium salt, dehydrate) used in combination with 4-aminoantipyrene, triaryl imidazoles, and ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). In the chemistry of peroxidase reactions with Trinder reagents, two colorless organic molecules form a colored product in the presence of peroxidase and hydrogen peroxide. This peroxidase chemistry advantageously generates an intensely colored product and is not subject to interference from substances in blood plasma. Reactants in the assay assembly can be contained in reaction sites, either as fluids or dry reagents. In the case of dry reagents, the reaction site preferably forms a rigid support on which a reactant can be immobilized. The reaction site surface is also chosen to provide characteristics for detection of light absorbance. For instance, the reaction site may be functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, or combinations thereof. Other appropriate materials may be used in accordance with the present invention. One skilled in the art will appreciate that there are many ways of immobilizing various reactants onto a support where reaction can take place. The immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety. These methods are well known in the field of solid phase synthesis and micro-arrays (Beier et al., Nucleic Acids Res. 27:1970-1-977 (1999). Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidin/biotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others. In addition, a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using methods known in the art. In a preferred embodiment, there are multiple reaction sites in an assay assembly which can allow for detection of multiple analytes of interest from the same sample of bodily fluid. In some embodiments there are 2, 3, 4, 5, 6, or more reaction sites, or any other number of reaction sites as may be necessary to carry out the intent of the invention. In embodiments with multiple reaction sites in a fluidic device, each reaction site may be immobilized with reactants different from reactants immobilized at a different reaction site. In a fluidic device with, for example, three reaction sites, there may be three different reactants, each immobilized to a different reaction site to detect three different analytes of interest in the sample. In some embodiments, the reactants are contained in a reactant chamber. A reactant chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated, reactants contained in the reactant chamber are released into a fluidic channel within the fluidic device and introduced into a reaction site. Reactants may be contained in reactant chambers as fluids or dry reagents, as described above with respect to reactants contained in reaction sites. In some embodiments there may be two, three, four, five, six, or more, or any number of reactant chambers as are necessary to fulfill the purposes of the invention. In addition to color-forming reactants, the present invention may include other reagents. Such reagents can be stored with reactants in reaction sites or reactant chambers, if appropriate. In another embodiment reagents are stored separately, and there is at least one reagent chamber. Reagents may be stored in a fluid or dry state, similar to reactants. In some embodiments there may be two, three, four, five, six, or more, or any number of reagent chambers as are necessary to fulfill the purposes of the invention. A reagent chamber is preferably in fluid communication with at least one reaction site, and when the fluidic device is actuated, reagents contained in said reagent chambers are released into the fluidic channels within the fluidic device and introducted into a reaction site. Reagents according to the present invention include without limitation wash buffers, enzyme substrates, dilution buffers, conjugates, enzyme-labeled conjugates, DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents including additives such as detergents, polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes, anticoagulants, red-cell agglutinating agents, antibodies, or other materials necessary to run an assay in a fluidic device. In general, reagents especially those that are relatively unstable when mixed with liquid are confined in a defined region (e.g. a reagent chamber) within the subject fluidic device. The containment of reagents can be effected by valves that are normally closed and designed for one-time opening, preferably in a unidirectional manner. In some embodiments the reagents are initially stored dry and liquified upon initiation of the assay being run on the fluidic device. In some embodiments a reactant site, reactant chamber or reagent chamber contains approximately about 50 μto about 1 ml of fluid. In some embodiments the chamber may contain about 100 μof fluid. The volume of liquid in a reactant or reagent chamber may vary depending on the type of assay being run or the sample of bodily fluid provided. In preferred embodiments of the invention the fluidic device includes at least one waste chamber to trap or capture all liquids after they have been used in the assay. In preferred embodiments, there is more than one waste chamber, at least one of which is to be used with a calibration assembly described herein below. On-board waste chambers also allow the device to be easily disposable. The waste chamber is preferably in fluidic communication with at least one reaction site. Light Source A colored product of an analyte-detecting assay of the present invention is typically detected by measurement of absorbance of light by the colored product. Light will be directed to the colored product in a reaction site from a source that emits a spectrum of light in which at least one wavelength of light corresponds to the absorption spectrum of the colored product. The spectrum of the light emitted by a source accordingly will be similar to the spectrum of the absorbing species in the colored product of the analyte-detecting reaction. Preferably, the emission spectrum from the light source will overlap the absorption spectrum of the absorbing species, preferably by at least about 50%, 60%, 70%, 80%, 90% or 95%. However, the present invention does not require an exact overlap between the light source emission spectrum and the absorption spectrum of the colored product, as described in the examples provided herein. Use of monochromatic light sources and/or filters can generally provide a means to match the characteristics of the absorption and the light source. The colored products detected by the subject system typically have an absorption range of about 250 nm to about 900 nm. Preferably, the color to be measured is generally in a visible range of about 400 to about 800 nm. The absorbance of the colored product can be readily detected and in a range that is preferably stoichiometrically or linearly corresponds to the amount of analyte present. According to Beer's law, absorbance=concentration×extinction coefficient×optical path length. Chromophores in the visible wavelength range and typically used in clinical chemistry have extinction coefficients in the range of about 103-105 L/(mole×cm). As shown in Table 1 of Example 1, a concentration of 1.5 mM analyte, diluted by 1:30 fold, gives an absorbance of 0.25 (44% transmission) when measured at the maximum absorbance (at λ max of 500 nm, the extinction coefficient=50,000 L/(mole×cm) with a path length of 0.1 cm (typical of single use cartridges). This absorbance is readily measurable by simple transmission optical systems. A variety of light sources may be utilized for the present invention depending on the particular type of application and absorbance spectrum requirements for a given analyte of interest. An example of an appropriate light source includes, but is not limited to, an incandescent bulb, a light emitting diode, luminescent paint, and a laser. Preferably, the light source is an economical, low intensity light source well suited for point-of-care testing. When coupled with a photomultiplier tube detector, the number of photons generated by the light source need only be a few thousand over a measurement interval, which can range from a few milliseconds to a several minutes. One type of light source applicable for the present invention is luminescent paint. Such paint is generally formulated using very tiny quantities of a long-lived radioisotope together with a material that glows or scintillates non-destructively when irradiated. The paint can be appropriately colored by addition of dyes. The paint will generally be coated on the non-transparent walls of a reaction site where analyte assay chemistry generates a colored product. Light emitted from the paint can be detected through a transparent surface of the reaction site to allow measurement of absorbance due to a colored product. The spectrum of the light emitted will generally be a function of the scintillant material and the absorbance characteristics of the chemistry used in forming a colored product. Another applicable light source for the present invention is a Light Emitting Diode (LED). A LED can provide colored light at moderate intensity. The spectrum of the emitted light can be selected over the visible range. A LED typically has a more narrow range of emission wavelengths of about 30 nm. Thus, use of a LED as a light source will depend on the absorbance spectrum of an absorbing species used in the detection of a particular analyte. Detector Detection and measurement of colored products generated due to the presence of a given analyte can be made directly from a reaction site or alternatively from a detection site to which the colored product is transported. Preferably, detection will be made from a reaction site. Unless specified otherwise, the term “reaction site” as used herein will refer to both the site at which a reaction occurs and at which the colored product of the reaction is detected. The reaction site will typically be a well that is cylindrical in shape having a defined length between two opposed flat surfaces for determination of absorbance. For example, the point-of-care fluidic devices of the present invention might have a reaction site that is 0.1 cm in length. At least one or both of the flat surfaces of the reaction site will be transparent to allow detection of the colored product with standard transmission optics. The non-transparent surfaces of the reaction site may be made of opaque, white light scattering material. The detector of light transmitted from a light source through a reaction site will be capable of detecting absorbance of light by the colored product in the reaction site. Examples of suitable detectors include, but are not limited to, a photomultiplier tube, a photodiode or an avalanche photodiode. In a system of the present invention, the position of the light detector in the system relative to the fluidic device will depend on factors such as the type of light source used and the relative position of the light source to the fluidic device. In the case where the light source is a luminescent paint contained within a reaction site of the device, the detector will be positioned to detect light emitted from a transparent surface of the reaction site. In the situation where the light source is external to a fluidic device, a detector could be positioned either on the same side or an opposite side of the fluidic device relative to the light source. A reaction site can be configured with a single transparent surface, through which light is both directed to the reaction and detected from the reaction. In this scenario, a detector is positioned on the same side of the fluidic device as the light source, with the detector shielded such that the only light detected is that from the reaction site of the fluidic device. Alternatively, a reaction site can be configured with two flat, opposed transparent surfaces such that the reaction site is effectively an optical cuvette. In this configuration, the light source would emit light to one side of the reaction site in the fluidic device and the detector would detect the light transmitted through the colored product to the opposite side of the reaction site in the fluidic device. The fluidic devices of the present invention preferably function as handheld devices in a point-of-care system. The term “handheld” refers to a device that is both small and light enough to be easily held in an adult's hand, and can readily be placed by hand into operation within a point-of-care system. A handheld device of the present invention may assume a variety of overall configurations, such as rectangular, triangular, circular, oval and so forth. Regardless of the overall configuration, a handheld device of the present invention may typically be enclosed within rectangular dimensions of about 30×30×15 cm (length×width×height), or about 12×10×5 cm, or about 8×6×1.5 cm, and even smaller, such as about 7×5×1 cm. A “point-of-care” system as used herein refers to a system that may be used at a patient's home, bedside, or other environment for performing any type of bodily fluid analysis or test outside of a central laboratory. A point-of-care system of the present invention will enable testing to be efficiently carried out by a patient or an assistant, a health care provider, and so forth. A point-of-care system preferably has dimensions and a configuration that allows it to be conveniently transported to a user's desired environment and readily used for testing. FIG. 1 illustrates an exemplary system of the present invention. As illustrated, a fluidic device provides a bodily fluid from a patient and can be inserted into a reader assembly. The fluidic device may take a variety of configurations and in some embodiments the fluidic device may be in the form of a cartridge. An identifier (ID) detector may detect an identifier on the fluidic device. The identifier detector communicates with a communication assembly via a controller which transmits the identifier to an external device. Where desired, the external device sends a protocol stored on the external device to the communication assembly based on the identifier. The protocol to be run on the fluidic device may comprise instructions to the controller of the reader assembly to perform the protocol on the fluidic device, including but not limited to a particular assay to be run and a detection method to be performed. Once the assay is performed on the fluidic device, a signal indicative of an analyte in the bodily fluid sample is generated and detected by a detector. The detected signal may then be communicated to the communications assembly, where it can be transmitted to the external device for processing, including without limitation, calculation of the analyte concentration in the sample. FIG. 2 illustrates exemplary layers of a fluidic device according to the present invention prior to assembly of the fluidic device. FIGS. 3 and 4 show a top and bottom view, respectively, of an exemplary fluidic device after the device has been assembled. The different layers are designed and assembled to form a three dimensional fluidic channel network. A sample collection unit provides a sample of bodily fluid from a patient. A reader assembly comprises actuating elements (not shown) that can actuate the fluidic device to start and direct the flow of a bodily fluid sample and assay reagents in the fluidic device. In some embodiments actuating elements first cause the flow of sample in the fluidic device from a sample collection unit 4 to reaction sites 6, and then to waste chamber 8 following completion of reactions in the sites. If necessary for a given reaction, the actuating elements initiate flow of reagents from reagent chambers 10 to reaction sites, and then to waste chamber 8 in a manner similar to that of the sample. A fluidic device of the present system can run a variety of assays, regardless of the analyte being detected from a bodily fluid sample. A protocol dependent on the identity of the fluidic device may be transferred from an external device where it can be stored to a reader assembly to enable the reader assembly to carry out the specific protocol on the fluidic device. In preferred embodiments, the fluidic device has an identifier (ID) that is detected or read by an identifier detector. The identifier can then be communicated to a communication assembly, where it can then be transferred or transmitted to an external device. In one embodiment, a bodily fluid sample is provided to a fluidic device, which is then inserted into a reader assembly. In some embodiments the fluidic device is partially inserted manually, and then a mechanical switch in the reader assembly automatically properly positions the fluidic device inside the reader assembly. Any other mechanism known in the art for inserting a disk or cartridge into a device may be used as well. In some embodiments only manual insertion may be required. In preferred embodiments the reader assembly houses a controller which controls a pump and a series of valves to control and direct the flow of liquid within the fluidic device. In some embodiments the reader assembly may comprises multiple pumps. The sample and reagents are preferably pulled through the fluidic channels by a vacuum force created by sequentially opening and closing at least one valve while activating a pump within the reader assembly. Methods of using at least one valve and at least one pump to create a vacuum force are well known. While a negative pulling force may be used, a positive pushing force may also be generated by at least one pump and valve according to the present invention. In other embodiments movement of fluid on the fluidic device may be by electro-osmotic, capillary, piezoelectric, or microactuator action. One of the advantages of the present invention is that any reagents necessary to perform an assay on a fluidic device according to the present invention are preferably on-board, or housed within the fluidic device before, during, and after the assay. In this way the only inlet or outlet from the fluidic device is preferably the bodily fluid sample initially provided by the fluidic device. This design also helps create an easily disposable fluidic device where all fluids or liquids remain in the device. The on-board design also prevents leakage from the fluidic device into the reader assembly which should remain free from contamination from the fluidic device. Method of Use The subject apparatus and systems provide an effective means for high throughput and/or real-time detection of analytes present in a bodily fluid from a subject. The detection methods may be used in a wide variety of circumstances including identification and quantification of analytes that are associated with specific biological processes, physiological conditions, disorders or stages of disorders. As such, the subject apparatus and systems have a broad spectrum of utility in, e.g. drug screening, disease diagnosis, phylogenetic classification, parental and forensic identification. The subject apparatus and systems are also particularly useful for advancing preclinical and clinical stage development of therapeutics, improving patient compliance, monitoring adverse drug responses associated with a prescribed drug, and developing individualized medicine. Accordingly, in one embodiment, the present invention provides a method of detecting an analyte in a bodily fluid from a subject. The method typically involves the steps of (a) introducing a sample of bodily fluid into a fluidic device having a sample collection unit and an assay assembly, the assay assembly having reactants that are capable of reacting with an analyte; (b) allowing the sample of bodily fluid to react with the reactants contained within the assay assembly to yield a colored product having an absorbance spectrum corresponding to at least one wavelength from a light source; (c) transmitting light having the at least one wavelength to the fluidic device from the light source; and (d) detecting absorption of light of the at least one wavelength transmitted to the fluidic device, wherein the absorption is indicative of the presence of the analyte in said bodily fluid. Any bodily fluids suspected to contain an analyte of interest can be used in conjunction with the subject methods of detection. Commonly employed bodily fluids include but are not limited to blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, and cerebrospinal fluid. The volume of bodily fluid to be used in methods of the present invention is generally less than about 500 microliters, and preferably less than about 50 microliters. Where desired, a sample of 1 to 50 microliters, 1 to 40 microliters, 1 to 30 microliters, 1 to 20 microliters, or 1 to 10 microliters can be used for detecting an analyte using the subject fluidic device. A bodily fluid may be drawn from a patient and brought into the fluidic device in a variety of ways, including but not limited to, lancing, injection, or pipetting. In one embodiment, a lancet punctures the skin and draws the sample into the fluidic device using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the fluidic device, or part of a reader assembly, or as a stand alone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In another embodiment where no active mechanism is required, a patient can simply provide a bodily fluid to the fluidic device, as for example, could occur with a saliva sample. The collected fluid can be placed in the sample collection unit within the fluidic device. In yet another embodiment, the fluidic device comprises at least one microneedle which punctures the skin. The microneedle can be used with a fluidic device alone, or can puncture the skin after the fluidic device is inserted into a reader assembly. In some embodiments a microneedle is about the size of a human hair and has an integrated microreservoir or cuvette. The microneedle may painlessly penetrate the skin and draw a small blood sample. More preferably, the microneedle collects about 0.01 to about 1 microliter, preferably about 0.05 to about 0.5 microliters and more preferably about 0.1 to about 0.3 microliters of capillary blood. In some embodiments a microneedle may be constructed out of silicon and is about 10 to about 200 microns in diameter, preferably about 50 to about 150 microns in diameter, and most preferably about 100 microns in diameter, making their application to the skin virtually painless. To ensure that a capillary is actually struck by a needle, a plurality of microneedles may be used for sample collection. Such microneedles may be of the type marketed by Pelikan (Palo Alto, Calif.) and/or Kumetrix (Union City, Calif.). U.S. Pat. No. 6,503,231 discloses microneedles which may be used with the present invention. In preferred embodiments a microneedle is only used once and then discarded. In some embodiments a mechanical actuator can insert and withdraw the microneedle from the patient, discard the used needle, and reload a new microneedle. In some embodiments the method of detecting an analyte in a bodily fluid from a subject includes metering a predetermined portion of the sample, in which this predetermined portion is assayed for the presence of analytes. The volume of the predetermined portion will preferably be less than about 500 microliters, more preferably about less than 50 microliters, or even more preferably, the volume is about 10 microliters. A precise sample volume is determined by several features. In one embodiment a subject places a sample of bodily fluid into the sample collection well, after which the sample is drawn into a metering channel by capillary action until it reaches a stop junction at the entrance of the mixing chamber. The metering channel preferably has physical dimensions and surface characteristics which reliably promote flow of blood from the sample collection well. In a preferred embodiment, a predetermined portion of a sample is diluted and mixed with a diluent to yield a diluted sample, which is then assayed for the presence of analytes. A predetermined portion is diluted with a diluent that is typically contained in a diluent chamber, with the portion and diluent being mixed in a mixing chamber. Preferably, the diluent is flowed into the metering channel, which flushes the sample into the mixing chamber. A precise volume of diluent is stored in the dilution chamber. A precise volume of diluent, a precise volume of the predetermined portion of a sample, and efficient combination and mixing of the two volumes allows the sample to be diluted with a high degree of precision. In some embodiments, the fluid sample will be filtered before entering a reaction chamber. For example, blood may be filtered to remove red blood cells. Where a sample is diluted before assaying, filtering will typically occur after dilution. Filtering will occur in a filter chamber, through which the sample is transported before entering into a reaction site. A variety of assays may be performed on a fluidic device according to the present invention to detect an analyte of interest in a sample. Analytes that may be detected by the subject methods include, but are not limited to, drugs, drug metabolites, biomarkers indicative of disease, tissue specific markers, tissue specific enzymes, hormones, antibodies, pathogens, HDL cholesterol, LDL cholesterol, total cholesterol, lipids, and glucose. The subject methods involve reactants that are capable of reacting with an analyte of interest to generate a color product for detection by optical means. The choice of reactants will depend on the particular analyte being examined. For detection of levels of total cholesterol (i.e., the sum of free and esterified cholesterol) in a bodily fluid, reactants including cholesterol esterase, cholesterol oxidase, an oxidizable dye such as n,n-bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase can be employed. In this reaction scheme, cholesterol esterase converts esterified cholesterol to free cholesterol. Cholesterol oxidase transforms the free cholesterol into cholest-4-ene-3-one and hydrogen peroxide. The amount of hydrogen peroxide generated can be quantified by a spectrophotometric assay, for example the oxidative coupling of 4-aminoantipyrine and TODB in the presence of peroxidase to form a chromophore. The amount of chromophore formed is then measured by light attenuation (absorbance), which corresponds to the amount of total cholesterol. Measuring the ALT levels as a way for assaying liver function can be carried out by reacting the analyte from a bodily fluid with reactants such as alphaketoglutarate, pyruvate oxidase, an oxidizable dye such as N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt (TODB), 4-aminoantipyrine, and horse radish peroxidase. In this assay reaction scheme, ALT catalyzes the transfer of amino groups from L-alanine to alphaketoglutarate, producing pyruvate and glutamate. Pyruvate oxidase oxidizes the pyruvate to acetylphosphate and hydrogen peroxide. Horseradish peroxidase catalyzes the reaction of the peroxide reacts with TODB to form a colored product at a rate proportional to the ALT concentration of the sample. The resultant colored product in the reaction is measured by light absorbance. The methods of the present invention can also be used to detect analytes, such as small molecule drugs, biomarkers, hormones, and antibodies, through binding of an agent that then participates in a color-producing reaction. For example, an analyte can be detected through binding and color formation that occurs in immunoassays, such as an enzyme-linked immunosorbent assay (ELISA). In a typical ELISA, an analyte is specifically bound by an antibody, which in turn is detected by a secondary, enzyme-linked antibody. The linked enzyme catalyzes a color-producing reaction. Enzymes such as β-galactosidase, alkaline phophatase and horse radish peroxidase are often utilized for color formation in ELISAs. The light absorbance of colored products generated in an ELISA is typically in a range well suited for the present invention. Reactants of the present invention accordingly will include reagents for an ELISA or similar immunoassay. Unlike typical assays for detection of analytes that are chemical reactants or promote a chemical reaction, ELISA immunoassays require wash steps, and thus generally will occur in separate, dedicated reaction sites. A colored product will be detected in methods of the present invention through measurement of absorbance of light by the colored product. The light to be transmitted in the methods of the present invention will be from a source that emits a spectrum of light in which at least one wavelength of light corresponds to the absorption spectrum of the colored product. The range of absorption spectra of colored products will correspond to a wavelength range of about 250 nm to about 900 nm. Preferably, the color to be measured is generally in a visible range of about 400 to about 800 nm. The spectrum of light emitted by a source accordingly will be similar to the absorption spectrum of the colored product. Preferably, the emission spectrum from a light source will exactly overlap the absorption spectrum of the absorbing species. However, an exact overlap between the light source emission spectrum and the absorption spectrum of the colored product is not required for measurement by the methods of the present invention, as described in the examples provided herein. Monochromatic light sources and/or filters generally can be used to provide a means to match the characteristics of the absorption and the light source. A variety of light sources may be utilized for the present invention depending on the particular type of application and absorbance spectrum requirements for a given analyte of interest. An example of an appropriate light source includes, but is not limited to, an incandescent bulb, a light emitting diode, luminescent paint, and a laser. The position of the light source relative to the reaction site will depend on the particular source of light. Typically, a light source will transmit light into the reaction site through a transparent, flat surface of the reaction site. In this scenario, the light source will be external to the fluidic device, with the reaction site aligned with the light source so that light is transmitted directly into the reaction site. To enable measurement from several reaction sites, the fluidic device and light source will be moveable relative to each other to allow alignment of more than one individual reaction site with the light source. Either the fluidic device, light source, or a combination of the two can be moveable within a system to allow alignment. As an alternative to light being transmitted into the reaction site from an external source, the methods of the present invention can utilize a luminescent paint as an internal light source. In this scenario, the luminescent paint will emit light through a colored product contained in the reaction site. For example, the reaction site could have a cylindrical shape, with two flat opposed surfaces, with one being transparent, the other being coated with a luminescent paint. The luminescent paint will emit light through the colored product, which could be detected by a detector as detailed below. Luminescent paint is generally formulated using very tiny quantities of a long-lived radioisotope together with a material that glows or scintillates non-destructively when irradiated. The paint can be appropriately colored by addition of dyes. The spectrum of light emitted will generally be a function of the scintillant material and the absorbance characteristics of the chemistry used in forming a colored product. The light generated in the methods of the present invention will be detected by a detector that will be external to the fluidic device. Examples of suitable detectors include, but are not limited to, a photomultiplier tube, a photodiode or an avalanche photodiode. The position of the light detector relative to the fluidic device will depend on the light source used and its relative position to the fluidic device. In the case where the light source is a luminescent paint contained within a reaction site of the device, the detector can be positioned as necessary to be aligned with a transparent surface of the reaction site to detect light emitted through a colored product. In the situation where the light source is external to a fluidic device, a detector could be positioned either on the same side or an opposite side of the fluidic device relative to the light source. A reaction site can be configured with a single transparent surface to allow both light transmission into the site and detection from the site. In this scenario, a detector would be positioned on the same side of the fluidic device as the light source, and shielded such that the only light detected is that emitted from the reaction site of the fluidic device. Alternatively, a reaction site can be configured with two flat, opposed transparent surfaces such that the reaction site is effectively an optical cuvette. In this configuration, the light source would transmit light to one side of the reaction site in the fluidic device and the detector would detect the light transmitted through the colored product to the opposite side of the reaction site in the fluidic device. In either scenario, the detector will be positioned to align with the reaction site to detect light emission. To allow measurement from several reaction sites, the fluidic device and light detector will be moveable relative to each other to allow alignment of more than one individual reaction site with the light detector. Either the fluidic device, the detector, or a combination of the two can be moveable to allow alignment. In addition to detection of the presence of an analyte in a bodily fluid, the methods of the present invention also provide for quantitation of the concentration of an analyte in a bodily fluid through measurement of absorbance. Concentration of the analyte is related to the amount of light adsorbed by the colored product. In the case of analytes that can be converted directly or indirectly into colored product, such as cholesterol, the conversion to product is typically stoichiometric. For instance, the amount of color produced can linearly increase with the amount of analyte present. The corresponding absorbance can be proportionately related to the amount of color produced, and therefore the concentration of analyte present. However, at high concentrations, the proportionality of absorbance to concentration set forth by Beer's Law does not necessarily hold. Thus, an accurate measurement of analyte present at high concentration may depend on an appropriate dilution of a bodily fluid, the characteristics of the particular absorbing species, and the length of cell path from which determination of absorbance is made. Analytes that are detected by their ability to catalyze formation of a colored product, such as the enzyme ALT, can be quantified following a particular length of reaction time. By allowing an analyte enzyme to react for a fixed period of time, appropriate quantities of measurable, colored product can be generated. For example, a fixed period of time under conditions in which the amount of an analyte enzyme is a rate-limiting factor can give rise to uM-nM quantities of colored product. The quantity of product generated can be measured at the end of the time period by measurement of light attenuation and determination of absorbance. The amount of analyte can then be determined based on the amount of product generated over time, based on known kinetics of a given analyte under the conditions of a particular assay used. An accurate measurement of analyte will depend on the particular analyte being examined, conditions under which it is assayed (at what dilution, temperature, and so on), the characteristics of the particular absorbing species, and the length of cell path from which determination of absorbance is made. In some embodiments immunoassays are run on the fluidic device. While competitive binding assays, which are well known in the art, may be run in some embodiments, in preferred embodiments a two-step method is used which eliminates the need to mix a conjugate and a sample before exposing the mixture to an antibody, which may be desirable when very small volumes of sample and conjugate are used, as in the fluidic device of the present invention. A two-step assay has additional advantages over the competitive binding assays when use with a fluidic device as described herein. It combines the ease of use and high sensitivity of a sandwich (competitive binding) immunoassay with the ability to assay small molecules. In an exemplary two-step assay, the sample containing analyte first flows over a reaction site containing antibodies. The antibodies bind the analyte present in the sample. After the sample passes over the surface, a solution with analyte conjugated to a marker at a high concentration is passed over the surface. The conjugate saturates any of the antibodies that have not yet bound the analyte. Before equilibrium is reached and any displacement of pre-bound unlabelled analyte occurs, the high-concentration conjugate solution is washed off. The amount of conjugate bound to the surface is then measured by the appropriate technique, and the detected conjugate is inversely proportional to the amount of analyte present in the sample. The methods of the present invention provide for monitoring more than one pharmacological parameter useful for assessing efficacy and/or toxicity of a therapeutic agent. For the purposes of this invention, a “therapeutic agent” is intended to include any substances that have therapeutic utility and/or potential. Such substances include but are not limited to biological or chemical compounds such as simple or complex organic or inorganic molecules, peptides, proteins, or polynucleotides. A vast array of compounds can be synthesized, for example polymers, such as polypeptides and polynucleotides, and synthetic organic compounds based on various core structures, and these are also included in the term “therapeutic agent”. In addition, various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. It should be understood, although not always explicitly stated that the agent is used alone or in combination with another agent, having the same or different biological activity as the agents identified by the inventive screen. The agents and methods also are intended to be combined with other therapies. Pharmacodynamic (PD) parameters according to the present invention include without limitation physical parameters such as temperature, heart rate/pulse, blood pressure, and respiratory rate, and biomarkers such as proteins, cells, and cell markers. Biomarkers could be indicative of disease or could be a result of the action of a drug. Pharmacokinetic (PK) parameters according to the present invention include without limitation drug and drug metabolite concentration. Identifying and quantifying the PK parameters in real time from a sample volume is extremely desirable for proper safety and efficacy of drugs. If the drug and metabolite concentrations are outside a desired range and/or unexpected metabolites are generated due to an unexpected reaction to the drug, immediate action may be necessary to ensure the safety of the patient. Similarly, if any of the pharmacodynamic (PD) parameters fall outside the desired range during a treatment regime, immediate action may have to be taken as well. In preferred embodiments physical parameter data is stored in or compared to store profiles of physical parameter data in a bioinformatics system which may be on an external device incorporating pharmacogenomic and pharmacokinetic data into its models for the determination of toxicity and dosing. Not only does this generate data for clinical trials years prior to current processes but also enables the elimination of current disparities between apparent efficacy and actual toxicity of drugs through real-time continuous monitoring. During the go/no go decision process in clinical studies, large scale comparative population studies can be conducted with the data stored on the database. This compilation of data and real-time monitoring allows more patients to enter clinical trials in a safe fashion earlier than currently allowed. In another embodiment biomarkers discovered in human tissue studies can be targeted by the device for improved accuracy in determining drug pathways and efficacy in cancer studies. Being able to monitoring the rate of change of an analyte concentration or PD or PK over a period of time in a single subject, or performing trend analysis on the concentration, PD, or PK, whether they are concentrations of drugs or their metabolites, can help prevent potentially dangerous situations. For example, if glucose were the analyte of interest, the concentration of glucose in a sample at a given time as well as the rate of change of the glucose concentration over a given period of time could be highly useful in predicting and avoiding, for example, hypoglycemic events. Such trend analysis has widespread beneficial implications in drug dosing regimen. When multiple drugs and their metabolites are concerned, the ability to spot a trend and take proactive measures is often desirable. The present invention allows for automatic quantification of a pharmacological parameter of a patient as well as automatic comparison of the parameter with, for example, the patient's medical records which may include a history of the monitored parameter, or medical records of another group of subjects. Coupling real-time analyte monitoring with an external device which can store data as well as perform any type of data processing or algorithm, for example, provides a device that can assist with typical patient care which can include, for example, comparing current patient data with past patient data. Where a statistically significant discrepancy exists between the detected values and the threshold value, a further action may be taken by a medical practitioner. Such action may involve a medical action such as adjusting dosage of the therapeutic agent; it may also involve a business decision such as continuing, modifying, or terminating the clinical trial. One advantage of the current invention is that assay results can be substantially immediately communicated to any third party that may benefit from obtaining the results. For example, once the analyte concentration is determined at the external device, it can be transmitted to a patient or medical personnel who may need to take further action. The communication step to a third party can be performed wirelessly, and by transmitting the data to a third party's hand held device, the third party can be notified of the assay results virtually anytime and anywhere. Thus, in a time-sensitive scenario, a patient may be contacted immediately anywhere if urgent medical action may be required. In some embodiments a patient may be provided with a plurality of fluidic devices to use to detect a variety of analytes. A subject may, for example, use different fluidic devices on different days of the week. In some embodiments, the methods of the present invention are applicable for obtaining pharmacological data useful for assessing efficacy and/or toxicity of a pharmaceutical agent from a test animal. When using laboratory animals in preclinical testing of a pharmaceutical agent, it is often necessary to kill the test subject to extract enough blood to perform an assay to detect an analyte of interest. This has both financial and ethical implications, and as such it may be advantageous to be able to draw an amount of blood from a test animal such that the animal does not need to be killed. In addition, this can also allow the same test animal to be tested with multiple pharmaceutical agents at different times, thus allowing for a more effective preclinical trial. On average, the total blood volume in a mouse, for example, is 6-8 mL of blood per 100 gram of body weight. A benefit of the current invention is that only a very small volume of blood is required to perform preclinical trials on mice or other small labaratory animals. In some embodiment between about 1 microliter and about 50 microliters are drawn. In preferred embodiment between about 1 microliter and 10 microliters are drawn. In preferred embodiments about 5 microliters of blood are drawn. A further advantage of keeping the test animal alive is evident in a preclinical time course study. When multiple mice, for example, are used to monitor the levels of an analyte in a test subject's bodily fluid over time, the added variable of using multiple subjects is introduced into the trial. When, however, a single test animal can be used as its own control over a course of time, a more accurate and beneficial preclinical trial can be performed. In some embodiments the methods of the present invention can be used in methods of automatically monitoring patient compliance with a medical treatment. After determination of an analyte in a bodily fluid, the level of analyte can be compared with a known profile associated with the medical treatment to determine if the patient is compliant or noncompliant with the medical treatment; and notifying a patient of the compliance or noncompliance. Noncompliance with a medical treatment, including a clinical trial, can seriously undermine the efficacy of the treatment or trial. As such, in some embodiments the system of the present invention can be used to monitor patient compliance and notify the patient or other medical personnel of such noncompliance. For example, a patient taking a pharmaceutical agent as part of medical treatment plan can take a bodily fluid sample which is assayed as described herein, but a detected metabolite concentration, for example, may be at an elevated level compared to a known profile thereby indicating multiple doses of the pharamaceutical agent have been taken. Such a known profile may be located or stored on an external device. The following examples illustrate and explain the invention. The scope of the invention is not limited by these examples. EXAMPLES Example 1 Trinder Reagent Spectrum Several color forming chemistries are applicable for use in the present invention, including those of peroxidase reactions. Peroxidase chromophores are well known in the art, as exemplified by Trinder reagents such as TODB or TOOS. A Trinder reagent will generate a reaction product having an absorption spectrum such as that exemplified in FIG. 8. As shown in FIG. 8, the width of the absorption spectrum at about half height of spectrum is about 100 nm. The width of the spectrum indicates that the absorption characteristics of a Trinder reagent make measurement of absorption applicable over a range of wavelengths. Example 2 Assay Simulation for a Light Source and Absorbing Species Having Matching Spectrums In the present invention, a light source may have an emission spectrum that perfectly overlaps with the absorption spectrum of the absorbing species. Using values that are typical for the chemistry and devices of the present invention, Table 1 shows the calculation for one analyte concentration. As shown in Table 1, an analyte having a concentration of 1.5 mM gives an absorbance of 0.25 (44% transmission) after dilution 1:30 when measured at the maximum absorbance (at λ max=50,000) with a pathlength of 0.1 cm, which would be typical of single use cartridges. FIG. 9 demonstrates the spectral response at this concentration, from which it can be seen that the best response is at λ max of 500 nm. TABLE 1 Conditions for spectra Luminescence λmax 500 nm Half width 30 nm Intensity 100000 counts (total) Absorption λmax 500 nm Half width 40 nm εM (λmax) 50000 Pathlength, l 0.1 cm Conc. 1.50E−03M (sample) Dilution 30 Fold A @ λmax 2.50E−01    ΔT@ λmax 4.38E+01% Example 3 Cholesterol Assay Using the parameters given in Example 2, the response of a cholesterol assay is shown in FIG. 10 based on attenuation of light at λ max. As shown in FIG. 10, the assay signal measured at λ max is well modulated over the clinical range of tested cholesterol levels. Example 4 Assay Simulation for a Light Source and Absorbing Species Having Offset Spectrums In this example, the parameters are as given in Example 2, with the exception that there is a large offset between the spectrum of the light source and the absorption spectrum, with λ max being 50 nm higher for the absorption spectrum (550 nm rather than 500 nm). As seen in FIG. 11, the light attenuation at the λ max of emission (500 nm) is much less than for the ideal case, as shown in FIG. 9. At higher wavelengths, however, the fractional signal modulation between the two spectrums is improved, albeit at a lower signal level of absorption than that seen at λ max. While the light emission and absorption spectrums will preferably overlap exactly, the overlap need not be an exact match for utility in the present invention. Example 5 Use of an Edge Filter to Improve Signal Modulation As shown in Example 4, overlap between light emission and absorption spectrums need not be an exact match for use in the present invention. However, monochromatic light sources and/or filters can generally be used to create a near exact match of the characteristics between a light source and the colored product absorption. Using the same parameters as used in Example 4, FIG. 12 demonstrates use of an edge filter with a cut-off of 490 nm used on either the light transmission or detection side of the optical system to improve signal modulation. While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. 15054510 theranos ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Aug 7th, 2018 12:00AM Jan 12th, 2017 12:00AM https://www.uspto.gov?id=US10039528-20180807 Systems, devices, and methods for integrated patient service center Bodily fluid sample collection systems, devices, and method are provided. The device may comprise a first portion comprising at least a sample collection channel configured to draw the fluid sample into the sample collection channel via a first type of motive force. The sample collection device may include a second portion comprising a sample container for receiving the bodily fluid sample collected in the sample collection channel, the sample container operably engagable to be in fluid communication with the collection channel, whereupon when fluid communication is established, the container provides a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channel into the container. 10039528 1. An integrated patient service center unit for use with a user and a user interface, the unit comprising: a station having a lockable cover securing at least one portion of the station; a user accommodation section defined by the station and adapted to enable an interaction between the station and the user; a user interface holder adapted to support a user interface to permit the user to input data, wherein the lockable cover is configured for securing the user interface and the user interface holder; a refrigerated, temperature controlled sample storage location that is configured to be accessible through a first opening; and a separate lockable access panel for the sample storage location, separate from the lockable cover. 2. The integrated patient service center of claim 1 further comprising a plurality of lockable wheels coupled to the station. 3. The integrated patient service center of claim 1 further comprising a table coupled to the station. 4. The integrated patient service center of claim 3 wherein the table is configured fold out from at least one off a side surface of the station. 5. The integrated patient service center of claim 3 wherein the table is configured fold out from at least a front surface of the station. 6. The integrated patient service center of claim 3 wherein the table has an adjustable height. 7. The integrated patient service center of claim 3 where the table comprises separate support leg(s) as long as things can be folded away/compact when not in use. 8. The integrated patient service center of claim 1 further comprising a privacy screen adapted to be drawn around the integrated patient service center to create a privacy space when rendering patient service. 9. The integrated patient service center of claim 8 wherein at least one portion of integrated patient service center is configured to extend above a height of the privacy screen, that would allow for branding visibility even when the privacy screen is drawn. 10. The integrated patient service center of claim 1 comprising at least one of the following: a printer, a touchscreen monitor, a non-touch monitor, a keyboard tray, a keyboard, a computer mouse, a USB Wifi Dongle, a Power Strip, a Surge Protector, a Scanner, a Collection Table, a Refrigerator, a Refrigerator Thermometer, a Supply Cabinet, a supply Drawer, or a Wifi Hotspot device. 11. The integrated patient service center of claim 1 the patient service center has a sharps container and a biohazard bin. 12. The integrated patient service center of claim 1 lockable cover is movable from a first position to a second position to close an opening that allows access to the user interface. 13. The integrated patient service center of claim 1 further comprising a controlled temperature storage unit that is lockable for storage of fluid samples obtained from the patient. 14. The integrated patient service center of claim 1 wherein the separate lockable access panel is on a side of the station to access the sample storage location. 15. The integrated patient service center of claim 1 wherein the separate lockable access panel is on a rear surface of the station to allow access to the sample storage location. 16. The integrated patient service center of claim 3 wherein the table comprises a thermal control areas to increase blood flow to a target area and thus increase the speed with which sufficient blood or other bodily fluid can be drawn from a subject. 17. The integrated patient service center of claim 16 the thermal control areas are configured to heat a target tissue to about 40° C. to 50° C. 18. The integrated patient service center of claim 16 the thermal control areas are configured to heat a temperature range of about 44° C. to 47° C. 19. An integrated patient service center comprising: a station having a lockable cover securing at least one portion of the station; a user accommodation section of the station adapted to locate a user in at least one position that enables an interaction between the station and the user; a user interface adapted to permit a user to input data relevant to the user; wherein said at least one position enables the user to position a portion of their body onto a work surface for obtaining patient service; and a secured, temperature controlled sample storage location that is configured to be accessible through a first opening and a second opening, wherein a key, code, or structure to open one opening does not open another opening. 19 BACKGROUND A blood sample for use in laboratory testing is often obtained by way of venipuncture, which typically involves inserting a hypodermic needle into a vein on the subject. Blood extracted by the hypodermic needle may be drawn directly into a syringe or into one or more sealed vials for subsequent processing. When a venipuncture may be difficult or impractical such as on a newborn infant, a non-venous puncture such as a heel stick or other alternate site puncture may be used to extract a blood sample for testing. After the blood sample is collected, the extracted sample is typically packaged and transferred to a processing center for analysis. Unfortunately, conventional sample collection and testing techniques of bodily fluid samples has drawbacks. One of them is the lack of easily accessible sampling sites and patient service centers in locations that are more readily accessible to the patient. SUMMARY At least some of disadvantages associated with the prior art are overcome by at least some or all of the embodiments described in this disclosure. Although the embodiments herein are typically described in the context of obtaining a blood sample, it should be understood that the embodiments herein are not limited to blood samples and can also be adapted to acquire other fluid(s) or bodily sample(s) for analysis. In one embodiment, an integrated patient service center is provided comprising: a user accommodation section adapted to locate a user in at least one position that enables an interaction between the station and the user; a user interface adapted to permit a user to input data relevant to the user; wherein said at least one position enables the user to position a portion of their body onto a work surface for obtaining patient service; a secured, temperature controlled sample storage location that is configured to be accessible through a first opening; and a lockable cover for securing the a user interface but not the sample storage location. In another embodiment, an integrated patient service center is provided comprising a user accommodation section adapted to locate a user in at least one position that enables an interaction between the station and the user; a user interface adapted to permit a user to input data relevant to the user; wherein said at least one position enables the user to position a portion of their body onto a work surface for obtaining patient service; a secured, temperature controlled sample storage location that is configured to be accessible through a first opening and a second opening, wherein a key, code, or structure to open one opening does not open the other opening. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1-8 show views of integrated patient service center according to embodiments as described herein. DESCRIPTION OF THE SPECIFIC EMBODIMENTS It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a compound” may include multiple compounds, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings: “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for a sample collection well, this means that the sample collection well may or may not be present, and, thus, the description includes both structures wherein a device possesses the sample collection well and structures wherein sample collection well is not present. By way of non-limiting example, one embodiment of an integrated patient service center herein provides a location for a practitioner to sit and obtain a bodily fluid or other sample from the patient. A work surface such as a table is provided so that a patient has a surface on which they can position the target site on the subject to allow for sampling. The work surface can have one or more thermal controlled sites wherein the temperature of the target site on the patient may be brought to a desired temperature. By way of example and not limitation, one embodiment may heat a finger or other target site to improve blood flow and thus blood yield from a fingerstick. In one embodiment, the temperature is sufficient to increase blood flow to yield 120 uL of sample. In one embodiment, the temperature is sufficient to increase blood flow to yield 130 uL of sample. In one embodiment, the temperature is sufficient to increase blood flow to yield 140 uL of sample. In one embodiment, the temperature is sufficient to increase blood flow to yield 150 uL of sample. Optionally, the thermal controlled site is a shaped surface is contoured to match that of the target site on a patient. Optionally, the integrated patient service center has an integrated table with a heater in it for finger warming as a replacement/alternative for/to our finger warmers. In one embodiment, that table can have the biohazard bin built in and is at optimal height for facilitating the flow of gravity in the finger as droplets form. It is designed for a technician and patient to be sitting together. The table may optionally go into a treatment with an integrated passthrough window specially designed to transfer urine into the blood collection area and into devices. In one non-limiting example, the integrated patient service center may be an indoor unit. The integrated patient service center may be permanent, but mobile. The integrated patient service center may be configure so that one person at the unit, providing service to another person. The integrated patient service center may be 30×48×52″ approximately, err on the side of taller and skinnier. The integrated patient service center may have security features. The integrated patient service center may be a lockable whole unit. The integrated patient service center may be have a lockable individual drawer unit for after-hours access. The integrated patient service center may be have a lock for electronics in the unit. The integrated patient service center may be secured during movement. The integrated patient service center may be moveable but stable when locked. The integrated patient service center may have wheels, and maneuverable, but can lock stably into place once in position. The integrated patient service center may have a table that is sturdy, able to be able to carry the weight of 2 people's arms resting on it. The integrated patient service center may have electrical power to it. The integrated patient service center may have a power strip hidden internally, only have single protruding cable—rest of cables out of sight. The integrated patient service center may have 5-7 electronic devices to be connected, all in main unit (not on side table). The integrated patient service center may have 15-20 Amp out. The integrated patient service center may be configured to be versatile. The integrated patient service center may have table/workspaces that fold out at least one off the side of the unit and one in the front. The integrated patient service center may have possibly adjustable heights for tables. The integrated patient service center may be easily cleanable. The integrated patient service center may be easily cleanable surface especially the side table. The integrated patient service center may have FDA/food handling quality for the side table. The integrated patient service center may configured to stay looking clean with use. The integrated patient service center may be configure have a screen or create some space and provide some privacy. In one embodiment, the integrated patient service center may be configured for 2 people sitting on standard chairs. The integrated patient service center may be have some small quantity of cleaning supplies for the station: surface wipes, hand sanitizer etc. The integrated patient service center may have areas for holding some small quantity of office supplies. The integrated patient service center may have a 3 gallon bin—215×150×450 mm, 2 lb. The integrated patient service center may have a small trash bin 7-13 gallons approx. The integrated patient service center may have a small storage area. The integrated patient service center may have a small storage area for personal items—lockable. Usage Scenarios: Case 1: there would already be a counter/check-in place before people are directed to the integrated patient service center. Case 2: The integrated patient service center would be located within the larger retail area and directly come up to it. In one embodiment, there will be a privacy screen (separate, about person height) that will be drawn around the integrated patient service center during the procedure, and removed the rest of the time. Optionally, if parts of the integrated patient service center can pop up above the screen height, that would allow for branding visibility even when the screen is drawn. Optionally, in all cases the integrated patient service center will be pushed up with the back against the wall, i.e. when the technician is sitting facing the integrated patient service center, they will be facing the wall. Optionally, the technician may not necessarily be sitting facing the integrated patient service center the whole day though. Optionally, the back of the integrated patient service center should be fairly flat, and this would affect the overall shape. Optionally, possibility of changing, since store layouts might change over time. Optionally, some cases the integrated patient service center might be in a corner. Optionally, side table, ideally adjustable height with just a little range, maybe a few inches. Chairs that the people will sit on are probably adjustable too. Optionally, ideally can translate and rotate. Optionally, if the table could come towards you, and one could rotate about the corner, for maximum customizability. The white wireframe ‘table’ in the mock up is too big right now but a customer needs to fit between the potential back wall and the table, no matter how big or small the customer, and to be able to get in and out easily. Optionally, the table is mountable on either sides of the integrated patient service center, so that the procedure could take place on either side. Possibly having two tables, one on each side. Optionally, one should still be able to reach across to access a drawer on the other side of the integrated patient service center while at the side table (the footprint constraint already takes care of that, judging from the user tests). Optionally, one could have separate support leg(s) as long as things can be folded away/compact when not in use. As seen in FIGS. 1 to 8, some common items in the integrated patient service center include but are not limited to printer, touchscreen monitor or non-touch monitor, keyboard tray, keyboard, mouse, USB Wifi Dongle, Power Strip/Surge Protector, Scanner, Collection Table(s), Refrigerator, Refrigerator Thermometer, Supply Cabinet/Drawer(s), Wifi Hotspot. One embodiment may have a table that fold out to sides and middle, 24-28″ high, imagine children's school desk, may be value in having adjustable height, needs to bear weight. Optionally, the patient service center has sharps container, biohazard bin, lancets, BCD, alcohol swabs, gauze, bandaid, pens, gloves, mask, stamp (PROCESSED) or other office supply. Referring now to FIG. 1, this embodiment shows an integrated patient service center 10 that has a lockable screen or structure 12 that moves from a first position to a second position to close the opening 20 that allows access to the monitor, scanner, and other electronics. The controlled temperature storage unit 30 is provided that is lockable for storage of fluid samples obtained from the patient. FIG. 2 shows that lockable screen or structure 12 is movable to cover opening 20. A sharps container or trash receptacle 40 is shown in FIG. 2. FIG. 3 is a transparent view showing the various component inside an integrated patient service center. It should be understood that the storage unit 30 that is temperature controlled is not covered by the structure 12 when the structure is closed. This allows for the samples in the storage unit 30 to be accessed without have to give access to all of the unit. Optionally, some embodiment may have a second door on the side to allow for access into the storage unit 30. Optionally, some embodiment may have a second door on the back of the center 10 to allow for access into the storage unit 30. FIG. 4 shows yet another embodiment, wherein table or work surface 50 is movable. FIGS. 5 and 6 show various views of an integrated patient service center similar to those previously described herein. As seen in FIG. 7, the top down plan view shows that the shape of the service center 10 can be configured preferentially direct one portion 100 away from publically viewable areas to provide some more privacy as to information being shown on the any computer monitor. It can also be positioned to enable a user to see information in the service center 10 and be facing somewhat towards the patient who will be near the work surface 50. It also provides for a larger surface 110 to provide for signage or other display information. While the teachings has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, the table may have thermal control areas to increase blood flow to the target area and thus increase the speed with which sufficient blood or other bodily fluid can be drawn from the subject. The heating is used to bring the target tissue to about 40 C to 50 C. Optionally, the heat brings target tissue to a temperature range of about 44 to 47 C. Additionally, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the explicitly recited limits of about 1 nm and about 200 nm, but also to include individual sizes such as 2 nm, 3 nm, 4 nm, and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, etc . . . . The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. The following applications are fully incorporated herein by reference for all purposes: in U.S. Provisional Patent Application No. 61/435,250, filed Jan. 21, 2011 (“SYSTEMS AND METHODS FOR SAMPLE USE MAXIMIZATION”), and U.S. Patent Publication No. 2009/0088336 (“MODULAR POINT-OF-CARE DEVICES, SYSTEMS, AND USES THEREOF”). The following applications are fully incorporated herein by reference for all purposes: U.S. Pat. No. 8,088,593; U.S. Pat. No. 8,380,541; U.S. patent application Ser. No. 13/769,798, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,779, filed Feb. 18, 2013; U.S. Pat. App. Ser. No. 61/766,113 filed Feb. 18, 2013, U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011; PCT/US2012/57155, filed Sep. 25, 2012; U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,949, filed Sep. 26, 2011; and U.S. Application Ser. No. 61/673,245, filed Sep. 26, 2011, U.S. Patent Application Ser. No. 61/786,351 filed Mar. 15, 2013, U.S. Patent Application Ser. No. 61/697,797 filed Sep. 6, 2012, U.S. Patent Application Ser. No. 61/852,484 filed Mar. 15, 2013, and U.S. Patent Application Ser. No. 61/733,886 filed Dec. 5, 2012, the disclosures of which patents and patent applications are all hereby incorporated by reference in their entireties for all purposes. While the above is a complete description of the preferred embodiment as described herein, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context expressly dictates otherwise. Thus, in contexts where the terms “and” or “or” are used, usage of such conjunctions do not exclude an “and/or” meaning unless the context expressly dictates otherwise. This document contains material subject to copyright protection. The copyright owner (Applicant herein) has no objection to facsimile reproduction of the patent documents and disclosures, as they appear in the US Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice shall apply: Copyright 2013 Theranos, Inc. 15404361 theranos ip company, llc USA B1 Utility Patent Grant (no pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Apr 24th, 2018 12:00AM Oct 1st, 2015 12:00AM https://www.uspto.gov?id=US09952240-20180424 Systems and methods for multi-analysis Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample. 9952240 1. A cartridge for use with a sample processing device, said cartridge comprising: at least one sample collection unit; at least one tip; at least one reagent unit; at least one assay unit; at least one thermal device; and a cartridge frame for supporting all of the foregoing and configured to be at least partially inserted into the sample processing device, wherein the at least one thermal device is mounted to the frame to position the at least one thermal device to thermally condition the at least one reagent unit. 2. The cartridge of claim 1, wherein the at least one reagent unit and the at least one assay unit are fluidically isolated and movable. 3. The cartridge of claim 1, wherein the at least one thermal device is capable of heating the cartridge. 4. The cartridge of claim 1, wherein the at least one thermal device is capable of cooling the cartridge. 5. The cartridge of claim 1, wherein the at least one thermal device thermally controls the temperature of a part of the cartridge without thermally affecting other parts of the cartridge. 6. The cartridge of claim 1, wherein the at least one thermal device comprises a chemical reaction pack. 7. The cartridge of claim 6, wherein the chemical reaction pack comprises at least one chemical selected from sodium acetate, calcium chloride, magnesium, iron, and sodium chloride. 8. The cartridge of claim 1, wherein the cartridge comprises at least two thermal devices, wherein the at least two thermal devices comprises a first thermal device and a second thermal device. 9. The cartridge of claim 8, wherein the first thermal device and the second thermal device are placed at different locations of the cartridge. 10. The cartridge of claim 8, wherein the first thermal device and the second thermal device are different sizes. 11. The cartridge of claim 1, further comprising at least one thermally conductive material coupled to predetermined portions of the frame. 12. The cartridge of claim 11, wherein the at least one thermally conductive material comprises at least one metal selected from aluminum, copper, silver, gold, steel, brass, iron, titanium, nickel, or any combination thereof. 13. The cartridge of claim 11, wherein the at least one thermally conductive material and the cartridge are made of different material. 14. The cartridge of claim 11, wherein the at least one thermally conductive material is integrated into a material used to form the cartridge. 15. The cartridge of claim 11, wherein the at least one thermally conductive material is located over the at least one thermal device. 16. The cartridge of claim 11, wherein the at least one thermally conductive material is spaced apart from the at least one thermal device. 17. The cartridge of claim 11, wherein the thermally conductive material is in contact with the at least one sample collection unit, the at least one tip, the at least one reagent unit, and/or the at least one assay unit. 18. The cartridge of claim 11, wherein the cartridge comprises at least two thermally conductive materials. 19. A cartridge for use with a sample processing device, said cartridge comprising: at least one sample collection unit; at least one tip; at least one reagent unit; at least one assay unit; at least one thermal device; and a cartridge frame for supporting all of the foregoing and configured to be at least partially inserted into the sample processing device, wherein the at least one thermal device is mounted to the frame to position the at least one thermal device to thermally condition the at least one reagent unit; wherein the cartridge comprises all reagents for performing one or more assays on a biological sample obtained from a subject. 20. A cartridge for use with a sample processing device, said cartridge comprising: at least one sample collection unit; at least one tip; at least one reagent unit; at least one assay unit; at least one thermal device; and a cartridge frame for supporting all of the foregoing and configured to be at least partially inserted into the sample processing device, wherein the at least one thermal device is mounted to the frame to position the at least one thermal device to thermally condition the at least one reagent unit; wherein the at least one sample collection unit is configured to receive a blood sample of no more than about 500 μl. 20 CROSS-REFERENCE This application is a continuation of U.S. application Ser. No. 14/789,930, filed Jul. 1, 2015, which is a continuation of U.S. application Ser. No. 14/183,500, filed Feb. 18, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/766,113, filed Feb. 18, 2013 and U.S. Provisional Patent Application No. 61/766,119, filed Feb. 18, 2013. U.S. application Ser. No. 14/789,930 is also a continuation of U.S. application Ser. No. 14/183,503, filed Feb. 18, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Nos. 61/766,113, filed Feb. 18, 2013, and 61/766,119, filed Feb. 18, 2013, and which is a continuation-in-part of U.S. application Ser. No. 13/769,779, filed Feb. 18, 2013, and Ser. No. 13/769,820, filed Feb. 18, 2013. U.S. application Ser. No. 13/769,779, filed Feb. 18, 2013, and U.S. application Ser. No. 13/769,820, filed Feb. 18, 2013, are both continuation-in-parts of International Application No. PCT/US2012/057155, filed Sep. 25, 2012, which is a continuation-in-part of International Application No. PCT/US2011/053188, filed Sep. 25, 2011, International Application No. PCT/US2011/053189, filed Sep. 25, 2011, U.S. application Ser. No. 13/244,947, filed Sep. 26, 2011, now U.S. Pat. No. 8,435,738, and U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011, now U.S. Pat. No. 8,380,541. U.S. application Ser. No. 13/769,779, filed Feb. 18, 2013, and U.S. application Ser. No. 13/769,820, filed Feb. 18, 2013, are also continuation-in-parts of U.S. application Ser. No. 13/244,949, filed Sep. 26, 2011, U.S. application Ser. No. 13/244,956, filed Sep. 26, 2011, U.S. application Ser. No. 13/244,952, filed Sep. 26, 2011, now U.S. Pat. No. 8,475,739, U.S. application Ser. No. 13/244,950, filed Sep. 26, 2011, U.S. application Ser. No. 13/244,953, filed Sep. 26, 2011, U.S. application Ser. No. 13/244,954, filed Sep. 26, 2011, now U.S. Pat. No. 8,840,838, International Application No. PCT/US2011/053188, filed Sep. 25, 2011, International Application No. PCT/US2011/053189, filed Sep. 25, 2011, U.S. application Ser. No. 13/244,947, filed Sep. 26, 2011, now U.S. Pat. No. 8,435,738, and U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011, now U.S. Pat. No. 8,380,541. All of the foregoing applications and patents are incorporated herein by reference in their entirety for all purposes. BACKGROUND OF THE INVENTION The majority of clinical decisions are based on laboratory and health test data, yet the methods and infrastructure for collecting such data severely limit the quality and utility of the data itself. Almost all errors in laboratory testing are associated with human or pre-analytic processing errors, and the testing process can take days to weeks to complete. Often times by the time a practicing physician gets the data to effectively treat a patient or determine the most appropriate intervention, he or she has generally already been forced to treat a patient empirically or prophylactically as the data was not available at the time of the visit or patient triage. Earlier access to higher quality testing information at the time of patient triage enables earlier interventions and better management of disease progression to improve outcomes and lower the cost of care. Existing systems and methods for clinical testing suffer major drawbacks from the perspectives of patients, medical care professionals, taxpayers, and insurance companies. Today, consumers can undergo certain specialized tests at clinics or other specialized locations. If a test is to be conducted and the result of which is to be eventually relied on by a doctor, physical samples are transported to a location which performs the test on the samples. For example, these samples may comprise blood from a venous draw and are typically collected from a subject at the specialized locations. Accessibility of these locations and the venipuncture process in and of itself is a major barrier in compliance and frequency of testing. Availability for visiting a blood collection site, the fear of needles—especially in children and elderly persons who, for example, often have rolling veins, and the difficulty associated with drawing large amounts of blood drives people away from getting tested even when it is needed. Thus, the conventional sampling and testing approach is cumbersome and requires a significant amount of time to provide test results. Such methods are not only hampered by scheduling difficulties and/or limited accessibility to collection sites for subjects to provide physical samples but also by the batch processing of samples in centralized laboratories and the associated turn around time in running laboratory tests. As a result, the overall turn around time involved in getting to the collection site, acquiring the sample, transporting the sample, testing the sample and reporting and delivering results becomes prohibitive and severely limits the timely provision of the most informed care from a medical professional. This often results in treatment of symptoms as opposed to underlying disease conditions or mechanisms of disease progression. In addition, traditional techniques are problematic for certain diagnoses. Some tests may be critically time sensitive, but take days or weeks to complete. Over such a time, a disease can progress past the point of treatment. In some instances, follow-up tests are required after initial results, which take additional time as the patient has to return to the specialized locations. This impairs a medical professional's ability to provide effective care. Furthermore, conducting tests at only limited locations and/or infrequently reduces the likelihood that a patient's status can be regularly monitored or that the patient will be able to provide the samples quickly or as frequently as needed. For certain diagnoses or conditions, these deficiencies inevitably cause inadequate medical responses to changing and deteriorating physiological conditions. Traditional systems and methods also affect the integrity and quality of a clinical test due to degradation of a sample that often occurs while transporting such sample from the site of collection to the place where analysis of the sample is performed. For example, analytes decay at a certain rate, and the time delay for analysis can result in loss of sample integrity. Different laboratories also work with different quality standards which can result in varying degrees of error. Additionally, preparation and analysis of samples by hand permits upfront human error to occur at various sample collection sites and laboratories. These and other drawbacks inherent in the conventional setup make it difficult to perform longitudinal analyses, especially for chronic disease management, with high quality and reliability Furthermore, such conventional analytical techniques are often not cost effective. Excessive time lags in obtaining test results lead to delays in diagnoses and treatments that can have a deleterious effect on a patient's health; as a disease progresses further, the patient then needs additional treatment and too often ends up unexpectedly seeing some form of hospitalization. Payers, such as health insurance companies and taxpayers contributing to governmental health programs, end up paying more to treat problems that could have been averted with more accessible and faster clinical test results. SUMMARY OF THE INVENTION Being able to detect a disease or the onset of a disease in time to manage and treat it is a capability deeply sought after by patients and providers alike but one that has yet to be realized in the current healthcare system where detection too often coincides with fatal prognoses. A need exists for improved systems and methods for sample collection, sample preparation, assay, and/or detection. A further need exists for systems and devices that perform one or more of the sample collection, preparation, assay, or detection steps. Systems and methods are needed at the time and place in which care is provided for rapid, frequent and/or more accurate diagnoses, ongoing monitoring, and facilitation and guidance of treatment. Systems and methods disclosed herein meet this and related needs. In accordance with an aspect of the invention, a system may comprise: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, separation, and chemical processing, and (b) multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the multiple types of assays are performed with the aid of isolated (including but not limited to fluidically) assay units contained within the system. In some embodiments, separation includes magnetic separation. Additional aspects of the invention may be directed to a system, comprising: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, separation, and chemical processing, and (b) one or more types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the system is configured to process or assay a sample having a volume less than or equal to 250 μl, and the system has a coefficient of variation less than or equal to 15%. In some embodiments, separation includes magnetic separation. A system may be provided in accordance with another aspect of the invention, said system comprising: a preparation station configured to perform sample preparation; and an assay station configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the system is configured to perform said sample preparation and said multiple types of assays within 4 hours or less. In some aspects of the invention a system may be provided, comprising: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to (a) prepare a sample for at least one physical or chemical assay; and (b) perform said at least one physical or chemical assay, and wherein at least one individual module of said plurality comprises a cytometry station configured to perform cytometry on said sample. Additional aspects of the invention are directed to a system, comprising: a sample preparation station, assay station, and detection station; and a control unit having computer-executable commands for performing a point-of-service service at a designated location with the aid of at least one of said sample preparation station, assay station and detection station, wherein the sample preparation station includes a sample collection unit configured to collect a biological sample, and wherein the system is configured to assay a biological sample at a coefficient of variation less than or equal to 15%. In accordance with aspects of the invention a system may comprise: a housing; and a plurality of modules within said housing, an individual module of said plurality of modules comprising at least one station selected from the group consisting of a sample preparation station, assay station, and detection station, wherein the system comprises a fluid handling system configured to transfer a sample or reagent vessel within said individual module or from said individual module to another module within the housing of said system. A plug-and-play system may be provided in accordance with additional aspect of the invention. The system may comprise: a supporting structure having a mounting station configured to support a module among a plurality of modules, said module being (a) detachable from said mounting station or interchangeable with at least other module of the plurality; (b) configured to perform without the aid of another module in said system (i) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, or (ii) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and (c) configured to be in electrical, electro-magnetical or optoelectronic communication with a controller, said controller being configured to provide one or more instructions to said module or individual modules of said plurality of modules to facilitate performance of the at least one sample preparation procedure or the at least one type of assay. Another aspect of the invention may be directed to a system, comprising: a sample preparation station, assay station, and/or detection station; and a control unit having computer-executable commands configured to perform a point-of-service service at a designated location, wherein the system is configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. Also, aspects of the invention may include a system, comprising: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and (b) multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the multiple types of assays are performed with the aid of three or more assay units contained within the system. A system may be provided in accordance with another aspect of the system, said system comprising: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and chemical processing, and (b) one or more types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the system is configured to process or assay a sample having a volume less than or equal to 250 μl, and the system has a coefficient of variation less than or equal to 10%. Furthermore, aspects of the invention may be directed to a system, comprising: an assay station configured to perform at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein a coefficient of variation of the at least one type of assay is less than or equal to 10% when performed with said system. In accordance with additional aspects of the invention, a system may comprise: an assay station configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and a control unit having computer-executable commands to perform said multiple types of assays, wherein the system is configured to assay a biological sample having a volume less than or equal to 250 μl. A system may be provided in accordance with additional aspects of the invention, said system comprising: a preparation station configured to perform sample preparation; and an assay station configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof, wherein the system is configured to perform said sample preparation and said multiple types of assays within 4 hours or less. Additionally, aspects of the invention may be directed to a system, comprising: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and chemical processing, and (b) multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; and wherein the system is configured to process or assay a sample having a volume less than or equal to 250 μl, and wherein the system is configured to detect from said sample a plurality of analytes, the concentrations of said plurality of analytes varying from one another by more than one order of magnitude. Another aspect of the system may provide a system, comprising: a sample preparation station, assay station, and/or detection station; and a control system having computer-executable commands configured to perform a point-of-service service at a designated location, wherein the system is configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In accordance with additional aspects of the invention, a system may comprise: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station; wherein the system is configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof, wherein at least one of said multiple types of assays is cytometry or agglutination. A system, in accordance with additional aspects of the invention, may comprise: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station; a cytometry station configured to perform cytometry on one or more samples, wherein the system is configured to perform at least one assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. Another aspect of the invention may provide a system, comprising: a sample preparation station, assay station, and detection station; and a control unit having computer-executable commands for performing a point-of-service service at a designated location with the aid of at least one of said sample preparation station, assay station and detection station, wherein the sample preparation station includes a sample collection unit configured to collect a biological sample, and wherein the system is configured to assay a biological sample at a coefficient of variation less than or equal to 10%. In some aspects of the invention, a system may comprise: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and (b) at least one physical or chemical assay, and wherein the system is configured to assay a biological sample having a volume less than or equal to 250 μl. A system provided in accordance with an aspect of the invention may comprise: a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station, wherein the system is configured to perform (a) multiple sample preparation procedures selected from the group consisting of sample processing, centrifugation, magnetic separation, physical separation and chemical separation, and (b) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. Furthermore, some aspects of the invention may provide a system, comprising: a housing; and a plurality of modules within said housing, an individual module of said plurality of modules comprising at least one station selected from the group consisting of a sample preparation station, assay station, and detection station, wherein the system comprises a fluid handling system configured to transfer a sample or reagent vessel within said individual module or from said individual module to another module within the housing of said system. Systems above or elsewhere herein, alone or in combination, may comprise a fluid handling system, wherein said fluid handling system comprises a pipette configured to uptake, dispense, and/or transfer said biological sample. Systems above or elsewhere herein may comprise an imaging device configured to image one or more of the group consisting of the biological sample collected, processing of the biological sample, and reaction performed on the systems above or elsewhere herein, alone or in combination. The imaging device may be a camera or a sensor that detects and/or record electromagnetic radiation and associated spacial and/or temporal dimensions. Systems above or elsewhere herein, alone or in combination may be configured to detect from said sample a plurality of analytes, the concentrations of said plurality of analytes varying from one another by more than one order of magnitude. A sample collection unit configured to draw a fluid or tissue sample from a subject may be provide in systems above or elsewhere herein, alone or in combination. Systems above or elsewhere herein, alone or in combination may have a coefficient of variation less than or equal to 10%. An automated method for processing a sample at a point-of-service location may be provided, said method comprising: providing the sample to systems above or elsewhere herein, alone or in combination; and allowing said system to process said sample to yield a detectable signal indicative of completion of said processing. In practicing the method above or elsewhere herein, alone or in combination, the processing step may assess histology of the sample or morphology of the sample. The processing step may assesses the presence and/or concentration of an analyte in the sample in methods above or elsewhere herein, alone or in combination. In systems above or elsewhere herein, alone or in combination, the sample preparation station may comprise a sample collection unit configured to collect a biological sample from a subject. A supporting structure may be a housing that encloses the plurality of modules, said housing optionally provides a power source or communication unit, in systems above or elsewhere herein, alone or in combination. The systems above or elsewhere herein, alone or in combination, may store and/or transmit electronic data representative of the image to an external device via a communication unit comprised in the system. In some embodiments, systems above or elsewhere herein, alone or in combination may further comprise a centrifuge. Systems above or elsewhere herein, alone or in combination, may be configured to perform two-way communication with an external device via a communication unit comprised in said system, wherein the communication unit is configured to send data to said external device and receive instructions with said system. A method of detecting presence or concentration of an analyte suspected to be present in a biological sample from a subject may be provided, said method comprising: providing the biological sample to systems above or elsewhere herein, alone or in combination; and performing at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof, to yield a detectable signal indicative of the presence or concentration of said analyte. Methods above or elsewhere herein, alone or in combination, may further comprise the step of generating a report comprising information relating to a time dependent change of the presence or concentration of said analyte. Methods above or elsewhere herein, alone or in combination, may further comprise the step of generating a report comprising information relating to diagnosis, prognosis and/or treatment of a medical condition for said subject based on a time dependent change of the presence or concentration of said analyte. In some situations, chemical processing is selected from the group consisting of heating and chromatography. In some embodiments, receptor-based assay includes protein assay. In some embodiments, systems provided herein, alone or in combination, are configured for autonomous operation. In some embodiments, systems, alone or in combination, are configured to detect from a sample a plurality of analytes, the concentrations of said plurality of analytes varying from one another by more than one order of magnitude. The concentrations of said plurality of analytes may vary from one another by more than two orders of magnitude. In some cases, the concentrations of said plurality of analytes may vary from one another by more than three orders of magnitude. The multiple types of assays may be performed with the aid of four or more assay units contained within the system. In some situations, systems are configured to draw a fluid or tissue sample from a subject. In an embodiments, systems are configured to draw a blood sample from a finger of the subject In some embodiments, a system, alone or in combination, has a coefficient of variation less than or equal to 5%. In other embodiments, a system, alone or in combination, has a coefficient of variation less than or equal to 3%. In other embodiments, a system, alone or in combination, has a coefficient of variation less than or equal to 2%. The coefficient of variation in some cases is determined according to σ/μ, wherein ‘σ’ is the standard deviation and ‘μ’ is the mean across sample measurements. In some situations, systems provided herein are configured to perform multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In some situations, systems provided herein have an accuracy of plus or minus 5% across sample assays, or plus or minus 3% across sample assays, or plus or minus 1% across sample assays, or plus or minus 5% across sample assays, or plus or minus 3% across sample assays, or plus or minus 1% across sample assays. In some embodiments, the coefficient of variation of the at least one type of assay is less than or equal to 5%, or less than or equal to 3%, or less than or equal to 2%. In some cases, a system may further comprise a plurality of modules mounted on a support structure, wherein an individual module of said plurality of modules comprises a sample preparation station, assay station, and/or detection station. Said individual module may comprise a sample preparation station, assay station and detection station. In some cases, a system further comprises a sample preparation station, assay station and detection station. In some embodiments, systems above or elsewhere herein, alone or in combination, are configured to perform at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation and chemical processing. The chemical processing may be selected from the group consisting of heating and chromatography. In some embodiments, systems above or elsewhere herein, alone or in combination, include computer-executable commands. The computer-executable commands may be provided by a server in communication with the system. In some embodiments, systems above or elsewhere herein, alone or in combination, include least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and chemical processing. Such systems can be configured to assay a sample at a rate of at least 0.25 assays/hour, or at least 0.5 assays/hour, or at least 1 assay/hour, or at least 2 assays/hour. Such system may include a control unit having computer-executable commands for performing a point-of-service service at a designated location. The computer-executable commands may be provided by a server in communication with the system. In some embodiments, systems above or elsewhere herein, alone or in combination, are configured to assay a sample and report a result to a remote system within a time period of at least about 6 hours, or 5 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 1 minute, or 30 seconds, or 10 seconds, or 5 seconds, or 1 seconds, or 0.1 seconds. For such systems, the concentrations of a plurality of analytes may vary from one another by more than two orders of magnitude, or three orders of magnitude. In some embodiments, systems above or elsewhere herein, alone or in combination, are configured to correlate the concentrations of analytes with compliance or non-compliance with a medical treatment. In some embodiments, a system above or elsewhere herein, alone or in combination, includes a sample preparation station one or more sample collection units. The one or more sample collection units may include a lancet and/or needle. The needle may include a microneedle. The one or more sample collection units may be configured to collect a biological sample. In some embodiments, a system above or elsewhere herein, alone or in combination, includes a sample preparation station, assay station and detection station. In some embodiments, a system above or elsewhere herein, alone or in combination, is configured to perform multiple types of assays with the aid of fluidically isolated assay units contained within the system. In some cases, the multiple types of assays are performed on an unprocessed tissue sample. In an example, the unprocessed tissue sample includes unprocessed blood. In some embodiments, a system above, alone or in combination, is configured to perform cytometry. In other embodiments, a system above, alone or in combination, is configured to perform agglutination and cytometry. In other embodiments, a system above, alone or in combination, is configured to perform agglutination, cytometry and immunoassay. In some embodiments, a system above, alone or in combination, is configured to assay a biological sample at a coefficient of variation less than or equal to 10%, or less than or equal to 5%, or less than or equal to 3%. In some embodiments, a system above, alone or in combination, is configured to perform at least one physical or chemical assay, such as cytometry. In some cases, the at least one physical or chemical assay further includes agglutination. In some cases, the at least one physical or chemical assay further includes immunoassay. In some embodiments, a system above, alone or in combination, is configured to process or assay a biological sample having a volume less than or equal to 100 μl. In other embodiments, a system above, alone or in combination, is configured to process or assay a sample having a volume less than or equal to 50 μl. In other embodiments, a system above, alone or in combination, is configured to process or assay a sample having a volume less than or equal to 1 μl. In other embodiments, a system above, alone or in combination, is configured to process or assay a sample having a volume less than or equal to 500 nanoliters (nL). In some embodiments, a system above, alone or in combination, is a point of service system In some embodiments, a system above, alone or in combination, is configured to perform two or more types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidmetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In some cases, the system, alone or in combination with other systems, is configured to perform three or more types of assays selected from said group. In some embodiments, a system above, alone or in combination, is configured to perform at least one type of assay with the aid of fluidically isolated assay units contained within the system. In some cases, the fluidically isolated assay units are tips. In some cases, each of the tips has a volume of at most 250 microliters (μl, also “ul” herein), or at most 100 μl, or at most 50 μl, or at most 1 μl, or at most 500 nanoliters (nl). In some embodiments, an individual module of a plurality of modules comprises a fluid uptake or retention system. In some cases, the fluid uptake and/or retention system is a pipette. In some embodiments, a system above, alone or in combination, is configured for two-way communication with a point of service server. In some embodiments, a system above, alone or in combination, has a fluid handling system having a coefficient of variation less than or equal to 10%, or less than or equal to 5%, or less than or equal to 3%, or less than or equal to 10%, or less than or equal to 5%, or less than or equal to 3%. In some embodiments, the fluid handling system includes an optical fiber. In some embodiments, a fluid handling system includes a fluid uptake and/or retention system. In some cases, a fluid handling system includes a pipette. In some embodiments, the fluid handling system is attached to each individual module among a plurality of modules of a system described above, alone or in combination with other systems. In some embodiments, a system above, alone or in combination, includes a housing that comprises a rack for supporting the plurality of modules. The housing can be dimensioned to be no more than 3 m3, or no more than 2 m3. In some embodiments, a system above, alone or in combination, comprises a control system having programmable commands for performing a point-of-service service at a designated location. In some embodiments, a system above, alone or in combination, includes a fluid handling system. In some cases, the fluid handling system includes a pipette selected from the group consisting of a positive displacement pipette, air displacement pipette and suction-type pipette. In some embodiments, a system above, alone or in combination, includes a plurality of modules. In some cases, an individual module comprises fluid handling tips configured to perform one or more of procedures selected from the group consisting of centrifugation, sample separation, immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In some situations, the nucleic acid assay is selected from the group consisting of nucleic acid amplification, nucleic acid hybridization, and nucleic acid sequencing. In some embodiments, a system above, alone or in combination, includes a plurality of modules, and each individual module of said plurality of modules comprises (a) a fluid handling system configured to transfer a sample within said individual module or from said individual module to another module within said system, (b) a plurality of assay units configured to perform multiple types of assays, and (c) a detector configured to detect signals generated from said assays. In some situations, the multiple types of assays are selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In some embodiments, a system above, alone or in combination, includes a plurality of modules, and each individual module comprises a centrifuge. In some embodiments, a system above, alone or in combination, further comprises a module providing a subset of the sample preparation procedures or assays performed by at least one module of said system. In some embodiments, a system above, alone or in combination, comprises an assay station that includes a thermal block. In some embodiments, a sample includes at least one material selected from the group consisting of fluid sample, tissue sample, environmental sample, chemical sample, biological sample, biochemical sample, food sample, or drug sample. In some cases, the sample includes blood or other bodily fluid, or tissue. In some embodiments, a system above, alone or in combination, is configured for two-way communication with a point of service server. In some cases, the two-way communication is wireless. In some embodiments, a system above, alone or in combination, includes a plurality of modules, and each member of the plurality of modules is swappable with another module. In some embodiments, a system above, alone or in combination, includes an assay station that comprises discrete assay units. In some cases, the discrete assay units are fluidically isolated assay units. In some embodiments, a system above, alone or in combination, is configured for longitudinal analysis at a coefficient of variation less than or equal to 10%, or less than or equal to 5%, or less than or equal to 3%. In some embodiments, a system above, alone or in combination, includes a fluid handling system that includes an optical fiber. In some embodiments, a system above, alone or in combination, includes a fluid handling system that includes a pipette. In some embodiments, a system above, alone or in combination, comprises an image analyzer. In some embodiments, a system above, alone in combination, comprises at least one camera in a housing of the system. In some cases, the at least one camera is a charge-coupled device (CCD) camera. In some situations, the at least one camera is a lens-less camera. In some embodiments, a system above, alone or in combination, comprises a controller that includes programmable commands for performing a point-of-service service at a designated location. In some embodiments, a system above, alone or in combination, is a plug-and-play system configured to provide a point-of-service service. In some cases, the point-of-service service is a point of care service provided to a subject having a prescription from the subject's caretaker, said prescription being prescribed for testing the presence or concentration of an analyte from said subject's biological sample. In some embodiments, a system above, alone or in combination, includes a plurality of modules, and each member of the plurality of modules comprises a communication bus in communication with a station configured to perform the at least one sample preparation procedure or the at least one type of assay. In some embodiments, a system above, alone or in combination, includes a supporting structure. In some cases, the supporting structure is a rack. In some situations, the rack does not include a power or communication cable; in other situations, the rack includes a power or communication cable. In some embodiments, the supporting (or support) structure includes one or more mounting stations. In some cases, the supporting structure includes a bus in communication with a mounting station of said one or more mounting stations. In some embodiments, the bus is for providing power to individual modules of the system. In some embodiments, the bus is for enabling communication between a controller of the system (e.g., plug-and-play system) and individual modules of the system. In some situations, the bus is for enabling communication between a plurality of modules of the system, or for enabling communication between a plurality of modules of a plurality of systems. In some embodiments, a system, alone or in combination, includes a plurality of modules, and each individual modules of the plurality of modules is in wireless communication with a controller of the system. In some cases, wireless communication is selected from the group consisting of Bluetooth communication, radiofrequency (RF) communication and wireless network communication. In some embodiments, a method for processing a sample, alone or in combination with other methods, comprises providing a system above, alone or in combination. The system comprises multiple modules configured to perform simultaneously (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation and chemical processing, and/or (b) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof within a module. Next, the system (or a controller of the system) tests for the unavailability of resources or the presence of a malfunction of (a) the at least one sample preparation procedure or (b) the at least one type of assay. Upon detection of the malfunction within at least one module, the system uses another module within the system or another system in communication with the system to perform the at least one sample preparation procedure or the at least one type of assay. In some cases, the system processes the sample at a point of service location. In some cases, the system is in wireless communication with another system. In some cases, multiple modules of the system are in electrical, electro-magnetic or optoelectronic communication with one another. In some cases, multiple modules of the system are in wireless communication with one another. An aspect of the invention includes a fluid handling apparatus comprising: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from the pipette nozzle; a plurality of plungers that are individually movable, wherein at least one plunger is within a pipette head and is movable within the pipette head; and a motor configured to effect independent movement of individual plungers of the plurality. Another aspect of the invention includes a fluid handling apparatus comprising a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from the pipette nozzle; a plurality of plungers that are individually movable, wherein at least one plunger is within a pipette head and is movable within the pipette head; and an actuator configured to effect independent movement of individual plungers of the plurality. Another aspect of the invention includes a fluid handling apparatus comprising a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said pipette nozzle, wherein the fluid handling apparatus is capable of dispensing and/or aspirating 0.5 microliters (“uL”) to 5 milliliters (“mL”) of fluid while functioning with a coefficient of variation of 5% or less. A fluid handling apparatus may be provided in accordance with an aspect of the invention, the apparatus comprising: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said nozzle; at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head; and at least one motor configured to permit movement of the plurality of plunger that is not substantially parallel to the removable tip. Another aspect of the invention provides a fluid handling apparatus comprising at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said nozzle; at least one plunger within a pipette head of said plurality, and wherein the plunger is configured to be movable within the pipette head; and at least one actuator configured to permit movement of the plurality of plungers that are not substantially parallel to the removable tip. Another aspect of the invention may provide a fluid handling apparatus comprising: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said nozzle, wherein said at least one pipette head has a fluid path of a given length that terminates at the pipette nozzle, and wherein the length of the fluid path is adjustable without affecting movement of fluid from the tip when the tip and the pipette nozzle are engaged. Another aspect of the invention provides a fluid handling apparatus comprising at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said nozzle, wherein said at least one pipette head has a fluid path of a given length that terminates at the pipette nozzle, and wherein the length of the fluid path is adjustable without affecting movement of fluid from the tip when the tip and the pipette nozzle are engaged. Additionally, aspects of the invention may include a fluid handling apparatus comprising: a removable tip; and at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the tip that is removable from said pipette nozzle, wherein the apparatus is operably connected to an image capture device that is configured to capture an image within and/or through the tip. An aspect of the invention may be directed to a sample processing apparatus comprising: a sample preparation station, assay station, and/or detection station; a control unit having computer-executable commands for performing a point-of-service service at a designated location with the aid of at least one of said sample preparation station, assay station and detection station; and at least one pipette having a pipette nozzle configured to connect with a tip that is removable from said pipette nozzle, wherein said pipette is configured to transport a fluid no more than 250 uL within or amongst said preparation station, assay station and/or detection station. A fluid handling apparatus may be provided in accordance with an additional aspect of the invention. The fluid handling apparatus may comprise: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a tip that is removable from said pipette nozzle, wherein the fluid handling apparatus is capable of dispensing and/or aspirating 1 uL to 5 mL of fluid while functioning with a coefficient of variation of 4% or less. In accordance with another aspect of the invention, a fluid handling apparatus may comprise: at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; and at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head, wherein the pipette nozzle is movable relative to the base, such that the pipette nozzle is capable of having (a) a retracted position, and (b) an extended position wherein the pipette nozzle is further away from the base than in the retracted position. Also, an aspect of the invention may be directed to a fluid handling apparatus comprising: a supporting body, extending therefrom a plurality of pipette heads comprising a positive displacement pipette head, comprising a positive displacement pipette nozzle configured to connect with a first removable tip; and an air displacement pipette head, comprising an air displacement pipette nozzle configured to connect to an air displacement pipette tip. An aspect of the invention may be directed to a fluid handling apparatus comprising: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; a plurality of plungers, wherein at least one plunger is within a pipette head of said plurality, and is configured to be movable within the pipette head, and said plurality of plungers are independently movable; and a motor configured to permit independent movement of the plurality of plungers. Additional aspects of the invention may provide a fluid handling apparatus comprising: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; a plurality of tip removal mechanisms, wherein at least one tip removal mechanism is configured to be movable with respect to the pipette nozzle and to remove an individually selected tip from the pipette nozzle, and said plurality of tip removal mechanisms are independently movable; and a motor configured to permit independent movement of the plurality of tip removal mechanisms. A fluid handling apparatus may be provided in accordance with another aspect of the invention, said apparatus comprising: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the fluid handling apparatus has a height, width, and length each of which dimension does not exceed 20 cm. Aspects of the invention may be directed to a fluid handling apparatus comprising: a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the fluid handling apparatus is capable of dispensing and/or aspirating 1 uL to 3 mL of fluid while functioning with a coefficient of variation of 5% or less. Additionally, a fluid handling apparatus may comprise: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; and at least one motor comprising a rotor and a stator, wherein the rotor is configured to rotate about an axis of rotation, wherein the axis of rotation is substantially perpendicular to the removable tip, accordance with an aspect of the invention. Another aspect of the invention may be directed to a fluid handling apparatus comprising: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head; and at least one motor configured to permit movement of the plurality of plunger that is not substantially parallel to the removable tip. In accordance with additional aspects of the invention, a fluid handling apparatus may comprise: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; and at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head, and wherein the plunger comprises a first section and a second section wherein at least a portion of the first section is configured to slide relative to the second section, thereby permitting the plunger to extend and/or collapse. Another aspect of the invention may be directed to a fluid handling apparatus comprising: at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein said at least one pipette head has a fluid path of a given length that terminates at the pipette nozzle, and wherein the length of the fluid path is adjustable without affecting movement of fluid from the tip when the tip and the pipette nozzle are engaged. A fluid handling apparatus, in accordance with an aspect of the invention, may comprise: at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; and at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head, wherein the pipette nozzle is movable relative to the base, such that the pipette nozzle is capable of having (a) a retracted position, and (b) an extended position wherein the pipette nozzle is further away from the base than in the retracted position. Furthermore, aspects of the invention may be directed to a method of fluid handling comprising: providing at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; providing at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head; and retracting the pipette nozzle relative to the base in first direction prior to and/or concurrently with translating the pipette head in a second direction substantially non-parallel to the first direction. Another aspect of the invention may provide a method of fluid handling comprising: providing at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; retracting and/or extending the pipette nozzle relative to the base; and dispensing and/or aspirating a fluid with the tip during said retracting and/or extending. In accordance with some aspects of the invention, a fluid handling apparatus may comprise: a supporting body, extending therefrom a plurality of pipette heads comprising a first pipette head of said plurality, comprising a first pipette nozzle configured to connect with a first removable tip; a second pipette head of said plurality, comprising a second pipette nozzle configured to connect to a second removable tip; wherein the first removable tip is configured to hold up to a first volume of fluid, and the second removable tip is configured to hold up to a second volume of fluid, wherein the first volume is about 250 microliters, and the second volume is about 2 mL. Aspects of the invention may be directed to a fluid handling apparatus comprising: a supporting body, extending therefrom a plurality of pipette heads comprising a positive displacement pipette head, comprising a positive displacement pipette nozzle configured to connect with a first removable tip; and an air displacement pipette head, comprising an air displacement pipette nozzle configured to connect to an air displacement pipette tip. Another aspect of the invention may provide a method of transporting components within a device comprising: providing a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the individual pipette head is capable of dispensing and/or aspirating a fluid with the tip; engaging a sample processing component using at least one pipette head of said plurality; and transporting the sample processing component using at least one pipette head of said plurality. A fluid handling apparatus may be provided in accordance with another aspect of the invention, comprising: a removable tip; and at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip, wherein the apparatus is operably connected to a light source that provides light into the tip. Additionally, aspects of the invention may be directed to a fluid handling apparatus comprising: a removable tip; and at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip, wherein the apparatus is operably connected to an image capture device that is configured to capture an image within and/or through the tip. In accordance with an aspect of the invention, a fluid handling apparatus may comprise: a removable tip; at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip; and a processor operably connected to the removable tip and/or the at least one pipette head, wherein the apparatus is configured to vary and/or maintain the position of the removable tip based on instructions from the processor. A fluid handling apparatus comprising: a movable support structure; a plurality of pipette heads sharing the movable support structure, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the plurality of pipette heads are less than or equal to 4 mm apart from center to center, may be provided in accordance with an aspect of the invention. In some embodiments, a fluid handling apparatus above, alone or in combination with other systems, operates with a coefficient of variation less than or equal to about 10%. In some cases, the fluid handling apparatus is capable of metering a fluid volume of 50 uL or less In some embodiments, a system above, alone or in combination, includes one or more pipettes having pipette nozzles that are flexibly movable in a direction. In some cases, the pipette nozzles are spring-loaded. In some embodiments, a system above, alone or in combination, has removable tips that are pipette tips having an interior surface, and exterior surface, and an open end. In some embodiments, a system above, alone or in combination, has a solenoid for each plunger to determine whether individual plungers are to be moved. In some embodiments, a system above, alone or in combination, has an actuator (or an actuation mechanism). The actuator in some cases includes a motor. The motor may cause actuation of selected actuation mechanisms. In some embodiments, a system above, alone or in combination, has a fluid handling apparatus. The fluid handling apparatus may be configured to aspirate or dispense no more than 250 uL at an individual fluid orifice. The fluid handling apparatus may be configured to aspirate and/or dispense a fluid that was collected from a subject via a fingerstick. In some situations, the fingerstick is on a point of service device. In some embodiments, a system above, alone or in combination, has a plurality of plungers that are capable of removing at least one individually selected tip from the pipette nozzle. In some embodiments, a system above, alone or in combination, comprises a plurality of external actuation mechanisms that external to a pipette head of the system, wherein the plurality of external actuation mechanisms are capable of removing at least one individually selected tip from the pipette nozzle. In some situations, an additional motor permits independent movement of the plurality of external actuation mechanisms. In some cases, the external actuation mechanisms are collars wrapping around at least a portion of the pipette head. In some embodiments, a system above, alone or in combination, further comprises a plurality of switches, an individual switch having an on position and an off position, wherein the on position permits the plunger associated with the individual switch to move in response to movement by the motor, and wherein the off position does not permit the plunger associated with the individual switch to move in response to movement by the motor. In some cases, the switch is a solenoid. In some cases, the switch is operated by a cam operably linked to an additional motor. In some embodiments, a system above, alone or in combination, has at least one tip mechanism. The at least one tip removal mechanism is within a pipette head and is configured to be movable within the pipette head. In some cases, the at least one tip removal mechanism is external to the pipette head. In some situations, the at least one tip removal mechanism is a collar wrapping around at least a portion of the pipette head. In some cases, the pipette head is capable of aspirating and/or dispensing at least 150 uL. In some embodiments, a system above, alone or in combination, has a fluid handling system. The fluid handling apparatus has a height which does not exceed 1 cm, or 2 cm, or 3 cm, or 4 cm, or 5 cm, or 6 cm, or 7 cm, or 8 cm, or 9 cm, or 10 cm. In some embodiments, a system above, alone or in combination, includes a plurality of plungers. At least one plunger is within a pipette head of said plurality, and is configured to be movable within the pipette head. In some cases, the plurality of plungers are independently movable. In some embodiments, a system above, alone or in combination, has a fluid handling apparatus that is capable of dispensing and/or aspirating a minimum increment of no more than 0.5 uL, or 1 uL. In some embodiments, a system above, alone or in combination, comprises a plurality of plungers, wherein at least one plunger is within a pipette head of said plurality, and is configured to be movable within the pipette head. The plurality of plungers in some cases are independently movable. In some situations, the system comprises a motor configured to permit independent movement of the plurality of plungers. In some embodiments, an individual pipette head of a plurality of pipette heads included in a system above is capable of dispensing and/or aspirating 1 uL to 3 mL of fluid. In some situations, a fluid handling apparatus above, alone or in combination, has a motor (or other actuator) with an axis of rotation that is horizontal. In some cases, a removable tip of the fluid handling apparatus is aligned vertically. In some cases, the fluid handling apparatus comprises at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head; and at least one motor configured to permit movement of the plurality of plunger that is not substantially parallel to the removable tip. In some cases, the plunger is capable of moving in a direction that is substantially perpendicular to the removable tip. In some situations, the plunger is capable of moving in a horizontal direction, and wherein the removable tip is aligned vertically. In some embodiments, a fluid handling apparatus above comprises a first section and a second section. The first section is configured to slide within the second section. The fluid handling apparatus may further include a heat spreader surrounding a plunger of the fluid handling apparatus. In some embodiments, a fluid handling apparatus includes at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein said at least one pipette head has a fluid path of a given length that terminates at the pipette nozzle, and wherein the length of the fluid path is adjustable without affecting movement of fluid from the tip when the tip and the pipette nozzle are engaged. The pipette nozzle may be movable relative to a base operably connected to the at least one pipette head, thereby adjusting the fluid path length. In some cases, the fluid path is formed using rigid components. The fluid path in some cases is formed without the use of flexible components In some situations, the fluid handling apparatus further comprises a ventilation port within the pipette head. The ventilation port is capable of having an open position and a closed position. In some cases, a ventilation solenoid determines whether the ventilation port is in the open position or the closed position. A valve may determine whether the ventilation port is in the open position or the closed position. The valve can be duty-cycled with periods of less than or equal to 50 ms. In some situations, the ventilation port is coupled to a positive pressure source that is useful for the expulsion of the fluid. The ventilation port may be coupled to a negative pressure source that is useful for the aspiration of the fluid. In some situations, the ventilation port is coupled to atmospheric conditions. The ventilation port may be coupled to a reversible pump capable of delivering positive or negative pressure. The pressure source is capable of delivering the positive or negative pressure for an extended period of time. In some cases, the removable tip comprises two openings, each of which has an embedded passive valve. In some situations, the embedded passive valves are configured to permit fluid to flow in one direction through a first opening, through a tip body, and through a second opening. In some situations, at least a 2 cm vertical difference exists between the retracted position and the extended position. In some embodiments, the pipette nozzle is movable relative to the at least one plunger. In some situations, adjusting the pipette nozzle between the retracted position and the extended position changes a fluid path length terminating at the pipette nozzle. The fluid path is formed using only rigid components. In some embodiments, the plunger comprises a first section and a second section wherein at least a portion of the first section is within the second section when the pipette nozzle is in the retracted position, and wherein the first section is not within the second section when the pipette nozzle is in the extended position. In some embodiments, a method above, alone or in combination, comprises extending a pipette nozzle relative to the base prior to and/or concurrently with dispensing and/or aspirating a fluid with the tip. In some embodiments, a method of fluid handling comprises providing at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; providing at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head; and retracting the pipette nozzle relative to the base in first direction prior to and/or concurrently with translating the pipette head in a second direction substantially non-parallel to the first direction. The first direction and the second direction may be substantially perpendicular. In some cases, the first direction is a substantially vertical direction while the second direction is a substantially horizontal direction. In some embodiments, a method of fluid handling comprises providing at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip; retracting and/or extending the pipette nozzle relative to the base; and dispensing and/or aspirating a fluid with the tip during said retracting and/or extending. In some situations, the method further comprises providing at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head and/to effect said dispensing and/or aspirating. In some situations, the method further comprises providing a motor causing the at least one plunger to move within the pipette head. In some cases, the base supports the at least one pipette head. In some situations, the pipette nozzle is slidable in a linear direction. The pipette nozzle may retract and/or extends in a vertical direction relative to the base. In some embodiments, a fluid handling apparatus includes a first pipette head and a second pipette head. In some cases, the first pipette head is a positive displacement pipette head, and the second pipette head is an air displacement pipette head. In some embodiments, a method for transporting components within a device comprises providing a plurality of pipette heads, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the individual pipette head is capable of dispensing and/or aspirating a fluid with the tip; engaging a sample processing component using at least one pipette head of said plurality; and transporting the sample processing component using at least one pipette head of said plurality. In some cases, the sample processing component is a sample preparation unit or a component thereof, an assay unit or a component thereof, and/or a detection unit or a component thereof. In some situations, the sample processing component is a support for a plurality of removable tips and/or vessels. In some cases, the hardware component is picked up using a press-fit between one or more of the pipette heads and a feature of the hardware component. In some cases, the hardware component is picked up using a suction provided by one or more of the pipette heads and a feature of the hardware component. In some embodiments, a fluid handling apparatus comprises a removable tip; and at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip, wherein the apparatus is operably connected to a light source that provides light into the tip. In some cases, the tip forms a wave guide capable of providing a light through the tip to a fluid contained therein, or capable of transmitting an optical signal from the fluid through the tip. In some situations, the removable tip is formed of an optically transparent material. In some cases, the fluid handling apparatus further comprises at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head. In some cases, the pipette nozzle is formed with a transparent and/or reflective surface. The light source in some cases is within the apparatus. In an example, the light source is within at least one pipette head. In some situations, the tip comprises a fiber that conducts said light. In an example, the fiber is formed of an optically transparent material. In some situations, the fiber extends along the length of the removable tip. In some cases, the fiber optic is embedded within the removable tip. In some embodiments, a fluid handling apparatus comprises a removable tip; and at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip, wherein the apparatus is operably connected to an image capture device that is configured to capture an image within and/or through the tip. In some situations, the image capture device is located within the apparatus. In some cases, the image capture device is located within at least one pipette head. In some situations, the image capture device is integrally formed with the apparatus. In some cases, the image capture device is a camera. In some situations, the image capture device is capable of capturing an electromagnetic emission and generating an image along one or more of: a visible spectrum, infra-red spectrum, ultra-violet spectrum, gamma spectrum. In some situations, the fluid handling apparatus further comprises at least one plunger within a pipette head of said plurality, wherein the plunger is configured to be movable within the pipette head. The image capture device may be located at the end of the plunger. The plunger may include (or be formed of) an optically transmissive material. The plunger may be made of a transparent material. In some situations, the pipette nozzle is formed with a transparent and/or reflective surface. In some situations, the fluid handling apparatus further comprises a processor on the apparatus. In some situations, the fluid handling apparatus further comprises a processor on the image capture device. In some embodiments, a fluid handling apparatus comprises a removable tip; at least one pipette head, wherein an individual pipette head comprises a pipette nozzle configured to connect with the removable tip; and a processor operably connected to the removable tip and/or the at least one pipette head, wherein the apparatus is configured to vary and/or maintain the position of the removable tip based on instructions from the processor. In some situations, the removable tip comprises the processor. In some cases, the at least one pipette head comprises the processor. In some implementations, a first processor of a first removable tip of the apparatus is in communication with a second processor of a second removable tip. In some embodiments, a fluid handling apparatus comprises a movable support structure; a plurality of pipette heads sharing the movable support structure, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip, wherein the plurality of pipette heads are less than or equal to 4 mm apart from center to center. In some situations, the fluid handling apparatus further comprises a plurality of plungers, wherein at least one plunger is within a pipette head of said plurality, and is configured to be movable within the pipette head. In some situations, the fluid handling apparatus further comprises a plurality of transducer driven diaphragms capable of effecting a fluid to be dispensed and/or aspirated through the removable tip. In some situations, the plurality of pipette heads are movable along the support structure so that the lateral distance between the plurality of pipette heads is variable. An aspect of the invention provides a method for diagnosing or treating a subject with the aid of a point of service system, comprising (a) authenticating a subject; (b) obtaining a three-dimensional representation of the subject with the aid of a three-dimensional imaging device; (c) displaying the three-dimensional representation to a healthcare provider in remote communication with the subject, with the aid of a computer system comprising a processor, wherein the system is communicatively coupled to the three-dimensional imaging device; and (d) diagnosing or treating the subject with the aid of the displayed three-dimensional representation of the subject. Another aspect of the invention provides a point of service system for diagnosing or treating a subject, comprising a point of service device having a three-dimensional imaging device for providing a dynamic three-dimensional spatial representation of the subject; and a remote computer system being configured to be in communication with the three-dimensional imaging device and being configured to retrieve the dynamic three-dimensional spatial representation of the subject, wherein the remote computer system is optionally configured to authenticate the subject. An aspect of the invention provides a method for diagnosing or treating a subject with the aid of a point of care system, comprising: authenticating a subject; obtaining a three-dimensional representation of the subject with the aid of a three-dimensional imaging device; providing the three-dimensional representation to a display of a computer system of a healthcare provider, the computer system communicatively coupled to the three-dimensional imaging device, the healthcare provider in remote communication with the subject; and diagnosing or treating the subject with the aid of the three-dimensional representation on the display of the computer system. An additional aspect of the invention provides a point of service system for diagnosing or treating a subject, comprising: a point of service device having a three-dimensional imaging device for providing a dynamic three-dimensional spatial representation of the subject; and a remote computer system in communication with the three-dimensional imaging device, the remote computer system for authenticating the subject and, subsequent to said authenticating, retrieving the dynamic three-dimensional spatial representation of the subject. Additionally, aspects of the invention may be directed to a method for measuring the body-fat percentage of a subject, comprising: providing a point of service device having a touchscreen; placing a first finger on a first side of the touchscreen and a second finger on a second side of the touchscreen; directing a current from the point of service through the body of the subject, wherein the current is directed through the body of the subject through the first finger and the second finger; and determining a body-fat percentage of the subject by measuring the resistance between the first finger and the second finger with the aid of the current directed through the body of the subject. A method for diagnosing a subject may be provided in accordance with another aspect of the invention, said method comprising: providing a point of service device having a touchscreen; placing a first finger on a first side of the touchscreen and a second finger on a second side of the touchscreen; directing a current from the point of service through the body of the subject, wherein the current is directed through the body of the subject through the first finger and the second finger; measuring a resistance between the first finger and the second finger with the aid of the current directed through the body of the subject; and diagnosing the subject based on the measured resistance. In some embodiments, a method above, alone or in combination, comprises putting the subject in contact with a healthcare provider selected by the subject. In some cases, diagnosing or treating the subject comprises putting the subject in contact with the subject's health care provider. In some situations, diagnosing comprises providing a diagnosis in real-time. In some embodiments, the three-dimensional imaging device is part of a point of service system. In some embodiments, a method above, alone or in combination, further comprises identifying the subject prior to diagnosing or treating. In some embodiments, a method above, alone or in combination, comprises identifying a subject by verifying a fingerprint of the subject. In some embodiments, a method above, alone or in combination, comprises diagnosing or treating a subject using a touchscreen display. In some cases, diagnosing or treating comprises collecting a sample from a subject. The sample in some cases is collected from the subject at the location of a healthcare provider. The sample may be collected from the subject at the location of the subject. In some situations, a point of service system comprises an image recognition module for analyzing at least a portion of the dynamic three-dimensional spatial representation of the subject for treatment. In some cases, authenticating is performed with the aid of one or more of a biometric scan, the subject's insurance card, the subject's name, the subject's driver's license, an identification card of the subject, an image of the subject taken with the aid of a camera in the point of care system, and a gesture-recognition device. In some embodiments, a method above, alone or in combination, comprises diagnosing a subject by putting the subject in contact with a health care provider selected by the subject. In some embodiments, a method above, alone or in combination, further comprises combining a three-dimensional representation of a subject with subject-specific information. The combination may be made with the aid of a processor. In some cases, the point of service system comprises an image recognition module for analyzing at least a portion of the dynamic three-dimensional spatial representation of the subject for treatment. In some cases, a system comprises a touchscreen. The touchscreen may be, for example, a capacitive touchscreen or resistive touchscreen. In some situations, the touchscreen is at least a 60-point touchscreen. In some embodiments, for one or more methods above or other methods provided herein, the first finger is on a first hand of the subject and the second finger is on a second hand of the subject. In some embodiments, a method above, alone or in combination, comprises diagnosing a subject by providing a body-fat percentage of the subject. In accordance with an aspect of the invention, a vessel may comprise: a body configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, an open end, and a tapered closed end, wherein the vessel is configured to engage with a pipette and comprises a flexible material extending across the open end and having a slit/opening that is configured to prevent fluid from passing through the flexible material in the absence of an object inserted through the slit/opening. Aspects of the invention may be directed to a vessel, comprising: a body configured to accept and confine a sample of no more than about 100 μL, wherein the body comprises an interior surface, an exterior surface, and an open end, wherein the vessel comprises a flexible material extending across the open end and having a slit/opening that is configured to prevent fluid from passing through the flexible material in the absence of an object inserted through the slit/opening. A vessel may be provided in accordance with additional aspect of the invention, said vessel comprising: a body configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, a first end, a second end, and a passage between the first end and the second end, wherein the vessel comprises a material extending across the passage capable of having (1) molten state that is configured to prevent fluid from passing through the material in the absence of an object inserted through the material, and (2) a solid state that is configured to prevent fluid and the object from passing through the material. Also, aspects of the invention may provide an injection molding template comprising a substrate comprising a planar surface and a plurality of projections; and an opposing mold comprising a plurality of indentations wherein the projections are configured to be positionable within the indentations, wherein an individual projection of said plurality comprises a cylindrical portion of a first diameter, and a funnel shaped portion contacting the cylindrical portion, wherein one end of the funnel shaped portion contacting the cylindrical portion has the first diameter, and a second end of the funnel shaped portion contacting the planar surface has a second diameter. In accordance with an additional aspect of the invention, a system may comprise: a vessel configured to accept and confine a sample, wherein the vessel comprises an interior surface, an exterior surface, an open end, and an opposing closed end; and a tip configured to extend into the vessel through the open end, wherein the tip comprises a first open end and second open end, wherein the second open end is inserted into the vessel, wherein the vessel or the tip further comprises a protruding surface feature, optionally at or near the closed end, that prevents the second open end of the tip from contacting the bottom of the interior surface of the closed end of the vessel. In some embodiments, a vessel provided above or elsewhere herein includes flexible material. In some cases, the flexible material is a membrane. In some cases, the flexible material is formed from a silicon-based material. In some embodiments, a vessel provided above or elsewhere herein includes a cap configured to contact the body at the open end, wherein at least a portion of the cap extends into the interior of the body. In some cases, the cap comprises a passageway through which the flexible material extends. In some embodiments, a vessel provided above or elsewhere herein includes a body that has a cylindrical portion of a first diameter having an open end and a closed end, and a funnel shaped portioned contacting the open end, wherein one end of the funnel shaped portion contacting the open end has a first diameter, and a second end of the funnel shaped portion has a second diameter. In some cases, the second diameter is less than the first diameter. In other cases, the second diameter is greater than the first diameter. In other cases, the second diameter is equal to the first diameter. In some cases, the second end of the funnel shaped portion is configured to engage with a removable cap. In some embodiments, a vessel provided above or elsewhere herein includes a flexible material that is a membrane. The flexible material, in some cases, is formed from a silicon-based material. In some embodiments, a vessel provided above or elsewhere herein includes a cap configured to contact the body at the open end, wherein at least a portion of the cap extends into the interior of the body. In some cases, the cap comprises a passageway through which the flexible material extends. In some embodiments, a vessel provided or elsewhere herein has a body that has a cylindrical portion of a first diameter having an open end and a closed end, and a funnel shaped portioned contacting the open end, wherein one end of the funnel shaped portion contacting the open end has a first diameter, and a second end of the funnel shaped portion has a second diameter. In some cases, the second diameter is less than the first diameter. In other cases, the second diameter is greater than the first diameter. In some situations, the second end of the funnel shaped portion is configured to engage with a removable cap. In some embodiments, a vessel provided above or elsewhere herein comprises a material extending across the passage capable of having (1) molten state that is configured to prevent fluid from passing through the material in the absence of an object inserted through the material, and (2) a solid state that is configured to prevent fluid and the object from passing through the material. In some cases, the material is a wax. In some cases, the material has a melting point between about 50° C. and 60° C. In some situations, the object is capable of being inserted through the material and removed from the material while the material is in the molten state. In some cases, the material is configured to allow said object to be inserted into the material and removed from the material while the material is in the molten state. In some embodiments, at least a portion of the object is coated with the material when the object is removed from the material. In some embodiments, an injection molding template comprises a substrate comprising a planar surface and a plurality of projections; and an opposing mold comprising a plurality of indentations wherein the projections are configured to be positionable within the indentations, wherein an individual projection of said plurality comprises a cylindrical portion of a first diameter, and a funnel shaped portion contacting the cylindrical portion, wherein one end of the funnel shaped portion contacting the cylindrical portion has the first diameter, and a second end of the funnel shaped portion contacting the planar surface has a second diameter. The plurality of projections in some cases are arranged in an array. In some situations, the volume of the projections is less than or equal to 100 microliters (‘uL”), 50 uL, 20 uL, 10 uL, or 1 uL. In some cases, the indentations comprise a cylindrical portion and a funnel shaped portioned contacting the cylindrical portion. In some embodiments, a system provided above, alone or in combination, such as a vessel, includes surface features that are integrally formed on the bottom interior surface of the vessel. In some embodiments, the surface features are a plurality of bumps on the bottom interior surface of the vessel. In some embodiments, an apparatus provided above, alone or in combination, comprises a planar substrate comprising a plurality of depressions; and a plurality of tips of having a configuration provided above or elsewhere herein, wherein the tips are at least partially inserted into the plurality of depressions and supported by the substrate. In some cases, the apparatus forms a microtiter plate. In some aspects of the invention, a centrifuge may be provided, said centrifuge comprising: a base having a bottom surface, said base being configured to rotate about an axis orthogonal to the bottom surface, wherein the base comprises one or more wing configured to fold over an axis extending through the base, wherein a wing comprises an entire portion of base on a side of the axis, wherein the wing comprises a cavity to receive a sample vessel, wherein the sample vessel is oriented in a first orientation when the base is at rest, and is configured to be oriented at a second orientation when the base is rotating. A centrifuge comprise, in accordance with an aspect of the invention, a base having a bottom surface and a top surface, said base being configured to rotate about an axis orthogonal to the bottom surface, wherein the base comprises one or more bucket configured to pivot about a pivot axis, configured to permit at least a portion of the bucket to pivot upwards past the top surface, and wherein the bucket comprises a cavity to receive a sample vessel, wherein the cavity is configured to be oriented in a first orientation when the base is at rest, and is configured to be oriented at a second orientation when the base is rotating. Additionally, aspects of the invention may be directed to a centrifuge comprising: a base having a bottom surface and a top surface, said base being configured to rotate about an axis orthogonal to the bottom surface, wherein the base comprises one or more bucket configured to pivot about a pivot axis, and said bucket is attached to a weight configured to move in a linear direction, thereby causing the bucket to pivot, and wherein the bucket comprises a cavity to receive a sample vessel, wherein the cavity is configured to be oriented in a first orientation when the base is at rest, and is configured to be oriented at a second orientation when the base is rotating. In accordance with another aspect of the invention, a centrifuge may comprise: a brushless motor assembly comprising a rotor configured to rotate about a stator about an axis of rotation; and a base comprising one or more cavities configured to receive one or more fluidic samples, said base affixed to the rotor, wherein the base rotates about the stator and a plane orthogonal to the axis of rotation of the brushless motor is coplanar with a plane orthogonal to the axis of rotation of the base. Aspects of the invention may be directed to, a centrifuge comprising: a brushless motor assembly comprising a rotor configured to rotate about a stator about an axis of rotation, wherein the brushless motor has a height in the direction of the axis of rotation; and a base comprising one or more cavities configured to receive one or more fluidic samples, said base affixed to the rotor, wherein the base rotates about the stator and said base has a height in the direction of the axis of rotation, and wherein the height of the brushless motor assembly is no greater than twice the height of the base. A system may be provided in accordance with another aspect of the invention, said system comprising: at least one module mounted on a support structure, wherein said at least one module comprises a sample preparation station, assay station, and/or detection station; and a controller operatively coupled to said at least one module and an electronic display, said electronic display having a graphical user interface (GUI) for enabling a subject to interact with the system, wherein the system is configured to perform (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and chemical processing, and (b) multiple types of assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof. In some embodiments, assays described above or elsewhere herein may be measured at the end of the assay (an “end-point” assay) or at two or more times during the course of the assay (a “time-course” or “kinetic” assay). Aspects of the invention may be directed to a system, comprising: a support structure having a mounting station configured to support a module among a plurality of modules, an individual module configured to perform (i) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, and/or (ii) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and combinations thereof; a controller operatively coupled to said plurality of modules, wherein the controller is configured to provide one or more instructions to said module or individual modules of said plurality of modules to facilitate performance of the at least one sample preparation procedure or the at least one type of assay; and an electronic display operatively coupled to said controller, said electronic display having a graphical user interface (GUI) for enabling a subject to interact with the system. Systems above or elsewhere herein, alone or in combination, may comprise a plurality of modules mounted on the support structure, an individual module of said plurality of modules comprising a sample preparation station, assay station and/or detection station. An individual module may be configured to perform said at least one sample preparation procedure and/or said at least one type of assay without the aid of another module in said systems above or elsewhere herein, alone or in combination. In some systems above or elsewhere herein, alone or in combination, a controller may be mounted on the support structure. The GUI provided in systems above or elsewhere herein, alone or in combination, may be configured to provide a guided questionnaire to said subject. The guided questionnaire may comprise one or more graphical and/or textual items, in systems above or elsewhere herein, alone or in combination. In some embodiments, the guided questionnaire may be configured to collect, from said subject, information selected from the group consisting of dietary consumption, exercise, health condition and mental condition. In the systems above or elsewhere herein, alone or in combination, an electronic display may be mounted on the support structure. In some embodiments, the electronic display may be mounted on a support structure of a remote system, such as systems above or elsewhere herein, alone or in combination. In accordance with some embodiments of the invention, the electronic display may be an interactive display. In systems above or elsewhere herein, alone or in combination, an interactive display may be a capacitive-touch or resistive-touch display. A communications module may be operatively coupled to said controller, the communications module for enabling the system to communicate with a remote system, which may include systems above or elsewhere herein, alone or in combination. Systems above or elsewhere herein, alone or in combination, may further comprise a database operatively coupled to the controller, said database for storing information related to said subject's dietary consumption, exercise, health condition and/or metal condition. Optionally, one may use paper-based system that becomes colored (blot reaction down) and does a colorimetric assay on the paper, measuring reflectance, instead of a system that uses transmission through a sample. Other detection methods may include detecting agglutination where the system uses imaging from imaging device(s) in the system. Turbidimetric measurement techniques can use the spectrophotometer as the detector. Optionally, the system may run or measure a coagulation assay on a nucleic acid assay station and there may be non-cytometry assay run or measured in the cytometer module. Optionally, the system may measure lead or other metals that complex with porphyrins and result in a wavelength shift. In the event of a wavelength shift when a metal complexes with porphyrin, this may be detectable by spectrophotometery or other techniques for detecting the wavelength shift. Optionally, the system may have a detector that measures heat in the sample. Optionally, chromatographic techniques may be used to detect general chemistry assays. HPLC may be used. The sample may be processed so that its analyte levels are measured by UV or fluorescence. Some embodiments may use a filter that facilitates chromatography as the system does separations on the sample, such as in a tip. Optionally, general chemistry assays may be characterized as an assay on a non-phase separated sample, wherein there is no washing or removal step to removal sample. The assays may occur in the homogenous phase versus the heterogeneous phase. The samples may be processed in additive, non-separating type of manner Separating steps for assays not in the general chemistry group of assays may involve washing of beads, removing reaction medium to add new medium. In one non-limiting example, the assays in the general chemistry group are primarily not binder or antibody based. Typically, the assays in this group do not involve amplification of nucleic acids, imaging cells on a microscopy stage, or the determination of analyte level(s) in solution based on a labeled antibody or binder. In some embodiments, provided herein is a biological sample processing device comprising: a) a sample handling system; b) a detection station; c) a cytometry station comprising an imaging device and a stage for receiving a microscopy cuvette; and d) an assay station configured to support multiple components comprising i) a biological sample and ii) at least a first, a second, and a third fluidically isolated assay unit, wherein the sample handling system is configured to i) transfer at least a portion of the biological sample to the first assay unit, the second assay unit, and the third assay unit; ii) transfer the first and second assay units containing biological sample to the detection station; and iii) transfer the third assay unit containing biological sample to the cytometry station. In some embodiments, provided herein is a biological sample processing device comprising: a) a sample handling system; b) a detection station; c) a cytometry station comprising an imaging device and a stage for receiving a microscopy cuvette; and d) an assay station configured to support multiple components comprising i) a biological sample, ii) at least a first, a second, and a third fluidically isolated assay unit, and iii) reagents to perform A) at least one immunoassay; B) at least one general chemistry assay; and C) at least one cytometry assay, and wherein the sample handling system is configured to i) transfer at least a portion of the biological sample to the first assay unit, the second assay unit, and the third assay unit; ii) transfer the first and second assay units containing biological sample to the detection station; and iii) transfer the third assay unit containing biological sample to the cytometry station. In some embodiments, provided herein is a biological sample processing device comprising: a) a sample handling system; b) a first detection station comprising an optical sensor; c) a second detection station comprising a light source and an optical sensor; d) a cytometry station comprising an imaging device and a stage for receiving a microscopy cuvette; and e) an assay station configured to support i) a biological sample, ii) at least a first, a second, and a third fluidically isolated assay unit, and iii) reagents to perform A) at least one luminescence assay; B) at least one absorbance, turbimetric, or colorimetric assay; and C) at least one cytometry assay; wherein the first assay unit is configured to perform a luminescence assay, the second assay unit is configured to perform an absorbance, turbidimetric, or colorimetric assay, the third assay unit is configured to perform a cytometry assay, and the sample handling system is configured to i) transfer at least a portion of the biological sample to the first, second, and third assay units; ii) transfer the first assay unit containing biological sample to the first detection station; iii) transfer the second assay unit containing biological sample to the second detection station; and iv) transfer the third assay unit containing biological sample to the stage of the cytometry station. In some embodiments, provided herein is biological sample processing device, comprising: a) a sample handling system; b) a detection station comprising an optical sensor; c) a fluidically isolated sample collection unit configured to retain a biological sample; d) an assay station comprising at least a first, second, and third fluidically isolated assay unit, wherein the first unit comprises an antibody, the second unit comprises an oligonucleotide, and the third unit comprises a chromogenic substrate; and e) a controller, wherein the controller is operatively coupled to the sample handling system, wherein the sample handling system is configured to transfer a portion of the biological sample from the sample collection unit to each of the first assay unit, the second assay unit, and the third assay unit, and the device is configured to perform an immunoassay, a nucleic acid assay, and a general chemistry assay comprising a chromogenic substrate. In some embodiments, provide herein is a biological sample processing device, comprising a housing containing therein: a) a sample handling system; b) a detection station comprising an optical sensor; c) a fluidically isolated sample collection unit configured to retain a biological sample; d) an assay station comprising at least a first, second, and third fluidically isolated assay unit, wherein the first unit comprises a first reagent, the second unit comprises a second reagent, and the third unit comprises a third reagent; and e) a controller, wherein the controller comprises a local memory and is operatively coupled to the sample handling system and the detection station; wherein the device is configured to perform assays with any one or more of the first, second, and third assay units; wherein the local memory of the controller comprises a protocol comprising instructions for: i) directing the sample handling system to transfer a portion of the biological sample to the first assay unit, the second assay unit and the third assay unit; and ii) directing the sample handling system to transfer the first unit, the second unit, and the third assay unit to the detection station. In some embodiments, provided herein is a method of performing at least 4 different assays selected from immunoassays, cytometric assays, and general chemistry assays on a biological sample, the method comprising: a) introducing a biological sample having a volume of no greater than 2 ml, 1 ml, 500 microliters, 300 microliters, 200 microliters, 100 microliters, 50 microliters, 25 microliters, 25 microliters, 10 microliters, or 5 microliters into a sample processing device, wherein the device comprises: i) a sample handling system; ii) a detection station; iii) a cytometry station comprising an imaging device and a stage for receiving a microscopy cuvette; and iv) an assay station comprising at least a first, a second, a third, a fourth, and a fifth independently movable assay unit; b) with the aid of the sample handling system, transferring a portion of the biological sample to each of the first, second, third, and fourth assay units, wherein a different assay is performed in each of the first, second, third, and fourth assay units; c) with the aid of the sample handling system, transferring the first, second, third, and fourth assay units to the detection station or cytometry station, wherein assay units comprising immunoassays or general chemistry assays are transferred to the detection station and assay units comprising cytometric assays are transferred to the cytometry station; d) with the aid of the detection station or cytometry station, obtaining data measurements of the assay performed in each of the first, second, third, and fourth assay units. In some embodiments, the above method may apply to a method of performing 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, or more different assays. In some embodiments, provided herein is a method of processing a biological sample, comprising: a) introducing a sample having a volume of 2 ml, 1 ml, 500 microliters, 300 microliters, 200 microliters, 100 microliters, 50 microliters, 25 microliters, 25 microliters, 10 microliters, or 5 microliters or less into a sample processing device comprising i) a sample handling system; ii) at least a first and a second fluidically isolated vessel; and iii) a diluent, wherein the sample comprises bodily fluid at a first concentration; b) with the aid of the sample handling system, mixing at least a portion of the sample with the diluent to generate a diluted sample, wherein the diluted sample comprises bodily fluid at a second concentration, and the second concentration of bodily fluid is one-half, one-third, one-quarter, one-tenth, or less of the first concentration of bodily fluid; and, c) with the aid of the sample handling system, transferring at least a portion of the diluted sample to the first and the second fluidically isolated vessels. In some embodiments, provided herein is a method of processing a biological sample, comprising: a) introducing a sample having a volume of 2 ml, 1 ml, 500 microliters, 300 microliters, 200 microliters, 100 microliters, 50 microliters, 25 microliters, 25 microliters, 10 microliters, or 5 microliters or less into a sample processing device comprising i) a sample handling system; ii) at least a first and a second fluidically isolated vessel; iii) a diluent; and iv) a centrifuge, wherein the sample comprises bodily fluid at a first concentration; b) with the aid of the sample handling system, introducing at least a portion of the sample into the centrifuge; c) centrifuging the sample, to generate a centrifuged sample; d) with the aid of the sample handling system, removing at least a portion of the centrifuged sample from the centrifuge; and e) with the aid of the sample handling system, mixing at least a portion of the centrifuged sample with the diluent to generate a diluted sample, wherein the diluted sample comprises bodily fluid at a second concentration, and the second concentration of bodily fluid is one-half, one-third, one-quarter, one-tenth, or less of the first concentration of bodily fluid; and, f) with the aid of the sample handling system, transferring at least a portion of the diluted sample to the first and the second fluidically isolated vessels. In some embodiments, provided herein is a method of preparing a biological sample, comprising: a) introducing a biological sample and at least one isolated vessel into a sample processing device comprising a centrifuge and a sample handling system; b) with the aid of the sample handling system, introducing at least a portion of the biological sample into the centrifuge, wherein the centrifuge comprises one or more cavities and wherein the one or more cavities are configured to receive a total of no more than 2 ml, 1.5 ml, 1 ml, 750 microliters, 500 microliters, 300 microliters, 200 microliters, 100 microliters, 50 microliters, 25 microliters, 25 microliters, or 10 microliters between all of the one or more cavities; c) centrifuging the sample, to generate a centrifuged sample; d) with the aid of the sample handling system, removing at least a portion of the centrifuged sample from the centrifuge; and e) with the aid of the sample handling system, transferring centrifuged sample removed from the centrifuge from step d) into the fluidically isolated vessel. In some embodiments, in an assay station described above or elsewhere herein, the assay station is configured to support multiple components. The components may comprise, for example, any one or more of: i) a biological sample; ii) any number of fluidically isolated assay units (for example, at least a first, a second, and a third fluidically isolated assay unit); iii) any number of fluidically isolated reagent units (its (for example, at least a first, a second, and a third fluidically isolated reagent unit); iv) reagents to support any number of immunoassays; v) reagents to support any number of general chemistry assays; vi) reagents to support any number of cytometry assays; vii) reagents to support any number of nucleic acid assays; viii) reagents to perform any number of luminescent assays; ix) any number of absorbance, turbimetric, or colorimetric assays; x) any number of fluidically isolated vessels; or xi) two or more fluidically isolated vessels which are physically linked. In some embodiments, an assay station described above or elsewhere herein that is configured to support multiple components may contain the components. In some embodiments, a sample processing device described above or elsewhere herein that contains an assay station receiving location may also contain an assay station. In some embodiments, in a sample processing device described above or elsewhere herein that contains an assay station, the assay station may be located in an assay station receiving location. In some embodiments, a sample processing device described above or elsewhere herein that is configured to receive an assay station may contain an assay station. In some embodiments, an assay station or cartridge described above or elsewhere herein may be configured to support a biological sample of no greater than 100 ml, 50 ml, 30 ml, 20 ml, 10 ml, 5 ml, 2 ml, 1.5 ml, 1 ml, 750 microliters, 500 microliters, 400 microliters, 300 microliters, 200 microliters, 100 microliters 75 microliters, 50 microliters, 40 microliters, 30 microliters, 20 microliters, 10 microliters, 5 microliters, 3 microliters, or 1 microliter. In some embodiments, an assay station or cartridge described above or elsewhere herein may be configured to support a sample collection unit. In some embodiments, a sample handling system described above or elsewhere herein may be configured to any one or more of: i) transfer at least a portion of a biological sample to or between one or more assay units, cuvettes, tips, or other vessels; ii) transfer any one or more assay units, cuvettes, tips, or other vessels between (to or from) an assay station and a detection station; iii) transfer any one or more assay units, cuvettes, tips, or other vessels between (to or from) an assay station and a cytometry station; iv) transfer any one or more assay units, cuvettes, tips, or other vessels between (to or from) an assay station and any one or more different detection stations. In some embodiments, an assay unit described above or elsewhere herein may be a cuvette. In some embodiments, an assay unit described above or elsewhere herein may be a cytometry cuvette configured to interface with a microscopy stage. In some embodiments, assay units described above or elsewhere herein may be fluidically isolated. In some embodiments, assay units described above or elsewhere herein may be fluidically isolated and independently movable. In some embodiments, assay units described above or elsewhere herein may have at least two different configurations or shapes. In some embodiments, a sample processing device described above or elsewhere herein may contain a housing. In some embodiments, some or all of the components of the device may be within the device housing. In some embodiments, a sample processing device or a module described above or elsewhere herein may contain, one, two, three, four or more different detection stations. The detection stations may contain different types of detection units. In some embodiments, in a sample processing device or module described above elsewhere containing a controller, the controller may be operatively coupled to any component within the device or module. In some embodiments, in a sample processing device or module described above elsewhere containing a controller, the controller may contain a local memory. In some embodiments, in a sample processing device or module described above elsewhere containing a controller, the controller may contain a protocol comprising instructions for directing a sample handling system to transfer a portion of a biological sample to or from one or more fluidically isolated assay units, tips, cuvettes, or other vessels. In some embodiments, in a sample processing device or module described above elsewhere containing a controller, the controller may be configured to direct a sample handling system to transfer a portion of a biological sample to or from one or more fluidically isolated assay units, tips, cuvettes, or other vessels. In some embodiments, in a sample processing device or module described above elsewhere containing a controller, the controller may contain a protocol comprising instructions for directing a sample handling system to transfer one or more fluidically isolated assay units, tips, cuvettes, or other vessels to or from a detection station. In some embodiments, in a sample processing device or module described above elsewhere herein containing a controller, the controller may contain a protocol comprising instructions for directing a sample handling system to transfer one or more fluidically isolated assay units, tips, cuvettes, or other vessels to or from a cytometry station. In some embodiments, an assay unit described above elsewhere herein may be configured for interfacing with a spectrophotometer. In some embodiments, assay reagents may be added or mixed in an assay unit or other vessel while the assay unit or other vessel is located in a spectrophotometer. In some embodiments, a single cartridge described above or elsewhere herein may contain two or more different types of biological sample (e.g. blood, urine, saliva, nasal wash, etc.). In some embodiments, a sample processing device described above or elsewhere herein may be configured for simultaneously performing assays with two or more different types of biological sample. In some embodiments, a single cartridge described above or elsewhere herein may contain biological samples from two or more different subjects. In some embodiments, a sample processing device described above or elsewhere herein may be configured for simultaneously performing assays with biological samples from two or more different subjects. In one embodiment, the controller may be configured to allow for variable location tip pickup and/or dropoff. In some embodiments, the controller is a programmable circuit that is used to direct a sample handling system to pickup and dropoff sample devices and/or vessels at fixed locations, such as certain stations that have fixed locations for their vessel receiving locations. Some may have a controller that is configured to also direct the sample handling system to pickup and/or dropoff devices, vessels, or elements at variable locations, such as but not limited to a centrifuge vessel where the stopping location of the centrifuge rotor bucket is variable. In such a non-limiting example, the centrifuge may have position sensor(s) such as but not limited to optical and/electrical sensor that can relay to the processor the stopping location of the centrifuge rotor. In another embodiment, a multi-analysis system is described herein that comprises a system that can process at least a certain number of different types of assays from a single fluid sample. In one embodiment, this fluid sample is about 140 microliters to about 150 microliters of sample fluid. Optionally, this fluid sample is about 130 microliters to about 140 microliters. Optionally, this fluid sample is about 120 microliters to about 130 microliters. Optionally, this fluid sample is about 110 microliters to about 130 microliters. Optionally, this fluid sample is about 100 microliters to about 120 microliters. Optionally, this fluid sample is about 90 microliters to about 110 microliters. Optionally, this fluid sample is about 80 microliters to about 100 microliters. Optionally, this fluid sample is about 70 microliters to about 90 microliters. Optionally, this fluid sample is about 60 microliters to about 80 microliters. Optionally, this fluid sample is about 50 microliters to about 70 microliters. Optionally, this fluid sample is about 40 microliters to about 60 microliters. Optionally, this fluid sample is about 30 microliters to about 50 microliters. Optionally, this fluid sample is about 20 microliters to about 40 microliters. Optionally, this fluid sample is about 10 microliters to about 30 microliters. In another embodiment, a method is provided of concurrent analysis different assay types in multiple tips, cuvettes, or other sample vessels. As discussed herein, the system can multiplex the analysis of the same sample, wherein the same sample is aliquoted into multiple sample aliquots, typically multiple diluted samples. In one non-limiting example, each of these diluted samples is processed in different sample vessels. The aliquoting may occur without having to pass the sample through any tubing wherein sample enters from one end and exits from a different end of the tube. This type of “tube” based transport is rife with dead space sample is often lost during transport, resulting in wasted sample and inaccurate sample volume control. In yet another embodiment, one example of the system configuration allows for processing, simultaneously or sequentially, of different signal types, such as those from an optical domain and those from a non-optical domain such as but not limited to electrochemical or the like. Optionally, different signal types may also be different types of optical signals, but all occurring simultaneously for dilute aliquots of the same samples, optionally each a different dilution, optionally each for a different assay type, and/or optionally from different shaped sample vessels. In yet another embodiment, a cartridge is provided that comprises therein at least three different types of reagents or tips in the cartridge. Optionally, the cartridge comprises at least two different types of reagents and at least two different types of pipette tips. Optionally, the cartridge comprises at least three different types of reagents and at least two different types of pipette tips or sample vessels. Optionally, the cartridge comprises at least three different types of reagents and at least three different types of pipette tips or sample vessels. Optionally, the cartridge comprises at least four different types of reagents and at least three different types of pipette tips or sample vessels. Optionally, the cartridge comprises at least four different types of reagents and at least four different types of pipette tips or sample vessels. It should be understood that some embodiments may have the cartridge as a disposable. One embodiment of the cartridge may only have different types of pipette tips or sample vessels, but no reagents in the cartridge. One embodiment of the cartridge may only have different types of pipette tips or sample vessels, but no reagents in the cartridge and only diluents. Optionally, some may split the reagents into one cartridge and vessels/tips in another cartridge (or some combination therein). Optionally, one embodiment of the cartridge may have different types of pipette tips or sample vessels and a majority but not all of the reagents thereon. In such a configuration, the remainder of the reagents may be on the hardware of the device and/or provided by at least another cartridge. Some embodiments may comprise loaded more than one cartridge onto the cartridge receiving location, such as a tray. Optionally, some embodiments may combine two cartridges together and load that joined cartridge (that may be physically linked) onto the cartridge receiving location. Optionally, in one embodiment, a majority of reagents for assays are in the device, not the disposable such as the cartridge. Optionally, a majority of physical items such as but not limited to tips, vessels, or the like returned to cartridge for disposal. Optionally, prior to ejecting the disposable, the system may move unused or other fluids in the vessel to absorbent pads or use reagent neutralization prior to disposal, thus minimizing contamination risk. The may involve further diluting any sample, reagent, or the like. This may involve using neutralizers or the like to quench or renders harmless reagents in the cartridge. In a still further embodiment, the system may comprise a control that uses a protocol that sets forth processing steps for all of the individual stations and hardware such as the sample handling system in the multi-analysis device. By way of non-limiting example, these protocols are downloaded from a remote server based on criteria such as but not limited to cartridge ID, patient ID, or the like. Additionally, prior to cartridge insertion, upon verification of patient ID and/or test order, the remote server may also perform a translation step wherein the server or local device can inform the local operator which cartridge to selected based on the requested combination of tests associated with the patient ID, lab order, or other information. This can be of particular use as this translation step can in one embodiment account for cartridges in inventory at the remote location and that because each cartridge is a multi-assay type cartridge, it is not obvious which cartridge should be selected, unlike known cartridges that only perform one assay per cartridge. Here, because of the multi-assay per cartridge, some embodiments may have multiple cartridges that can perform some or all of the requested test and a weighing of inventory, maximizing utilization of cartridge reagents, and/or minimizing cartridge cost can be factored into the cartridge that the system asks the local user to insert into the system. In a still further embodiment, the system is deployable in many locations in the sense that the local operator has limited in what operations the local user can control on the device. By way of non-limiting example, the user can only select which cartridge is inserted into the sample processing device. In this example, the user does not directly do any sample pipetting or the like. The user can insert sample vessels onto the cartridge and then insert the cartridge into the device. Error checking algorithm can determine if the user inserted the correct cartridge for the subject sample based on ID information on the cartridge and/or the sample vessel. In a still further embodiment, a system and method is provided for performing multiple assays from a single sample, where original sample is less than a certain volume of sample (in one nonlimiting example, no more than about 200 microliters). In this example, the dilution of the sample to aliquot the same sample is variable, not fixed, and is based on the assays to be run. In one embodiment, a system and method is provided so that whole blood, serum, and plasma can be extracted from the single sample of less than 200 microliters. In one embodiment, a system and method is provided so that whole blood, serum, plasma, and cells can be extracted from the single sample of less than 200 microliters. “Sample” division/cell separation steps is one factor that can enable multi-testing using such reduced starting sample volume. In one embodiment, at least 40 assays are run on sample extracted from no more than about 200 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted from no more than about 150 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted no more than about 100 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted from no more than about 80 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted from no more than about 60 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted from no more than about 40 microliters of original undiluted sample. Optionally, at least 20 assays are run on sample extracted from no more than about 30 microliters of original undiluted sample. In a still further embodiment, a system and method is provided wherein test results are completed within one hour, prior to start of testing, there is real-time insurance verification to determine cost to the subject to run the test. Herein, testing comprises at least 10 assays are run on sample extracted from no more than about 150 microliters of original undiluted sample. Optionally, testing comprises at least 10 assays are run on sample extracted from no more than about 100 microliters of original undiluted sample In a still further embodiment, a system and method wherein the same hardware system can measure analytes or other characteristics of urine, blood, and feces all by using same hardware, but different disposable such as a cartridge. In one embodiment, a method is provided for evaluating a biological sample collected from a subject, said method comprising: providing a cartridge having a plurality of receptacles; loading the sample into one or more receptacles; delivering a loaded cartridge to an analyzer having a processor, one or more sensors, and a fluid handling system, the cartridge having a multiplicity of selected reagents into receptacles, said reagents being sufficient to perform at least two assays selected from a group of at least 10 assays; wherein the processor is configured to control the fluid handling system and the sensors to react the sample with the reagents to perform the at least two assays. Optionally, in the cartridge, substantially of the all of the reagents to be used in the assays for that cartridge are in the cartridge. By substantially, one embodiment means the volume of reagent. Optionally, by substantially, another embodiment means the types of reagents. It should be understood that any of the foregoing may be configured to have one or more of the following features. By way of non-limiting example, one embodiment may have a method wherein loading the sample comprises loading sample fluid from one subject and one subject only. Optionally, the method further comprising pretreating the sample to produce at least two samples which have been pretreated differently and which are loaded into separate receptacles. Optionally, at least two samples are pretreated with different anti-coagulants. Optionally, the sample is held in a holder and the holder is loaded into a receptacle. Optionally, the fluid handling system comprises at least one pipette which transfers the sample and the reagents among reaction zones and test zones. Optionally, the reagents are selected to perform both primary assays and reflex assays. Optionally, the processor is configured to perform one or more reflex assays if the results of a primary assay are out of a normal range. Optionally, the cartridge is encoded with information which defines the assays to be performed. Optionally, the cartridge is encoded with information which defines the locations of the reagents. In another embodiment, a method is provided for evaluating a biological sample from a single subject, the method comprising: dividing the sample into multiple aliquots; pretreating such aliquot wherein at least two aliquots are pretreated differently; delivering each of the pretreated aliquots to an analyzer having reagents selected to perform at least two assays selected from a group of at least 10 assays, a processor, a plurality of sensors sufficient to perform each of said at least 10 assays, and a fluid handling system; wherein the processor is adapted to control the fluid handling system and the sensors to react each of the samples with reagents and analyze the reacted samples with sensor(s) selected to perform the at least two assays. It should be understood that any of the foregoing may be configured to have one or more of the following features. By way of non-limiting example, one method of pretreating comprises treating at least one aliquot with a first anti-coagulant and at least one aliquot with a second anti-coagulant. Optionally, the sensors include at least two sensors selected from the group consisting of spectrometers, fluorescence detectors, colorimeters, light intensity sensors. In another embodiment, a method is provided for performing an assay using an analyzer, said method comprising: providing an analyzer having a processor, a location for holding a plurality or curettes, a location for holding a multiplicity of pipette tips, sensors, and a fluid handling system; introducing reagents into at least some of the curettes; using the fluid handling system to both (1) transfer reagents between curettes and between curettes and pipette tips and (2) move both curettes and pipette tips to sensors to analyze the sample. It should be understood that any of the foregoing may be configured to have one or more of the following features. By way of non-limiting example, one method of the cuvettes are located on a cartridge which is loaded with reagents and thereafter delivered to the analyzer. Optionally, pipette tips are attached to and removed from pipettes which are part of the fluid handling system. Optionally, pipettes and the pipettes are used to selectively attach to curettes and to move the curettes within the analyzer. Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are used, and the accompanying drawings of which: FIG. 1 shows an example of a system comprising a sample processing device and an external controller in accordance with an embodiment of the invention. FIG. 2 shows an example of a sample processing device. FIG. 3 shows an example of a module having a sample preparation station, assay station, detection station, and a fluid handling system. FIG. 4 provides an example of a rack supporting a plurality of modules having a vertical arrangement. FIG. 5 provides an example of a rack supporting a plurality of modules having an array arrangement. FIG. 6 illustrates a plurality of modules having an alternative arrangement. FIG. 7 shows an example of a sample processing device having a plurality of modules. FIG. 7A shows a non-limiting example of a sample processing device having a plurality of modules. FIG. 7B shows a non-limiting example of a sample processing device having a plurality of modules. FIG. 7C shows a non-limiting example of a sample processing device having a plurality of modules. FIG. 8 shows a plurality of racks supporting one or more modules. FIG. 9 shows an example of a module with one or more components communicating with a controller. FIG. 10 shows a system having a plurality of modules mounted in bays (including, e.g., on the racks). FIG. 11 shows a plurality of plots illustrating a parallel processing routine. FIG. 12 shows an exploded view of a positive displacement pipette. FIG. 13 shows a side view of a positive displacement pipette at a full aspiration position. FIG. 14 shows a side view of a positive displacement pipette at a full dispense position. FIG. 15 shows an exterior view of an air displacement pipette. FIG. 16 shows a cross-sectional view of an air displacement pipette. FIG. 17 shows a close-up of an interface between a pipette tip and a nozzle. FIG. 18 shows an example of an actuation removal mechanism. FIG. 19A shows a multi-head pipette in accordance with an embodiment of the invention. FIG. 19B shows a side view of a pipette. FIGS. 20A to C show cross-sectional views of an air displacement pipette. FIG. 20A shows a plunger in a down position and a removal mechanism in a down position; FIG. 20B shows a plunger in an intermediate position and a removal mechanism in an up position; FIG. 20C shows a plunger in an up position and a removal mechanism in an up position. FIG. 21 shows a plurality of pipettes with removal mechanisms. FIG. 22 shows an example of a multi-head pipette in accordance with an embodiment of the invention. FIG. 23 provides an example of a multi-head pipette provided in accordance with another embodiment of the invention. FIG. 24 provides an illustration of a vessel that may be used for nucleic acid assays in accordance with an embodiment of the invention. FIGS. 25A-25F illustrate a method for using a vessel in accordance with another embodiment of the invention. FIG. 26A provides an illustration of a vessel that may be used for centrifugation in accordance with an embodiment of the invention. FIG. 26B provides an illustration of a tip that may be used for centrifugation in accordance with an embodiment of the invention. FIG. 27 provides an illustration of a tip that may be used for fluid handling. FIG. 28 shows an example of a well. FIG. 29 illustrates an example of a bulk handling tip in accordance with an embodiment of the invention. FIG. 30 is an example of an assay tip that may provide colorimetric readout. FIG. 31 illustrates an example of a sample tip for processing or fractioning a sample, such as a blood sample. FIG. 32 is an example of a current reaction tip. FIG. 33 illustrates an interface between a minitip nozzle and a minitip. FIG. 34 provides examples of minitips. FIG. 35 provides an illustration of a microcard and substrate with microtips in accordance with an embodiment of the invention. FIG. 36 shows an example of a centrifuge provided in accordance with an embodiment of the invention. FIG. 37 provides another example of a centrifuge in accordance with an embodiment of the invention. FIG. 38 shows an additional example of a centrifuge provided in accordance with another embodiment of the invention. FIG. 39 shows a system comprising devices communicating with an external device over a network. FIG. 40 illustrates a method of processing a sample provided in accordance with an embodiment of the invention. FIG. 41A shows an SPI (serial peripheral interface) bridge scheme having master and parallel-series SPI slave bridges. FIG. 41B shows an example of an SPI bridge. FIG. 41C shows a module component diagram with interconnected module pins and various components of a master bridge and slave bridge. FIG. 41D shows slave bridges connected to a master bridge. FIG. 41E shows a device having a plurality of modules mounted on a SPI link of a communications bus of the device. FIG. 42 shows an operational matrix of a point of service system. FIG. 43 is an example of an operational matrix of a point of service system and/or one or more modules of the point of service system. FIG. 44 shows an operational matrix and a routine matrix. FIGS. 45A-45C show examples of operational matrices having routines and processing states. FIG. 46 shows an example of a fluid handling apparatus in a retracted position, provided in accordance with an embodiment of the invention. FIG. 46A shows a collapsed fluid handling apparatus as previously described, in a fully retracted position. FIG. 46B shows a retracted fluid handling apparatus, in a full z-drop position. FIG. 47 shows an example of a fluid handling apparatus in an extended position in accordance with an embodiment of the invention. FIG. 48 shows a front view of a fluid handling apparatus. FIG. 49 shows a side view of a fluid handling apparatus. FIG. 50 shows another side view of a fluid handling apparatus. FIG. 51 shows a rear perspective view of a fluid handling apparatus. FIG. 52 provides an example of a fluid handling apparatus used to carry a sample processing component. FIG. 53 shows a side view of a fluid handling apparatus useful for carrying a sample processing component. FIGS. 54A-54E show an example of a cam-switch arrangement in accordance with an embodiment of the invention. FIG. 54A shows an example of a binary cam at zero position, with the cam rotated zero degrees. FIG. 54B shows an example of a binary cam at position one, with the cam rotated 22.5 degrees. FIG. 54C shows an example of a binary cam at position five, with the cam rotated 112.5 degrees. FIG. 54D shows an example of a binary cam at position fifteen, with the cam rotated 337.5 degrees. FIG. 54E shows a selection cam mounted with a motor in accordance with an embodiment of the invention. FIGS. 55A-55E show an example of a fluid handling apparatus using one or more light source in accordance with an embodiment of the invention. FIG. 55A shows a plurality of pipette heads. FIG. 55B shows a side cut away view of a fluid handling apparatus. FIG. 55C shows a close up of a light source that may be provided within a fluid handling apparatus. FIG. 55D shows a close up of a plunger and pipette nozzle. FIG. 55E shows a perspective view of a fluid handling apparatus. FIG. 56 shows a point of service device having a display, in accordance with an embodiment of the invention. The display includes a graphical user interface (GUI). FIG. 57 shows a table listing examples of sample preparations. FIG. 58 shows a table listing examples of possible assays. FIG. 59 shows an example of a tip interface that includes an example of a screw-mechanism. FIG. 60 provides an additional example of a nozzle-tip interface using a click-fit interface. FIG. 61 shows an example of an internal screw pick-up interface. FIG. 62 illustrates an example of an O-ring tip pick-up interface. FIG. 63 provides an example of an expand/contract smart material tip pick-up interface. FIG. 64 provides an example of an expand/contract elastomer deflection tip pick-up interface. FIG. 65 provides an example of a vacuum gripper tip pick-up interface. FIG. 66 provides an example of a pipette module in accordance with an embodiment of the invention. FIG. 67A shows an example of modular pipette having a raised shuttle in a full dispense position. FIG. 67B shows an example of modular pipette having a lowered shuttle in a full dispense position. FIGS. 67C and 67D show non-limiting examples of pipette configurations according to embodiments described herein. FIG. 68A provides a top view of an example of a magnetic control. FIG. 68B provides a side view of the magnetic control. FIG. 69 provides an example of a cuvette and cuvette carrier. FIG. 70A shows an example of a carrier (e.g., cuvette), in accordance with an embodiment of the invention. FIG. 70B shows additional views of a carrier (e.g., cuvette). FIG. 71 shows an example of a tip. FIG. 72 an example of a vial strip. FIG. 73 shows another example of a vial strip. FIGS. 74A-74G show non-limiting examples of spectrophotometers according to embodiments described herein. FIGS. 75-76 show non-limiting examples of embodiments of cartridges as described herein. FIG. 77-78 show non-limiting examples of cartridge covers according to embodiments described herein. FIG. 79 shows non-limiting examples of absorbant pad assembly according to embodiments described herein. FIG. 80 shows a non-limiting example of sample processing tip according to embodiments described herein. FIGS. 81A and 81B show non-limiting examples of cartridges with thermal conditioning element(s) according to embodiments described herein. FIGS. 82 to 83 show non-limiting examples of microfluidic cartridges according to embodiments described herein. FIG. 84 shows a non-limiting example of a cartridge according to embodiments described herein. FIGS. 85 to 90 show non-limiting examples of thermal conditioning element(s) according to embodiments described herein. FIG. 91 shows non-limiting example of a positive displacement tip interface according to embodiments described herein FIGS. 92 to 93 show non-limiting examples of an array of sample vessels according to embodiments described herein. FIGS. 94 to 98 show non-limiting examples of centrifuge vessel imaging configurations according to embodiments described herein. FIGS. 99 to 100 show non-limiting examples of electrochemical sensor configurations according to embodiments described herein. FIG. 101 shows an example of a nucleic acid assay station. FIG. 102 shows a graph of the relationship between calcium concentration and absorbance at 570 nm for calcium assays performed on a device provided herein. FIG. 103 shows a graph of absorbance of multiple measurements over time of different NADH-containing solutions with a spectrophotometer provided herein. FIG. 104 shows a graph of the relationship between NADH concentration and absorbance at 340 nm for measurements performed on spectrophotometer provided herein and a commercial spectrophotometer. FIG. 105 shows a graph of the relationship between urea concentration and absorbance at 630 nm for measurements performed on spectrophotometer provided herein and a commercial spectrophotometer. FIGS. 106 to 110 show non-limiting examples of embodiments of modules according to embodiments described herein. DETAILED DESCRIPTION OF THE INVENTION While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. The term “module,” as used herein, refers to a device, component, or apparatus that includes one or more parts or independent units that are configured to be part of a larger device or apparatus. In some cases, a module works independently and independently from another module. In other cases, a module works in conjunction with other modules (e.g., modules within modules) to perform one or more tasks, such as assaying a biological sample. The term “sample handling system,” as used herein, refers to a device or system configured to aid in sample imaging, detecting, positioning, repositioning, retention, uptake and deposition. In an example, a robot with pipetting capability is a sample handling system. In another example, a pipette which may or may not have (other) robotic capabilities is a sample handing system. A sample handled by a sample handling system may or may not include fluid. A sampling handling system may be capable of transporting a bodily fluid, secretion, or tissue. A sampling handling system may be able to transport one or more substance within the device that need not be a sample. For example, the sample handling system may be able to transport a powder that may react with one or more sample. In some situations, a sample handling system is a fluid handling system. The fluid handling system may comprise pumps and valves of various types or pipettes, which, may comprise but not be limited to a positive displacement pipette, air displacement pipette and suction-type pipette. The sample handling system may transport a sample or other substance with aid of a robot as described elsewhere herein. The term “health care provider,” as used herein, refers to a doctor or other health care professional providing medical treatment and/or medical advice to a subject. A health care professional may include a person or entity that is associated with the health care system. Examples of health care professionals may include physicians (including general practitioners and specialists), surgeons, dentists, audiologists, speech pathologists, physician assistants, nurses, midwives, pharmaconomists/pharmacists, dietitians, therapists, psychologists, chiropractors, clinical officers, physical therapists, phlebotomists, occupational therapists, optometrists, emergency medical technicians, paramedics, medical laboratory technicians, medical prosthetic technicians, radiographers, social workers, and a wide variety of other human resources trained to provide some type of health care service. A health care professional may or may not be certified to write prescriptions. A health care professional may work in or be affiliated with hospitals, health care locations and other service delivery points, or also in academic training, research and administration. Some health care professionals may provide care and treatment services for patients in private or public domiciles, community centers or places of gathering or mobile units. Community health workers may work outside of formal health care institutions. Managers of health care services, medical records and health information technicians and other support workers may also be medical care professionals or affiliated with a health care provider. A health care professional may be an individual or an institution that provides preventive, curative, promotional or rehabilitative health care services to individuals, families, or communities. In some embodiments, the health care professional may already be familiar with a subject or have communicated with the subject. The subject may be a patient of the health care professional. In some instances, the health care professional may have prescribed the subject to undergo a clinical test. The health care professional may have instructed or suggested to the subject to undergo a clinical test conducted at the point of service location or by a laboratory. In one example, the health care professional may be the subject's primary care physician. The health care professional may be any type of physician for the subject (including general practitioners, referred practitioners or the patient's own physician optionally selected or connected through telemedicine services, and/or specialists). The health care professional may be a medical care professional. The term “rack,” as used herein, refers to a frame or enclosure for mounting multiple modules. The rack is configured to permit a module to be fastened to or engaged with the rack. In some situations, various dimensions of the rack are standardized. In an example, a spacing between modules is standardized as multiples of at least about 0.5 inches, or 1 inch, or 2 inches, or 3 inches, or 4 inches, or 5 inches, or 6 inches, or 7 inches, or 8 inches, or 9 inches, or 10 inches, or 11 inches, or 12 inches. The term “cells,” as used in the context of biological samples, encompasses samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), cells, virions, and substances bound to small particles such as beads, nanoparticles, or microspheres. Characteristics include, but are not limited to, size; shape; temporal and dynamic changes such as cell movement or multiplication; granularity; whether the cell membrane is intact; internal cell contents, including but not limited to, protein content, protein modifications, nucleic acid content, nucleic acid modifications, organelle content, nucleus structure, nucleus content, internal cell structure, contents of internal vesicles, ion concentrations, and presence of other small molecules such as steroids or drugs; and cell surface (both cellular membrane and cell wall) markers including proteins, lipids, carbohydrates, and modifications thereof. As used herein, “sample” refers to an entire original sample or any portion thereof, unless the context clearly dictates otherwise. The invention provides systems and methods for multi-purpose analysis of a sample or health parameter. The sample may be collected and one or more sample preparation step, assay step, and/or detection step may occur on a device. Various aspects of the invention described herein may be applied to any of the particular applications, systems, and devices set forth below. The invention may be applied as a stand alone system or method, or as part of an integrated system, such as in a system involving point of service health care. In some embodiments, the system may include externally oriented imaging technologies, such as ultrasound or MRI or be integrated with external peripherals for integrated imaging and other health tests or services. It shall be understood that different aspects of the invention can be appreciated and practice individually, collectively, or in combination with each other. In accordance with an aspect of the invention, systems for multi-purpose analysis or analyses and/or sample handling may be provided. FIG. 1 illustrates an example of a system. A system may comprise one or more sample processing device 100 that may be configured to receive a sample and/or to conduct multi-purpose analysis of one or more sample(s) or types of samples sequentially or simultaneously. Analysis may occur within the system. Analysis may or may not occur on the device. A system may comprise one, two, three or more sample processing devices. The sample processing devices may or may not be in communication with one another or an external device. Analysis may or may not occur on the external device. Analysis may be affected with the aid of a software program and/or a health care professional. In some instances, the external device may be a controller 110. Systems for multi-purpose analysis may comprise one or more groups of sample processing devices. Groups of sample processing devices may comprise one or more device 100. Devices may be grouped according to geography, associated entities, facilities, rooms, routers, hubs, care providers, or may have any other grouping. Devices within groups may or may not be in communication with one another. Devices within groups may or may not be in communication with one or more external devices. Sample processing devices may comprise one, two or more modules 130. Modules may be removably provided to the devices. Modules may be capable of effecting a sample preparation step, assay step, and/or detection step. In some embodiments, each module may be capable of effecting a sample preparation step, assay step, and detection step. In some embodiments, one or more modules may be supported by a support structure 120, such as a rack. Zero, one, two or more rack(s) may be provided for a device. Modules may comprise one, two or more components 140 that may be capable of effecting a sample preparation step, assay step, and/or detection step. Module components may also include reagents and/or vessels or containers that may enable a sample preparation step, assay step, and/or detection step. Module components may assist with the sample preparation step, the assay step, and/or detection step. A device may comprise one or more component that is not provided within a module. In some instances, a component may be useful for only one of a sample preparation step, assay step, and/or detection step. Examples of components are provided in greater detail elsewhere herein. A component may have one or more subcomponents. In some instances, a hierarchy may be provided wherein a system comprises one or more groups of devices, a group of devices comprises one or more device, a device may optionally comprise one or more rack which may comprise one or more module, a device may comprise one or more module, a module and/or device may comprise one or more components, and/or a component may comprise one or more subcomponents of the component. One or more level of the hierarchy may be optional and need not be provided in the system. Alternatively, all levels of hierarchy described herein may be provided within the system. Any discussion herein applying to one level of hierarchy may also apply to other levels of hierarchies. A sample processing device is provided in accordance with an aspect of the invention. A sample processing device may comprise one or more components. The sample processing device may be configured to receive a sample and/or to conduct one or more sample preparation step, assay step, and/or detection step. The sample preparation step, assay step, and/or detection step may be automated without requiring human intervention. In some embodiments, a system provided herein may be configured as follows: The system may contain a sample processing device and, optionally an external device. The external device may be, for example, a remote server or cloud-based computing infrastructure. The sample processing device may contain a housing. Within the housing of the device, there may be one or more modules. The modules may be supported by a rack or other support structure. The modules may contain one or more components or stations. Components and stations of a module may include, for example, assay stations, detection stations, sample preparation stations, nucleic acid assay stations, cartridges, centrifuges, photodiodes, PMTs, spectrophotometers, optical sensors (e.g. for luminescence, fluorescence, absorbance, or colorimetry), cameras, sample handling systems, fluid handling systems, pipettes, thermal control units, controllers, and cytometers. Components and stations of a module may be removable or insertable into the module. The components and stations of a module may contain one or more sub-components or other items which may be part of or may be supported by a component or station. Sub-components may include, for example, assay units, reagent units, tips, vessels, magnets, filters, and heaters. Sub-components of a components or station may be removable or insertable into the component or station. In addition, the device may contain one or more additional components which may be part of a module, or which may be elsewhere in the device (e.g. on the housing, rack, or between modules) such as a controller, communication unit, power unit, display, sample handing system, fluid handling system, processor, memory, robot, sample manipulation device, detection unit. The system or device may have one or more cartridges. The cartridges may be insertable or removable from the device. The cartridges may contain, for example reagents for performing assays or biological samples. The device may have one or more controllers, including one or both of device-level and module-level controllers (e.g. where the device level controller is configured to direct certain procedures to be performed on certain modules and where the module level controller is configured to direct the components or stations to execute particular steps for sample preparation, sample assaying, or sample detection. In an alternative, a device-level controller may be connected to modules and components of the module, to perform both of these functions). The device may have one or more sample handling system, including both device-level and module-level sample handling system (e.g. where the device level sample handling system is configured to move samples or components between modules and where the module level sample handling system is configured to move samples or components within a module. In an alternative, a device level sample handling system may be configured to perform both of these functions). The sample processing device may be in two-way communication with the external device, such that the sample processing device is configured to send information to the external device, and also to receive information from the external device. The external device may, for example, send protocols to the sample processing device. In some embodiments, a device may be or comprise a cartridge. The cartridge may be removable from a large device. Alternatively, the cartridge may be permanently affixed to or integral to the device. The device and/or the cartridge may (both) be components of a disposable such as a patch or pill. In some embodiments, an assay station may comprise a cartridge. A cartridge may be a universal cartridge that can be configured for the same selection of tests. Universal cartridges may be dynamically programmed for certain tests through remote or on-board protocols. In some cases, a cartridge can have all reagents on board and optionally server-side (or local) control through two-way communication systems. In such a case, a system using such a disposable cartridge with substantially all assay reagents on board the cartridge may not require tubing, replaceable liquid tanks, or other aspects that demand manual maintenance, calibration, and compromise quality due to manual intervention and processing steps. Use of a cartridge provided herein containing all reagents within the cartridge necessary for performing one or more assays with a system or device provided herein may permit the device or system to not have any assay reagents or disposables stored within the device. Referring now to FIG. 75, one embodiment of a cartridge 9900 will now be described. This embodiment shows that there may be a plurality of different regions 9920 to 9940 on the cartridge 9900 to provide different types of devices, tips, reagents, reaction locations, or the like. The mix of these elements depends on the types of assays to be performed using the cartridge 9900. By way of nonlimiting example, the cartridge 9900 may have regions to accommodate one or more sample containers, pipette tips, microscopy cuvette, large volume pipette tip, large volume reagent well, large volume strip, cuvette with a linear array of reaction vessel, round vessels, cap-removal tip, centrifuge vessel, centrifuge vessel configured for optical measurement(s), nucleic acid amplification vessels. Any one of the foregoing may be in the different regions 9920 to 9940. Some may arrange the tips and vessels in arrays similar to those of the cartridges shown in commonly assigned U.S. Pat. No. 8,088,593, fully incorporated herein by reference for all purposes. By way of non-limiting example, the reagents may also vary in the cartridge and may be selected to include at least those desired to perform at least two or more types of assay panels such as but not limited to the lipid panel and a chem14 panel or other combination of two or more different laboratory testing panels. For example, some cartridges may have reagents, diluents, and/or reaction vessels to support at least two different assay types from nucleic acid amplification, general chemistry, immunoassay, or cytometry. Any one or more of the components of the cartridge may be accessible by a sample handling system of the system. The different zones in the cartridge may be configured to match the pitch of the pipette heads used in the system. Optionally, some zones are configured to be at pitches that are multiples of or fractions of the pitch of the pipette heads. For example, some components of the cartridge are at ⅓× of the pitch, others at ½× of the pipette pitch, others at a 1× pitch, others at a 2× pitch, while still others at a 4× pitch. Referring still to FIG. 75, it should be understood that there may be components located at one plane of the cartridge while other are located at lower or higher planes. For example, some components may be located below a cuvette or other component. Thus, once the upper component is removed, the lower components become accessible. This multi-layer approach provides for greater packing density in terms of components on a cartridge. There may also be locating features on the cartridge 9900 such as but not limited to rail 9834 that is configured to engage matching slot on the cartridge receiving location in the system. The cartridge may also have registration features (physical, optical, or the like) that allow the system to accurately engage components of the cartridge once the cartridge is recognized by the system. By way of non-limiting example, although components may be removed from the cartridge 9900 during assay processing, it is understood that some embodiments may permit the return of all components back to the cartridge for unified disposal. Optionally, in some embodiments of the system may have disposal areas, containers, chutes, or the like to discard those components of the cartridge not returned to the cartridge prior to ejecting the cartridge from the system. In some embodiments, these areas may be dedicated areas of the system for receiving waste. Referring now to FIG. 76, another embodiment of cartridge 9901 will now be described. This one uses a reduced height cartridge 9901 wherein the sidewalls have a reduced vertical height. The provides for less material use for the disposable and brings the reaction vessels and/or reagents. Referring now to FIG. 77, yet another feature of at least some cartridges will now be described. FIG. 77 shows a side view of a cartridge 9900 with a lid 9970, wherein the lid 9970 is removable upon insertion of the cartridge 9900 into the system and will re-engage the cover when the cartridge 9900 is removed from the system. Such features may be advantageous for increasing the security and protection of the components of the cartridge (e.g. to prevent tampering or inadvertent introduction of external matter). As seen in FIG. 77, there is an engagement feature 9972 such as but not limited to snap that engages a locking feature 9974 in the body of the cartridge 9900. A release mechanism 9976 such as but not limited to a pin can be inserted into an opening where it can contact the locking feature 9974 and move it to a release position. This allows one end of the lid 9970 to be disengaged automatically when the cartridge 9900 is inserted into system. Optionally, the release mechanism 9976 may have pins that actuate so that the release of the lid 9970 is based on when the system actuates to unlock the locking feature 9974. In one non-limiting example, a spring mechanism 9980 such as but not limited to a torsional spring can automatically lift open the lid 9970 as indicated by arrow 9982 after the locking mechanism 9974 is disengaged. When ejecting the cartridge 9900, the motion of the cartridge 9900 out of the device will cause the lid 9970 in the open position to engage a horizontally or otherwise mounted closure device 9984 (shown in phantom) that will move the lid 9970 to a closed position due the motion of the cartridge 9900 as indicated by arrow 9986 as it passes under the device 9984. In the present embodiment, the spring mechanism 9980 is engaged to the cartridge 9900 through openings 9978 (see FIG. 75). FIG. 78 shows a perspective view of one embodiment of the lid 9970 that engages over a cartridge 9900. This lid may be configured to retain all of the various components of the cartridge 9900 inside the cartridge when the cartridge is not in the system. The use of dual engagement features 9972 more securely holds the lid 9970 to the cartridge and makes it more difficult for a user to accidentally open the lid 9970 as it uses two or more points of engagement with the locking mechanism of the cartridge. As seen in FIG. AC, there is also a cut-out portion 9988 that allow for the sample containers to be placed into the cartridge 9900 before the cartridge 9900 is loaded into the system. In one non-limiting example, this can simplify use of the cartridge as this is only allows the sample container(s) to be placed in one location in the cartridge 9900, thus making the user interaction with the cartridge for loading sample much less variable or subject to error. The lid 9970 can also be opaque to prevent the user from being distracted by vessels and elements in the cartridge, instead focusing the user's attention to the only available open slot, which in the current embodiment is reserved for the sample container(s) which can only be inserted in a particular orientation due to the keyed shape of the opening. Referring now to FIG. 79, it should be understood that the cartridge 9900 may also contain an absorbent pad assembly 10000 that is used to remove excess fluid from the various tips, vessels, or other elements. In one embodiment, the absorbent pad assembly 10000 has a multi-layer configuration comprising a spacer 10002, the absorbent pad 10004, and an adhesive layer 10006. Some embodiments may or may not have the spacer layer 10002 which may be made of material such as but not limited to acrylic or other similar material. The shape of the openings in the spacer 10002 is sized to allow for features such as but not limited to pipettes tip to enter spacer layer 10002 to clean the tip for excess fluid without contaminating the absorbent pad 10004 for adjacent openings. Optionally, it should be understood that the absorbent material 10004 may also be used alone or with adhesive or other material to cover certain reagent or other zones such that a tip would penetrate through the absorbent material 10004 in order to reach the reagent below. This would provide for removal of excess fluid on the outside of the tips on insertion and/or withdrawal of the tip, and may aid in the reduction of cross-reactivity. In one embodiment, this may be like a burst-able membrane of the absorbent material. Some embodiments may use tips that are linear and not conical in shape at the distal portion so that contact with the absorbent material is not lost due to variation in tip diameter, resulting in a less than thorough wiping of fluid from an outside portion of the tip. In some embodiments, tips may be configured such that they do not retain excess fluid on the outside of the tip, and are not used with an absorbent pad. Referring now to FIG. 80, it should be understood that the cartridge may also include various types of specialized tips or elements for specific functions. By way of non-limiting example as seen in FIG. 80, a sample preparation tip 10050 will now be described. In this embodiment of a sample preparation tip, the plunger 10052 of the tip 10050 interfaces with a single minitip nozzle at opening 10054; the pipette nozzle can be set to “pull” to produce a vacuum that allows the plunger to stay on the nozzle more securely. In the present embodiment, the barrel part 10056 of the sample preparation tip 10050 interfaces with two minitip nozzles of the pipette at cavities 10058 and 10060. In this manner, the pipette system uses multiple heads with nozzles thereon to both move the hardware of the tip 10050 and to aspirate using the plunger 10052. In the present embodiment, the tip 10050 may include a resin portion 10070 that may be bound above and below by frits 10072 and 10074. Frit material may be compatible with sample purification chemistry and not leach any carryover inhibition into the downstream assay. Optionally, frit material should not bind to the biomolecule of interest, or must be chemically treated or surface passivated to prevent such. Optionally, frit material may be porous with an appropriate pore such that the resin remains within the confines of its cavity. Optionally, frit must be sized such that the interference fit between the barrel and the frit is enough to hold it in place against typical operating fluid pressures. By way of non-limiting example, the resin portion 10070 may be chosen such that it binds optimally with the biomolecule of choice, which can include but is not limited to bare and chemically modified versions of silica, zirconia, polystyrene or magnetic beads. In one embodiment, the method for using the tip 100050 may involve the aspiration of lysed unpurified sample mixed with binding buffer through the resin 10070. In such an example, DNA or biomolecule of choice will bind to the resin 10070 in the appropriate salt conditions and remaining fluid is dispensed into waste. The method may involve aspiration of wash buffers to clean the bound sample and dispense fluid into waste vessel. This may be repeated multiple times as desired to obtain a clean sample. The method may further include aspiration and dispense of heated air in order to dry to resin to remove residual solvents and any carryover inhibition that may interfere with the downstream assay. Optionally, the tip 10050 may be used for aspiration of elution buffer to remove the bound molecule of interest, and may allow the elution buffer to completely saturate the resin before dispensing into an appropriate collection vessel. In some embodiments, a pipette tip may contain a septa, such that there is a seal between the sample intake portion of a pipette tip, and the path of an actuation mechanism of the pipette (e.g. the piston block). In some embodiments, a pipette nozzle and pipette tip may have threads, such that the pipette tip may be threaded onto the tip (e.g. by rotation). The nozzle may rotate to thread the tip onto the nozzle, or the tip may rotate. The tip may be “locked” in place on the nozzle upon threading the tip onto the pipette nozzle. The tip may be “unlocked” by rotating the nozzle or the tip in the opposite direction as used for loading the tip onto the nozzle. Referring now to FIG. 81, in some embodiments, the cartridge 9800 contains at least one thermal device 9802 such as a chemical reaction pack for generating heat locally to enhance kinetics and/or for heating a mixture. The chemical reaction pack may contain chemicals such as sodium acetate or calcium chloride. This may be particularly desirable in situations where the cartridge 9800, prior to use, is stored in a refrigerated condition such as but not limited to the 0° C. to 8° C. range for days to weeks. Optionally, the temperature range during cold storage may be in the range of about −20° C. to 8° C., optionally −10° C. to 5° C., optionally −5° C. to 5° C., or optionally 2° C. to 8° C. In one non-limiting example, the thermal pack 9802 is in a refrigerated condition for at least one month. In an implementation, sodium acetate is used in the chemical in the chemical reaction thermal pack 9802. Sodium acetate trihydrate crystals melt at 58.4° C., dissolving in water. When they are heated to around 100° C., and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature without forming crystals. When the supersaturated solution is disrupted, crystals are formed. The bond-forming process of crystallization is exothermic. The latent heat of fusion is about 264-289 kJ/kg. The crystallization event can be triggered by clicking on a metal disc, creating a nucleation center which causes the solution to crystallize into solid sodium acetate trihydrate again. This can be triggered by the pipette in the system or other actuator in the device. Alternatively, a tip/needle on the pipette with sodium acetate crystal on its surface can puncture the sodium acetate foil seal. This will also trigger crystallization. It should be understood that other exothermic reactions can be used instead of sodium acetate and these other reactions are not excluded. One non-limiting example is to use magnesium/iron alloy in a porous matrix formed from polymeric powders with sodium chloride incorporated. The reaction is started by the addition of water. The water dissolves the sodium chloride into an electrolyte solution causing magnesium and iron to function as an anode and cathode, respectively. Optionally, an exothermic oxidation-reduction reaction between the magnesium-iron alloy and water can be used to produce magnesium hydroxide, hydrogen gas and heat. Optionally, a fan or other flow generating device on the system can be used to provide convective flow. The fan can be placed to blow air to the underside of the cartridge, along the sides, or optionally over the tops of the cartridge. It should be understood that some cartridges 9800 may have more than one heater. As seen in FIGS. 81A and 81B, a second thermal device 9804 can also be a part of the cartridge 9800. In some embodiments, the heaters 9802 and 9804 are sized and located to thermally control temperature for certain areas of the cartridge 9800, particularly those vessels, wells, or other features that contain materials that are sensitive to temperature or provide more consistent or accurate results when they are used in certain temperature ranges. As seen in FIGS. 81A and 81B, the heaters 9802 and 9804 are positioned to thermally condition (heat or cool) those locations in the cartridge. In some embodiments, the heaters 9802 and 9804 are positioned to thermally condition particular reagents in a cartridge. It should also be understood that thermally conductive material such as but not limited to aluminum, copper, or the like, may also be incorporated into the cartridge to preferentially thermally condition certain areas of the cartridge. In one non-limiting example, the thermally conductive materials 9806 and 9808 can be made of a material different from that of the cartridge and be shaped to accommodate, contour, or otherwise be in contact with or near certain pipette tips, reagent wells, diluent wells, or the like. In some embodiments, the thermally conductive material may be used to condition those areas that are spaced apart from the thermal devices to more readily propagate thermal conditioning to other areas of the cartridge. Optionally, the thermally conductive material is located only at targeted areas over the thermal packs and designed to only thermally condition some but not other areas of the cartridge. Optionally, some embodiments may integrate thermally conductive materials such as but not limited to metal beads or other thermally conductive materials into the polymeric or other material used to form the cartridge. The cartridge can have isolated regions with temperature control (e.g. a region with high temperature for nucleic acid tests), without affecting other parts of the cartridge/device. Referring now to FIG. 82, in another embodiment, the cartridge receiving location 9830 with rails 9832 is configured to receive a cartridge comprising a microfluidic cartridge 9810. This passive flow cartridge 9810 may have one more sample deposit locations 9812. By way of non-limiting example, this cartridge 9810 may be a microfluidic cartridge as described in U.S. Pat. Nos. 8,007,999 and 7,888,125, both fully incorporated herein by reference for all purposes. The passive flow cartridge 9810 may also have one or more rails that engage at least one slot 9832 of the cartridge receiving location. The cartridge receiving location 9830 may also have one more signal interface locations on the cartridge such as but not limited to electrical connectors or optical connectors so that electrodes, fiberoptics, or other elements in the cartridge can communicate with corresponding equipment in the system that can read signals from elements in the cartridge 9810. It should be understood that a pipette may be used to load sample into the cartridge 9810. Optionally, the passive flow cartridge 9810 may also be integrated for use with the pipette to transport sample from certain ports in the cartridge 9810 to other ports on the sample cartridge, to other cartridges, or to other types of sample vessels. After the completion, the cartridge may be unloaded from the cartridge receiving location 9830 as indicated by arrow 9819. Referring now to FIG. 83, in a still further embodiment, the cartridge receiving location 9830 with rails 9832 is configured to receive a cartridge comprising a microfluidic portion 9822. In this non-limiting example, the microfluidic portion 9822 is mounted on a larger cartridge 9824 that can have various reagent region(s) 9826 and sample vessel region(s) 9828. Some embodiments may also have a cartridge with sample vessel holding location 9938 that transports the sample fluid in gas tight containers until they are ready for analysis when loaded into the device. In one non-limiting example, the sample being aliquoted into microfluidic portion 9822 may be pre-treated by material in the sample vessel. In some embodiments, the microfluidic portion 9822 can be moved to location separate from the cartridge 9824 so that the processing on the microfluidic portion 9822 can occur simultaneously with other sample processing that may occur on the cartridge 9824. Optionally, the system may have the microfluidic portion 9822 moved so that other reagents, diluents, tips, or vessels that, in the present embodiment, are housed below the microfluidic portion 9822, become accessible for use. Optionally, the microfluidic portion 9822 may be returned to the cartridge 9824 after use. The entire cartridge 9824 may use a cover 9970 (not shown) to provide an enclosed unit for improved cartridge handling when not in use in the system. Referring now to FIG. 84, another embodiment of a cartridge receiving location 9830 will now be described. This embodiment shows a plurality of detector locations 9841 on a cartridge 9842. A pipette 9844 can be used to transport sample to one or more the detector locations 9841. In one non-limiting example, movement of sample from one detector locations 9841 to another, or optionally, from a sample vessel to one or more of the detector locations 9841 can be by way of the pipette 9844. In one non-limiting example, the measurement of the sample at the detector locations 9841 can be by way of a sensing electrode used in one of two manners. First, the change can be detected with respect to the exposed reference capacitor. In this embodiment, the reference electrode is exposed to the same solution as the sensing electrode. Optionally, a probe is designed to have similar electrical characteristics as the affinity probed but not to bind to a target in the solution in attached to the reference electrode. A change in integrated charge is measured as binding occurs on the sensing electrode (or affinity probe attached thereon) whose electrical characteristics change, but not on the reference electrode whose electrical characteristic remain the same. Second, two measurements of the same electrode, before and after the analyte binds, can be compared to establish the change in integrated charge resulting from binding. In this case, the same electrode at a previous time provides the reference. The device may operate in differential detection mode, in which both reference and sense electrode have attached affinity probes (of different affinity) to reject common mode noise contributed by the matrix or other noise sources. In an alternative configuration, the reference electrode can be configured so that the sensing electrode takes direct capacitance measurements (non-differential). In this configuration, the reference electrode can be covered with a small dielectric substance such as epoxy or the device passivation or left exposed to air. The signal from the electrode can then be compared to an open circuit which establishes an absolute reference for measurement but may be more susceptible to noise. Such an embodiment uses the device in an absolute detection mode, in which the reference is an unexposed (or exposed to a fix environment such as air) fixed capacitor. Referring now to FIGS. 85 to 88, it should be understood that in some embodiments the thermal device is not integrated into a part of a disposable such as cartridge 9800 but is instead a non-disposable that is part of the hardware of the system. The thermal device may be a thermal control unit. FIG. 85 shows one embodiment of a cartridge 9820 that is received into an assay station receiving location 9830 of the system. In some embodiments, an assay station receiving location may be a tray. In this non-limiting example, the assay station receiving location 9830 has slots 9832 that are shaped to receive rails 9834 on the cartridge 9820. The cartridge 9820 is inserted into the assay station receiving location 9830 until the cartridge 9820 engages a stop 9836. It should be understood that the regions in FIGS. 85-88 and optionally in other cartridges described herein, the region may contain a plurality of wells, tips or the like such as shown in the cartridges of U.S. Pat. No. 8,088,593 fully incorporated herein by reference for all purposes. Referring now to FIG. 86 which shows an underside view of the assay station receiving location 9830 which shows that there may be convective flow devices 9840 positioned on the assay station receiving location 9830 to facilitate flow in the underside of the cartridge 9820 when it is in the desired location on the assay station receiving location 9830. Although FIG. 86 shows the devices 9840 in only one location, it should be understood that devices 9840 may also be located at one or more other locations to access other areas of the cartridge 9820. Some embodiments may configure at least one of the convective devices 9840 to be pulling in air while at least one other convective device 9840 is pushing air out of the cartridge. There may be features such as but not limited to vanes, fins, rods, tubes, or the like to guide air flow in the underside or other areas of the cartridge 9820. Referring now to FIG. 87, a cross-sectional view is shown of the cartridge 9820 on the assay station receiving location 9830 that is positioned over the convective flow device 9840. FIG. C further shows that there is thermal device 9850 that is a non-disposable that remains part of the system and is not disposed with the cartridge. Alternatively, some embodiments may integrate the thermal device 9850 into the cartridge, in which case the thermal device 9850 is part of the disposable. As seen in FIG. 87, the thermal device 9850 is at a first location spaced apart from the targeted materials 9852 to be thermally conditioned in the cartridge 9820. Referring still to FIG. 87, in some embodiments, the underside of the cartridge is substantially enclosed except for perhaps a hatch, door, or cover that allows for access to the underside of the cartridge 9820. Referring now to FIG. 88, this illustration shows that the thermal device 9850 can be moved from the first location to a second location to more directly contact the areas and/or components of the cartridge 9820 to be thermally conditioned. As seen in FIG. 88, the thermal device 9850 can have shapes such as but not limited to cavities, openings, or the like that are contoured to engage surfaces of the areas and/or components of the cartridge 9820 to be thermally conditioned. It should be understood that the thermal device 9850 can use various thermal elements to heat or cool the portions that engage features of the cartridge or cartridge components. In one non-limiting example, the thermal device 9850 may use heating rods 9852 in the device 9850. These may cause thermal conditioning through electro-resistive heating or the like. Thermal transfer may occur from corresponding cavities in heater-block into each round-vessel bottom-stem through narrow air-gap. The convective flow device 9840 may assist in accelerating the thermal conditioning. Optionally, some embodiments may use the convective flow device 9840 to bring steady state condition to the cartridge sooner after an initial thermal conditioning phase. By way of non-limiting example, a pre-heated heater block may be the thermal device 9850 that engages with refrigerated (e.g. 4° C.) cartridge-round-vessels in the cartridge 9820, followed by rapid heating from thermal device 9850, followed by fan-cooling by convective flow device 9840, which then leads to controllable operating temperature in vessels within about 180 seconds. After thermally conditioning is completed or to provide better access for the convective flow device 9840, the thermal device 9850 optionally returns to a location where it does not interfere with the insertion and/or removal of the cartridge 9820 from the assay station receiving location 9830, such as but not limited to residing in recess 9858. Referring now to FIGS. 89 and 90, yet another thermal control configuration will now be described. As seen in FIG. 89, one embodiment shows that the support structure of a module 9870 can be thermally controlled. In some embodiments, the support structure of a module may be a chassis. The support structure of a module 9870, which can have a plurality of components mounted thereon (not shown for ease of illustration), is then used to provide thermal conditioning to multiple components mounted on the chassis 9870. The support structure of a module 9870 may have a thermal base plate 9872. The thermal base plate 9872 may create a uniform thermal condition for the entire base plate 9872 or a portion thereof. By way non-limiting example, the thermal conditioning may be through electroresistive elements embedded in or on a thermally conductive material used for the base plate. Optionally as seen in FIG. 90, another embodiment may use a support structure of a module 9880 that has a non-uniform thermal base plate 9882 that selectively thermally conditions one or more location in the base plate. This can be designed for use with thermally conductive, thermally neutral, or thermally insulating material for the base plate. This allows for creating different thermal zones, depending on the desired thermal profile for the various operating conditions of components mounted on the support structure of a module 9880. By way of non-limiting example, some embodiments may have a heated location under the assay station receiving location on the support structure of a module 9880. When a system uses multiple chassis on rack or other multiple chassis systems, some embodiment may use only those chassis with the thermal base plate. Optionally, some embodiments may use a mix of those chassis with or without thermal base plates. In some embodiments, a both a disposable such as a cartridge and the hardware of the system contain a thermal device. In some embodiments, a cartridge is not thermally conditioned prior to or during use. Optionally, the cartridge can also transform into different configurations based on external or internal stimuli. The stimuli can be sensed via sensors on the cartridge body, or be part of the cartridge. More commonplace sensors such as RFID tags can also be part of the cartridge. The cartridge can be equipped with biometric sensors if, for example, the sample collection and analysis are done in two separate locations (e.g. for patients in intensive care, samples are collected from the patient and then transferred to the device for analysis). This allows linking a patient sample to the cartridge, thereby preventing errors. The cartridge could have electric and/or fluidic interconnects to transfer signals and/or fluids between different vessels, tips, etc. on the cartridge. The cartridge can also comprise detectors and/or sensors. Intelligent cartridge design with feedback, self learning, and sensing mechanisms enables a compact form factor with point of service utility, waste reduction, and higher efficiencies. In one embodiment, a separate external robotics system may be available on site to assemble new cartridges in real time as they are needed. Alternatively, this capability could be part of the device or cartridge. Individual cartridge components for running assays may include but are not limited to sealed vessels with reagents, as well as tips and vessels for mixing and optical or non-optical measurements. All or some of these components can be added to a cartridge body in realtime by an automated robotic system. The desired components for each assay can be loaded individually onto a cartridge, or be pre-packaged into a mini-cartridge. This mini-cartridge can then be added to the larger cartridge which is inserted into the device. One or more assay units, reagent units, tips, vessels or other components can be added to a cartridge in real time. Cartridges may have no components pre-loaded onto them, or may have some components preloaded. Additional components can be added to a cartridge in real time based on a patient order. The position of the components added to a cartridge are predetermined and/or saved so that the device protocol can properly execute the assay steps in the device. The device may also configure the cartridge in real time if the assay cartridge components are available to the device. For example, tips and other cartridge components can be loaded into the device, and loaded into cartridges in real time given the patient order to the run at that time. FIG. 2 shows an example of a device 200. A device may have a sample collection unit 210. The device may include one or more support structure 220, which may support one or more module 230a, 230b. The device may include a housing 240, which may support or contain the rest of the device. A device may also include a controller 250, display 260, power unit 270, and communication unit 280. The device may be capable of communicating with an external device 290 through the communication unit. The device may have a processor and/or memory that may be capable of effecting one or more steps or providing instructions for one or more steps to be performed by the device, and/or the processor and/or memory may be capable of storing one or more instructions. Sample Collection A device may comprise a sample collection unit. The sample collection unit may be configured to receive a sample from a subject. The sample collection unit may be configured to receive the sample directly from the subject or may be configured to receive a sample indirectly that has been collected from the subject. One or more collection mechanisms may be used in the collection of a sample from a subject. A collection mechanism may use one or more principle in collecting the sample. For example, a sample collection mechanism may use gravity, capillary action, surface tension, aspiration, vacuum force, pressure differential, density differential, thermal differential, or any other mechanism in collecting the sample, or a combination thereof. A bodily fluid may be drawn from a subject and provided to a device in a variety of ways, including but not limited to, fingerstick, lancing, injection, pumping, swabbing, pipetting, breathing, and/or any other technique described elsewhere herein. The bodily fluid may be provided using a bodily fluid collector. A bodily fluid collector may include a lancet, capillary, tube, pipette, syringe, needle, microneedle, pump, laser, porous membrane or any other collector described elsewhere herein. The bodily fluid collector may be integrated into a cartridge or onto the device, such as through the inclusion of a lancet and/or capillary on the cartridge body or vessel(s) or through a pipette that can aspirate a biological sample from the patient directly. The collector may be manipulated by a human or by automation, either directly or remotely. One means of accomplishing automation or remote human manipulation may be through the incorporation of a camera or other sensing device onto the collector itself or the device or cartridge or any component thereof and using the sensing device to guide the sample collection. In one embodiment, a lancet punctures the skin of a subject and draws a sample using, for example, gravity, capillary action, aspiration, pressure differential and/or vacuum force. The lancet, or any other bodily fluid collector, may be part of the device, part of a cartridge of the device, part of a system, or a stand alone component. In another embodiment, a laser may be used to puncture the skin or sever a tissue sample from a patient. The laser may also be used to anesthetize the sample collection site. In another embodiment, a sensor may measure optically through the skin without invasively obtaining a sample. In some embodiments, a patch may comprise a plurality of microneedles, which may puncture the skin of a subject. Where needed, the lancet, the patch, or any other bodily fluid collector may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In some instances, a bodily fluid collector may be a piercing device that may be provided on a disposable or that may be disposable. The piercing device may be used to convey a sample or information about the sample to a non-disposable device that may process the sample. Alternatively, the disposable piercing device itself may process and/or analyze the sample. In one example, a subject's finger (or other portion of the subject's body) may be punctured to yield a bodily fluid. The bodily fluid may be collected using a capillary tube, pipette, swab, drop, or any other mechanism known in the art. The capillary tube or pipette may be separate from the device and/or a cartridge of the device that may be inserted within or attached to a device, or may be a part of a device and/or cartridge. In another embodiment where no active mechanism (beyond the body) is required, a subject can simply provide a bodily fluid to the device and/or cartridge, as for example, could occur with a saliva sample or a finger-stick sample. A bodily fluid may be drawn from a subject and provided to a device in a variety of ways, including but not limited to, fingerstick, lancing, injection, and/or pipetting. The bodily fluid may be collected using venous or non-venous methods. The bodily fluid may be provided using a bodily fluid collector. A bodily fluid collector may include a lancet, capillary, tube, pipette, syringe, venous draw, or any other collector described elsewhere herein. In one embodiment, a lancet punctures the skin and draws a sample using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the reader device, part of the cartridge, part of a system, or a stand alone component, which can be disposable. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In one example, a subject's finger (or other portion of the subject's body) may be punctured to yield a bodily fluid. Examples of other portions of the subject's body may include, but is not limited to, the subject's hand, wrist, arm, torso, leg, foot, ear, or neck. The bodily fluid may be collected using a capillary tube, pipette, or any other mechanism known in the art. The capillary tube or pipette may be separate from the device and/or cartridge, or may be a part of a device and/or cartridge or vessel. In another embodiment where no active mechanism is required, a subject can simply provide a bodily fluid to the device and/or cartridge, as for example, can occur with a saliva sample. The collected fluid can be placed within the device. A bodily fluid collector may be attached to the device, removably attachable to the device, or may be provided separately from the device. In some embodiments, a sample may be provided directly to the device, or may use an additional vessel or component that may be used as a conduit or means for providing a sample to a device. In one example, feces may be swabbed onto a cartridge or may be provided to a vessel on a cartridge. In another example a urine cup may snap out from a cartridge of a device, a device, or a peripheral to a device. Alternatively, a small vessel may be pushed out, snapped out, and/or twisted out of a cartridge of a device or a peripheral to a cartridge. Urine may be provided directly to the small vessel or from a urine cup. In another example, a nasal swab may be inserted into a cartridge. A cartridge may include buffers that may interact with the nasal swab. In some instances, a cartridge may include one or more tanks or reservoirs with one or more reagents, diluents, wash, buffers, or any other solutions or materials. A tissue sample may be placed on a slide that may be embedded within a cartridge to process the sample. In some instances, a tissue sample may be provided to a cartridge through any mechanism (e.g., opening, tray), and a slide may be automatically prepared within the cartridge. A fluid sample may be provided to a cartridge, and the cartridge may optionally be prepared as a slide within the cartridge. Any description of providing a sample to a cartridge or a vessel therein may also be applied to providing the sample directly to the device without requiring a cartridge. Any steps described herein as being performed by the cartridge may be performed by the device without requiring a cartridge. A vessel for sample collection can be configured to obtain samples from a broad range of different biological, environmental, and any other matrices. The vessel can be configured to receive a sample directly from a body part such as a finger or an arm by touching the body part to the vessel. Samples may also be introduced through sample transfer devices which may optionally be designed for single-step processing in transferring a sample into a vessel or cartridge or into the device. Collection vessels may be designed and customized for each different sample matrix that is processed, such as urine, feces, or blood. For example, a sealed vessel may twist off of or pop out of a traditional urine cup so that it can be placed directly in a cartridge without the need for pipetting a sample. A vessel for sample collection can be configured to obtain blood from a fingerstick (or other puncture site). The collection vessel may be configured with one or more entry ports each connected to one or more segregated chambers. The collection vessel may be configured with only a single entry port connected to one of more segregated chambers. The collected sample may flow into the chambers via capillary action. Each segregated chamber may contain one or more reagents. Each segregated chamber may contain different reagents from the other chambers. Reagents in the chambers may be coated on the chamber walls. The reagents may be deposited in certain areas of the chambers, and/or in a graded fashion to control reagent mixing and distribution in the sample. Chambers may contain anticoagulants (for example, lithium-heparin, EDTA (ethylenediaminetetraacetic acid), citrate). The chambers may be arranged such that mixing of the sample among the various chambers does not occur. The chambers may be arranged such that a defined amount of mixing occurs among the various chambers. Each chamber may be of the same or different size and/or volume. The chambers can be configured to fill at the same or different rates with the sample. The chambers may be connected to the entry port via an opening or port that may have a valve. Such a valve may be configured to permit fluid to flow in one or two directions. The valve may be passive or active. The sample collection vessel may be clear or opaque in certain regions. The sample collection vessel may be configured to have one or more opaque regions to allow automated and/or manual assessment of the sample collection process. The sample in each chamber may be extracted by the device by a sample handling system fitted with a tip or vessel to interface with the sample collection vessel. The sample in each chamber may be forced out of the chamber by a plunger. The samples may be extracted or expelled from each chamber individually or simultaneously. A sample may be collected from an environment or any other source. In some instances, the sample is not collected from a subject. Examples of samples may include fluids (such as liquids, gas, gels), solid, or semi-solid materials that may be tested. In one scenario, a food product may be tested to determine whether the food is safe to eat. In another scenario, an environmental sample (e.g., water sample, soil sample, air sample) may be tested to determine whether there are any contaminants or toxins. Such samples can be collected using any mechanism, including those described elsewhere herein. Alternatively, such samples can be provided directly to the device, cartridge or to a vessel. The collected fluid can be placed within the device. In some instances, the collected fluid is placed within a cartridge of the device. The collected fluid can be placed in any other region of the device. The device may be configured to receive the sample, whether it be directly from a subject, from a bodily fluid collector, or from any other mechanism. A sample collection unit of the device may be configured to receive the sample. A bodily fluid collector may be attached to the device, removably attachable to the device, or may be provided separately from the device. In some instances, the bodily fluid collector is integral to the device. The bodily fluid collector can be attached to or removably attached to any portion of the device. The bodily fluid collector may be in fluid communication with, or brought into fluid communication with a sample collection unit of the device. A cartridge may be inserted into the sample processing device or otherwise interfaced with the device. The cartridge may be attached to the device. The cartridge may be removed from the device. In one example, a sample may be provided to a sample collection unit of the cartridge. A cartridge may brought to a selected temperature before being inserted into the device (e.g. to 4 C, room temperature, 37 C, 40 C, 45 C, 50 C, 60 C, 70 C, 80 C, 90 C, etc.). The sample may or may not be provided to the sample collection unit via a bodily fluid collector. A bodily fluid collector may be attached to the cartridge, removably attachable to the cartridge, or may be provided separately from the cartridge. The bodily fluid collector may or may not be integral to the sample collection unit. The cartridge may then be inserted into the device. Alternatively, the sample may be provided directly to the device, which may or may not use the cartridge. The cartridge may comprise one or more reagents, which may be used in the operation of the device. The reagents may be self-contained within the cartridge. Reagents may be provided to a device through a cartridge without requiring reagents to be pumped into the device through tubes and/or tanks of buffer. Alternatively, one or more reagents may already be provided onboard the device. The cartridge may comprise a shell and insertable tubes, vessels, or tips. The cartridge may contain, for example, assay units, reagent units, processing units, or cuvettes (for example, cytometry cuvettes). Vessels or tips may be used to store reagents required to run tests. Some vessels or tips may be preloaded onto cartridges. Other vessels or tips may be stored within the device, possibly in a cooled environment as required. At the time of testing, the device can assemble the on-board stored vessels or tips with a particular cartridge as needed by use of a robotic system within the device. In some embodiments, a cartridge contains microfluidics channels. Assays may be performed or detected within microfluidics channels of a cartridge. Microfluidics channels of a cartridge have openings to interface with, for example, tip, such that samples may be loaded into or removed from the channel. In some embodiments, samples and reagents may be mixed in a vessel, and then transferred to a microfluidics channel of a cartridge. Alternatively, samples and reagents may be mixed within a microfluidics channel of a cartridge. In some embodiments, a cartridge contains chips for electronic microfluidics applications. Small volumes of liquids may be applied to such chips, and assay may be performed on the chips. Liquids may be, for example, spotted or pipetted onto the chips, and moved, for example by charge. In some embodiments, a cartridge contains one or more assay units, reagent units, or other vessels containing, for example, antibodies, nucleic acid probes, buffers, chromogens, chemiluminescent compounds, fluorescent compounds, washing solutions, dyes, enzymes, salts, or nucleotides. In some embodiments, a vessel may contain multiple different reagents in the vessel (e.g. a buffer, a salt, and an enzyme in the same vessel). The combination of multiple reagents in a single vessel may be a reagent mixture. A reagent mixture may be, for example, in liquid, gel, or lyophilized form. In some embodiments, one or more or all of the vessels in a cartridge are sealed (e.g. a sealed assay unit, reagent unit, etc.). The sealed vessels may be individually sealed, they may all share the same seal (e.g. a cartridge-wide seal), or groups of vessels may be sealed together. Sealing materials may be, for example, a metal foil or a synthetic material (e.g. polypropylene). The sealing material may be configured to resist corrosion or degradation. In some embodiments, a vessel may have a septum, such that the contents of the vessel are not exposed to air without puncturing or transversing the septum. In some embodiments, a cartridge provided herein may contain all the reagents necessary to perform one or more assays on-board the cartridge. A cartridge may contain all of the reagents on-board necessary to perform 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more assays. The assays may be any assay or assay type disclosed elsewhere herein. In some embodiments, a cartridge provided herein may contain within the cartridge all the reagents necessary to perform all of the assays to be performed on a biological sample from a subject. In some embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more assays are to be performed in a biological sample from a from a subject. A cartridge may also be configured to receive or store a biological sample from a subject, such that all of the reagents and biological material necessary to perform one or more assays may be provided to a device through the insertion of a cartridge containing the sample and reagents into the device. After introduction of a sample into a device through a cartridge, a sample may be, for example, stored in the device for archiving or later analysis, or cultured in the device. In some embodiments, all of the reagents in a cartridge are discretely packaged and/or sealed from interfacing with hardware of a sample processing device. In some embodiments, provided herein is a system containing a sample processing device and a cartridge. The system, sample processing device, and cartridge may have any of the features described elsewhere herein. The cartridge may be part of the sample processing device. A cartridge may be positioned in a device or module adjacent to a sensor (e.g. an optical sensor) or detection station, such that reactions within the cartridge (e.g. in microfluidics channels or vessels in the cartridge) may be measured. In some embodiments, in systems containing a sample processing device and cartridge, the device stores some or all reagents for performing assays within the device. For example, the device may store common reagents such as water, selected buffers, and detection-related compounds (e.g. chemiluminescent molecules and chromogens) within the device. The device may direct reagents for assays to the cartridge as needed. A device which stores reagents may have tubing to transport reagents from reagent storage locations to the cartridge. Storage of reagents within the device may, in some situations, increase the speed of reactions or decrease reagent waste. In other embodiments, in systems containing a sample processing device and cartridge, the device does not store any reagents for performing assays within the device. Similarly, in some embodiments, the device does not store any wash solutions or other readily disposable liquids in the device. In such systems, a cartridge containing all reagents on-board necessary to perform one or more assays may be provided to the device. In some embodiments, multiple reagents for performing a single assay may be provided in a single fluidically isolated vessel (e.g. as a reaction mixture). The device may use the reagents provided in the cartridge to perform one or more assays with a biological sample. The biological sample may also be included in the cartridge, or it may be separately provided to the device. In addition, in some embodiments, the device may return used reagents to the cartridge, so that all reagents used for performing one or more assays both enter and leave the device through the cartridge. A sample processing device which does not store reagents within the device (and instead, which receives reagents through the insertion of a cartridge or other structure into the device) may have advantages over a sample processing device which stores reagents or other disposables within or in fluid communication with the device. For example, a sample processing device which stores reagents within the device may require complicated structures for storing and transporting the reagents (e.g. storage areas and tubing). These structures may increase the size of the device, require regular maintenance, increase the total amount of reagents and samples needed to perform assays, and introduce variables into assays which may be a source of errors (for example, tubing may lose its shape over time and not deliver accurate volumes). In contrast, a sample processing device which does not store reagents within or in fluid communication with the device may be smaller, may require less maintenance, may use less reagents or sample to perform assays, and may have higher accuracy, higher precision, and lower coefficient of variation than a device which stores reagents. In another example, typically, devices which store reagents in the device can only contain a limited number of reagents, and thus, can only perform a limited number of different assays. In addition, such a device may only be configured to support assays with a limited number of sample types (e.g. only blood or only urine). Moreover, even if one or more of the reagents in the device could be changed to support a different assay, changing of the reagent may be a difficult and time-consuming processing (for example, tubing containing a previous reagent may need to be washed to prevent reagent carryover). In contrast, a sample processing device which does not store reagents within or in fluid communication with the device may be capable of performing a higher number of different assays and of performing different assays more rapidly, easily, and accurately than a device which stores reagents, for example due to reduced or eliminated reagent cross-reactivity or reduced or eliminated human intervention or calibration). A bodily fluid collector or any other collection mechanism can be disposable. For example, a bodily fluid collector can be used once and disposed. A bodily fluid collector can have one or more disposable components. Alternatively, a bodily fluid collector can be reusable. The bodily fluid collector can be reused any number of times. In some instances, the bodily fluid collector can include both reusable and disposable components. To reduce the environmental impact of disposal, the materials of the cartridge or other bodily fluid collector may be manufactured of a compostable or other “green” material. Any component that is inserted into the system or device can be identified based on identification tags or markings and/or other communication means. Based on the identification of such components, the system can ensure that said components are suitable for use (e.g., not passed their expiration date). The system may cross-reference with an on-board and/or remote databases containing data and information concerning said components, or a related a protocol or a patient ID. Components inserted into the system or device may include on-boards sensors. Such sensors may respond to temperature, humidity, light, pressure, vibration, acceleration, and other environmental factors. Such sensors may be sensitive to absolute levels, durations of exposure levels, cumulative exposure levels, and other combinations of factors. The system or device can read such sensors and/or communicate with such sensors when the components are inserted into the system or device or interface with the user interface to determine how and if the said component(s) is suitable for use in the system/device based on a set of rules. A sample collection unit and/or any other portion of the device may be capable of receiving a single type of sample, or multiple types of samples. For example, the sample collection unit may be capable of receiving two different types of bodily fluids (e.g., blood, tears). In another example, the sample collection unit may be capable of receiving two different types of biological samples (e.g., urine sample, stool sample). Multiple types of samples may or may not be fluids, solids, and/or semi-solids. For example, the sample collection unit may be capable of accepting one or more of, two or more of, or three or more of a bodily fluid, secretion and/or tissue sample. A device may be capable of receiving a single type of sample or multiple types of samples. The device may be capable of processing the single type of sample or multiple types of samples. In some instances, a single bodily fluid collector may be used. Alternatively, multiple and/or different bodily fluid collectors may be used. Sample A sample may be received by the device. Examples of samples may include various fluid samples. In some instances, the sample may be a bodily fluid sample from the subject. The sample may be an aqueous or gaseous sample. The sample may be a gel. The sample may include one or more fluid component. In some instances, solid or semi-solid samples may be provided. The sample may include tissue collected from the subject. The sample may include a bodily fluid, secretion, and/or tissue of a subject. The sample may be a biological sample. The biological sample may be a bodily fluid, a secretion, and/or a tissue sample. Examples of biological samples may include but are not limited to, blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, breath, spinal fluid, hair, fingernails, skin cells, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, micropiota, meconium, breast milk and/or other excretions. The sample may be provided from a human or animal. The sample may be provided from a mammal, vertebrate, such as murines, simians, humans, farm animals, sport animals, or pets. The sample may be collected from a living or dead subject. The sample may be collected fresh from a subject or may have undergone some form of pre-processing, storage, or transport. The sample may be provided to a device from a subject without undergoing intervention or much time. The subject may contact the device, cartridge, and/or vessel to provide the sample. A subject may provide a sample, and/or the sample may be collected from a subject. A subject may be a human or animal. The subject may be a mammal, vertebrate, such as murines, simians, humans, farm animals, sport animals, or pets. The subject may be living or dead. The subject may be a patient, clinical subject, or pre-clinical subject. A subject may be undergoing diagnosis, treatment, and/or disease management or lifestyle or preventative care. The subject may or may not be under the care of a health care professional. A sample may be collected from the subject by puncturing the skin of the subject, or without puncturing the skin of the subject. A sample may be collected through an orifice of the subject. A tissue sample may be collected from the subject, whether it be an internal or external tissue sample. The sample may be collected from any portion of the subject including, but not limited to, the subject's finger, hand, arm, shoulder, torso, abdomen, leg, foot, neck, ear, or head. In some embodiments, the sample may be an environmental sample. Examples of environmental samples may include air samples, water samples, soil samples, or plant samples. Additional samples may include food products, beverages, manufacturing materials, textiles, chemicals, therapies, or any other samples. One type of sample may be accepted and/or processed by the device. Alternatively, multiple types of samples may be accepted and/or processed by the device. For example, the device may be capable of accepting one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, twelve or more, fifteen or more, twenty or more, thirty or more, fifty or more, or one hundred or more types of samples. The device may be capable of accepting and/or processing any of these numbers of sample types simultaneously and/or at different times from different or the same matrices. For example, the device may be capable of preparing, assaying and/or detecting one or multiple types of samples. Any volume of sample may be provided from the subject or from another source. Examples of volumes may include, but are not limited to, about 10 mL or less, 5 mL or less, 3 mL or less, 1 μL or less, 500 μL or less, 300 μL or less, 250 μL or less, 200 μL or less, 170 μL or less, 150 μL or less, 125 μL or less, 100 μL or less, 75 μL or less, 50 μL or less, 25 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 5 μL or less, 3 μL or less, 1 μL or less, 500 nL or less, 250 nL or less, 100 nL or less, 50 nL or less, 20 nL or less, 10 nL or less, 5 nL or less, 1 nL or less, 500 pL or less, 100 pL or less, 50 pL or less, or 1 pL or less. The amount of sample may be about a drop of a sample. The amount of sample may be about 1-5 drops of sample, 1-3 drops of sample, 1-2 drops of sample, or less than a drop of sample. The amount of sample may be the amount collected from a pricked finger or fingerstick. Any volume, including those described herein, may be provided to the device. Sample to Device A sample collection unit may be integral to the device. The sample collection unit may be separate from the device. In some embodiments, the sample collection unit may be removable and/or insertable from the device. The sample collection unit may or may not be provided in a cartridge. A cartridge may or may not be removable and/or insertable from the device. A sample collection unit may be configured to receive a sample. The sample collection unit may be capable of containing and/or confining the sample. The sample collection unit may be capable of conveying the sample to another portion of the device. The sample collection unit may be in fluid communication with one or more module of a device. In some instances, the sample collection unit may be permanent fluid communication with one or more module of the device. Alternatively, the sample collection unit may be brought into and/or out of fluid communication with a module. The sample collection unit may or may not be selectively fluidically isolated from one or more module. In some instances, the sample collection unit may be in fluid communication with each of the modules of the device. The sample collection unit may be in permanent fluid communication with each of the modules, or may be brought into and/or out of fluid communication with each module. A sample collection unit may be selectively brought into and/or out of fluid communication with one or more modules. The fluid communication may be controlled in accordance with one or more protocol or set of instructions. A sample collection unit may be brought into fluid communication with a first module and out of fluid communication with a second module, and vice versa. Similarly, the sample collection unit may be in fluid communication with one or more component of a device. In some instances, the sample collection unit may be in permanent fluid communication with one or more component of the device. Alternatively, the sample collection unit may be brought into and/or out of fluid communication with a device component. The sample collection unit may or may not be selectively fluidically isolated from one or more component. In some instances, the sample collection unit may be in fluid communication with each of the components of the device. The sample collection unit may be in permanent fluid communication with each of the components, or may be brought into and/or out of fluid communication with each component. One or more mechanisms may be provided for transferring a sample from the sample collection unit to a test site. In some embodiments, flow-through mechanisms may be used. For example, a channel or conduit may connect a sample collection unit with a test site of a module. The channel or conduit may or may not have one or more valves or mechanisms that may selectively permit or obstruct the flow of fluid. Another mechanism that may be used to transfer a sample from a sample collection unit to a test site may use one or more fluidically isolated component. For example, a sample collection unit may provide the sample to one or more tip or vessel that may be movable within the device. The one or more tip or vessel may be transferred to one or more module. In some embodiments, the one or more tip or vessel may be shuttled to one or more module via a robotic arm or other component of the device. In some embodiments, the tip or vessel may be received at a module. In some embodiments, a fluid handling mechanism at the module may handle the tip or vessel. For example, a pipette at a module may pick up and/or aspirate a sample provided to the module. A device may be configured to accept a single sample, or may be configured to accept multiple samples. In some instances, the multiple samples may or may not be multiple types of samples. For example, in some instances a single device may handle a single sample at a time. For example, a device may receive a single sample, and may perform one or more sample processing step, such as a sample preparation step, assay step, and/or detection step with the sample. The device may complete processing or analyzing a sample, before accepting a new sample. In another example, a device may be capable of handling multiple samples simultaneously. In one example, the device may receive multiple samples simultaneously. The multiple samples may or may not be multiple types of samples. Alternatively, the device may receive samples in sequence. Samples may be provided to the device one after another, or may be provided to device after any amount of time has passed. A device may be capable of beginning sample processing on a first sample, receiving a second sample during said sample processing, and process the second sample in parallel with the first sample. The first and second sample may or may not be the same type of sample. The device may be able to parallel process any number of samples, including but not limited to more than and/or equal to about one sample, two samples, three samples, four samples, five samples, six samples, seven samples, eight samples, nine samples, ten samples, eleven samples, twelve samples, thirteen samples, fourteen samples, fifteen samples, sixteen samples, seventeen samples, eighteen samples, nineteen samples, twenty samples, twenty-five samples, thirty samples, forty samples, fifty samples, seventy samples, one hundred samples. In some embodiments, a device may comprise one, two or more modules that may be capable of processing one, two or more samples in parallel. The number of samples that can be processed in parallel may be determined by the number of available modules and/or components in the device. When a plurality of samples is being processed simultaneously, the samples may begin and/or end processing at any time. The samples need not begin and/or end processing at the same time. A first sample may have completed processing while a second sample is still being processed. The second sample may begin processing after the first sample has begun processing. As samples have completed processing, additional samples may be added to the device. In some instances, the device may be capable of running continuously with samples being added to the device as various samples have completed processing. The multiple samples may be provided simultaneously. The multiple samples may or may not be the same type of sample. For example, multiple sample collection units may be provided to a device. For example, one, two or more lancets may be provided on a device or may be brought into fluid communication with a sample collection unit of a device. The multiple sample collection units may receive samples simultaneously or at different times. Multiple of any of the sample collection mechanisms described herein may be used. The same type of sample collection mechanisms, or different types of sample collection mechanisms may be used. The multiple samples may be provided in sequence. In some instances, multiple sample collection units, or single sample collection units may be used. Any combination of sample collection mechanisms described herein may be used. A device may accept one sample at a time, two samples at a time, or more. Samples may be provided to the device after any amount of time has elapsed. Modules Devices may comprise one or more module. A module may be capable of performing one or more, two or more, or all three of a sample preparation step, assay step, and/or detection step. FIG. 3 shows an example of a module 300. A module may comprise one or more, two or more, or three or more of a sample preparation station 310, and/or an assay station 320, and/or a detection station 330. In some embodiments, multiple of a sample preparation station, assay station, and/or detection station are provided. A module may also include a fluid handling system 340. A module may include one or more sample preparation station. A sample preparation station may include one or more component configured for chemical processing and/or physical processing. Examples of such sample preparation processes may include dilution, concentration/enrichment, separation, sorting, filtering, lysing, chromatography, incubating, or any other sample preparation step. A sample preparation station may include one or more sample preparation components, such as a separation system (including, but not limited to, a centrifuge), magnets (or other magnetic field-inducing devices) for magnetic separation, a filter, a heater, or diluents. A sample preparation station may be insertable into or removable from a system, device, or module. A sample preparation station may comprise a cartridge. In some embodiments, any description of a cartridge provided herein may apply to a sample preparation station, and vice-versa. One or more assay station may be provided to a module. The assay station may include one or more component configured to perform one or more of the following assays or steps: immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. The assay station may be configured for proteinaceous assay, including immunoassay and Enzymatic assay or any other assay that involves interaction with a proteinaeous component. Topographic assays in some cases include morphological assays. Examples of other components that may be included in an assay station or a module are, without limitation, one or more of the following: temperature control unit, heater, thermal block, cytometer, electromagnetic energy source (e.g., x-ray, light source), assay units, reagent units, and/or supports. In some embodiments, a module includes one or more assay stations capable of performing nucleic acid assay and proteinaceous assay (including immunoassay and enzymatic assay). In some embodiments, a module includes one or more assay stations capable of performing fluorescent assay and cytometry. An assay station may be insertable into or removable from a system, device, or module. An assay station may comprise a cartridge. In some embodiments, any description of an assay/reagent unit support or cartridge provided herein may apply to an assay station, and vice-versa. In some embodiments, a system, device, or module provided herein may have an assay station/cartridge receiving location. The assay station receiving location may be configured to receive a removable or insertable assay station. The assay station receiving location may be situated in the module, device, or system such that an assay station positioned in the receiving location (and assay units therein) may be accessible by a sample handling system of the module, device, or system. The assay station receiving location may be configured to position an assay station at a precise location within the receiving location, such that a sample handling system may accurately access components of the assay station. An assay station receiving location may be a tray. The tray may be movable, and may have multiple positions, for example, a first position where the tray extends outside of the housing of the device, and a second position wherein the tray is inside of the housing of the device. In some embodiments, an assay station may be locked in place in an assay station receiving location. In some embodiments, the assay station receiving location may contain or be operatively coupled to a thermal control unit to regulate the temperature of the assay station. In some embodiments, the assay station receiving location may contain or be operatively coupled to a detector (e.g. bar code detector, RFID detector) for an identifier (e.g. bar code, RFID tag) which may be on an assay station. The identifier detector may be in communication with a controller or other component of the device, such that the identifier detector can transmit information regarding the identity of an assay station/cartridge inserted into the device to the device or system controller. The assay station may or may not be located separately from the preparation station. In some instances, an assay station may be integrated within the preparation station. Alternatively, they may be distinct stations, and a sample or other substance may be transmitted from one station to another. Assay units may be provided, and may have one or more characteristics as described further elsewhere herein. Assay units may be capable of accepting and/or confining a sample. The assay units may be fluidically isolated from or hydraulically independent of one another. In some embodiments, assay units may have a tip format. An assay tip may have an interior surface and an exterior surface. The assay tip may have a first open end and a second open end. In some embodiments, assay units may be provided as an array. Assay units may be movable. In some embodiments, individual assay units may be movable relative to one another and/or other components of the device. In some instances, one or a plurality of assay units may be moved simultaneously. In some embodiments, an assay unit may have a reagent or other reactant coated on a surface. In some embodiments, a succession of reagents may be coated or deposited on a surface, such as a tip surface, and the succession of reagents can be used for sequential reactions. Alternatively, assay units may contain beads or other surfaces with reagents or other reactants coated thereon or absorbed, adsorbed or adhered therein. In another example, assay units may contain beads or other surfaces coated with or formed of reagents or other reactants that may dissolve. In some embodiments, assay units may be cuvettes. In some instances, cuvettes may be configured for cytometry, may include microscopy cuvettes. Reagent units may be provided and may have one or more characteristics as described further elsewhere herein. Reagent units may be capable of accepting and/or confining a reagent or a sample. Reagent units may be fluidically isolated from or hydraulically independent of one another. In some embodiments, reagent units may have a vessel format. A reagent vessel may have an interior surface and an exterior surface. The reagent unit may have an open end and a closed end. In some embodiments, the reagent units may be provided as an array. Reagent units may be movable. In some embodiments, individual reagent units may be movable relative to one another and/or other components of the device. In some instances, one or a plurality of reagent units may be moved simultaneously. A reagent unit can be configured to accept one or more assay unit. The reagent unit may have an interior region into which an assay unit can be at least partially inserted. A support may be provided for the assay units and/or reagent units. In some embodiments, the support may have an assay station format, a cartridge format or a microcard format. In some embodiments a support may have a patch format or may be integrated into a patch or an implantable sensing an analytical unit. One or more assay/reagent unit support may be provided within a module. The support may be shaped to hold one or more assay units and/or reagent units. The support may keep the assay units and/or reagent units aligned in a vertical orientation. The support may permit assay units and/or reagent units to be moved or movable. Assay units and/or reagent units may be removed from and/or placed on a support. The device and/or system may incorporate one or more characteristics, components, features, or steps provided in U.S. Patent Publication No. 2009/0088336, which is hereby incorporated by reference in its entirety. A module may include one or more detection stations. A detection station may include one or more sensors that may detect visual/optical signals, infra-red signals, heat/temperature signals, ultraviolet signals, any signal along an electromagnetic spectra, electric signals, chemical signals, audio signals, pressure signals, motion signals, or any other type of detectable signals. The sensors provided herein may or may not include any of the other sensors described elsewhere herein. The detection station may be located separately from the sample preparation and/or assay station. Alternatively, the detection station may be located in an integrated manner with the sample preparation and/or assay station. A detection station may contain one or more detection units, including any detection unit disclosed elsewhere herein. A detection station may contain, for example, a spectrophotometer, a PMT, a photodiode, a camera, an imaging device, a CCD or CMOS optical sensor, or a non-optical sensor. In some embodiments, a detection station may contain a light source and optical sensor. In some embodiments, a detection station may contain a microscope objective and an imaging device. In some embodiments, a sample may be provided to one or more sample preparation station before being provided to an assay station. In some instances, a sample may be provided to a sample preparation after being provided to an assay station. A sample may undergo detection before, during, or after it is provided to a sample preparation station and/or assay station. A fluid handling system may be provided to a module. The fluid handling system may permit the movement of a sample, reagent, or a fluid. The fluid handling system may permit the dispensing and/or aspiration of a fluid. The fluid handling system may pick up a desired fluid from a selected location and/or may dispense a fluid at a selected location. The fluid handling system may permit the mixing and/or reaction of two or more fluids. In some cases, a fluid handling mechanism may be a pipette. Examples of pipettes or fluid handling mechanisms are provided in greater detail elsewhere herein. Any description herein of a fluid handling system may also apply to other sample handling systems, and vice versa. For example, a sample handling system may transport any type of sample, including but not limited to bodily fluids, secretions, or tissue samples. A sample handling system may be capable of handling fluids, solids, or semi-solids. A sample handling system may be capable of accepting, depositing, and/or moving a sample, and/or any other substance within the device may be useful and/or necessary for sample processing within the device. A sample handling system may be capable of accepting, depositing, and/or moving a container (e.g., assay unit, reagent unit) that may contain a sample, and/or any other substance within the device. A fluid handling system may include a tip. For example, a pipette tip may be removably connected to a pipette. The tip may interface with a pipette nozzle. Examples of tip/nozzle interfaces are provided in greater detail elsewhere herein. Another example of a fluid handling system may use flow-through designs. For example, a fluid handling system may incorporate one or more channels and/or conduits through which a fluid may flow. The channel or conduit may comprise one or more valves that may selectively stop and/or permit the flow of fluid. A fluid handling system may have one or more portion that may result in fluid isolation. For example, a fluid handling system may use a pipette tip that may be fluidically isolated from other components of the device. The fluidically isolated portions may be movable. In some embodiments, the fluid handling system tips may be assay tips as described elsewhere herein. A module may have a housing and/or support structure. In some embodiments, a module may have a support structure upon which one or more component of the module may rest. The support structure may support the weight of one or more component of the module. The components may be provided above the support structure, on the side of the support structure, and/or under the support structure. The support structure may be a substrate which may connect and/or support various components of the module. The support structure may support one or more sample preparation station, assay station, and/or detection station of the module. A module may be self-contained. The modules may be moved together. The various components of the module may be capable of being moved together. The various components of the module may be connected to one another. The components of the module may share a common support. A module may be enclosed or open. A housing of the module may enclose the module therein. The housing may completely enclose the module or may partially enclose the module. The housing may form an air-tight enclosure around the module. Alternatively, the housing need not be air-tight. The housing may enable the temperature, humidity, pressure, or other characteristics within the module or component(s) of the module to be controlled. Electrical connections may be provided for a module. A module may be electrically connected to the rest of the device. A plurality of modules may or may not be electrically connected to one another. A module may be brought into electrical connection with a device when a module is inserted/attached to the device. The device may provide power (or electricity) to the module. A module may be disconnected from the electrical source when removed from the device. In one instance, when a module is inserted into the device, the module makes an electrical connection with the rest of the device. For example, the module may plug into the support of a device. In some instances, the support (e.g., housing) of the device may provide electricity and/or power to the module. A module may also be capable of forming fluidic connections with the rest of the device. In one example, a module may be fluidically connected to the rest of the device. Alternatively, the module may be brought into fluidic communication with the rest of the device via, e.g., a fluid handling system disclosed herein. The module may be brought into fluidic communication when the module is inserted/attached to the device, or may be selectively brought into fluidic communication anytime after the module is inserted/attached to the device. A module may be disconnected from fluidic communication with the device when the module is removed from the device and/or selectively while the module is attached to the device. In one example, a module may be in or may be brought into fluidic communication with a sample collection unit of the device. In another example, a module may be in or may be brought into fluidic communication with other modules of the device. A module may have any size or shape, including those described elsewhere herein. A module may have a size that is equal to, or smaller than the device. The device module may enclose a total volume of less than or equal to about 4 m3, 3 m3, 2.5 m3, 2 m3, 1.5 m3, 1 m3, 0.75 m3, 0.5 m3, 0.3 m3, 0.2 m3, 0.1 m3, 0.08 m3, 0.05 m3, 0.03 m3, 0.01 m3, 0.005 m3, 0.001 m3, 500 cm3, 100 cm3, 50 cm3, 10 cm3, 5 cm3, 1 cm3, 0.5 cm3, 0.1 cm3, 0.05 cm3, 0.01 cm3, 0.005 cm3, or 0.001 cm3. The module may have any of the volumes described elsewhere herein. The module and/or module housing may have a footprint covering a lateral area of the device. In some embodiments, the device footprint may be less than or equal to about 4 m2, 3 m2, 2.5 m2, 2 m2, 1.5 m2, 1 m2, 0.75 m2, 0.5 m2, 0.3 m2, 0.2 m2, 0.1 m2, 0.08 m2, 0.05 m2, 0.03 m2, 100 cm2, 80 cm2, 70 cm2, 60 cm2, 50 cm2, 40 cm2, 30 cm2, 20 cm2, 15 cm2, 10 cm2, 7 cm2, 5 cm2, 1 cm2, 0.5 cm2, 0.1 cm2, 0.05 cm2, 0.01 cm, 0.005 cm2, or 0.001 cm2. The module and/or module housing may have a lateral dimension (e.g., width, length, or diameter) or a height less than or equal to about 4 m, 3 m, 2.5 m, 2 m, 1.5 m, 1.2 m, 1 m, 80 cm, 70 cm, 60 cm, 50 cm, 40 cm, 30 cm, 25 cm, 20 cm, 15 cm, 12 cm, 10 cm, 8 cm, 5 cm, 3 cm, 1 cm, 0.5 cm, 0.1 cm, 0.05 cm, 0.01 cm, 0.005 cm, or 0.001 cm. The lateral dimensions and/or height may vary from one another. Alternatively, they may be the same. In some instances, the module may be tall and thin, or may be short and squat. The height to lateral dimension ratio may be greater than or equal to 100:1, 50:1, 30:1, 20:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:50, or 1:100. The module and/or the module housing may proportionally be tall and thin. The module and/or module housing may have any shape. In some embodiments, the module may have a lateral cross-sectional shape of a rectangle or square. In other embodiments, the module may have a lateral cross-sectional shape of a circle, ellipse, triangle, trapezoid, parallelogram, pentagon, hexagon, octagon, or any other shape. The module may have a vertical cross-sectional shape of a circle, ellipse, triangle, rectangle, square, trapezoid, parallelogram, pentagon, hexagon, octagon, or any other shape. The module may or may not have a box-like shape. Any number of modules may be provided for a device. A device may be configured to accept a fixed number of modules. Alternatively, the device may be configured to accept a variable number of modules. In some embodiments, each module for the device may have the same components and/or configurations. Alternatively, different modules for the device may have varying components and/or configurations. In some instances, the different modules may have the same housing and/or support structure formats. In another example, the different modules may still have the same overall dimensions. Alternatively, they may have varying dimensions. In some instances a device may have a single module. The single module may be configured to accept a single sample at once, or may be capable of accepting a plurality of samples simultaneously or in sequence. The single module may be capable of performing one or more sample preparation step, assay step, and/or detection step. The single module may or may not be swapped out to provide different functionality. Further details and descriptions of modules and module components are described further elsewhere herein. Any such embodiments of such modules may be provided in combination with others or alone. Racks In an aspect of the invention, a system having a plurality of modules is provided. The system is configured to assay a biological sample, such as a fluid and/or tissue sample from a subject. In some embodiments, the system comprises a plurality of modules mounted on a support structure. In an embodiment, the support structure is a rack having a plurality of mounting stations, an individual mounting station of the plurality of mounting stations for supporting a module. In an embodiment, the rack comprises a controller communicatively coupled to the plurality of modules. In some situations, the controller is communicatively coupled to a fluid handling system, as described below. The controller is configured to control the operation of the modules to prepare and/or process a sample, such as to assay a sample via one or more of the techniques described herein. An individual module of the plurality of modules comprises a sample preparation station, assay station, and/or detection station. The system is configured to perform (a) multiple sample preparation procedures selected from the group consisting of sample processing, centrifugation, separation, physical separation and chemical separation, and (b) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. In some embodiments, separation includes magnetic separation, such as, e.g., separation with the aid of a magnetic field. In an embodiment, the support structure is a rack-type structure for removably holding or securing an individual module of the plurality of modules. The rack-type structure includes a plurality of bays configured to accept and removably secure a module. In one example, as shown in FIG. 4, a rack 400 may have one or more modules 410a, 410b, 410c, 410d, 410e, 410f. The modules may have a vertical arrangement where they are positioned over one another. For example, six modules may be stacked on top of one another. The modules may have a horizontal arrangement where they are adjacent to one another. In another example, the modules may form an array. FIG. 5 illustrates an example of a rack 500 having a plurality of modules 510 that form an array. For example, the modules may form a vertical array that is M modules high and/or N modules wide, wherein M, N are positive whole numbers. In other embodiments, a rack may support an array of modules, where a horizontal array of modules is formed. For example, the modules may form a horizontal array that is N modules wide and/or P modules long, wherein N and P are positive whole numbers. In another example, a three-dimensional array of modules may be supported by a rack, where the modules form a block that is M modules high, N modules wide, and P modules long, where M, N, and P are positive whole numbers. A rack may be able to support any number of modules having any number of configurations. In some embodiments, racks may have one or more bays, each bay configured to accept one or more module. A device may be capable of operating when a bay has accepted a module. A device may be capable of operating even if one or more bays have not accepted a module. FIG. 6 shows another embodiment of a rack mounting configuration. One or more module 600a, 600b may be provided adjacent to one another. Any numbers of modules may be provided. For example, the modules may be vertically stacked atop one another. For instances, N modules may be vertically stacked on top of one another, where N is any positive whole number. In another example, the modules may be horizontally connected to one another. Any combination of vertical and/or horizontal connections between modules may be provided. The modules may directly contact one another or may have a connecting interface. In some instances, modules may be added or removed from the stack/group. The configuration may be capable of accommodating any number of modules. In some embodiments, the number of modules may or may not be restricted by a device housing. In another embodiment, the support structure is disposed below a first module and successive modules are mountable on one another with or without the aid of mounting members disposed on each module. The mounting members may be connecting interfaces between modules. In an example, each module includes a magnetic mounting structure for securing a top surface of a first module to a bottom surface to a second module. Other connecting interfaces may be employed, which may include magnetic features, adhesives, sliding features, locking features, ties, snap-fits, hook-and-loop fasteners, twisting features, or plugs. The modules may be mechanically and/or electrically connected to one another. In such fashion, modules may be stacked on one or next to another to form a system for assaying a sample. In other embodiments, a system for assaying a sample comprises a housing and a plurality of modules within the housing. In an embodiment, the housing is a rack having a plurality of mounting stations, an individual mounting station of the plurality of mounting stations for supporting a module. For example, a rack may be integrally formed with the housing. Alternatively, the housing may contain or surround the rack. The housing and the rack may or may not be formed of separate pieces that may or may not be connected to one another. An individual module of the plurality of modules comprises at least one station selected from the group consisting of a sample preparation station, assay station and detection station. The system comprises a fluid handling system configured to transfer a sample or reagent vessel within the individual module or from the individual module to another module within the housing of the system. In an embodiment, the fluid handling system is a pipette. In some embodiments, all modules could be shared within a device or between devices. For example, a device may have one, some or all of its modules as specialized modules. In this case, a sample may be transported from one module to another module as need be. This movement may be sequential or random. Any of the modules can be a shared resource or may comprise designated shared resources. In one example a designated shared resource may be a resource not available to all modules, or that may be available in limited numbers of modules. A shared resource may or may not be removable from the device. An example of a shared resource may include a cytometry station. In an embodiment, the system further comprises a cytometry station for performing cytometry on one or more samples. The cytometry station may be supported by the rack and operatively coupled to each of the plurality of modules by a sample handling system. Cytometry assays are typically used to optically measure characteristics of individual cells. The cells being monitored may be live and/or dead cells. By using appropriate dyes, stains, or other labeling molecules, cytometry may be used to determine the presence, quantity, and/or modifications of specific proteins, nucleic acids, lipids, carbohydrates, or other molecules. Properties that may be measured by cytometry also include measures of cellular function or activity, including but not limited to phagocytosis, active transport of small molecules, mitosis or meiosis; protein translation, gene transcription, DNA replication, DNA repair, protein secretion, apoptosis, chemotaxis, mobility, adhesion, antioxidizing activity, RNAi, protein or nucleic acid degradation, drug responses, infectiousness, and the activity of specific pathways or enzymes. Cytometry may also be used to determine information about a population of cells, including but not limited to cell counts, percent of total population, and variation in the sample population for any of the characteristics described above. The assays described herein may be used to measure one or more of the above characteristics for each cell, which may be advantageous to determining correlations or other relationships between different characteristics. The assays described herein may also be used to independently measure multiple populations of cells, for example by labeling a mixed cell population with antibodies specific for different cell lines. Cytometry may be useful for determining characteristics of cells in real-time. Characteristics of cells may be monitored continuously and/or at different points in time. The different points in time may be at regular or irregular time intervals. The different points in time may be in accordance with a predetermined schedule or may be triggered by one or more event. Cytometry may use one or more imaging or other sensing technique described herein to detect change in cells over time. This may include cell movement or morphology. Kinematics or dynamics of a sample may be analyzed. Time series analysis may be provided for the cells. Such real-time detection may be useful for calculation of agglutination, coagulation, or prothrombin time. The presence of one or more molecule and/or disease, response to a disease and/or drug, may be ascertained based on the time-based analysis. In an example, cytometric analysis is by flow cytometry or by microscopy. Flow cytometry typically uses a mobile liquid medium that sequentially carries individual cells to an optical detector. Microscopy typically uses optical means to detect stationary cells, generally by recording at least one magnified image. For microscopy, the stationary cells may be in a microscopy cuvette or slide, which may be positioned on a microscopy stage adjacent to or in optical connection with an imaging device for detecting the cells. Imaged cells may be, for example, counted or measured for one or more antigens or other features. It should be understood that flow cytometry and microscopy are not entirely exclusive. As an example, flow cytometry assays use microscopy to record images of cells passing by the optical detector. Many of the targets, reagents, assays, and detection methods may be the same for flow cytometry and microscopy. As such, unless otherwise specified, the descriptions provided herein should be taken to apply to these and other forms of cytometric analyses known in the art. In some embodiments, up to about 10,000 cells of any given type may be measured. In other embodiments, various numbers of cells of any given type are measured, including, but not limited to, more than, and/or equal to about 10 cells, 30 cells, 50 cells, 100 cells, 150 cells, 200 cells, 300 cells, 500 cells, 700 cells, 1000 cells, 1500 cells, 2000 cells, 3000 cells, 5000 cells, 6000 cells, 7000 cells, 8000 cells, 9000 cells, 10000 cells, 100,000 cells, 500,000 cells, 1,000,000 cells, 5,000,000 cells, or 10,000,000 cells. In some embodiments, cytometry is performed in microfluidic channels. For instance, flow cytometry analyses are performed in a single channel or in parallel in multiple channels. In some embodiments, flow cytometry sequentially or simultaneously measures multiple cell characteristics. In some instances, cytometry may occur within one or more of the tips/vessels described herein. Cytometry may be combined with cell sorting, where detection of cells that fulfill a specific set of characteristics are diverted from the flow stream and collected for storage, additional analysis, and/or processing. Such sorting may separate multiple populations of cells based on different sets of characteristics, such as 3 or 4-way sorting. FIG. 7 shows a system 700 having a plurality of modules 701-706 and a cytometry station 707, in accordance with an embodiment of the invention. The plurality of modules include a first module 701, second module 702, third module 703, fourth module 704, fifth module 705 and sixth module 706. The cytometry station 707 is operatively coupled to each of the plurality of modules 701-706 by way of a sample handling system 708. The sample handling system 708 may include a pipette, such as a positive displacement, air displacement or suction-type pipette, as described herein. The cytometry station 707 includes a cytometer for performing cytometry on a sample, as described above and in other embodiments of the invention. The cytometry station 707 may perform cytometry on a sample while one or more of the modules 701-706 perform other preparation and/or assaying procedure on another sample. In some situations, the cytometry station 707 performs cytometry on a sample after the sample has undergone sample preparation in one or more of the modules 701-706. The system 700 includes a support structure 709 having a plurality of bays (or mounting stations). The plurality of bays is for docking the modules 701-706 to the support structure 709. The support structure 709, as illustrated, is a rack. Each module is secured to rack 709 with the aid of an attachment member. In an embodiment, an attachment member is a hook fastened to either the module or the bay. In such a case, the hook is configured to slide into a receptacle of either the module or the bay. In another embodiment, an attachment member includes a fastener, such as a screw fastener. In another embodiment, an attachment member is formed of a magnetic material. In such a case, the module and bay may include magnetic materials of opposite polarities so as to provide an attractive force to secure the module to the bay. In another embodiment, the attachment member includes one or more tracks or rails in the bay. In such a case, a module includes one or more structures for mating with the one or more tracks or rails, thereby securing the module to the rack 709. Optionally, power may be provided by the rails. An example of a structure that may permit a module to mate with a rack may include one or more pins. In some cases, modules receive power directly from the rack. In some cases, a module may be a power source like a lithium ion, or fuel cell powered battery that powers the device internally. In an example, the modules are configured to mate with the rack with the aid of rails, and power for the modules comes directly from the rails. In another example, the modules mate with the rack with the aid of attachment members (rails, pins, hooks, fasteners), but power is provided to the modules wirelessly, such as inductively (i.e., inductive coupling). In some embodiments, a module mating with a rack need not require pins. For example, an inductive electrical communication may be provided between the module and rack or other support. In some instances, wireless communications may be used, such as with the aid of ZigBee communications or other communication protocols. Each module may be removable from the rack 709. In some situations, one module is replaceable with a like, similar or different module. In an embodiment, a module is removed from the rack 709 by sliding the module out of the rack. In another embodiment, a module is removed from the rack 709 by twisting or turning the module such that an attachment member of the module disengages from the rack 709. Removing a module from the rack 709 may terminate any electrical connectivity between the module and the rack 709. In an embodiment, a module is attached to the rack by sliding the module into the bay. In another embodiment, a module is attached to the rack by twisting or turning the module such that an attachment member of the module engages the rack 709. Attaching a module to the rack 709 may establish an electrical connection between the module and the rack. The electrical connection may be for providing power to the module or to the rack or to the device from the module and/or providing a communications bus between the module and one or more other modules or a controller of the system 700. Each bay of the rack may be occupied or unoccupied. As illustrated, all bays of the rack 709 are occupied with a module. In some situations, however, one or more of the bays of the rack 709 are not occupied by a module. In an example, the first module 701 has been removed from the rack. The system 700 in such a case may operate without the removed module. In some situations, a bay may be configured to accept a subset of the types of modules the system 700 is configured to use. For example, a bay may be configured to accept a module capable of running an agglutination assay but not a cytometry assay. In such a case, the module may be “specialized” for agglutination. Agglutination may be measured in a variety of ways. Measuring the time-dependent change in turbidity of the sample is one method. One can achieve this by illuminating the sample with light and measuring the reflected light at 90 degrees with an optical sensor, such as a photodiode or camera. Over time, the measured light would increase as more light is scattered by the sample. Measuring the time dependent change in transmittance is another example. In the latter case, this can be achieved by illuminating the sample in a vessel and measuring the light that passes through the sample with an optical sensor, such as a photodiode or a camera. Over time, as the sample agglutinates, the measured light may reduce or increase (depending, for example, on whether the agglutinated material remains in suspension or settles out of suspension). In other situations, a bay may be configured to accept all types of modules that the system 700 is configured to use, ranging from detection stations to the supporting electrical systems. Each of the modules may be configured to function (or perform) independently from the other modules. In an example, the first module 701 is configured to perform independently from the second 702, third 703, fourth 704, fifth 705 and sixth 706 modules. In other situations, a module is configured to perform with one or more other modules. In such a case, the modules may enable parallel processing of one or more samples. In an example, while the first module 701 prepares a sample, the second module 702 assays the same or different sample. This may enable a minimization or elimination of downtime among the modules. The support structure (or rack) 709 may have a server type configuration. In some situations, various dimensions of the rack are standardized. In an example, spacing between the modules 701-706 is standardized as multiples of at least about 0.5 inches, or 1 inch, or 2 inches, or 3 inches, or 4 inches, or 5 inches, or 6 inches, or 7 inches, or 8 inches, or 9 inches, or 10 inches, or 11 inches, or 12 inches. The rack 709 may support the weight of one or more of the modules 701-706. Additionally, the rack 709 has a center of gravity that is selected such that the module 701 (top) is mounted on the rack 709 without generating a moment arm that may cause the rack 709 to spin or fall over. In some situations, the center of gravity of the rack 709 is disposed between the vertical midpoint of the rack and a base of the rack, the vertical midpoint being 50% from the base of the rack 709 and a top of the rack. In an embodiment, the center of gravity of the rack 709, as measured along a vertical axis away from the base of the rack 709, is disposed at least about 0.1%, or 1%, or 10%, or 20%, or 30%, or 40%, or 50%, or 60%, or 70%, or 80%, or 90%, or 100% of the height of the rack as measured from the base of the rack 709. A rack may have multiple bays (or mounting stations) configured to accept one or more modules. In an example, the rack 709 has six mounting stations for permitting each of the modules 701-706 to mount the rack. In some situations, the bays are on the same side of the rack. In other situations, the bays are on alternating sides of the rack. In some embodiments, the system 700 includes an electrical connectivity component for electrically connecting the modules 701-706 to one another. The electrical connectivity component may be a bus, such as a system bus. In some situations, the electrical connectivity component also enables the modules 701-706 to communicate with each other and/or a controller of the system 700. In some embodiments, the system 700 includes a controller (not shown) for facilitating processing of samples with the aid of one or more of the modules 701-706. In an embodiment, the controller facilitates parallel processing of the samples in the modules 701-706. In an example, the controller directs the sample handling system 708 to provide a sample in the first module 701 and second module 702 to run different assays on the sample at the same time. In another example, the controller directs the sample handling system 708 to provide a sample in one of the modules 701-706 and also provide the sample (such as a portion of a finite volume of the sample) to the cytometry station 707 so that cytometry and one or more other sample preparation procedures and/or assays are done on the sample in parallel. In such fashion, the system minimizes, if not eliminates, downtime among the modules 701-706 and the cytometry station 707. Each individual module of the plurality of modules may include a sample handling system for providing samples to and removing samples from various processing and assaying modules of the individual module. In addition, each module may include various sample processing and/or assaying modules, in addition to other components for facilitating processing and/or assaying of a sample with the aid of the module. The sample handling system of each module may be separate from the sample handling system 708 of the system 700. That is, the sample handling system 708 transfers samples to and from the modules 701-706, whereas the sample handling system of each module transfers samples to and from various sample processing and/or assaying modules included within each module. In the illustrated example of FIG. 7, the sixth module 706 includes a sample handling system 710 including a suction-type pipette 711 and positive displacement pipette 712. The sixth module 706 includes a centrifuge 713, a spectrophotometer 714, a nucleic acid assay (such as a polymerase chain reaction (PCR) assay) station 715 and PMT 716. An example of the spectrophotometer 714 is shown in FIG. 70 (see below). The sixth module 706 further includes a cartridge 717 for holding a plurality of tips for facilitating sample transfer to and from each processing or assaying module of the sixth module. In an embodiment, the suction type pipette 711 includes 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more, or 15 or more, or 20 or more, or 30 or more, or 40 or more, or 50 or more heads. In an example, the suction type pipette 711 is an 8-head pipette with eight heads. The suction type pipette 711 may be as described in other embodiments of the invention. In some embodiments, the positive displacement pipette 712 has a coefficient of variation less than or equal to about 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.3%, or 0.1% or less. The coefficient of variation is determined according to σ/μ, wherein ‘σ’ is the standard deviation and ‘μ’ is the mean across sample measurements. In an embodiment, all modules are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, fourth, fifth, and sixth modules 701-706 include a positive displacement pipette and suction-type pipette and various assays, such as a nucleic acid assay and spectrophotometer. In another example, at least one of the modules 701-706 may have assays and/or sample preparation stations that are different from the other modules. In an example, the first module 701 includes an agglutination assay but not a nucleic acid amplification assay, and the second module 702 includes a nucleic acid assay but not an agglutination assay. Modules may not include any assays. In the illustrated example of FIG. 7, the modules 701-706 include the same assays and sample preparation (or manipulation) stations. However, in other embodiments, each module includes any number and combination of assays and processing stations described herein. The modules may be stacked vertically or horizontally with respect to one another. Two modules are oriented vertically in relation to one another if they are oriented along a plane that is parallel, substantially parallel, or nearly parallel to the gravitational acceleration vector. Two modules are oriented horizontally in relation to one another if they are oriented along a plane orthogonal, substantially orthogonal, or nearly orthogonal to the gravitational acceleration vector. In an embodiment, the modules are stacked vertically, i.e., one module on top of another module. In the illustrated example of FIG. 7, the rack 709 is oriented such that the modules 701-706 are disposed vertically in relation to one another. However, in other situations the modules are disposed horizontally in relation to one another. In such a case, the rack 709 may be oriented such that the modules 701-706 may be situated horizontally alongside one another. Referring now to FIG. 7A, yet another embodiment of a system 730 is shown with a plurality of modules 701 to 704. This embodiment of FIG. 7A shows a horizontal configuration wherein the modules 701 to 704 are mounted to a support structure 732 on which a transport device 734 can move along the X, Y, and/or optionally Z axis to move elements such as but not limited sample vessels, tips, cuvettes, or the like within a module and/or between modules. By way of non-limiting example, the modules 701-704 are oriented horizontally in relation to one another if they are oriented along a plane orthogonal, substantially orthogonal, or nearly orthogonal to the gravitational acceleration vector. It should be understood that, like the embodiment of FIG. 7, modules 701-704 may all be modules that are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, and/or fourth modules 701-704 may be replaced by one or more other modules that can occupy the location of the module being replaced. The other modules may optionally provide different functionality such as but not limited to a replacing one of the modules 701-704 with one or more cytometry modules 707, communications modules, storage modules, sample preparation modules, slide preparation modules, tissue preparation modules, or the like. For example, one of the modules 701-704 may be replaced with one or more modules that provide a different hardware configuration such as but not limited to provide a thermal controlled storage chamber for incubation, storage between testing, and/or storage after testing. Optionally, the module replacing one or more of the modules 701-704 can provide a non-assay related functionality, such as but not limited to additional telecommunication equipment for the system 730, additional imaging or user interface equipment, or additional power source such as but not limited to batteries, fuel cells, or the like. Optionally, the module replacing one or more of the modules 701-704 may provide storage for additional disposables and/or reagents or fluids. It should be understood that although FIG. 7A shows only four modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this horizontal mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. In one non-limiting example, each module is secured to the support structure 732 with the aid of an attachment member. In an embodiment, an attachment member is a hook fastened to either the module or the bay. In such a case, the hook is configured to slide into a receptacle of either the module or the bay. In another embodiment, an attachment member includes a fastener, such as a screw fastener. In another embodiment, an attachment member is formed of a magnetic material. In such a case, the module and bay may include magnetic materials of opposite polarities so as to provide an attractive force to secure the module to the bay. In another embodiment, the attachment member includes one or more tracks or rails in the bay. In such a case, a module includes one or more structures for mating with the one or more tracks or rails, thereby securing the module to the support structure 732. Optionally, power may be provided by the rails. An example of a structure that may permit a module to mate with a support structure 732 may include one or more pins. In some cases, modules receive power directly from the support structure 732. In some cases, a module may be a power source like a lithium ion, or fuel cell powered battery that powers the device internally. In an example, the modules are configured to mate with the support structure 732 with the aid of rails, and power for the modules comes directly from the rails. In another example, the modules mate with the support structure 732 with the aid of attachment members (rails, pins, hooks, fasteners), but power is provided to the modules wirelessly, such as inductively (i.e., inductive coupling). Referring now to FIG. 7B, yet another embodiment of a system 740 is shown with a plurality of modules 701 to 706. FIG. 7B shows that a support structure 742 is provided that can allow a transport device 744 to move along the X, Y, and/or optionally Z axis to transport elements such as but not limited sample vessels, tips, cuvettes, or the like within a module and/or between modules. The transport device 744 can be configured to access either column of modules. Optionally, some embodiments may have more than one transport device 744 to provide higher throughput of transport capabilities for vessels or other elements between modules. For clarity, the transport device 744 shown in phantom may represent a second transport device 744. Alternatively, it can also be used to show where the transport device 744 is located when service the second column of modules. It should also be understood that embodiments having still further rows and/or columns can also be created by using a larger support structure to accommodate such a configuration. It should be understood that, like the embodiment of FIG. 7, modules 701-706 may all be modules that are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, and/or fourth modules 701-706 may be replaced by one or more other modules that can occupy the location of the module being replaced. The other modules may optionally provide different functionality such as but not limited to a replacing one of the modules 701-706 with one or more cytometry modules 707, communications modules, storage modules, sample preparation modules, slide preparation modules, tissue preparation modules, or the like. It should be understood that although FIG. 7B shows only six modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this horizontal and vertical mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. Referring now to FIG. 7C, yet another embodiment of a system 750 is shown with a plurality of modules 701, 702, 703, 704, 706, and 707. FIG. 7C also shows that they system 750 has an additional module 752 that can with one or more modules that provide a different hardware configuration such as but not limited to provide a thermal controlled storage chamber for incubation, storage between testing, or storage after testing. Optionally, the module replacing one or more of the modules 701-704 can provide a non-assay related functionality, such as but not limited to additional telecommunication equipment for the system 730, additional imaging or user interface equipment, or additional power source such as but not limited to batteries, fuel cells, or the like. Optionally, the module replacing one or more of the modules 701-707 may provide storage for additional disposables and/or reagents or fluids. It should be understood that although FIG. 7C shows seven modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. In some embodiments, the modules 701-706 are in communication with one another and/or a controller of the system 700 by way of a communications bus (“bus”), which may include electronic circuitry and components for facilitating communication among the modules and/or the controller. The communications bus includes a subsystem that transfers data between the modules and/or controller of the system 700. A bus may bring various components of the system 700 in communication with a central processing unit (CPU), memory (e.g., internal memory, system cache) and storage location (e.g., hard disk) of the system 700. A communications bus may include parallel electrical wires with multiple connections, or any physical arrangement that provides logical functionality as a parallel electrical bus. A communications bus may include both parallel and bit-serial connections, and can be wired in either a multidrop (i.e., electrical parallel) or daisy chain topology, or connected by switched hubs. In an embodiment, a communications bus may be a first generation bus, second generation bus or third generation bus. The communications bus permits communication between each of the modules and other modules and/or the controller. In some situations, the communications bus enables communication among a plurality of systems, such as a plurality of systems similar or identical to the system 700. The system 700 may include one or more of a serial bus, parallel bus, or self-repairable bus. A bus may include a master scheduler that control data traffic, such as traffic to and from modules (e.g., modules 701-706), controller, and/or other systems. A bus may include an external bus, which connects external devices and systems to a main system board (e.g., motherboard), and an internal bus, which connects internal components of a system to the system board. An internal bus connects internal components to one or more central processing units (CPUs) and internal memory. In some embodiments, the communication bus may be a wireless bus. The communications bus may be a Firewire (IEEE 1394), USB (1.0, 2.0, 3.0, or others), or Thunderbolt. In some embodiments, the system 700 includes one or more buses selected from the group consisting of Media Bus, Computer Automated Measurement and Control (CAMAC) bus, industry standard architecture (ISA) bus, USB bus, Firewire, Thunderbolt, extended ISA (EISA) bus, low pin count bus, MBus, MicroChannel bus, Multibus, NuBus or IEEE 1196, OPTi local bus, peripheral component interconnect (PCI) bus, Parallel Advanced Technology Attachment (ATA) bus, Q-Bus, S-100 bus (or IEEE 696), SBus (or IEEE 1496), SS-50 bus, STEbus, STD bus (for STD-80 [8-bit] and STD32 [16-132-bit]), Unibus, VESA local bus, VMEbus, PC/104 bus, PC/104 Plus bus, PC/104 Express bus, PCI-104 bus, PCIe-104 bus, 1-Wire bus, HyperTransport bus, Inter-Integrated Circuit (I2C) bus, PCI Express (or PCIe) bus, Serial ATA (SATA) bus, Serial Peripheral Interface bus, UNI/O bus, SMBus, 2-wire or 3-wire interface, self-repairable elastic interface buses and variants and/or combinations thereof. In some situations, the system 700 includes a Serial Peripheral Interface (SPI), which is an interface between one or more microprocessors and peripheral elements or I/O components (e.g., modules 701-706) of the system 700. The SPI can be used to attach 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more or 50 or more or 100 or more SPI compatible I/O components to a microprocessor or a plurality of microprocessors. In other instances, the system 700 includes RS-485 or other standards. In an embodiment, an SPI is provided having an SPI bridge having a parallel and/or series topology. Such a bridge allows selection of one of many SPI components on an SPI I/O bus without the proliferation of chip selects. This is accomplished by the application of appropriate control signals, described below, to allow daisy chaining the device or chip selects for the devices on the SPI bus. It does however retain parallel data paths so that there is no Daisy Chaining of data to be transferred between SPI components and a microprocessor. In some embodiments, an SPI bridge component is provided between a microprocessor and a plurality of SPI I/O components which are connected in a parallel and/or series (or serial) topology. The SPI bridge component enables parallel SPI using MISO and MOSI lines and serial (daisy chain) local chip select connection to other slaves (CSL/). In an embodiment, SPI bridge components provided herein resolve any issues associated with multiple chip selects for multiple slaves. In another embodiment, SPI bridge components provided herein support four, eight, sixteen, thirty two, sixty four or more individual chip selects for four SPI enabled devices (CS1/-CS4/). In another embodiment, SPI bridge components provided herein enable four times cascading with external address line setting (ADR0-ADR1). In some situations, SPI bridge components provided herein provide the ability to control up to eight, sixteen, thirty two, sixty four or more general output bits for control or data. SPI bridge components provided herein in some cases enable the control of up to eight, sixteen, thirty two, sixty four or more general input bits for control or data, and may be used for device identification to the master and/or diagnostics communication to the master. FIG. 41A shows an SPI bridge scheme having master and parallel-series SPI slave bridges, in accordance with an embodiment of the invention. The SPI bus is augmented by the addition of a local chip select (CSL/), module select (MOD_SEL) and select data in (DIN_SEL) into a SPI bridge to allow the addition of various system features, including essential and non-essential system features, such as cascading of multiple slave devices, virtual daisy chaining of device chip selects to keep the module-to-module signal count at an acceptable level, the support for module identification and diagnostics, and communication to non-SPI elements on modules while maintaining compatibility with embedded SPI complaint slave components. FIG. 41B shows an example of an SPI bridge, in accordance with an embodiment of the invention. The SPI bridge includes internal SPI control logic, a control register (8 bit, as shown), and various input and output pins. Each slave bridge is connected to a master (also “SPI master” and “master bridge” herein) in a parallel-series configuration. The MOSI pin of each slave bridge is connected to the MOSI pin of the master bridge, and the MOSI pins of the slave bridges are connected to one another. Similarly, the MISO pin of each slave bridge is connected to the MISO pin of the master bridge, and the MISO pins of the slave bridges are connected to one another. Each slave bridge may be a module (e.g., one of the modules 701-706 of FIG. 7) or a component in a module. In an example, the First Slave Bridge is the first module 701, the Second Slave Bridge is the second module 702, and so on. In another example, the First Slave Bridge is a component (e.g., one of the components 910 of FIG. 9) of a module. FIG. 41C shows a module component diagram with interconnected module pins and various components of a master bridge and slave bridge, in accordance with an embodiment of the invention. FIG. 41D shows slave bridges connected to a master bridge, in accordance with an embodiment of the invention. The MISO pin of each slave bridge is in electrical communication with a MOSI pin of the master bridge. The MOSI pin of each slave bridge is in electrical communication with a MISO pin of the master bridge. The DIN_SEL pin of the first slave bridge (left) is in electrical communication with the MOSI pin of the first slave bridge. The DOUT_SEL pin of the first slave bridge is in electrical communication with the DIN_SEL of the second slave (right). Additional slave bridges may be connected as the second slave by bringing the DIN_SEL pins of each additional slave bridge in electrical communication with a DOUT_SEL pin of a previous slave bridge. In such fashion, the slave bridge are connected in a parallel-series configuration. In some embodiments, CLK pulses directed to connected SPI-Bridges capture the state of DIN_SEL Bits shifted into the Bridges at the assertion of the Module Select Line (MOD_SEL). The number of DIN_SEL bits corresponds to the number of modules connected together on a parallel-series SPI-Link. In an example, if the two modules are connected in a parallel-series configuration (e.g. RS486), the number of DIN_SEL is equal to two. In an embodiment, SPI-Bridges which latch a ‘1’ during the module selection sequence become the ‘selected module’ set to receive 8 bit control word during a following element selection sequence. Each SPI-Bridge may access up to 4 cascaded SPI Slave devices. Additionally, each SPI-Bridge may have an 8-Bit GP Receive port and 8-Bit GP Transmit Port. An ‘element selection’ sequence writes an 8 bit word into the ‘selected module’ SPI-Bridge control register to enable subsequent transactions with specific SPI devices or to read or write data via the SPI-Bridge GPIO port. In an embodiment, element selection takes place by assertion of the local chip select line (CSL/) then clocking the first byte of MOSI transferred data word into the control register. In some cases, the format of the control register is CS4 CS3 CS2 CS1 AD1 AD0 R/W N. In another embodiment, the second byte is transmit or receive data. When CSL/ is de-asserted, the cycle is complete. In an SPI transaction, following the element selection sequence, subsequent SPI slave data transactions commence. The SPI CS/ (which may be referred to as SS/) is routed to one of 4 possible bridged devices, per the true state of either CS4, CS3, CS2 or CS1. Jumper bits AD0, AD1 are compared to AD0, AD1 of the control register allow up to four SPI-Bridges on a module. FIG. 41E shows a device having a plurality of modules mounted on a SPI link of a communications bus of the device, in accordance with an embodiment of the invention. Three modules are illustrated, namely Module 1, Module 2 and Module 3. Each module includes one or more SPI bridges for bringing various components of a module in electrical connection with the SPI link, including a master controller (including one or more CPU's) in electrical communication with the SPI link. Module 1 includes a plurality of SPI slaves in electrical communication with each of SPI Bridge 00, SPI Bridge 01, SPI Bridge 10 and SPI Bridge 11. In addition, each module includes a Receive Data controller, Transmit Data controller and Module ID jumpers. In other embodiments, the modules 701-706 are configured to communicate with one another and/or one or more controllers of the system 700 with the aid of a wireless communications bus (or interface). In an example, the modules 701-706 communicate with one another with the aid of a wireless communications interface. In another example, one or more of the modules 701-706 communicate with a controller of the system 700 with the aid of a wireless communications bus. In some cases, communication among the modules 701-706 and/or one or more controllers of the system is solely by way of a wireless communications bus. This may advantageously preclude the need for wired interfaces in the bays for accepting the modules 701-706. In other cases, the system 700 includes a wired interface that works in conjunction with a wireless interface of the system 700. Although the system 700, as illustrated, has a single rack, a system, such as the system 700, may have multiple racks. In some embodiments, a system has at most 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 20, or 30, or 40, or 50, or 100, or 1000, or 10,000 racks. In an embodiment, the system has a plurality of racks disposed in a side-by-side configuration. FIG. 8 shows an example of a multi-rack system. For example, a first rack 800a may be connected and/or adjacent to a second rack 800b. Each rack may include one or more module 810. In another embodiment, the system includes a plurality of racks that are disposed vertically in relation to one another—that is, one rack on top of another rack. In some embodiments, the racks may form a vertical array (e.g., one or more racks high and one or more racks wide), a horizontal array (one or more racks wide, one or more racks long), or a three-dimensional array (one or more racks high, one or more racks wide, and one or more racks long). In some embodiments, the modules may be disposed on the racks, depending on rack configuration. For example, if vertically oriented racks are placed adjacent to one another, modules may be disposed vertically along the racks. If horizontally oriented racks are placed on top of one another, modules may be disposed horizontally along the racks. Racks may be connected to one another via any sort of connecting interface, including those previously described for modules. Racks may or may not contact one another. Racks may be mechanically and/or electrically connected to one another. In another embodiment, the system includes a plurality of racks, and each rack among the plurality of racks is configured for a different use, such as sample processing. In an example, a first rack is configured for sample preparation and cytometry and a second rack is configured for sample preparation and agglutination. In another embodiment, the racks are disposed horizontally (i.e., along an axis orthogonal to the gravitational acceleration vector). In another embodiment, the system includes a plurality of racks, and two or more racks among the plurality of racks are configured for the same use, such as sample preparation or processing. In some cases, a system having a plurality of racks includes a single controller that is configured to direct (or facilitate) sample processing in each rack. In other cases, each individual rack among a plurality of racks includes a controller configured to facilitate sample processing in the individual rack. The controllers may be in network or electrical communication with one another. A system having a plurality of racks may include a communications bus (or interface) for bringing the plurality of racks in communication with one another. This permits parallel processing among the racks. For instance, for a system including two racks commutatively coupled to one another with the aid of a communications bus, the system processes a first sample in a first of the two racks while the system processes a second sample in a second of the two racks. A system having a plurality of racks may include one or more sample handling systems for transferring samples to and from racks. In an example, a system includes three racks and two sample handling systems to transfer samples to and from each of the first, second and third racks. In some embodiments, sample handling systems are robots or robotic-arms for facilitating sample transfer among racks, among modules in a rack, and/or within modules. In some embodiments, each module may have one or more robots. The robots may be useful for moving components within or amongst different modules or other components of a system. In other embodiments, sample handling systems are actuator (e.g., electrical motors, pneumatic actuators, hydraulic actuators, linear actuators, comb drive, piezoelectric actuators and amplified piezoelectric actuators, thermal bimorphs, micromirror devices and electroactive polymers) devices for facilitating sample transfer among racks or modules in a rack. In other embodiments, sample handling systems include pipettes, such as positive displacement, suction-type or air displacement pipettes which may optionally have robotic capabilities or robots with pipetting capability. One or more robots may be useful for transferring sampling systems from one location to another. The robotic arm (also “arm” here) is configured to transfer (or shuttle) samples to and from modules or, in some cases, among racks. In an example, an arm transfers samples among a plurality of vertically oriented modules in a rack. In another example, an arm transfers samples among a plurality of horizontally oriented modules in a rack. In another example, an arm transfers samples among a plurality of horizontally and vertically oriented modules in a rack. Each arm may include a sample manipulation device (or member) for supporting a sample during transport to and from a module and/or one or more other racks. In an embodiment, the sample manipulation device is configured to support a tip or vessel (e.g., container, vial) having the sample. The sample manipulation device may be configured to support a sample support, such as a microcard or a cartridge. Alternatively, the manipulation device may have one or more features that may permit the manipulation device to serve as a sample support. The sample manipulation device may or may not include a platform, gripper, magnet, fastener, or any other mechanism that may be useful for the transport. In some embodiments, the arm is configured to transfer a module from one bay to another. In an example, the arm transfers a module from a first bay in a first rack to a first bay in a second rack, or from the first bay in the first rack to a second bay in the second rack. The arm may have one or more actuation mechanism that may permit the arm to transfer the sample and/or module. For example, one or more motor may be provided that may permit movement of the arm. In some instances, the arm may move along a track. For example, a vertical and/or horizontal track may be provided. In some instances, the robot arm may be a magnetic mount with a kinematic locking mount. In some embodiments, robots, such as a robotic arm, may be provided within a device housing. The robots may be provided within a rack, and/or within a module. Alternatively, they may be external to a rack and/or module. They may permit movement of components within a device, between tracks, between modules, or within modules. The robots may move one or more component, including but not limited to a sample handling system, such as a pipette, vessel/tip, cartridge, centrifuge, cytometer, camera, detection unit, thermal control unit, assay station or system, or any other component described elsewhere herein. The components may be movable within a module, within a rack, or within the device. The components may be movable within the device even if no rack or module is provided within the device. The robots may move one or more module. The modules may be movable within the device. The robots may move one or more racks. The racks may be movable within the device. The robots may move using one or more different actuation mechanism. Such actuation mechanisms may use mechanical components, electromagnetic, magnetism, thermal properties, piezoelectric properties, optics, or any other properties or combinations thereof. For example, the actuation mechanisms may use a motor (e.g., linear motor, stepper motor), lead screw, magnetic track, or any other actuation mechanism. In some instances, the robots may be electronically, magnetically, thermally or optically controlled. FIG. 68A provides an example of a magnetic way of controlling the position of a robot or other item. A top view shows an array of magnets 6800. A coil support structure 6810 may be provided adjacent to the magnets. A coil support structure may be made from electrically conductive, weak magnetic material. The array of magnets may include a strip of magnets, or an m×n array of magnets, where m and/or n is greater than or equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or 100. FIG. 68B provides a side view of the magnetic control. A coil support structure 6810 may have one, two, three, four, five, six, seven, eight or more conducting coils 6820 thereon. The coil support structure may be adjacent to an array of magnets 6800. Passive damping may be provided as well as use of electrically conductive magnetic materials. The actuation mechanisms may be capable of moving with very high precision. For example, the robots may be capable of moving with a precision of within about 0.01 nm, 0.05 nm, 0.1 nm, 0.5 nm, 1 nm, 5 nm, 10 nm, 30 nm, 50 nm, 75 nm, 100 nm, 150 nm, 200 nm, 250 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 μm, 1.5 μm, 2 μm, 3 μm, 4 μm, 5 μm, 7 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 40 μm, 50 μm, 75 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 500 μm, 750 μm, 1 mm, 2 mm, or 3 mm. The robots may be capable of moving in any direction. The robots may be capable of moving in a lateral direction (e.g., horizontal direction) and/or a vertical direction. A robot may be capable of moving within a horizontal plane, and/or a vertical plane. A robot may be capable of moving in an x, y, and/or z direction wherein an x-axis, y-axis, and z-axis are orthogonal to one another. Some robots may only move within one dimension, two dimensions, and/or three dimensions. In some situations, the term “system” as used herein may refer to a “device” or “sample processing device” disclosed herein, unless the context clearly dictates otherwise. Plug-and-Play In an aspect of the invention, plug-and-play systems are described. The plug-and-play systems are configured to assay at least one sample, such as a tissue or fluid sample, from a subject. In some embodiments, the plug-and-play system comprises a supporting structure having a mounting station configured to support a module among a plurality of modules. The module is detachable from the mounting station. In some cases, the module is removably detachable—that is, the module may be removed from the mounting station and returned to its original position on the mounting station. Alternatively, the module may be replaced with another module. In an embodiment, the module is configured to perform without the aid of another module in the system (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation, or (b) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. In an embodiment, the module is configured to be in electrical, electro-magnetic or optoelectronic communication with a controller. The controller is configured to provide one or more instructions to the module or individual modules of the plurality of modules to facilitate performance of the at least one sample preparation procedure or the at least one type of assay. In an embodiment, the system is in communication with a controller for coordinating or facilitating the processing of samples. In an embodiment, the controller is part of the system. In another embodiment, the controller is remotely located with respect to the system. In an example, the controller is in network communication with the system. In an embodiment, a module is coupled to a support structure. The support structure may be a rack having a plurality of bays for accepting a plurality of modules. The support structure is part of the system configured to accept the module. In an embodiment, the module is hot-swappable—that is, the module may be exchanged with another module or removed from the support structure while the system is processing other samples. In some embodiments, upon a user hot-swapping a first module for a second module, the system is able to detect and identify the second module and update a list of modules available for use by the system. This permits the system to determine which resources are available for use by the system for processing a sample. For instance, if a cytometry module is swapped for an agglutination module and the system has no other cytometry modules, then the system will know that the system is unable to perform cytometry on a sample. The plurality of modules may include the same module or different modules. In some cases, the plurality of modules are multi-purpose (or multi-use) modules configured for various preparation and/or processing functionalities. In other cases, the plurality of modules may be special-use (or special-purpose) modules configured for fewer functionalities than the multi-purpose modules. In an example, one or more of the modules is a special-use module configured for cytometry. In some embodiments, the system is configured to detect the type of module without the need for any user input. Such plug-and-play functionality advantageously enables a user to insert a module into the system for use without having to input any commands or instructions. In some situations, the controller is configured to detect a module. In such a case, when a user plugs a module into the system, the system detects the module and determines whether the module is a multi-use module or special-use module. In some cases, the system is able to detect a module with the use of an electronic identifier, which may include a unique identifier. In other cases, the system is able to detect the module with the aid of a physical identifier, such as a bar code or an electronic component configured to provide a unique radio frequency identification (RFID) code, such as an RFID number or a unique ID through the system bus. The system may detect a module automatically or upon request from a user or another system or electronic component in communication with the system. In an example, upon a user inputting the module 701 into the system 700, the system 700 detects the module, which may permit the system 700 to determine the type of module (e.g., cytometry module). In some situations, the system is configured to also determine the location of the module, which may permit the system to build a virtual map of modules, such as, e.g., for facilitating parallel processing (see below). In an example, the system 700 is configured to detect the physical location of each of the modules 701-706. In such a case, the system 700 knows that the first module 701 is located in a first port (or bay) of the system 700. Modules may have the same component or different components. In an embodiment, each module has the same components, such as those described above in the context of FIG. 7. That is, each module includes pipettes and various sample processing stations. In another embodiment, the modules have different components. In an example, some modules are configured for cytometry assays while other are configured for agglutination assays. In another embodiment, a shared module may be a dedicated cooling or heating unit that is providing cooling or heating capabilities to the device or other modules as needed. In another embodiment, a shared resource module may be a rechargeable battery pack. Examples of batteries may include, but are not limited to, zinc-carbon, zinc-chloride, alkaline, oxy-nickel hydroxide, lithium, mercury oxide, zinc-air, silver oxide, NiCd, lead acid, NiMH, NiZn, or lithium ion. These batteries may be hot-swappable or not. The rechargeable battery may be coupled with external power source. The rechargeable battery module may be recharged while the device is plugged into an external power source or the battery module may be taken out of device and recharged externally to the device in a dedicated recharging station or directly plugged into an external power supply. The dedicated recharging station may be the device or be operatively connected to the device (e.g., recharging can be done via induction without direct physical contact). The recharging station may be a solar powered recharging station or may be powered by other clean or conventional sources. The recharging station may be powered by a conventional power generator. The battery module may provide Uninterrupted Power Supply (UPS) to the device or bank of devices in case of power interruptions from external supply. In another embodiment, the shared resource module may be a ‘compute farm’ or collection of high performance general purpose or specific purpose processors packed together with appropriate cooling as a module dedicated to high performance computing inside the device or to be shared by collection of devices. In another embodiment, a module may be an assembly of high performance and/or high capacity storage devices to provide large volume of storage space (e.g. 1 TB, 2 TB, 10 TB, 100 TB, 1 PB, 100 PB or more) on the device to be shared by all modules, modules in other devices that may be sharing resources with the device and even by the external controller to cache large amounts of data locally to a device or a physical site or collection of sites or any other grouping of devices. In another embodiment, a shared module may be a satellite communication module that is capable of providing communication capabilities to communicate with satellite from the device or other devices that may be sharing resources. In another embodiment, the module may be an internet router and/or a wireless router providing full routing and/or a hotspot capability to the device or bank of devices that are allowed to share the resources of the device. In some embodiments, the module, alone or in combination with other modules (or systems) provided herein, may act as a ‘data center’ for either the device or bank of devices allowed to share the resources of the device providing high performance computing, high volume storage, high performance networking, satellite or other forms of dedicated communication capabilities in the device for a given location or site or for multiple locations or sites. In one embodiment, a shared module may be a recharging station for wireless or wired peripherals that are used in conjunction with the device. In one embodiment, a shared module may be a small refrigeration or temperature control storage unit to stores, samples, cartridges, other supplies for the device. In another embodiment, a module may be configured to automatically dispense prescription or other pharmaceutical drugs. The module may also have other components such as packet sealers and label printers that make packaging and dispensing drugs safe and effective. The module may be programmed remotely or in the device to automatically dispense drugs based on real time diagnosis of biological sample, or any other algorithm or method that determines such need. The system may have the analytics for pharmacy decision support to support the module around treatment decisions, dosing, and other pharmacy-related decision support. Modules may have swappable components. In an example, a module has a positive displacement pipette that is swappable with the same type of pipette or a different type of pipette, such as a suction-type pipette. In another example, a module has an assay station that is swappable with the same type of assay station (e.g., cytometry) or a different type of assay station (e.g., agglutination). The module and system are configured to recognize the modules and components in the modules and update or modify processing routines, such as parallel processing routines, in view of the modules coupled to the system and the components in each of the modules. In some cases, the modules may be external to the device and connected to the device through device's bus (e.g. via a USB port). FIG. 9 shows an example of a module 900 having one or more components 910. A module may have one or more controller. The components 910 are electrically coupled to one another and/or the controller via a communications bus (“Bus”), such as, for example, a bus as described above in the context of FIG. 7. In an example, the module 900 includes a one or more buses selected from the group consisting of Media Bus, Computer Automated Measurement and Control (CAMAC) bus, industry standard architecture (ISA) bus, extended ISA (EISA) bus, low pin count bus, MBus, MicroChannel bus, Multibus, NuBus or IEEE 1196, OPTi local bus, peripheral component interconnect (PCI) bus, Parallel Advanced Technology Attachment (ATA) bus, Q-Bus, S-100 bus (or IEEE 696), SBus (or IEEE 1496), SS-50 bus, STEbus, STD bus (for STD-80 [8-bit] and STD32 [16-/32-bit]), Unibus, VESA local bus, VMEbus, PC/104 bus, PC/104 Plus bus, PC/104 Express bus, PCI-104 bus, PCIe-104 bus, 1-Wire bus, HyperTransport bus, Inter-Integrated Circuit (I2C) bus, PCI Express (or PCIe) bus, Serial ATA (SATA) bus, Serial Peripheral Interface bus, UNI/O bus, SMBus, self-repairable elastic interface buses and variants and/or combinations thereof. In an embodiment, the communications bus is configured to communicatively couple the components 910 to one another and the controller. In another embodiment, the communications bus is configured to communicatively couple the components 910 to the controller. In an embodiment, the communications bus is configured to communicatively couple the components 910 to one another. In some embodiments, the module 900 includes a power bus that provides power to one or more of the components 910. The power bus may be separate from the communications bus. In other embodiments, power is provided to one or more of the components with the aid of the communications bus. In an embodiment, the components 910 may be swappable, such as hot-swappable. In another embodiment, the components 910 are removable from the module 900. The components 910 are configured for sample preparation, processing and testing. Each of the components 910 may be configured to process a sample with the aid of one or more sample processing, preparation and/or testing routines. In the illustrated example, the module 900 includes six components 910: a first component (Component 1), second component (Component 2), third component (Component 3), fourth component (Component 4), fifth component (Component 5), and sixth component (Component 6). The module 900 generally includes 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more, or 20 or more, or 30 or more, or 40 or more, or 50 or more, or 100 or more components 910. The components 910, with the aid of the controller communicative (and electrically) coupled to the components 910, are configured for serial and/or parallel processing of a sample. In an example, Component 1 is a centrifuge, Component 2 is a spectrophotometer, Component 3 is a Nucleic Acid (assay station and Component 4 is a PMT station, Component 5 is a tip holder and Component 6 is a sample washing station. In an embodiment, the components are configured to process a sample in series. In such a case, a sample is processed in the components in sequence (i.e., Component 1, Component 2, etc.). In another embodiment, sample processing is not necessarily sequential. In an example, a sample is first processed in Component 4 followed by Component 1. In an embodiment, the components 910 process samples in parallel. That is, a component may process a sample while one or more other components process the sample or a different sample. In an example, Component 1 processes a sample while Component 2 processes a sample. In another embodiment, the components 910 process sample sequentially. That is, while one component processes a sample, another component does not process a sample. In some embodiments, the module 900 includes a sample handling system configured to transfer a sample to and from the components 910. In an embodiment, the sample handling system is a positive displacement pipette. In another embodiment, the sample handling system is a suction-type pipette. In another embodiment, the sample handling system is an air-displacement pipette. In another embodiment, the sample handing system includes one or more of a suction-type pipette, positive displacement pipette and air-displacement pipette. In another embodiment, the sample handing system includes any two of a suction-type pipette, positive displacement pipette and air-displacement pipette. In another embodiment, the sample handing system includes a suction-type pipette, positive displacement pipette and air-displacement pipette. The components 910 may be connected via bus architectures provided herein. In an example, the components 910 are connected via the parallel-series configuration described in the context of FIGS. 41A-41E. That is, each component 910 may be connected to an SPI slave bridge that is in turn connected to a master bridge. In other embodiments, the components 910 are connected in a series (or daisy-chain) configuration. In other embodiments, the components 910 are connected in a parallel configuration. In some embodiments, the components 910 are swappable with other components. In an embodiment, each component is swappable with the same component (i.e., another component having the same functionality). In another embodiment, each component is swappable with a different component (i.e., a component having different functionality). The components 910 are hot swappable or removable upon shutdown of the module 900. FIG. 10 shows a system 1000 having a plurality of modules mounted to bays of the system 1000, in accordance with an embodiment of the invention. The system includes a first module (Module 1), second module (Module 2) and third module (Module 3). The system 1000 includes a communications bus (“Bus”) for bringing a controller of the system 1000 in communication with each of the modules. The communications bus (also “system bus” herein) of the system 1000 is also configured to bring the modules in communication with one another. In some situations, the controller of the system 1000 is optional. With continued reference to FIG. 10, each module includes a plurality of stations (or sub-modules), designated by Mxy, wherein ‘x’ designates the module and ‘y’ designates the station. Each module optionally includes a controller that is communicatively coupled to each of the stations via a communications bus (also “module bus” herein). In some cases, a controller is communicatively coupled to the system bus through the module bus. Module 1 includes a first station (M11), second station (M12), third station (M13) and controller (C1). Module 2 includes a first station (M21), second station (M22), third station (M23) and controller (C2). Module 3 includes a first station (M31) and controller (C3). The controllers of the modules are communicatively coupled to each of the stations via a communications bus. The stations are selected from the group consisting of preparation stations, assaying stations and detection stations. Preparation stations are configured for sample preparation; assaying stations are configured for sample assaying; and detection stations are configured for analyte detection. In an embodiment, each module bus is configured to permit a station to be removed such that the module may function without the removed station. In an example, M11 may be removed from module 1 while permitting M12 and M13 to function. In another embodiment, each station is hot-swappable with another station—that is, one station may be replaced with another station without removing the module or shutting down the system 1000. In some embodiments, the stations are removable from the modules. In other embodiments, the stations are replaceable by other stations. In an example, M11 is replaced by M22. With respect to a particular module, each station may be different or two or more stations may be the same. In an example, M11 is a centrifuge and M12 is an agglutination station. As another example, M22 is a nucleic acid assay station and M23 is an x-ray photoelectron spectroscopy station. Two or more of the modules may have the same configuration of stations or a different configuration. In some situations, a module may be a specialized module. In the illustrated embodiment of FIG. 10, module 3 has a single station, M31, that is communicatively coupled to C3. The system 1000 includes a sample handling system for transferring samples to and from the modules. The sample handling system includes a positive displacement pipette, suction-type pipette and/or air-displacement pipette. The sample handling system is controlled by the controller of the system 1000. In some situations, the sample handling system is swappable by another sample handling system, such as a sample handling system specialized for certain uses. With continued reference to FIG. 10, each module includes a sample handling system for transferring samples to and from the stations. The sample handling system includes a positive displacement pipette, suction-type pipette and/or air-displacement pipette. The sample handling system is controlled by a controller in the module. Alternatively, the sample handling system is controlled by the controller of the system 1000. Parallel Processing and Dynamic Resource Sharing In another aspect of the invention, methods for processing a sample are provided. The methods are used to prepare a sample and/or perform one or more sample assays. In some embodiments, a method for processing a sample comprises providing a system having plurality of modules as described herein. The modules of the system are configured to perform simultaneously (a) at least one sample preparation procedure selected from the group consisting of sample processing, centrifugation, magnetic separation and chemical processing, and/or (b) at least one type of assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. Next, the system tests for the unavailability of resources or the presence of a malfunction of (a) the at least one sample preparation procedure or (b) the at least one type of assay. Upon detection of a malfunction within at least one module, the system uses another module of the system or another system in communication with the system to perform the at least one sample preparation procedure or the at least one type of assay. In some embodiments, the system 700 of FIG. 7 is configured to allocate resource sharing to facilitate sample preparation, processing and testing. In an example, one of the modules 701-706 is configured to perform a first sample preparation procedure while another of the modules 701-706 is configured to perform a second sample preparation procedure that is different from the first sample preparation procedure. This enables the system 700 to process a first sample in the first module 701 while the system 700 processes a second sample or a portion of the first sample. This advantageously reduces or eliminates downtime (or dead time) among modules in cases in which processing routines in modules (or components within modules) require different periods of time to reach completion. Even if processing routines reach completion within the same period of time, in situations in which the periods do not overlap, parallel processing enables the system to optimize system resources in cases. This may be applicable in cases in which a module is put to use after another module or if one module has a start time that is different from that of another module. The system 700 includes various devices and apparatuses for facilitating sample transfer, preparation and testing. The sample handling system 708 enables the transfer of a sample to and from each of the modules 701-706. The sample handling system 708 may enable a sample to be processed in one module while a portion of the sample or a different sample is transferred to or from another module. In some situations, the system 700 is configured to detect each of the modules 701-706 and determine whether a bay configured to accept modules is empty or occupied by a module. In an embodiment, the system 700 is able to determine whether a bay of the system 700 is occupied by a general or multi-purpose module, such as a module configured to perform a plurality of tests, or a specialized module, such as a module configured to perform select tests. In another embodiment, the system 700 is able to determine whether a bay or module in the bay is defective or malfunctioning. The system may then use other modules to perform sample processing or testing. A “multi-purpose module” is configured for a wide array of uses, such as sample preparation and processing. A multi-purpose module may be configured for at least 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 20, or 30, or 40, or 50 uses. A “special-use module” is a module that is configured for one or more select uses or a subset of uses, such as at most 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 20, or 30, or 50 uses. Such uses may include sample preparation, processing and/or testing (e.g., assay). A module may be a multi-purpose module or special-use module. In some cases, a special-use module may include sample preparation procedures and/or tests not include in other modules. Alternatively, a special-use module includes a subset of sample preparation procedures and/or tests included in other modules. In the illustrated example of FIG. 7, the module 706 may be a special-use module. Special uses may include, for example, one or more assays selected from cytometry, agglutination, microscopy and/or any other assay described elsewhere herein. In an example, a module is configured to perform cytometry only. The module is configured for use by the system 700 to perform cytometry. The cytometry module may be configured to prepare and/or process a sample prior to performing cytometry on the sample. In some embodiments, systems are provided that are configured to process multiple samples in parallel. The samples may be different samples or portions of the same sample (e.g., portions of a blood sample). Parallel processing enables the system to make use of system resources at times when such resources would otherwise not be used. In such fashion, the system is configured to minimize or eliminate dead time between processing routines, such as preparation and/or assay routines. In an example, the system assays (e.g., by way of cytometry) a first sample in a first module while the system centrifuges the same or a different sample in a different module. In some situations, the system is configured to process a first sample in a first component of a first module while the system processes a second sample in a second component of the first module. The first sample and second sample may be portions of a larger quantity of a sample, such as portions of a blood sample, or different sample, such as a blood sample from a first subject and a blood sample from a second subject, or a urine sample from the first subject and a blood sample from the first subject. In an example, the system assays a first sample in the first module while the system centrifuges a second sample in the first module. FIG. 11 shows a plurality of plots illustrating a parallel processing routine, in accordance with an embodiment of the invention. Each plot illustrates processing in an individual module as a function of time (abscissa, or “x axis”). In each module, a step increase with time corresponds to the start of processing and a step decrease with time corresponds to the termination (or completion) of processing. The top plot shows processing in a first module, the middle plot shows processing in a second module, and the bottom plot shows processing in a third module. The first, second and third modules are part of the same system (e.g., system 700 of FIG. 7). Alternatively, the first, second and/or third modules may be part of separate systems. In the illustrated example, when the first module processes a first sample, the second module processes a second sample and the third module processes a third sample. The first and third modules start processing at the same time, but processing times are different. This may be the case if, for example, the first module processes a sample with the aid of an assay or preparation routine that is different from that of the third module (e.g., centrifugation in the first module and cytometry in the third module). Additionally, the first module takes twice as long to complete. In that time period, the third module processes a second sample. The second module starts processing a sample at a time that is later than the start time of the first and third modules. This may be the case if, for example, the second module requires a period for completion of sample processing that is different from that of the first and third modules, or if the second module experiences a malfunction. The modules may have the same dimensions (e.g., length, width, height) or different dimensions. In an example, a general or special-use module has a length, width and/or height that is different from that of another general or special-use module. In some situations, systems and modules for processing biological samples are configured to communicate with other systems to facilitate sample processing (e.g., preparation, assaying). In an embodiment, a system communicates with another system by way of a wireless communication interface, such as, e.g., a wireless network router, Bluetooth, radiofrequency (RF), opto-electronic, or other wireless modes of communication. In another embodiment, a system communicates with another system by way of a wired communication, such as a wired network (e.g., the Internet or an intranet). In some embodiments, point of service devices in a predetermined area communicate with one another to facilitate network connectivity, such as connectivity to the Internet or an intranet. In some cases, a plurality of point of service devices communicate with one another with the aid of an intranet, such as an intranet established by one of the plurality of point of service devices. This may permit a subset of a plurality of point of service devices to connect to a network without a direct (e.g., wired, wireless) network connection—the subset of the plurality of point of service devices connect to the network with the aid of the network connectivity of a point of service device connected to the network. With the aid of such shared connectivity, one point of service device may retrieve data (e.g., software, data files) without having to connect to a network. For instance, a first point of service device not connected to a wide-area network may retrieve a software update by forming a local-area connection or a peer-to-peer connection to a second point of service device. The first point of service device may then connect to the wide-area network (or cloud) with the aid of the network connectivity of the second point of service device. Alternatively, the first point of service device may retrieve a copy of the software update directly from the second point of service device. In an example of shared connectivity, a first point of service devices connects (e.g., wireless connection) to a second point of service device. The second point of service device is connected to a network with the aid of a network interface of the second point of service device. The first point of service device may connect to the network through the network connection of the second point of service device. Log-Based Journaling and Fault Recovery Another aspect of the invention provides methods for enabling devices and systems, such as point of service devices, to maintain transaction records and/or operational log journals. Such methods enable systems and devices provided herein, for example, to recover from a fault condition. In some situations, point of service devices and modules have operational states that characterize the state of operation of such devices, such as, for example, sample centrifugation, sample transfer from a first component to a second component, or nucleic acid amplification. In an embodiment, the operational state is a separate (or discrete) condition of a state of operation of a point of service device. Operational state may capture operations at various levels, such as at the device level or system level. In an example, an operational state includes using a device (e.g., pipette). In another example, an operational state includes moving a component of the device (e.g., moving the pipette two inches to the left). In some embodiments, a point of service device has a processing catalog (or operational catalog) having one or more operational matrices. Each of the one or more matrices has discrete operational states of the point of service system (or device) or one or more modules of the system. The processing catalog may be generated by the point of service system or device, or another system on or associated with the point of service system or device. In an example, the processing catalog is generated upon initial system start or setup. In another example, the processing catalog is generated upon request by a user or other system, such as a maintenance system. In an embodiment, a point of service system generates a processing catalog configured to record operational data corresponding to one or more discrete operational states of a point of service system. The one or more discrete operational states may be selected from the group consisting of sample preparation, sample assaying and sample detection. Next, operational data of the point of service system is sequentially recorded in the processing catalog. In some cases, the operational data is recorded in real time. That is, the operational data may be recorded as a change or an update in an operational state of the point of service system is detected or informed of. In some cases, operational data is recorded in the sample processing catalog prior to the point of service system performing a processing routine corresponding to an operational state of the point of service system. In other cases, operational data is recorded in the sample processing catalog after the point of service system performs the processing routine. As an alternative, the operational data is recorded in the sample processing catalog while the point of service system is performing the processing routine. In some cases, the log data is recorded prior to, during and after completion of a transaction to provide the most granular level of logging for every action across time and space for the overall system level logging, or for the purpose of system integrity and recovery. The point of service system is configured to record the progress of various processing routines of the point of service system and/or various components of the modules of the point of service system. In some situations, the point of service system records in a processing catalog when a processing routine has been completed by the point of service system. A processing catalog may be provided by way of one or matrices stored on the point of service system or another system associated with the point of service system. In some situations, a point of service device (e.g., the system 700 of FIG. 7) or module (e.g., the first module 701 of FIG. 7) may include an operational matrix having discrete operational states of the point of service device or module. The operational matrix includes discrete states, namely State 1, State 2, State 3, and so on, of individual modules of a point of service system or components of a module. The rows (if row matrix) or columns (if column matrix) of the operational matrix are reserved for each module or component. In addition, each state may include one or more sub-states, and each sub-state may include one or more sub-states. For instance, a module having a first state, State 1, may have components performing various functions. The states of various components have states designated by State mn, with ‘m’ designating the module and ‘n’ designating the component of the module. In an example, for a first module of a point of service device, a first component may have a first state, State 11, and a second component may have a second state, State 12, and for a second module of the point of service device, a first component may have a first state, State 21, and a second component may have a second state, State 22. Each module may have any number of components (or sub-modules), such as at least one component (e.g., a single centrifuge), at least 10 components, or at least 100 components. FIG. 42 shows an example of an operational matrix of a point of service system, in accordance with an embodiment of the invention. The operational matrix may be for the point of service system or a module of the system or any component of the system or any module. The operational matrix includes a first column and a second the column, the first column having numbers that correspond to the sequence number (“Sequence No.”) and the second column having strings that correspond to the operational state (e.g., “State 1”) of the system. Each operational state includes one or more routines, Routine n, wherein ‘n’ is an integer greater than or equal to one. In the illustrated example, the first state (“State 1”) includes at least three routines, “Routine 1”, “Routine 2” and “Routine 3.” In an embodiment, a routine includes one or more instructions that individually or in association with other routines bring the system or module in the system in-line with a particular state of the system. A matrix may be located (or stored) on a physical storage medium of, or associated with, a controller of a point of service device. The physical storage medium may be part of a database of the point of service device. The database may include one or more components selected from the group consisting of central processing unit (CPU), hard disk and memory (e.g., flash memory). The database may be on-board the device and/or contained within the device. Alternatively, the data may be transmitted from a device to an external device, and/or a cloud computing infrastructure. The matrix may be provided by way of one or more spreadsheets, data files having one or more rows and columns. Alternatively, the matrix can be defined by one or more rows and one or more columns existing in a memory or other storage location of a controller or other system on or associated with the point of service device. FIG. 43 is an example of an operational matrix of a point of service system and/or one or more modules of the point of service system. The operational matrix includes three processing states of the module, namely “Centrifuge sample,” “Perform cytometry on sample” and “Conduct agglutination assay on sample.” Each processing state includes one or more routines. For example, the first processing state (“Centrifuge sample”) has six routines, as illustrated i.e., “Remove sample from sample handling system”, “Provide sample in centrifugation tip”, and so on. The routines are listed in order of increasing time. That is, the “Remove sample from sample handling system” routine is performed before the “Provide sample in centrifugation tip” routine. In some situations, operational data is provided in a one-dimensional matrix (i.e., column or row matrix). In other situations, operational data is provided in a two-dimensional matrix, with rows corresponding to routines and columns corresponding to individual systems or system modules. An operational matrix permits a point of service system to determine what processing routines have been conducted by the system at the most granular level of details in the system. This advantageously enables the system to recover from a fault condition in cases in which the system records which processing routines were completed in a particular state prior to a fault condition (e.g., power outage, system crash, module crash). In some embodiments, a method for updating an operational log journal of a point of service system comprises accessing an operational log journal of the point of service system, the operational log journal configured to record operational data corresponding to one or more discrete operational states of the point of service system. The operational log journal may be accessed by the point of service system, a controller of the point of service system, or another system of the point of service system or associated with the point of service system (collectively “the system”). The one or more discrete operational states include one or more predetermined processing routines (e.g., centrifugation, PCR, one or more assays). Next, the system generates one or more processing routines to be performed by the point of service system. The processing routines correspond to one or more operational states of the point of service system. The system then records data corresponding to the one or more processing routines in the operational journal. In some cases, the operational log journal may be part of an operating system of the system. Alternatively, the operational log journal is a software or other computer-implemented application residing on the system or the cloud. In some cases, the journal is implemented (or resides) on a hard disk or a flash drive that is not part of the hard disk. The journaling system may be separately powered by a battery in addition to the external power to provide uninterrupted power supply to the journaling system in case of system crash or disruptions of power from external or other sources. In other cases, the operational journal resides on a storage medium (hard disk, flash drive) of another system, such as a remote system. In another embodiment, the log journaling is consulted when the system boots up and resets the system. If the system has previously crashed or stopped abnormally, the system will use the log journal to bring all modules, components and the system gracefully so the system can be relied upon. In some instances, the system may consult the log journal periodically to monitor the status of each module, component, sub-component and so on and provide real-time recovery of any errors. In another embodiment, the system may use log journal and onboard cameras to provide oversight over the entire system or a given module. In that case, the system may notice anomalies and missteps in real time or near real-time and take corrective action. In another embodiment, the system may send these observations to an external device, such as a cloud, and receive instructions from the external device on how to remedy any errors or missteps in the system. In another embodiment, a method for processing a sample with the aid of a point of service system comprises accessing an operational journal of the point of service system. The operational journal has operational data corresponding to one or more discrete operational states of the point of service system. The one or more discrete operational states include one or more predetermined processing routines. The system sequentially performs a processing routine from the one or more predetermined processing routines, and removes, from the operational journal, data corresponding to a completed processing routine of an operational state of the point of service system. In an embodiment, the data corresponding to the completed processing routine is removed from the operational journal before, during or after sequentially performing the processing routine. In some embodiments, a computer-assisted method for restoring an operational state of a point of service system comprises accessing a sample processing catalog following a fault condition of the point of service system; identifying a last-in-time operational state of the point of service system from the sample processing catalog; identifying a last-in-time sample processing routine from said one or more predetermined sample processing routines, the last-in-time sample processing routine corresponding to the last-in-time operational state of the point of service system; and performing a next-in-time processing routine selected from the one or more predetermined sample processing routines, the next-in-time processing routine following said last-in-time sample processing routine. The sample processing catalog is configured to record operational data corresponding to one or more discrete operational states of the point of service system. In some cases, the operational data is recorded in the sample processing catalog following the completion of a sample processing routine sequentially selected from one or more predetermined sample processing routines. The one or more operational states of the point of service system are selected from the group consisting of sample preparation, sample assaying and sample detection. In some cases, the fault condition is selected from the group consisting of a system crash, a power outage, a hardware fault, a software fault, and an operating system fault. In other embodiments, a computer-assisted method for restoring an operational state of a point of service system comprises accessing an operational journal of the point of service system following a fault condition of the point of service system. Next, one or more processing routines corresponding to the operational data are sequentially replayed from the operational journal. The one or more processing routines are replayed without the point of service system performing the one or more processing routines. The system stops replaying the one or more processing routines when a processing routine from the one or more processing routines corresponds to an operational state of the point of service system prior to the fault condition. The system then restores the point of service system to the operational state prior to the fault condition. In some cases, the operational journal has operational data corresponding to one or more discrete operational states of the point of service system. The one or more discrete operational states include one or more predetermined processing routines. FIG. 44 shows a Plan matrix and a Routine matrix. The plan and routine matrices may be part of one or more operational matrices of a point of service system. The Plan matrix includes predetermined routines to be performed by a point of service system or a module of the point of service system (“the system”). In some embodiments, the routines may be dynamic and may take into account, for example sample type, timing, or information relating to a system crash. The planned routines (“plans”) are sequentially listed, from top to bottom, in the order in which such plans are to be performed by the system. The Routine matrix includes routines (or plans) that have been performed by the system. As the system performs a particular routine, the system records the routine in the routine matrix. Routines are recorded in the routine matrix in the order in which they are performed. The routine at the bottom of the list is the routine that is performed last in time. In some situations, a routine is marked as complete once one or more of the steps necessary for completing the routine have been completed by the system. In an example, following a fault condition, the system accesses the routine matrix to determine the routine performed last in time. The system then begins processing with the plan (from the Plan matrix) selected following the routine last performed in time. In the illustrated example, the system begins processing by providing a centrifugation tip in the centrifuge. In some embodiments, fault recovery may occur with information from an external device (e.g. the cloud). In one embodiment, the system provides a pointer to indicate the last-in-time processing routine to be completed prior to a fault condition. FIG. 45A shows an operational matrix having processing states. Each processing state has one or more routines in a Routine matrix. In the illustrated example, completed routines are shown in black text and routines yet to be completed are shown in gray text. The to-be-completed routines may be populated by reference to a Plan matrix, as described above. The horizontal arrow is a pointer marking the position in the Routine matrix immediately following a last-in-time routine. Following a fault condition, the system begins processing at the position indicated by the horizontal arrow. Here, the system provides a centrifugation tip in a centrifuge. In other cases, the system includes a pointer marking the position of a current and to-be-completed processing routine. In FIG. 45B, the horizontal arrow is a pointer marking the position of a processing routine (“Provide sample in centrifugation tip”) that has not been completed. The system may be performing such processing routine between 0% but less than 100% to completion. Once complete, the horizontal arrow increments to the next routine (the arrow is incremented down along the Routine matrix). Following a fault condition, the system begins processing at the position indicated by the horizontal arrow. As another alternative, the system includes a pointer marking the position of a processing routine to be completed immediately following a current processing routine. In FIG. 45C, the horizontal arrow is a point marking the position of a processing routine (“Provide centrifugation tip in centrifuge”) that is next to be processed. In the illustrated example, the system is still performing the previous processing routine (“Provide sample in centrifugation tip”, as shown in gray). To-be-completed routines may be populated by reference to a Plan matrix, as described above. In some embodiments, tracking processing routines may also include tracking precise locations of one or more components. Tracking a processing routine may include tracking each step or location involved with tracking the processing routine. For example, tracking a location of a component may keep track of the exact distance (e.g., tracking every mm, μm, nm, or less) that a component has moved. Even if a component has not yet reached its destination, the distance that it has traveled on its journey may be tracked. Thus, even if an error occurs, the precise location of the component may be known and may be useful for determining the next steps. In another example, the amount of time an item has been centrifuged may be tracked, even if the centrifuge process has not yet been completed. Components A device may comprise one or more components. One or more of these components may be module components, which may be provided to a module. One or more of these components are not module components, and may be provided to the device, but external to the module. Examples of device components may include a fluid handling system, tips, vessels, microcard, assay units (which may be in the forms of tips or vessels), reagent units (which may be in the form of tips or vessels), dilution units (which may be in form of tips or vessels), wash units (which may in the form of tips or vessels), contamination reduction features, lysing features, filtration, centrifuge, temperature control, detector, housing/support, controller, display/user interface, power source, communication units, device tools, and/or device identifier. One, two, or more of the device components may also be module components. In some embodiments, some components may be provided at both the device level and module level and/or the device and module may be the same. For example, a device may have its own power source, while a module may also have its own power source. FIG. 2 provides a high level illustration of a device 200. The device may have a housing 240. In some embodiments, one or more components of the device may be contained within the device housing. For example, the device may include one or more support structure 220, which may have one or more module 230a, 230b. The device may also have a sample collection unit 210. A device may have a communication unit 280 capable of permitting the device to communicate with one or more external device 290. The device may also include a power unit 270. A device may have a display/user interface 260 which may be visible to an operator or user of the device. In some situations, the user interface 260 displays a user interface, such as graphical user interface (GUI), to a subject. The device may also have a controller 250 which may provide instructions to one or more component of the device. In some embodiments, the display unit on the device may be detachable. In some embodiments, the display unit may also have a CPU, memory, graphics processor, communication unit, rechargeable battery and other peripherals to enable to operate it as a “tablet computer” or “slate computer” enabling it to communicate wirelessly to the device. In some embodiments, the detached display/tablet may be a shared source amongst all devices in one location or a group so one “tablet” can control, input and interact with 1, 2, 5, 10, 100, 1000 or more devices. In some embodiments, the detached display may act as companion device for a healthcare professional to not only control the device, but also act as touch-enabled input device for capturing patient signatures, waivers and other authorizations and collaborating with other patients and healthcare professionals. The housing may surround (or enclose) one or more components of the device. The sample collection unit may be in fluid communication with one or more module. In some embodiments, the sample collection unit may be selectively in fluid communication with the one or more module. For example, the sample collection unit may be selectively brought into fluid communication with a module and/or brought out of fluid communication with the module. In some embodiments, the sample collection unit may be fluidically isolated from the module. A fluid handling system may assist with transporting a sample from a sample collection unit to a module. The fluid handling system may transport the fluid while the sample collection unit remains fluidically or hydraulically isolated from the module. Alternatively, the fluid handling system may permit the sample collection unit to be fluidically connected to the module. The communication unit may be capable of communicating with an external device. Two-way communication may be provided between the communication unit and the external device. The power unit may be an internal power source or may be connected to an external power source. Further descriptions of a diagnostic device and one or more device components may be discussed in greater detail elsewhere herein. Fluid Handling System A device may have a fluid handling system. As previously described, any discussion herein of fluid handling systems may apply to any sampling handling system or vice versa. In some embodiments, a fluid handling system may be contained within a device housing. The fluid handling system or portions of the fluid handling system may be contained within a module housing. The fluid handling system may permit the collection, delivery, processing and/or transport of a fluid, dissolution of dry reagents, mixing of liquid and/or dry reagents with a liquid, as well as collection, delivery, processing and/or transport of non-fluidic components, samples, or materials. The fluid may be a sample, a reagent, diluent, wash, dye, or any other fluid that may be used by the device. A fluid handled by the fluid handling system may include a homogenous fluid, or fluid with particles or solid components therein. A fluid handled by a fluid handling system may have at least a portion of fluid therein. The fluid handling system may be capable of handling dissolution of dry reagents, mixing of liquid and/or dry reagents in a liquid. “Fluids” can include, but not limited to, different liquids, emulsions, suspensions, etc. Different fluids may be handled using different fluid transfer devices (tips, capillaries, etc.). A fluid handling system, including without limitation a pipette, may also be used to transport vessels around the device. A fluid handling system may be capable of handling flowing material, including, but not limited to, a liquid or gaseous fluid, or any combination thereof. The fluid handling system may dispense and/or aspirate the fluid. The fluid handling system may dispense and/or aspirate a sample or other fluid, which may be a bodily fluid or any other type of fluid. The sample may include one or more particulate or solid matter floating within a fluid. In one example, the fluid handling system may use a pipette or similar device. A fluid handling device may be part of the fluid handling system, and may be a pipette, syringe, capillary, or any other device. The fluid handling device may have portion with an interior surface and an exterior surface and an open end. The fluid handling system may also contain one or more pipettes, each of which has multiple orifices through which venting and/or fluid flows may happen simultaneously. In some instances, the portion with an interior surface and an exterior surface and open end may be a tip. The tip may or may not be removable from a pipette nozzle. The open end may collect a fluid. The fluid may be dispensed through the same open end. Alternatively, the fluid may be dispensed through another end. A collected fluid may be selectively contained within the fluid handling device. The fluid may be dispensed from the fluid handling device when desired. For example, a pipette may selectively aspirate a fluid. The pipette may aspirate a selected amount of fluid. The pipette may be capable of actuating stirring mechanisms to mix the fluid within the tip or within a vessel. The pipette may incorporate tips or vessels creating continuous flow loops for mixing, including of materials or reagents that are in non-liquid form. A pipette tip may also facilitate mixture by metered delivery of multiple fluids simultaneously or in sequence, such as in 2-part substrate reactions. The fluid may be contained within a pipette tip, until it is desired to dispense through fluid from the pipette tip. In some embodiments, the entirety of the fluid within the fluid handling device may be dispensed. Alternatively, a portion of the fluid within the fluid handling device may be dispensed. A selected amount of the fluid within the fluid handling device may be dispensed or retained in a tip. A fluid handling device may include one or more fluid handling orifice and one or more tip. For example, the fluid handling device may be a pipette with a pipette nozzle and a removable/separable pipette tip. The tip may be connected to the fluid handling orifice. The tip may be removable from the fluid handling orifice. Alternatively, the tip may be integrally formed on the fluid handling orifice or may be permanently affixed to the fluid handling orifice. When connected with the fluid handling orifice, the tip may form a fluid-tight seal. In some embodiments, a fluid handling orifice if capable of accepting a single tip. Alternatively, the fluid handling orifice may be configured to accept a plurality of tips simultaneously. The fluid handling device may include one or more fluidically isolated or hydraulically independent units. For example, the fluid handling device may include one, two, or more pipette tips. The pipette tips may be configured to accept and confine a fluid. The tips may be fluidically isolated from or hydraulically independent of one another. The fluid contained within the tips may be fluidically isolated or hydraulically independent from one another and other fluids within the device. The fluidically isolated or hydraulically independent units may be movable relative to other portions of the device and/or one another. The fluidically isolated or hydraulically independent units may be individually movable. A fluid handling device may include one, two, three, four or more types of mechanisms in order to dispense and/or aspirate a fluid. For example, the fluid handling device may include a positive displacement pipette and/or an air displacement pipette. The fluid handling device may include piezo-electric or acoustic dispensers and other types of dispensers. The fluid handling device may include, one, two, three, four, five, six, seven, eight, nine, ten, or more positive displacement pipettes. The fluid handling device may be capable of metering (aspirating) very small droplets of fluid from pipette nozzles/tips. The fluid handling device may include one or more, two or more, 4 or more, 8 or more, 12 or more, 16 or more, 20 or more, 24 or more, 30 or more, 50 or more, or 100 or more air displacement pipettes. In some embodiments, the same number of positive displacement pipettes and air displacement pipettes may be used. Alternatively, more air displacement pipettes may be provided than positive displacement pipettes, or vice versa. In some embodiments, one or more positive displacement pipette can be integrated into the “blade” style (or modular) pipetter format to save space and provide additional custom configurations. In some embodiments, a fluid handling apparatus, such as a pipette (e.g., a positive displacement pipette, air displacement pipette, piezo-electric pipette, acoustic pipette, or other types of pipettes or fluid handling apparatuses) described elsewhere herein, may have the capability of picking up several different liquids with or without separation by air “plugs.” A fluid handling apparatus may have the capability of promoting/accelerating reaction with reagents attached to surface (e.g., pipette tip surfaces) by reciprocating movement of the enclosed liquid, thus breaking down an unstirred layer. The reciprocating movement may be driven pneumatically. The motion may be equivalent or comparable to orbital movement of microtiter places to accelerate binding reactions in ELISA assays. A fluid handling device may comprise one or more base or support. The base and/or support may support one or more pipette head. A pipette head may comprise a pipette body and a pipette nozzle. The pipette nozzle may be configured to interface with and/or connect to a removable tip. The base and/or support may connect the one or more pipette heads of the fluid handling device to one another. The base and/or support may hold and/or carry the weight of the pipette heads. The base and/or support may permit the pipette heads to be moved together. One or more pipette head may extend from the base and/or support. In some embodiments, one or more positive displacement pipette and one or more air displacement pipette may share a base or support. Positive Displacement Pipette FIG. 12 shows an exploded view of a positive displacement pipette provided in accordance with an embodiment of the invention. A positive displacement pipette may include a lower portion including a positive displacement pipette tip 1200, a nozzle 1202 and a slotted sleeve 1204. The positive displacement pipette may also include an inner portion including a collette 1212, collette sleeve 1214, collette spring 1216, and collette cap and hammer 1218. The positive displacement pipette may include an upper portion including a screw helix 1220 with a hammer pin 1222, a base 1228, and a DC gearmotor 1230. A positive displacement pipette may permit the dispensing or aspiration of a fluid with a high degree of accuracy and precision. For example, using a positive displacement pipette, the amount of fluid dispensed or aspirated may be controlled to within about 1 mL, 500 microliters (μL, also “ul” herein), 300 μL, 200 μL, 150 μL, 100 μL, 50 μL, 30 μL, 10 μL, 5 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 10 pL, or 1 pL. A positive displacement pipette may have a low coefficient of variation (CV). For example, the CV may be 10% or less, 8% or less, 5% or less, 3% or less, 2% or less, 1.5% or less, 1% or less, 0.7% or less, 0.5% or less, 0.3% or less, 0.1% or less, 0.05% or less, 0.01% or less, 0.005% or less, or 0.001% or less. In some cases, a positive displacement pipette having such a coefficient of variation may be configured to handle sample (e.g., fluid) volumes less than or equal to 10 mL, 5 mL, 3 mL, 2 mL, 1 mL, 0.7 mL, 0.5 mL, 0.4 mL, 0.3 mL, 250 μL, 200 μL, 175 μL, 160 μL, 150 μL, 140 μL, 130 μL, 120 μL, 110 μL, 100 μL, 70 μL, 50 μL, 30 μL, 20 μL, 10 μL, 7 μL, 5 μL, 3 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 50 pL, 10 pL, 5 pL, 1 pL. In other cases, a positive displacement pipette having such a coefficient of variation is configured to handle sample volumes greater than 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, 100 mL, or higher. A positive displacement pipette may cause the fluid to be dispensed and/or aspirated by trapping a fixed amount of the fluid, and discharging it by altering the volume of the cavity in which the fluid is trapped. The positive displacement pipette may trap the fluid without also trapping air. In another embodiment, a single pipette may be capable of trapping multiple quantities or types of liquid by separating the trapped liquids with “plugs” of air. The tip of the positive displacement pipette may include a plunger that may directly displace the fluid. In some embodiments, the tip of the positive displacement pipette may function as a microsyringe, where the internal plunger may directly displace the liquid. A positive displacement pipette may have a variety of formats. For example, the plunger may slide up and down based on various actuation mechanisms. The use of a screw helix 1220 with a hammer pin 1222 may advantageously permit a great degree of control on the volume aspirated and/or dispensed. This may be very useful in situations where small volumes of fluid are handled. The screw helix may be mechanically coupled to a motor 1230. The motor may rotate, thereby causing the screw helix to rotate. In some embodiments, the screw helix may be directly linked to the motor so that the helix turns the same amount to that the motor turns. Alternatively, the screw helix may be indirectly coupled to the motor so that the helix may turn some ratio relative to the amount that the motor turns. The hammer pin 1222 may be positioned through the screw helix 1220. The hammer pin may have an orthogonal orientation in relation to the screw helix. For example, if the screw helix is vertically aligned, the hammer pin may be horizontally aligned. The hammer pin may pass through the screw helix at two points. In some embodiments, the screw helix and hammer pin may be positioned within a slotted sleeve 1204. An end of the hammer pin may fit within the slot of the sleeve. In some embodiments, the slotted sleeve may have two slots, and the hammer pin may have two ends. A first end of the hammer pin may be within a first slot of the sleeve, and a second end of the hammer may be within a second slot of the sleeve. The slots may prevent the hammer pin from rotating. Thus, when the screw helix is turned by a motor, the hammer pin may travel up and down along the slots. As the hammer pin 1222 may optionally pass through a collet cap and hammer 1218. The collet cap may be directly or indirectly connected to a collet. The collet may be capable of passing into and through at least a portion of a pipette nozzle 1202. As the hammer pin may travel up and down the slots, the collet may also travel up and down the slot. The collet pin may travel up and down the same amount that the hammer pin travels. Alternatively, the collet pin may travel some ratio of the distance that the hammer pin travels. The collet pin may be directly or indirectly coupled to the hammer pin. The collet preferably does not directly contact the fluid collected in and/or dispensed by a pipette tip. Alternatively the collet may contact the fluid. The collet may contact a plunger that may preferably directly contact the fluid collected in and/or dispensed by a pipette tip. Alternatively, the plunger may not directly contact the fluid. The amount that the collet moves up and down may determine the amount of fluid dispensed. The use of a screw helix may provide a high degree of control of the amount of fluid dispensed and/or aspirated. A significant amount of motion rotating the screw may translate to a small amount of motion for the hammer pin sliding up and down, and thus, the plunger within the pipette tip. A positive displacement pipette may have a full aspiration position and a full dispense position. When the pipette is in a full aspiration position, the collet may be at a top position. When the pipette is in a full dispense position, the collet may be at a bottom position. The pipette may be capable of transitioning between a full aspiration and a full dispense position. The pipette may be capable of having any position between a full aspiration and full dispense position. The pipette may have a partially aspirated and partially dispensed position. The pipette may stop at any in-between position smoothly in an analog manner. Alternatively, the pipette may stop at particular in-between positions with fixed increments in a digital manner. The pipette may move from a dispense to aspirated position (e.g., have the collet assembly move upward toward the motor) in order to aspirate or draw a fluid in. The pipette may move from an aspirated to a dispense position (e.g., have the collet assembly move downward away from the motor) in order to dispense or eject some fluid out. FIG. 13 shows an exterior side view and a side cross-section of a positive displacement tip in a top position (e.g., full aspiration position). The pipette tip is not shown for clarity. A motor 1300 may be coupled to a helix 1310. The helix may be located beneath the motor. The helix may be located between a motor and a positive displacement tip. A collet assembly 1320 may be located within the helix. The helix may wrap around, or surround, the collet assembly. A plunger spring 1330 may be provided between the collet assembly 1320 and the helix 1310. The collet assembly may have a shelf or protruding portion, upon which one end of the plunger spring may be supported, or rest. The pipette nozzle 1340 may have another shelf or protruding portion upon which one end of the plunger spring may be supported or rest. The plunger spring may be located between a pipette nozzle, and a top portion of a collet. When a positive displacement pipette is in its full aspiration position, the plunger spring may be in an extended state. The plunger spring may keep a collet assembly at an upper position, when the pipette is in an aspirated position. FIG. 14 shows an exterior side view and a side cross-section of a positive displacement tip in a bottom position (e.g., full dispense position). A motor 1400 may be coupled to a helix 1410. The helix may be located beneath the motor. The helix may be located between a motor and a positive displacement tip. A collet assembly 1420 may be located within the helix or at least partially beneath the helix. The helix may wrap around, or surround, the collet assembly. A plunger spring 1430 may be provided at least partially between the collet assembly 1420 and the helix 1410. The collet assembly may have a shelf or protruding portion, upon which one end of the plunger spring may be supported, or rest. The pipette nozzle 1440 may have another shelf or protruding portion upon which one end of the plunger spring may be supported or rest. The plunger spring may be located between a pipette nozzle, and a top portion of a collet. The plunger spring may surround at least a portion of the collet assembly. When a positive displacement pipette is in its full dispense position, the plunger spring may be in a compressed state. The collet assembly may be driven downward toward the tip, thereby compressing the spring. The pipette may have two (or more) plungers and/or collets that enable aspiration/dispensing of two materials and subsequent mixing; for example, processing of an epoxy, which is a copolymer that is formed from two different chemicals; the mixing and metering can be finely controlled with respect to volumes and times. A positive displacement tip plunger 1450 may be connected to the collet assembly 1420. The plunger may be located beneath the collet assembly. The plunger may be located between the collet assembly and the tip. The positive displacement tip plunger may include an elongated portion that may be capable of extending at least partially through the pipette tip. In some embodiments, the elongated portion may be long enough to extend completely through the pipette tip when in a full dispense position. In some embodiments, when in full dispense position, the elongated portion of the plunger may extend beyond the pipette tip. The end of the plunger may or may not directly contact a fluid aspirated and/or dispensed by the positive displacement pipette. In some embodiments, the plunger may have a protruding portion or shelf that may rest upon the collet assembly. The plunger may move up and down the same amount that a collet assembly moves up and down. The pipette tip may have any configuration of tips as described elsewhere herein. For example, the pipette tip may have a positive displacement tip as illustrated by FIG. 14 or FIG. 27. The positive displacement tip may be configured to confine and accept any volume of fluid, including those described elsewhere herein. Referring now to FIG. 91, one embodiment of an engagement mechanism for a positive displacement (PD) tip will now be described. As seen in FIG. 91, the ‘collet driver’ 1460 can be magnetically or mechanically connected to any mechanism that can drive it relative to a stationary ‘housing’ 1462. This embodiment may include a compression spring 1464, a collet sleeve 1466, and the collet 1468. The motion of the collet driver 1460 causes the same effect in the rest of the system as the motion of the ‘hammer pin’ in the ‘helix’ in the other embodiments of the PD tips. By having this setup with the compression spring 1464 inside the collet sleeve 1466, the drive actuator does not have to be in-line with the PD assembly, and the PD mechanism is independent of actuation method. The entire assembly may be part of the pipette mechanism. Air Displacement Pipette FIG. 15 shows an exterior view of an air displacement pipette provided in accordance with an embodiment of the invention. An air displacement pipette may include a pipette tip 1500 and an external removal mechanism 1510 for removing the pipette tip from a pipette nozzle 1520. An air displacement pipette may permit the dispensing or aspiration of a fluid with a high degree of accuracy and precision. For example, using an air displacement pipette, the amount of fluid dispensed or aspirated may be controlled to within about 3 mL, 2 mL, 1.5 mL, 1 mL, 750 μL, 500 μL, 400 μL, 300 μL, 200 μL, 150 μL, 100 μL, 50 μL, 30 μL, 10 μL, 5 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, or 1 nL. In some embodiments, a positive displacement pipette may have a higher degree of accuracy and/or precision than an air displacement pipette. In some embodiments, one or more pipettes, such as one or more of an air displacement pipette, positive displacement pipette and suction-type pipette, may have a low coefficient of variation (CV). For example, the CV may be 15% or less, 12% or less, 10% or less, 8% or less, 5% or less, 3% or less, 2% or less, 1.5% or less, 1% or less, 0.7% or less, 0.5% or less, 0.3% or less, or 0.1% or less. In some cases, a pipette (e.g., positive displacement pipette, air displacement pipette, or suction-type pipette) having such a coefficient of variation may be configured to handle sample (e.g., fluid) volumes less than or equal to 10 mL, 5 mL, 3 mL, 2 mL, 1 mL, 0.7 mL, 0.5 mL, 0.4 mL, 0.3 mL, 250 μL, 200 μL, 175 μL, 160 μL, 150 μL, 140 μL, 130 μL, 120 μL, 110 μL, 100 μL, 70 μL, 50 μL, 30 μL, 20 μL, 10 μL, 7 μL, 5 μL, 3 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 50 pL, 10 pL, 5 pL, 1 pL. In other cases, a pipette (e.g., positive displacement pipette, air displacement pipette, or suction-type pipette) having such a coefficient of variation is configured to handle sample volumes greater than 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, 100 mL, or higher. Various types and combinations of pipettes provided herein (e.g., positive displacement pipette, air displacement pipette, or suction-type pipette) are configured to have such a coefficient of variation while handling the sample volumes set forth herein. An air displacement pipette may have a low coefficient of variation (CV). For example, the CV may be 10% or less, 8% or less, 5% or less, 3% or less, 2% or less, 1.5% or less, 1% or less, 0.7% or less, 0.5% or less, 0.3% or less, 0.1% or less, 0.05% or less, 0.01% or less, 0.005% or less, or 0.001% or less. In some cases, an air displacement pipette having such a coefficient of variation may be configured to handle sample (e.g., fluid) volumes less than or equal to 10 mL, 5 mL, 3 mL, 2 mL, 1 mL, 0.7 mL, 0.5 mL, 0.4 mL, 0.3 mL, 250 μL, 200 μL, 175 μL, 160 μL, 150 μL, 140 μL, 130 μL, 120 μL, 110 μL, 100 μL, 70 μL, 50 μL, 30 μL, 20 μL, 10 μL, 7 μL, 5 μL, 3 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 50 pL, 10 pL, 5 pL, 1 pL. In other cases, an air displacement pipette having such a coefficient of variation is configured to handle sample volumes greater than 10 mL, 20 mL, 30 mL, 40 mL, 50 mL, 100 mL, or higher. An air displacement pipette may cause the fluid to be dispensed and/or aspirated by generating a vacuum by the travel of a plunger within an air-tight sleeve. As the plunger moves upward, a vacuum is created in the space left vacant by the plunger. Air from the tip rises to fill the space left vacant. The tip air is then replaced by the fluid, which may be drawn into the tip and available for transport and dispensing elsewhere. In some embodiments, air displacement pipettes may be subject to the changing environment, such as temperature. In some embodiments, the environment may be controlled in order to provide improved accuracy. The air displacement pipette may have a variety of formats. For example, the air displacement pipette may be adjustable or fixed. The tips may be conical or cylindrical. The pipettes may be standard or locking. The pipettes may be electronically or automatically controlled, or may be manual. The pipettes may be single channeled or multi-channeled. FIG. 16 shows a cross-sectional view of air displacement pipette. The air displacement pipette may include a pipette tip 1600 and an external removal mechanism 1610 for removing the pipette tip from a pipette nozzle 1620. The removal mechanism may be positioned to contact an end of the pipette tip. The removal mechanism may be positioned above the pipette tip at the end opposing an end of the pipette tip that dispenses and/or aspirates a fluid. The pipette tip may have a shelf or protruding portion upon which the removal mechanism may rest. The pipette tip may have any format of any tip as described elsewhere herein. For example, the tip may be a nucleic acid tip, centrifugation extraction tip, bulk handling tip, color tip, blood tip, minitip, microtip, nanotip, fentotip, picotip, and the like, or may have features or characteristics of any tips described in FIGS. 24 to 34. FIG. 17 shows a close-up of an interface between a pipette tip 1700 and a nozzle 1720. A removal mechanism 1710 may be positioned to contact the pipette tip. A pipette nozzle may have a protruding portion 1730 or a shelf that may contact a removal mechanism. The nozzle shelf may prevent the removal mechanism from traveling too far upwards. The nozzle shelf may provide a desired position for the removal mechanism. A pipette nozzle may also have one or more sealing element 1740. The sealing elements may be one or more O-rings or other similar materials known in the art. The sealing elements may contact a pipette tip when the pipette tip is attached to the nozzle. The sealing element may permit a fluid-tight seal to be formed between the pipette tip and the nozzle. The sealing element may keep the pipette tip attached to the nozzle in the absence of an outside force. The pipette tip may be friction-fit to the pipette nozzle. An interior channel 1750 or chamber may be provided within the pipette nozzle. The pipette tip may have an interior surface 1760 and interior region 1770. The interior channel of the pipette nozzle may be in fluid communication with the interior region of the pipette tip. A plunger may travel through the channel of the pipette nozzle and/or the interior region of the pipette tip. The plunger may permit the aspiration or dispensing of a fluid from the pipette tip. The plunger may or may not directly contact the fluid. In some embodiments, air may be provided between the plunger and the fluid. FIG. 18 shows an example of an actuation of a removal mechanism 1810. The removal mechanism may cause a pipette tip 1800 to be removed from a nozzle 1820. The removal mechanism may be provided external to the pipette tip and nozzle. The removal mechanism may be moved downward, in order to push the pipette tip off the nozzle. Alternatively, the pipette nozzle may be moved upward, causing the pipette tip to be caught on the removal mechanism and pushed off. The removal mechanism may move relative to the pipette nozzle. The removal mechanism may contact a pipette tip at the top of the pipette tip. The removal mechanism may contact the pipette tip on a side of the pipette tip. The removal mechanism may go partially or completely around the pipette tip. FIG. 19A shows a plurality of pipettes with an external removal mechanism. For example, eight pipette heads may be provided. In other embodiments of the invention, any other number of pipette heads, including those described elsewhere herein, may be used. FIG. 19B shows a side view of a pipette head. The pipette head may include a pipette tip 1900. The pipette tip may be removable coupled to a pipette nozzle 1920. An external removal mechanism 1910 may be provided. The external removal may be in contact with the pipette tip or may come into contact with the pipette tip. The pipette nozzle may be coupled to a support 1930 of the pipette. The pipette support may be coupled to a motor 1940 or other actuation mechanism. FIG. 20A to C show cross-sectional views of an air displacement pipette. The air displacement pipette may include a pipette tip 2000 and an external removal mechanism 2010 for removing the pipette tip from a pipette nozzle 2020. The removal mechanism may be positioned to contact an end of the pipette tip. The removal mechanism may be positioned above the pipette tip at the end opposing an end of the pipette tip that dispenses and/or aspirates a fluid. The pipette tip may have a shelf or protruding portion upon which the removal mechanism may rest. The removal mechanism 2010 may travel up and down to remove a pipette tip from a nozzle. The removal mechanism may be coupled to an actuation mechanism that may permit the removal mechanism to travel up and down. In some embodiments, the removal mechanism may be directly coupled to the actuation mechanism. Alternatively, the removal mechanism may be indirectly coupled to the actuation mechanism. One or more switch may be provided between a removal mechanism and an actuation mechanism that may determine whether the removal mechanism responds to the actuation mechanism. The switch may be a solenoid or other mechanism. The air displacement pipette may also include an internal plunger 2030. The plunger may travel through an interior portion of a pipette nozzle. The plunger may be coupled to an actuation mechanism that may permit the plunger to travel up and down. In some embodiments, the plunger may be directly coupled to the actuation mechanism. Alternatively, the plunger may be indirectly coupled to the actuation mechanism. One or more switch may be provided between a plunger and an actuation mechanism that may determine whether the plunger responds to the actuation mechanism. The switch may be a solenoid or other mechanism. FIG. 20A shows a plunger in a down position, as well as a removal mechanism in a down position, thereby pushing a tip down relative to the pipette nozzle. FIG. 20B shows a plunger in an intermediate position, as well as a removal mechanism in an up position, thereby permitting a tip to be attached to the pipette nozzle. FIG. 20C shows a plunger in an up position, as well as a removal mechanism in an up position, thereby permitting a tip to be attached to the pipette nozzle. FIG. 21 shows a plurality of pipettes with removal mechanisms. For example, eight pipette heads may be provided. In other embodiments of the invention, any other number of pipette heads, including those described elsewhere herein, may be used. A support structure 2100 for the pipettes may be provided. One or more pipette sleeve 2110 may be provided through which a plunger may extend. A spring 2120 may be provided in accordance with an embodiment of the invention. The spring may be compressed when the plunger is moved down. The spring may be extended when the plunger is an up position. One or more switching mechanisms, such as solenoids 2130 may be provided. An actuation mechanism, such as a motor 2140 may be provided for the plurality of pipettes. The actuation mechanism may be coupled to the plungers and/or removal mechanisms of the pipettes. In some embodiments, the actuation mechanisms may be directly coupled to the plungers and/or removal mechanisms. Alternatively, the actuation mechanisms may be indirectly connected to the plungers and/or removal mechanisms. In some embodiments, one or more switches may be provided between the actuation mechanism and the plunger and/or removal mechanism. The switch may determine whether the plunger and/or removal mechanism responds to the actuation mechanism. In some embodiments, the switches may be solenoids. In some embodiments, a single actuation mechanism may be used to control each of the pipettes pistons for the multi-head pipette. Switches may be provided for each of the pipette pistons so that actuation may be individually controllable for each of the pipette pistons. In some embodiments, the pipette piston can dynamically change its volume, thereby optimizing performance for the required sample volumes to be aspirated/dispensed; for example, the piston can be a tube within a tube that is expandable to dynamically control volume. In some embodiments, switches may be provided for groups of pipette pistons so that the actuation may be individually controllable between each of the groups of pipette pistons. A single actuation mechanism may be used to control each of the pipette pistons. In some embodiments, single actuation mechanisms may be used to control groups of pipette pistons. Alternatively, each pipette piston may be connected to its own individual actuation mechanism. Thus, one, two, three, four or more actuation mechanisms, (such as motors) may be provided for a pipette piston. FIG. 22 shows an example of a multi-head pipette in accordance with an embodiment of the invention. The individual pipette heads on the multi-head pipette may be individually actuatable or may have individually actuatable components. For example, a removal mechanism 2200 for one of the pipette heads may be in an up position, while the other removal mechanisms 2210 may be in a down position. A switch, such as a solenoid 2220, may be disengaged for that one pipette head, while the switches may be engaged for the other pipette head. Thus, when an actuation mechanism, such as a motor 2230, is engaged to move the removal mechanisms downward to remove pipette tips from pipette nozzles, the one disengaged switch may cause that one removal mechanism to not move downward with the others. The disengaged removal mechanism may remain in its place. This may cause the pipette tip to remain on the disengaged pipette, while pipette tips are removed from other pipettes. In another example, a plunger 2250 for one of the pipette heads may be in an up position, while the other plungers 2260 may be in a down position. A switch, such as a solenoid, may be disengaged for that one pipette head, while the switches may be engaged for the other pipette head. Thus, when an actuation mechanism, such as a motor, is engaged to move the plungers downward to dispense fluid or to remove pipette tips from pipette nozzles, the one disengaged switch may cause that one plunger to not move downward with the others. The disengaged plunger may remain in its place. This may cause the pipette tip to remain on the disengaged pipette, while pipette tips are removed from other pipettes, or may prevent fluid from being dispensed from the disengaged pipette while fluid is dispensed at other pipettes. In some embodiments, a disengaged switch may prevent a pipette tip from being removed, or fluid from being dispensed. In some embodiments, a disengaged switch may prevent a pipette tip from being picked up. For example, the engaged switches may cause pipette heads to actuate downward to pick up a pipette tip, while pipette heads coupled with disengaged switches remain in a retracted position. In another example, engaged switches may cause one or more mechanism that picks up a pipette head to actuate to pick up the head while disengaged switches prevent one or more pipette tip pick-up mechanism from operating. In some additional embodiments, a disengaged switch may prevent a pipette tip from aspirating a fluid. For example, engaged switches may cause an internal plunger or other mechanism to move upwards to aspirate a fluid. A disengaged switch may cause a plunger to remain in its place. Thus, aspiration of fluids in multi-head pipettes may be individually controlled while using one or more actuation mechanism. A removal mechanism may be provided external to a pipette nozzle, or internal to the pipette nozzle. Any description herein of any type of removal mechanism may also refer to other types of removal mechanisms. For example, descriptions of individually actuatable external removal mechanisms may also apply to internal removal mechanisms that may have a plunger form or other form that may be provided within a nozzle. An actuation mechanism may be configured to actuate components in a plurality of pipettes. For example, an actuation mechanism may be configured to actuate removal mechanisms. An actuation mechanism may be cable of actuating both a first removal mechanism and a second removal mechanism. A first solenoid may be operatively provided between the actuation mechanism and the first removal mechanism. A second solenoid may be operatively provided between the actuation mechanism and the second removal mechanism. The first solenoid may be engaged or disengaged to determine whether actuation by the actuation mechanism may cause movement of the removal mechanism. The second solenoid may be engaged or disengaged to determine whether actuation by the actuation mechanism may cause movement of the removal mechanism. The first and second solenoids may be engaged or disengaged independent of one another. Each of the solenoids for individual pipettes or groups of pipettes controlled by an actuation mechanism may be engaged or disengaged in response to one or more signals received from a controller. In some embodiments, the actuation mechanism may be located on the top of a pipette. The actuation mechanism may be located on a support structure at an end opposing the pipette tips. The actuation mechanism may be located on a support structure at an end opposing the pipette nozzles. The actuation mechanism may comprise one or more shaft that may be oriented parallel to one or more pipette tip. The actuation mechanism may have an axis of rotation that may be parallel to an axis extending along the height of one or more pipette tip. FIG. 23 shows an example of a multi-head pipette 2300 provided in accordance with another embodiment of the invention. An actuation mechanism 2310 may be located on any portion of a pipette. For example, the actuation mechanism may be located on a side of the support structure. Alternatively it may be located on a top or bottom portion of a support structure. The actuation mechanism may be located to a side of the support structure opposing the pipette nozzles 2320. The actuation mechanism may comprise one or more shaft 2330 that may be oriented perpendicular to one or more pipette tip 2340. The actuation mechanism may have an axis of rotation that may be perpendicular to an axis extending along the height of one or more pipette tip. For example, a pipette tip may have a vertical orientation, while an actuation mechanism may have a shaft or axis of rotation having a horizontal orientation. Alternatively, the actuation mechanism shaft or axis may be at any angle relative to the one or more pipette tip. One or more pipette head or pipette support 2350 may have a bent configuration. For example, a pipette support may have a horizontal component 2350a that meets a vertical component 2350b. In some embodiments, fluid may only be provided to a vertical component of the pipette. Alternatively, fluid may or may not flow to a horizontal component of the pipette. A pipette may have a single piston or plunger that can be linked to two or more nozzles or tips and a valve or switch can be used to enable aspiration/dispensing through one or more of the nozzles or tips. One or more switches 2360 may be provided. The switches may be individually controllable. Examples of switches and controls as described elsewhere herein may apply. The actuation mechanism may be capable of driving one or more pipette actuation component, such as pipette tip remover, one or more pipette tip mounter, one or more fluid dispensing mechanism, and/or one or more fluid aspirating mechanism. The switches may determine whether one or more of the pipette actuation components are moved or not. Having a side mounted actuation mechanism may reduce one or more dimensions of the multi-head pipette. For example, a side mounted actuation mechanism may reduce the vertical dimension of the multi-head pipette while maintaining the same barrel volume, and hence pipette capacity. Depending on the desired placement of the pipette within the device and/or module or other constraints in the device and/or module, a top mounted, side mounted, or bottom mounted actuation mechanism may be selected. Having a single actuation mechanism that causes the actuation of all the pipette actuation components may also reduce the dimensions for the multi-head pipette. A single actuation mechanism may control a plurality of the pipette actuation components. In some embodiments, one or more actuation mechanisms may be provided to control a plurality of pipette actuation components. FIG. 46 shows an example of a fluid handling apparatus in a collapsed position, provided in accordance with another embodiment of the invention. The fluid handling apparatus may include one or more tips 4610, 4612, 4614. In some embodiments, a plurality of tip types may be provided. For example, a positive displacement tip 4610 may be provided, an air displacement nozzle tip 4612, and an air displacement mini-nozzle tip 4614 may be provided. A base 4620 may be provided, supporting one or more pipette head. A positive displacement motor 4630 may be coupled to a positive displacement pipette head 4635. A fluid handling apparatus may include a manifold 4640. The manifold may include one or more vent ports 4642. A vent port may be fluidically connected to the fluid path of a pipette head. In some embodiments, each pipette head may have a vent port. In some instances, each air displacement pipette head may have a vent port. A tubing 4644 may be connected to the manifold. The tubing may optionally connect the manifold to a positive or negative pressure source, ambient air, or a reversible positive/negative pressure source. A thermal spreader 4650 may be provided for a fluid handling apparatus. The thermal spreader may provide isothermal control. In some embodiments, the thermal spreader may be in thermal communication with a plurality of pipette heads. The thermal spreader may assist with equalizing temperature of the plurality of pipette heads. A fluid handling apparatus may have one or more support portion. In some embodiments, the support portion may include an upper clamshell 4660 and a lower clamshell 4665. FIG. 46A shows a collapsed fluid handling apparatus as previously described, in a fully retracted position. FIG. 46B shows a collapsed fluid handling apparatus, in a full z-drop position. In a full z-drop position, an entire lower clamshell 4665 may be lowered relative to the upper clamshell 4660. The lower clamshell may support the pipette heads and nozzles. The pipette heads and nozzles may move with the lower clamshell. The lower clamshell may include a front portion 4667 which supports the pipette heads, and a rear portion 4668 which supports an actuation mechanism and switching mechanisms. FIG. 47 shows an example of a fluid handling apparatus in an extended position in accordance with an embodiment of the invention. The fluid handling apparatus may include one or more tips 4710, 4712, 4714. A positive displacement tip 4710 may be provided, an air displacement nozzle tip 4712, and an air displacement mini-nozzle tip 4714 may be provided. The fluid handling apparatus may also include one or more nozzles 4720, 4722, 4724. A positive displacement nozzle 4720, an air displacement nozzle 4722, and an air displacement mini-nozzle 4724 may be provided. The nozzles may interface with their respective tips. In some instances, the nozzles may connect to their respective tips via press-fit or any other interface mechanism. One or more tip ejector 4732, 4734 may be provided. For example, a regular tip ejector 4732 may be provided for removing an air displacement tip 4712. One or more mini-ejector 4734 may be provided for removing an air displacement mini-tip 4714. The ejectors may form collars. The ejectors may be designed to push the tips off. The ejectors may be located beneath the nozzles. The fluid handling apparatus may be in a full z-drop position with a lower clamshell 4765 lowered relative to an upper clamshell 4760. Furthermore, a z-clutch-bar 4770 may be provided which may engage any or all of the pipettes for individualized and/or combined nozzle drop (i.e. nozzle extension). FIG. 47 shows an example where all nozzles are dropped. However, the nozzles may be individually selectable to determine which nozzles to drop. The nozzles may drop in response to a single actuation mechanism, such as a motor. A switching mechanism may determine which pipettes are engaged with the bar. The clutch bar 4770 illustrated shows the nozzles in a dropped position, with the clutch bar lowered. A z-motor encoder 4780 may be provided. The encoder may permit the tracking of the location of the motor movement. An x-axis slider 4790 may be provided in accordance with some embodiments. The x-axis slider may permit the fluid handling apparatus to move laterally. In some embodiments, the fluid handling apparatus may slide along a track. FIG. 48 shows a front view of a fluid handling apparatus. A protector plate 4810 may be provided in some embodiments. The protector plate may protect portions of the pipette head. The protector plate may protect a fluid path of the pipette head. In one example, the protector plate may be provided for rigid tubing, connecting pipette cavities to nozzles. The protector plate may be connected to a thermal spreader or may be integrally incorporated with a thermal spreader. As previously described, multiple types of pipettes and/or tips may be provided. One or more positive displacement pipette and/or one or more air displacement pipettes may be used. In some instances, the protector plate may only cover the air displacement pipettes. Alternatively, the protector place may cover the positive displacement pipette only, or may cover both. FIG. 49 shows a side view of a fluid handling apparatus. A fluid handling apparatus may include a pipette head, which may include a nozzle head 4902, which may be configured to connect to a tip 4904. The tip may be removably connected to the pipette nozzle. One or more pipette nozzle may be supported by a nozzle-drop shaft 4920. A z-motor 4922 may be provided, which when actuated, may cause one or more nozzle to drop (e.g., extend). One or more solenoid 4924, or other switching mechanism may be provided to selectively connect the z-motor with the nozzle-drop shaft. When the solenoid is in an “on” position, actuation of the z-motor may cause the nozzle-drop shaft to be lowered or raised. When the solenoid is in an “off” position, actuation of the z-motor does not cause movement of the nozzle-drop shaft. Tubing 4910 may be provided through the pipette head, and terminating at the pipette nozzle. The tubing may have a portion with rigid inner tubing 4910a, and rigid outer tubing 4910b. In some instances, the rigid inner tubing may be movable while the rigid outer tubing is stationary. In other embodiments, the rigid inner tubing may be movable or stationary, and the rigid outer tubing may be movable or stationary. In some embodiments, the inner tubing may be movable relative to the outer tubing. The overall length of the tubing may be variable. A plunger 4930 may be provided within the fluid handling apparatus. The plunger may provide metering within a pipette cavity. An extension of the pipette cavity 4935 may be provided. In some instances, the extension of the pipette cavity may be in fluid communication with the tubing 4910. Alternatively, the tubing and the pipette cavity are not in fluid communication. In some embodiments, the pipette cavity and the tubing are parallel to one another. In other embodiments, the pipette cavity and the tubing are substantially non-parallel to one another. They may be substantially perpendicular to one another. The tubing may have a substantially vertical orientation while the pipette cavity may have a substantially horizontal orientation, or vice versa. In some embodiments, a pipette and tip may act in a push/pull fashion, such as in a multi-lumen tubing arrangement, to aspirate and dispense simultaneously or sequentially. One or more valves 4937 may be provided for controlling vent port access to the pipettes. In some instances, a valve may correspond to an associated pipette. A valve may determine whether a vent port is open or closed. A valve may determine the degree to which a vent port is open. The vent port may be in communication with a pressure source, such as a positive or negative pressure source. The vent port may be in communication with ambient air. The vent port may provide access to a tubing 4910 from a manifold. A clutch-bar 4940 for individual metering may be provided. The clutch bar may be connected to a motor that may be used to drive the metering of the fluid. A guide shaft 4942 may optionally be provided. One or more solenoid 4945 or other switching mechanism may be provided in communication with the clutch-bar. The solenoid or other switching mechanism may be provided to selectively connect the motor with the plunger 4930. When the solenoid is in an “on” position, actuation of the metering motor may cause the plunger to be engaged and move to dispense and/or aspirate a fluid. When the solenoid is in an “off” position, actuation of the metering motor does not cause movement of the plunger. A plurality of plungers may be provided, each being associated with its respective solenoid, which may selectively be in an on or off position. Thus, when a motor is actuated, only the plungers associated with “on” solenoids may respond. FIG. 50 shows another side view of a fluid handling apparatus. The view includes a view of the motor 5010 used for metering. The motor may be used for metering fluid within the air displacement pipettes. An encoder 5020 for the motor is also illustrated. The encoder may permit the tracking of the motor movement. This ensures that the plunger position is known at all times. FIG. 51 shows a rear perspective view of a fluid handling apparatus. The fluid handling apparatus may include a pump 5110. The pump may be in fluid communication with a pipette cavity. In some instances, the pump may be brought into or out of fluid communication with the pipette cavity. The pump may be in fluid communication with a manifold, and/or vent port. The pump may pump (or effect the movement of) liquid or air. The pump may provide positive pressure and/or negative pressure. The pump may be a reversible pump that may be capable of providing both positive and negative pressure. The pump may be actuated in pipettes containing pistons to permit the pipette to aspirate or dispense any volume of liquid, without limitation by the positive displacement that a given piston size is capable of generating. This factor, in combination with large volume tips, could permit a small pipette to aspirate or dispense large volumes of liquid for certain applications. The pump may permit the pipette to function without motor or piston, while still providing fine control through pulse-width modulation. A fluid handling apparatus may also include an accumulator 5120 with one or more valves that may connect to a pressure source or ambient conditions. The accumulator may optionally connect to the reversible pump, which may provide positive or negative pressure. A multi-headed fluid handling apparatus, such as a multi-headed pipette may be capable of picking up multiple tips/vessels on several pipette nozzles at the same time. For example, multiple pipette nozzles may extend to pick up multiple tips/vessels. The multiple pipette nozzles may be individually controllable to determine which tips/vessels are picked up. Multiple tips/vessels may be picked up simultaneously. In some instances, all pipette nozzles may pick up pipette tips/vessels substantially simultaneously. In some embodiments, pipettes do not include plungers. A sample (e.g., fluid) may be moved in or with the aid of the pipette using positive and/or negative pressure. In some situations, positive or negative pressure is provided with the aid of a gas or vacuum, respectively. Vacuum may be provided using a vacuum system having one or more vacuum pumps. Positive pressure may be provided with the aid of pressurized air. Air may be pressurized using a compressor. Dimensions/Ranges One or more dimensions (e.g., length, width, or height) of a pipette may be less than or equal to about 1 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 112 mm, 12 cm, 15 cm, 20 cm, 25 cm, 30 cm, or any other dimension described elsewhere herein. One or more dimensions may be the same, or may vary. For example, the height of a pipette may not exceed 1 mm, 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 5.5 cm, 6 cm, 6.5 cm, 7 cm, 8 cm, 9 cm, 10 cm, 11 cm, 12 cm, 13 cm, 15 cm, 17 cm, 20 cm, 25 cm, or 30 cm. In some embodiments, a pipette may have a total volume of 1 cm3 or less, 5 cm3 or less, 8 cm3 or less, 10 cm3 or less, 15 cm3 or less, 20 cm3 or less, 25 cm3 or less, 30 cm3 or less, 35 cm3 or less, 40 cm3 or less, 50 cm3 or less, 60 cm3 or less, 70 cm3 or less, 80 cm3 or less, 90 cm3 or less, 100 cm3 or less, 120 cm3 or less, 150 cm3 or less, 200 cm3 or less, 250 cm3 or less, 300 cm3 or less, or 500 cm3 or less. The pipette may have one or more pipette head. In some embodiments, an individual pipette head of the pipette may be able to dispense any volume of fluid. For example, the individual pipette head may be capable of dispensing and/or aspirating fluids of no more than and/or equal to about 10 mL, 5 mL, 3 mL, 2 mL, 1 mL, 0.7 mL, 0.5 mL, 0.4 mL, 0.3 mL, 250 μL, 200 μL, 175 μL, 160 μL, 150 μL, 140 μL, 130 μL, 120 μL, 110 μL, 100 μL, 70 μL, 50 μL, 30 μL, 20 μL, 10 μL, 7 μL, 5 μL, 3 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 50 pL, 10 pL, 5 pL, 1 pL, or any other volume described elsewhere herein. The pipette may be capable of dispensing no more than, and/or equal to any fluid volume, such as those as described herein, while having any dimension, such as those described elsewhere herein. In one example, a fluid handling apparatus may have a height, width, and/or length that does not exceed 20 cm and a pipette head which may be capable of aspirating and/or dispensing at least 150 μL. The fluid handling system may be able to dispense and/or aspirate fluid with great precision and/or accuracy. For example, coefficient of variation of the fluid handling system may be less than or equal to 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.7%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.01%, 0.005%, or 0.001%. A fluid handling apparatus may be capable of dispensing and/or aspirating a fluid while functioning with a coefficient of variation value as described herein. The fluid handling system may be able to control the volume of fluid dispensed to within 5 mL, 3 mL, 2 mL, 1 mL, 0.7 mL, 0.5 mL, 0.3 mL, 0.1 mL, 70 μL, 50 μL, 30 μL, 20 μL, 10 μL, 7 μL, 5 μL, 3 μL, 1 μL, 500 nL, 300 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 100 pL, 50 pL, 10 pL, 5 pL, or 1 pL. For example, the fluid handling apparatus may be capable of dispensing and/or aspirating a minimum increment of no more than any of the volumes described herein. The fluid handling system may be capable of operating with any of the coefficient of variations described herein and/or controlling the volume of fluid dispensed to any value described herein while having one or more other feature described (e.g., having any of the dimensions described herein or being capable of dispensing and/or aspirating any volume described herein). For example, a fluid handling apparatus may be capable of dispensing and/or aspirating 1 μL-3 mL of fluid while functioning with a coefficient of variation of 4% or less. A fluid handling apparatus may include one pipette head or a plurality of pipette heads. In some embodiments, the plurality of pipette heads may include a first pipette head and a second pipette head. The first and second pipette heads may be capable of and/or configured for dispensing and/or aspirating the same amount of fluid. Alternatively, the first and second pipette heads may be capable of and/or configured for dispensing different amounts of fluid. For example, the first pipette head may be configured to dispense and/or aspirate up to a first volume of fluid, and the second pipette head may be configured to dispense and/or aspirate up to a second volume of fluid, wherein the first and second volumes are different or the same. In one example, the first volume may be about 1 mL, while the second volume may be about 250 μL. In another example, the fluid handling apparatus may include a plurality of pipette heads, wherein a first pipette head may comprise a first pipette nozzle configured to connect with a first removable tip, and a second pipette head may comprise a second pipette nozzle configured to connect with a second removable tip. The first removable tip may be configured to hold up to a first volume of fluid, and the second removable tip may be configured to hold up to a second volume of fluid. The first and second volumes may be the same or may be different. The first and second volumes may have any value as described elsewhere herein. For example, the first volume may be about 1 mL, while the second volume may be about 250 μL. A plurality of pipette heads may be provided for a fluid handling apparatus. The plurality of pipette heads may be any distance apart. In some embodiments, the fluid handling apparatus may be less than or equal to about 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 12 mm, 15 mm, 20 mm, 30 mm, or 50 mm. The distance between the pipette heads may be from center to center of the pipette heads. The distance between the pipette heads from center to center may be the pitch of the pipette heads. The pipette heads may share a support structure. In some embodiments, the support structure may be a movable support structure. One, two or more pipette heads may be movable along the support structure so that the lateral distance between the pipette heads may be variable. In some instances, the pitch of the pipette heads may be variable to encompass or be limited by one or more of the dimensions previously described. In one example, the pipette heads may be slidable along the support so that the distances from center to center of the pipette heads may vary. Each of the pipette heads may be variable so that they are the same distance apart, or may be individually variable so that they may be at various distances apart. A lateral distance proportion between the pipette heads may remain the same as pipette head positions vary, or may change. Pipettes, blades, or nozzles may change their relative position (move in or out, expand or shrink) to achieve different pitches as needed and may access resources in multiple planes at one time. In some embodiments, the form factors of pipettes (e.g., positive displacement pipette, suction-type pipette, air displacement pipette) may be suitable for so-called “mini” pipettes. The form factors in such cases may be reduced and optimized for space through horizontal or clamshell configurations. Systems or devices may include one or a plurality of mini pipettes. The mini pipettes may be modular and removable from supporting structures having the mini pipettes. In some embodiments, a mini pipette is configured to handle a sample of 1 uL, 0.9 uL, 0.8 uL, 0.7 uL, 0.6 uL, 0.5 uL, 0.4 uL, 0.3 uL, 0.2 uL, 0.1 uL, 10 nL, 1 nL. In some embodiments, a mini pipette is provided that enables macro-scale protocol and/or processing of various chemistries at a point of service location as opposed to microfluidic-restricted processing, which may not replicate lab protocols. In some situations, the protocol and/or processing is selected from, without limitation: centrifugation, separation, precipitation, denaturation, extraction, coacervation, flocculation, chromatography, column based processing, elutions, dilutions, mixing, incubations, cell lysis, fixation of cells, heating, cooling, distribution of sample, separate processing or assay or detection systems, modularity, efficiency of sample utilization, sedimentation, concentration of analyte on solid phase, immunoassay, nucleic acid amplification, nuclear magnetic resonance, microscopy, spectrometry, calorimetry, sequencing, pathological oversight and analyses, and culture. Pipette Configuration A fluid handling apparatus may be a pipette. In some embodiments, a fluid handling apparatus may comprise one or more pipette head. A fluid handling apparatus may include a supporting body, and extending therefrom, the one or more pipette heads. As previously described, the supporting body may support the weight of the one or more pipette heads. The supporting body may contain mechanisms for moving the pipette heads independently or together in one dimension or multiple dimensions. The supporting body may permit the pipette heads to move together. The supporting body may also be flexible or “snake-like” and/or robotic in nature, permitting the pipette heads a wide range of movement in multiple (or infinite) directional planes. This range of movement may permit the pipettes to serve as robotic end effectors for the device with one or more fluid handling or non-fluid handling functions. The supporting body may connect the pipette heads to one another. The shared supporting body may or may not be integrally formed with the pipette heads. The supporting body may or may not also support an actuation mechanism. The supporting body may or may not be capable of supporting the weight of actuation mechanism that may be operably connected to one or more pipette head. A pipette head may comprise a pipette nozzle configured to connect with a removable tip. The pipette head may also include a pipette body. The pipette nozzle may be coaxial with the pipette body. The pipette body may support the pipette nozzle. The pipette nozzle may include an opening. The pipette head may also include a fluid path therein. The fluid path may or may not be contained within the pipette body. The fluid path may pass through the pipette body. The fluid path may have a given length. The fluid path may terminate at the pipette nozzle. The fluid path may be within an inner tubing. The inner tubing may be rigid or flexible. The pipette nozzle may connect with the removable tip in any manner. For example, the pipette nozzle may connect with the removable tip to form a fluid-tight seal. The removable tip may be friction-fit with the pipette nozzle. The tip may interface with the pipette nozzle along an outer surface of the pipette nozzle, inner surface of the pipette nozzle, or within a groove or intermediate portion of the pipette nozzle. Alternatively, the pipette nozzle may interface with the tip along the outer surface of the tip, inner surface of the tip, or within a groove or intermediate portion of the tip. In some embodiments, a plunger may be provided within a pipette head. The plunger may permit the dispensing and/or aspiration of fluid. The plunger may be movable within the pipette head. The pipette may be capable of loading the desired plunger from a selection of plungers, that are either stored in the pipette or picked up from a storage area outside the pipette. The plunger may be movable along a fluid path. The plunger may remain in the same orientation, or may have varying orientations. In alternate embodiments, a transducer-driven diaphragm may be provided which may affect a fluid to be dispensed and/or aspirated through the tip. Alternate dispensing and/or aspiration mechanisms may be used, which may include a positive and/or negative pressure source that may be coupled to a fluid path. In some embodiments, the tip of the pipette head may have a length. The direction of tip may be along the length of the tip. In some embodiments, the fluid handling apparatus may include a motor having a rotor and stator. The rotor may be configured to rotate about an axis of rotation. The axis of rotation may have any orientation with respect to the tip. For example, the axis of rotation may be substantially parallel to the tip. Alternatively, the axis of rotation may be substantially non-parallel to the tip. In some instances, the axis of rotation may be substantially perpendicular to the tip, or any other angle with respect to the tip including but not limited to 15 degrees, 30 degrees, 45 degrees, 60 degrees, or 75 degrees. In one example, the axis of rotation may be horizontal, while the removable tip may be aligned vertically. Alternatively, the axis of rotation may be vertical while the removable tip is aligned horizontally. This configuration may provide a “bent” pipette configuration where the tip is bent relative to the motor. The motor may be useful for metering fluid within the tip. In some embodiments, the motor may permit the movement of one or more plunger within a pipette head. In some embodiments, the fluid handling apparatus may include a motor that may be capable of permitting the movement of a plurality of plungers that are not substantially parallel to the removable tip. Alternatively, the movement of the plurality of plungers may be substantially parallel to the removable tip. In some instances, the movement of the plurality of plungers may be substantially perpendicular to the removable tip, or any other angle, including but not limited to those mentioned elsewhere herein. In one example, the plunger may be capable of moving in a horizontal direction, while the removable tip is aligned vertically. Alternatively, the plunger may be capable of moving in a vertical direction while the removable tip is aligned horizontally. A fluid path may terminate at a pipette nozzle. In some instances, another terminus of the fluid path may be provided at the plunger. In some embodiments, the fluid path may be bent or curved. A first portion of a fluid path may have a different orientation than a second portion of the fluid path. The first and second portions may be substantially perpendicular to one another. The angles of the first and second portions may be fixed relative to one another, or may be variable. Actuation A fluid handling apparatus may include an actuation mechanism. In some embodiments, a single actuation mechanism may be provided for the fluid handling apparatus. Alternatively, a plurality of actuation mechanisms may be provided. In some instances, only a single actuation mechanism may be provided per particular use (e.g., tip removal, plunger control, switch control). Alternatively, multiple actuation mechanisms may be provided for a particular use. In one example, an actuation mechanism may be a motor. The motor may include a rotor and stator. The rotor may be capable of rotating about an axis of rotation. A single actuation mechanism, such as a motor, may be useful for individualized dispensing and/or aspiration. A fluid handling apparatus may include a plurality of pipette heads. A plurality of plungers may be provided, wherein at least one plunger may be within a pipette head and configurable to be movable within the pipette head. In some instances, each of the pipette heads may have one or more plungers therein. The plurality of plungers may be independently movable. In some instances, the plungers may move along a fluid path within the pipette head. The actuation mechanism may be operably connected to the plungers. The actuation mechanism may permit the independent movement of the plurality of plungers. The movement of such plungers may optionally cause the dispensing and/or aspiration of fluid. A single motor or other actuation mechanism may control the independent movement of a plurality of plungers. In some instances, a single motor or other actuation mechanism may control the independent movement of all of the plungers within said plurality. A single actuation mechanism, such as a motor, may be useful for individualized removal of a tip from pipette nozzle. A fluid handling apparatus may include a plurality of pipette heads. A plurality of tip removal mechanisms may be provided, wherein at least one tip removal mechanism is configured to remove an individually selected tip from the pipette nozzle. The tip removal mechanism may be configured to be movable with respect to the pipette nozzle to effect said removal. The tip removal mechanisms may be independently movable. Alternatively, the tip removal mechanisms need not move, but may be independently controllable to permit the removal of the tips. The actuation mechanism may be operably connected to the tip removal mechanisms. The actuation mechanism may permit the independent movement of the plurality of tip removal mechanisms. A single motor or other actuation mechanism may control the independent movement of a plurality of tip removal mechanisms. In some instances, a single motor or other actuation mechanism may control the independent movement of all of the tip removal mechanisms within said plurality. In some embodiments, a tip removal mechanism may be within a pipette head. An internal tip removal mechanism may be configured to be movable within the pipette head. For example, a tip removal mechanism may be a plunger. In other embodiments, the tip removal mechanism may be external to the pipette head. For example, the tip removal mechanism may be a collar wrapping around at least a portion of a pipette head. The collar may contact a portion of the pipette nozzle, pipette body and/or pipette tip. Another example of an external removal mechanism may be a stripping plate. A tip removal mechanism may or may not contact the tip when causing the tip to be removed from the pipette. A single actuation mechanism, such as a motor, may be useful for individualized retraction and/or extension of a pipette nozzle. A fluid handling apparatus may include a plurality of pipette heads. A pipette head may include a pipette nozzle which may or may not be movable with respect to a support body. A plurality of pipette nozzles may be independently movable. The actuation mechanism may be operably connected to the pipette nozzles or other portions of a pipette head that may permit the retraction and/or extension of a pipette nozzle. The actuation mechanism may permit the independent movement of the plurality of pipette nozzles. A single motor or other actuation mechanism may control the independent movement of a plurality of pipette nozzles. In some instances, a single motor or other actuation mechanism may control the independent movement of all of the pipette nozzles within said plurality. In some embodiments, a tip may be connected to a pipette nozzle based on the positions of the pipette nozzles. For example, a pipette nozzle may be extended and brought down to contact a tip. The pipette nozzle and tip may be press-fit to one another. If selected pipette nozzles are independently controllable to be in an extended position, the tips connected to the apparatus may be controllable. For example, one or more pipette nozzle may be selected to be extended. Tips may be connected to the extended pipette nozzle. Thus, a single actuation mechanism may permit the independent selection and connection/pick-up of tips. Alternatively, a single motor or other actuation mechanism may control the independent movement of a single plunger, tip removal mechanism, and/or pipette nozzle. In some instances, a plurality of actuation mechanisms may be provided to control the movement of a plurality of plungers, tip removal mechanisms, and/or pipette nozzles. A fluid handling apparatus may include one or more switches. An individual switch may have an on position and an off position, wherein the on position may permit an action or movement in response to movement by an actuation mechanism, and wherein the off position does not permit an action or movement in response to movement by the actuation mechanism. An on position of a switch may permit an operable connection between the actuation mechanism, and another portion of the fluid handling apparatus, such as a plunger, tip removal mechanism, and/or pipette nozzle movement mechanism. An off position of a switch may not permit an operable connection between the actuation mechanism, and another portion of the fluid handling apparatus, such as a plunger, tip removal mechanism, and/or pipette nozzle movement mechanism. For example, an off position may permit the actuation mechanism to move, but no response is provided by the selected other portion of the fluid handling mechanism. In one example, when a switch is in an on position, one or more plunger associated with the individual switch may move in response to a movement by a motor, and when the switch is in an off position, one or more plunger associated with the individual switch is not permitted to move in response to movement by the motor. In another example, when a switch is in an on position, one or more tip removal mechanism associated with the individual switch may cause a tip to be removed in response to movement by a motor, and when the switch is in an off position, one or more tip removal mechanism may not cause a tip to be removed in response to movement by the motor. Similarly, when a switch is in an on position, one or more pipette nozzle associated with the individual switch may extend and/or retract in response to a movement by a motor, and when the switch is in an off position, one or more pipette nozzle associated with the individual switch is not permitted to extend and/or retract in response to movement by the motor. A switch may be a binary switch that may have only an on position and an off position. One, two or more actuations may occur when a switch is in an on position and may not occur when a switch is in an off position. In alternate embodiments, a switch may have multiple positions (e.g., three, four, five, six, seven, eight or more positions). A switch may be completely off, completely on, or partially on. In some embodiments, a switch may have different degrees of depression. Different positions of the switch may or may not permit different combinations of actuation. In one example, a switch in a zero position may not permit actuation of a plunger and of a tip removal mechanism, a switch in a one position may permit actuation of a plunger while not permitting actuation of a tip removal mechanism, a switch in a two position may not permit actuation of a plunger while permitting actuation of a tip removal mechanism, and a switch in a three position may permit actuation of a plunger and permit actuation of a tip removal mechanism, when a motor is actuated. In some embodiments, a switch may include a control pin which may extend varying degrees to represent different positions of the switch. In some embodiments, the switch may be a solenoid. The solenoid may have an on position and/or an off position. In some embodiments, the solenoid may have an extended component for an on position, and a retracted component for an off position. A single solenoid may be provided for each pipette head. For example, a single solenoid may or may not permit the movement of an individual plunger associated with the solenoid, a tip removal mechanism associated with the solenoid, or a pipette nozzle associated with the solenoid. Another example of a switch may include the use of one or more binary cams. FIGS. 54A-54E show an example of a cam-switch arrangement. A cam-switch arrangement may include a plurality of binary cams 5410a, 5410b, 5410c, 5410d. The binary cams may have one or more protruding segments 5420 and one or more indented segments 5422. One or more control pin 5430 may be provided. In some embodiments, each cam may have a control pin operably connected thereto. An individual control pin 5430 may contact an individual binary cam 5410. In some embodiments, a biasing force may be provided on the control pin that may cause it to remain in contact with a surface of the cam. Thus, a control pin may contact a protruding segment 5420 of the cam or an indented segment 5422 of the cam. A cam may rotate, causing the portion of the cam contacting the control pin to change. The cam may have an axis of rotation. As the cam rotates, the control pin may contact a protruding segment or an indented segment, which may cause the control pin to move in response. When a control pin contacts a protruding segment, the control pin may extend further from the axis of rotation of the cam, than if the control pin was contacting an indented segment. A plurality of cams may be provided. In one example, each of the cams may share an axis of rotation. In some instances, the cams may have a common shaft. The cams may be configured to rotate at the same rate. The cams may have protruding and indented segments at different degrees about the cam. For example, FIG. 54A shows a first cam 5410a having one protruding segment, and one indented segment. A second cam 5410b may have two protruding segments and two indented segments. A third cam 5410c may have four protruding segments and four indented segments. A fourth cam 5410d may have eight protruding segments and eight indented segments. In some instances, any number of cams may be provided. For instances, n cams may be provided, where n is any positive whole number. A first cam through nth cam may be provided. Any selected cam i among the plurality of cams may be provided. In some instances, the ith cam may have 2i-1 protruding segments, and 2i-1 indented segments. The protruding and indented segments may be radially evenly spaced around the cam. The configurations of the control pins that may or may not protrude from the cams may form a binary configuration. FIG. 54A shows an example of a binary cam at zero position, with the cam rotated 0 degrees. Each of the control pins is contacting an indented portion, which permits each of the control pins to have a retracted position. FIG. 54B shows an example of a binary cam at one position, with the cam rotated 22.5 degrees. Each of the control pins except the fourth control pin is contacting an indented portion. The fourth control pin is contacting a protruding segment, which causes the fourth control pin to extend. A binary reading may be made where the retracted pins are zero, and the extended pin is 1. FIG. 54C shows an example of a binary cam at five position, with the cam rotated 112.5 degrees. The first and third control pins are contacting an indented portion, while the second and fourth pins are contacting a protruding portion. The second and fourth pins are extended. FIG. 54D shows an example of a binary cam at fifteen position, with the cam rotated 337.5 degrees. Each of the control pins is contacting a protruding segment of the cam. Each of the control pins are at an extended position, thus each having a reading of 1. The cams may be rotated any amount, which may permit any combination of pins being extended or retracted. An extended control pin may permit an operable connection between an actuation mechanism and another portion of the fluid handling apparatus. For example, an extended control pin for a particular cam may permit a motor to move a plunger, tip removal mechanism, and/or pipette nozzle associated with that individual cam. FIG. 54E shows a selection cam mounted with a motor in accordance with an embodiment of the invention. One or more cams 5410 may be provided with one or more control pins 5430. The cams may share a shaft 5440. A motor 5450 with an encoder may be provided. A pulley 5460 may operably connect the motor to the cams. In some embodiments, a motor may be capable of rotating, which may cause the cams to rotate. The shaft may rotate, which may cause the cams to rotate together. The cams may be rotated to a desired position to provide a desired arrangement of extended control pins. The extended control pins may permit an operable connection between another motor and another portion of the pipette. A stripped pipette body 5470 may also be provided. In some embodiments, an extended control pin may be a switch in an on position, and a retracted control pin may be a switch in an off position, or vice versa. In some embodiments, aspiration and dispensing are controlled independently from one another. This may be accomplished with the aid of individual actuation mechanisms. In an example, an actuation mechanism provides sample (e.g., fluid) aspiration while another actuation mechanism provides sample dispensing. Venting One or more fluid handling mechanism may include a vent. For example, a pipette may include a vent. For example, a pipette nozzle and/or pipette tip may include a ventilation opening. A ventilation opening may permit an internal plunger mechanism to move within without expelling or aspirating fluid. In some embodiments, the ventilation opening may permit a plunger to move without causing fluid within a fluid path to move substantially along the fluid path. For example, the vent may be capable of permitting a plunger to move down within the pipette nozzle or tip without expelling the fluid. The plunger may or may not ever contact the fluid. In some instances, the plunger may move down without expelling fluid until the plunger contacts the fluid. In another example, a ventilation opening may permit a plunger to move upwards away from a fluid and draw in air, while permitting the fluid to remain in its position within the pipette nozzle or tip. A vent may permit increased accuracy and/or precision of a pipette. The vent may be included in air displacement pipettes. The vent may increase the accuracy and/or precision of an air displacement pipette by permitting the venting of air that may cause inherent inaccuracies with the fluid, depending on environmental conditions. Alternatively, the vent may be included for positive displacement pipettes. Venting may reduce inaccuracies associated with variable conditions. The vent may permit pipette tips filled with fluid to be ejected without loss of fluid from the tips. Venting fluid-filled tips without loss of fluid may enable incubation of tips when disengaged from the pipette, thereby freeing up the pipette to execute other tasks. In an embodiment, the pipette tips may be vented, and later picked up for further processing of the fluid inside. In some embodiments, a fluid handling apparatus may include one or more ventilation port. In some instances, one or more pipette head may have a ventilation port. In one example, each pipette head of the fluid handling apparatus may have a ventilation port. Each pipette head of a particular type (e.g., air displacement pipette head) may have a ventilation port. A ventilation port may be capable of having an open position and a closed position. In some instances, a switch may be used to determine whether the ventilation port is in an open position or a closed position. In one example, the switch may be a solenoid, valve, or any other switching mechanism described elsewhere herein. The ventilation port switch may have one or more characteristic provided for any other switching mechanism described elsewhere herein, or vice versa. The ventilation port switch may be a binary switch, or may have multiple positions. A ventilation port may either be open or closed, or may have varying degrees of openness. Whether the ventilation port is open or closed, or the degrees of openness of the ventilation port may be controlled by a controller. In one example, a ventilation solenoid may determine whether the ventilation port is in an open position or closed position. In another example, a valve may determine whether the ventilation port is in the open position or closed position. A valve, solenoid, or any other switch may be duty cycled. The duty cycling may have any period, including but not limited to periods of 5 s or less, 3 s or less, 2 s or less, 1 s or less, 500 ms or less, 300 ms or less, 200 ms or less, 100 ms or less, 75 ms or less, 60 ms or less, 50 ms or less, 40 ms or less, 30 ms or less, 20 ms or less, 10 ms or less, 5 ms or less, or 1 ms or less. The duty cycle may be controlled in accordance with one or more instructions from a controller. In some embodiments, a ventilation solenoid, valve, or other switch may determine the degree to which a vent may be opened. For example, the switch may only determine if the ventilation port is open or closed. Alternatively, the switch may determine whether the ventilation port is open to an intermediary degree, such as about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% open. The ventilation port may be open to a fixed degree, or may open any degree along a continuous spectrum. The degree of opening may be controlled in response to one or more signal from a controller. The controller may be used to determine a desired degree of pressure to be provided in a fluid path. A ventilation port may be coupled to a pressure source. The pressure source may be a positive pressure source or a negative pressure source. The positive pressure source may be useful for expulsion of a fluid from within the pipette head. The negative pressure source may be useful for the aspiration of fluid into the pipette head. In some instances, the ventilation port may be coupled to atmospheric conditions. For instances, the ventilation port may selectively connect an interior of the pipette head with ambient air. The positive or negative pressure may be delivered by any technique known in the art. In one example, the ventilation port may be coupled to a reversible pump capable of delivering positive or negative pressure. The pump may be capable of delivering the positive or negative pressure for an extended period of time. For example, the pump may deliver the positive pressure until all fluid is expelled. The pump may deliver the positive pressure as long as desired in order to permit a desired amount of fluid to be expelled through the pipette head. In another example, the pump may deliver a negative pressure as long as desired in order to permit the desired amount of fluid to be aspirated through the pipette head. The reversible pump may permit switching between providing positive and negative pressure under selected conditions. The positive or negative pressure may be provided by a fluid. For example, the positive or negative pressure may be provided by air or another gas. In other embodiments, the positive or negative pressure may be provided by liquid, or any other fluid. In some instances, a pipette head has a single ventilation port. Alternatively, a pipette head may have multiple ventilation ports. Multiple ventilation ports may be connected to positive pressure sources, negative pressure sources, ambient conditions, or any combinations thereof. Retraction A fluid handling apparatus may include one or more pipette head, wherein an individual pipette head has a fluid path of a given length. The fluid path may be entirely within the pipette head, or one or more portion of the pipette head may be outside the pipette head. The fluid path length may terminate at a pipette nozzle. The fluid path length may terminate at an orifice of the fluid handling apparatus. In some instances, the fluid path length may terminate at an end of a tip connected to the fluid handling apparatus. In some instances, a fluid path length may terminate at the end of a plunger (e.g., the end of the plunger closer to the tip). Alternatively, the fluid path length may terminate at an end of a pipette head or base or support. The fluid path may have two or more termination ends, which may be any combination of the termination locations mentioned above. In some instances, the fluid path length may be determined by two termination ends. The length of the fluid path may be adjustable. In some instances, the length of the fluid path may be adjustable without effecting movement of fluid from a tip, when the tip and pipette nozzle are engaged. The fluid path length may be adjusted while the fluid within a tip remains at substantially the same position. The fluid path length may be increased and/or decreased. The fluid path length may be adjusted by altering the position of one, two, or more of the termination points of the fluid path. In one example, a fluid path may have two termination points, a distal termination point that is closer to the tip or the point at which fluid is expelled and/or aspirated, and a proximal termination point that is further from the tip or the point at which fluid is expelled and/or aspirated. A distal termination point may be moved, thereby adjusting the fluid path length. Alternatively, a proximate termination point may be moved, thereby adjusting the fluid path length. In some instances, the distal and proximal termination points may be moved relative to one another, thereby adjusting the fluid path length. In one example, a distal termination point may be a pipette nozzle, and a proximal termination point may be a plunger end closer to the pipette nozzle. The pipette nozzle may be connected to a tip which may contain a fluid therein. The pipette nozzle may be retracted or extended relative to the plunger and/or the rest of the pipette head. The fluid path length of the pipette head may be adjusted. In some instances, extending and/or retracting the pipette nozzle need not cause substantial movement of the fluid within the tip. In another example, the plunger may be actuated toward or away from the tip. This may also cause fluid path length of the pipette head to be adjusted. The plunger may be actuated without causing substantial movement of the fluid within the tip. As previously described, a fluid handling apparatus may include at least one pipette head connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip. A plunger may be provided within the pipette head, and may be configured to be movable within the pipette head. The pipette nozzle may be movable relative to the base, such that the pipette nozzle is capable of having a retracted position and an extended position, wherein the pipette nozzle is further away from the base than in the retracted position. The pipette nozzle may be movable relative to the plunger, to the motor, to the rest of the pipette head, to the switch, or to any other portion of the fluid handling apparatus. Adjusting the pipette nozzle between the retracted and extended position may change a fluid path length terminating at the pipette nozzle. In some instances, the fluid path length may be formed using only rigid components. Any difference in position may be provided between the retracted position and the extended position. For example, no more than and/or equal to about a 1 mm, 3 mm, 5 mm, 7 mm, 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 4 cm, 5 cm, or 10 cm difference may exist between the retracted position and the extended position. The difference in position may be in a vertical direction, horizontal direction, or any combination thereof. The difference in position may be in a direction parallel to the length of the tip, perpendicular to the length of the tip, or any combination thereof. In some embodiments, this may be enabled by venting, such as ventilation mechanisms described elsewhere herein, or other mechanisms. The ventilation port may be located along the fluid path. The fluid path may be formed from one or more components. In some embodiments, the fluid path may be formed entirely of rigid components. In other embodiments, the fluid path may be formed from flexible components. Alternatively, the fluid path may be formed from a combination of rigid and flexible components. The fluid path may be formed from rigid components without the use of flexible components. The fluid path may be formed from flexible components without the use of rigid components. Examples of rigid components may include hard tubes, pipes, conduits, or channels. The fluid path may be formed from a single rigid component or multiple rigid components. Multiple rigid components may or may not be movable relative to one another. The rigid components may slide relative to one another. In one example, a plurality of rigid components may be provided in a telescoping configuration, where one or more rigid component may slide within another rigid component. The length of the fluid path may be altered by moving the one or more rigid components relative to one another. Examples of flexible components may include bendable tubes, pipes, conduits or channels. For example, bendable plastic tubing may be used. The fluid path may be formed from a single flexible component or multiple flexible components. Multiple flexible components may be movable relative to one another. For instance, they may slide relative to one another, and/or may have a telescoping arrangement. A fluid handling apparatus may have a plunger within one or more pipette head. The plunger may be configured to be movable within the pipette head. The plunger may be movable along a fluid path. The plunger may be movable in a vertical direction and/or a horizontal direction. The plunger may be movable in a direction parallel to the length of a tip and/or perpendicular to the length of the tip. The plunger may form a fluid-tight connection with one or more walls of the fluid path. Thus, as the plunger may move along a fluid path, the pressure within the fluid path may be altered and/or maintained. The plunger may be formed from rigid components, flexible components, or any combination thereof. The plunger may be formed from a single integral piece. Alternatively, the plunger may be formed from multiple sections. For example, the plunger may comprise a first section and a second section. At least a portion of the first section may be configured to slide relative to the second section, thereby permitting the plunger to extend and/or collapse. In one example, the first section may be configured to slide within the second section. A telescoping arrangement may be provided. The length of the plunger may be fixed or may be variable. The plunger may have any number of sections (e.g., one, two, three, four, five, six, seven, eight, or more sections), which may or may not be movable relative to one another. The plunger may form a double needle and/or multi-needle configuration. In some embodiments, a heat spreader may surround the plunger. The heat spreader may assist with keeping the plunger at a desired temperature, or within a desired temperature range. This may be beneficial when precise control of volumes dispensed and/or aspirated is desired. The heat spreader may assist with reducing and/or controlling thermal expansion of one or more components of the fluid handling apparatus, such as the plunger. In other embodiments, the pipette nozzles and/or tips can be used to transfer heat to and/or from the pipette for heating and/or cooling operations. The pipette can also be used to deliver/apply cool air for controlling temperature of cartridge, vessels, tips, etc. A pump may be utilized for this function. An aspect of the invention may be directed to a method of fluid handling, which may include providing a fluid handling apparatus having one or more of the features described herein. For example, the method may include providing at least one pipette head operably connected to a base, wherein an individual pipette head comprises a pipette nozzle configured to connect with a removable tip. The method may also include retracting and/or extending the pipette nozzle relative to the base. The method may include retracting and/or extending the pipette nozzle any distance, which may be dictated by a controller. The method may optionally include dispensing and/or aspirating a fluid with a tip. The aspirating and/or dispensing may occur while the pipette nozzle is retracting and/or extending. The aspirating and/or dispensing may occur while the pipette nozzle is retracting and/or extending in a vertical direction, horizontal direction, direction parallel to a tip length, direction perpendicular to a tip length, away/towards a base, or any combination thereof. The speed of dispensing and/or aspiration may depend on the speed of retracting and/or extending by the pipette nozzle, or vice versa. Dispensing and/or aspirating during retracting and/or extending the pipette nozzle may be beneficial in systems with small volumes of fluid and small vessels. For example, a small vessel may be provided with a fluid at or near the top level of the vessel. When a tip encounters the top of the fluid surface at the vessel, if no aspirating occurs, overflow may occur. If aspiration occurs while the tip is encountering the fluid and lowered into the vessel, the aspirating may prevent the overflow from occurring. In some embodiments, dispensing and/or aspirating may occur at a rate sufficient to prevent overflow, or to have any other desirable effects. In some embodiments, a pipette nozzle may be extended and/or retracted prior to, concurrently with, and/or subsequent to translating a pipette head. The pipette nozzle may be extended and/or retracted in a first direction, and the pipette head translation may occur in a second direction. The first and second directions may or may not be substantially parallel to one another. In some instances, the first and second directions may be substantially non-parallel to one another. The first and second directions may be substantially perpendicular to one another. In one example, the first direction is a substantially vertical direction while the second direction is a substantially horizontal direction. In another example, the first direction is substantially parallel with the length of the tip, and the second direction is substantially perpendicular to the length of the tip. The pipette nozzle may be extended and/or retracted relative to the base prior to, currently with, and/or subsequent to dispensing and/or aspirating the fluid with the tip. The fluid may be dispensed and/or aspirated prior to, currently with, and/or subsequently to translating the pipette head. In one example, a pipette nozzle may be retracted prior to and/or currently with translating the pipette head. The pipette nozzle may then be extended prior to and/or concurrently with dispensing and/or aspirating a fluid with the tip. The pipette tip may be retracted a sufficient amount to clear any objects that may be encountered while translating the pipette head. The pipette tip may be extended sufficiently to make contact with a fluid to be aspirated, and/or to dispense the fluid to a designated location. The pipette nozzle may or may not extend and/or retract while the translation of the pipette head occurs. In some instances, individual pipette nozzles of a plurality of pipette heads that are translated together may or may not extend and/or retract together. In some instances, the individual pipette nozzles may be independently retracted and/or extended. The pipette nozzle may extend and/or retract based on a known path to be traveled, which may or may not include known obstacles to be cleared. The pipette nozzle may extend and/or retract based on one or more measurement provided by a sensor (e.g., if a sensor encounters an obstruction during the translation of the pipette heads). In some situations, a pipette may include one or more sensors for providing various data to a control system operating the pipette. In an example, the one or more sensors provide position measurements that enable the pipette to extend and retract. In another example, the one or more sensors provide temperature, pressure, humidity, conductivity data. In another example, the one or more sensors include cameras for taking image, video and/or sound recording from within the pipette. A multi-head pipette may have a plurality of pipette heads. One or more of the pipette heads and/or each of the pipette heads may include a pipette nozzle. One or more of the pipette heads and/or each of the pipette heads may have a pipette tip connected thereto. One or more of the pipette heads and/or each of the pipette heads may be capable of accepting or connecting to a pipette tip. In one example, each pipette head may connect to one pipette tip. In other examples, each pipette head may be capable of connecting to one or multiple pipette tips. The pipette tip may be press-fit onto the pipette head and/or may be connected using any other mechanism known in the part including, but not limited to, magnetic, snap-fit, hook and loop fasteners, elastics, ties, sliding mechanisms, locking mechanism, clamps, actuated mechanical components, and/or adhesives. One or more of the pipette heads may be provided in a row. For example, one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or twelve or more pipette heads may be provided in a row. One or more pipette heads may be provided in a column. For example, one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or twelve or more pipette heads may be provided in a column. Arrays of pipettes may be provided, wherein the array has one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or twelve or more pipette heads in the row and one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, or twelve or more pipette heads in the column. In some embodiments, the pipette heads may be arranged in staggered rows, straight, curved or bent rows, concentric shapes, or any other configuration. The pipette heads may be configured and/or dimensioned to match one or more arrangement on a microcard as described elsewhere herein. The multi-headed pipette may have air displacement pipettes having the configurations of the pipette heads described elsewhere herein. Alternatively, the multi-headed pipette may have positive displacement pipettes, having the configurations of the pipette heads as described elsewhere herein. Alternatively, the multi-headed pipette may include both air displacement and positive displacement pipettes. One or more air displacement pipettes may be provided in one region and one or more positive displacement pipette may be provided in another region. Alternatively, the air displacement pipettes and positive displacement pipette may be interspersed. The air displacement pipettes may be provided in one format while a positive displacement pipette may be provided in another format. For example, a row of air displacement pipettes may be provided while a single positive displacement pipette may be provided. In one embodiment, an eight-head row of air displacement pipettes may be provided along with a single positive displacement pipette. One or more air displacement pipette and one or more positive displacement pipette may be provided on the same pipette support. Alternatively, they may be provided on different pipette supports. The air displacement pipette and positive displacement pipette may be at fixed positions relative to one another. Alternatively, they may be movable relative to one another. One, two, three, four, five, six or more pipettes and/or other fluid handling mechanisms may be provided within a device. The fluid handling mechanisms may have a fixed position within the device. Alternatively, the fluid handling mechanisms may be movable within the device. One, two, three, four, five, six or more pipettes and/or other fluid handling mechanisms may be provided within a module. The fluid handling mechanisms may have a fixed position within the module. Alternatively, the fluid handling mechanism may be movable within the module. In some embodiments, the fluid handling mechanism may be movable between modules. Optionally, a fluid handling mechanism may be provided external to the modules but within the device. The fluid handling mechanisms may transfer sample or other fluid from one portion of the device and/or module to another. The fluid handling mechanism may transfer fluids between modules. The fluid handling mechanism may enable fluid to be shuttled from one portion of the device to another in order to affect one or more sample processing step. For example, a fluid may undergo a sample preparation step in a first portion of the device, and may be transferred to a second portion of the device by the fluid handling system, where an additional sample preparation step, an assay step, or a detection step may occur. In another example, a fluid may undergo an assay in a first portion of the device and may be transferred to a second portion of the device by the fluid handling system, where an additional assay step, detection step, or sample preparation step may occur. In some cases, the fluid handling mechanism is configured to transfer a fluid, solid or semi-solid (e.g., gel). Thus, the term “fluid handling” need not be limited to fluids, but may capture substances of varying viscosities or consistencies. The fluid handling may permit the transfer of fluids while the fluids are contained within one or more pipette tips or vessels. Pipette tips and/or vessels containing the fluid may be moved from one portion of the device to another. For example, a pipette tip may pick up a fluid in one portion of the device, and be moved to a second portion of the device, where the fluid may be dispensed. Alternatively, portions of the device may be moved relative to the fluid handling mechanism. For example, a portion of the device may be moved to the pipette, where the pipette may pick up a fluid. Then another portion of the device may be moved to the pipette, where the pipette may dispense the fluid. Similarly, a fluid handling mechanism may be movable to pick up and/or remove pipette tips and/or vessels in different locations. Fluid Handling Tips In one example, a pipette nozzle may be configured to accept one or more type of pipette tip. The pipette nozzle may be shaped to be complementary to one or more type of pipette tip. In some embodiments, the pipette tips may have an end with the same diameter, even if other pipette tip shapes or dimensions may be vary. In another example, the pipette nozzle may have one or more shaped features which may selectively contact pipette tips depending on the pipette tip. For example, the pipette nozzle may have a first portion that contacts a first type of pipette tip, and a second portion that contacts a second type of pipette tip. The pipette nozzles may have the same configuration in such situations. Alternatively, the pipette nozzle may be specially shaped to fit one type of pipette tip. Different pipette nozzles may be used for different pipette tips. The pipette tip may be formed of a material that may enable one or more signal to be detected from the pipette tip. For example, a pipette tip may be transparent and may permit optical detection of fluid within the pipette tip. A pipette tip may be optically read, or detected in any other manner while the pipette tip is attached to a pipette nozzle. Alternatively, the pipette tip may be optically read, or detected in any other manner, when the pipette tip has been removed from the pipette nozzle. The pipette tip may or may not have a fluid contained therein when read by a detector. A pipette tip may have one or more configuration, dimension, characteristic, or feature as described in greater detail elsewhere herein. In some embodiments, a pipette tip may receive or emit a light from a light source. The tip may function as a lens to focus the light emitted by the pipette. In some embodiments, a light source may be operably connected to a fluid handling apparatus. The light source may be external to the fluid handling apparatus, or may be within the fluid handling apparatus. In some embodiments, one or more light source may be provided within a pipette head of the fluid handling apparatus. In some embodiments, a plurality of pipette heads or each pipette head may have a light source. A plurality of light sources may or may not be independently controllable. One or more characteristic of the light source may or may not be controlled, including but not limited to whether the light source is on or off, brightness of light source, wavelength of light, intensity of light, angle of illumination, position of light source. The light source may provide light into the tip. A light source may be any device capable of emitting energy along the electromagnetic spectrum. A light source may emit light along a visible spectrum. In one example, a light source may be a light-emitting diode (LED) (e.g., gallium arsenide (GaAs) LED, aluminum gallium arsenide (AlGaAs) LED, gallium arsenide phosphide (GaAsP) LED, aluminum gallium indium phosphide (AlGaInP) LED, gallium(III) phosphide (GaP) LED, indium gallium nitride (InGaN)/gallium(III) nitride (GaN) LED, or aluminum gallium phosphide (AlGaP) LED). In another example, a light source can be a laser, for example a vertical cavity surface emitting laser (VCSEL) or other suitable light emitter such as an Indium-Gallium-Aluminum-Phosphide (InGaAlP) laser, a Gallium-Arsenic Phosphide/Gallium Phosphide (GaAsP/GaP) laser, or a Gallium-Aluminum-Arsenide/Gallium-Aluminum-Arsenide (GaAIAs/GaAs) laser. Other examples of light sources may include but are not limited to electron stimulated light sources (e.g., Cathodoluminescence, Electron Stimulated Luminescence (ESL light bulbs), Cathode ray tube (CRT monitor), Nixie tube), incandescent light sources (e.g., Carbon button lamp, Conventional incandescent light bulbs, Halogen lamps, Globar, Nernst lamp), electroluminescent (EL) light sources (e.g., Light-emitting diodes—Organic light-emitting diodes, Polymer light-emitting diodes, Solid-state lighting, LED lamp, Electroluminescent sheets Electroluminescent wires), gas discharge light sources (e.g., Fluorescent lamps, Inductive lighting, Hollow cathode lamp, Neon and argon lamps, Plasma lamps, Xenon flash lamps), or high-intensity discharge light sources (e.g., Carbon arc lamps, Ceramic discharge metal halide lamps, Hydrargyrum medium-arc iodide lamps, Mercury-vapor lamps, Metal halide lamps, Sodium vapor lamps, Xenon arc lamps). Alternatively, a light source may be a bioluminescent, chemiluminescent, phosphorescent, or fluorescent light source. The light source may be capable of emitting electromagnetic waves in any spectrum. For example, the light source may have a wavelength falling between 10 nm and 100 μm. The wavelength of light may fall between 100 nm to 5000 nm, 300 nm to 1000 nm, or 400 nm to 800 nm. The wavelength of light may be less than, and/or equal to 10 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1100 nm, 1200 nm, 1300 nm, 1500 nm, 1750 nm, 2000 nm, 2500 nm, 3000 nm, 4000 nm, or 5000 nm. One or more of a plurality of light sources may be provided. In some embodiments, each of the plurality of light sources may be the same. Alternatively, one or more of the light sources may vary. The light characteristics of the light emitted by the light sources may be the same or may vary. The light sources may be independently controllable. The tip may form a wave guide capable of providing light through the tip to a fluid contained therein, or capable of transmitting an optical signal from the fluid through the tip. The tip may be capable of transmitting light from a light source to a fluid contained therein. The light source may be infrared light. The infrared light may be used to heat samples or reactions in the tip or elsewhere. The tip may be capable of transmitting light. The tip may be formed of an optically transmissive material. In some embodiments, the tip may transmit all waves of the electromagnetic spectrum. Alternatively, the tip may transmit selected waves of the electromagnetic spectrum. For example, the tip may transmit selected wavelengths of light. The tip may or may not transmit light along the entire length of the tip. A portion or the entire tip may be formed of the optically transmissive material. The tip may be transparent, translucent, and/or opaque. In some embodiments, the tip may comprise a fiber that is capable of conducting light. The fiber may be formed of an optically transparent material. The fiber may extend along a portion or the entire length of the removable tip. The fiber optic may be embedded in the removable tip. The fiber optic may be embedded within an opaque tip, transparent tip, and/or translucent tip. A pipette nozzle may be formed of a transparent and/or reflective surface. The pipette nozzle may be configured to permit the transmission of light through the pipette nozzle. For example, light from a light source may pass through the pipette nozzle to the tip. In some embodiments, the pipette nozzle may have a reflective surface. Light from a tip may be reflected by the pipette nozzle back into the tip, thereby creating a high degree of illumination within the tip or adjacent to the tip. FIGS. 55A-55E show an example of a fluid handling apparatus using one or more light source. FIG. 55A shows a plurality of pipette heads. Each pipette head may include a nozzle 5510. An ejection sleeve 5512 may be provided for each pipette head. FIG. 55B shows a side cut away view of a fluid handling apparatus with a plunger 5520 at a bottom position. The apparatus may include a pipette housing 5530. A solenoid 5540 may be provided, which may affect the actuation of an ejection sleeve 5512 or a plunger 5520. FIG. 55C shows a close up of a light source that may be provided within a fluid handling apparatus. For example, an LED 5550 or other light source may be provided within a pipette housing. Any description herein of an LED may also apply to any other light source, and vice versa. The LED may be located at an end of a plunger 5520. The LED may be located at a top end of the plunger or a bottom end of the plunger. The LED may be coaxial with the plunger. The LED may be integral to the plunger or may be a separate piece from the plunger. The LED may or may not directly contact the plunger. In some embodiments, the LED may move with the plunger. Alternatively, the LED may remain stationary while the plunger may be movable. A plunger holder 5560 may be provided which may assist with aligning and/or controlling the plunger position. A plunger holder may have one or more feature 5565 which may put a plunger in an extended or retracted position. When a plunger is in an extended position, it may be located closer to a pipette nozzle, and/or tip, than when a plunger is in a retracted position. FIG. 55D shows a close up of a plunger 5520 and pipette nozzle 5510. In some instances, an o-ring 5570 may be provided on a pipette head. The plunger may be formed of an optically transmissive material. In some embodiments, the plunger may be formed of a transparent material. The plunger may be a light pipe plunger, which may function as a wave guide. The plunger may transmit light from the light source to the tip and/or fluid contained within the tip. The plunger may or may not transmit light from a fluid within the tip to another location. FIG. 55E shows a perspective view of a fluid handling apparatus. A fluid handling apparatus may be operably connected to an image capture device. The image capture device may be capable of capturing an image of a fluid within the tip. Alternatively, the image capture device may be capable of capturing an image through the tip. The image capture device may be external to the fluid handling apparatus, or may be within the fluid handling apparatus. In some embodiments, one or more image capture devices may be provided within a pipette head of the fluid handling apparatus. In some embodiments, a plurality of pipette heads or each pipette head may have an image capture device. In some embodiments, the image capture device may be integrally formed with the apparatus. The apparatus itself may able to function as an image capture device. In some embodiments, the tip and/or plunger may be capable of functioning as a lens of the image capture device. The tip and/or plunger may be formed of an optically transmissive material which may be shaped to provide desirable optical effects. A plurality of image capture devices may or may not be independently controllable. The image capture devices may be the same, or may vary. Any description of an image capture device may apply to any electromagnetic spectrum detecting device. The image capture device may be capable of capturing electromagnetic emission and generating an image along one or more of: a visible spectrum, an infra-red spectrum, an ultra-violet spectrum, or a gamma spectrum. In some embodiments, the image capture device is a camera. Any descriptions of cameras, or other detection devices described elsewhere herein may apply. In one example, the image capture device may be a digital camera. Image capture devices may also include charge coupled devices (CCDs) or photomultipliers and phototubes, or photodetector or other detection device such as a scanning microscope, whether back-lit or forward-lit. In some instances, cameras may use CCDs, CMOS, may be lensless (computational) cameras (e.g., Frankencamera), open-source cameras, or may use any other visual detection technology known or later developed in the art. Cameras may include one or more feature that may focus the camera during use, or may capture images that can be later focused. In some embodiments, imaging devices may employ 2-d imaging, 3-d imaging, and/or 4-d imaging (incorporating changes over time). Imaging devices may capture static images. The static images may be captured at one or more point in time. The imaging devices may also capture video and/or dynamic images. The video images may be captured continuously over one or more periods of time. Any other description of imaging devices and/or detection units may also be applied. In one example, an image capture device may be located at an end of the plunger. In some examples, the image capture device may be located on a bottom end or a top end of the plunger. The image capture device may be coaxial with the plunger. The image capture device may be integral to the plunger or may be a separate piece from the plunger. The image capture device may or may not directly contact the plunger. In some embodiments, the image capture device may move with the plunger. Alternatively, the image capture device may remain stationary while the plunger may be movable. The image capture device may be located where a light source is located as provided in FIG. 55B and FIG. 55C, or adjacent to or in the proximity of the light source. The plunger and/or tip may include an optically transmissive material. The plunger and/or tip may be made from a transparent material. The plunger and/or tip may be shaped to have desirable optical properties. The plunger and/or tip may be a lens of the image capture device. Movement of the plunger and/or tip may or may not affect the focus of an image captured by the image capture device. The image capture device may be directed in a longitudinal direction along the length of a tip. Alternatively, the image capture device may be directed in a lateral direction perpendicular to the length of the tip, or at any other angle. In some embodiments, the image capture device may be capable of capturing an image of a fluid within a tip. Alternatively, the image capture device may be capable of capturing an image of any sample within the device. In some embodiments, the image capture device may capture an image of a sample that is located at the end of a tip. For example, a sample may be located at the end of a tip opposite the pipette nozzle. The image capture device may capture an image through the tip of the sample. The sample may be a fluid sample, tissue sample, or any other sample described elsewhere herein. In some embodiments, the image capture device may operate in conjunction with a light source. The light source may illuminate the sample, which may permit the image capture device to capture an image of the sample. A processor may be operably connected to a tip of the fluid handling apparatus. The processor may be located within the fluid handling apparatus, within a pipette head associated with the tip, or on the tip itself. The fluid handling apparatus may vary and/or maintain the position of a removable tip based on instructions from the processor. The processor may be connected to a sensor on or near the fluid handling apparatus that measures environmental conditions (such as temperature, humidity, or vapor pressure) and may adjust the motion of the fluid handling device to compensate or optimize for such conditions. In one example, a plurality of tips may be provided, wherein an individual tip of said plurality may have a processor on and/or be operably connected to the tip. In some embodiments, each tip may have a processor thereon or operably connected. The tip processors may be capable of communicating with a controller and/or with one another. For instances, a first processor of a first removable tip may be in communication with a second processor of a second removable tip. In some embodiments, based on said communications, the location of the tip may be controllable. The location of the tips may be controllable while they are engaged with a pipette head. Alternatively, the location of the tips may be controllable when they are separated from a pipette head. The tips may be capable of varying and/or maintaining their position while they are engaged with a pipette head and/or while they are separated from a pipette head. A tip may include one, two, or more openings. A tip is any useful shape that can interface with the pipette or one or more pipette nozzles. A tip can take many forms, such as cylindrical, elliptical, square, “T”-shaped, or round shapes. A single tip may have multiple sub-compartments or wells. Such sub-compartments may be used to contain various useful chemicals, such as reagents. Useful chemicals such as reagents may be deposited in or on the tip or any of its subcompartments in liquid, solid, film or other form. Tips may contain vesicles of chemicals, such as reagents, that may be released on command (e.g., when pierced). Tips can also be used for chemical and physical processing steps, such as filtration of reagents and/or samples. One or more of the openings may include a switch, such as a valve. In one example, a tip may have two openings, each of which may include an embedded passive valve. A switch, such as an embedded passive valve may be configured to permit fluid to flow in one direction through a first opening, and through a tip body, and through a second opening. A valve may control a direction of fluid flow. The fluid may flow entirely through the tip, or may flow through a portion of the tip. For example, a tip may have a switch at one opening, which may permit fluid to flow in a certain direction (e.g., fluid to flow into the tip to permit aspiration while not allowing fluid to fall out of the tip, or fluid to flow out of the tip to permit dispensing while not allowing fluid to be aspirated into the tip. The valves may be controlled to determine the direction of fluid flow, magnitude of fluid flow, or whether any fluid is permitted to flow. The fluid handling system may be able to simultaneously dispense and/or aspirate one or a plurality of fluids. In some instances, the fluid handling system may be dispensing, aspirating, and/or transporting a plurality of types of fluids simultaneously. The fluid handling may provide a modularized technique of tracking and handling different fluids for one or more concurrent steps or tests. Multi-Use Transport A fluid handling apparatus may be useful to dispense, aspirate, and/or transfer one or more fluids. The fluid handling apparatus may also be useful for one or more additional function, including non-fluid handling functions. The connection of a component or tip may permit the fluid handling device to function as a robot capable of performing one or more non-fluid handling functions. Alternatively, the pipette itself may be employed to perform one or more such non-fluid handling functions by means of one or more actuation mechanisms. Such non-fluid handling functions may include the ability to transfer power to move components, tools or other objects, such as a cuvette body, or cartridges or test samples, or any component thereof. When combined with a flexible supporting body (described herein) or other configuration allowing a wide range of movement, the apparatus may be able to perform such functions in multiple dimensions within the device, or even outside it. For instance, the fluid handling apparatus may be useful to transfer a component from one location within the device, to another. Components that may be transferred may be sample processing components. A sample processing component may be a sample preparation unit or component thereof, an assay unit component thereof, and/or a detection unit or component thereof. Examples of components may include but are not limited to tips, vessels, support structures, micro cards, sensors, temperature control devices, image capture units, optics, cytometers, centrifuges, or any other components described elsewhere herein. The fluid handling apparatus may pick up a sample processing component. The fluid handling apparatus may move the sample processing component to a different location of the device. The fluid handling apparatus may drop off the sample processing component at its new location within the device. The fluid handling apparatus may be capable of transferring sample processing components within a module. The fluid handling apparatus may or may not be confined to the module. Alternatively, the fluid handling apparatus may be capable of transferring sample processing components between modules, and need not be confined to a single module. In some instances, the fluid handling apparatus may be capable of transferring sample processing components within a rack and/or may be confined to a rack. Alternatively, the fluid handling apparatus may be capable of transferring sample processing components between racks, and need not confined to a single rack. A fluid handling apparatus may pick up and move a sample processing component using various mechanisms. For example, the sample processing component may be picked up using a press-fit between one or more of the pipette heads and a feature of the sample processing component. For example, a pipette nozzle may interface with a tip through a press-fit arrangement. The same press-fit arrangement may be used to permit a pipette nozzle and a feature of the sample processing component to engage. Alternatively, the press-fit interface may occur between any other portion of the fluid handling apparatus and the sample processing component. In some instances, the press-fit feature of the sample processing component may be protruding to encounter the fluid handling apparatus. The press-fit feature of the sample processing component may have a shape complementary to the press-fit portion of the fluid handling apparatus. Another example of an interface mechanism may be a pressure-driven mechanism, such as a suction mechanism. The sample processing component may be picked up using a suction provided by one, two or more of the pipette heads. The suction may be provided by one or more pipette head may be provided by the internal actuation of a plunger, or a negative pressure source coupled to the fluid path. The pipette heads providing suction may contact any portion of the sample processing component, or may contact a specific feature of the sample processing component. The feature of the sample processing component may or may not be protruding to encounter the fluid handling apparatus. An additional example of an interface mechanism may be a magnetic mechanism. A fluid handling apparatus may include a magnet that may be turned on to interface with a magnet of the sample processing component. The magnet may be turned off when it is desired to drop off the sample processing component. Additional mechanisms known in the art including but not limited to adhesives, hook and loop fasteners, screws, or lock and groove configurations may be used. In some embodiments, a component removal mechanism may be provided to assist with dropping off the sample processing component. Alternatively, no separate component removal mechanism may be required. In some instances, a tip removal mechanism may be used as a component removal mechanism. In another example, a plunger may be used as a component removal mechanism. Alternatively, separate component removal mechanisms may be provided. A component removal mechanism may use the principles of gravity, friction, pressure, temperature, viscosity, magnetism, or any other principles. A large quantity of tips can be stored within the device that are available as a shared resource to the pipette or robot to be utilized when required. Tips may be stored in a hopper, cartridge, or bandoleer to be used when required. Alternatively, tips may be stored in nested fashion to conserve space within the device. In another embodiment, a module can be configured to provide extra tips or any other resources needed as a shared module in the device. The fluid handling apparatus may interface with the sample processing component at any number of interfaces. For example, the fluid handling apparatus may interface with the sample processing component at one, two, three, four, five, six, seven, eight, nine, ten, or more interfaces. Each of the interfaces may be the same kind of interface, or may be any combination of various interfaces (e.g., press fit, suction, magnetic, etc.). The number and/or type of interface may depend on the sample processing component. The fluid handling apparatus may be configured to interface with a sample processing component with one type of interface, or may have multiple types of interface. The fluid handling apparatus may be configured to pick up and/or transfer a single type of sample processing component or may be capable of picking up and transferring multiple types of sample processing components. The fluid handling apparatus, assisted by the application of various tips, may facilitate or perform various sample processing tasks for or with the sample processing component, including physical and chemical processing steps. FIG. 52 provides an example of a fluid handling apparatus used to carry a sample processing component. The sample processing component may be a cuvette carrier 5210. The cuvette carrier may have one or more interface feature 5212 that may be configured to interface with the fluid handling device. In some embodiments, the interface feature may contact a pipette nozzle 5220 of the fluid handling device. A plurality of interface features may contact a plurality of pipette nozzles. In some embodiments, a tip removal mechanism 5230 may be useful for removing the cuvette carrier from the pipette nozzle. A plurality of tip removal mechanisms may be actuated simultaneously or in sequence. FIG. 53 shows a side view of a fluid handling apparatus useful for carrying a sample processing component. A cuvette carrier 5310 may interface with the fluid handling apparatus. For example, nozzles 5320 that may engage with the cuvette carrier. The nozzles may have the same shape and/or configuration. Alternatively, the nozzles may have varying configurations. The cuvette carrier may have one or more complementary shape 5330, which may be configured to accept the nozzles. The nozzles may be engaged with the carrier through friction and/or vacuum assist. The nozzles may be for air displacement pipettes. The cuvette carrier may interface with one or more cuvette 5340, or other types of vessels. The cuvette may have a configuration as shown in FIGS. 70A-B. The fluid handling apparatus may also interface with a series of connected vessels. One such configuration is shown in FIG. 69, where the fluid handling apparatus may interface with pick-up ports 6920 to pick up the strip of vessels. In some embodiments, a mini vessel is provided that may interface with a pipette for various processing and analytical functions. The various processing and analytics functions in some cases can be performed at a point of service location. Pick-Up Interface A fluid handling device may be configured to interface with a tip or any other component. As previously mentioned, a fluid handling device may include a pipette nozzle, which may be press-fit to a pipette tip. Additional mechanisms may be used to connect a tip or other component to the fluid handling device including, but not limited to, magnetic, snap-fit, hook and loop fasteners, elastics, ties, sliding mechanisms, locking mechanism, clamps, actuated mechanical components, and/or adhesives. The connection of a component or tip may permit the fluid handling device to function as a robot capable of performing one or more fluid-handling or non-fluid handling functions. Such functions may include the ability to transfer power to move tools or other objects, such as cartridges. When combined with a flexible supporting body (as described above), the device may be able to perform such functions across a wide range of movement. A pipette nozzle may be capable of interfacing with a single tip and/or vessel. For example, specific pipette nozzles may be configured to interface with specific tips and/or vessels. Alternatively, a single pipette nozzle may be capable of interfacing with a plurality of tips and/or vessels. For example, the same pipette nozzle may be capable of interfacing with both a large and a small pipette tip and/or vessel. A pipette nozzle may be capable of interfacing with tips and/or vessels having different configurations, dimensions, volume capacities, materials, and/or size. In one example, one or more rotational mechanism may be used. Such rotational mechanisms may include screwing a tip onto a pipette nozzle. Such screwing mechanisms may employ external screws and/or internal screws. FIG. 59 includes an example of a screw-mechanism. A pipette nozzle 5900 may be provided. A tip 5910 may be configured to connect to the pipette nozzle. The tip may connect to the pipette nozzle directly or via an interface 5920. In some embodiments, the interface may be a nut or other connector. The interface 5920 may connect to the pipette nozzle 5900 in any manner including press-fit, screw, or any other connecting mechanism described elsewhere herein. Similarly, the interface 5920 may connect to the tip 5910 via press-fit, screw, or any other connecting mechanism described elsewhere herein. In one example, a pipette tip 5910 may have an external screw ramp 5930. An interface 5920, such as a nut, may have a complementary internal screw ramp 5940. In an alternate embodiment, the pipette tip may have an internal screw ramp, and the interface, such as a nut, may have a complementary external screw ramp. The pipette tip may be capable of screwing into an interior portion of the interface. A portion of an outside surface of the pipette tip may contact an interior surface of the interface. In an alternate embodiment, the pipette tip may be capable of screwing over an exterior portion of the interface. A portion of the inside surface of the pipette tip may contact an exterior surface of the interface. In such an embodiment, an interface may have an external screw ramp on its outer surface and/or an internal screw ramp on its outer surface. The pipette tip may have a complementary internal screw ramp on its internal surface or a complementary external screw ramp on its internal surface, respectively. In additional embodiments, a portion of the tip surface may be embedded in an interface, or a portion of the interface may be embedded within the tip. A portion of the pipette nozzle may be within the interface, or a portion of the pipette nozzle may be external to the interface. In some embodiments, a portion of the pipette nozzle surface may be embedded within a portion of the interface, or a portion of the interface surface may be embedded within a portion of the pipette nozzle. A pipette nozzle 5900 may have one or more flanges 5950 or other surface features. Other examples of surface features may include grooves, protrusions, bumps, or channels. The flange may fit into a flange seat of a tip 5910. The flange may fit into the flange seat to prevent rotation. This interface may be configured to prevent rotation of the interface and tip once the tip is properly screwed in. In alternate embodiments of the invention, no interface 5920 may be required. A tip may screw directly into a pipette nozzle. The tip may screw directly over the nozzle, or inside the nozzle. An exterior surface of the tip may contact an interior surface of the nozzle, or an internal surface of the tip may contact an external surface of the nozzle. In alternate embodiments, a portion of the tip surface may be embedded within a pipette nozzle, or a portion of a pipette nozzle surface may be embedded within a tip. A tip may have one, two or more external screw ramps. Any number of external screw ramps may be provided. One, two, three, four, five, six, seven, eight, or more screw ramps may be provided. The screw ramps may be external screw ramps, internal screw ramps, or any combination thereof. The screw ramps may be equally radially spaced apart. A pipette tip may have one, two or more flange seats. One, two, three, four, five, six, seven, eight, or more flange seats may be provided. The flange seats may be equally radially spaced apart. Alternatively, the interval between flange seats may vary. The flange seats may be located radially where a screw ramp reaches an end of a pipette tip. Alternatively, the flange seats may be located anywhere in relation to the screw ramps. A pipette nozzle may have one, two or more flanges, or other surface features described elsewhere herein. One, two, three, four, five, six, seven, eight or more flanges may be provided. The flanges may be equally radially spaced apart. Alternatively, the intervals between flanges may vary. A flange may be configured to fit into a flange seat. In some embodiments, a one to one correspondence may be provided between flanges and flange seats. A first flange may fit into a first flange seat, and a second flange may fit into a second flange seat. The flange seats may have complementary shapes to the flanges. In some embodiments, the flanges may have the same shape and the flange seats may fit over any flange. Alternatively, the flanges may have different shapes and/or configurations so that specific flange seats may correspond to specific flanges. In alternate embodiments, one or more flange may be provided within a pipette nozzle. Complementary flange seats may be shaped on a pipette nozzle. A flange may be press-fit into a flange seat. The connection between a flange and flange seat may be tight. Alternatively, a connection between a flange and flange seat may be loose so that a flange may slide out of a flange seat. FIG. 60 provides an additional example of a nozzle-tip interface provided in accordance with an embodiment of the invention. The pick-up and interface may use one or more features, characteristics, or methods employed within a ball-point pen-type configuration. A nozzle 6000 may be configured to come into contact with a tip 6002. One or more pick-up claw 6004 may be configured to pick up the tip. The pick-up claw may have one or more claw tine 6006 or other component that may grip or pick up the tip. In some instances, a collar 6008 may fit over the pick-up claw 6004. The claw tines 6006 may extend out of the collar. The collar may have a claw compression diameter 6010. The claw may slide within the pick-up collar. Thus, the tines may extend from the collar to varying amounts. The claw compression diameter may compress the tines to come together. This may enable the tines to grip an object, such as the tip, when the collar slides over the tines. A ratchet mechanism 6012 may be provided. The ratchet mechanism may slide over a portion of the claw. One or more claw pin 6014 may guide the claw within the ratchet. For example, the claw pins may keep the claw moving longitudinally along the ratchet, rather than sliding around. A claw spring 6016 may be provided, which may assist with providing force along the claw in a longitudinal direction. In some instances, a nozzle spring 6018 may be provided which may permit the nozzle to move in a longitudinal direction. The nozzle spring may optionally have a smaller diameter than the claw spring. The claw spring may wrap around the outside a portion of the nozzle. One or more cap 6020 may be provided. A pick-up assembly, including the nozzle 6000, claw 6004, collar 6008, cap 6020 and associated portions may approach a tip 6002. The assembly may press down to pick-up engage the tip. One or more tines 6006 of the claw may capture a lip of the tip. The collar may be partially over the tines to compress the tines against the tip. The collar may slide further down to tighten the tines further around the tip in a pick-up press step. The assembly may then pull up. The tines may be caught on the lip of the tip in a pick-up lock step. The nozzle may force the tip against the tines, forming a seal. The entire assembly may be used in a pipetting function. For example, the pipette and connected tip may aspirate, dispense, and/or transfer a fluid. The claw may be locked in the collar during the pipetting functions. In order to remove the tip, the assembly may be pressed down in a drop-off engage step. In a drop-off pull away step, the assembly may be lifted, with the collar sliding up relative to the claw, permitting the tines to loosen around the tip. The entire assembly may be lifted while the tip remains down, thereby separating the tip from the pick-up assembly. FIG. 61 shows an example of an internal screw pick-up interface. A tip 6100 may screw into a screw portion 6110 of the pipette. The portion may be a pipette nozzle or interface between the tip and pipette nozzle. The tip may include one or more flanges 6120 or other surface features. Any number or configuration of flanges may be provided, as described elsewhere herein. The flanges may engage with one or more mechanism that may rotate the tip around a screw portion. Alternatively, the screw portion may spin while the tip remains stationary, optionally being held in place using the flanges. The screw portion may include one or more screws 6130 that may screw within the tip. Alternatively, the tip may include one or more screws on its external surface and may screw into the screw portion. The screw portion may include one or more fluid pathway 6140. The fluid pathway may be brought into fluid communication with the interior 6150 of the tip. FIG. 62 illustrates an example of an O-ring tip pickup. A tip 6200 may be picked up by a pipette nozzle 6210. A portion of the tip may fit within a portion of the nozzle. For example, a portion of the external surface of the tip may contact an internal surface of the nozzle. Alternatively, a portion of the nozzle may fit within a portion of the tip. For example, a portion of the internal surface of the tip may contact an external surface of the nozzle. The nozzle may have one or more O-ring 6220 that may contact the tip 6200. The O-ring may be formed of an elastomeric material. The O-ring may be provided around the circumference of the pipette nozzle. Alternatively, elastomeric material may be provided that need not be provided around the entire circumference of the pipette nozzle. For example, one or more rubber balls or similar elastomeric protrusions may be provided at one or more intervals within the pipette nozzle. The pipette nozzle may have one or more groove into which one or more O-rings may fit. Alternatively, the tip may have one or more grooves on its external surface into which one or more O-rings or other materials may fit. A high-friction and/or flexible material may be provided between a portion of the nozzle and/or tip. This may enable the tip to be press-fit into the nozzle, or for the nozzle to be press-fit into the tip. In some instances, both the nozzle and tip may have O-rings or similar materials. An O-ring may ensure a fluid seal between the tip and nozzle. The pipette nozzle may have an internal shelf or flat back 6230. The flat back may provide a physical stop to seat a tip in the appropriate location. FIG. 63 provides an example of an expand/contract smart material tip pickup. A tip 6300 may be picked up by a pipette nozzle 6310. A portion of the tip may fit within a portion of the nozzle. For example, a portion of the external surface of the tip may contact an internal surface of the nozzle. Alternatively, a portion of the nozzle may fit within a portion of the tip. For example, a portion of the internal surface of the tip may contact an external surface of the nozzle. The nozzle may include a collar made of a magnetostrictive or electrostrictive smart material which may contract when subject to magnetic or electric field respectively. Electromagnetic coils, magnetic field manipulation, or a current generating power source may be incorporated to control the contraction and expansion of the material. To pick up a tip, the nozzle may descent around the tip and the collar may be activated, causing it to contract and grip the tip. The collar may grip the tip tightly. The contraction of the collar may grip the tip sufficiently tightly to ensure a tight fluid seal. To release the tip, the collar may be deactivated to expand and release the tip. The pipette nozzle may have an internal shelf or flat back 6320. The flat back may provide a physical stop to seat a tip in the appropriate location. In an alternate embodiment, the smart material of the nozzle may be inserted within a portion of the tip. The material may be activated to cause the material to expand and grip the tip from the inside. The material may be deactivated to cause the material to contract and release the tip. FIG. 64 provides an example of an expand/contract elastomer deflection tip pickup. A tip 6400 may be picked up by a pipette nozzle 6410. A portion of the tip may fit within a portion of the nozzle. For example, a portion of the external surface of the tip may contact an internal surface of the nozzle. Alternatively, a portion of the nozzle may fit within a portion of the tip. For example, a portion of the internal surface of the tip may contact an external surface of the nozzle. The nozzle may include a rigid material 6420 and an elastomeric material 6430. The rigid material may be a rigid block or solid material. The tip may be surrounded by the elastomeric material. The rigid block may lie over the elastomeric material surrounding the tip. An actuator may provide a force 6440 that may compress the rigid block 6420. The rigid block may be pressed toward the tip. Pressing the rigid block may compress the elastomer 6430, causing a bulging effect that may shrink the internal chamber of the elastomer. Shrinking the internal chamber may cause the elastomer to securely grip the tip 6400. Compressing the elastomer in a first direction (e.g., toward the tip) may cause the elastomer to expand in a second direction (e.g., perpendicular toward the tip), which may result in a compression of the elastomer around the tip. In order to drop the tip off, the force 6440 may be removed, which may cause the rigid block to move away from the tip, and may release the elastomer from its compressed state. FIG. 65 provides an example of a vacuum gripper tip pickup. A tip 6500 may be provided, having a large head 6502. The large head may have a large flat surface area. The tip may engage with a nozzle 6510. The nozzle may have one or more tunnel 6520 therein. In some instances, one, two, three, four, five, six, seven, eight or more tunnels may be provided through the nozzle. The tunnels may be spaced radially equally apart, or at varying intervals. The tunnels may have the same or differing diameters. A first end of a tunnel may be coupled to a pressure source, while a second end of the tunnel may be facing the head 6502 of the tip. The pressure source may be a negative pressure source. Tunnels may be connected to a lower pressure region, creating a suction force, which may act on the flat head of the tip. The suction force may provide a pulling force that may act upwards to secure the tip to the nozzle. In some embodiments, an O-ring 6530 may be provided. The O-ring or other elastomeric member may be located between a nozzle and the head of a tip. One or more groove or shelf may be provided in the nozzle and/or tip to accommodate the O-ring. The O-ring may permit a seal to be formed between the nozzle and tip. This may provide fluid tight seal between a fluidic path 6540 within the nozzle and a fluid path 6550 within the tip. In order to drop off the tip from the nozzle, the tunnels may be disconnected from the negative suction pressure source. Alternatively, the pressure source itself may be turned off. Such nozzle-tip connections and interfaces are provided by way of example only. Additional tip-nozzle interfaces, and/or variations or combinations of those described herein may be implemented. In some embodiments, one or more components of a pipette may be configured to be exchangeable. Such configurations may allow for future versions of components of a pipette (e.g. nozzles) with different functionality to be added to or exchanged on the pipette. Modular Fluid Handling In some embodiments, one or more of the fluid handling apparatus configurations described elsewhere herein may be implemented in a modular fashion. For example, one or more pipette head may be provided in a modular format. In some embodiments, a single pipette module may have a single pipette head and/or nozzle thereon. Alternatively, a single pipette module may have two, three, four, five, six or more pipette heads and/or nozzles thereon. Pipette modules may be stacked next to each other to form a multi-head configuration. Individual pipette modules may be removable, replaceable, and/or swappable. Individual pipette modules may each have the same configuration or may have different configurations. In some instances, different pipette modules may be swapped out for others to provide different functionality. Pipette modules described herein may also be referred to as “pipette cards,” “cards,” or “pipette units.” FIG. 66 provides an example of a pipette module in accordance with an embodiment of the invention. The pipette module may include a pipette body 6600 mounted on a support 6610. The support may include or more guide rod 6612, track, screw, or similar feature. The pipette body may be able to slide along the guide rod or similar feature. Any description herein of guide rod may apply to any other feature that may guide the motion of a pipette body. In some instances, the pipette body may be able to travel upwards and/or downwards relative to the support along the guide rod In some instances, the support may also include a lead screw 6614. The lead screw may interact with an actuation interface 6602 of the pipette body. The actuation interface may contact the lead screw, so that as the lead screw may turn, the actuation interface may engage with the teeth of the screw and may cause the pipette body to move up or down correspondingly. In some embodiments, the actuation interface may be a spring-loaded flexure. The spring loaded flexure may be biased against the screw, thereby providing a strong flexible contact with the screw. The spring loaded flexture may be configured for precise kinematic constraint. The screw may turn in response to an actuation mechanism. In some embodiments, the actuation interface may be connected to the pipette piston by means of a magnet, offering sufficient degrees of freedom to limit wear and extend the life of the mechanism. In some embodiments, the actuation mechanism may be a motor, which may include any type of motor described elsewhere herein. The motor may be directly connected to the screw or may be connected via a coupling. The actuation mechanism may move in response to one or more instructions from a controller. The controller may be external to the pipette module, or may be provided locally on the pipette module. The pipette body 6600 may include a chassis. The chassis may optionally be a shuttle clamshell chassis. A nozzle 6620 may be connected to the pipette body. The nozzle may extend from the pipette body. In some embodiments, the nozzle may extend downward from the pipette body. The nozzle may have a fixed position relative to the pipette body. Alternatively, the nozzle may extend and/or retract from the pipette body. The nozzle may have a fluid pathway therein. The fluid pathway may be connected to a pipetting piston. Any descriptions of plungers, pressure sources, or fluid pathways described elsewhere herein may be used in a modular pipette. In some embodiments, the pipette body may support a motor 6630, geartrain, valve 6632, lead screw, magnetic piston mounting block, piston cavity block and valve mount 6634, and/or other components. One or more of the components described herein may be provided within a chassis of the pipette body. The pipette body may also include a guide rail 6640. The guide rail may permit a portion of the pipette to move relative to the pipette body. In one example, the pipette nozzle may move up or down relative to the pipette body. The pipette nozzle may be connected to an internal assembly that may move along the guide rail. In some embodiments, the guide rail 6640 may be configured to interface with another mechanism that may prevent the pipette body from rotating. The guide rail may be constrained by an exterior chassis, which may constrain rotation about the guide rod. FIG. 67A shows an example of modular pipette having a retracted shuttle in a full dispense position. A pipette body 6700 may be at an upward position relative to a support 6710. The pipette body may include an actuation interface 6702 that may engage with a lead screw 6714. When a shuttle is retracted, the actuation interface may be at the top of the lead screw. The mount may have a guide rod 6712 which may assist with guiding the pipette body relative to the mount. FIG. 67B shows an example of modular pipette having a dropped shuttle in a full dispense position. A pipette body 6700 may be at a downward position relative to a support 6710. The pipette body may include an actuation interface 6702 that may engage with a lead screw 6714. When a shuttle is dropped, the actuation interface may be at the bottom of the lead screw. The mount may have a guide rod 6712 which may assist with guiding the pipette body relative to the mount. The mount may be fully retracted, fully dropped, or have any position therebetween. The screw may turn to cause the pipette body to rise or lower relative to the mount. The screw may turn in a first direction to cause the pipette body to rise, and may turn in a second direction to cause the pipette body to drop. The screw may stop turning at any point in order to provide a position of the pipette body. The pipette body may drop with the nozzle, which may allow for greater complexity with less relative motion. A plurality of pipette modules may be provided in a fluid handling system. The pipette modules may have a blade configuration. A thin blade form factor may be provided so that any number of blades may be stacked side by side in a modular fashion to create a pipetting system where each nozzle can work or move independently. A single blade may be composed of multiple tools (nozzle, end effectors, etc.) that can be chosen for specific operations, thereby minimizing the space required for the overall assembly. In some embodiments, a blade may also function as a freezer, refrigerator, humidifier, and/or incubator for samples and/or reagents held in vessels and/or cartridges. The plurality of pipette modules may or may not be located adjacent to one another. In some embodiments, the pipette modules may be narrow and may be stacked next to one another, to form a multi-head pipette configuration. In some embodiments, a pipette module may have a width of less than or equal to 1 μm, 5 μm, 10 μm, 50 μm, 100 μm, 300 μm, 500 μm, 750 μm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.5 cm, 2 cm, 3 cm, or 5 cm. Any number of pipette modules may be positioned together. For example, one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, twelve or more, fifteen or more, twenty or more, twenty-five or more, thirty or more, fifty or more, seventy or more, one hundred or more pipette modules may be positioned together. Additional pipette modules may be positioned separately or together and optionally may have varying nozzles with different dimensions and capabilities. The separate pipette modules may be positioned adjacent to one another and may or may not contact one another. The pipette modules positioned together may or may not share a common support. The pipette bodies of the pipette modules may be able to move independently of one another up and down relative to the pipette mounts. The nozzles of the pipette modules may be able to extend and/or retract independently relative to the other pipette modules. In some embodiments, a pipette comprising multiple pipette modules on a common support may be configured such that any one of the pipette modules is capable of contacting the same locations within a device as may be contacted by one or more of the other pipette modules. This configuration may be desirable, for example, as a precaution for in the event that a pipette module becomes non-functional, and it becomes desirable for another pipette module of the same common support to take over for the non-functional pipette. The various pipette modules may have the same or different configurations. The pipette nozzles of the pipette nozzles may be the same or may vary. The pipette modules may be capable of interfacing with multiple types of tips or with specialized tips. The pipette modules may have the same or varying degrees of sensitivity or coefficient of variation. The pipette modules may have the same or different mechanisms for controlling the aspiration and/or dispensing of a fluid (e.g., air displacement, positive displacement, internal plunger, vertical plunger, horizontal plunger, pressure source). The pipette modules may have the same or different mechanisms for picking up or removing a tip (e.g., press-fit, screw-in, smart material, elastomeric material, click-fit, or any other interface described elsewhere herein or otherwise). A modular pipette may have motion that may be broken down into a plurality of functions. For example motion may be broken into (1) motion of a piston and piston block in a (z) direction to aspirate and dispense fluid, and (2) motion of a shuttle assembly in a (z) direction to allow the pipette module to engage with objects at various heights and provide clearance when moving in (xy) directions. In some embodiments, the (z) direction may be a vertical direction, and (xy) directions may be horizontal directions. The motion of the piston and piston block may be parallel to the motion of the shuttle assembly. Alternatively, the motion of the piston and piston block may be non-parallel and/or perpendicular. In other embodiments, the motion of the piston and piston block and/or the motion of the shuttle assembly may be horizontal or may have any other orientation. Piston motion may be achieved in a very compact, flat package via the use of a gear train and lead screw stacked horizontally, for example as illustrated in FIG. 66. A constant force spring, compression spring, or wave spring may be used to remove backlash in this assembly and may therefore provide significantly improved accuracy/precision for aspiration and dispense. The system may use exact or very precise kinematic constraint with various springs in order to permit the assembly to operate precisely even with inaccuracies in the position or size of each individual component. All components which interact directly with the tips, nozzle, or piston may be mounted to a single “shuttle assembly” and this entire assembly may move as one piece. The shuttle assembly may include a pipette body 6600 as shown in FIG. 66. The various components may move with the shuttle assembly, which may be distinguishable from traditional pipettes where only the nozzle moves. This design may allow for simple, rigid connection of these components to the critical piston/nozzle area without the need for complex linkages or relative motion between several parts. It may also provide an expandable “platform” upon which to integrate future components and functionalities. The piston may be housed in a cavity. The cavity where the piston is housed may be cut from a single piece of metal and any valves or nozzles may be mounted directly to this block. This may simplify the mounting of components that may be directly involved in the pipetting action and may provide a reliable air tight seal with little unused volume. This may contribute to lower coefficients of variation for pipetting. Any of the coefficient of variation values described elsewhere herein may be achieved by the pipette. The shuttle assembly may be intentionally underconstrained in rotation about a shuttle guide rod. This may assist with tolerating misalignment in the device as the shuttle may have sufficient freedom to pivot side to side (e.g., xy plane) into whatever position is needed to engage with tips or other interface objects. The components in the shuttle assembly may be encased in a two piece “clamshell.” Some, more than half, or all of the components of the shuttle assembly may be encased within the clamshell. The clamshell can include two symmetric halves to the shuttle chassis that may hold the components in place. It can also include a single half with deep pockets for component mounting and a flat second half that completes the process of securing components in place. The portions of the clamshell may or may not be symmetric, or may or may not be the same thickness. These designs may allow the assembly to include a large number of small components without a complicated mounting method for each component. The clamshell design may also allow for an assembly method where components can be simply dropped into their correct position and then the second half of the clamshell may be put in place and fastened, thus locking everything in place. Additionally, this geometry lends itself to an approach which integrates PCB routing boards directly into the clamshell chassis components in order to facilitate wiring for components inside the device. Any description of clamshell may apply to a multi-part housing or casing of the shuttle assembly. A housing of the shuttle assembly may be formed from one, two, three, four, five, six, seven, eight or more parts that may come together to form the housing. A clamshell may be an example of a two-part shuttle housing. The portions of a clamshell may or may not be connected by a hinge. The portions of the clamshell may be separable from one another. In some embodiments, each nozzle/tip/piston/shuttle assembly may be combined into a single module (or blade) that is very thin and flat. This may allow stacking of several blades at a set distance from one another to create an arbitrarily large pipette. A desired number of blades may be stacked together as needed, which may permit the pipette to grow or shrink as needed. This modular approach can provide great flexibility in the mechanical design since it breaks up functionality and components into interchangeable parts. It may also enable modular components in this design to be rapidly adapted for and integrated into new pipettor systems; thus the same basic modular components can be capable of completing a large variety of tasks with different requirements. The modularization of functionality may also enable more efficient device protocols due to fast and independent nozzle and piston control on board each pipette blade. This design may provide advantages in servicing devices as defective blades can be swapped individually, rather than necessitating an entirely new pipettor. One or more of the blades may be independently movable and/or removable relative to the other places. FIG. 67C shows yet another embodiment wherein a plurality of individual pipette units 6720 are provided. FIG. 67C is a front view showing that each of the individual pipette units 6720 may be individually movable relative to any other pipette unit in the pipette chassis 6722. Some of the individual pipette units 6724 are configured to be larger volume units and use larger head units 6726. Each of the pipette units 6720 and 6724 can be moved up and down individually as indicated by arrow 6728. The system may optionally have imaging devices 6730 and 6732 to view activity at the pipette tips. This can be used as quality control to image whether a tip is properly seated on the pipette nozzle, whether sufficient volume of sample is in the tip, whether there is undesired bubbles or other defects in the samples. In the present embodiment, the plurality of imaging devices 6730 and 6732 are sufficient to image all of the tips of the pipette nozzle. FIG. 67D shows a side view of one embodiment an individual pipette unit 6720. FIG. 67D shows that this pipette unit 6720 may have a force-providing unit 6740 such as but not limited to a motor, a piezoelectric drive unit, or the like. Although direct drive is not excluded, the present embodiment uses a transmission such as but not limited to pulleys, linkages, or gears 6744 and 6746 are used to turn a lead screw 6748 that in turn moves the piston slide mechanism 6750 which can move up and down as indicated by arrow 6752. This in turn moves a piston 6754 that drives, using direct or air displacement, the aspiration or dispensing of fluid in tips (not shown) coupled to the nozzle portion 6756. A tip ejector slide 6760 is actuated when the lower extending portion of the piston slide mechanism 6750 pushes down on and moves the tip ejector slide 6760 down as indicated by arrow 6762. After the tip is ejected, the slide 6760 may return to its original position. As indicated by arrow 6770, the entire pipette unit 6720 can translate up and down in a first frame of reference. Components within the pipette unit 6720 can also move up and down in a second frame of reference. The aspirating and dispensing of liquid is independent of the movement of the unit 6720. The present embodiment also shows that there is no tubing extending to an external source. All fluid is kept separate from the internals of the pipette unit 6720 so that the units can be used without having to be cleaned or washed between uses. Some embodiments may have hydrophobic coatings, seals, filters, filter paper, frits, septa, or other fluid sealing items to prevent fluid and aerosolized particles from entering the hardware, non-disposable portions of the pipettes. In some embodiments, fully modular pipette unit 6720 for various fluid volumes and tip types can be provided with a common drive train design. In one embodiment, nozzle and all fluid components (including the piston/pump) are all located in a self-contained module which can be built and validated outside the rest of the assembly. The common platform allows for future versions of nozzles with different functionality to be added to the system through either new tips that can engage the heads or by replacing the module pipette unit 6720 with an updated pipette unit, so long as the interfaces both mechanical and electrical remain compatible with what is on the pipette chassis. Pipette units may be optimized to pipette different volumes of fluid. Pipette units may have different volume capacities. In some embodiments, the volume capacity of a pipette unit is related to the volume of the piston block or piston, the nozzle of the pipette unit, and/or tips which interface with the nozzle. In some embodiments, a pipette unit may have a pipetting capacity as low as 0.1 microliter or as high as 20 milliliters, or any volume between. In some embodiments, a pipette unit may be optimized for pipetting a range of volumes, including, for example, 0.1-2 microliters; 0.1-10 microliters; 1-10 microliters; 1-50 microliters; 2-20 microliters; 1-100 microliters; 10-200 microliters; 20-200 microliters; or 100-1000 microliters. Sensor Probes In some embodiments, a pipette, pipette unit or any other component of a device described herein may contain a probe. The probe may include one or more sensors, e.g. for motion, pressure, temperature, images, etc. Integration of a probe into one or more components of a device may aid in monitoring one or more conditions or events within a device. For example, a touch probe may be integrated with a pipette, such that when a pipette is moved it may sense its location (e.g. through pressure, motion, or imaging). This may increase the precision and accuracy and lower the COV of movement of the pipette. In another example, a probe on a pipette may obtain information regarding the strength of a seal between a pipette nozzle and a pipette tip. In another example, a probe may contain a temperature sensor. If the probe is attached, for example, to a centrifuge, cartridge, or pipette, the probe may obtain information regarding the temperature of the area in the vicinity of the centrifuge, cartridge, or pipette. A probe may be in communication with a controller of a module, device, or system, such that information obtained by the probe may be sent to the controller. The controller may use this information in order to calibrate or optimize device performance. For example, if a probe senses that a tip is not properly sealed on a pipette nozzle, the controller may direct the tip to be ejected from the pipette nozzle, and for a new pipette tip to be loaded onto the nozzle. In some embodiments, a probe may have a stand-alone structure, and not be integrated with another component of a device. Vessels/Tips A system may comprise one, two or more vessels and/or tips, or may contain a device that may comprise one, two or more vessels and/or tips. One or more module of a device may comprise one, two or more vessels and/or tips. A vessel may have an interior surface and an exterior surface. A vessel may have a first end and a second end. In some embodiments, the first end and second ends may be opposing one another. The first end or second end may be open. In some embodiments, a vessel may have an open first end and a closed second end. In some embodiments, the vessel may have one or more additional ends or protruding portions which may be open or closed. In some embodiments, a vessel may be used to contain a substrate for an assay or reaction. In other embodiments, the substrate itself may function as a sort of vessel, obviating the need for a separate vessel. The vessel may have any cross-sectional shape. For example, the vessel may have a circular cross-sectional shape, elliptical cross-sectional shape, triangular cross-sectional shape, square cross-sectional shape, rectangular cross-sectional shape, trapezoidal cross-sectional shape, pentagonal cross-sectional shape, hexagonal cross-sectional shape, or octagonal cross-sectional shape. The cross-sectional shape may remain the same throughout the length of the vessel, or may vary. The vessel may have any cross-sectional dimension (e.g., diameter, width, or length). For example, the cross-sectional dimension may be less than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, or 3 cm. The cross-sectional dimension may refer to an inner dimension or an outer dimension of the vessel. The cross-sectional dimension may remain the same throughout the length of the vessel or may vary. For example, an open first end may have a greater cross-sectional dimension than a closed second end, or vice versa. The vessel may have any height (wherein height may be a dimension in a direction orthogonal to a cross-sectional dimension). For example, the height may be less than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, 8 cm, 9 cm, or 10 cm. In some embodiments, the height may be measured between the first and second ends of the vessel. The interior of the vessel may have a volume of about 1,000 μL or less, 500 μL or less, 250 μL or less, 200 μL or less, 175 μL or less, 150 μL or less, 100 μL or less, 80 μL or less, 70 μL or less, 60 μL or less, 50 μL or less, 30 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 8 μL or less, 5 μL or less, 1 μL or less, 500 nL or less, 300 nL or less, 100 nL or less, 50 nL or less, 10 nL or less, 1 nL or less, 500 pL or less, 250 pL or less, 100 pL or less, 50 pL or less, 10 pL or less, 5 pL or less, or 1 pL or less. One or more walls of the vessel may have the same thickness or varying thicknesses along the height of the vessel. In some instances, the thickness of the wall may be less than, and/or equal to about 1 μm, 3 μm, 5 μm, 10 μm, 20 μm, 30 μm, 50 μm, 75 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 1.5 mm, 2 mm, or 3 mm. One or more vessels may be provided which may have the same shape and/or size, or varying shapes and/or sizes. A vessel may be formed of a single integral piece. Alternatively, the vessel may be formed from two or more vessel pieces. The two or more vessel pieces may be permanently attached to one another, or may be selectively separable from one another. A vessel may include a body and a cap. Alternatively, some vessels may only include a body. A vessel may be configured to contain and/or confine a sample. A vessel may be configured to engage with a fluid handling system. Any fluid handling system known in the art, such as a pipette, or embodiments described elsewhere herein may be used. In some embodiments, a vessel may be configured to engage with a tip that may be connected to a fluid handling device, such as a pipette. A vessel may be configured to accept at least a portion of a tip within the vessel interior. A tip may be inserted at least partway into the vessel. In some embodiments, the tip may be configured to enter the vessel all the way to the bottom of the vessel. Alternatively, the tip may be configured to be inserted no more than part way into the vessel. Vessel material can be of different types, depending on the properties required by the respective processes. Materials may include but not limited to: polymers, semiconductor materials, metals, organic molecules, ceramics, composites, laminates, etc. The material may be rigid or flexible, or able to transition between the two. Vessel materials may include, but not limited to polystyrene, polycarbonate, glass, metal, acrylics, semiconductor materials, etc., and may include one of several types of coatings. Vessel materials may be permeable to selective species by introducing functionalized pores on the vessel walls. These allow certain molecular species to pass through the material. Vessel material can also be coated to prevent absorption of substances such as water. Other coatings might be used to achieve specific optical characteristics such as transmission, reflectance, fluorescence, etc. Vessel can be of different geometries including, but not limited to, rectangular, cylindrical, hexagonal, and may include, without limitation, attributes such as perforations, permeable membranes, particulates or gels depending on the application. Vessels may be comprised of microfluidic channels or electrical circuits, optionally on a silicon substrate. Vessels may also be active and perform a set of tasks. Vessels may contain active transporters to pump fluids/suspensions through membrane/septal barriers. Vessels may be designed to have specific optical properties—transparency, opacity, fluorescence, or other properties related to any part of the electromagnetic spectrum. Vessels may be designed to act as locally heated reactors by designing the material to absorb strongly in the infrared part of the electromagnetic spectrum. Vessel walls might be designed to respond to different electromagnetic radiation—either by absorption, scattering, interference, etc. Combination of optical characteristics and embedded sensors can result in vessels being able to act as self-contained analyzers—e.g., photosensitive material on vessel walls, with embedded sensors will transform a vessel into a spectrophotometer, capable of measuring changes in optical signals. In some embodiments, vessels can be thought of as intelligent containers which can change their properties by “sampling” the surrounding fluids. Vessels could allow for preferential ion transfer between units, similar to cells, signaled by electrical and/or chemical triggers. They could also influence containment of the fluid inside it in response to external and/or internal stimuli. Response to stimuli may also result in change of size/shape of the vessel. Vessels might be adaptive in response to external or internal stimuli, and might enable reflex testing by modification of assay dynamic range, signal strength, etc. Vessels can also be embedded with different sensors or have different sensors embedded in them, such as environmental (temperature, humidity, etc.), optical, acoustic, or electro-magnetic sensors. Vessels can be mounted with tiny wireless cameras to instantly transmit information regarding its contents, or alternatively, a process which happens in it. Alternatively, the vessel can comprise another type of detector or detectors, which transmit data wirelessly to a central processing unit. Vessels can be designed for a range of different volumes ranging from a few microliters to milliliters. Handling fluids across different length and time scales involves manipulating and/or utilizing various forces—hydrodynamic, inertial, gravity, surface tension, electromagnetic, etc. Vessels may be designed to exploit certain forces as opposed to others in order to manipulate fluids in a specific way. Examples include use surface tension forces in capillaries to transfer fluids. Operations such as mixing and separation require different strategies depending on volume—vessels may be designed to specifically take advantage of certain forces. Mixing, in particular is important while handling small volumes, since inertial forces are absent. Novel mixing strategies such as using magnetic particles with external forcing, shear-induced mixing, etc. might be adopted to achieve efficient mixing. Vessels offer flexibility over microfluidic chips due to their inherent flexibility in handling both small and large volumes of fluids. Intelligent design of these vessels allows us to handle a larger range of volumes/sizes compared to microfluidic devices. In one embodiment, vessels were designed with tapered bottoms. This taper is in at least the interior surface of the vessel. It should be understood that the exterior may be tapered, squared, or otherwise shaped so long as the interior is tapered. These features reduce sample/liquid overages that are needed. Namely, small volumes can be mixed in the vessel and extracted without wasting/leaving behind residual liquid. This design allows one to work with both small volumes and larger volumes of liquids. In addition, vessels can take advantage of forces which microfluidic devices cannot—thereby offering more flexibility in processing. Vessels may also offer the ability to dynamically change scales, by switching to different sizes. In the “smart vessel” concept, the same vessel can change capacity and other physical attributes to take advantage of different forces for processing fluids. This actuation can be programmed, and externally actuated, or initiated by changes in fluid inside. The functionality of a vessel can go beyond fluid containment—different vessels can communicate via surface features or external actuation and engage in transport of fluids/species across vessel boundaries. The vessel thus becomes a vehicle for fluid containment, processing, and transport—similar to cells. Vessels can fuse in response to external actuation and/or changes in internal fluid composition. In this embodiment, vessels can be viewed as functional units, capable of executing on or several specialized function—separations such as isoelectric focusing, dialysis, etc. Vessels can be used to sample certain fluids and generate information regarding transformations, end points, etc. Vessels can act as self-contained analytical units, with in-built detectors and information exchange mechanisms, through sensors and transmitters embedded inside vessel walls. Vessel walls can be made with traditional and/or organic semiconductor materials. Vessels can be integrated with other sensors/actuators, and interface with other vessels. A vessel, in this embodiment, can be viewed as a system capable of containment, processing, measurement, and communication. In some embodiments, a vessel may contain a chip for electric manipulation of very small volumes of liquid. Vessels can also have sample extraction, collection, and fluid transfer functionalities. In this embodiment, a vessel would act like a pipette being stored in the cartridge, and able to transfer fluid to a specific location. Examples include a viral transport medium for nucleic acid amplification assays, where the vessel is used to both collect and transport the viral transport medium. Another example would be a cuvette coming out of the device in order to collect a fingerstick sample. Vessels may be designed to contain/process various sample types including, but not limited to blood, urine, feces, etc. Different sample types might require changes in vessel characteristics—materials, shape, size, etc. In some embodiments, vessels perform sample collection, processing, and analysis of contained sample. A vessel or subvessel may be sealed with or otherwise contain reagents inside it. A pipette may act to release the reagent from the vessel when needed for a chemical reaction or other process, such as by breaking the seal that contains the reagent. The vessels may be composed of glass or other material. A reagent that would otherwise be absorbed into traditional polymer tips or degrade when exposed to the environment may necessitate such compartmentalization or sealing in a vessel. In some embodiments, vessels provided herein may have rounded edges to minimize fluid loss during fluid handling. A vessel (e.g. a tip) may have an interior surface and an exterior surface. A vessel (e.g. a tip) may have a first end and a second end. In some embodiments, the first end and the second ends may be opposing one another. The first end and/or second end may be open. A vessel (e.g. a tip) may include a passageway connecting the first and second ends. In some embodiments, a vessel (e.g. a tip) may include one or more additional ends or protrusions. For example, the vessel (e.g. a tip) may have a third end, fourth end, or fifth end. In some embodiments, the one or more additional ends may be open or closed, or any combination thereof. The vessel (e.g. a tip) may have any cross-sectional shape. For example, the vessel may have a circular cross-sectional shape, elliptical cross-sectional shape, triangular cross-sectional shape, square cross-sectional shape, rectangular cross-sectional shape, trapezoidal cross-sectional shape, pentagonal cross-sectional shape, hexagonal cross-sectional shape, or octagonal cross-sectional shape. The cross-sectional shape may remain the same throughout the length of the vessel (e.g. a tip), or may vary. The vessel (e.g. a tip) may have any cross-sectional dimension (e.g., diameter, width, or length). For example, the cross-sectional dimension may be less than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, or 3 cm. The cross-sectional dimension may refer to an inner dimension or an outer dimension of the vessel (e.g. a tip). The cross-sectional dimension may remain the same throughout the length of the vessel (e.g. a tip) or may vary. For example, an open first end may have a greater cross-sectional dimension than an open second end, or vice versa. The cross-sectional dimension ratio of the first end to the second end may be less than, and/or equal to about 100:1, 50:1, 20:1, 10:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:20, 1:50 or 1:100. In some embodiments, the change in the cross-sectional dimension may vary at different rates. The vessel (e.g. a tip) may have any height (wherein height may be a dimension in a direction orthogonal to a cross-sectional dimension). For example, the height may be less than, or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, 8 cm, 9 cm, or 10 cm. In some embodiments, the height may be measured between the first and second ends of the tip. The interior of the vessel (e.g. a tip) may have a volume of about 1,000 μL or less, 500 μL or less, 250 μL or less, 200 μL or less, 175 μL or less, 150 μL or less, 100 μL or less, 80 μL or less, 70 μL or less, 60 μL or less, 50 μL or less, 30 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 8 μL or less, 5 μL or less, 1 μL or less, 500 nL or less, 300 nL or less, 100 nL or less, 50 nL or less, 10 nL or less, 1 nL or less, 500 pL or less, 250 pL or less, 100 pL or less, 50 pL or less, 10 pL or less, 5 pL or less, or 1 pL or less. One or more walls of the vessel (e.g. a tip) may have the same thickness or varying thicknesses along the height of the vessel (e.g. a tip). In some instances, the thickness of the wall may be less than and/or equal to about 1 μm, 3 μm, 5 μm, 10 μm, 20 μm, 30 μm, 50 μm, 75 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 1.5 mm, 2 mm, or 3 mm. One or more vessels (e.g. a tip) may be provided which may have the same shape and/or size, or varying shapes and/or sizes. Any of the various embodiments described herein may have one or more features of the vessels and/or tips as described elsewhere herein. A tip may be formed of a single integral piece. Alternatively, the tip may be formed from two or more tip pieces. The two or more tip pieces may be permanently attached to one another, or may be selectively separable from one another. Chemistries or sensors may also be physically integrated into a tip, effectively enabling a complete laboratory test on a vessel (e.g. a tip). Vessels (e.g. a tip) may each individually serve different preparatory, assay, or detection functions. Vessels (e.g. a tip) may serve multiple functions or all functions within a single vessel or tip. A vessel (e.g. a tip) may be formed of a material that may be rigid, semi-rigid, or flexible. The vessel (e.g. a tip) may be formed of material that is conductive, insulating, or that incorporates embedded materials/chemicals/etc. The vessel (e.g. a tip) may be formed of the same material or of different materials. In some embodiments, the vessel (e.g. a tip) may be formed of a transparent, translucent, or opaque material. The inside surface of a tip can be coated with reactants that are released into fluids; such reactants can be plated, lyopholized, etc. The vessel (e.g. a tip) may be formed of a material that may permit a detection unit to detect one or more signals relating to a sample or other fluid within the vessel (e.g. a tip). For example, the vessel (e.g. a tip) may be formed of a material that may permit one or more electromagnetic wavelength to pass therethrough. Examples of such electromagnetic wavelengths may include visible light, IR, far-IR, UV, or any other wavelength along the electromagnetic spectrum. The material may permit a selected wavelength or range(s) of wavelengths to pass through. Examples of wavelengths are provided elsewhere herein. The vessel (e.g. a tip) may be transparent to permit optical detection of the sample or other fluid contained therein. The vessel (e.g. a tip) may form a wave guide. The vessel (e.g. a tip) may permit light to pass through perpendicularly. The vessel (e.g. a tip) may permit light to pass through along the length of the vessel. The vessel (e.g. a tip) may permit light to light to enter and/or travel at any angle. In some embodiments, the vessel (e.g. a tip) may permit light to enter and/or travel at selected angles or ranges of angles. The vessel and/or tip may form one or more optic that may focus, collimate, and/or disperse light. The material may be selected to be impermeable to one or more fluids. For example, the material may be impermeable to the sample, and/or reagents. The material may be selectively permeable. For example, the material may permit the passage of air or other selected fluids. Examples of materials used to form the vessel and/or tip may include functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, polymethylmethacrylate (PMMA), ABS, or combinations thereof. In an embodiment, an assay unit may comprise polystyrene. The materials may include any form of plastic, or acrylic. The materials may be silicon-based. Other appropriate materials may be used in accordance with the present invention. Any of the materials described here, such as those applying to tips and/or vessels may be used to form an assay unit. A transparent reaction site may be advantageous. In addition, in the case where there is an optically transmissive window permitting light to reach an optical detector, the surface may be advantageously opaque and/or preferentially light scattering. Vessels and/or tips may have the ability to sense the liquid level therein. For example, vessels and/or tips may have capacitive sensors or pressure gauges. The vessels may employ any other technique known in the art for detecting a fluid level within a container. The vessels and/or tips may be able to sense the liquid level to a high degree of precision. For example, the vessel and/or tip may be able to detect a liquid level to within about 1 nm, 5 nm, 10 nm, 50 nm, 100 nm, 150 nm, 300 nm, 500 nm, 750 nm, 1 μm, 3 μm, 5 μm, 10 μm, 50 μm, 75 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, or 1 mm. A tip may assist with the dispensing and/or aspiration of a sample. A tip may be configured to selectively contain and/or confine a sample. A tip may be configured to engage with a fluid handling device. Any fluid handling system known in the art, such as a pipette, or embodiments described elsewhere herein may be used. The tip may be connected to the fluid handling device to form a fluid-tight seal. In some embodiments, the tip may be inserted into a vessel. The tip may be inserted at least partway into the vessel. The tip may include a surface shape or feature that may determine how far the tip can be inserted into the vessel. Vessels and/or tips may be independently formed and may be separate from one another. Vessels and/or tips may be independently movable relative to one another. Alternatively, two or more vessels and/or tips may be connected to one another. They may share a common support. For example, the two or more vessels and/or tips may be cut from a same material—e.g., cut into a common substrate. In another example, two or more vessels and/or tips may be directly linked adjacent to one another so that they directly contact one another. In another example, one or more linking component may link the two or more vessels and/or tips together. Examples of linking components may include bars, strips, chains, loops, springs, sheets, or blocks. Linked vessels and/or tips may form a strip, array, curve, circle, honeycombs, staggered rows, or any other configuration. The vessels and/or connections may be formed of an optically transparent, translucent, and/or opaque material. In some instances, the material may prevent light from entering a space within the vessels and/or cavities. Any discussion herein of vessels and/or tips may apply to cuvettes and vice versa. Cuvettes may be a type of vessel. FIG. 69 provides an example of a vessel strip. The vessel strip provides an example of a plurality of vessels that may be commonly linked. The vessel strip 6900 may have one or more cavities 6910. The cavities may accept a sample, fluid or other substance directly therein, or may accept a vessel and/or tip that may be configured to confine or accept a sample, fluid, or other substance therein. The cavities may form a row, array, or any other arrangement as described elsewhere herein. The cavities may be connected to one another via the vessel strip body. The vessel strip may include one or more pick-up interface 6920. The pick-up interface may engage with a sample handling apparatus, such as a fluid handling apparatus. The pick-up interface may interface with one or more pipette nozzle. Any of the interface configurations described elsewhere herein may be used. For example, a pipette nozzle may be press-fit into the pick-up interface. Alternatively, the pick-up interface may interface with one or more other component of the pipette. The vessel strip may be useful for colorimetric analysis or cytometry. The vessel strip may be useful for any other analysis described elsewhere herein. FIGS. 70A and 70B provide another example of a cuvette 7000. The cuvette provides an example of a plurality of channels that may be commonly linked. The cuvette carrier may have a body formed from one, two or more pieces. In one example, a cuvette may have a top body portion 7002a, and a bottom body portion 7002b. The top body portion may have one or more surface feature thereon, such as a cavity, channel, groove, passageway, hole, depression, or any other surface feature. The bottom body portion need not include any surface features. The bottom body portion may be a solid portion without cavities. The top and bottom body portion may come together to form a cuvette body. The top and bottom body portion may have the same footprint, or may have differing footprints. In some instances, the top body portion may be thicker than the bottom body portion. Alternatively, the bottom body portion may be thicker or equal in thickness to the top body portion. The cuvette 7000 may have one or more cavities 7004. The cavities may accept a sample, fluid or other substance directly therein. The cavities may form a row, array, or any other arrangement as described elsewhere herein. The cavities may be connected to one another via the cuvette body. In some instances, the bottom of a cavity may be formed by a bottom body portion 7002b. The walls of a cavity may be formed by a top body portion 7002a. The cuvette may also include one or more fluidically connected cavities 7006. The cavities may accept a sample, fluid or other substance directly therein, or may accept a vessel and/or tip (e.g., cuvette) that may be configured to confine or accept a sample, fluid, or other substance therein. The cavities may form a row, array, or any other arrangement as described elsewhere herein. The cavities may be fluidically connected to one another via a passageway 7008 through the cuvette body. The passageway 7008 may connect two cavities, three cavities, four cavities, five cavities, six cavities, seven cavities, eight cavities, or more. In some embodiments, a plurality of passageways may be provided. In some instances, a portion of the passageway may be formed by a top body portion 7002a, and a portion of the passageway may be formed by a bottom body portion 7002b. The passageway may be oriented in a direction that is not parallel (e.g., is parallel) to an orientation of a cavity 7006 to which it connects. For example, the passageway may be horizontally oriented while a cavity may be vertically oriented. The passageway may optionally permit a fluid to flow from one fluidically connected cavity to another. The cuvette may include one or more pick-up interface. Optionally, a pick-up interface may be one or more cavity, 7004, 7006 of the cuvette. The pick-up interface may engage with a sample handling apparatus, such as a fluid handling apparatus. The pick-up interface may interface with one or more pipette nozzle. Any of the interface configurations described elsewhere herein may be used. For example, a pipette nozzle may be press-fit into the pick-up interface, or the nozzle may interact magnetically with the pick-up interface. Alternatively, the pick-up interface may interface with one or more other component of the pipette. Optionally, the cuvette may include embedded magnet(s) or magnetic feature(s) that allow for a sample handling apparatus to pickup and/or dropoff the cuvette based on magnetic forces. In some embodiments, a sample handling apparatus may directly transfer a cuvette from a cartridge to a cytometry station. In some embodiments, a module-level sample handling system may transfer a cuvette from an assay station to a cytometry station or detection station in the same module. In some embodiments, a device-level sample handling system may transfer a cuvette from an assay station to a cytometry station or detection station in a different module. Cuvettes may be useful, for example, for colorimetric analysis or cytometry. The cuvette may be useful for any other analysis described elsewhere herein. In some embodiments, a cuvette has a configuration optimized for use with a cytometer, e.g. to interface with a microscopy stage. In some embodiments, a cuvette has a configuration optimized for use with a spectrophotometer. A cuvette may be formed of any material, including those described elsewhere herein. The cuvette may optionally be formed of a transparent, translucent, opaque material, or any combination thereof. The cuvette may prevent a chemical contained therein from passing from one cavity to another. Referring now to FIG. 92, a still further embodiment of a cuvette will now be described. FIG. 92 shows a cuvette 7030 with a plurality of reaction wells 7032. It further includes side walls that allow for optical, colorimetric, turbidimetric, or other visual observation, and optionally, non-visual sensing of sample therein. In the present embodiment, the cuvette 7030 has at least one elevated portion 7040 that allows for engagement with a transport mechanism such as a pipette to move the cuvette from one location to another. The elevated portion 7040 allows the portion of the cuvette 7030 with the reaction vessels/wells to be positioned lower in the detector, facilitating detector design and more shielding the sample from outside light or other undesired external conditions during measurement. In some embodiments, the cuvette 7030 may have ledges, legs, or other stability features on the top and/or bottom portions so that it can support itself against a bottom surface or side wall surface of the detector station if the pipette or other transport mechanism disengages it so that the pipette or other mechanism can perform other tasks such as but not limited to pipetting or transporting other samples or reagents. Referring now to FIG. 93, this embodiment shows that the lift location 7040 of the cuvette is centrally located to provide a more balanced condition when using only a single nozzle of the fluid transport system to move the cuvette 7038. FIG. 71 shows an example of a tip in accordance with an embodiment of the invention. The tip 7100 may be capable of interfacing with a microcard, cuvette carrier and/or strip, including any examples described herein. The tip may include a narrow portion that may deposit a sample 7102, a sample volume area 7104, and/or a nozzle insertion area 7106. In some instances, the tip may include one or more of the areas described. The sample deposit area may have a smaller diameter than a sample volume area. The sample volume area may have a smaller volume than a nozzle insertion area. The sample deposit area may have a smaller volume than a nozzle insertion area. In some embodiments, a lip 7108 or surface may be provided at an end of the nozzle insertion area 7106. The lip may protrude from the surface of the nozzle insertion area. The tip may include one or more connecting region, such as a funnel region 7110 or step region 7112 that may be provided between various types of area. For example, a funnel region may be provided between a sample deposit area 7102 and a sample volume area 7104. A step region 7112 may be provided between a sample volume area 7104, and a nozzle insertion area. Any type of connecting region may or may not be provided between the connecting regions. A sample deposit area may include an opening through which a fluid may be aspirated and/or dispensed. A nozzle insertion area may include an opening into which a pipette nozzle may optionally be inserted. Any type of nozzle-tip interface as described elsewhere herein may be used. The opening of the nozzle insertion area may have a greater diameter than an opening of the sample deposit area. The tip may be formed of a transparent, translucent, and/or opaque material. The tip may be formed from a rigid or semi-rigid material. The tip may be formed from any material described elsewhere herein. The tip may or may not be coated with one or more reagents. The tip may be used for nucleic acid tests, or any other tests, assays, and/or processes described elsewhere herein. FIG. 72 provides an example of a test strip. The test strip may include a test strip body 7200. The test strip body may be formed from a solid material or may be formed from a hollow shell, or any other configuration. The test strip may include one or more cavities 7210. In some embodiments, the cavities may be provided as a row in the body. The cavities may optionally be provided in a straight row, in an array (e.g., m×n array where m, n are whole numbers greater than zero including but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more). The cavities may be positioned in staggered rows, concentric circles, or any other arrangement. The cavities may accept a sample, fluid or other substance directly therein, or may accept a vessel and/or tip that may be configured to confine or accept a sample, fluid, or other substance therein. The cavities may be configured to accept a tip, such as a tip illustrated in FIG. 71, or any other tip and/or vessel described elsewhere herein. The test strip may optionally be a nucleic acid test strip, which may be configured to accept and support nucleic acid tips. A cavity may have a tapered opening. In one example, a cavity may include a top portion 7210a, and a bottom portion 7210b. The top portion may be tapered and may have an opening greater in diameter than the bottom portion. In some embodiments, the cavity may be configured to accept a pipette nozzle for pick-up. One or more pipette nozzle may engage with one or more cavity of the test strip. One, two, three, four, five, six or more pipette nozzles may simultaneously engage with corresponding cavities of the test strip. A tapered opening of the cavity may be useful for nozzle pick-up. The pipette nozzle may be press-fit into the cavity or may interface with the cavity in any other manner described herein. One or more sample and/or reagent may be provided in a test strip. The test strips may have a narrow profile. A plurality of test strips may be positioned adjacent to one another. In some instances, a plurality of test strips adjacent to one another may form an array of cavities. The test strips may be swapped out for modular configurations. The test strips and/or reagents may be movable independently of one another. The test strips may have different samples therein, which may need to be kept at different conditions and/or shuttled to different parts of the device on different schedules. FIG. 73 shows another example of a test strip. The test strip may have a body 7300. The body may be formed from a single integral piece or multiple pieces. The body may have a molded shape. The body may form a plurality of circular pieces 7310a, 7310b connected to one another, or various shapes connected to one another. The bodies of the circular pieces may directly connect to one another or one or more strip or space may be provided between the bodies. The test strip may include one or more cavities 7330. In some embodiments, the cavities may be provided as a row in the body. The cavities may optionally be provided in a straight row, in an array (e.g., m×n array where m, n are whole numbers greater than zero including but not limited to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more). The cavities may be positioned in staggered rows, concentric circles, or any other arrangement. The cavities may accept a sample, fluid or other substance directly therein, or may accept a vessel and/or tip that may be configured to confine or accept a sample, fluid, or other substance therein. The cavities may be configured to accept a tip, such as a tip illustrated in FIG. 71, or any other tip and/or vessel described elsewhere herein. The test strip may optionally be a nucleic acid test strip, which may be configured to accept and support nucleic acid tips. The test strip body 7330 may be molded around the cavities 7330. For example, if a cavity has a circular cross-section, the test strip body portion 7310a, 7310b around that cavity may have a circular cross-section. Alternatively, the test strip body need not match the cavity shape. In some embodiments, the test strip may include an external pick-up receptacle 7320. One or more pipette nozzle may engage with one or more external pick-up receptacle of the test strip. One, two, three, four, five, six or more pipette nozzles may simultaneously engage with corresponding pick-up receptacles of the test strip. A pick-up receptacle may have one or more cavity 7340 or through-hole that may be capable of interfacing with a pipette nozzle. The pipette nozzle may be press-fit into the cavity or may interface with the receptacle in any other manner described herein. One or more samples and/or reagents may be provided in a test strip. The one or more sample may be directly within a cavity or may be provided in tips and/or vessels that may be placed in a cavity of the test strip. The test strips may have a narrow profile. A plurality of test strips may be positioned adjacent to one another. In some instances, a plurality of test strips adjacent to one another may form an array of cavities. The test strips may be swapped out for modular configurations. The test strips may be movable independently of one another. The test strips and/or reagents may have different samples therein, which may need to be kept at different conditions and/or shuttled to different parts of the device on different schedules. Nucleic Acid Vessel/Tip FIG. 24 shows an example of a vessel provided in accordance with an embodiment of the invention. In some instances, the vessel may be used for isothermal and non-isothermal nucleic acid assays (such as, without limitation, LAMP, PCR, real-time PCR) or other nucleic acid assays. Alternatively, the vessel may be used for other purposes. The vessel may include a body 2400 configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, and open end 2410, and a closed end 2420. The vessel may be configured to engage with a pipette. The vessel may include a flexible material 2430 extending through the cross-section of the vessel. The flexible material may extend across the open end of the vessel. The flexible material may or may not have a slit, hole, or other form of opening. The flexible membrane may be configured to prevent fluid from passing through the flexible membrane in the absence of an object inserted through the slit. In some embodiments, the flexible material may be a membrane. The flexible material may be a septum formed of a silicon-based material, or any elastic or deformable material. In some embodiments, the flexible material may be a self-healing material. An object, such as a tip, may be inserted through the flexible material. The tip may be inserted through a slit or opening in the flexible material or may penetrate the flexible material. FIG. 24 shows an example of a tip inserted into a vessel, passing through the flexible material, from an exterior view, and a cut-away view. The insertion of the tip may permit a sample to be dispensed to the vessel and/or be aspirated from the vessel through the tip. When the tip is removed, the flexible membrane may reseal or the slit may be sufficiently closed to prevent a fluid from passing through the flexible membrane. The body of the vessel may have a first open end 2410 and a second closed end 2420. A cross-sectional dimension, such as a diameter, of the first end may be greater than the cross-sectional dimension of the second end. The closed end may have a tapered shape, rounded shape, or a flat shape. In some embodiments, the body of the vessel may have a cylindrical portion 2440 of a first diameter having an open end 2442 and a closed end 2444, and a funnel shaped portion 2450 contacting the open end, wherein one end of the funnel shaped portion may contact the open end and may have the first diameter, and a second end 2452 of the funnel shaped portion may have a second diameter. In some embodiments, the second end of the funnel shaped portion may contact another cylindrical portion 2460 that has two open ends, and that may have the second diameter. In some embodiments, the second diameter may be greater than the first diameter. Alternatively, the first diameter may be greater than the second diameter. In some embodiments, the open end of the vessel body may be configured to engage with a removable cap 2470. In some embodiments, an end of the additional cylindrical portion or a second end of the funnel shaped portion may be configured to engage with the cap. In some embodiments, the vessel may also include a cap 2470. The cap may be configured to contact the body at the open end of the body. In some embodiments, at least a portion of the cap may extend into the interior of the body or may surround a portion of the body. Alternatively, a portion of the body may extend into the interior of the cap or may surround a portion of the cap. The cap may have two or more ends. In some embodiments, one, two or more of the ends may be open. For example, a cap may have a first end 2472 and a second end 2474. A passageway may extend through the cap. The diameter of the cap may remain the same throughout the length of the cap. Alternatively, the diameter of the cap may vary. For example, the end of the cap further from the body may have a smaller diameter than the end of the cap to be engaged with the body. The flexible membrane 2430 may be provided within the body of the vessel. Alternatively, the flexible membrane may be provided within the cap of the vessel. The flexible membrane may be sandwiched between the body and the cap of the vessel. In some instances, the flexible membrane may be provided both within the body and cap of the vessel, or multiple flexible membranes may be provided that may be distributed between the body and cap of the vessel in any manner. In some embodiments, the body may comprise an interior portion through which the flexible material extends, or the cap may comprise a passageway through which the flexible material extends. One or more tip may be inserted into the vessel. In some embodiments, the tip may be specially designed for insertion into a nucleic acid vessel. Alternatively, any of the tips described elsewhere herein may be inserted into the nucleic acid vessel. In some instances, a pipette tip may be inserted into the nucleic acid vessel. The tip 2480 may have a lower portion 2482 and an upper portion 2484. The lower portion may have an elongated shape. The lower portion may have a smaller diameter than the upper portion. One or more connecting feature 2486 may be provided between the lower portion and the upper portion. The lower portion of the tip may be inserted at least partially into the vessel. The tip may be inserted through the cap of the vessel and/or through the flexible material of the vessel. The tip may enter the interior of the body of the vessel. The tip may pass through a slit or opening or of the flexible material. Alternatively, the tip may puncture the flexible material. In some embodiments, a tip and/or vessel may have any other type of barrier that may reduce contamination. The barrier may include a flexible material or membrane, film, oil (e.g., mineral oil), wax, gel, or any other material that may prevent a sample, fluid, or other substance contained within the tip and/or vessel from passing through the barrier. The barrier may prevent the substance within the tip and/or vessel from being contaminated by an environment, from aerosolizing and/or evaporating, and/or from contaminating other portions of the device. The barrier may permit a sample, fluid or other substance to pass through the barrier only at desired conditions and/or times. FIG. 25 shows an example of a vessel provided in accordance with another embodiment of the invention. In some instances, the vessel may be used for isothermal and non-isothermal nucleic acid assays (such as LAMP, PCR, real-time PCR) or other nucleic acid assays. Alternatively, the vessel may be used for other purposes. The vessel may or may not include features or characteristics of the vessel described elsewhere herein. The vessel may comprise a body 2500 configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, a first end 2510, and a second end 2520. In some embodiments, one or more of the ends may be open. One or more of the ends may be closed. In some embodiments, the first end may be open while the second end may be closed. A passage may extend between the first and second end. The vessel may include a material 2530 extending across the passage capable of having (1) a first state that is configured to prevent fluid from passing through the material in the absence of an object inserted into the material, and a (2) second state that is configured to prevent fluid and the object from passing through the material. The first state may be a molten state and the second state may be a solid state. For example, when in the molten state, the material may permit a tip to pass through, while preventing fluids from passing through. A fluid may be dispensed and/or aspirated through the tip passing through the material. The tip may be capable of being inserted through the material and removed from the material while the material is in a molten state. When in the solid state, the material may be solid enough to prevent a tip from passing through and may prevent fluids from passing through. In some embodiments, the material may be formed of wax. The material may have a selected melting point. For example, the material have a melting point less than and/or equal to about 30 degrees C., 35 degrees C., 40 degrees C., 45 degrees C., 50 degrees C., 55 degrees C., 60 degrees C., 65 degrees C., 70 degrees C., or 75 degrees C. The material may have a melting point between 50 and 60 degrees C. When the temperature of the material is sufficiently high, the material may enter a molten state. When the temperature of the material is brought sufficiently low, the material may solidify into a solid state. When an object, such as a tip, is removed from the vessel through the material, a portion of the object may be coated with the material. For example, if a tip is inserted into molten wax, and then removed from the wax, the portion of the tip that was inserted into the wax may be coated with the wax when removed. This may advantageously seal the tip and reduce or prevent contamination. Also, the seal may prevent biohazardous or chemically hazardous material from escaping a vessel. FIG. 25A shows an example of a nucleic acid amplification/wax assembly vessel. The vessel may have a wax barrier 2530 and aqueous or lyophilized reagents 2550. The barrier may include molten wax that is placed over reagents where it solidifies at shipping/storage temperature. FIG. 25B shows a second step where the vessel is heated to melt the wax and prepare for a sample. A pipette/nozzle 2540 may be used to place the vessel onto a heating block. Other mechanisms known in the art may be used to deliver heat to the wax. A wax barrier 2530 may be provided where the wax melts during the heating step. Aqueous or lyophilized reagents 2550 may be provided beneath the wax barrier. FIG. 25C shows the step of introducing a sample to the vessel. A tip 2560, such as a pipette tip, may penetrate the molten wax barrier 2530. Aqueous or lyophilized reagents 2550 may be provided beneath the barrier. The pipette tip may contain a DNA sample 2570 that may be deposited beneath the wax layer. Depositing beneath the wax layer may prevent contamination. The DNA containing sample may be deposited in the reagent layer. Optionally, when the tip is removed from the vessel, the tip may have a portion coated with wax. FIG. 25D shows the step of amplification. The wax barrier 2530 may be provided above the reagents and the sample layer 2550. The wax may remain as a molten barrier during amplification. During the assay, amplification may take place under the wax layer. Turbidity or other readings may be taken during or after amplification to indicate the level of product. FIG. 25E illustrates a step of post amplification wax solidification. A wax barrier 2530 may be provided above the reagent and sample layer 2550. After assay readings are taken, the vessel may be cooled and the wax may resolidify, providing a containment barrier for the DNA generated by the nucleic acid amplification (e.g., PCR, real-time PCR, LAMP). FIG. 25F shows the step of removal of the vessel. A pipette/nozzle 2540 may be used to remove the fully contained used vessel. The vessel may contain the wax barrier 2530 that has been solidified. The vessel may also contain the nucleic acid amplification product 2550, ready for disposal. The pipette/nozzle may remove the vessel from a heat block or may move the vessel to another portion of the device. The pipette/nozzle may engage with the vessel through an open end of the vessel. In some embodiments, the pipette/nozzle may form a seal with the vessel. The pipette/nozzle may be press-fit to the vessel. Alternatively additional mechanisms may be used to allow the pipette/nozzle to selectively engage and/or disengage with the vessel. Centrifugation Vessel/Tip FIG. 26 shows an example of a vessel provided in accordance with an embodiment of the invention. In some instances, the vessel may be used for centrifugation. The vessel may be configured to be inserted into a centrifuge. Any centrifuge known in the art may be used. Examples of centrifuges are described in greater detail elsewhere herein. In one embodiment, the vessel may be a centrifugation vessel. Alternatively, the vessel may be used for other purposes. In another non-limiting embodiment, the vessel has a tapered bottom in at least the interior wall surfaces to allow the solids of the sample to aggregate. In this example, the length of the vessels is short enough so that the tips can be inserted to the bottom of the vessel to resuspend the solutes as required. Optionally, the vessel volume is large enough to be able to process enough of the sample reducing sample processing times and reducing variability. Optionally, the vessel is narrow enough so that volumetric measurements of sample in the vessel are precise enough. The vessel may comprise a body 2600 configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, a first end 2608, and a second end 2610. In some embodiments, one or more of the ends may be open. One or more of the ends may be closed. In some embodiments, the first end may be open while the second end may be closed. A passage may extend between the first and second end. One or more end 2610 of a vessel may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the vessel, such as a diameter, may vary across the length of the vessel. In some instances, a lower portion 2620 of a vessel having a closed end may have a smaller diameter than another upper portion 2630 of the vessel closer to the open end. In some embodiments, one or more additional portion 2640 of the vessel may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region 2650, step-shaped region, or ridge 2660 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, an open end of a vessel may have a greater cross-sectional dimension than a closed end of a vessel. Vessels interfacing with the centrifuge may be used for several purposes beyond routine separation. Vessels interfacing with the centrifuge may be designed for either separation or for specific assays. Examples of assays that may be performed using the centrifuge include erythrocyte sedimentation rate, red blood cell antibody screens, etc. Vessels used for these applications might be specialized with embedded sensors/detectors, and ability to transmit data. Examples include tips with in-built camera which can transmit images during red blood cell packing. Centrifuge vessels may also be designed to be optimized for centrifugal mixing, by using magnetic and/or non-magnetic beads. Centrifugation of cuvettes allows for forced flow inside small channels, which might be useful for applications such as fluid focusing and size-based separations. Vessels may also be designed to process volumes which are much smaller than traditional centrifuges, where vessel design is critical to avoid destruction of fragile biological species such as cells. Centrifuge vessels may also be equipped with features to prevent aerosolization without the need for capping the entire centrifuge. In one embodiment, the vessel may be thought of as a two-piece part with the top feature acting as a lid to prevent any fluid loss from the vessel in the form of aerosols. Alternatively, the vessel might be equipped with a septal duckbill valve to prevent aerosol leaks. FIG. 26 also shows a tip provided in accordance with an embodiment of the invention. The tip may be used for dispensing and/or aspirating a sample or other fluid from the vessel. The tip may be configured to be inserted at least partially into the vessel. In some embodiments, the tip may be a centrifuge extraction tip. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end 2666, and a second end 2668. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end 2668 of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 2670 of a tip at the second end may have a smaller diameter than another upper portion 2675 of the tip closer to the first end. In some embodiments, one or more additional portion 2680 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region 2690, step-shaped region, or ridge 2695 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may be narrow and may have a substantially similar diameter throughout the length of the tip. The tip may be configured to extend into the vessel through the open end of the vessel. The second end of the tip may be inserted into the vessel. The end of the tip having a smaller diameter may be inserted through an open end of the vessel. In some embodiments, the tip may be inserted fully into the vessel. Alternatively, the tip may be inserted only partway into the vessel. The tip may have a greater height than the vessel. A portion of the tip may protrude outside of the vessel. The vessel or the tip may comprise a protruding surface feature that may prevent the second end of the tip from contacting the bottom of the interior surface of the closed end of the vessel. In some embodiments, the protruding surface feature may be at or near the closed end of the vessel. In some embodiments, the protruding surface feature may be located along the lower half of the vessel, lower ⅓ of the vessel, lower ¼ of the vessel, lower ⅕ of the vessel, lower 1/10 of the vessel, lower 1/20 of the vessel, or lower 1/50 of the vessel. The protruding surface feature may be located on an interior surface of the vessel. Alternatively, the protruding surface feature may be located on an exterior surface of the tip. In some instances, a protruding surface feature may be located on both the interior surface of the vessel and the exterior surface of the tip. In some embodiments, the protruding surface feature may include one or more bump, ridge, or step. For example, a vessel may include the surface features integrally formed on the bottom interior surface of the vessel. The surface features may include one, two, three, four, five, six, or more bumps on the bottom interior surface of the vessel. The surface features may be evenly spaced from one another. For example, the bumps or other surface features may be provided in a radial pattern. The bumps or other surface features may continuously or discontinuously encircle the inner surface of the vessel, or the other surface of the tip. Alternatively, the protruding surface features may be part of the shape of the vessel or tip. For example, the vessel may be shaped with varying inner diameters, and the tip may be shaped with varying outer diameters. In some embodiments, the inner surface of the vessel may form a step, upon which the tip may rest. The profile of the vessel and/or tip may be shaped so that based on the inner and outer cross-sectional dimensions of the vessel and tip, the tip may be prevented from contacting the bottom of the vessel. The vessel and/or tip may be shaped to prevent the tip from wiggling within the vessel when the tip has been inserted as far as it can go. Alternatively, the vessel and tip may be shaped to allow some wiggle. In some embodiments, when the tip is inserted fully into the vessel, the tip may form a seal with the vessel. Alternatively, no seal need be formed between the tip and the vessel. In some embodiments, the tip may be prevented from contacting the bottom of the vessel by a desired amount. This gap may enable fluid to freely flow between the tip and the vessel. This gap may prevent choking of fluid between the tip and the vessel. In some embodiments, the tip may be prevented from contacting the bottom of the vessel to provide the tip at a desired height along the vessel. In some embodiments, one or more components of a fluid or sample within the vessel may be separated and the tip may be positioned to dispense and/or aspirate the desired components of the fluid or sample. For example, portions of the fluid or sample with a higher density may be provided toward the bottom of the vessel and portions with a lower density may be provided toward an upper portion of the vessel. Depending on whether the tip is to pick up or deliver a fluid or sample to a higher density portion or lower density portion, the tip may be located closer to the bottom and/or upper portion of the vessel respectively. In some embodiments, other features may be provided to a centrifugation vessel and/or tip that may permit the flow of fluid between the tip and the vessel at a desired height along the vessel. For example, the tip may comprise one or more opening, passageway, slit, channel, or conduit connecting the exterior surface of the tip to the passageway of the tip between the first and second ends. The opening may permit fluid flow, even if the end of the tip contacts the bottom of the vessel. In some embodiments, a plurality of openings may be provided along the height of the tip. One or more opening may be provided along the height of the tip to permit fluid flow at desired heights within the vessel. Tips may be configured to perform chromatography. In this process, the mixture is dissolved in a fluid called the “mobile phase”, which carries it through a structure holding another material called the “stationary phase”. The various constituents of the mixture travel at different speeds, causing them to separate. The separation is based on differential partitioning between the mobile and stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus changing the separation. Tips may be configured to perform size exclusion chromatography, where molecules in solution are separated by their size, not by molecular weight. This can include gel filtration chromotography, gel permeation chromatography. Tips may be configured to enable the measuring of mass-to-charge ratios of charged particles, thereby performing mass spectrometry. Namely, the process ionizes chemicals to generate charged molecules and then the ions are separated according to their mass to charge ratio, possibly by an analyzer using electromagnetic fields. Tips may act as electrodes. Systems and devices provided herein, such as point of service systems (including modules), are configured for use with vessels and tips provided in U.S. Patent Publication No. 2009/0088336 (“MODULAR POINT-OF-CARE DEVICES, SYSTEMS, AND USES THEREOF”), which is entirely incorporated herein by reference. Positive Displacement Tips FIG. 27 also shows a tip 2700 provided in accordance with an embodiment of the invention. The tip may be used for dispensing and/or aspirating a sample or other fluid from the vessel. The tip may be able to provide and/or pick up accurate and precise amounts of fluid, with high sensitivity. The tip may be configured to be inserted at least partially into the vessel. In some embodiments, the tip may be a positive displacement tip such as but not limited to that shown in FIG. 14. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end 2702, and a second end 2704. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end 2704 of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 2710 of a tip at the second end may have a smaller diameter than another upper portion 2720 of the tip closer to the first end. In some embodiments, one or more additional portion 2730 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region 2740, step-shaped region, or ridge 2750 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may be narrow and may have a substantially similar diameter throughout the length of the tip. In some embodiments, a plunger 2760 may be provided that may be at least partially insertable within the positive displacement tip. In some embodiments, the tip may be dimensioned and/or shaped so that the plunger may be stopped from entering all the way to second end of the tip. In some embodiments, the tip may be stopped by an interior shelf 2770. The tip may be preventing from entering a lower portion 2710 of the tip. An end 2765 of the plunger may be round, tapered, flat, or have any other geometry. The plunger may be configured to be movable within the tip. The plunger may move along the height of the tip. In some embodiments, the plunger may be movable to dispense and/or aspirate a desired volume of a sample or other fluid. The positive displacement tip may have an interior volume that may be capable of accepting any volume of fluid. For example, the positive displacement tip may have an interior volume that may contain less than and/or equal to about 1 nL, 5 nL, 10 nL, 50 nL, 100 nL, 500 nL, 1 μL, 5 μL, 8 μL, 10 μL, 15 μL, 20 μL, 30 μL, 40 μL, 50 μL, 60 μL, 70 μL, 80 μL, 100 μL, 120 μL, 150 μL, 200 μL, 500 μL or any other volume described elsewhere herein. The tip may comprise one or more characteristics of the positive displacement tip as described elsewhere herein. Additional Vessels/Tips FIG. 28 shows an example of a well provided in accordance with an embodiment of the invention. The well may be an example of a vessel. In some instances, the well may be used for various assays. The well may be configured to contain and/or confine one or more reagent. In some embodiments, one or more reaction may take place within the well. Alternatively, the well may be used for other purposes. In some embodiments, a plurality of wells may be provided. In some embodiments, 384 wells may be provided. For example, the wells may be provided as one or more rows, one or more columns, or an array. The wells may have 4.5 μm diameters, and may be provided with 384 spacing. Alternatively, the wells may have any other spacing or size. The well may comprise a body configured to accept and confine a sample, wherein the body comprises an interior surface, an exterior surface, a first end 2806, and a second end 2808. In some embodiments, one or more of the ends may be open. One or more of the ends may be closed. In some embodiments, the first end may be open while the second end may be closed. A passage may extend between the first and second end. One or more end 2808 of a well may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the vessel, such as a diameter, may vary across the length of the vessel. Alternatively, the cross-sectional dimension of the vessel need not vary substantially. The vessel dimensions may transition gradually to have different diameters. In some embodiments, an open end of a vessel may have a greater cross-sectional dimension than a closed end of a vessel. Alternatively, they open end and the closed end of the vessel may have substantially similar or the same cross-sectional dimension. In some embodiments, one or more end of the well may have a lip 2810, ridge, or similar surface feature. In some embodiments the lip may be provided at or near the open end of the well. The lip may be provided on an exterior surface of the well. In some embodiments, the lip may engage with a shelf that may support the well. In some embodiments, the lip may engage with a cap that may cover the well. Capillaries and cuvettes are special cases of fluid containment/processing units, since they are designed for specific tasks. Capillaries in systems provided herein (e.g., blood metering capillaries) may utilize only capillary forces to transfer fluid to specific locations. Cuvettes use a combination of capillary and/or external forcing to transport fluids in specially designed channels. Cuvettes and capillaries may be surface treated or finished for enhancing certain properties such as optical clarity, surface tension, etc. or for addition of or coating with other substances such as anti-coagulants, proteins, etc. Beads of different types may be used in conjunction with specific vessels to further expand and/or enhance processing in vessels. Examples include the following: a) Beads may be used to enhance mixing; b) Magnetic beads with coated antibody may be used. Bead separation is achieved by an external EM field; c) Non-magnetic beads may be used as an affinity column; d) Common beads such as polystyrene beads may be functionalized to capture specific targets; and e) Long chain PEG beads may be used to make thread-like structures. FIG. 29 also shows a tip 2900 provided in accordance with an embodiment of the invention. The tip may be a bulk handling tip that may be used for dispensing and/or aspirating a sample or other fluid. The tip may be configured to be inserted at least partially into a vessel. Alternatively, the tip may be configured to dispense and/or aspirate a sample or other fluid sample without being inserted into a vessel. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end, and a second end. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 2910 of a tip at the second end may have a smaller diameter than another upper portion 2920 of the tip closer to the first end. In some embodiments, one or more additional portion 2930 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region, step-shaped region, or ridge 2940 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may have a gradually changing diameter. In some embodiments, a substantial difference in diameter may be provided along the length of the lower portion of the tip. A bulk handling tip may have a greater internal volume than one or more of the other types of tips described herein. FIG. 30 shows another example of a tip 3000 provided in accordance with an embodiment of the invention. The tip may be an assay tip configured to provide a colorimetric readout (i.e., color tip) that may be used for dispensing and/or aspirating a sample or other fluid. The color tip may be read using a detection system. The detection system may be incorporated from any of the embodiments described in greater detail elsewhere herein. The tip may be configured to be inserted at least partially into a vessel. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end, and a second end. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 3010 of a tip at the second end may have a smaller diameter than another upper portion 3020 of the tip closer to the first end. In some embodiments, one or more additional portion 3030 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region 3040, step-shaped region, or ridge 3050 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, a relatively narrow lower portion of the tip may be provided. The cross-sectional diameter of the lower portion need not change or vary by a large amount. The lower portion of the tip may be readable using a detection system. A detection system may be able to detect one or more signal pertaining to a sample or other fluid within the tip. FIG. 31 provides a tip 3100 provided in accordance with another embodiment of the invention. The tip may be a blood tip that may be used for dispensing and/or aspirating a sample or other fluid. The tip may be configured to be inserted at least partially into a vessel. A tip may be configured as a “dip stick” that can be used to rapidly detect multiple targets, such as by using a thin pointed probe functionalized with reagents. In some embodiments, the fluid contained within the blood tip may be blood. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end, and a second end. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 3110 of a tip at the second end may have a smaller diameter than another upper portion 3120 of the tip closer to the first end. In some embodiments, one or more additional portion 3130 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region 3140, step-shaped region, or ridge 3150 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may have a gradually changing diameter. In some embodiments, a substantial difference in diameter may be provided along the length of the lower portion of the tip. FIG. 32 provides a tip 3200 provided in accordance with another embodiment of the invention. The tip may be a current reaction tip that may be used for dispensing and/or aspirating a sample or other fluid. The tip may be configured to be inserted at least partially into a vessel. In some embodiments, one or more reaction may take place within the tip. The tip may be configured to accept and confine a sample, wherein the tip comprises an interior surface, an exterior surface, a first end, and a second end. In some embodiments, one or more of the ends may be open. In some embodiments, the tip may not fully enclose the passage. For example, an array of slotted pins can wick up fluids and deliver it to the pipette by a blotting method. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end of a tip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the tip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 3210 of a tip at the second end may have a smaller diameter than another upper portion 3220 of the tip closer to the first end. In some embodiments, one or more additional portion 3230 of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. One or more funnel-shaped region, step-shaped region, or ridge 3240 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may have a gradually changing diameter or may have substantially the same diameter. Additional tips are provided in, for example, U.S. Patent Publication No. 2009/0088336 (“MODULAR POINT-OF-CARE DEVICES, SYSTEMS, AND USES THEREOF”), which is entirely incorporated herein by reference. Minitips FIG. 33 shows an example of a minitip nozzle 3300 and a minitip 3310 provided in accordance with an embodiment of the invention. A minitip nozzle 3300 may be configured to interface with the minitip 3310. In some embodiments, the minitip nozzle may connect to the minitip. The minitip may be attachable and detachable from the minitip nozzle. The minitip nozzle may be inserted at least partially into the minitip. The minitip nozzle may form a fluid-tight seal with the minitip. In some embodiments, the minitip nozzle may include a sealing o-ring 3320 or other sealing feature on its exterior surface. In other embodiments, the minitip may include a sealing o-ring or other sealing feature within its interior surface. The minitip nozzle may be configured to interface with a fluid handling device, such as a pipette. In some embodiments, the minitip nozzle may directly connect to a fluid handling device nozzle or orifice. The minitip nozzle may form a fluid-tight seal with the fluid handling device. In other embodiments, the minitip nozzle may connect to a tip or other intermediary structure that may be connected to the fluid handling device. FIG. 34 shows examples of minitips provided in accordance with an embodiment of the invention. For example, separate minitips may be used to contain, dispense, and/or aspirate a volume less than and/or equal to about 1 pL, 5 pL, 10 pL, 50 pL, 100 pL, 300 pL, 500 pL, 750 pL, 1 nL, 5 nL, 10 nL, 50 nL, 75 nL, 100 nL, 125 nL, 150 nL, 200 nL, 250 nL, 300 nL, 400 nL, 500 nL, 750 nL, 1 μL, 3 μL, 5 μL, 10 μL, or 15 μL in accordance with an embodiment of the invention. The minitips may also be used for any other volume as described elsewhere herein. A minitip may be configured to accept and confine a sample, wherein the minitip comprises an interior surface 3402, an exterior surface 3404, a first end 3406, and a second end 3408. In some embodiments, one or more of the ends may be open. In some embodiments, the first and second ends may be open. A passage may extend between the first and second end. One or more end 3408 of a minitip may be round, tapered, flat, or have any other geometry. In some embodiments, a cross-sectional dimension of the minitip, such as a diameter, may vary across the length of the tip. In some instances, a lower portion 3410 of a tip at the second end may have a smaller diameter than another upper portion 3420 of the tip closer to the first end. In some embodiments, one or more additional portion of the tip may be provided which may be located between the lower portion and the upper portion. In some embodiments, the diameter of the one or more additional portion may be between the sizes of the diameters of the lower portion and the upper portion. Alternatively, no intermediate additional portion is provided between the lower and upper portions. One or more funnel-shaped region, step-shaped region, or ridge 3430 may connect portions of different diameters. Alternatively, portions may transition gradually to have different diameters. In some embodiments, a first end of a tip may have a greater cross-sectional dimension than a second end of a tip. In some embodiments, the lower portion of the tip may have a gradually changing diameter or may have substantially the same diameter. The vessel may be covered by a rigid, and/or porous, and/or semi-permeable barrier in order to prevent aerosolization, vaporization, etc. of the fluid, thereby preventing any contamination of the device. Vessels may be designed with the ability to process small volumes (less than 10 uL) of fluid in POS devices, thereby reducing sample requirement. The vessel can be designed not only to contain fluid, but also as to act as a location where unit operations are carried out, including, but not limited to: separation, mixing, reactions, etc., involving small volumes of fluids. The vessel may be designed with special surface properties and/or features to enable execution of special processes. De-centralizing unit operations in individual vessels will result in reduced sample waste, lower resource/lower consumption, and more efficient execution of chemistries. Microcard FIG. 35 provides an example of a microcard in accordance with an embodiment of the invention. The microcard may include one or more substrates 3500 configured to support one or more tips, which may optionally be microtips or vessels, herein used interchangeably. The tips or vessels may have characteristics or the format of any other tips or vessels described elsewhere herein. A microcard may be configured to support the performance or detection of multiple assays disclosed elsewhere herein in the card. Use of a microcard may, for example, permit the simultaneous performance or detection of multiple arrayed assays in small volumes or on a common support. The microcard may optionally form a cartridge or be included within a cartridge. The cartridge may be insertable and/or removable from a sample processing device. The microcard may be insertable and/or removable from the sample processing device. The substrate may have a substantially planar configuration. In some embodiments, the substrate may have an upper surface and a lower surface. The upper surface and lower surface may have a planar configuration. Alternatively, the upper and/or lower surface may have a curved surface, bent surface, surface with ridges or other surface features. The upper surface and opposing lower surface may be parallel to one another. Alternatively, upper and lower surfaces may have a configuration where they are not parallel to one another. In some embodiments, the planar substrate may have a plurality of depressions or cavities. The substrate may have any shape known in the art. For example, the substrate may have a substantially square or rectangular shape. Alternatively, the substrate may have a circular, elliptical, triangular, trapezoidal, parallelogram, pentagonal, hexagonal, octagonal, or any other shape. The substrate may have any lateral dimension (e.g., diameter, width, length). In some embodiments, one or more lateral dimension may be about 0.1 mm, 0.5 mm, 1 mm, 5 mm, 7 mm, 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 cm, 4 cm, 4.5 cm, 5 cm, 5.5 cm, 6 cm, 6.5 cm, 7 cm, 7.5 cm, 8 cm, 9 cm, 10 cm, 11 cm, 12 cm, 13 cm, 15 cm, or 20 cm. The lateral dimensions may be the same, or may vary. The substrate may have any height (wherein height may be a dimension in a direction orthogonal to a lateral dimension). For example, the height may be less than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 4 cm, or 5 cm. The substrate may be formed from any material. The substrate may be formed of a rigid, semi-rigid or flexible material. In some embodiments, the substrate include a metal, such as aluminum, steel, copper, brass, gold, silver, iron, titanium, nickel, or any alloy or combination thereof, or any other metal described elsewhere herein. In other embodiments, the substrate may include silicon, plastic, rubber, wood, graphite, diamond, resin, or any other material, including but not limited to those described elsewhere herein. One or more surface of the substrate may or may not be coated with a material. For example, one or more portion of the cavity may be coated with a rubbery material that may grip the vessels and/or tips and prevent them from slipping out. The substrate may be substantially solid or hollow. The substrate may be formed from a solid material with one or more cavities provided therein. Alternatively, the substrate may have a shell-like structure. The substrate may include a cage-like or mesh-like structure. The substrate may include one or more components that may link cavities together. Linking components may include bars, chains, springs, sheets, blocks, or any other components. The substrate may be configured to support one or more tips or vessels. The substrate 3500 may contain one or more cavity 3510 configured to accept one or more tips or vessels. The cavities may have any arrangement on the substrate. For example, the cavities may form one or more rows and/or one or more columns. In some embodiments, the cavities may form an m×n array where m, n are whole numbers. Alternatively, the cavities may form staggered rows and/or columns. The cavities may form straight lines, curved lines, bent lines, concentric patterns, random patterns, or have any other configuration known in the art. Any number of cavities may be provided on a substrate. For example, greater than and/or equal to about 1 cavity, 4 cavities, 6 cavities, 10 cavities, 12 cavities, 24 cavities, 25 cavities, 48 cavities, 50 cavities, 75 cavities, 96 cavities, 100 cavities, 125 cavities, 150 cavities, 200 cavities, 250 cavities, 300 cavities, 384 cavities, 400 cavities, 500 cavities, 750 cavities, 1000 cavities, 1500 cavities, 1536 cavities, 2000 cavities, 3000 cavities, 3456 cavities, 5000 cavities, 9600 cavities, 10000 cavities, 20000 cavities, 30000 cavities, or 50000 cavities may be provided on a single substrate of the microcard. The cavities may all have the same dimensions and/or shapes or may vary. In some embodiments, a cavity may extend partway into the substrate without breaking through the substrate. A cavity may have an interior wall and a bottom surface. Alternatively, the cavity may extend through the substrate. The cavity may or may not have a bottom surface or partial bottom surface or shelf. The cavities may have any geometry. For example, a cross-sectional shape of a cavity may include circles, ellipses, triangles, quadrilaterals (e.g., squares, rectangles, trapezoids, parallelograms), pentagons, hexagons, octagons or any other shape. The cross-sectional shape of the cavity may remain or the same or vary along the height of the cavity. The cross-sectional shape of the cavity may be the same for all cavities on a substrate, or may vary from cavity to cavity on the substrate. The cross-sectional shapes of the cavity may or may not be complementary to the exterior shape of a vessel and/or tip. The cavities may be formed as wells, or may be formed from cuvettes, or may have formats similar to microtiter plates. The cavity may have any cross-sectional dimension (e.g., diameter, width, or length). For example, the cross-sectional dimension may be greater than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, or 3 cm. The cross-sectional dimension may refer to an inner dimension of the cavity. The cross-sectional dimension may remain the same throughout the height of the cavity or may vary. For example, an open upper portion of the cavity may have a greater cross-sectional dimension than a closed bottom. The cavity may have any height (wherein height may be a dimension in a direction orthogonal to a cross-sectional dimension). For example, the height may be less than or equal to about 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 1 cm, 1.2 cm, 1.5 cm, 2 cm, 3 cm, 4 cm, or 5 cm. The height of the cavity may be less than the thickness of the substrate. Alternatively, the height of the cavity may be equal to the thickness of the substrate when the cavity extends all the way through. The bottoms of the cavities may have any shape. For example, the bottoms of the cavities may be rounded, flat, or tapered. The bottoms of the cavities may be complementary to a portion of one or more vessels and/or tips. The bottoms of the cavities may be complementary to a lower portion of one or more vessels and/or tips. In some embodiments, the cavities may contain one or more surface feature that may permit the cavities to engage with a plurality of vessels and/or microtips. Different vessels and/or tips may engage different surfaces or portions of the cavities. Alternatively, the cavities may be shaped to accept particular vessels and/or tips. The interior of the cavity may have a volume of about 1,000 μL or less, 500 μL or less, 250 μL or less, 200 μL or less, 175 μL or less, 150 μL or less, 100 μL or less, 80 μL or less, 70 μL or less, 60 μL or less, 50 μL or less, 30 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 8 μL or less, 5 μL or less, 1 μL or less, 500 nL or less, 300 nL or less, 100 nL or less, 50 nL or less, 10 nL or less, or 1 nL or less. The cavities may be shaped to receive particular tips or vessels. In some embodiments, the cavities may be shaped to receive a plurality of different types of tips and/or vessels. The cavity may have an internal surface. At least a portion of the internal surface may contact a vessel and/or tip. In one example, the cavity may have one or more shelf or internal surface features that may permit a first vessel/tip having a first configuration to fit within the cavity and a second vessel/tip having a second configuration to fit within the cavity. The first and second vessels/tips having different configurations may contact different portions of the internal surface of the cavity. In some embodiments, cavities of a microcard are configured to interface with minuatured tips (e.g. which can support a volume of no greater than, for example, 20, 10, 5, 3, 2, 1, 0.5, or 0.1 microliter). In some embodiments, the cavities may accept one or more vessels and/or microtips. The vessels and/or tips may be snap fitted into the cavities. Alternatively, the vessels and/or microtips may slide in and out of the cavity smoothly, may be press-fit into the cavities, may be twisted into the cavity, or may have any other interaction with the cavities. Alternatively, the cavities need not accept vessel and/or tips. The cavities themselves may form vessels that may contain and/or confine one or more fluid. For example, the cavities themselves may be a sample container or may contain any other fluid, including reagents. The cavities may be designed so that light does not pass through the cavities. In some instances, fluids or selected chemicals do not pass through the cavity walls. The cavities may all have openings on the same side of the substrate. In some embodiments, the cavities may all open up to an upper surface of the substrate. Alternatively, some cavities may open to a lower surface of the substrate and/or a side surface of the substrate. In some embodiments, the cavities may be formed using lithographic techniques, etching, laser etching, drilling, machining, or any other technique known in the art. The cavities may be cut into the substrate. One or more vessels and/or microtips may be inserted into the cavities. An individual cavity may be configured to accept a single vessel and/or tip. Alternatively, an individual cavity may be configured to accept a plurality of vessels and/or microtips simultaneously. The cavities may all be filled with vessels and/or microtips, or some cavities may be vacant. Vessels and/or tips may be at least partially inserted into the cavities. The vessels and/or tips may extend beyond a surface of the substrate. For example, if the cavities of the substrate have an opening on an upper surface of the substrate, the vessels and/or tips may extend beyond the upper surface of the substrate. At least a portion of a vessel and/or microtip may protrude from the substrate. Alternatively, a portion of a vessel and/or tip does not protrude from the substrate. The degree to which a vessel and/or tip protrudes from the substrate may depend on the type of vessel and/or tip, or cavity configuration. In some alternate embodiments, a vessel and/or microtip may extend all the way through a substrate. A vessel and/or microtip may extend above two or more surfaces of the substrate. In some embodiments, a vessel and/or tip may extend at least partially beyond a lower surface of the substrate. The vessels and/or microtips may be supported by the substrate so that they are parallel to one another. For example, the vessels and/or tips may all have a vertical alignment. The vessels and/or microtips may be aligned to be orthogonal to a planar surface of the substrate. The vessel and/or tips may be orthogonal to a top surface and/or bottom surface of the substrate. Alternatively the vessel and/or tips need not be parallel to one another. In some embodiments, each cavity may have a vessel and/or tip provided therein. Alternatively, some cavities may be intentionally left open. One or more controller may track whether a cavity is occupied or empty. One or more sensor may determine if a cavity is occupied or empty. The vessels and/or tips may be selectively placed and/or removed from the substrate. A vessel and/or microtip may be removed from a cavity of a substrate to another portion of the device, or to another cavity of the substrate. A vessel and/or microtip may be placed in a cavity of the substrate from another portion of the device, or from another cavity of the substrate. Positions of vessels and/or microtips on a substrate may be modified or exchanged. In some embodiments, each of the cavities may be individually addressable. Each of the vessels and/or tips may be individually addressable and/or movable. The vessels and/or microtips may be addressed and/or moved independently of one another. For example, a single vessel and/or microtip may be addressed and/or moved relative to the other vessels and/or microtips. A plurality of vessels and/or microtips may be moved simultaneously. In some instances, a single vessel and/or microtip may be moved at a time. The individual vessels and/or microtips may be movable relative to one another and/or the cavities. A vessel and/or tip may be removed and/or placed from a substrate using a fluid handling device. A vessel and/or tip may be removed and/or placed using another automated process not requiring human interaction. Alternatively, a vessel and/or tip can be manually removed and/or placed. The vessel and/or tip may be individually moved in an automated or manual process. A microcard may include a plurality of vessels and/or tips of different types. A microcard may include at least two, at least three, at least four, at least five, or at least six or more different types of vessels and/or tips. Alternatively, a microcard may include all of the same types of vessels and/or tips. The microcard may include one or more vessels and/or tips selected from the following: nucleic acid vessel, nucleic acid tip, centrifugation vessel, centrifugation tip, positive displacement tip, well, bulk handling tip, color tip, blood tip, current reaction tip, 3 μL minitip, 5 μL minitip, 10 μL minitip, or 15 μL minitip, or any other tips/vessels or combinations thereof. The microcard may include one or more vessels and/or tips configured to perform one or more of the following assays—immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. One, two, three, four, five, six, or more of the assays may be supported by the vessels and/or tips supported by the substrate. In some embodiments, microcards are configured for the performance of immunoassays. A microcard may contain different antibody-labeled beads in different cavities of the microcard. In some embodiments, cavities containing antibody-labeled beads do not contain vessels or tips. The beads of the antibody-labeled beads may of any type, including magnetic beads. While remaining in the cavities of the microcard, the antibody-labeled beads may be incubated with sample, washed, mixed with detection reagents, and brought into proximity with a detection unit, in order to detect whether the relevant analyte was in the sample. Assay Units In accordance with an embodiment of the invention, an assay station, or any other portion of a module or device, may include one or more assay units. An assay unit may be configured to perform a biological or chemical reaction that yields a detectable signal indicative of the presence or absence of one or more analyte, and/or a concentration of a one or more analyte. An assay unit may be configured to run an assay, which may include any type of assay as described elsewhere herein. The assay may occur within the assay unit. A detectable signal may include an optical signal, visible signal, electrical signal, magnetic signal, infrared signal, thermal signal, motion, weight, or sound. In some embodiments, a plurality of assay units may be provided. In some embodiments, one or more row of assay units, and/or one or more column of assay units may be provided. In some embodiments, an m×n array of assay units may be provided, wherein m, n are whole numbers. The assay units may be provided in staggered rows or columns from each other. In some embodiments, they may have any other configuration. Any number of assay units may be provided. For example there may be more than and/or equal to about 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200, 250, 300, 400, 500, or 1000 assay units. Assay units may be provided in a cartridge, card, or have any other supporting structure. The assay units may have the same orientation. Alternatively, assay units may have different orientations. In some examples, assay units may be kept at a vertical orientation. In other examples, assay units may have horizontal or vertical orientations, or any other angle of orientation. The assay units may remain the same or may vary over time. The assay units may be fluidically isolated or hydraulically independent from one another. The assay units may contain and/or confine samples or other fluids that may be in fluid isolation from one another. The samples and/or other fluids contained within the assay units may be the same, or may vary from unit to unit. The system may be capable of tracking what each assay unit contains. The system may be capable of tracking the location and history of each assay unit. The assay units may be independently movable relative to one another, or another portion of the device or module. Thus, the fluids and/or samples contained therein may be independently movable relative to one another or other portions of the device or module. An assay unit may be individually addressable. The location of each assay unit may be tracked. An assay unit may be individually selected to receive and/or provide a fluid. An assay unit may be individually selected to transport a fluid. Fluid may be individually provided to or removed from an assay unit. Fluid may be individually dispensed and/or aspirated using the assay unit. An assay unit may be independently detectable. Any description herein of individual assay units may also apply to groups of assay units. A group of assay units may include one, two, or more assay units. In some embodiments, assay units within a group may be moved simultaneously. The location of groups of assay units may be tracked. Fluids may be simultaneously delivered and/or aspirated from one or more group of assay units. Detection may occur simultaneously to assay units within one or more groups of assay units. The assay units may have the form or characteristics of any of the tips or vessels as described elsewhere herein. For example, an assay unit can be any of the tips or vessels described herein. Any description herein of assay units may also apply to tips or vessels, or any description of tips or vessels may also apply to the assay units. In some embodiments, an assay unit may be an assay tip. An assay tip may have a first end and a second end. The first end and second end may be opposing one another. The first end and/or the second end may be open or closed. In some embodiments, both the first and second ends may be open. In alternate embodiments, the assay unit may have three, four, or more ends. The assay tip may have an interior surface and an exterior surface. A passageway may connect the first and second ends of the assay tip. The passageway may be a conduit or channel. The first and second ends of the assay tip may be in fluid communication with one another. The diameter of the first end of the assay tip may be greater than the diameter of the second end of the assay tip. In some embodiments, the outer diameter of the first end of the assay tip may be greater than the outer diameter of the second end of the assay tip. An inner diameter of the first end of the assay tip may be greater than the inner diameter of the second end of the assay tip. Alternatively, a diameter of the assay tip may be the same at the first and second ends. In some embodiments, the second end may be held below the first end of the assay tip. Alternatively the relative positions of the first and second ends may vary. As previously described regarding tips and/or vessels, an assay unit may be picked up using a fluid handling device. For example, a pipette or other fluid handling device may connect to the assay unit. A pipette nozzle or orifice may interface with an end of the assay unit. In some embodiments, a fluid-tight seal may be formed between the fluid handling device and the assay unit. An assay unit may be attached to and/or detached from the fluid handling device. Any other automated device or process may be used to move or manipulate an assay unit. An assay unit may be moved or manipulated without the intervention of a human. A fluid handling device or any other automated device may be able to pick up or drop off an individual assay unit. A fluid handling device or other automated device may be able to simultaneously pick up or drop off a plurality of assay units. A fluid handling device or other automated device may be able to selectively pick up or drop off a plurality of assay units. In some embodiments, a fluid handling device may be able to selectively aspirate and/or dispense a sample using one, two or more assay units. Any description of fluid handling systems as described previously herein may apply to the assay units. In one embodiment, an assay unit may be formed from molded plastic. The assay unit may be either commercially available or can be made by custom manufacturing with precise shapes and sizes. The units can be coated with capture reagents using method similar to those used to coat microtiter plates but with the advantage that they can be processed in bulk by placing them in a large vessel, adding coating reagents and processing using sieves, holders, and the like to recover the pieces and wash them as needed. In some embodiments, the capture reagents may be provided on an interior surface of the assay units. An assay unit can offer a rigid support on which a reactant can be immobilized. The assay unit is also chosen to provide appropriate characteristics with respect to interactions with light. For example, the assay unit can be made of a material, such as functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, PMMA, ABS, or combinations thereof. In an embodiment, an assay unit may comprise polystyrene. Other appropriate materials may be used in accordance with the present invention. Any of the materials described here, such as those applying to tips and/or vessels may be used to form an assay unit. A transparent reaction site may be advantageous. In addition, in the case where there is an optically transmissive window permitting light to reach an optical detector, the surface may be advantageously opaque and/or preferentially light scattering. A reactant may be immobilized at the capture surface of an assay unit. In some embodiments, the capture surface is provided on an interior surface of the assay unit. In one example, the capture surface may be provided in a lower portion of an assay tip. The reagent can be anything useful for detecting an analyte of interest in a sample of bodily fluid. For instance, such reactants include, without limitation, nucleic acid probes, antibodies, cell membrane receptors, monoclonal antibodies and antisera reactive with a specific analyte. Various commercially available reactants such as a host of polyclonal and monoclonal antibodies specifically developed for specific analytes can be used. One skilled in the art will appreciate that there are many ways of immobilizing various reactants onto a support where reaction can take place. The immobilization may be covalent or noncovalent, via a linker moiety, or tethering them to an immobilized moiety. Non-limiting exemplary binding moieties for attaching either nucleic acids or proteinaceous molecules such as antibodies to a solid support include streptavidin or avidin/biotin linkages, carbamate linkages, ester linkages, amide, thiolester, (N)-functionalized thiourea, functionalized maleimide, amino, disulfide, amide, hydrazone linkages, and among others. In addition, a silyl moiety can be attached to a nucleic acid directly to a substrate such as glass using methods known in the art. Surface immobilization can also be achieved via a Poly-L Lysine tether, which provides a charge-charge coupling to the surface. The assay units can be dried following the last step of incorporating a capture surface. For example, drying can be performed by passive exposure to a dry atmosphere or via the use of a vacuum manifold and/or application of clean dry air through a manifold. In some embodiments, rather than using a capture surface on the assay unit, beads or other substrates may be provided to the assay units with capture surfaces provided thereon. One or more free-flowing substrate may be provided with a capture surface. In some embodiments, the free-flowing substrate with a capture surface may be provided within a fluid. In some embodiments, a bead may be magnetic. The bead may be coated with one or more reagents as known in the art. A magnetic bead may be held at a desired location within the assay unit. The magnetic bead may be positioned using one or more magnet. Beads may be useful for conducting one or more assay, including but not limited to immunoassay, nucleic acid assay, or any of the other assays described elsewhere herein. The beads may be used during a reaction (e.g., chemical, physical, biological reaction). The beads may be used during one or more sample preparation step. The beads may be coated with one or more reagent. The beads themselves may be formed of reagents. The beads may be used for purification, mixing, filtering, or any other processes. The beads may be formed of a transparent material, translucent material, and/or opaque material. The beads may be formed of a thermally conductive or thermally insulative material. The beads may be formed of an electrically conductive or electrically insulative material. The beads may accelerate a sample preparation and/or assay step. The beads may provide an increased surface area that may react with one or more sample or fluid. In alternate embodiments, beads or other solid materials may be provided to the assay units. The beads may be configured to dissolve under certain conditions. For example, the beads may dissolve when in contact with a fluid, or when in contact with an analyte or other reagents. The beads may dissolve at particular temperatures. The beads may have any size or shape. The beads may be spherical. The beads may have a diameter of less than or equal to about 1 nm, 5 nm, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 500 nm, 750 nm, 1 μm, 2 μm, 3 μm, 5 μm, 10 μm, 20 μm, 50 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 1.2 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 4 mm, or 5 mm. The beads may be of the same size or differing sizes. The beads may include microparticles or nanoparticles. Any description of beads in the assay unit, processing unit, and/or reagent unit may be applied to beads located anywhere in the device. Beads may be stored and/or used in any tips/vessels (including those described herein), cuvettes, capillaries, channels, tanks, reservoirs, chambers, conduits, tubes, pipes, on surfaces, or any other location. Beads may be provided in a fluid, or may be separate from a fluid. A reaction site may be provided within an assay unit. In some embodiments, a reaction site may be provided on a surface, such as the interior surface, of the assay unit. The reaction site may be provided within a fluid contained by the assay unit. The reaction site may be on a substrate within the assay unit. The reaction site may be on the surface of a substrate free-floating within the assay unit. The reaction site may be a substrate within the assay unit. An assay unit may have any dimension, including those described elsewhere herein for tips and/or vessels. The assay unit may be capable of containing and/or confining a small volume of sample and/or other fluid, including volumes mentioned elsewhere herein. An assay unit may be picked up and/or removed from a fluid handling mechanism. For example, an assay tip or other assay unit may be picked up by a pipette nozzle. The assay tip or other assay unit may be dropped off by a pipette nozzle. In some embodiments, assay units may be selectively individually picked up and/or dropped off. One or more group of assay units may be selectively picked up and/or dropped off. An assay unit may be picked up and/or dropped off using an automated mechanism. An assay unit may be picked up and/or dropped off without requiring human intervention. A pipette may pick up and/or drop off an assay unit in accordance with descriptions provided elsewhere herein. An assay unit may be moved within a device and/or module using a fluid handling mechanism. For example, an assay tip or other assay unit may be transported using a pipette head. The assay tip or other assay unit may be transported in a horizontal direction and/or vertical direction. The assay tip and/or assay unit may be transported in any direction. The assay unit may be moved individually using the fluid handling mechanism. One or more groups of assay units may be simultaneously moved using the fluid handling mechanism. An assay unit may be shaped and/or sized to permit detection by a detection unit. The detection unit may be provided external to, inside, or integrated with the assay unit. In one example, the assay unit may be transparent. The assay unit may permit the detection of an optical signal, audio signal, visible signal, electrical signal, magnetic signal, motion, acceleration, weight, or any other signal by a detection unit. A detector may be capable of detecting signals from individual assay units. The detector may differentiate signals received from each of the individual assay units. The detector may individually track and/or follow signals from each of the individual assay units. A detector may be capable of simultaneously detecting signals from one or more groups of assay units. The detector may track and/or follow signals from the one or more groups of assay units. An assay unit may be formed from any material. An assay unit may be formed from any material including those described for tips and/or vessels elsewhere herein. An assay unit may be formed from a transparent material. Processing Units In accordance with an embodiment of the invention, a preparation station and/or assay station, or any other portion of a module or device, may include one or more processing units. A processing unit may be configured to prepare a sample for the performance and/or to perform a biological or chemical reaction that yields a detectable signal indicative of the presence or absence of one or more analyte, and/or a concentration of a one or more analyte. The processing unit may be used for preparing an assay sample or performing any other process with respect to the sample or related reagents, as provided in one or more sample preparation or processing steps as described elsewhere herein. The processing unit may have one or more characteristics of an assay unit as described elsewhere herein. A processing unit may function as an assay unit as described elsewhere herein. A detectable signal may include an optical signal, visible signal, electrical signal, magnetic signal, infrared signal, thermal signal, motion, weight, or sound. In some embodiments, a plurality of processing units may be provided. In some embodiments, one or more row of processing units, and/or one or more column of processing units may be provided. In some embodiments, an m×n array of processing units may be provided, wherein m, n are whole numbers. The processing units may be provided in staggered rows or columns from each other. In some embodiments, they may have any other configuration. Any number of processing units may be provided. For example there may be more than and/or equal to about 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200, 250, 300, 400, 500, or 1000 processing units. Processing units may be provided in a cartridge, card, or have any other supporting structure. The processing units may have the same orientation. Alternatively, processing units may have different orientations. In some examples, processing units may be kept at a vertical orientation. In other examples, processing units may have horizontal or vertical orientations, or any other angle of orientation. The processing units may remain the same or may vary over time. In some cases, a pipette, tip, or both may be integrated with a cartridge or card. In some cases, tips or pipettes, or components of tips or pipettes, are integrated with cartridges or cards. The processing units may be fluidically isolated or hydraulically independent from one another. The processing units may contain and/or confine samples or other fluids that may be in fluid isolation from one another. The samples and/or other fluids contained within the processing units may be the same, or may vary from unit to unit. The system may be capable of tracking what each processing unit contains. The system may be capable of tracking the location and history of each processing unit. The processing units may be independently movable relative to one another, or another portion of the device or module. Thus, the fluids and/or samples contained therein may be independently movable relative to one another or other portions of the device or module. A processing unit may be individually addressable. The location of each processing unit may be tracked. A processing unit may be individually selected to receive and/or provide a fluid. A processing unit may be individually selected to transport a fluid. Fluid may be individually provided to or removed from a processing unit. Fluid may be individually dispensed and/or aspirated using the processing unit. A processing unit may be independently detectable. Any description herein of individual processing units may also apply to groups of processing units. A group of processing units may include one, two, or more processing units. In some embodiments, processing units within a group may be moved simultaneously. The location of groups of processing units may be tracked. Fluids may be simultaneously delivered and/or aspirated from one or more group of processing units. Detection may occur simultaneously to processing units within one or more groups of processing units. The processing units may have the form or characteristics of any of the tips or vessels as described elsewhere herein. For example, a processing unit can be any of the tips or vessels described herein. Any description herein of processing units may also apply to tips or vessels, or any description of tips or vessels may also apply to the processing units. In some embodiments, a processing unit may be a processing tip. A processing tip may have a first end and a second end. The first end and second end may be opposing one another. The first end and/or the second end may be open or closed. In some embodiments, both the first and second ends may be open. In alternate embodiments, the processing unit may have three, four, or more ends. The processing tip may have an interior surface and an exterior surface. A passageway may connect the first and second ends of the processing tip. The passageway may be a conduit or channel. The first and second ends of the processing tip may be in fluid communication with one another. The diameter of the first end of the processing tip may be greater than the diameter of the second end of the processing tip. In some embodiments, the outer diameter of the first end of the processing tip may be greater than the outer diameter of the second end of the processing tip. An inner diameter of the first end of the processing tip may be greater than the inner diameter of the second end of the processing tip. Alternatively, a diameter of the processing tip may be the same at the first and second ends. In some embodiments, the second end may be held below the first end of the processing tip. Alternatively the relative positions of the first and second ends may vary. In some embodiments, a processing unit may be a vessel. A processing unit may have a first end and a second end. The first end and second end may be opposing one another. The first end and/or the second end may be open or closed. In some embodiments, the second end may be held below the first end of the processing unit. Alternatively the relative positions of the first and second ends may vary. An open end of the processing unit may be oriented upwards, or may be held higher than a closed end. In some embodiments, a processing unit may have a cap or closure. The cap or closure may be capable of blocking an open end of the processing unit. The cap or closure may be selectively applied to close or open the open end of the processing unit. The cap or closure may have one or more configuration as illustrated elsewhere herein or as known in the art. The cap or closure may form an airtight seal that may separate the contents of the reagent unit from the ambient environment. The cap or closure may include a film, oil (e.g., mineral oil), wax, or gel. As previously described regarding tips and/or vessels, a processing unit may be picked up using a fluid handling device. For example, a pipette or other fluid handling device may connect to the processing unit. A pipette nozzle or orifice may interface with an end of the processing unit. In some embodiments, a fluid-tight seal may be formed between the fluid handling device and the processing unit. A processing unit may be attached to and/or detached from the fluid handling device. Any other automated device or process may be used to move or manipulate a processing unit. A processing unit may be moved or manipulated without the intervention of a human. A fluid handling device or any other automated device may be able to pick up or drop off an individual processing unit. A fluid handling device or other automated device may be able to simultaneously pick up or drop off a plurality of processing units. A fluid handling device or other automated device may be able to selectively pick up or drop off a plurality of processing units. In some embodiments, a fluid handling device may be able to selectively aspirate and/or dispense a sample using one, two or more processing units. Any description of fluid handling systems as described previously herein may apply to the processing units. In one embodiment, a processing unit may be formed from molded plastic. The processing unit may be either commercially available or can be made by injection molding with precise shapes and sizes. The units can be coated with capture reagents or other materials using method similar to those used to coat microtiter plates but with the advantage that they can be processed in bulk by placing them in a large vessel, adding coating reagents and processing using sieves, holders, and the like to recover the pieces and wash them as needed. In some embodiments, the capture reagents may be provided on an interior surface of the processing units. A processing unit can offer a rigid support on which a reactant can be immobilized. The processing unit may also be chosen to provide appropriate characteristics with respect to interactions with light. For example, the processing unit can be made of a material, such as functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, Polymethylmethacylate (PMMA), ABS, or combinations thereof. In an embodiment, a processing unit may comprise polystyrene. Other appropriate materials may be used in accordance with the present invention. Any of the materials described here, such as those applying to tips and/or vessels may be used to form a processing unit. A transparent reaction site may be advantageous. In addition, in the case where there is an optically transmissive window permitting light to reach an optical detector, the surface may be advantageously opaque and/or preferentially light scattering. The processing unit may optionally be opaque and not permit the transmission of light therein. A reactant may be immobilized at the capture surface of a processing unit. In some embodiments, the capture surface is provided on an interior surface of the processing unit. In one example, the capture surface may be provided in a lower portion of a processing tip or vessel. The processing units can be dried following the last step of incorporating a capture surface. For example, drying can be performed by passive exposure to a dry atmosphere or via the use of a vacuum manifold and/or application of clean dry air through a manifold. In some embodiments, rather than using a capture surface on the processing unit, beads or other substrates may be provided to the processing units with capture surfaces provided thereon. One or more free-flowing substrate may be provided with a capture surface. In some embodiments, the free-flowing substrate with a capture surface may be provided within a fluid. In some embodiments, a bead may be magnetic. The bead may be coated with one or more reagents as known in the art. A magnetic bead may be held at a desired location within the processing unit. The magnetic bead may be positioned using one or more magnet. Beads may be useful for conducting one or more assay, including but not limited to immunoassay, nucleic acid assay, or any of the other assays described elsewhere herein. The beads may be used during a reaction (e.g., chemical, physical, biological reaction). The beads may be used during one or more sample preparation step. The beads may be coated with one or more reagent. The beads themselves may be formed of reagents. The beads may be used for purification, mixing, filtering, or any other processes. The beads may be formed of a transparent material, translucent material, and/or opaque material. The beads may be formed of a thermally conductive or thermally insulative material. The beads may be formed of an electrically conductive or electrically insulative material. The beads may accelerate a sample preparation and/or assay step. The beads may provide an increased surface area that may react with one or more sample or fluid. In alternate embodiments, beads or other solid materials may be provided to the assay units. The beads may be configured to dissolve under certain conditions. For example, the beads may dissolve when in contact with a fluid, or when in contact with an analyte or other reagents. The beads may dissolve at particular temperatures. The beads may have any size or shape. The beads may be spherical. The beads may have a diameter of less than or equal to about 1 nm, 5 nm, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 500 nm, 750 nm, 1 μm, 2 μm, 3 μm, 5 μm, 10 μm, 20 μm, 50 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 1.2 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 4 mm, or 5 mm. The beads may be of the same size or differing sizes. The beads may include microparticles or nanoparticles. A processing unit may have any dimension, including those described elsewhere herein for tips and/or vessels. The processing unit may be capable of containing and/or confining a small volume of sample and/or other fluid, including volumes mentioned elsewhere herein. A processing unit may be picked up and/or removed from a fluid handling mechanism. For example, a processing tip or other processing unit may be picked up by a pipette nozzle. The processing tip or other processing unit may be dropped off by a pipette nozzle. In some embodiments, processing units may be selectively individually picked up and/or dropped off. One or more group of processing units may be selectively picked up and/or dropped off. A processing unit may be picked up and/or dropped off using an automated mechanism. A processing unit may be picked up and/or dropped off without requiring human intervention. A pipette may pick up and/or drop off a processing unit in accordance with descriptions provided elsewhere herein. A processing unit may be moved within a device and/or module using a fluid handling mechanism. For example, a processing tip/vessel or other processing unit may be transported using a pipette head. The processing tip/vessel or other processing unit may be transported in a horizontal direction and/or vertical direction. The processing tip/vessel and/or processing unit may be transported in any direction. The processing unit may be moved individually using the fluid handling mechanism. One or more groups of processing units may be simultaneously moved using the fluid handling mechanism. A processing unit may be shaped and/or sized to permit detection by a detection unit. The detection unit may be provided external to, inside, or integrated with the processing unit. In one example, the processing unit may be transparent. The processing unit may permit the detection of an optical signal, audio signal, visible signal, electrical signal, magnetic signal, chemical signal, biological signal, motion, acceleration, weight, or any other signal by a detection unit. A detector may be capable of detecting signals from individual processing units. The detector may differentiate signals received from each of the individual processing units. The detector may individually track and/or follow signals from each of the individual processing units. A detector may be capable of simultaneously detecting signals from one or more groups of processing units. The detector may track and/or follow signals from the one or more groups of processing units. In some embodiments, magnetic particles or superparamagnetic nanoparticles may be used in conjunction with vessels and miniaturized magnetic resonance to effect particular unit operations. Magnetic particles or superparamagnetic nanoparticles may be manipulated either via external magnetic fields, or via the pipette/fluid transfer device. Magnetic beads may be used for separations (when coated with antibodies/antigens/other capture molecules), for mixing (via agitation by external magnetic field), for concentrating analytes (either by selectively separating the analyte, or by separating impurities), etc. All these unit operations may be effectively carried out in small volumes with high efficiencies. Reagent Unit In accordance with an embodiment of the invention, an assay station, or any other portion of a module or device, may include one or more reagent units. A reagent unit may be configured to contain and/or confine a reagent that may be used in an assay. The reagent within the reagent unit may be used in a biological or chemical reaction. The reagent unit may store one or more reagent prior to, during, or subsequent to a reaction that may occur with the reagent. The biological and/or chemical reactions may or may not take place external to the reagent units. Reagents may include any of the reagents described in greater detail elsewhere herein. For example, reagents may include a sample diluent, a detector conjugate (for example, an enzyme-labeled antibody), a wash solution, and an enzyme substrate. Additional reagents can be provided as needed. In some embodiments, a plurality of reagent units may be provided. In some embodiments, one or more row of reagent units, and/or one or more column of reagent units may be provided. In some embodiments, an m×n array of reagent units may be provided, wherein m, n are whole numbers. The reagent units may be provided in staggered rows or columns from each other. In some embodiments, they may have any other configuration. Any number of reagent units may be provided. For example there may be more than and/or equal to about 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 175, 200, 250, 300, 400, 500, or 1000 reagent units. Optionally, the same number of reagent units and assay units may be provided. One or more reagent units may correspond to an assay unit. One or more assay units may correspond to a reagent unit. One or more reagent units may be movable relative to an assay unit. Alternative, one or more assay unit may be movable relative to a reagent unit. An assay unit may be individually movable relative to a reagent unit. Reagent units may be provided in a cartridge, card, or have any other supporting structure. The reagent units may have the same orientation. For example reagent units may have one or more open end that may be facing in the same direction. Alternatively, reagent units may have different orientations. In some examples, reagent units may be kept at a vertical orientation. In other examples, reagent units may have horizontal or vertical orientations, or any other angle of orientation. The reagent units may remain the same or may vary over time. Reagent units may be provided on a supporting structure with assay units. Alternatively, reagent units may be provided on separate supporting structures than assay units. Reagent units and assay units may be supported in separate portions of a supporting structure. Alternatively, they may be intermingled on a supporting structure. The reagent units may be fluidically isolated or hydraulically independent from one another. The reagent units may contain and/or confine samples or other fluids that may be in fluid isolation from one another. The samples and/or other fluids contained within the reagent units may be the same, or may vary from unit to unit. The system may be capable of tracking what each reagent unit contains. The system may be capable of tracking the location and history of each reagent unit. The reagent units may be independently movable relative to one another, or another portion of the device or module. Thus, the fluids and/or samples contained therein may be independently movable relative to one another or other portions of the device or module. A reagent unit may be individually addressable. The location of each reagent unit may be tracked. A reagent unit may be individually selected to receive and/or provide a fluid. A reagent unit may be individually selected to transport a fluid. Fluid may be individually provided to or removed from a reagent unit. A reagent unit may be independently detectable. Any description herein of individual reagent units may also apply to groups of reagent units. A group of reagent units may include one, two, or more reagent units. In some embodiments, reagent units within a group may be moved simultaneously. The location of groups of reagent units may be tracked. Fluids may be simultaneously delivered and/or aspirated from one or more group of reagent units. Detection may occur simultaneously to assay units within one or more groups of assay units. The reagent units may have the form or characteristics of any of the tips or vessels as described elsewhere herein. For example, a reagent unit can be any of the tips or vessels described herein. Any description herein of reagent units may also apply to tips or vessels, or any description of tips or vessels may also apply to the reagent units. In some embodiments, a reagent unit may be a vessel. A reagent unit may have a first end and a second end. The first end and second end may be opposing one another. The first end and/or the second end may be open or closed. In some embodiments, a first end may be open and a second end may be closed. In alternate embodiments, the assay unit may have three, four, or more ends. The vessel may be covered by a septum and/or barrier to prevent evaporation and/or aerosolization to prevent reagent loss and contamination of the device. The vessel may be disposable. This eliminates the requirement of externally filling reagents from a common source. This also allows better quality control and handling of reagents. Additionally, this reduces contamination of the device and the surroundings. The reagent unit may have an interior surface and an exterior surface. A passageway may connect the first and second ends of the reagent unit. The passageway may be a conduit or channel. The first and second ends of the assay tip may be in fluid communication with one another. The diameter of the first end of the reagent unit may be greater than the diameter of the second end of the reagent unit. In some embodiments, the outer diameter of the first end of the reagent unit may be greater than the outer diameter of the second end of the reagent unit. Alternatively, the diameters may be the same, or the outer diameter of the second end may be greater than the outer diameter of the first end. An inner diameter of the first end of the reagent unit may be greater than the inner diameter of the second end of the reagent unit. Alternatively, a diameter and/or inner diameter of the reagent unit may be the same at the first and second ends. In some embodiments, the second end may be held below the first end of the reagent unit. Alternatively the relative positions of the first and second ends may vary. An open end of the reagent unit may be oriented upwards, or may be held higher than a closed end. In some embodiments, a reagent unit may have a cap or closure. The cap or closure may be capable of blocking an open end of the reagent unit. The cap or closure may be selectively applied to close or open the open end of the reagent unit. The cap or closure may have one or more configuration as illustrated elsewhere herein or as known in the art. The cap or closure may form an airtight seal that may separate the contents of the reagent unit from the ambient environment. As previously described regarding tips and/or vessels, a reagent unit may be picked up using a fluid handling device. For example, a pipette or other fluid handling device may connect to the reagent unit. A pipette nozzle or orifice may interface with an end of the reagent unit. In some embodiments, a fluid-tight seal may be formed between the fluid handling device and the reagent unit. A reagent unit may be attached to and/or detached from the fluid handling device. The fluid handling device may move the reagent unit from one location to another. Alternatively, the reagent unit is not connected to the fluid handling device. Any other automated device or process may be used to move or manipulate an assay unit. A reagent unit may be moved or manipulated without the intervention of a human. A reagent unit may be configured to accept an assay unit. In some embodiments, a reagent unit may include an open end through which at least a portion of an assay unit may be inserted. In some embodiments, the assay unit may be entirely inserted within the reagent unit. An open end of the reagent unit may have a greater diameter than at least one of the open ends of the assay unit. In some instances, an inner diameter of an open end of the reagent unit may be greater than an outer diameter of at least one of the open ends of the assay unit. In some embodiments, a reagent unit may be shaped or may include one or more feature that may permit the assay unit to be inserted a desired amount within the reagent unit. The assay unit may or may not be capable of being inserted completely into the reagent unit. An assay unit may dispense to and/or aspirate a fluid from the reagent unit. A reagent unit may provide a fluid, such as a reagent, that may be picked up by the assay unit. The assay unit may optionally provide a fluid to the reagent unit. Fluid may be transferred through the open end of a reagent unit and an open end of the assay unit. The open ends of the assay unit and the reagent unit may permit the interior portions of the assay unit and the reagent unit to be brought into fluid communication with one another. In some embodiments, an assay unit may be located above the reagent unit during said dispensing and/or aspiration. Alternatively, fluid transfer between the reagent unit and the assay unit may be done by a fluid handling device. One or several such fluid transfers might happen simultaneously. The fluid handling device in one embodiment might be a pipette. In one example, a reagent for a chemical reaction may be provided within a reagent unit. An assay unit may be brought into the reagent unit and may aspirate the reagent from the reagent unit. A chemical reaction may occur within the assay unit. The excess fluid from the reaction may be dispensed from the assay unit. The assay unit may pick up a wash solution. The wash solution may be expelled from the assay unit. The washing step may occur one, two, three, four, five, or more times. The wash solution may optionally be picked up and/or dispensed to a reagent unit. This may reduce background signal interference. A detector may detect one or more signal from the assay unit. The reduced background signal interference may permit increased sensitivity of signals detected from the assay unit. An assay tip format may be employed, which may advantageously provide easy expulsion of fluids for improved washing conditions. A fluid handling device or any other automated device may be able to pick up or drop off an individual assay unit. A fluid handling device or other automated device may be able to simultaneously pick up or drop off a plurality of assay units. A fluid handling device or other automated device may be able to selectively pick up or drop off a plurality of assay units. In some embodiments, a fluid handling device may be able to selectively aspirate and/or dispense a sample using one, two or more assay units. Any description of fluid handling systems as described previously herein may apply to the assay units. In one embodiment, a reagent unit may be formed from molded plastic. The reagent unit may be either commercially available or can be made by injection molding with precise shapes and sizes. The units can be coated with capture reagents using method similar to those used to coat microtiter plates but with the advantage that they can be processed in bulk by placing them in a large vessel, adding coating reagents and processing using sieves, holders, and the like to recover the pieces and wash them as needed. In some embodiments, the capture reagents may be provided on an interior surface of the reagent units. Alternatively reagent units may be uncoated, or may be coated with other substances. A reagent unit can offer a rigid support. The reagent unit may be chosen to provide appropriate characteristics with respect to interactions with light. For example, the reagent unit can be made of a material, such as functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene, PMMA, ABS, or combinations thereof. In an embodiment, an assay unit may comprise polystyrene. Other appropriate materials may be used in accordance with the present invention. Any of the materials described here, such as those applying to tips and/or vessels may be used to form a reagent unit. A transparent reaction site may be advantageous. In addition, in the case where there is an optically transmissive window permitting light to reach an optical detector, the surface may be advantageously opaque and/or preferentially light scattering. A reagent unit may or may not offer a capture surface, such as those described for assay units. Similarly, a reagent unit may or may not employ beads or other substrates to provide capture surfaces. Any description relating to beads or other capture surfaces for assay units or processing units may also optionally be applied to reagent units. A reagent unit may or may not have a reaction site. Any description herein of a reaction site for an assay unit may also apply to a reagent unit. A reagent unit may have any dimension, including those described elsewhere herein for tips and/or vessels. The reagent unit may be capable of containing and/or confining a small volume of sample and/or other fluid, including volumes mentioned elsewhere herein. A reagent unit may be stationary within a device and/or module. Alternatively, a reagent unit may be movable relative to the device and/or module. A reagent unit may be picked up and/or moved using a fluid handling mechanism or any other automated process. For example, a reagent unit may be picked up by a pipette nozzle, such as in a manner described elsewhere for an assay unit. Relative movement may occur between the assay unit and the reagent unit. The assay unit and/or reagent unit may move relative to one another. Assay units may move relative to one another. Reagent units may move relative to one another. Assay units and/or reagent units may be individually movable relative to the device and/or module. A reagent unit may be shaped and/or sized to permit detection by a detection unit. The detection unit may be provided external to, inside, or integrated with the reagent unit. In one example, the reagent unit may be transparent. The reagent unit may permit the detection of an optical signal, audio signal, visible signal, electrical signal, magnetic signal, motion, acceleration, weight, or any other signal by a detection unit. A detector may be capable of detecting signals from individual reagent units. The detector may differentiate signals received from each of the individual reagent units. The detector may individually track and/or follow signals from each of the individual reagent units. A detector may be capable of simultaneously detecting signals from one or more groups of reagent units. The detector may track and/or follow signals from the one or more groups of reagent units. Alternatively, the detector need not detect signals from individual reagents. In some embodiments the device and/or system may keep track of the identity of reagents or other fluids provided within the reagent units, or information associated with the reagents or other fluids. As previously mentioned reagent units may include one or more reagents therein. Reagents may include a wash buffer, enzyme substrate, dilution buffer, or conjugates (such as enzyme labeled conjugates). Examples of enzyme labeled conjugates may include polyclonal antibodies, monoclonal antibodies, or may be labeled with enzyme that can yield a detectable signal upon reaction with an appropriate substrate. Reagents may also include DNA amplifiers, sample diluents, wash solutions, sample pre-treatment reagents (including additives such as detergents), polymers, chelating agents, albumin-binding reagents, enzyme inhibitors, enzymes (e.g., alkaline phosphatase, horseradish peroxide), anticoagulants, red-cell agglutinating agents, or antibodies. Any other examples of reagents described elsewhere herein may also be contained and/or confined within a reagent unit. Dilution The device and/or module may permit the use of one or more diluents in accordance with an embodiment of the invention. Diluent may be contained in one or more reagent unit, or any other unit that may contain and/or confine the diluents. The diluents may be provided in a tip, vessel, chamber, container, channel, tube, reservoir, or any other component of the device and/or module. Diluent may be stored in a fluidically isolated or hydraulically independent component. The fluidically isolated or hydraulically independent component may be stationary or may be configured to move relative to one or more portion of the device and/or module. In some embodiments, diluents may be stored in diluents units, which may have any characteristics of reagent units as described elsewhere herein. The diluents units may be stored in the same location as the rest of the reagent units, or may be stored remotely relative to the rest of the reagent units. Any examples of diluents known in the art may be employed. Diluent may be capable of diluting or thinning a sample. In most instances, the diluents do not cause a chemical reaction to occur with the sample. A device may employ one type of diluents. Alternatively, the device may have available or employ multiple types of diluents. The system may be capable of tracking diluents and/or various types of diluents. Thus, the system may be capable of accessing a desired type of diluents. For example, a tip may pick up a desired diluent. In some embodiments, diluents may be provided to a sample. The diluents may dilute the sample. The sample may become less concentrated with the addition of a diluent. The degree of dilution may be controlled according to one or more protocol or instructions. In some instances, the protocol or instructions may be provided from an external device, such as a server. Alternatively, the protocol or instructions may be provided on-board the device or cartridge or vessel. Thus, a server and/or the device may be capable of variable dilution control. By controlling the degree of dilution, the system may be capable of detecting the presence or concentration of one or more analytes that may vary over a wide range. For example, a sample may have a first analyte having a concentration that would be detectable over a first range, and a second analyte having a concentration that would be detectable over the second range. The sample may be divided and may or may not have varying amounts of diluents applied to bring the portions of the sample into a detectable range for the first and second analytes. Similarly, a sample may or may not undergo varying degrees of enrichment to bring analytes to a desired concentration for detection. Dilution and/or enrichment may permit the one, two, three or more analytes having a wide range of concentrations to be detected. For examples, analytes differing by one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more degrees of magnitude may be detected from a sample. In some embodiments, a sample may be combined with diluents in an assay tip or other type of tip described elsewhere herein. An assay tip may aspirate a diluent. The assay tip may pick up the diluents from a reagent unit. The diluents may or may not be combined with the sample within the assay tip. In another example, a diluents and/or sample may be combined in a reagent unit or other types of vessels described elsewhere herein. For example, a diluents may be added to a sample in a reagent unit, or a sample may be added to a diluents in the reagent unit. In some embodiments, one or more mixing mechanism may be provided. Alternatively, no separate mixing mechanism is needed. The assay unit, reagent unit, or any other tip, vessel, or compartment combining a sample and diluents may be capable of moving, thereby effecting a mixing. Varying amounts of diluents and/or samples may be combined to achieve a desired level of dilution. Protocols may determine the relative proportion of diluents and sample to combine. In some embodiments, the portion of sample to diluent may be less than and/or equal to about 1:1,000,000, 1:100,000, 1:10,000, 1:1,000, 1:500, 1:100, 1:50, 1:10, 1:5, 1:3, 1:2, 1:1, or greater than and/or equal to 2:1, 3:1, 5:1, 10:1, 50:1, 100:1, 500:1, 1,000:1, 10,000:1, 100,000:1, or 1,000,000:1. The diluted sample may be picked up from the reagent unit using an assay tip, where one or more chemical reaction may occur. A desired amount of diluents may be provided in accordance with one or more set of instructions. In some embodiments, the amount of dilution provided may be controlled by a fluid handling system. For example, an assay tip may pick up a desired amount of diluents and dispense it to a desired location. The volume of diluents picked up by the assay tip may be controlled with a high degree of sensitivity. For example, the amount of diluents picked up may have any of the volumes of fluids or samples discussed elsewhere herein. In some embodiments, an assay tip may pick up a desired amount of diluents in one turn. Alternatively, an assay tip may pick up and dispense diluents multiple times in order to achieve a desired degree of dilution. Dilution of a sample may occur during a sample pre-treatment step. A sample may be diluted prior to undergoing a chemical reaction. Alternatively, dilution may occur during a chemical reaction and/or subsequent to a chemical reaction. The dilution factor may be optimized in real-time for each assay depending on the assay requirements. In one embodiment, real-time determination of a dilution scheme can be performed by knowledge of all assays to be performed. This optimization may take advantage of multiple assays using identical dilution. The aforementioned dilution scheme may result in higher precision of final diluted sample. Dilution of a sample may be performed serially or in a single step. For a single-step dilution, a selected quantity of sample may be mixed with a selected quantity of diluent, in order to achieve a desired dilution of the sample. For a serial dilution, two or more separate sequential dilutions of the sample may be performed in order to achieve a desired dilution of the sample. For example, a first dilution of the sample may be performed, and a portion of that first dilution may be used as the input material for a second dilution, to yield a sample at a selected dilution level. For dilutions described herein, an “original sample” refers to the sample that is used at the start of a given dilution process. Thus, while an “original sample” may be a sample that is directly obtained from a subject, it may also include any other sample (e.g. sample that has been processed or previously diluted in a separate dilution procedure) that is used as the starting material for a given dilution procedure. In some embodiments, a serial dilution of a sample may be performed with a device described herein as follows. A selected quantity (e.g. volume) of an original sample may be mixed with a selected quantity of diluent, to yield a first dilution sample. The first dilution sample (and any subsequent dilution samples) will have: i) a sample dilution factor (e.g. the amount by which the original sample is diluted in the first dilution sample) and ii) an initial quantity (e.g. the total quantity of the first dilution sample present after combining the selected quantity of original sample and selected quantity of diluent). For example, 10 microliters of an original sample may be mixed with 40 microliters of diluent, to yield a first dilution sample having a 5-fold dilution factor and an initial quantity of 50 microliters. Next, a selected quantity of the first dilution sample may be mixed with a selected quantity of diluent, to yield a second dilution sample. For example, 5 microliters of the first dilution sample may be mixed with 95 microliters of diluent, to yield a second dilution sample having an 100-fold dilution factor and an initial quantity of 100 microliters. For each of the above dilution steps, the original sample, dilution sample(s), and diluent may be stored or mixed in fluidically isolated vessels. Sequential dilutions may continue in the preceding manner for as many steps as needed to reach a selected sample dilution level/dilution factor. In devices provided herein, an original sample may be diluted, for example, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 200, 300, 400, 500, 1,000, 5,000, 10,000, 20,000, 50,000, or 100,000-fold, by either a single-step or serial dilution procedure. In some embodiments, a single original sample may be diluted to reach multiple different selected sample dilution factors (e.g. a single original sample may be diluted to generate samples which are diluted 5-fold, 10-fold, 25-fold, 100-fold, 200-fold, 500-fold, and 1000-fold). In some embodiments, a device may be configured to perform a 2, 3, 4, 5, 6, 7, 8, 9, 10, or more step serial dilution. A device may be configured to dilute 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different original samples within the same device (e.g. a device may dilute both EDTA-containing and heparin-containing plasma samples at the same time). In some embodiments, a device provided herein contains a controller which is configured to instruct a sample handling system within the device to perform one or more sample handling steps to prepare any of the dilutions of sample described above or elsewhere herein. The controller may direct the device to use 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different diluents for different dilution procedures. The controller may contain a protocol for performing the dilutions. The protocol may be stored or generated on-the-fly. The protocol may be sent from an external device to the sample processing device, or stored or generated on the sample processing device. In some embodiments, one or more steps of a dilution procedure may be performed with a sample handling system. The sample handling system may be a pipette or other fluid handling apparatus. The sample handling system may be configured for obtaining a selected quantity of a sample or diluent from a fluidically isolated vessel containing the sample or diluent, and transporting the selected quantity of sample or diluent to a different fluidically isolated vessel. During the dilution of a sample, the diluent may be deposited in a vessel before the sample is added to the diluent. Alternatively, the sample may be deposited in a vessel before the diluent is added to the sample. In other embodiments, the sample and diluent may be in the same fluid circuit. Dilution of samples may facilitate the performance of a large number of assays with a small amount of original sample. In some situations, dilution of an original sample into multiple dilution samples having different dilution factors may, for example: i) reduce waste of sample, for example, by only using the minimum amount of original sample required to perform each assay (i.e. by not using samples that are more concentrated than necessary to perform the assay); ii) increase the total number of assays that may be performed with a given amount of original sample, for example, by the reduction of waste of sample; and iii) increase the variety of assays that may be performed with an original sample, for example, by dilution of the original sample to different sample dilution factors, where different sample dilution factors are needed to perform different assays (for example, if one assay requires a high sample concentration in order to efficiently detect an analyte that is not abundant in the sample, and if another assay requires a low sample concentration in order to efficiently detect an analyte that is abundant in the sample). Washing The device and/or module may permit washing in accordance with an embodiment of the invention. A wash solution may be contained in one or more reagent unit, or any other unit that may contain and/or confine the wash solution. The wash solution may be provided in a tip, vessel, chamber, container, channel, tube, reservoir, or any other component of the device and/or module. A wash solution may be stored in a fluidically isolated or hydraulically independent component. The fluidically isolated or hydraulically independent component may be stationary or may be configured to move relative to one or more portion of the device and/or module. In some embodiments, wash solution may be stored in wash units, which may have any characteristics of reagent units as described elsewhere herein. The wash units may be stored in the same location as the rest of the reagent units, or may be stored remotely relative to the rest of the reagent units. Any examples of wash solutions known in the art may be employed. Wash solutions may be capable of removing unbound and/or unreacted reactants. For examples, a chemical reaction may occur between a sample containing an analyte and an immobilized reactant, that may cause an analyte to bind to a surface. The unbound analytes may be washed away. In some embodiments, a reaction may cause the emission of an optical signal, light, or any other sort of signal. If unreacted reactants remain in the proximity, they may cause interfering background signal. It may be desirable to remove the unreacted reactants to reduce interfering background signal and permit the reading of the bound analytes. In some instances, the wash solution does not cause a chemical reaction to occur between the wash solution and the sample. A device may employ one type of wash solutions. Alternatively, the device may have available or employ multiple types of wash solutions. The system may be capable of tracking wash solutions and/or various types of wash solutions. Thus, the system may be capable of accessing a desired type of wash solution. For example, a tip may pick up a desired wash solution. In some embodiments, a wash solution may be provided to a sample. The wash solution may dilute the sample. The sample may become less concentrated with the addition of a wash solution. The degree of washing may be controlled according to one or more protocol or instructions. By controlling the degree of washing, the system may be capable of detecting the presence or concentration of one or more analytes with a desired sensitivity. For example, increased amounts of washing may remove undesirable reagents or sample that may cause interfering background noise. In some embodiments, a wash solution may be provided to an assay tip or other type of tip described elsewhere herein. An assay tip may aspirate a wash solution. The assay tip may pick up the wash solutions from a wash unit. The wash solution may or may not be dispensed back out through the assay tip. The same opening of an assay tip may both aspirate and dispense the wash solution. For example, an assay tip may have a bottom opening that may be used to both pick up and expel a wash solution. The assay tip may have both a bottom opening and a top opening, where the bottom opening may have a smaller diameter than the top opening. Expelling the wash solution through the bottom opening may permit more effective expulsion of the wash solution than if the bottom of the assay tip were closed. In another example, a wash solution and/or sample may be combined in a reagent unit or other types of vessels described elsewhere herein. For example, a wash solution may be added to a sample in a reagent unit, or a sample may be added to a wash solution in the reagent unit. The wash solution may be expelled in any manner. In some embodiments, a combination of the wash solution and/or sample may be picked up by an assay tip. A desired amount of wash solution may be provided in accordance with one or more set of instructions. In some embodiments, the amount of wash solution provided may be controlled by a fluid handling system. For example, an assay tip may pick up a desired amount of wash solution and dispense it. The volume of wash solution picked up by the assay tip may be controlled with a high degree of sensitivity. For example, the amount of wash solution picked up may have any of the volumes of fluids or samples discussed elsewhere herein. In some embodiments, an assay tip may pick up a desired amount of wash solution in one turn. Alternatively, an assay tip may pick up and dispense wash solution multiple times in order to achieve a desired degree of washing. Varying numbers of wash cycles may occur to provide a desired sensitivity of detection. Protocols may determine the number of wash cycles. For example, greater than, and/or equal to about one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve wash cycles may occur. The wash solution may be picked up from the wash unit using an assay tip, and may be expelled from the assay tip. Washing may occur subsequent to undergoing a chemical reaction. Alternatively, washing may occur during a chemical reaction and/or prior to a chemical reaction. Contamination Reduction The device and/or module may permit contamination prevention and/or reduction in accordance with an embodiment of the invention. For example, a touch-off pad may be provided. The touch-off pad may be formed of an absorbent material. For example, the touch-off pad may be a sponge, textile, gel, porous material, capillary or have any feature that may absorb or wick away a fluid that may come into contact with the pad. An assay tip may be brought into contact with the touch-off pad, which may result in fluid from the assay tip in proximity to the touch-off pad being absorbed by the pad. In some embodiments, an assay tip may be brought to a touch-off pad in a manner such that the assay tip does not contact a portion of the pad that has previously been contacted. In some instances, liquid is not placed in the same place as a liquid has been previously touched off. The assay tips may be brought to the pad in a way so that the contact points are spaced apart so that a different contact point is used whenever an assay tip touches the pad. One or more controller may determine the location of the touch-off pad that an assay tip may contact next. The controller may keep track of what points on the pad have already been contacted by an assay tip. The assay pad may be absorbent. The assay tip may be wiped by the pad. The excess fluid or undesired fluid from the assay tip may be removed from the assay tip. For example, an open end, such as a bottom end, of the assay tip may be brought into contact with the touch-off pad. The pad may be formed from an absorbent material that may wick the fluid away from the assay tip. Thus, as an assay tip, or other component of the device, may move throughout a module and/or device, the likelihood of excess fluid or undesired fluid from contaminating other portions of the module and/or device may be reduced. In one non-limiting example, an absorbent pad is part of the cartridge and it is configured to wick fluid away from tips, reducing carry over. In some embodiments, an absorbant pad may be any location in a device accessible by a sample handling system. Use of an absorbent pad with pipetting or other tip-related liquid transfer methods may increase the accuracy and precision of the fluid transfer and may lower the coefficient of variation of transferring fluid with the liquid transfer methods. Another example of a contamination prevention and/or reduction mechanism may include applying a coating or covering to an assay tip or other component of the device. For example, an assay tip may be brought into contact with a melted wax, oil (such as mineral oil), or a gel. In some embodiments, the wax, oil, or gel may harden. Hardening may occur as the material cools and/or is exposed to air. Alternatively, they need not harden. The coating surface, such as a wax, oil, or gel, may be sufficiently viscous to remain on the assay tip or other component of the device. In one example, an open end of the assay tip may be brought into contact with the coating material, which may cover the open end of the assay tip, sealing the contents of the assay tip. Additional examples of contamination prevention and/or reduction may be a waste chamber to accept used assay tips, a component that may put one or more cap on used portions of assay tips, a heater or fan, or ultraviolet light emitted onto one or more components or subsystems, or any other component that may reduce the likelihood of contamination any other component that may reduce the likelihood of contamination. In some embodiments, the fluid handling components of the device do not require regular decontamination as the fixed components of the device do not normally come in direct contact with the sample. The fluid handling device may be capable of periodical self-sanitization, such as by aspirating cleaning agents (e.g., ethanol) from a tank using the pipette. The fluid handling apparatus, and other device resources, can also be decontaminated, sterilized, or disinfected by a variety of other methods, including UV irradiation. Filter The device and/or modules may include other components, which may permit one or more function as described elsewhere herein. For example, the device and/or module may have a filter that may permit the separation of a sample by particle size, density, or any other feature. For example, a particle or fluid having a particle size smaller than a threshold size may pass through a filter while other particles having a size greater than the threshold size do not. In some embodiments, a plurality of filters may be provided. The plurality of filters may have the same size or different sizes, which may permit sorting of different sizes of particles into any number of groups. Centrifuge In accordance with some embodiments of the invention, a system may include one or more centrifuge. A device may include one or more centrifuge therein. For example, one or more centrifuge may be provided within a device housing. A module may have one or more centrifuge. One, two, or more modules of a device may have a centrifuge therein. The centrifuge may be supported by a module support structure, or may be contained within a module housing. The centrifuge may have a form factor that is compact, flat and requires only a small footprint. In some embodiments, the centrifuge may be miniaturized for point-of-service applications but remain capable of rotating at high rates, equal to or exceeding about 10,000 rpm, and be capable of withstanding g-forces of up to about 1200 m/s2 or more. A centrifuge may be configured to accept one or more sample. A centrifuge may be used for separating and/or purifying materials of differing densities. Examples of such materials may include viruses, bacteria, cells, proteins, environmental compositions, or other compositions. A centrifuge may be used to concentrate cells and/or particles for subsequent measurement. A centrifuge may have one or more cavity that may be configured to accept a sample. The cavity may be configured to accept the sample directly within the cavity, so that the sample may contact the cavity wall. Alternatively, the cavity may be configured to accept a sample vessel that may contain the sample therein. Any description herein of cavity may be applied to any configuration that may accept and/or contain a sample or sample container. For example, cavities may include indentations within a material, bucket formats, protrusions with hollow interiors, members configured to interconnect with a sample container. Any description of cavity may also include configurations that may or may not have a concave or interior surface. Examples of sample vessels may include any of the vessel or tip designs described elsewhere herein. Sample vessels may have an interior surface and an exterior surface. A sample vessel may have at least one open end configured to accept the sample. The open end may be closeable or sealable. The sample vessel may have a closed end. The sample vessel may be a nozzle of the fluid handling apparatus, which apparatus may act as a centrifuge to spin a fluid in the nozzle, the tip or another vessel attached to such a nozzle. A centrifuge may have one or more, two or more, three or more, four or more, five or more, six or more, eight or more, 10 or more, 12 or more, 15 or more, 20 or more, 30 or more, or 50 or more cavities configured to accept a sample or sample vessel. In some embodiments, the centrifuge may be configured to accept a small volume of sample. In some embodiments, the cavity and/or sample vessel may be configured to accept a sample volume of 1,000 μL or less, 500 μL or less, 250 μL or less, 200 μL or less, 175 μL or less, 150 μL or less, 100 μL or less, 80 μL or less, 70 μL or less, 60 μL or less, 50 μL or less, 30 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 8 μL or less, 5 μL or less, 1 μL or less, 500 nL or less, 300 nL or less, 100 nL or less, 50 nL or less, 10 nL or less, 1 nL or less, 500 pL or less, 100 pL or less 50 pL or less, 10 pL or less 5 pL or less, or 1 pL or less. In some embodiments, centrifuge may be configured such that the total volume that the centrifuge is configured to accept (e.g. the combined volume that may be accepted by the total of all the cavities and/or sample vessels in the centrifuge) is 10 ml or less, 5 ml or less, 4 ml or less, 3 ml or less, 2 ml or less, 1 ml or less, 750 μl or less, 500 μl or less, 400 μl or less, 300 μl or less, 200 μl or less, 100 μl or less, 50 μl or less, 40 μl or less, 30 μl or less, 20 μl or less, 10 μl or less, 8 μl or less, 6 μl or less, 4 μl or less, or 2 μl or less. In some embodiments, the centrifuge may contain 50 or less, 40 or less, 30 or less, 29 or less, 28 or less, 27 or less, 26 or less, 25 or less, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 cavities and/or sample vessels, which are configured to accept, in total, a volume of 10 ml or less, 5 ml or less, 4 ml or less, 3 ml or less, 2 ml or less, 1 ml or less, 750 μl or less, 500 μl or less, 400 μl or less, 300 μl or less, 200 μl or less, 100 μl or less, 50 μl or less, 40 μl or less, 30 μl or less, 20 μl or less, 10 μl or less, 8 μl or less, 6 μl or less, 4 μl or less, or 2 μl or less. In some embodiments, the centrifuge may have a cover that may contain the sample within the centrifuge. The cover may prevent the sample for aerosolizing and/or evaporating. The centrifuge may optionally have a film, oil (e g, mineral oil), wax, or gel that may contain the sample within the centrifuge and/or prevent it from aerosolizing and/or evaporating. The film, oil, wax, or gel may be provided as a layer over a sample that may be contained within a cavity and/or sample vessel of the centrifuge. A centrifuge may be configured to rotate about an axis of rotation. A centrifuge may be able to spin at any number of rotations per minute. For example, a centrifuge may spin up to a rate of 100 rpm, 1,000 rpm, 2,000 rpm, 3,000 rpm, 5,000 rpm, 7,000 rpm, 10,000 rpm, 12,000 rpm, 15,000 rpm, 17,000 rpm, 20,000 rpm, 25,000 rpm, 30,000 rpm, 40,000 rpm, 50,000 rpm, 70,000 rpm, or 100,000 rpm. At some points in time, a centrifuge may remain at rest, while at other points in time, the centrifuge may rotate. A centrifuge at rest is not rotating. A centrifuge may be configured to rotate at variable rates. In some embodiments, the centrifuge may be controlled to rotate at a desirable rate. In some embodiments, the rate of change of rotation speed may be variable and/or controllable. In some embodiments, the axis of rotation may be vertical. Alternatively, the axis of rotation may be horizontal, or may have any angle between vertical and horizontal (e.g., about 15, 30, 45, 60, or 75 degrees). In some embodiments, the axis of rotation may be in a fixed direction. Alternatively, the axis of rotation may vary during the use of a device. The axis of rotation angle may or may not vary while the centrifuge is rotating. A centrifuge may comprise a base. The base may have a top surface and a bottom surface. The base may be configured to rotate about the axis of rotation. The axis of rotation may be orthogonal to the top and/or bottom surface of the base. In some embodiments, the top and/or bottom surface of the base may be flat or curved. The top and bottom surface may or may not be substantially parallel to one another. In some embodiments, the base may have a circular shape. The base may have any other shape including, but not limited to, an elliptical shape, triangular shape, quadrilateral shape, pentagonal shape, hexagonal shape, or octagonal shape. The base may have a height and one or more lateral dimension (e.g., diameter, width, or length). The height of the base may be parallel to the axis of rotation. The lateral dimension may be perpendicular to the axis of rotation. The lateral dimension of the base may be greater than the height. The lateral dimension of the base may be 2 times or more, 3 times or more, 4 times or more, 5 times or more, 6 times or more, 8 times or more, 10 times or more, 15 times or more, or 20 times or more greater than the height. The centrifuge may have any size. For example, the centrifuge may have a footprint of about 200 cm2 or less, 150 cm2 or less, 100 cm2 or less, 90 cm2 or less, 80 cm2 or less, 70 cm2 or less, 60 cm2 or less, 50 cm2 or less, 40 cm2 or less, 30 cm2 or less, 20 cm2 or less, 10 cm2 or less, 5 cm2 or less, or 1 cm2 or less. The centrifuge may have a height of about 5 cm or less, 4 cm or less, 3 cm or less, 2.5 cm or less, 2 cm or less, 1.75 cm or less, 1.5 cm or less, 1 cm or less, 0.75 cm or less, 0.5 cm or less, or 0.1 cm or less. In some embodiments, the greatest dimension of the centrifuge may be about 15 cm or less, 10 cm or less, 9 cm or less, 8 cm or less, 7 cm or less, 6 cm or less, 5 cm or less, 4 cm or less, 3 cm or less, 2 cm or less, or 1 cm or less. The centrifuge base may be configured to accept a drive mechanism. A drive mechanism may be a motor, or any other mechanism that may enable the centrifuge to rotate about an axis of rotation. The drive mechanism may be a brushless motor, which may include a brushless motor rotor and a brushless motor stator. The brushless motor may be an induction motor. The brushless motor rotor may surround the brushless motor stator. The rotor may be configured to rotate about a stator about an axis of rotation. The base may be connected to or may incorporate the brushless motor rotor, which may cause the base to rotate about the stator. The base may be affixed to the rotor or may be integrally formed with the rotor. The base may rotate about the stator and a plane orthogonal to the axis of rotation of the motor may be coplanar with a plane orthogonal to the axis of rotation of the base. For example, the base may have a plane orthogonal to the base axis of rotation that passes substantially between the upper and lower surface of the base. The motor may have a plane orthogonal to the motor axis of rotation that passes substantially through the center of the motor. The base planes and motor planes may be substantially coplanar. The motor plane may pass between the upper and lower surface of the base. A brushless motor assembly may include the rotor and stator. The motor assembly may include the electronic components. The integration of a brushless motor into the rotor assembly may reduce the overall size of the centrifuge assembly. In some embodiments, the motor assembly does not extend beyond the base height. In other embodiments, the height of the motor assembly is no greater than 1.5 times the height of the base, than twice the height of the base, than 2.5 times the height of the base, than three times the height of the base, than four times the height of the base, or five times the height of the base. The rotor may be surrounded by the base such that the rotor is not exposed outside the base. The motor assembly may effect the rotation of the centrifuge without requiring a spindle/shaft assembly. The rotor may surround the stator which may be electrically connected to a controller and/or power source. In some embodiments, the cavity may be configured to have a first orientation when the base is at rest, and a second orientation when the base is rotating. The first orientation may be a vertical orientation and a second orientation may be a horizontal orientation. The cavity may have any orientation, where the cavity may be more than and/or equal to about 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, or 90 degrees from vertical and/or the axis of rotation. In some embodiments, the first orientation may be closer to vertical than the second orientation. The first orientation may be closer to parallel to the axis of rotation than the second orientation. Alternatively, the cavity may have the same orientation regardless of whether the base is at rest or rotating. The orientation of the cavity may or may not depend on the speed at which the base is rotating. The centrifuge may be configured to accept a sample vessel, and may be configured to have the sample vessel at a first orientation when the base is at rest, and have the sample vessel at a second orientation when the base is rotating. The first orientation may be a vertical orientation and a second orientation may be a horizontal orientation. The sample vessel may have any orientation, where the sample vessel may be more than and/or equal to about 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, or 90 degrees from vertical. In some embodiments, the first orientation may be closer to vertical than the second orientation. Alternatively, the sample vessel may have the same orientation regardless of whether the base is at rest or rotating. The orientation of the vessel may or may not depend on the speed at which the base is rotating. FIG. 36 shows an example of a centrifuge provided in accordance with an embodiment of the invention. The centrifuge may include a base 3600 having a bottom surface 3602 and/or top surface 3604. The base may comprise one, two or more wings 3610a, 3610b. A wing may be configured to fold over an axis extending through the base. In some embodiments, the axis may form a secant through the base. An axis extending through the base may be a foldover axis, which may be formed by one or more pivot point 3620. A wing may comprise an entire portion of a base on a side of an axis. An entire portion of the base may fold over, thereby forming the wing. In some embodiments, a central portion 3606 of the base may intersect the axis of rotation while the wing does not. The central portion of the base may be closer to the axis of rotation than the wing. The central portion of the base may be configured to accept a drive mechanism 3630. The drive mechanism may be a motor, or any other mechanism that may cause the base to rotate, and may be discussed in further detail elsewhere herein. In some embodiments, a wing may have a footprint of about 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, or 40% of the base footprint or greater. In some embodiments, a plurality of foldover axes may be provided through the base. The foldover axes may be parallel to one another. Alternatively, some foldover axes may be orthogonal to one another or at any other angle relative to one another. A foldover axis may extend through a lower surface of the base, an upper surface of the base, or between the lower and upper surface of the base. In some embodiments, the foldover axis may extend through the base closer to the lower surface of the base, or closer to the upper surface of the base. In some embodiments, a pivot point may be at or closer to a lower surface of the base or an upper surface of the base. One, two, three, four, five, six, or more cavities may be provided in a wing. For example, a wing may be configured to accept one, two, or more samples or sample vessels. Each wing may be capable of accepting the same number of vessels or different numbers of vessels. The wing may comprise a cavity configured to receive a sample vessel, wherein the sample vessel is oriented in a first orientation when the base is at rest and is configured to be oriented at a second orientation when the base is rotating. In some embodiments, the wing may be configured to be at angle relative to the central portion of the base. For example, the wing may be between 90 and 180 degrees of the central portion of the base. For example, the wing may be vertically oriented when the base is at rest. The wing may be 90 degrees from the central portion of the base when vertically oriented. The wing may be horizontally oriented when the base is rotating. The wing may be 180 degrees from the central portion of the base when horizontally oriented. The wing may extend from the base to form a substantially uninterrupted surface when the base is rotating. For example, the wing may be extended to form a substantially continuous surface of the bottom and/or top surface of the base when the base is rotating. The wing may be configured to fold downward relative to the central portion of the base. A pivot point for a wing may include one or more pivot pin 3622. A pivot pin may extend through a portion of the wing and a portion of the central portion of the base. In some embodiments, the wing and central portion of the base may have interlocking features 3624, 3626 that may prevent the wing from sliding laterally with respect to the central portion of the base. A wing may have a center of gravity 3680 that is positioned lower than the foldover axis and/or pivot point 3620. The center of gravity of the wing may be positioned lower than the axis extending through the base when the base is at rest. The center of gravity of the wing may be positioned lower than the axis extending through the base when the base is rotating. The wing may be formed of two or more different materials having different densities. Alternatively, the wing may be formed of a single material. In one example, the wing may have a lightweight wing cap 3640 and a heavy wing base 3645. In some embodiments, the wing cap may be formed of a material with a lower density than the wing base. For example, the wing cap may be formed of plastic while the wing base is formed of a metal, such as steel, tungsten, aluminum, copper, brass, iron, gold, silver, titanium, or any combination or alloy thereof. A heavier wing base may assist with providing a wing center of mass below a foldover axis and/or pivot point. The wing cap and wing base may be connected through any mechanisms known in the art. For example, fasteners 3650 may be provided, or adhesives, welding, interlocking features, clamps, hook and loop fasteners, or any other mechanism may be employed. The wing may optionally include inserts 3655. The inserts may be formed of a heavier material than the wing cap. The inserts may assist with providing a wing center of mass below a foldover axis and/or pivot point. One or more cavity 3670 may be provided within the wing cap or the wing base, or any combination thereof. In some embodiments, a cavity may be configured to accept a plurality of sample vessel configurations. The cavity may have an internal surface. At least a portion of the internal surface may contact a sample vessel. In one example, the cavity may have one or more shelf or internal surface features that may permit a first sample vessel having a first configuration to fit within the cavity and a second sample vessel having a second configuration to fit within the cavity. The first and second sample vessels having different configurations may contact different portions of the internal surface of the cavity. The centrifuge may be configured to engage with a fluid handling device. For example, the centrifuge may be configured to connect to a pipette or other fluid handling device. In some embodiments, a water-tight seal may be formed between the centrifuge and the fluid handling device. The centrifuge may engage with the fluid handling device and be configured to receive a sample dispensed from the fluid handling device. The centrifuge may engage with the fluid handling device and be configured to receive a sample vessel from the fluid handling device. The centrifuge may engage with the fluid handling device and permit the fluid handling device to pick-up or aspirate a sample from the centrifuge. The centrifuge may engage with the fluid handling device and permit the fluid handling device to pick-up a sample vessel. A sample vessel may be configured to engage with the fluid handling device. For example, the sample vessel may be configured to connect to a pipette or other fluid handling device. In some embodiments, a water-tight seal may be formed between the sample vessel and the fluid handling device. The sample vessel may engage with the fluid handling device and be configured to receive a sample dispensed from the fluid handling device. The sample vessel may engage with the fluid handling device and permit the fluid handling device to pick-up or aspirate a sample from the sample vessel. A sample vessel may be configured to extend out of a centrifuge wing. In some embodiments, the centrifuge base may be configured to permit the sample vessel to extend out of the centrifuge wing when the wing is folded over, and permit the wing to pivot between a folded and extended state. FIG. 37 shows an example of a centrifuge provided in accordance with another embodiment of the invention. The centrifuge may include a base 3700 having a bottom surface 3702 and/or top surface 3704. The base may comprise one, two or more buckets 3710a, 3710b. A bucket may be configured to pivot about a bucket pivot axis extending through the base. In some embodiments, the axis may form a secant through the base. The bucket may be configured to pivot about a point of rotation 3720. The base may be configured to accept a drive mechanism. In one example, the drive mechanism may be a motor, such as a brushless motor. The drive mechanism may include a rotor 3730 and a stator 3735. The rotor may optionally be a brushless motor rotor, and the stator may optionally be a brushless motor stator. The drive mechanism may be any other mechanism that may cause the base to rotate, and may be discussed in further detail elsewhere herein. In some embodiments, a plurality of axes of rotation for the buckets may be provided through the base. The axes may be parallel to one another. Alternatively, some axes may be orthogonal to one another or at any other angle relative to one another. A bucket axis of rotation may extend through a lower surface of the base, an upper surface of the base, or between the lower and upper surface of the base. In some embodiments, the bucket axis of rotation may extend through the base closer to the lower surface of the base, or closer to the upper surface of the base. In some embodiments, a point of rotation may be at or closer to a lower surface of the base or an upper surface of the base. One, two, three, four, or more cavities may be provided in a bucket. For example, a bucket may be configured to accept one, two, or more samples or sample vessels 3740. Each bucket may be capable of accepting the same number of vessels or different numbers of vessels. The bucket may comprise a cavity configured to receive a sample vessel, wherein the sample vessel is oriented in a first orientation when the base is at rest and is configured to be oriented at a second orientation when the base is rotating. In some embodiments, the bucket may be configured to be at angle relative to the base. For example, the bucket may be between 0 and 90 degrees of the base. For example, the bucket may be vertically oriented when the base is at rest. The bucket may be positioned upwards past the top surface of the centrifuge base when the base is at rest. At least a portion of the sample vessel may extend beyond the top surface of the base when the base is at rest. The wing may be 90 degrees from the central portion of the base when vertically oriented. The bucket may be horizontally oriented when the base is rotating. The bucket may be 0 degrees from the base when horizontally oriented. The bucket may be retracted into the base to form a substantially uninterrupted top and/or bottom surface when the base is rotating. For example, the bucket may be retracted to form a substantially continuous surface of the bottom and/or top surface of the base when the base is rotating. The bucket may be configured to pivot upwards relative the base. The bucket may be configured so that at least a portion of the bucket may pivot upwards past the top surface of the base. A point of rotation for a bucket may include one or more pivot pin. A pivot pin may extend through the bucket and the base. In some embodiments, the bucket may be positioned between portions of the base that may prevent the bucket from sliding laterally with respect to the base. A bucket may have a center of mass 3750 that is positioned lower than the point of rotation 3720. The center of mass of the bucket may be positioned lower than the point of rotation when the base is at rest. The center of mass of the bucket may be positioned lower than the point of rotation when the base is rotating. The bucket may be formed of two or more different materials having different densities. Alternatively, the bucket may be formed of a single material. In one example, the bucket may have a main body 3715 and an in insert 3717. In some embodiments, the main body may be formed of a material with a lower density than the insert. For example, the main body may be formed of plastic while the insert is formed of a metal, such as tungsten, steel, aluminum, copper, brass, iron, gold, silver, titanium, or any combination or alloy thereof. A heavier insert may assist with providing a bucket center of mass below a point of rotation. The bucket materials may include a higher density material and a lower density material, wherein the higher density material is positioned lower than the point of rotation. The center of mass of the bucket may be located such that the bucket naturally swings with an open end upwards, and heavier end downwards when the centrifuge is at rest. The center of mass of the bucket may be located so that the bucket naturally retracts when the centrifuge is rotated at a certain speed. The bucket may retract when the speed is at a predetermined speed, which may include any speed, or any speed mentioned elsewhere. One or more cavity may be provided within the bucket. In some embodiments, a cavity may be configured to accept a plurality of sample vessel configurations. The cavity may have an internal surface. At least a portion of the internal surface may contact a sample vessel. In one example, the cavity may have one or more shelf or internal surface features that may permit a first sample vessel having a first configuration to fit within the cavity and a second sample vessel having a second configuration to fit within the cavity. The first and second sample vessels having different configurations may contact different portions of the internal surface of the cavity. As previously described, the centrifuge may be configured to engage with a fluid handling device. For example, the centrifuge may be configured to connect to a pipette or other fluid handling device. The centrifuge may be configured to accept a sample dispensed by the fluid handling device or to provide a sample to be aspirated by the fluid handling device. A centrifuge may be configured to accept or provide a sample vessel. A sample vessel may be configured to engage with the fluid handling device, as previously mentioned. For example, the sample vessel may be configured to connect to a pipette or other fluid handling device. A sample vessel may be configured to extend out of a bucket. In some embodiments, the centrifuge base may be configured to permit the sample vessel to extend out of the bucket when the bucket is provided in a retracted state, and permit the bucket to pivot between a retracted and protruding state. The sample vessel extending out of the top surface of the centrifuge may permit easier sample or sample vessel transfer to and/or from the centrifuge. In some embodiments, the buckets may be configured to retract into the rotor, creating a compact assembly and reducing drag during operation, with additional benefits such as reduced noise and heat generation, and lower power requirements. In some embodiments, the centrifuge base may include one or more channels, or other similar structures, such as grooves, conduits, or passageways. Any description of channels may also apply to any of the similar structures. The channels may contain one or more ball bearing. The ball bearings may slide through the channels. The channels may be open, closed, or partially open. The channels may be configured to prevent the ball bearings from falling out of the channel. In some embodiments, ball bearings may be placed within the rotor in a sealed/closed track. This configuration is useful for dynamically balancing the centrifuge rotor, especially when centrifuging samples of different volumes at the same time. In some embodiments, the ball bearings may be external to the motor, making the overall system more robust and compact. The channels may encircle the centrifuge base. In some embodiments, the channel may encircle the base along the perimeter of the centrifuge base. In some embodiments, the channel may be at or closer to an upper surface of the centrifuge base, or the lower surface of the centrifuge base. In some instances, the channel may be equidistant to the upper and lower surface of the centrifuge base. The ball bearings may slide along the perimeter of the centrifuge base. In some embodiments, the channel may encircle the base at some distance away from the axis rotation. The channel may form a circle with the axis of rotation at the substantial center of the circle. FIG. 38 shows an additional example of a centrifuge provided in accordance with another embodiment of the invention. The centrifuge may include a base 3800 having a bottom surface 3802 and/or top surface 3804. The base may comprise one, two or more buckets 3810a, 3810b. A bucket may be connected to a module frame 3820 which may be connected to the base. Alternatively, the bucket may directly connect to the base. The bucket may also be attached to a weight 3830. A module frame may be connected to a base. The module frame may be connected to the base at a boundary that may form a continuous or substantially continuous surface with the base. A portion of the top, bottom and/or side surface of the base may form a continuous or substantially continuous surface with the module frame. A bucket may be configured to pivot about a bucket pivot axis extending through the base and/or module frame. In some embodiments, the axis may form a secant through the base. The bucket may be configured to pivot about a bucket pivot 3840. The base may be configured to accept a drive mechanism. In one example, the drive mechanism may be a motor, such as a brushless motor. The drive mechanism may include a rotor 3850 and a stator 3855. In some embodiments, the rotor may be a brushless motor rotor, and the stator may be a brushless motor stator. The drive mechanism may be any other mechanism that may cause the base to rotate, and may be discussed in further detail elsewhere herein. In some embodiments, a plurality of axes of rotation for the buckets may be provided through the base. The axes may be parallel to one another. Alternatively, some axes may be orthogonal to one another or at any other angle relative to one another. A bucket axis of rotation may extend through a lower surface of the base, an upper surface of the base, or between the lower and upper surface of the base. In some embodiments, the bucket axis of rotation may extend through the base closer to the lower surface of the base, or closer to the upper surface of the base. In some embodiments, a bucket pivot may be at or closer to a lower surface of the base or an upper surface of the base. A bucket pivot may be at or closer to a lower surface of the module frame or an upper surface of the module frame. One, two, three, four, or more cavities may be provided in a bucket. For example, a bucket may be configured to accept one, two, or more samples or sample vessels. Each bucket may be capable of accepting the same number of vessels or different numbers of vessels. The bucket may comprise a cavity configured to receive a sample vessel, wherein the sample vessel is oriented in a first orientation when the base is at rest and is configured to be oriented at a second orientation when the base is rotating. In some embodiments, the bucket may be configured to be at an angle relative to the base. For example, the bucket may be between 0 and 90 degrees of the base. For example, the bucket may be vertically oriented when the base is at rest. The bucket may be positioned upwards past the top surface of the centrifuge base when the base is at rest. At least a portion of the sample vessel may extend beyond the top surface of the base when the base is at rest. The wing may be 90 degrees from the central portion of the base when vertically oriented. The bucket may be horizontally oriented when the base is rotating. The bucket may be 0 degrees from the base when horizontally oriented. The bucket may be retracted into the base and/or frame module to form a substantially uninterrupted top and/or bottom surface when the base is rotating. For example, the bucket may be retracted to form a substantially continuous surface with the bottom and/or top surface of the base and/or frame module when the base is rotating. The bucket may be configured to pivot upwards relative the base and/or frame module. The bucket may be configured so that at least a portion of the bucket may pivot upwards past the top surface of the base and/or frame module. The bucket may be locked in multiple positions to enable drop-off and pickup of centrifuge tubes, as well as aspiration and dispensing of liquid into and out of a centrifuge vessel when in the centrifuge bucket. One means to accomplish this is one or more motors that drive wheels that make contact with the centrifuge rotor to finely position and/or lock the rotor. Another approach may be to use a CAM shape formed on the rotor, without additional motors or wheels. An appendage from the pipette, such as a centrifuge tip attached to a pipette nozzle, may be pressed down onto the CAM shape on the rotor. This force on the CAM surface may induce the rotor to rotate to the desired locking position. The continued application of this force may enable the rotor to be rigidly held in the desired position. Multiple such CAM shapes may be added to the rotor to enable multiple locking positions. While the rotor is held by one pipette nozzle/tip, another pipette nozzle/tip may interface with the centrifuge buckets to drop off or pick up centrifuge vessels or perform other functions, such as aspirating or dispensing from the centrifuge vessels in the centrifuge bucket. A bucket pivot may include one or more pivot pin. A pivot pin may extend through the bucket and the base and/or frame module. In some embodiments, the bucket may be positioned between portions of the base and/or frame module that may prevent the bucket from sliding laterally with respect to the base. The bucket may be attached to a weight. The weight may be configured to move when the base starts rotating, thereby causing the bucket to pivot. The weight may be caused to move by a centrifugal force exerted on the weight when the base starts rotating. The weight may be configured to move away from an axis of rotation when the base starts rotating at a threshold speed. In some embodiments, the weight may move in a linear direction or path. Alternatively, the weight may move along a curved path or any other path. The bucket may be attached to a weight at a weight pivot point 3860. One or more pivot pin or protrusion may be used that may allow the bucket to rotate with respect to the weight. In some embodiments, the weight may move along a horizontal linear path, thereby causing the bucket to pivot upward or downward. The weight may move in a linear direction orthogonal to the axis of rotation of the centrifuge. The weight may be located between portions of a module frame and/or a base. The module frame and/or base may be configured to prevent the weight from sliding out of the base. The module and/or base may restrict the path of the weight. The path of the weight may be restricted to a linear direction. One or more guide pins 3870 may be provided that may restrict the path of the weight. In some embodiments, the guide pins may pass through the frame module and/or base and the weight. A biasing force may be provided to the weight. The biasing force may be provided by a spring 3880, elastic, pneumatic mechanism, hydraulic mechanism, or any other mechanism. The biasing force may keep the weight at a first position when the base is at rest, while the centrifugal force from the rotation of the centrifuge may cause the weight to move to a second position when the centrifuge is rotating at a threshold speed. When the centrifuge goes back to rest or the speed falls below a predetermined rotation speed, the weight may return to the first position. The bucket may have a first orientation when the weight is at the first position, and the bucket may have a second orientation when the weight is at the second position. For example, the bucket may have a vertical orientation when the weight is in the first position and the bucket may have a horizontal orientation when the weight is in the second position. The first position of the weight may be closer to the axis of rotation than the second position of the weight. One or more cavity may be provided within the bucket. In some embodiments, a cavity may be configured to accept a plurality of sample vessel configurations. The cavity may have an internal surface. At least a portion of the internal surface may contact a sample vessel. In one example, the cavity may have one or more shelf or internal surface features that may permit a first sample vessel having a first configuration to fit within the cavity and a second sample vessel having a second configuration to fit within the cavity. The first and second sample vessels having different configurations may contact different portions of the internal surface of the cavity. As previously described, the centrifuge may be configured to engage with a fluid handling device. For example, the centrifuge may be configured to connect to a pipette or other fluid handling device. The centrifuge may be configured to accept a sample dispensed by the fluid handling device or to provide a sample to be aspirated by the fluid handling device. A centrifuge may be configured to accept or provide a sample vessel. A sample vessel may be configured to engage with the fluid handling device, as previously mentioned. For example, the sample vessel may be configured to connect to a pipette or other fluid handling device. A sample vessel may be configured to extend out of a bucket. In some embodiments, the centrifuge base and/or module frame may be configured to permit the sample vessel to extend out of the bucket when the bucket is provided in a retracted state, and permit the bucket to pivot between a retracted and protruding state. The sample vessel extending out of the top surface of the centrifuge may permit easier sample or sample vessel transfer to and/or from the centrifuge. In some embodiments, the centrifuge base may include one or more channels, or other similar structures, such as grooves, conduits, or passageways. Any description of channels may also apply to any of the similar structures. The channels may contain one or more ball bearing. The ball bearings may slides through the channels. The channels may be open, closed, or partially open. The channels may be configured to prevent the ball bearings from falling out of the channel. The channels may encircle the centrifuge base. In some embodiments, the channel may encircle the base along the perimeter of the centrifuge base. In some embodiments, the channel may be at or closer to an upper surface of the centrifuge base, or the lower surface of the centrifuge base. In some instances, the channel may be equidistant to the upper and lower surface of the centrifuge base. The ball bearings may slide along the perimeter of the centrifuge base. In some embodiments, the channel may encircle the base at some distance away from the axis rotation. The channel may form a circle with the axis of rotation at the substantial center of the circle. Other examples of centrifuge configurations known in the art, including various swinging bucket configurations, may be used. See, e.g., U.S. Pat. No. 7,422,554 which is hereby incorporated by reference in its entirety. For examples, buckets may swing down, rather than swinging up. Buckets may swing to protrude to the side rather than up or down. The centrifuge may be enclosed within a housing or casing. In some embodiments, the centrifuge may be completely enclosed within the housing. Alternatively, the centrifuge may have one or more open sections. The housing may include a movable portion that may allow a fluid handling or other automated device to access the centrifuge. The fluid handling and/or other automated device may provide a sample, access a sample, provide a sample vessel, or access a sample vessel in a centrifuge. Such access may be granted to the top, side, and/or bottom of the centrifuge. A sample may be dispensed and/or picked up from the cavity. The sample may be dispensed and/or picked up using a fluid handling system. The fluid handling system may be the pipette described elsewhere herein, or any other fluid handling system known in the art. The sample may be dispensed and/or picked up using a tip, having any of the configurations described elsewhere herein. The dispensing and/or aspiration of a sample may be automated. In some embodiments, a sample vessel may be provided to or removed from a centrifuge. The sample vessel may be inserted or removed from the centrifuge using a device in an automated process. The sample vessel may extend from the surface of the centrifuge, which may simplify automated pick up and/or retrieval. A sample may already be provided within the sample vessel. Alternatively, a sample may be dispensed and/or picked up from the samples vessel. The sample may be dispensed and/or picked up from the sample vessel using the fluid handling system. In some embodiments, a tip from the fluid handling system may be inserted at least partially into the sample vessel and/or cavity. The tip may be insertable and removable from the sample vessel and/or cavity. In some embodiments the sample vessel and the tip may be the centrifugation vessel and centrifugation tip as previously described, or have any other vessel or tip configuration. In some embodiments, a cuvette, such as described in FIGS. 70A and 70B can be placed in the centrifuge rotor. This configuration may offer certain advantages over traditional tips and/or vessels. In some embodiments, the cuvettes may be patterned with one or more channels with specialized geometries such that products of the centrifugation process are automatically separated into separate compartments. One such embodiment might be a cuvette with a tapered channel ending in a compartment separated by a narrow opening. The supernatant (e.g. plasma from blood) can be forced into the compartment by centrifugal forces, while the red blood cells remain in the main channel. The cuvette may be more complicated with several channels and/or compartments. The channels may be either isolated or connected. In some embodiments, one or more cameras may be placed in the centrifuge rotor such that it can image the contents of the centrifuge vessel while the rotor is spinning. The camera images may be analyzed and/or communicated in real time, such as by using a wireless communication method. This method may be used to track the rate of sedimentation/cell packing, such as for the ESR (erythrocyte sedimentation rate) assay, where the speed of RBC (red blood cell) settling is measured. In some embodiments, one or more cameras may be positioned outside the rotor that can image the contents of the centrifuge vessel while the rotor is spinning. This may be achieved by using a strobed light source that is timed with the camera and spinning rotor. Real-time imaging of the contents of a centrifuge vessel while the rotor is spinning may allow one to stop spinning the rotor after the centrifugation process has completed, saving time and possibly preventing over-packing and/or over-separation of the contents. Referring now to FIG. 94, one embodiment of a centrifuge with a sample imaging system will now be described. FIG. 94 shows that, in some embodiments, the imaging device 3750 such as but not limited to a camera, a CCD sensor, or the like may be used with a centrifuge rotor 3800. In this example, the imaging device 3750 is stationary while the centrifuge rotor 3800 is spinning. Imaging may be achieved by using a strobed light source that is timed with the camera and spinning rotor. Optionally, high speed image capture can also be used to acquire images without the use of a strobe. FIG. 95 shows one embodiment of the imaging device 3750 that can be mounted in a stationary position to view the centrifuge vessel while it is spinning in the centrifuge. FIG. 95 shows that in addition to the imaging device 3750, illumination source(s) 3752 and 3754 may also be used to assist in image capture. The mounting device 3756 is configured to position the imaging device 3750 to have a field of view and focus that enables a clear view of the centrifuge vessel and content therein. Referring now to FIGS. 96 to 98, yet another embodiment of a centrifuge with a sample imaging system will now be described. FIG. 96 shows that, in some embodiments, the imaging device 3770 such as but not limited to a camera, a CCD sensor, or the like may be mounted inside or in the same rotation frame of reference as the centrifuge rotor 3800. FIG. 97 shows a cross-sectional view showing that the imaging device 3770 is positioned to view into the sample in the centrifuge vessel 3772 through an opening 3774 (shown in FIG. 98). Because the imaging system is in the centrifuge rotor 3800, the imaging system can continuously image the centrifuge vessel 3772 and the sample therein without the use of a strobe illumination system. Optionally, the centrifuge rotor 3800 can be appropriately balanced to account for the additional weight of the imaging device 3770 in the rotor. Thermal Control Unit In accordance with some embodiments of the invention, a system may include one or more thermal control unit. A device may include one or more thermal control unit therein. For example, one or more thermal control unit may be provided within a device housing. A module may have one or more thermal control unit. One, two, or more modules of a device may have a thermal control unit therein. The thermal control unit may be supported by a module support structure, or may be contained within a module housing. A thermal control unit may be provided at a device level (e.g., overall across all modules within a device), rack level (e.g., overall across all modules within a rack), module level (e.g., within a module), and/or component level (e.g., within one or more components of a module). A thermal control unit may be configured to heat and/or cool a sample or other fluid or module temperature or temperature of the entire device. Any discussion of controlling the temperature of a sample may also refer to any other fluid herein, including but not limited to reagents, diluents, dyes, or wash fluid. In some embodiments, separate thermal control unit components may be provided to heat and cool the sample. Alternatively, the same thermal control unit components may both heat and cool the sample. The thermal control unit may be used to vary and/or maintain the temperature of a sample to keep the sample at a desire temperature or within a desired temperature range. In some embodiments, the thermal control unit may be capable of maintaining the sample within 1 degree C. of a target temperature. In other embodiments, the thermal control unit may be capable of maintaining the sample within 5 degrees C., 4 degrees C., 3 degrees C., 2 degrees C., 1.5 degrees C., 0.75 degrees C., 0.5 degrees C., 0.3 degrees C., 0.2 degrees C., 0.1 degrees C., 0.05 degrees C., or 0.01 degrees C. of the target temperature. A desired target temperature may be programmed. The desired target temperature may vary or may be maintained over time. A target temperature profile may account for variations in desired target temperature over time. The target temperature profile may be provided dynamically from an external device, such as a server, may be provided from on-board the device, or may be entered by an operator of the device. The thermal control unit may be able to account for temperatures external to the device. For example, one or more temperature sensor may determine the environmental temperature external to the device. The thermal control unit may operate to reach a target temperature, compensating for different external temperatures. The target temperature may remain the same or may vary over time. In some embodiments, the target temperature may vary in a cyclic manner. In some embodiments, the target temperature may vary for a while and then remain the same. In some embodiments, the target temperature may follow a profile as known in the art for nucleic acid amplification. The thermal control unit may control the sample temperature to follow the profile known for nucleic acid amplification. In some embodiments, the temperature may be in the range of about 30-40 degrees Celsius. In some instances, the range of temperature is about 0-100 degrees Celsius. For example, for nucleic acid assays, temperatures up to 100 degrees Celsius can be achieved. In an embodiment, the temperature range is about 15-50 degrees Celsius. In some embodiments, the temperature may be used to incubate one or more sample. The thermal control unit may be capable of varying the temperature of one or more sample quickly. For example, the thermal control unit may ramp the sample temperature up or down at a rate of more than and/or equal to 1 C/min, 5 C/min, 10 C/min, 15 C/min, 30 C/min, 45 C/min, 1 C/sec, 2 C/sec, 3 C/sec, 4 C/sec, 5 C/sec, 7 C/sec, or 10 C/sec. A thermal control unit of the system can comprise a thermoelectric device. In some embodiments, the thermal control unit can be a heater. A heater may provide active heating. In some embodiments, voltage and/or current provided to the heater may be varied or maintained to provide a desired amount of heat. A thermal control unit may be a resistive heater. The heater may be a thermal block. In one embodiment, a thermal block is used in a nucleic acid assay station to regulate the temperature of reactions. A thermal block may have one or many openings to enable incorporation of detectors and/or light sources. Thermal blocks may have openings for imaging of contents. Openings in thermal blocks can be filled and/or covered to improve thermal properties of the block. The heater may or may not have components that provide active cooling. In some embodiments, the heater may be in thermal communication with a heat sink. The heat sink may be passively cooled, and may permit heat to dissipate to the surrounding environment. Is some embodiments, the heat sink or the heater may be actively cooled, such as with forced fluid flow. The heat sink may or may not contain one or more surface feature such as fins, ridges, bumps, protrusions, grooves, channels, holes, plates, or any other feature that may increase the surface area of the heat sink. In some embodiments, one or more fan or pump may be used to provide forced fluid cooling. In some embodiments, the thermal control unit can be a Peltier device or may incorporate a Peltier device. The thermal control unit may optionally incorporate fluid flow to provide temperature control. For example, one or more heated fluid or cooled fluid may be provided to the thermal control unit. In some embodiments, heated and/or cooled fluid may be contained within the thermal control unit or may flow through the thermal control unit. Air temperature control can be enhanced by the use of heat pipes to rapidly raise temperature to a desired level. By using forced convection, heat transfer can be made faster. Forced convective heat transfer could also be used to thermocycle certain regions by alternately blowing hot and cold air. Reactions requiring specific temperatures and temperature cycling can be done on a tip and/or vessel, where heating and cooling of the tip is finely controlled, such as by an IR heater. In some embodiments, a thermal control unit may use conduction, convection and/or radiation to provide heat to, or remove heat from a sample. In some embodiments, the thermal control unit may be in direct physical contact with a sample or sample holder. The thermal control unit may be in direct physical contact with a vessel, tip, microcard, or housing for a vessel, tip, or microcard. The thermal control unit may contact a conductive material that may be in direct physical contact with a sample or sample holder. For example, the thermal control unit may contact a conductive material that may be in direct physical contact with a vessel, tip, microcard, or a housing to support a vessel, tip, or microcard. In some embodiments, the thermal control unit may be formed of or include a material of high thermal conductivity. For example, the thermal control unit may include a metal such as copper, aluminum, silver, gold, steel, brass, iron, titanium, nickel or any combination or alloy thereof. For example, the thermal control unit can include a metal block. In some embodiments, the thermal control unit may include a plastic or ceramic material. One or more samples may be brought to and/or removed from the thermal control unit. In some embodiments, the samples may be brought to and/or removed from the thermal control unit using a fluid handling system. The samples may be brought to and/or removed from the thermal control unit using any other automated process. The samples may be transported to and from the thermal control unit without requiring human intervention. In some embodiments, the samples may be manually transferred to or from the thermal control unit. The thermal control unit may be configured to be in thermal communication with a sample of a small volume. For example, the thermal control unit may be configured to be thermal communication with a sample with a volume as described elsewhere herein. The thermal control unit may be in thermal communication with a plurality of samples. In some instances, the thermal control unit may keep each of the same samples at the same temperature relative to one another. In some instances, a thermal control unit may be thermally connected to a heat spreader which may evenly provide heat to the plurality of samples. In other embodiments, the thermal control unit may provide different amounts of heat to the plurality of samples. For example, a first sample may be kept at a first target temperature, and a second sample may be kept at a second target temperature. The thermal control unit may form a temperature gradient. In some instances, separate thermal control units may keep different samples at different temperatures, or operating along separate target temperature profiles. A plurality of thermal control units may be independently operable. One or more sensor may be provided at or near the thermal control unit. One or more sensor may be provided at or near a sample in thermal communication with the thermal control unit. In some embodiments, the sensor may be a temperature sensor. Any temperature sensor known in the art may be used including, but not limited to thermometers, thermocouples, or IR sensors. A sensor may provide one or more signal to a controller. Based on the signal, the controller may send a signal to the thermal control unit to modify (e.g., increase or decrease) or modify the temperature of the sample. In some embodiments, the controller may directly control the thermal control unit to modify or maintain the sample temperature. The controller may be separate from the thermal control unit or may be a part of the thermal control unit. In some embodiments, the sensors may provide a signal to a controller on a periodic basis. In some embodiments, the sensors may provide real-time feedback to the controller. The controller may adjust the thermal control unit on a periodic basis or in real-time in response to the feedback. As previously mentioned, the thermal control unit may be used for nucleic acid amplification (e.g., isothermal and non-isothermal nucleic acid amplification, such as PCR), incubation, evaporation control, condensation control, achieving a desired viscosity, separation, or any other use known in the art. Nucleic Acid Assay Station In some embodiments, a system, device, or module disclosed herein may contain a nucleic acid assay station. A nucleic acid assay station may contain one or more hardware components for facilitating the performance of nucleic acid assays (e.g. a thermal control unit). A nucleic acid assay station may also contain one or more detection units or sensors for monitoring or measuring non-nucleic acid assays (e.g. general chemistry assays, immunoassays, etc.). A nucleic acid assay station may be incorporated with or may be separate from a cartridge or general assay station of a module or device. A nucleic acid assay station may also be referred herein to as a “nucleic acid amplification module.” FIG. 101 shows an example of a nucleic acid assay station 10201. A nucleic acid assay station 10201 may contain a thermal block 10202. The thermal block 10202 may be shaped to receive or support one or more vessels 10203 (including assay units, tips, and any nucleic acid vessel/tip disclosed elsewhere herein), such as by having wells. The thermal block may have any of the features of a thermal control unit described elsewhere herein. For example, the thermal block may maintain a selected temperature or range or cycle of temperatures in order to perform or support a nucleic acid assay (e.g. to thermocycle for a PCR assay or to maintain a selected constant temperature for an isothermal assay). In some embodiments, the thermal block may be in thermal contact with a heater or thermal control unit, such that the thermal block itself does not contain components for regulating heat. Instead, the temperature of the thermal block may be regulated by the temperature of the heater or thermal control unit in thermal contact with the heating block. A nucleic acid assay station may be configured to receive 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, 500, or more vessels. In some embodiments, a thermal block may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 400, 500, or more wells. A nucleic acid assay station may be positioned in a device or module such that it may be accessed by a sample handling system of the device or module. For example, a sample handling system of a device or module may be configured to transport vessels to or from a nucleic acid assay station. In some embodiments, a nucleic acid assay station 10201 may contain a movable portion 10204. The moveable portion may be configured for movement along a guide structure of the station, such as a track 10205 or guide rod. The moveable portion may have two or more positions, including an open position and a closed position. When the movable portion 10204 is in an open position, the wells of a thermal block 10202 may be accessible, so that vessels may be placed in or removed from the thermal block (e.g. by a sample handling system). In contrast, when the movable portion 10204 is in a closed position, it may obstruct one or more wells of the thermal block 10202, such that vessels cannot be placed in or removed from the thermal block. In some embodiments, a nucleic acid assay station may contain one or more light sources. In some embodiments, a nucleic acid assay station may contain the same number of light sources as number of vessels as the station is configured to receive (e.g. if the station is configured to receive 10 vessels, it contains 10 light sources). The light source may be any light source disclosed elsewhere herein, including, for example a laser or a light-emitting diode. The light source(s) may be configured such that it is in a fixed position relative to a thermal block or vessel wells. A light source may be in-line with a well of the thermal block, or it may be to the side (e.g. at a 90 degree angle). Alternatively, the light source(s) may be movable relative to the thermal block or other components of the nucleic acid assay station. The light source(s) may be supported by a moveable portion of the station. In some embodiments, when the movable portion is in a closed position, light sources(s) supported by the movable portion are positioned such that light from the light source(s) is directed to the wells of a thermal block or the vessels therein. In some embodiments, one or more components of the nucleic acid assay station may be moveable relative to the light source. In some embodiments, a nucleic acid assay station may contain one or more optical sensors. In some embodiments, a nucleic acid assay station may contain the same number of optical sensors as number of vessels as the station is configured to receive (e.g. if the station is configured to receive 10 vessels, it contains 10 optical sensors). The optical sensor may be any sensor for detecting light signals disclosed elsewhere herein, including, for example a PMT, photodiode, or CCD sensor. The optical sensor may be configured such that it is in a fixed position relative to a thermal block or vessel wells. An optical sensor may be in-line with a well of the thermal block, or it may be to the side (e.g. at a 90 degree angle). Alternatively, the optical sensors(s) may be movable relative to the thermal block or other components of the nucleic acid assay station. The optical sensors (s) may be supported by a moveable portion of the station. In some embodiments, when the movable portion is in a closed position, optical sensors (s) supported by the movable portion are positioned such that light generated from or passing through the wells of a thermal block or the vessels therein may reach the optical sensor. In some embodiments, one or more components of the nucleic acid assay station may be moveable relative to the optical sensor. A nucleic acid assay station may contain both a light source and an optical sensor. Stations containing both a light source and an optical sensor may have capabilities similar to a spectrophotometer. In some embodiments, a nucleic acid assay station containing both a light source and optical sensor may be configured to perform a measurement involving assessing an optical property of a sample which is typically performed in a dedicated spectrophotometer—for example, measurement of: color, absorbance, transmittance, fluorescence, light-scattering properties, or turbidity of a sample. In some embodiments, a nucleic acid assay station containing both a light source and optical sensor can perform a measurement of a sample that only uses the optical sensor—e.g. measurement of the luminescence of a sample. In such situations, the light source of the station may be turned off or blocked while the optical sensor detects light emitted from the sample. Assay types that may be measured include, for example, nucleic acid assays, immunoassays, and general chemistry assays. In some embodiments, a nucleic acid assay station may contain an optical sensor and optionally, a light source for each well of the heating block or station. Inclusion of an optical sensor for each well may permit the simultaneous measurement of multiple different assays in the nucleic acid assay station at the same time. In some embodiments, nucleic acid assay station may contain an optical sensor at a fixed position in or adjacent to the thermal block. The optical sensor may be in-line with the well of a thermal block, or to the side of the well of the thermal block. There may be an opening or a channel in the wall of the well of thermal block creating an optical path between the interior of the well and the optical sensor. The nucleic acid assay station may also contain a light source. The light source may be attached to a movable portion of the assay station, configured such that in one or more positions of the movable portion, the light from the light source is directed into the well of the thermal block. In situations where the light source and the optical sensor are both in-line with the well of the thermal block (due to the light source and optical sensor having fixed or movable positions), various types of spectrophotometric readings of the sample may be obtained—e.g. absorbance, transmittance, or fluorescence. In situations where the optical sensor is at an angle to the light source and the well of the thermal block, spectrophotometric readings of the sample that may be obtained include, for instance, light scattering, fluorescence, and turbidity. To perform fluorescence assays in a nucleic acid assay station, a light source having a narrow emission wavelength profile may be used (e.g. a light emitting diode). In addition or alternatively, an excitation filter may be placed between the light source and the sample, such that light of only a selected wavelength(s) reaches the sample. Furthermore, an emissions filter may be placed between the sample and the optical detector, such that only light of a selected wavelength (typically that which is emitted by the fluorescent compound) reaches the optical detector. In some embodiments, a nucleic acid assay (e.g. a nucleic acid amplification assay) may be performed or detected in a nucleic acid assay station. Given the various optical configurations of nucleic acid assay stations, the stations can be configured to measure nucleic acid amplification assays which result in multiple different types of optical changes in the reaction, such as fluorescence or turbidity. In addition, in some embodiments, any type of assay resulting in a change in optical properties of the sample may be measured in a nucleic acid assay station. For example, a non-nucleic acid assay resulting in a change of turbidity of a sample may be measured in a nucleic acid assay station, by measuring, for example, the absorbance of the sample or the light scattered by the sample. In some embodiments, a nucleic acid assay station may have certain wells of the thermal block configured for measurement of fluorescence of samples (e.g. they may contain filters or light sources of particular wavelengths), and certain wells of the thermal block configured for measurement of turbidity of samples (e.g. they may have optical sensors at an angle to the light source and well or they may lack filters). In some embodiments, a nucleic acid assay station may have one or more wells that are configured for detecting nucleic acid assays, and one or more wells that are configured for detecting non-nucleic acid assays. In some embodiments, assay units or other reaction vessels described elsewhere herein may be transported to or situated in a nucleic acid assay station described herein for measurement of the reaction in the vessel. Accordingly, in addition to supporting nucleic acid assays, a nucleic acid assay station may function as a detection unit for a wide range of assays (e.g. immunoassays and general chemistry assays). This may facilitate performing and detecting multiple different assays simultaneously in a module or device provided herein. Cytometer In accordance with some embodiments of the invention, a system may include one or more cytometer. A device may include one or more cytometer therein. For example, one or more cytometer may be provided within a device housing. A module may have one or more cytometer. One, two, or more modules of a device may have a cytometer therein. The cytometer may be supported by a module support structure, or may be contained within a module housing. Alternatively, the cytometer may be provided external to the module. In some instances, a cytometer may be provided within a device and may be shared by multiple modules. The cytometer may have any configuration known or later developed in the art. In some embodiments, the cytometer may have a small volume. For example, the cytometer may have a volume of less than or equal to about 0.1 mm3, 0.5 mm3, 1 mm3, 3 mm3, 5 mm3, 7 mm3, 10 mm3, 15 mm3, 20 mm3, 25 mm3, 30 mm3, 40 mm3, 50 mm3, 60 mm3, 70 mm3, 80 mm3, 90 mm3, 100 mm3, 125 mm3, 150 mm3, 200 mm3, 250 mm3, 300 mm3, 500 mm3, 750 mm3, or 1 m3. The cytometer may have a footprint of about less than or equal to 0.1 mm2, 0.5 mm2, 1 mm2, 3 mm2, 5 mm2, 7 mm2, 10 mm2, 15 mm2, 20 mm2, 25 mm2, 30 mm2, 40 mm2, 50 mm2, 60 mm2, 70 mm2, 80 mm2, 90 mm2, 100 mm2, 125 mm2, 150 mm2, 200 mm2, 250 mm2, 300 mm2, 500 mm2, 750 mm2, or 1 m2. The cytometer may have one or more dimension (e.g., width, length, height) of less than or equal to 0.05 mm, 0.1 mm, 0.5 mm, 0.7 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 15 mm, 17 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 100 mm, 150 mm, 200 mm, 300 mm, 500 mm, or 750 mm. The cytometer may accept a small volume of sample or other fluid. For example, the cytometer may accept a volume of sample of about 500 μL or less, 250 μL or less, 200 μL or less, 175 μL or less, 150 μL or less, 100 μL or less, 80 μL or less, 70 μL or less, 60 μL or less, 50 μL or less, 30 μL or less, 20 μL or less, 15 μL or less, 10 μL or less, 8 μL or less, 5 μL or less, 1 μL or less, 500 nL or less, 300 nL or less, 100 nL or less, 50 nL or less, 10 nL or less, 1 nL or less, 500 pL or less, 250 pL or less, 100 pL or less, 50 pL or less, 10 pL or less, 5 pL or less, or 1 pL or less. The cytometer may utilize one or more illumination techniques, including but not limited to bright field, dark field, forward illumination, oblique illumination, back illumination, phase contrast and differential interference contrast microscopy. Focusing may be achieved using any of the illumination sources, including but not limited to dark field imaging. Dark field imaging may be performed with a various illumination sources of different wavelength bands. Dark field imaging may be performed with a light guide outside the objective. Images produced by the imaging system may be monochromatic and/or color. The imaging system may be configured to be optics free, reducing cost and size. The cytometer (as well as other modules) can be configured to incorporate image processing algorithms to extract quantitative information from images of cells and other elements in the sample to enable computation of reportables. Where employed, the image processing and analysis may include but are not limited to: a) image acquisition, compression/decompression and quality improvement, b) image segmentation, c) image stitching, and d) extraction of quantitative information. Detection Unit In accordance with some embodiments of the invention, a system may include one or more detection unit. In some embodiments, a detection station provided herein may contain a detection unit. A device may include one or more detection unit therein. For example, one or more detection unit may be provided within a device housing. A module may have one or more detection unit. One, two, or more modules of a device may have a detection unit therein. The detection unit may be supported by a module support structure, or may be contained within a module housing. Alternatively, the detection unit may be provided external to the module. The detection unit may be used to detect a signal produced by at least one assay on the device. The detection unit may be used to detect a signal produced at one or more sample preparation station in a device. The detection unit may be capable of detecting a signal produced at any stage in a sample preparation or assay of the device. In some embodiments, a plurality of detection units may be provided. The plurality of detection units may operate simultaneously and/or in sequence. The plurality of detection units may include the same types of detection units and/or different types of detection units. The plurality of detection units may operate on a synchronized schedule or independently of one another. In some embodiments, systems, devices, or modules provided herein may have multiple types of detection units, which may be in one or more detection stations. For example, a system, device or module provided herein may contain one or more, two or more, three or more, or all four of: i) a dedicated spectrophotometer (for example, a spectrophotometer as described in FIG. 74); ii) a light sensor which is not specially configured to operate with a light source (for example, a PMT or photodiode which is not part of a spectrophotometer); iii) a camera (for example, containing a CCD or CMOS sensor); and iv) a nucleic acid assay station containing or operatively coupled to a light source and a light sensor, such that it may function as a spectrophotometer. In some embodiments, a system, device, or module provided herein may further contain a cytometry station containing an imaging device. In some embodiments, one, two, three, four, or all five of the above may be integrated in a single detection station. The single detections station may be configured to simultaneously measure multiple different assays at the same time. The detection unit may be above the component from which the signal is detected, beneath the component from which the signal is detected, to the side of the component from which the signal is detected, or integrated into the component from which the signal is detected, or may have different orientation in relation to the component from which the signal is detected. For example, the detection unit may be in communication with an assay unit. The detection unit may be proximate to the component from which the signal is detected, or may be remote to the component from which the signal is detected. The detection unit may be within one or more mm, one or more cm, one or more 10 s of cm from which the component from which the signal is detected. The detection unit may have a fixed position, or may be movable. The detection unit may be movable relative to a component from which a signal is to be detected. For example, the detection unit can be moved into communication with an assay unit or the assay unit can be moved into communication with the detection unit. In one example, a sensor is provided to locate an assay unit relative to a detector when an assay is detected. A detection unit may include one or more optical or visual sensor or sonic or magnetic or radioactivity sensor or some combination of these. For example, a detection unit may include microscopy, visual inspection, via photographic film, or may include the use of electronic detectors such as digital cameras, charge coupled devices (CCDs), super-cooled CCD arrays, photodetector or other detection device. An optical detector may further include non-limiting examples include a photodiode, photomultiplier tube (PMT), photon counting detector, or avalanche photo diode, avalanche photodiode arrays. In some embodiments a pin diode may be used. In some embodiments a pin diode can be coupled to an amplifier to create a detection device with a sensitivity comparable to a PMT. Some assays may generate luminescence as described herein. In some embodiments fluorescence or chemiluminescence is detected. In some embodiments a detection assembly could include a plurality of fiber optic cables connected as a bundle to a CCD detector or to a PMT array. The fiber optic bundle could be constructed of discrete fibers or of many small fibers fused together to form a solid bundle. Such solid bundles are commercially available and easily interfaced to CCD detectors. In some embodiments, fiber optic cables may be directly incorporated into assay or reagent units. For example, samples or tips as described elsewhere herein may incorporate fiber optic cables. In some embodiments, electronic sensors for detection or analysis (such as image processing) may be built into the pipette or other component of the fluid handling system. In some embodiments, a detection unit may be a PMT. In some embodiments, a detection unit may be a photodiode. In some embodiments, a detection unit may be a spectrophotometer. In some embodiments, a detection unit may be a nucleic acid assay station containing or operatively coupled to a light source and an optical sensor. In some embodiments, a detection unit may be a camera. In some embodiments, a detection unit may be an imaging device. In some embodiments, a detection unit may be a cytometry station containing a microscopy stage and an imaging device. In some embodiments, a detection unit containing a CCD or CMOS sensor may be configured to obtain a digital image, such as of a sample, assay unit, cuvette, assay, the device, or the device surroundings. The digital image may be two-dimensional or three-dimensional. The digital image may be a single image or a collection of images, including video. In some instances, digital imaging may be used by the device or system for control or monitoring of the device, it surroundings, or processes within the device. One or more detection units may be configured to detect a detectable signal, which can be a light signal, including but not limited to photoluminescence, electroluminescence, sonoluminescence, chemiluminescence, fluorescence, phosphorescence, polarization, absorbance, turbidity or scattering. In some embodiments, one or more label may be employed during a chemical reaction. The label may permit the generation of a detectable signal. Methods of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection may include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence by, for example, microscopy, visual inspection, via photographic film, by the use of electronic detectors such as digital cameras, charge coupled devices (CCDs) or photomultipliers and phototubes, or other detection device. In some embodiments, imaging devices may be used, such as cameras. In some instances, cameras may use CCDs, CMOS, may be lensless cameras (e.g., Frankencamera), microlens-array cameras, open-source cameras, or may use or any other visual detection technology known or later developed in the art. Cameras may acquire non-conventional images, e.g. holographic images, tomographic or interferometric, Fourier-transformed spectra, which may then be interpreted with or without the aid of computational methods. Cameras may include one or more feature that may focus the camera during use, or may capture images that can be later focused. In some embodiments, imaging devices may employ 2-d imaging, 3-d imaging, and/or 4-d imaging (incorporating changes over time). Imaging devices may capture static images. The optical schemes used to achieve 3-D and 4-D imaging may be one or more of the several known to those skilled in the art, e.g. structured illumination microscopy (SLM), digital holographic microscopy (DHM), confocal microscopy, light field microscopy etc. The static images may be captured at one or more point in time. The imaging devices may also capture video and/or dynamic images. The video images may be captured continuously over one or more periods of time. An imaging device may collect signal from an optical system which scans the sample in arbitrary scan patterns (e.g. raster scan). In some embodiments, the imaging device may use one or more component of the device in capturing the image. For example, the imaging device may use a tip and/or vessel to assist with capturing the image. The tip and/or vessel may function as an optic to assist in capturing an image. Detection units may also be capable of capturing audio signals. The audio signals may be captured in conjunction with one or more image. Audio signals may be captured and/or associated with one or more static image or video images. Alternatively, the audio signals may be captured separate from the image. In one example, a PMT may be used as a detector. In some instances, count rates as low as 100 per second and count rates as high as 10,000,000 may be measurable. The linear response range of PMTs (for example, the range where count rate is directly proportional to number of photons per unit time) can be about 1000-3,000,000 counts per second. In an example, an assay has a detectable signal on the low end of about 200-1000 counts per second and on the high end of about 10,000-2,000,000 counts per second. In some instances for protein biomarkers, the count rate is directly proportional to alkaline phosphatase bound to the capture surface and also directly proportional to the analyte concentration. In another example, a detector may include a camera that may be imaging in real-time. Alternatively, the camera may take snapshots at selected time intervals or when triggered by an event. Similarly, the camera may take video at selected time intervals or when triggered by an event. In some embodiments, the camera may image a plurality of samples simultaneously. Alternatively, the camera may image a selected view, and then move on to a next location for a different selected view. A detection unit may have an output that is digital and generally a one-to-one or one-to-many transformation of the detected signal, e.g., the image intensity value is an integer proportional to a positive power of the number of photons reaching the camera sensor over the time of exposure. Alternatively, the detection unit may output an analog signal. The detectable range for exemplary detectors can be suitable to the detector being used. The detection unit may be capable of capturing and/or imaging a signal from anywhere along the electromagnetic spectrum. For example, a detection unit may be capable of capturing and/or imaging visible signals, infra-red signals, near infra-red signals, far infra-red signals, ultraviolet signals, gamma rays, microwaves, and/or other signals. The detection unit may be capable of capturing acoustic waves over a large range of frequencies, e.g. audio, ultrasound. The detection unit may be capable of measuring magnetic fields with a wide range of magnitude. An optical detector can also comprise a light source, such as an electric bulb, incandescent bulb, electroluminescent lamp, laser, laser diode, light emitting diode (LED), gas discharge lamp, high-intensity discharge lamp, natural sunlight, chemiluminescent light sources. Other examples of light sources as provided elsewhere herein. The light source can illuminate a component in order to assist with detecting the results. For example, the light source can illuminate an assay in order to detect the results. For example, the assay can be a fluorescence assay or an absorbance assay, as are commonly used with nucleic acid assays. The detector can also comprise optics to deliver the light source to the assay, such as a lens, mirror, scanning or galvano-mirror, prisms, fiber optics, or liquid light guides. The detector can also comprise optics to deliver light from an assay to a detection unit. In some embodiments, a light source can be coupled to an optical detector/sensor which is configured primarily for the detection of luminescent assays, in order to expand the range of types of assays that may be detected by the optical sensor (e.g. to include absorbance, fluorescence, turbidity, and colorimetry assays, etc.). An optical detection unit may be used to detect one or more optical signal. For example, the detection unit may be used to detect a reaction providing luminescence. The detection unit may be used to detect a reaction providing fluorescence, chemiluminscence, photoluminescence, electroluminescence, color change, sonoluminescence, absorbance, turbidity, or polarization. The detection unit may be able to detect optical signals relating to color intensity and phase or spatial or temporal gradients thereof. For example, the detection unit may be configured to detect selected wavelengths or ranges of wavelengths. The optical detection unit may be configured to move over the sample and a mirror could be used to scan the sample simultaneously. In some embodiments, an assay provided herein generating a particular type of result (e.g. luminescence, turbidity, color change/colorimetry, etc.) may be monitored by different types or configurations of detection units provided herein. For example, in some situations, an assay resulting in a turbid reaction product may be monitored in: i) a dedicated spectrophotometer, ii) a nucleic acid assay station containing or operatively coupled to a light source and a optical sensor, or iii) a detection unit containing a CCD sensor (e.g. a stand-alone imaging device containing a CCD sensor, or a cytometry station containing an imaging device containing a CCD sensor). In both detection unit configurations i) and ii), the sample may be positioned in the detection unit between the respective light source and the respective optical sensor, such that I0 (incident radiation) and I1 (transmitted radiation) values may be measured at one or more selected wavelengths, and absorbance calculated. In detection unit configuration iii), an image of the sample may be obtained by the CCD sensor, and further processed by image analysis. In some embodiments, a sample may be monitored in more than one of the above detection units. In another example, in some situations, an assay resulting in a chemiluminescent signal may be monitored by i) a photodiode or other luminescence sensor, ii) a nucleic acid assay station containing or operatively coupled to a light source and an optical sensor, or iii) a detection unit containing a CCD sensor. In configuration i) the photodiode detects light from the chemiluminescent reaction. In some situations, the photodiode may be configured to sense very low levels of light, and thus may be used with assays which result in only a low level of chemiluminescence. In configuration ii) the assay (including non-nucleic acid amplification assays) may be placed in the nucleic acid amplification module, and the optical sensor within the station may be used to detect light from the chemiluminescent assay (without using the light source in the station). In some situations, the optical sensor in this configuration may not be as sensitive to light as a stand-alone photodiode or PMT, and therefore, use of the nucleic acid assay station as detector for chemiluminscence assays may be with assays which produce relatively moderate to high levels of chemiluminescent light. In configuration iii), an image of the chemiluminescent sample may be obtained by the CCD sensor, and further processed by image analysis (including light counts) to determine the level of chemiluminescence in the sample. In some embodiments, the controller of a system, device, or module provided herein may be configured to select a particular detection unit from two or more detection units within a device or module for the detection of a signal or data from a selected assay unit within the same device or module. For example, a module of a device provided herein may contain three detection units: i) a photodiode, ii) a nucleic acid assay station containing or operatively coupled to a light source and an optical sensor, and iii) a detection unit containing a CCD sensor. The module may also contain multiple assay units and may simultaneously perform multiple assays. Before, during, or after the performance of, for example, a chemiluminescent assay in a particular movable assay unit in an assay station in the module, the controller may determine which of the three detection units in the module to use for receiving the selected assay unit and detecting a signal or data from the assay unit. In making the determination, the controller may take into account one or more factors, such as: i) detection unit availability—one or more of the detection units may be occupied with other assay units at the time of the completion of the assay in the selected assay unit; ii) detection unit suitability for receiving a particular assay unit configuration—different detection units may be optimized for receiving assay units of particular shapes or sizes; iii) detection unit suitability for detecting the signal or data from the particular assay being performed within the selected assay unit—different detection units may be optimized to measure a particular property of a sample (e.g. absorbance vs. fluorescence vs. color, etc.), or different detection units may be optimized to measure certain features/versions of a particular property of a sample (e.g. a detection unit containing an optical sensor may be optimized to measure high levels of light or low levels of light, or a detection unit configured for measuring fluorescence may be configured to measure the fluorescence of compounds having a certain range of excitation wavelengths and a certain range of emission wavelengths); and iv) total time for multiplexing of assays—in order to reduce the total time necessary to perform or obtain data from multiple assays within the device or module, the controller may take into account other assays simultaneously being performed in the device or module, such that the use of each detection unit is optimized for the combination of all assays being simultaneously performed in the module or device. Based on the various determinations by the controller, the controller may direct a sample handling apparatus (for example, a pipette) within the module to transport the assay unit containing the chemiluminescent assay to a particular detection unit within the module, for measurement of the chemiluminescent signal. In this example, if the chemiluminescent assay in the selected assay unit is expected to generate a low level of light and the photodiode is available at the time of the completion of the assay in the selected assay unit, the controller may direct the sample handling apparatus to transport the selected assay unit to the photodiode for measurement. In some embodiments, the controller may contain a protocol for the detection of an assay in a selected assay unit with a detection unit selected from two or more detection units in the module or device, where the protocol takes into account one or more of the factors indicated above relevant to the selection of a detection unit from two or more detection units. The protocol may be stored in the module or the device, stored in an external device or cloud, or generated on demand. Protocols that are generated on demand may be generated on the device or on an external device or cloud, and downloaded to the sample processing device. In some embodiments, the device or controller may receive or store a protocol which contains instructions for directing a sample handling apparatus within a device or module to move assay units to different detection units (or vice versa) in the device or module, and which takes into account multiple assays being simultaneously performed in the same module or device. Optionally, with such protocols, different assays having the same reaction outcome may be measured in different detection units provided herein (e.g. a chemiluminescent reaction may be measured in, for example, a PMT or a camera containing a CCD sensor), depending on the other assays being performed simultaneously in the same module or device. These features of the controller, protocols, and detection units provide multiple benefits, including, for example, the ability to efficiently multiplex discrete assays within a device or module, and the ability to efficiently obtain data from assays using different detection units. In some embodiments, the detection system may comprise optical or non-optical detectors or sensors for detecting a particular parameter of a subject. Such sensors may include sensors for temperature, electrical signals, for compounds that are oxidized or reduced, for example, O2, H2O2, and I2, or oxidizable/reducible organic compounds. Detection system may include sensors which measure acoustic waves, changes in acoustic pressure and acoustic velocity. In some embodiments, systems and devices provided herein may contain a barometer or other device for sensing atmospheric pressure. Atmospheric pressure measurements may be useful, for example, for adjusting protocols to high or low-pressure situations. For example, atmospheric pressure may be relevant to assays that measure one or more dissolved gases in a sample. In addition, atmospheric pressure measurements may be useful, for example, when using a device provided herein in high or low pressure environment (e.g. at high altitudes, on an airplane, or in space). Examples of temperature sensors may include thermometers, thermocouples, or IR sensors. The temperature sensors may or may not use thermal imaging. The temperature sensor may or may not contact the item whose temperature is to be sensed. Examples of sensors for electrical properties may include sensors that can detect or measure voltage level, current level, conductivity, impedance, or resistance. Electrical property sensors may also include potentiometers or amperometric sensors. In some embodiments, labels may be selected to be detectable by a detection unit. The labels may be selected to be selectively detected by a detection unit. Examples of labels are discussed in greater detail elsewhere herein. Any of the sensors may be triggered according to one or more schedule, or a detected event. In some embodiments, a sensor may be triggered when it receives instructions from one or more controller. A sensor may be continuously sensing and may indicate when a condition is sensed. The one or more sensors may provide signals indicative of measured properties to a controller. The one or more sensors may provide signals to the same controller or to different controllers. In some embodiments, the controller may have a hardware and/or software module which may process the sensor signal to interpret it for the controller. In some embodiments, the signals may be provided to the controller via a wired connection, or may be provided wirelessly. The controller may be provided on a system-wide level, group of device level, device level, module level, or component of module level, or any other level as described elsewhere herein. The controller may, based on the signals from the sensors, effect a change in a component or maintain the state of a unit. For example, the controller may change the temperature of a thermal control unit, modify the rotation speed of a centrifuge, determine a protocol to run on a particular assay sample, move a vessel and/or tip, or dispense and/or aspirate a sample. In some embodiments, based on the signals from the sensors, the controller may maintain one or more condition of the device. One or more signal from the sensors may also permit the controller to determine the current state of the device and track what actions have occurred, or are in progress. This may or may not affect the future actions to be performed by the device. In some instances, the sensors (e.g., cameras) may be useful for detecting conditions that may include errors or malfunctions of the device. The sensors may detect conditions that may lead to an error or malfunction in data collection. Sensors may be useful in providing feedback in trying to correct a detected error or malfunction. In some embodiments, one or more signal from a single sensor may be considered for particular actions or conditions of the device. Alternatively, one or more signals from a plurality of sensors may be considered for particular actions or conditions of the device. The one or more signals may be assessed based on the moment they are provided. Alternatively, the one or more signals may be assessed based on information collected over time. In some embodiments, the controller may have a hardware and/or software module which may process one more sensor signals in a mutually-dependent or independent manner to interpret the signals for the controller. In some embodiments, multiple types of sensors or detection units may be useful for measuring the same property. In some instances, multiple types of sensors or detection units may be used for measuring the same property and may provide a way of verifying a measured property or as a coarse first measurement which can then be used to refine the second measurement. For example, both a camera and a spectroscope or other type of sensor may be used to provide a colorimetric readout. Nucleic acid assay may be viewed via fluorescence and another type of sensor. Cell concentration can be measured with low sensitivity using absorbance or fluorescence with the aim of configuring the same or another detector prior to performing high sensitivity cytometry. With systems, devices, methods, and assays provided herein, turbidity of a sample may be assayed, for example, by measuring i) the light transmitted through the sample (similar to an absorbance measurement and may include colorimetry; the light path may travel through the sample horizontally or vertically); or ii) the light scattered by the sample (sometimes known as a nephelometric measurement). Typically, for option i), the light sensor is located in-line with the light source, and the sample to be measured is located between the light source and the optical sensor. Typically, for option ii), the optical sensor is off-set from path of the light from the light source (e.g. at a 90 degree angle), and the sample to be measured is located in the path of the light source. In another example, agglutination of a sample may be assayed, for example, by: i) measuring the light transmitted through the sample (similar to an absorbance measurement and may include colorimetry); ii) measuring light scattered by the sample (sometimes known as a nephelometric measurement); iii) obtaining an electronic image of the sample (e.g. with a CCD or CMOS optical sensor), followed by manual or automated image analysis; or iv) visual inspection of the sample. The controller may also provide information to an external device. For example, the controller may provide an assay reading to an external device which may further analyze the results. The controller may provide the signals provided by the sensors to the external device. The controller may pass on such data as raw data as collected from the sensors. Alternatively, the controller may process and/or pre-process the signals from the sensors before providing them to the external device. The controller may or may not perform any analysis on the signals received from the sensors. In one example the controller may put the signals into a desired format without performing any analysis. In some embodiments, detection units may be provided inside a housing of the device. In some instances, one or more detection units, such as sensors may be provided external to the housing of the device. In some embodiments, a device may be capable of imaging externally. For example, the device may be capable of performing MRI, ultrasound, or other scans. This may or may not utilize sensors external to the device. In some instances, it may utilize peripherals, which may communicate with the device. In one example a peripheral may be an ultrasonic scanner. The peripherals may communicate with the device through a wireless and/or wired connection. The device and/or peripherals may be brought into close proximity (e.g., within 1 m, 0.5 m, 0.3 m, 0.2 m, 0.1 cm, 8 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, 1 cm, 0.5 cm) or contact the area to be scanned. In some embodiments, a device may contain or communicate with a peripheral device for performing x-rays (e.g. x-ray generator and detector), sonography, ultrasound, or echocardiograms (e.g. sonographic scanners), a cooximeter, or eye scans (e.g. optical sensor). In some embodiments, a device may contain or communicate with an independently movable peripheral that can, with aid of an imaging device, physically follow a subject (e.g. throughout a room or a house), and monitor the subject. The independently movable peripheral may, for example, monitor subjects that require a high level of care or monitoring. In some embodiments, a sensor may be integrated into a pill or patch. In some embodiments, a sensor may be implantable or injectable. Optionally, such a sensor may be a multi-analyte sensor that is implanted/injected. All such sensors (pill, patch, implanted/injected) could measure the multiple assay methodologies simultaneously, sequentially, or singly and may communicate with a cell phone or external device by way of wired, wireless, or other communication technique. Any of these sensors may be configured to performed one or more types of assays or obtain one or more types of data from a subject (e.g. temperature, electrochemical, etc.). Data from the sensors may be, for example, communicated to an external device or a sample processing device of a system provided herein. In some embodiments, the sensors may receive instructions from an external device or a sample processing device regarding, for example, when to perform a measurement or what assay to perform. Cameras Cameras described herein may be charge coupled device (CCDs) cameras, super-cooled CCD cameras, or other optical cameras. Such cameras may be formed on chips having one or more cameras, such as part of an array of cameras. Such cameras may include one or more optical components, for example, for capturing light, focusing light, polarizing light, rejecting unwanted light, minimizing scattering, improving image quality, improving signal-to-noise. In an example, cameras may include one or more of lenses and mirrors. Such cameras may have color or monochromatic sensors. Such cameras may also include electronic components such as microprocessors and digital signal processors for one or more of the following tasks: image compression, improvement of dynamic range using computational methods, auto-exposure, automatic determination of optimal camera parameters, image processing, triggering strobe light to be in sync with the camera, in-line controller to compensate for effect of temperature changes on camera sensor performance. Such cameras may also include on-board memory to buffer images acquired at high frame rates. Such cameras may include mechanical features for image quality improvement such as a cooling system or anti-vibration system. Cameras may be provided at various locations of point of service systems, devices and modules described herein. In an embodiment, cameras are provided in modules for imaging various processing routines, including sample preparation and assaying. This may enable the system to detect a fault, perform quality control assessments, perform longitudinal analysis, perform process optimization and synchronize operation with other modules and/or systems. In some cases, a camera includes one or more optical elements selected from the group consisting of a lens, a mirror, a diffraction grating, a prism, and other components for directing and/or manipulating light. In other cases, a camera is a lens-less (or lensless) camera configured to operate without one or more lenses. An example of a lens-less camera is the Frankencamera. In an embodiment, a lens-less camera uses (or collects) reflected or scattered light and computer processing to deduce the structure of an object. In an embodiment, a lens-less camera has a diameter of at most about 10 nanometers (“nm”), at most about 100 nm, at most about 1 μm, at most about 10 μm, at most about 100 μm, at most about 1 mm, at most about 10 mm, at most about 100 mm, or at most about 500 mm. In another embodiment, a lens-less camera has a diameter between about 10 nm and 1 mm, or between about 50 nm and 500 μm. Cameras provided herein are configured for rapid image capture. System employing such cameras may provide images in a delayed fashion, in which there is a delay from the point in which an image is captured to the point it is displayed to a user, or in real-time, in which there is low or no delay from the point in which an image is captured to the point it is displayed to the user. In some situations, cameras provided herein are configured to operate under low or substantially low lighting conditions. In some situations, cameras provided herein are formed of optical waveguides configured to guide electromagnetic waves in the optical spectrum. Such optical waveguides may be formed in an array of optical waveguides. An optical waveguide may be a planar waveguide, which may include one or more gratings for directing light. In some cases, the camera may have fiber optic image bundles, image conduits or faceplates carrying light to the camera sensor. Cameras may be useful as detection units. Cameras may also be useful for imaging one or more sample or portion of a sample. Cameras may be useful for pathology. Cameras may also be useful for detecting the concentration of one or more analyte in a sample. Cameras may be useful for imaging movement or change of a sample and/or analytes in a sample over time. Cameras may include video cameras that may capture images continuously. Cameras may also optionally capture images at one or more times (e.g., periodically, at predetermined intervals (regular or irregular intervals), in response to one or more detected event). For example, cameras may be useful for capturing changes of cell morphology, concentration and spatial distribution of entities in cells that are labeled with contrast agents (e.g. fluorescent dyes, gold nanoparticles) and/or movement. Cell imaging may include images captured over time, which may be useful for analyzing cell movement and morphology changes, and associated disease states or other conditions. Cameras may be useful for capturing sample kinematics, dynamics, morphology, or histology. Such images may be useful for diagnosis, prognosis, and/or treatment of a subject. An imaging device may be a camera or a sensor that detects and/or records electromagnetic radiation and associated spatial and/or temporal dimensions. Cameras may be useful for interaction of an operator of a device with the device. The cameras may be used for communications between a device operator and another individual. The cameras may permit teleconferencing and/or video conferencing. The cameras may permit a semblance of face-to-face interactions between individuals who may be at different locations. Images of a sample or component thereof, or an assay or reaction involving same, may be stored, enabling subsequent reflex testing, analysis and/or review. Image processing algorithms may be used to analyze collected images within the device or remotely. Cameras may also be useful for biometric measurements (e.g., waist circumference, neck circumference, arm circumference, leg circumference, height, weight, body fat, BMI) of a subject and/or identifying a subject or operator of a device (e.g., facial recognition, retinal scan, fingerprint, handprint, gait, movement) which may optionally be characterized through imaging. Embedded imaging systems may also capture ultrasound or MRI (magnetic resonance imaging) of a subject through the system. Cameras may also be useful for security applications, as described elsewhere herein. Cameras may also be useful for imaging one or more portion of the device and for detecting error within the device. Cameras may image and/or detect a malfunction and/or proper function of mechanics of one or more component of the device. Cameras may be used to capture problems, correct a problem, or learn from detected conditions. For example, a camera may detect whether there is an air bubble in the tip, which may end up skewing readouts or may result in error. A camera may also be used to detect if a tip is not properly bound to a pipette. Cameras may capture images of components and determine whether the components are positioned properly, or where components are positioned. Cameras may be used as part of a feedback loop with a controller to determine the location of components with sub-micrometer resolution and adjust system configuration to account for the exact location. Dynamic-Resource Sharing One or more resource of a device may be shared. Resource-sharing may occur at any level of the device. For example, one or more resource of a module may be shared within the module. In another example, one or more resource of a device may be shared between modules. One or more resource of a rack may be shared within a rack. One or more resource of a device may be shared between racks. A resource may include any component of a device, reagent provided within a device, sample within the device, or any other fluid within the device. Examples of components may include but are not limited to fluid handling mechanism, tip, vessel, assay unit, reagent unit, dilution unit, wash unit, contamination reduction mechanism, filter, centrifuge, magnetic separator, incubator, heater, thermal block, cytometer, light source, detector, housing, controller, display, power source, communication unit, identifier, or any other component known in the art or described elsewhere herein. Other examples of components may include reagents, wash, diluents, sample, labels, or any fluid or substance that may be useful for effecting a chemical reaction. A module may include, one, two, three, four, five, or more of the resources listed herein. A device may include one, two, three, four, five, or more of the resources listed herein. The modules may include different resources, or may include the same resources. A device may include one or more modules not provided within a module. It may be desirable to use a resource that may not be readily available. A resource may be not readily available when the resource is being used, is scheduled to be used, does not exist, or is inoperable. For example, within a module it may be desirable to centrifuge a sample, while the module may not have a centrifuge, the centrifuge may be in use, and/or the centrifuge may be undergoing an error. The device may determine whether an additional centrifuge is available within the module. If an additional centrifuge is available within the module, then the device may use the available centrifuge. This may apply to any resource within the module. In some embodiments, a resource within the module may be able to compensate for a deficiency in another. For example, if two centrifuges are needed, but one is out of commission, the other centrifuge may be used to accommodate both centrifugations simultaneously, or in sequence. In some instances, the desired resource may not be available within the selected module, but may be available in another module. The resource in the other module may be used. For example, if a centrifuge in a first module breaks, is in use, or does not exist, a centrifuge in a second module may be used. In some embodiments, a sample and/or other fluid may be transferred from the first module to the second module to use the resource. For example, a sample may be transferred from the first module to the second module to use the centrifuge. Once the resource has been used, the sample and/or other fluid may be transferred back to the first module, may remain at the second module, or may be transferred to a third module. For example, the sample may be transferred back to the first module for further processing, using resources available in the first module. In another example, the same may remain in the second module for further processing, if needed resources are available in the second module. In another example, if the resources needed are not available in the first and second module, or the scheduling is somehow improved by using a resource at a third module, the sample and/or other fluid may be transferred to the third module. The sample and/or other fluids may be transferred between modules. In some embodiments, a robotic arm may shuttle a sample, reagent, and/or other fluids between modules, as described in greater detail elsewhere herein. The sample and/or other fluids may be transferred using a fluid handling system. The sample and/or other fluids may be transferred between modules within tips, vessels, units, compartments, chambers, tubes, conduits, or any other fluid containing and/or transferring mechanisms. In some embodiments, fluid may be contained within fluidically isolated or hydraulically independent containers while being transferred between modules. Alternatively, they may flow through a conduit between modules. The conduits may provide fluid communication between modules. Each module may have a fluid handling system or mechanism that may be able to control the movement of the sample and/or fluid within the module. A first fluid handling mechanism in the first module may provide the fluid to an inter-module fluid transport system. A second fluid handling mechanism at a second module may pick up the fluid from the inter-module fluid transport system and may transfer the fluid in order to enable the use of a resource in the second module. In alternate embodiments, one or more resource may be transferred between modules. For example, a robotic arm may shuttle a resource between modules. Other mechanisms may be used to transfer a resource from a first module to a second module. In one example, a first module may contain a reagent within a reagent unit. The reagent and reagent unit may be transferred to the second module which may use the reagent and reagent unit. A resource may be provided within a device that may be external to all modules. A sample and/or other fluid may be transferred to this resource, and the resource may be used. The sample and/or fluid may be transferred to the resource external to the modules using a robotic arm or any other transferring mechanism described elsewhere herein. Alternatively, the external resource may be transferred to one or more module. In one example, a cytometer may be provided within a device, but external to all modules. In order to access the cytometer, samples may be shuttled to and from modules to the cytometer. Such allocations of resources within modules, between modules, or within the device external to modules may occur dynamically. The device may be capable of tracking which resources are available. Based on one or more protocol, the device may be able to determine on the fly whether a resource is available or unavailable. The device may also be able to determine whether another of the resource is available within the same module, different module, or elsewhere within the device. The device may determine whether to wait to use a currently unavailable resource, or to use another available resource depending on one or more set of protocols. The device may be able to track whether a resource will become unavailable in the future. For example, a centrifuge may be scheduled to be used after a sample has been incubated a predetermined length of time. The centrifuge may be unavailable starting from the time of intended use to the anticipated end of use. The future unavailable of a resource may be accounted for by a protocol. In some embodiments, signals from one or more sensors may assist with the on-the-fly determination on the status of a resource and/or the availability of the resource. One or more sensors and/or the detector may be able to provide real-time feedback or updates on the status of a resource and/or process. The system may determine whether adjustments need to be made to a schedule and/or whether the use another resource. A protocol may include one or more set of instructions that may determine which resources to use at which times. The protocol may include instructions to use resources within the same module, within different modules, or external to the module. In some embodiments, the protocol may include one or more set of priorities or criteria. For example, if a resource within the same module is available, this may be used rather than a module that is provided within another module. A resource that is in closer proximity to the sample using the resource may have a higher priority. For example, if one or more step is being performed on a sample within a first module, and the resource is available within the first module, then the resource may be used. If multiple copies of the resource are available within the first module, the copy of the resource closest to the sample may be used. If the resource is unavailable within the first module, the resource available in the closest module to the first module may be used. In another example, current and future availability may also be taken into account for determining the use of a module. This information may come from the Cloud, the controller, the device or from the module itself. In some embodiments, speed of completion may be prioritized higher than proximity (e.g., trying to keep samples within the same module). Alternatively, proximity may be prioritized higher than speed. Other criteria may include but are not limited to, proximity, speed, time of completion, fewer steps, or less amount of energy consumed. The criteria may have any ranking in order of preference, or any other set of instructions or protocols may determine the use of resources and/or scheduling. Housing In accordance with some embodiments of the invention, a system may include one or more devices. A device may have a housing and/or support structure. In some embodiments, a device housing may entirely enclose the device. In other embodiments, the device housing may partially enclose the device. The device housing may include one, two, three, four, five, six or more walls that may at least partially enclose the device. The device housing may include a bottom and/or top. The device housing may contain one or more modules of the device within the housing. The device housing may contain electronic and/or mechanical components within the housing. The device housing may contain a fluid handling system within the housing. The device housing may contain one or more communication unit within the housing. The device housing may contain one or more controller unit. A device user interface and/or display may be contained within the housing or may be disposed on a surface of the housing. A device may or may not contain a power source, or an interface with a power source. The power source may be provided or interfaced within the housing, external to the housing, or incorporated within the housing. A device may or may not be air tight or fluid tight. A device may or may not prevent light or other electromagnetic waves from entering the housing from outside the device, or escaping the housing from within the device. In some instances, individual modules may or may not be air tight or fluid tight and/or may or may not prevent light or other electromagnetic waves from entering the module. In some embodiments, the device may be supported by a support structure. In some embodiments, the support structure may be a device housing. In other embodiments, a support structure may support a device from beneath the device. Alternatively, the support structure may support a device from one or more side, or from the top. The support structure may be integrated within the device or between portions of the device. The support structure may connect portions of the device. Any description of the device housing herein may also apply to any other support structure or vice versa. The device housing may fully or partially enclose the entire device. The device housing may enclose a total volume of less than or equal to about 4 m3, 3 m3, 2.5 m3, 2 m3, 1.5 m3, 1 m3, 0.75 m3, 0.5 m3, 0.3 m3, 0.2 m3, 0.1 m3, 0.08 m3, 0.05 m3, 0.03 m3, 0.01 m3, 0.005 m3, 0.001 m3, 500 cm3, 100 cm3, 50 cm3, 10 cm3, 5 cm3, 1 cm3, 0.5 cm3, 0.1 cm3, 0.05 cm3, or 0.01 cm3. The device may have any of the volumes described elsewhere herein. The device and/or device housing may have a footprint covering a lateral area of the device. In some embodiments, the device footprint may be less than or equal to about 4 m2, 3 m2, 2.5 m2, 2 m2, 1.5 m2, 1 m2, 0.75 m2, 0.5 m2, 0.3 m2, 0.2 m2, 0.1 m2, 0.08 m2, 0.05 m2, 0.03 m2, 100 cm2, 80 cm2, 70 cm2, 60 cm2, 50 cm2, 40 cm2, 30 cm2, 20 cm2, 15 cm2, 10 cm2, 7 cm2, 5 cm2, 1 cm2, 0.5 cm2, 0.1 cm2, 0.05 cm2, or 0.01 cm2. The device and/or device housing may have a lateral dimension (e.g., width, length, or diameter) or a height less than or equal to about 4 m, 3 m, 2.5 m, 2 m, 1.5 m, 1.2 m, 1 m, 80 cm, 70 cm, 60 cm, 50 cm, 40 cm, 30 cm, 25 cm, 20 cm, 15 cm, 12 cm, 10 cm, 8 cm, 5 cm, 3 cm, 2 cm, 1 cm, 0.5 cm, 0.1 cm, 0.05 cm, or 0.01 cm. The lateral dimensions and/or height may vary from one another. Alternatively, they may be the same. In some instances, the device may be a tall and thin device, or may be a short and squat device. The height to lateral dimension ratio may be greater than or equal to 100:1, 50:1, 30:1, 20:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:30, 1:50, or 1:100. The device and/or device housing may have any shape. In some embodiments, the device may have a lateral cross-sectional shape of a rectangle or square. In other embodiments, the device may have a lateral cross-sectional shape of a circle, ellipse, triangle, trapezoid, parallelogram, pentagon, hexagon, octagon, or any other shape. The device may have a vertical cross-sectional shape of a circle, ellipse, triangle, rectangle, square, trapezoid, parallelogram, pentagon, hexagon, octagon, or any other shape. The device may or may not have a box-like shape. The device may or may not have a flattened planar shape and/or a rounded shape. A device housing and/or support structure may be formed of a rigid, semi-rigid or flexible material. A device housing may be formed of one or more materials. In some embodiments, the device housing may include polystyrene, moldable or machinable plastic. The device housing may include polymeric materials. Non-limiting examples of polymeric materials include polystyrene, polycarbonate, polypropylene, polydimethysiloxanes (PDMS), polyurethane, polyvinylchloride (PVC), polysulfone, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene (ABS), and glass. The device housing may be an opaque material, a translucent material, a transparent material, or may include portions that are any combination thereof. The device housing may be formed of a single integral piece or multiple pieces. The device housing may comprise multiple pieces that may be permanently affixed to one another or removably attached to one another. In some instances, one or more connecting features of the housing may be contained within the housing only. Alternatively one or more connecting features of the device housing may be external to the device housing. The device housing may be opaque. The device housing may prevent uncontrolled light from entering the device. The device housing may include one or more transparent portions. The device housing may permit controlled light to enter selected regions of the device. The device housing may contain one or more movable portion that may be used to accept a sample into the device. Alternatively, the device housing may be static as a sample is provided to the device. For example the device housing may include an opening. The device opening may remain open or may be closable. A device opening may directly or indirectly lead to a sample collection unit, such that a subject may provide a sample to the device through the device housing. In such circumstances, the sample may be provided, for example, to a cartridge in the device. The device may include one or more movable tray that may accept one or more sample or other component of the device. The tray may be translatable in a horizontal and/or vertical direction. The opening may be in fluid communication with one or more portion of the fluid handling system therein. The opening may be selectively opened and/or closed. One or more portions of the device housing may be selectively opened and/or closed. In some embodiments, the device housing may be configured to accept a cartridge, or sample collection unit. In some embodiments, the device housing may be configured to accept or collect a sample. The device housing may be configured to collect a sample directly from a subject or an environment. The sample receiving location may be configured to have an opened and a closed position, such that when closed, the device housing may be sealed. The device housing may be in contact with the subject or environment. Additional details relating to sample collection may be described elsewhere herein. In some embodiments, the housing may surround one or more of the racks, modules, and/or components described elsewhere herein. Alternatively, the housing may be integrally forming one or more of the racks, modules, and/or components described elsewhere herein. For example, the housing may provide electricity and/or energy for the device. The housing may power the device from an energy storage unit, energy generation unit, and/or energy conveyance unit of the housing. The housing may provide communications between the device and/or an external device. Controller A controller may be provided at any level of the system described herein. For example, one or more controller for a system, groups of devices, a single device, a module, a component of the device, and/or a portion of the component may be provided. A system may comprise one or more controller. A controller may provide instructions to one or more device, module of a device, component of a device, and/or portion of a component. A controller may receive signals that may be detected from one or more sensors. A controller may receive a signal provided by a detection unit. A controller may comprise a local memory or may access a remote memory. A memory may comprise tangible computer readable media with code, instructions, language to perform one or more steps as described elsewhere herein. A controller may be or use a processors. A system wide controller may be provided external to one, two or more device and may provide instructions to or receive signals from the one, two or more devices. In some embodiments, the controller may communicate with selected groups of devices. In some embodiments the controller may communicate with one or more devices in the same geographic location, or over different geographic locations. In some embodiments, a system wide controller may be provided on a server or another network device. FIG. 39 shows an example of a plurality of devices communicating with an external device over a network. In some instances, the external device may comprise a controller or be a controller communicating with the other devices. In some embodiments, a system wide controller may be provided on a device, which may have a master-slave relationship with other devices. In accordance with another embodiment of the invention, a device may comprise one or more controller. The controller may provide instructions to one or more module of the device, component of a device, and/or portion of a component. The device-level controller may receive signals that may be detected from one or more sensors, and/or a detection unit. The controller may comprise a local memory or may access a remote memory on the device. The memory may comprise tangible computer readable media with code, instructions, language to perform one or more steps as described elsewhere herein. A device may have a local memory that may store one or more protocols. In some embodiments, a controller may be provided on a cloud computing infrastructure. The controller may be spread out across one or more hardware devices. The memory for the controller may be provided on one or more hardware devices. The protocols may be generated and/or stored on-board on the device. Alternatively, the protocols may be received from an external source, such as an external device or controller. The protocols may be stored on a cloud computing infrastructure, or a peer to peer infrastructure. The memory may also store data collected from a detection unit of the device. The data may be stored for analysis of detected signals. Some signal processing and/or data analysis may or may not occur at the device level. Alternatively, signal processing and/or data analysis may occur on an external device, such as a server. The signal processing and/or data analysis may occur using a cloud computing infrastructure. The signal processing and/or data analysis may occur at a different location from where the device is located, or at the same geographic location. The device-level controller may be provided within a device and may provide instructions to or receive signals from the one, two or more racks, modules, components of a module, or portions of the components. In some embodiments, the controller may communicate with selected groups of modules, components, or portions. In some instances, the device-level controller may be provided within a module communicating with the other modules. In some embodiments, a device-level controller may be provided on a module, which may have a master-slave relationship with other modules. A modular controller may be insertable and/or removable from a device. A device level-controller may receive instructions from a system-wide controller or a controller that provides instructions to one or more devices. The instructions may be protocols which may be stored on a local memory of the device. Alternatively, the instructions may be executed by the device in response to the received instructions without requiring the instructions be stored on the device, or only having them temporarily stored on the device. In some embodiments, the device may only store a recently received protocol. Alternatively, the device may store multiple protocols and be able to refer to them at a later time. The device may provide information related to detected signals from a detection unit to an external source. The external source receiving the information may or may not be the same as the source of the protocols. The device may provide raw information about the detected signals from the detection unit. Such information may include assay result information. The device may provide some processing of the collected sensor information. The device may or may not perform analysis of the collected sensor information locally. The information sent to the external source may or may not include processed and/or analyzed data. A device-level controller may instruct the device to perform as a point of service device. A point of service device may perform one or more action at a location remote to another location. The device-level controller may instruct the device to directly interface with a subject or environment. The device level controller may permit the device to be operated by an operator of the device who may or may not be a health care professional. The device-level controller may instruct the device to directly receive a sample, where some additional analysis may occur remotely. In accordance with additional embodiment of the invention, a module may comprise one or more controller. The controller may provide instructions to one or more components of the module, and/or portion of a component. The module-level controller may receive signals that may be detected from one or more sensors, and/or a detection unit. In some examples, each module may have one or more controllers. Each module may have one or multiple microcontrollers. Each module may have different operating systems that may control each module independently. The modules may be capable of operating independently of one another. One or more module may have one or more microcontrollers controlling different peripherals, detection systems, robots, movements, stations, fluid actuation, sample actuation, or any other action within a module. In some instances, each module may have built-in graphics capabilities for high performance processing of images. In additional embodiments, each module may have their own controllers and/or processors that may permit parallel processing using a plurality of modules. The controller may comprise a local memory or may access a remote memory on the module. The memory may comprise tangible computer readable media with code, instructions, language to perform one or more steps as described elsewhere herein. A module may have a local memory that may store one or more protocols. The protocols may be generated and/or stored on-board on the module. Alternatively, the protocols may be received from an external source, such as an external module, device or controller. The memory may also store data collected from a detection unit of the module. The data may be stored for analysis of detected signals. Some signal processing and/or data analysis may or may not occur at the module level. Alternatively, signal processing and/or data analysis may occur on the device level, or at an external device, such as a server. The signal processing and/or data analysis may occur at a different location from where the module is located, or at the same geographic location. The module-level controller may be provided within a module and may provide instructions to or receive signals from the one, two or more components of the module, or portions of the components. In some embodiments, the controller may communicate with selected groups of components, or portions. In some instances, the module-level controller may be provided within a component communicating with the other components. In some embodiments, a module-level controller may be provided on a component, which may have a master-slave relationship with other components. A modular controller may be insertable and/or removable from a module. A module-level controller may receive instructions from a device-wide controller, system-wide controller or a controller that provides instructions to one or more devices. The instructions may be protocols which may be stored on a local memory of the module. Alternatively, the instructions may be executed by the module in response to the received instructions without requiring the instructions be stored on the module, or only having them temporarily stored on the module. In some embodiments, the module may only store a recently received protocol. Alternatively, the module may store multiple protocols and be able to refer to them at a later time. The module may provide information related to detected signals from a detection unit to the device, or an external source. The device or external source receiving the information may or may not be the same as the source of the protocols. The module may provide raw information about the detected signals from the detection unit. Such information may include assay result information. The module may provide some processing of the collected sensor information. The module may or may not perform analysis of the collected sensor information locally. The information sent to the device or external source may or may not include processed and/or analyzed data. A module-level controller may instruct the module to perform as a point of service module. The module-level controller may instruct the module to directly interface with a subject or environment. The module level controller may permit the module to be operated by an operator of the device who may or may not be a health care professional. A controller may be provided at any level of the system as described herein (e.g., high level system, groups of devices, device, rack, module, component, portion of component). The controller may or may not have a memory at its level. Alternatively, it may access and/or use a memory at any other level. The controller may or may not communicate with additional controllers at the same or different levels. A controller may or may not communicate with additional controllers at levels immediately below or above them or a plurality of levels below or above them. A controller may communicate to receive and/or provide instructions/protocols. A controller may communicate to receive and/or provide collected data or information based on the data. User Interface A device may have a display and/or user interface. In some situations, the user interface is provided to the subject with the aid of the display, such as through a graphical user interface (GUI) that may enable a subject to interact with device. Examples of displays and/or user interfaces may include a touchscreen, video display, LCD screen, CRT screen, plasma screen, light sources (e.g., LEDs, OLEDs), IR LED based surfaces spanning around or across devices, modules or other components, pixelsense based surface, infrared cameras or other capture technology based surfaces, projector, projected screen, holograms, keys, mouse, button, knobs, sliding mechanisms, joystick, audio components, voice activation, speakers, microphones, a camera (e.g., 2D, 3D cameras), multiple cameras (e.g., may be useful for capturing gestures and motions), glasses/contact lenses with screens built-in, video capture, haptic interface, temperature sensor, body sensors, body mass index sensors, motion sensors, and/or pressure sensors. Any description herein of a display and/or user interface may apply to any type of display and/or user interface. A display may provide information to an operator of the device. A user interface may provide information and/or receive information from the operator. In some embodiments, such information may include visual information, audio information, sensory information, thermal information, pressure information, motion information, or any other type of information. Sound, video, and color coded information (such as red LEDs indicating a module is in use) may be used in providing feedback to users using a point of service system or information system or interfacing with a system through touch or otherwise. In some embodiments, a user interface or other sensor of the device may be able to detect if someone is approaching the device, and wake up. FIG. 56 illustrates a point of service device 5600 having a display 5601. The display is configured to provide a graphical user interface (GUI) 5602 to a subject. The display 5601 may be a touch display, such as a resistive-touch or capacitive-touch display. The device 5600 is configured to communicate with a remote device 5603, such as, for example, a personal computer, Smart phone, tablet, or server. The device 5600 has a central processing unit (CPU) 5604, memory 5605, communications module (or interface) 5606, and hard drive 5607. In some embodiments, the device 5600 includes a camera 5608 (or in some cases a plurality of cameras, such as for three-dimensional imaging) for image and video capture. The device 5600 may include a sound recorder for capturing sound. Images and/or videos may be provided to a subject with the aid of the display 5601. In other embodiments, the camera 5608 may be a motion-sensing input device (e.g., Microsoft® Kinect®). One or more sensors may be incorporated into the device and/or user interface. The sensors may be provided on the device housing, external to the device housing, or within the device housing. Any of the sensor types describing elsewhere herein may be incorporated. Some examples of sensors may include optical sensors, temperature sensors, motion sensors, depth sensors, pressure sensors, electrical characteristic sensors, gyroscopes or acceleration sensors (e.g., accelerometer). In an example, the device includes an accelerometer that detects when the device is not disposed on an ideal surface (e.g., horizontal surface), such as when the device has tipped over. In another example, the accelerometer detects when the device is being moved. In such circumstances, the device may shutdown to prevent damage to various components of the device. In some cases, prior to shutting down, the device takes a picture of a predetermined area on or around the device with the aid of a camera on the device (see FIG. 56). The user interface and/or sensors may be provided on a housing of the device. They may be integrated into the housing of a device. In some embodiments, the user interface may form an outer layer of the housing of the device. The user interface may be visible when viewing the device. The user interface may be selectively viewable when operating the device. The user interface may display information relating to the operation of the device and/or data collected from the device. The user interface may display information relating to a protocol that may run on the device. The user interface may include information relating to a protocol provided from a source external to the device, or provided from the device. The user interface may display information relating to a subject and/or health care access for the subject. For example, the user interface may display information relating to the subject identity and medical insurance for the subject. The user interface may display information relating to scheduling and/or processing operation of the device. The user interface may be capable of receiving one or more input from a user of the device. For example, the user interface may be capable of receiving instructions about one or more assay or procedure to be performed by the device. The user interface may receive instructions from a user about one or more sample processing step to occur within the device. The user interface may receive instructions about one or more analyte to be tested for. The user interface may be capable of receiving information relating to the identity of the subject. The subject identity information may be entered by the subject or another operator of the device or imaged or otherwise captured by the user interface itself. Such identification may include biometric information, issued identification cards, or other uniquely identifiable biological or identifying features, materials, or data. The user interface may include one or more sensors that may assist with receiving identifying information about the subject. The user interface may have one or more question or instructions pertaining to the subject's identity, to which the subject may respond. In some situations, the user interface is configured to display a questionnaire to a subject, the questionnaire including questions about the subject's dietary consumption, exercise, health condition and/or mental condition (see above). The questionnaire may be a guided questionnaire, having a plurality of questions of or related to the subject's dietary consumption, exercise, health condition and/or mental condition. The questionnaire may be presented to the subject with the aid of a user interface, such as graphical user interface (GUI), on the display of the device. The use interface may be capable of receiving additional information relating to the subject's condition, habits, lifestyle, diet, exercise, sleep patterns, or any other information. The additional information may be entered directly by the subject or another operator of the device. The subject may be prompted by one or more questions or instructions from the user interface and may enter information in response. The questions or instructions may relate to qualitative aspects of the subject's life (e.g., how the patient is feeling). In some embodiments, the information provided by the subject are not quantitative. In some instances, the subject may also provide quantitative information. Information provided by the subject may or may not pertain to one or more analyte level within a sample from the subject. The survey may also collect information relating to therapy and/or medications undergone or currently taken by the subject. The user interface may prompt the subject using a survey or similar technique. The survey may include graphics, images, video, audio, or other media features. The survey may or may not have a fixed set of questions and/or instructions. The survey (e.g., the sequence and/or content of the questions) may dynamically change depending on the subject's answers. Identifying information about the subject and/or additional information relating to the subject may be stored in the device and/or transmitted to an external device or cloud computing infrastructure. Such information may be useful in analyzing data relating to a sample collected from the subject. Such information may also be useful for determining whether to proceed with sample processing. The user interface and/or sensors may be capable of collecting information relating to the subject or the environment. For example, the device may collect information through a screen, thermal sensor, optical sensor, motion sensor, depth sensor, pressure sensor, electrical characteristic sensor, acceleration sensor, any other type of sensor described herein or known in the art. In one example, the optical sensor may be a multi-aperture camera capable of collecting a plurality of images and calculating a depth therefrom. An optical sensor may be any type of camera or imaging device as described elsewhere herein. The optical sensor may capture one or more static images of the subject and/or video images of the subject. The device may collect an image of the subject. The image may be a 2D image of the subject. The device may collect a plurality of images of the subject that may be used to determine a 3D representation of the subject. The device may collect a one-time image of the subject. The device may collect images of the subject over time. The device may collect images with any frequency. In some embodiments, the device may continually collect images in real-time. The device may collect a video of the subject. The device may collect images relating to any portion of the subject including but not limited to the subject's eye or retina, the subject's face, the subject's hand, the subject's fingertip, the subject's torso, and/or the subject's overall body. The images collected of the subject may be useful for identifying the subject and/or for diagnosis, treatment, monitoring, or prevention of a disease for the subject. In some instances, images may be useful for determining the subject's height, circumference, weight, or body mass index. The device may also capture the image of a subject's identification card, insurance card, or any other object associated with the subject. The device may also collect audio information of the subject. Such audio information may include the subject's voice or the sound of one or more biological process of the subject. For example, the audio information may include the sound of the subject's heartbeat. The device may collect biometric information about a subject. For example, the device may collect information about the subject's body temperature. In another example, the device can collect information about the subject's pulse rate. In some instances, the device may scan a portion of the subject, such as the subject's retina, fingerprint or handprint. The device may determine the subject's weight. The device may also collect a sample from the subject and sequence the subject's DNA or a portion thereof. The device may also collect a sample from the subject and conduct a proteomic analysis thereon. Such information may be used in the operation of the device. Such information may relate to the diagnosis or the identity of the subject. In some embodiments, the device may collect information about the operator of the device who may or may not be different from the subject. Such information can be useful for verifying the identity of the operator of the device. In some instances, such information collected by the device may be used to identify the subject. The subject's identity may be verified for insurance or treatment purposes. The subject identify may be tied to the subject's medical records. In some instances, the data collected by the device from the subject and/or sample may be linked to the subject's records. The subject identity may also be tied into the subject's health insurance (or other payer) records. Power Source A device may have a power source or be connected to a power source. In some embodiments, the power source may be provided external to the device. For example, the power may be provided from a grid/utility. The power may be provided from an external energy storage system or bank. The power may be provided by an external energy generation system. In some embodiments, the device may include a plug or other connector capable of electrically connecting the device to the external power source. In another example, the device may use a body's natural electrical impulses to power the device. For example, the device may contact a subject, be worn by the subject, and/or be ingested by the subject, who may or may not provide some power to the device. In some embodiments, the device may include one or more piezoelectric component that may be movable, and capable of providing power to the device. For example, the device may have a patch configuration configured to be placed on a subject, so that when the subject moves and/or the patch is flexed, power is generated and provided to the device. A device may optionally have an internal power source. For example, a local energy storage may be provided on the device. In one embodiment, the local energy storage may be one or more battery or ultracapacitor. Any battery chemistry known or later developed in the art may be used as a power source. A battery may be a primary or secondary (rechargeable) battery. Examples of batteries may include, but are not limited to, zinc-carbon, zinc-chloride, alkaline, oxy-nickel hydroxide, lithium, mercury oxide, zinc-air, silver oxide, NiCd, lead acid, NiMH, NiZn, or lithium ion. The internal power source may be stand alone or may be coupled with an external power source. In some embodiments, a device may include an energy generator. The energy generator may be provided on its own or may be coupled with an external and/or internal power source. The energy generator may be a traditional electricity generator as known in the art. In some embodiments, the energy generator may use a renewable energy source including, but not limited to, photovoltaics, solar thermal energy, wind energy, hydraulic energy, or geothermal energy. In some embodiments, the power may be generated through nuclear energy or through nuclear fusion. Each device may be connected to or have a power source. Each module may be connected to or have its own local power source. In some instances, modules may be connected to a power source of the device. In some instances, each module may have its own local power source and may be capable of operating independently of other modules and/or devices. In some instances, the modules may be able to share resources. For example, if a power source in one of the modules is damaged or impaired, the module may be able to access the power source of another module or of the device. In another example, if a particular module is consuming a larger amount of power, the module may be able to tap into the power source of another module or of the device. Optionally, device components may have a power source. Any discussion herein relating to power sources of modules and/or devices may also relate to power sources at other levels, such as systems, groups of devices, racks, device components, or portions of device components. Communication Unit A device may have a communication unit. The device may be capable of communication with an external device using the communication unit. In some instances, the external device may be one or more fellow devices. The external device may be a cloud computing infrastructure, part of a cloud computing infrastructure, or may interact with a cloud computing infrastructure. In some instances, the external device that the device may communicate with may be a server or other device as described elsewhere herein. The communication unit may permit wireless communication between the device and the external device. Alternatively, the communication unit may provide wired communication between the device and the external device. The communication unit may be capable of transmitting and/or receiving information wirelessly from an external device. The communication unit may permit one way and/or two-way communication between the device and one or more external device. In some embodiments, the communication unit may transmit information collected or determined by the device to an external device. In some embodiments, the communication unit may be receiving a protocol or one or more instructions from the external device. The device may be able to communicate with selected external devices, or may be able to communicate freely with a wide variety of external devices. In some embodiments, the communication unit may permit the device to communicate over a network, such as a local area network (LAN) or wide area network (WAN) such as the Internet. In some embodiments, the device may communicate via a telecommunications network, such as a cellular or satellite network. Some examples of technologies that may be used by a communication unit may include Bluetooth or RTM technology. Alternatively, various communication methods may be used, such as a dial-up wired connection with a modem, a direct link such as TI, ISDN, or cable line. In some embodiments, a wireless connection may be using exemplary wireless networks such as cellular, satellite, or pager networks, GPRS, or a local data transport system such as Ethernet or token ring over a LAN. In some embodiments, the communication unit may contain a wireless infrared communication component for sending and receiving information. In some embodiments, the information may be encrypted before it is transmitted over a network, such as a wireless network. In some embodiments, the encryption may be hardware-based encryption. In some instances, the information may be encrypted on the hardware. Any or all information, which may include user data, subject data, test results, identifier information, diagnostic information, or any other type of information, may be encrypted based on hardware based and/or software based encryption. Encryption may also optionally be based on subject-specific information. For example, a subject may have a sample being processed by the device, and the subject's password may be used to encrypt the data relating to the subject's sample. By encrypting the subject's data with subject-specific information, only the subject may be able to retrieve that data. For example, the decryption may only occur if the subject enters a password on a website. In another example, information transmitted by the device may be encrypted by information specific to the operator of the device at that time, and may only be retrieved if the operator enters the operator's password or provide the operator specific-information. Each device may have a communication unit. Each module may have its own local communication unit. In some instances, modules may share a communication unit with the device. In some instances, each module may have its own local communication unit and may be capable of communicating independently of other modules and/or devices. The module may use its communication unit to communicate with an external device, with the device, or with other modules. In some instances, the modules may be able to share resources. For example, if a communication unit in one of the modules is damaged or impaired, the module may be able to access the communication unit of another module or of the device. In some instances, devices, racks, modules, components or portions of device components may be able to share one or more routers. The various levels and/or components in the hierarchy may be able to communicate with one another. Optionally, device components may have a communication unit. Any discussion herein relating to communication units of modules and/or devices may also relate to communication units at other levels, such as systems, groups of devices, racks, device components, or portions of device components. Device, Module and Component Identifier A device may have a device identifier. A device identifier may identify the device. In some embodiments, the device identifier may be unique per device. In other embodiments, the device identifier may identify a type of device, or modules/components provided within the device. The device identifier may indicate functions that the device is capable of performing. The device identifier may or may not be unique in such situations. The device identifier may be a physical object formed on the device. For example, the device identifier may be read by an optical scanner, or an imaging device, such as a camera. The device identifier may be read by one or more types of sensors described elsewhere herein. In one example, the device identifier may be a barcode. A barcode may be a 1D or 2D barcode. In some embodiments, the device identifier may emit one or more signal that may identify the device. For example, the device identifier may provide an infrared, thermal, ultrasonic, optical, audio, electrical, chemical, biological, or other signal that may indicate the device identity. The device identifier may use a radiofrequency identification (RFID) tag. The device identifier may be stored in a memory of the device. In one example, the device identifier may be a computer readable medium. The device identifier may be communicated wirelessly or via a wired connection. The device identifier may be static or changeable. The device identifier may change as one or more module provided for the device may change. The device identifier may change based on available components of the device. The device identifier may change when instructed by an operator of the device. The device identifier may be provided to permit the device to be integrated within a systemwide communication. For example, an external device may communicate with a plurality of devices. The external device may distinguish a diagnostic device from another diagnostic device via the device identifier. The external device may provide specialized instructions to a diagnostic device based on its identifier. The external device may include a memory or may communicate with a memory that may keep track of information about the various devices. The device identifier of a device may be linked in memory with the information collected from the device or associated with the device. In some embodiments, an identifier may be provided on a module or at component level to uniquely identify each component in a device at the system level. For example, various modules may have module identifiers. The module identifier may or may not be unique per module. The module identifier may have one or more characteristics of a device identifier. The module identifier may permit a device or system (e.g., external device, server) to identify the modules that are provided therein. For example, the module identifier may identify the type of module, and may permit the device to automatically detect the components and capability provided by the module. In some instances, the module identifier may uniquely identify the module, and the device may be able to track specific information associated with the particular module. For example, the device may be able to track the age of the module and estimate when certain components may need to be renewed or replaced. The module may communicate with a processor of the device which it is a part of. Alternatively, the module may communicate with a processor of an external device. The module identifier may provide the same information on a system-wide level. In some embodiments, the system, rather than the device, may track the information associated with the module identifier. The module identifier may be communicated to the device or system when it is connected to the device or interfaced with a device. For instance, the module identifier may be communicated to the device or system after the module has been mounted on a support structure. Alternatively, the module identifier may be communicated remotely when the module is not yet connected to the device. An identifier may be provided at any other level described herein (e.g., external device, groups of devices, racks, components of a device, portions of a component). Any characteristics of identifiers provided herein may also apply to such identifiers. Systems FIG. 39 provides an illustration of a diagnostic system in accordance with an embodiment of the invention. One, two or more devices 3900a, 3900b may communicate with an external device 3910 over a network 3920. The devices may be diagnostic devices. The devices may have any features or characteristics as described elsewhere herein. In some examples, the devices may be a benchtop device, handheld device, patch, and/or pill. The devices may be configured to accept a sample and perform one or more of a sample preparation step, assay step, or detection step. The devices may comprise one or more modules as described elsewhere herein. In some embodiments, a patch or pill is configured to be operatively coupled (or linked) to a mobile device, such as a network device, that is configured to communicate with another device and/or a network (e.g., intranet or the Internet). In some situations, a patch is configured to communicate with a pill circulating through the body of a subject, or disposed in the body of the subject, such as in a tissue of the subject. In other situations, a pill is a particle having a size on the order of nanometers, micrometers or larger. In an example, a pill is a nanoparticle. The patch and/or pill may include onboard electronics to permit the patch and/or pill to communicate with another device. A system may include any number of devices 3900a, 3900b. For example, the system may include one or more, two or more, three or more, four or more, five or more, ten or more, twenty or more, fifty or more, one hundred or more, five hundred or more, one thousand or more, five thousand or more, ten thousand or more, one hundred thousand or more, or one million or more devices. The devices may or may not be associated into groups of devices. A device may be associated with one, two, three, ten or any number of groups. A device may be part of groups, sub-groups, sub-sub-groups with no limitations of sub-grouping in the system. In some embodiments, groups of devices may include devices at a particular geographic location. For example, groups of devices may refer to devices within the same room or within the same building. A group of devices may include devices within the same retailer location, laboratory, clinic, health care facility, or any other location. Groups of devices may refer to devices within the same town or city. Groups of devices may include devices within a particular radius. In some instances, groups of devices may include devices using the same communication port. For example, groups of devices may include devices using the same router, Internet hub, telecommunications tower, satellite, or other communication port. Alternatively, groups of devices may include devices associated with the same entity or division of an entity. For example, a group of devices may be associated with a laboratory, health care provider, medical facility, retailer, company, or other entity. Any description herein on a system-wide level may refer to an overall global system that may include or communicate with any device. Alternatively, any description herein of a system may also refer to a group of devices. A network 3920 may be provided, as described elsewhere herein. For example, the network may include a local area network (LAN) or wide area network (WAN) such as the Internet. In some embodiments, the device may communicate via a telecommunications network, such as a cellular or satellite network. A device may communicate with the network using a wireless technology, such as Bluetooth or RTM technology. Alternatively, various communication methods may be used, such as a dial-up wired connection with a modem, a direct link such as TI, ISDN, or cable line. In some embodiments, a wireless connection may be using exemplary wireless networks such as cellular, wimax, wifi, satellite, or pager networks, GPRS, or a local data transport system such as Ethernet or token ring over a LAN. In some embodiments, the device may communicate wirelessly using infrared communication components. An external device 3910 may be provided in accordance with an embodiment of the invention. The external device may be any networked device described elsewhere herein or known in the art. For example, the external device may be a server, personal computer, laptop computer, tablet, mobile device, cell phone, satellite phone, smart phone (e.g., iPhone, Android, Blackberry, Palm, Symbian, Windows), personal digital assistant (PDA), pager or any other device. In some instances, the external device may be another diagnostic device. A master-slave relationship, peer-to-peer or a distributed relationship, may be provided between the diagnostic devices. The external device may have a processor and memory. The external device may access a local memory or communicate with a memory. The memory may include one or more databases. Any description of the external device may also apply to any cloud computing infrastructure. An external device may refer to one or more devices that may include processors and/or memory. The one or more devices may or may not be in communication with one another. In some embodiments, the external device may function as a controller or may comprise a controller, and perform one or more functions of the controller as described elsewhere herein. The external device may function as a system-wide controller, may control a group of devices, or may control an individual device. In one example, an external device may have data stored in memory. Such data may include analyte threshold data. Such data may include curves or other information that may be useful for performing analysis and/or calibration. The external device may also receive and/or store data received from a sample processing device. Such data may include data related to one or more signals detected by the sample processing device. In some embodiments, one or more diagnostics and/or calibrations may be performed on the sample processing device. Such diagnostics and/or calibrations may use and/or access curves or other data stored on-board the device or at an external device, such as a server. FIG. 1 shows an example of a device 100 in communication with a controller 110 in accordance with an embodiment of the invention. The device may have any of the characteristics, structure, or functionality as described elsewhere herein. For example, the device 100 may comprise one or more support structure 120. In some embodiments, the support structure may be a rack, or any other support as described elsewhere herein. In some instances, the device may include a single support structure. Alternatively, the device may include a plurality of support structures. A plurality of support structure may or may not be connected to one another. The device 100 may comprise one or more module 130. In some instances, a support structure 120 may comprise one or more module. In one example, the module may have a blade format that may be mounted on a rack support structure. Any number of modules may be provided per device or support structure. Different support structure may have different numbers or types of modules. The device 100 may comprise one or more component 140. In some instances, a module 130 may comprise one or more component of the module. A rack 120 may comprise one or more component of a module. Any number of components may be provided per device, rack, or module. Different modules may have different numbers or types of components. In some examples, the devices may be a benchtop device, a handheld device, a wearable device, an ingestible device, an implantable device, a patch, and/or a pill. The device may be portable. The device may be placed on top of a surface, such as a counter, table, floor or any other surface. The device may be mountable or attachable to a wall, ceiling, ground and/or any other structure. The device may be worn directly by the subject, or may be incorporated into the subject's clothing. The device may be self-contained. For example, the device may comprise a local memory. The local memory may be provided to the overall device, or may be provided to one or more module, or may be distributed over one or more module. The local memory may be contained within a housing of the device. A local memory may be provided on a support of a module or within a housing of a module. Alternatively, the local memory of the device may be provided external to a module while within the device housing. The local memory of the device may or may not be supported by a support structure of the device. The local memory may be provided external to the support structure of the device, or may be integrated within the support structure of the device. One or more protocols may be stored in a local memory. One or more protocols may be delivered to the local memory. The local memory may include a database of information for on board analysis of detected signals. Alternatively, the local memory may store the information related to the detected signals that may be provided to an external device for remote analysis. The local memory may include some signal processing of the detected signals, but may be transmitted to the external device for analysis. The external device may or may not be the same device the controller. The local memory may be capable of storing non-transitory computer readable media, which may include code, logic, or instructions capable of performing steps described herein. The device may comprise a local processor. The processor may be capable of receiving instructions and providing signals to execute the instructions. The processor may be a central processing unit (CPU) that may carry out instructions of tangible computer readable media. In some embodiments, the processor may include one or more microprocessors. The processor may be capable of communicating with one or more component of the device, and effecting the operation of the device. The processor may be provided to the overall device, or may be provided to one or more module, or may be distributed over one or more module. The processor may be contained within a housing of the device. A processor may be provided on a support of a module or within a housing of a module. Alternatively, the processor of the device may be provided external to a module while within the device housing. The processor of the device may or may not be supported by a support structure of the device. The processor may be provided external to the support structure of the device, or may be integrated within the support structure of the device. A controller 110 may be in communication with the device 100. In some embodiments, the controller may be a system-wide controller. The controller may communicate with any device. The controller may be selectively in communication with a group of devices. For example, the system may comprise, one, two or more controller, wherein a controller may be devoted to a group of devices. The controller may be capable of individually communicating with each device. In some instances, the controller may communicate with groups of devices, without differentiating between the devices within the group. The controller may communicate with any combination of devices or groups of devices. A controller may be provided external to the device. The controller may be an external device in communication with the device. As described elsewhere herein, an external device may be any sort of network device. For example the controller may be a server, a mobile device, or another diagnostic device which may have a master-slave relationship with the device. In alternate embodiments, the controller may be provided locally to the device. In such situations, the device may be entirely self-contained without requiring external communication. The controller may comprise a memory or may communicate with a memory. One or more protocols may be stored on the controller memory. These protocols may be stored external to the device. The protocols may be stored in a memory and/or cloud computing infrastructure. The protocols may be updated on the controller side without having to modify the device. The controller memory may include a database of information relating to devices, samples, subjects, and/or information collected from the devices. The information collected from the devices may include raw data of detected signals within the device. The information collected from the devices may include some signal processing of the detected signals. Alternatively, the information collected from the devices may include analysis that may have been performed on board the device. The controller memory may be capable of storing non-transitory computer readable media, which may include code, logic, or instructions capable of performing steps described herein. The controller may comprise a processor. The processor may be capable of receiving instructions and providing signals to execute the instructions. The processor may be a central processing unit (CPU) that may carry out instructions of tangible computer readable media. In some embodiments, the processor may include one or more microprocessors. The processor of the controller may be capable of analyzing data received from the devices. The processor of the controller may also be capable of selecting one or more protocol to provide to the device. In some embodiments, the controller may be provided on a single external device. The single external device may be capable of providing protocols to the diagnostic device and/or receiving information collected from the diagnostic device. In some instances, the controller may be provided over a plurality of devices. In one example, a single external device or multiple external devices may be capable of providing protocols to the diagnostic device. A single external device or multiple external devices may be capable of receiving information collected from the diagnostic device. A single external device or multiple external devices may be capable of analyzing the information collected from the diagnostic device. Alternatively, the system may use cloud computing. One or more functions of the controller may be provided by a computer network, rather than being limited to a single external device. In some embodiments, a network or plurality of external devices may communicate with the diagnostic device and provide instructions to, or receive information from the diagnostic device. Multiple processors and storage devices may be used to perform the functions of the controller. The controller may be provided in an environment enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. Communication may be provided between a diagnostic device and a controller. The communication may be one way communication. For example, the controller may push down a protocol to the device. In another example, the device may initiate a request for a protocol from the controller. Or the device may only provide information to the controller without requiring a protocol from the controller. Preferably, two-way communication may be provided between the diagnostic device and the controller. For example, a protocol may be provided from a source external to the device. The protocol may or may not be based on information provided by the device. For example, the protocol may or may not be based on an input provided to the device, which may somehow determine the information provided by the device to the controller. The input may be manually determined by an operator of the device. For example, the operator may specify one or more tests that the operator wishes the device to perform. In some instances, the input may be determined automatically. For example, the tests to run may be determined automatically based on a characteristic of the sample, which modules are available or used, past records relating to a subject, a schedule of anticipated tests, or any other information. In some embodiments, the device may request specific protocols from the controller. In some other embodiments, the device may provide information to the controller, and the controller may select one or more protocols to provide to the device based on that information. The device may provide information collected at the device based on one or more detected signals from one or more sensors. The sensed information may be provided to the controller. The sensed information may or may not be collected during the operation of a protocol. In some embodiments, the controller may provide an additional protocol based on the information collected during the first protocol. The first protocol may be completed before the additional protocol is initiated, or the additional protocol may be initiated before the first protocol is completed, based on the information collected. A feedback system may be provided wherein a protocol may be provided or altered based on information collected during a protocol or after the completion of a protocol. One or more protocol may run in parallel, in sequence, or in any combination thereof. A device may perform an iterative process, which may use instructions, actions performed based on the instructions, data collected from the actions performed, which may optionally affect subsequent instructions, and so forth. A protocol may cause the device to perform one or more action, including but not limited to, a sample collection step, sample preparation step, assay step, and/or detection step. Within a system, a device may be capable of communicating with one or more entity. For example, the device may communicate with a lab benefits manager, who may collect information from the device. The lab benefits manager may analyze the information collected from the device. The device may communicate with a protocol provider, who may provide one or more instructions to the device. The protocol provider and lab benefits manager may be the same entity, or may be different entities. The device may optionally communicate with a payer, such as an insurance company. The device may optionally communicate with a health care provider. The device may communicate directly with one or more of these entities, or may communicate with them indirectly through another party. In one example, the device may communicate with a lab benefits manager, who may communicate with a payer and health care provider. In some embodiments, the device may enable a subject to communicate with a health care provider. In one example, the device may permit one or more image of a subject to be taken by the device, and provided to the subject's physician. The subject may or may not view the physician on the device. The image of the subject may be used to identification or diagnostic purposes. Other information relating to the subject's identification may be used, as described elsewhere herein. The subject may communicate with the physician in real-time. Alternatively, the subject may view a recording provided by the physician. The subject may advantageously be communicating with the subject's own physician which may provide additional comfort and/or sense of personal interaction for the subject. Alternatively, the subject may communicate with other health care providers, such as specialists. In some embodiments, diagnostic devices within a system may share resources. For example devices within a system may be communicating with one another. The devices may be directly linked to one another, or may communicate over a network. The devices may be directly linked to a shared resource or may communicate over a network with the shared resource. An example of a shared resource may be a printer. For example, a plurality of devices may be in communication with a single printer. Another example of a shared resource may be a router. A plurality of devices may share additional peripherals. For example, a plurality of devices within a system may communicate with a peripheral that may capture one or more physiological parameter of a subject. For example, the devices may communicate with a blood pressure measuring device, a scale, a pulse rate measuring device, and ultrasound image capturing device, or any other peripheral device. In some instances, a plurality of devices and/or systems may communicate with a computer, mobile device, tablet, or any other device that may be useful for interfacing with a subject. Such external devices may be useful for collecting information from the subject via a survey. In some embodiments, one or more controller of a system may determine which device may be using which peripheral at any given moment. In some embodiments, a peripheral device may communicate with a sample processing device a wireless connection (e.g. Bluetooth). The system may be capable of dynamic resource allocation. In some embodiments, the dynamic resource allocation may be system-wide or within a group of devices. For example, a plurality of devices may be connected to a plurality of shared resources. In one example, devices A and B may be connected to printer X, and devices C and D may be connected to printer Y. If a problem occurs with printer X, devices A and B may be able to use printer Y. Devices A and B may be able to communicate directly with printer Y. Alternatively, devices A and B may not be able to communicate directly with printer Y, but may be able to communicate with printer Y through devices C and D. The same may go for routers, or other sharable resources. Methods Methods for Processing Samples In some embodiments, a single device, such as a module or a system having one or more modules, is configured to perform one or more routines selected from the group consisting of sample preparation, sample assaying and sample detection. Sample preparation may include physical processing and chemical processing. The single device in some cases is a single module. In other cases, the single device is a system having a plurality of modules, as described above. FIG. 40 shows an example of one or more step that may be performed in a method. The method may or may not be performed by a single device. The method may include the step of sample collection 4000, sample preparation 4010, sample assay 4020, detection 4030, and/or output 4040. Any of these steps may be optional. Furthermore, these steps may occur in any order. One or more of the steps may be repeated one or more times. In one example, after a sample is collected, it may undergo one or more sample preparation step. Alternatively, after the sample is collected, it may directly go to a sample assay step. In another example, a detection step may occur directly after the sample is collected. In one example, the detection step may include taking an image of the sample. The image may be a digital image and/or video. In another example, after a sample has undergone one or more sample preparation step, it may go to a sample assay step. Alternatively, it may go directly to a detection step. After a sample has undergone one or more assay step, the sample may proceed to a detection step. Alternatively, the sample may return to one or more sample preparation step. After a sample has undergone a detection step, it may be output. Outputting may include displaying and/or transmitting data collected during the detection step. Following detection, the sample may undergo one or more sample preparation step or sample assay step. In some instances, following detection, additional sample may be collected. After a sample has been displayed and/or transmitted, additional sample preparation steps, sample assay steps, and/or detection steps may be performed. In some instances, protocols may be sent to a device in response to transmitted data, which may effect additional steps. In some instances, protocols may be generated on-board in response to detected signals. Analysis may occur on-board the device or may occur remotely based on transmitted data. A single device may be capable of performing one or more sample processing steps. In some embodiments, the term “processing” encompasses one or more of preparing the sample, assaying the sample, and detecting the sample to generate data for subsequent analysis off-board (i.e., off the device) or on-board (i.e., on the device). A sample processing step may include a sample preparation procedure and/or assay, including any of those described elsewhere herein. Sample processing may include one or more chemical reactions and/or physical processing steps described herein. Sample processing may include the assessment of histology, morphology, kinematics, dynamics, and/or state of a sample, which may include such assessment for cells or other assessment described herein. In an embodiment, a single device is configured to one or more sample preparation procedures selected from the group consisting of weighing or volume measurement of the sample, centrifugation, sample processing, separation (e.g., magnetic separation), other processing with magnetic beads and/or nanoparticles, reagent processing, chemical separation, physical separation, chemical separation, incubation, anticoagulation, coagulation, removal of parts of sample (e.g., physical removal of plasma, cells, lysate), dispersion/dissolution of solid matter, concentration of selected cells, dilution, heating, cooling, mixing, addition of reagent(s), removal of interfering factors, preparation of a cell smear, pulverization, grinding, activation, ultrasonication, micro column processing, and/or any other type of sample preparation step known in the art, including but not limited to those listed in FIG. 57. In an example, a single module is configured to perform multiple sample preparation procedures. In another example, a single system, such as the system 700, is configured to perform multiple sample preparation procedures. In another embodiment, a single device is configured to perform 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 10 or more assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof. In some situations, a single device is configured to perform multiple types of assays, at least one of which is cytometry or agglutination. In other situations, a single device is configured to perform multiple types of assays, including cytometry and agglutination. In an example, the system 700 is configured to perform cytometry with the aid of the cytometry station 707. A single device may be configured to perform any number of assays, including the numbers described elsewhere herein, in areas relating to Chemistry—Routine Chemistry, Hematology (includes cell-based assays, coagulation and andrology), Microbiology—Bacteriology (includes “Molecular Biology”), Chemistry—Endocrinology, Microbiology—Virology, Diagnostic Immunology—General Immunology, Chemistry—Urinalysis, Immunohematology—ABO Group & Rh type, Diagnostic Immunology—Syphilis Serology, Chemistry—Toxicology, Immunohematology—Antibody Detection (transfusion), Immunohematology—Antibody Detection (non-transfusion), Histocompatibility, Microbiology—Mycobacteriology, Microbiology—Mycology, Microbiology—Parasitology, Immunohematology—Antibody Identification, Immunohematology—Compatibility Testing, Pathology—Histopathology, Pathology—Oral Pathology, Pathology—Cytology, Radiobioassay, or Clinical Cytogenetics. The single device may be configured for the measurement of one or more or, two or more of, three or more of, or any number of (including those described elsewhere herein): proteins, nucleic acids (DNA, RNA, hybrids thereof, microRNA, RNAi, EGS, Antisense), metabolites, gasses, ions, particles (which may include crystals), small molecules and metabolites thereof, elements, toxins, enzymes, lipids, carbohydrates, prion, formed elements (e.g., cellular entities (e.g., whole cell, cell debris, cell surface markers)). A single device may be capable of performing various types of measurements, including but not limited to imaging, spectrometry/spectroscopy, electrophoresis, chromatography, sedimentation, centrifugation, or any others mentioned in FIG. 58. In some situations, the histology of a sample encompasses static information of the sample as well as temporal change of the sample. In an example, the sample as collected contains cells that multiply (or divide) or metastasize after the sample is collected. In another embodiment, a single device is configured to perform one or more types of sample detection routines, such as those described elsewhere herein. In some embodiments, multi-use or multi-purpose devices are configured to prepare and process a sample. Such devices may include 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more, or 20 or more, or 30 or more, or 40 or more, or 50 or more, or 100 or more modules, either as part of a single system or a plurality of systems in communication with one another. The modules may be in fluid communication with one another. Alternatively, the modules may be fluidically isolated or hydraulically independent from one another. In such a case, a sample transfer device may enable transferring a sample to and from a module. Such devices may accept 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more, or 20 or more, or 30 or more, or 40 or more, or 50 or more, or 100 or more samples. In an embodiment, devices accept samples in a batch fashion (e.g., 5 samples provided to a device at once). In another embodiment, devices accept samples in a continuous fashion. In some embodiments, fluidically isolated or hydraulically independent modules are hydraulically isolated from one another. In an embodiment, samples are processed in parallel. In another embodiment, samples are processed sequentially (or one after another). Devices provided herein may prepare and analyze the same sample or a plurality of different samples. In an example, devices provided herein process the same blood, urine and/or tissue sample. In another example, devices provided herein process different blood, urine and/or tissue samples. In some embodiments, devices for processing samples accept samples of volumes of at least about 1 nanoliter (nL), or 10 nL, or 100 nL, or 1 microliter (μL), or 10 μL, or 100 μL, or 1 milliliter (mL), or 10 mL, or 100 mL, or 1 liter (L), or 2 L, or 3 L, or 4 L, or 5 L, or 6 L, or 7 L, or 8 L, or 9 L, or 10 L, or 100 L, or 1000 L. In other embodiments, devices for processing samples accept samples of masses of at least about 1 nanogram (ng), or 10 ng, or 100 ng, or 1 microgram (μg), or 10 μg, or 100 μg, or 1 milligram (mg), or 10 mg, or 100 mg, or 1 gram (g), or 2 g, or 3 g, or 4 g, or 5 g, or 6 g, or 7 g, or 8 g, or 9 g, or 10 g, or 100 g, or 1000 g. A device may perform sample preparation, processing and/or detection with the aid of one module or a plurality of modules. For example, a device may prepare a sample in a first module (e.g., the first module 701 of FIG. 7) and run (or perform) an assay on the sample in a second (e.g., the second module 702 of FIG. 7) module separate from the first module. A device may accept one sample or a plurality of samples. In an embodiment, a system accepts a single sample and prepares, processes and/or detects the single sample. In another embodiment, a system accepts a plurality of samples and prepares, processes and/or detects one or more of the plurality of samples at the same time. In some embodiments, one or more modules of a device are fluidically isolated or hydraulically independent from one another. In an embodiment, the plurality of modules 701-706 of the system 700 are in fluid isolation with respect to one another. In an example fluid isolation is provided by way of seals, such as fluid or pressure seals. In some cases, such seals are hermetic seals. In other embodiments, one or modules of a system are fluidically coupled to one another. In some situations, devices having a plurality of modules are configured to communicate with one another. For example, a first device having a plurality of modules, such as the device 1000, is in communication with another device, such as a like or similar device having a plurality of modules. In such fashion, two or more devices may communicate with one another, such as to facilitate resource sharing. Processing of a biological sample may include pre-processing (e.g., preparation of a sample for a subsequent treatment or measurement), processing (e.g., alteration of a sample so that it differs from its original, or previous, state), and post-processing (e.g., fixing a sample, or disposing of all or a portion of a sample or associated reagents following its measurement or use). A biological sample may be divided into portions, such as aliquots of a blood or urine sample, or such as slicing, mincing, or dividing a tissue sample into two or more pieces. Processing of a biological sample, such as blood sample, may include mixing, stirring, sonication, homogenization, or other treatment of a sample or of a portion of the sample. Processing of a biological sample, such as blood sample, may include centrifugation of a sample or a portion thereof. Processing of a biological sample, such as a blood sample, may include providing time for components of the sample to separate or settle, and may include filtration (e.g., passing the sample or a portion thereof through a filter or membrane). Processing of a biological sample, such as a blood sample, may include allowing or causing a blood sample to coagulate. Processing of a biological sample, such as blood sample, may include concentration of the sample, or of a portion of the sample (e.g., by sedimentation or centrifugation of a blood sample, or of a solution containing a homogenate of tissue from a tissue sample, or with electromagnetic other other beads) to provide a pellet and a supernatant. Processing of a biological sample, such as blood sample, may include dilution of a portion of the sample. Dilution may be of an entire sample, or of a portion of a sample, including dilution of a pellet or of a supernatant from sample. A biological sample may be diluted with water, or with a saline solution, such as a buffered saline solution. A biological sample may be diluted with a solution which may or may not include a fixative (e.g., formaldehyde, paraformaldehyde, or other agent which cross-links proteins). A biological sample may be diluted with a solution such that an osmotic gradient is produced between the surrounding solution and the interior, or an interior compartment, of such cells, effective that the cell volume is altered. For example, where the resulting solution concentration following dilution is less than the effective concentration of the interior of a cell, or of an interior cell compartment, the volume of such a cell will increase (i.e., the cell will swell). A biological sample may be diluted with a solution which may or may not include an osmoticant (such as, for example, glucose, sucrose, or other sugar; salts such as sodium, potassium, ammonium, or other salt; or other osmotically active compound or ingredient). In embodiments, an osmoticant may be effective to maintain the integrity of cells in the sample, by, for example, stabilizing or reducing possible osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells. In embodiments, an osmoticant may be effective to provide or to increase osmotic gradients between the surrounding solution and the interior, or an interior compartment, of such cells, effective that the cells at least partially collapse (where the cellular interior or an interior compartment is less concentrated than the surrounding solution), or effective that the cells swell (where the cellular interior or an interior compartment is more concentrated than the surrounding solution). A biological sample may be dyed, or markers or reagents may be added to the sample, or the sample may be otherwise prepared for detection, visualization, or quantification of the sample, a portion of a sample, a component part of a sample, or a portion of a cell or structure within a sample. For example, a biological sample may be contacted with a solution containing a dye. A dye may stain or otherwise make visible a cell, a portion of a cell, a component inside a cell, or a material or molecule associated with a cell in a sample. A dye may bind to or be altered by an element, compound, or other component of a sample; for example a dye may change color, or otherwise alter one of more of its properties, including its optical properties, in response to a change or differential in the pH of a solution in which it is present; a dye may change color, or otherwise alter one of more of its properties, including its optical properties, in response to a change or differential in the concentration of an element or compound (e.g., sodium, calcium, CO2, glucose, or other ion, element, or compound) present in a solution in which the dye is present. For example, a biological sample may be contacted with a solution containing an antibody or an antibody fragment. For example, a biological sample may be contacted with a solution that includes particles. Particles added to a biological sample may serve as standards (e.g., may serve as size standards, where the size or size distribution of the particles is known, or as concentration standards, where the number, amount, or concentration of the particles is known), or may serve as markers (e.g., where the particles bind or adhere to particular cells or types of cells, to particular cell markers or cellular compartments, or where the particles bind to all cells in a sample). In an example, two rack-type devices like the system 700 of FIG. 7 are provided. The devices are configured to communicate with one another, such as by way of a direct link (e.g., wired network) or wireless link (e.g., Bluetooth, WiFi). While a first of the two rack-type devices processes a portion of a sample (e.g., blood aliquot), a second of the two-rack-type devices performs sample detection on another portion of the same sample. The first rack-type device then transmits its results to the second rack-type device, which uploads the information to a server in network communication with the second rack-type device but not the first rack-type device. Devices and methods provided herein are configured for use with point of service systems. In an example, devices are deployable at locations of healthcare providers (e.g., drug stores, doctors' offices, clinics, hospitals) for sample preparation, processing and/or detection. In some situations, devices provided herein are configured for sample collection and preparation only, and processing (e.g., detection) and/or diagnosis is performed at a remote location certified by a certifying or licensing entity (e.g., government certification). In some embodiments, a user provides a sample to a system having one or more modules, such as the system 700 of FIG. 7. The user provides the sample to a sample collection module of the system. In an embodiment, the sample collection module includes one or more of a lancet, needle, microneedle, venous draw, scalpel, cup, swab, wash, bucket, basket, kit, permeable matrix, or any other sample collection mechanism or method described elsewhere herein. Next, the system directs the sample from the sample collection module to one or more processing modules (e.g., modules 701-706) for sample preparation, assaying and/or detection. In an embodiment, the sample is directed from the collection module to the one or more processing modules with the aid of a sample handling system, such as a pipette. Next, the sample is processed in the one or more modules. In some situations, the sample is assayed in the one or more modules and subsequently put through one or more detection routines. In some embodiments, following processing in the one or more modules, the system communicates the results to a user or a system (e.g., server) in communication with the system. Other systems or users may then access the results to aid in treating or diagnosing a subject. In an embodiment, the system is configured for two-way communication with other systems, such as similar or like systems (e.g., a rack, such as that described in the context of FIG. 7) or other computers systems, including servers. Devices and methods provided herein, by enabling parallel processing, may advantageously decrease the energy or carbon footprint of point of service systems. In some situations, systems, such as the system 700 of FIG. 7, has a footprint that is at most 10%, or 15%, or 20%, or 25%, or 30%, or 35%, or 40%, or 45%, or 50%, or 55%, or 60%, or 65%, or 70%, or 75%, or 80%, or 85%, or 90%, or 95%, or 99% that of other point of service systems. In some embodiments, methods are provided for detecting analytes. In an embodiment, a processing routine includes detecting the presence or absence of an analyte. The processing routine is facilitated with the aid of systems and devices provided herein. In some situations, analytes are associated with biological processes, physiological processes, environmental conditions, sample conditions, disorders, or stages of disorders, such as one or more of autoimmune disease, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, and endocrine diseases. In some situations, a device processes one sample at a time. However, systems provided herein are configured for multiplexing sample processing. In an embodiment, a device processes multiple samples at a time, or with overlapping times. In an example, a user provides a sample to a device having a plurality of modules, such as the system 700 of FIG. 7. The device then processes the sample with the aid of one or more modules of the device. In another example, a user provides multiple samples to a device having a plurality of modules. The device then processes the samples at the same time with the aid of the plurality of modules by processing a first sample in a first module while processing a second sample in second module. The system may process the same type of sample or different types of samples. In an embodiment, the system processes one or more portions of the same sample at the same time. This may be useful if various assaying and/or detection protocols on the same sample are desired. In another embodiment, the system processes different types of samples at the same time. In an example, the system processes a blood and urine sample concurrently in either different modules of the system or a single module having processing stations for processing the blood and urine samples. In some embodiments, a method for processing a sample with the aid of a point of service system, such as the system 700 of FIG. 7, comprises accepting testing criteria or parameters and determining a test order or schedule based on the criteria. The testing criteria is accepted from a user, a system in communication with the point of service system, or a server. The criteria are selectable based on a desired or predetermined effect, such as minimizing time, cost, component use, steps, and/or energy. The point of service system processes the sample per the test order or schedule. In some situations, a feedback loop (coupled with sensors) enables the point of service system to monitor the progress of sample processing and maintain or alter the test order or schedule. In an example, if the system detects that processing is taking longer than the predetermined amount of time set forth in the schedule, the system speeds up processing or adjusts any parallel processes, such as sample processing in another module of the system. The feedback loop permits real-time or pseudo-real time (e.g., cached) monitoring. In some situations, the feedback loop may provide permit reflex testing, which may cause subsequent tests, assays, preparation steps, and/or other processes to be initiated after starting or completing another test and/or assay or sensing one or more parameter. Such subsequent tests, assays, preparation steps, and/or other processes may be initiated automatically without any human intervention. Optionally, reflex testing is performed in response to an assay result. Namely by way of non-limiting example, if a reflex test is ordered, a cartridge is pre-loaded with reagents for assay A and assay B. Assay A is the primary test, and assay B is the reflexed test. If the result of assay A is meets a predefined criteria initiating the reflex test, then assay B is run with the same sample in the device. The device protocol is planned to account for the possibility of running the reflex test. Some or all protocol steps of assay B can be performed before the results for assay A are complete. For example, sample preparation can be completed in advance on the device. It is possible also to run a reflex test with a second sample from the patient. In some embodiments, devices and systems provided herein may contain components such that multiple different assays and assay types may be reflex tested with the same device. In some embodiments, multiple tests of clinical significance may be performed in a single device provided herein as part of a reflex testing protocol, where the performance of the same tests with known systems and methods requires two or more separate devices. Accordingly, systems and devices provided herein may permit, for example, reflex testing which is faster and requires less sample than known systems and methods. In addition, in some embodiments, for reflex testing with a device provided herein, it is not necessary to know in advance which reflexed tested will be performed. In some embodiments, the point of service system may stick to a pre-determined test order or schedule based on initial parameters and/or desired effects. In other embodiments, the schedule and/or test order may be modified on the fly. The schedule and/or test order may be modified based on one or more detected conditions, one or more additional processes to run, one or more processes to no longer run, one or more processes to modify, one or more resource/component utilization modifications, one or more detected error or alert condition, one or more unavailability of a resource and/or component, one or more subsequent input or sample provided by a user, external data, or any other reason. In some examples, one or more additional samples may be provided to a device after one or more initial samples are provided to the device. The additional samples may be from the same subject or different subjects. The additional samples may be the same type of sample as the initial sample or different types of samples (e.g., blood, tissue). The additional samples may be provided prior to, concurrently with, and/or subsequent to processing the one or more initial samples on the device. The same and/or different tests or desired criteria may be provided for the additional samples, as opposed to one another and/or the initial samples. The additional samples may be processed in sequence and/or in parallel with the initial samples. The additional samples may use one or more of the same components as the initial samples, or may use different components. The additional samples may or may not be requested in view of one or more detected condition of the initial samples. In some embodiments, the system accepts a sample with the aid of a sample collection module, such as a lancet, scalpel, or fluid collection vessel. The system then loads or accesses a protocol for performing one or more processing routines from a plurality of potential processing routines. In an example, the system loads a centrifugation protocol and cytometry protocol. In some embodiments, the protocol may be loaded from an external device to a sample processing device. Alternatively, the protocol may already be on the sample processing device. The protocol may be generated based on one or more desired criteria and/or processing routines. In one example, generating a protocol may include generating a list of one or more subtasks for each of the input processes. In some embodiments, each subtask is to be performed by a single component of the one or more devices. Generating a protocol may also include generating the order of the list, the timing and/or allocating one or more resources. In an embodiment, a protocol provides processing details or specifications that are specific to a sample or a component in the sample. For instance, a centrifugation protocol may include rotational velocity and processing time that is suited to a predetermined sample density, which enables density-dependent separation of a sample from other material that may be present with a desirable component of the sample. A protocol is included in the system, such as in a protocol repository of the system, or retrieved from another system, such as a database, in communication with the system. In an embodiment, the system is in one-way communication with a database server that provides protocols to the system upon request from the system for one or more processing protocols. In another embodiment, the system is in two-way communication with a database server, which enables the system to upload user-specific processing routines to the database server for future use by the user or other users that may have use for the user-specific processing routines. In some cases, a processing protocol is adjustable by a user. In an embodiment, a user may generate a processing protocol with the aid of a protocol engine that provides the user one or more options geared toward tailoring the protocol for a particular use. The tailoring may occur prior to use of the protocol. In some embodiments, the protocol may be modified or updated while the protocol is in use. With the aid of a protocol, a system processes a sample, which may include preparing the sample, assaying the sample and detecting one or more components of interest in the sample. In some cases, the system performs data analysis with respect to the sample or a plurality of sample after processing. In other cases, the system performs data analysis during processing. In some embodiments, data analysis is performed on-board—that is, on the system. In other embodiments, data analysis is performed using a data analysis system that is external to the system. In such a case, data is directed to the analysis system while the sample is being processed or following processing. In some embodiments, a single sample from a subject provided to a device or component thereof may be used for two or more assays. The assays may be any assays described elsewhere herein. In some embodiments, a sample provided to a device may be whole blood. The whole blood may contain an anticoagulant (e.g. EDTA, Coumadins, heparin, or others). Within the device, whole blood may be subjected to a procedure to separate blood cells from plasma (e.g. by centrifugation or filtration). In an alternative, a sample containing separated blood cells and plasma may be introduced into a device (e.g. if a whole blood sample is separated into plasma and blood cells before insertion of the sample into the device). Whole blood may be used for one or more assays; in such circumstance, the whole blood may be processed (e.g. diluted) prior to the assays. A sample containing plasma and cell-containing portions may be further processed to prepare one or both of the portions for assays. For example, the plasma may be removed from the cells into a new vessel and diluted with one or more different diluents to generate one or more different sample dilution levels. The plasma samples (diluted or non-diluted) may be used for one or more different assays, including, for example immunoassays, general chemistry assays, and nucleic acid assays. In some examples, a plasma sample from an original whole blood sample may be used for at 1, 2, 3, 4, 5, or more immunoassays, 1, 2, 3, 4, 5, or more general chemistry assays, and 1, 2, 3, 4, 5, or more nucleic acid assays. In some examples, the plasma samples may be used for two or more different assays that result in two or more different optical properties that may be measured (for example, an assay may result in a change in the color of the assay, a change in the absorbance of the assay, a change in the turbidity of the assay, a change in the fluorescence of the assay, or a change in luminescence in the assay, etc.). In addition, the cells isolated from the same whole blood sample described above may also be used for one or more assays. For example, the cells may be measured by cytometry. Cytometry assays may include any descriptions of cytometry provided elsewhere herein, including cell imaging by microscopy and flow cytometry. In some embodiments, cells which are centrifuged or otherwise processed in a sub-optimal anticoagulant or other buffer, reagent, or sample condition may still be used for cytometry. In such circumstances, it may be advantageous to separate the cells rapidly from the sub-optimal conditions (e.g. by centrifugation or filtration) to minimize the time the cells are exposed to the sub-optimal conditions. In some embodiments, cells are further processed to separate the cells into different cell fractions or cell types—e.g. to separate red blood cells from white blood cells. In addition, cells may be measured by other types of assays, such as general chemistry assays (e.g. to perform hemagglutination assays for red blood cell typing). In some embodiments, methods are provided for performing with a device described herein two or more assays with a single sample from a subject, including one or more of: 1) if the sample is whole blood, separating the whole blood into plasma and cell portions, and optionally, retaining some blood as whole blood; 2) dividing an original sample of whole blood into 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 100, 200, 300, 400, 500, or more fluidically isolated aliquots; 3) dividing an original sample of plasma into 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 100, 200, 300, 400, 500, or more fluidically isolated aliquots; 4) diluting an original sample of plasma into one or more plasma samples having different dilution levels; 5) with plasma samples, performing at least one, two, or three assays of each of one, two, or three types of assays, the assay types selected from immunoassays, general chemistry assays, and nucleic acid assays; 6) with plasma sample assays, measuring assay results at least one, two, or three different detection units, such as, photodiodes PMTs, electrodiodes, spectrophotometers, imaging devices, cameras, CCD sensors, and nucleic acid assay station containing a light source and an optical sensor; 7) separating blood cells into white blood cell or red blood cell containing portions; 8) with cell-containing samples, performing at least one, two, or three assays of each of one, two, three, or four types of assays, the assay types selected from immunoassays, general chemistry assays, nucleic acid assays, and cytometry assays; 9) with cytometry assays, obtaining a digital image of one or more cells; 10) with cytometry assays, obtaining a cell count; 11) with cytometry assays, performing flow cytometry and obtaining scatter plots; 12) heating a sample; and 13) processing a sample with any reagent or chemical disclosed elsewhere herein. Accuracy, Sensitivity, Precision and Coefficient of Variation Accuracy is the degree of veracity. Precision is the degree of reproducibility. Accuracy is a measure of a closeness of a measurement to a predetermined target measurement, result, or reference (e.g., reference value). Precision is the closeness of a multiple measurements to one another. In some cases, precision is quantified using a mean degree of reproducibility. Accuracy may be quantified using a deviation or spread in relation to a predetermined value. In some embodiments, the system has a sensitivity that is the same irrespective of the type of sample being processed. In some instances, the system may be capable of detecting analytes or signals within the range of about one molecule (e.g., nucleic acid molecule), 5 molecules, 10 molecules, or within about 1 pg/mL, 5 pg/mL, 10 pg/mL, 50 pg/mL, 100 pg/mL, 500 pg/mL, 1 ng/mL, 5 ng/mL, 10 ng/mL, 50 ng/mL, 100 ng/mL, 150 ng/mL, 200 ng/mL, 300 ng/mL, 500 ng/mL, 750 ng/mL, 1 μg/mL, 5 μg/mL, 10 μg/mL, 50 μg/mL, 100 μg/mL, 150 μg/mL, 200 μg/mL, 300 μg/mL, 500 μg/mL, 750 μg/mL, 1 mg/mL, 1.5 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL, 5 mg/mL, 7 mg/mL, 10 mg/mL, 20 mg/mL, or 50 mg/mL. In some embodiments, a system, including one or more modules of the system, has a sensitivity that is sample-specific. That is, the sensitivity for detection of the system is dependent on one or more parameters that are specific to the sample, such as the type of sample. In some embodiments, the system has an accuracy that is the same irrespective of at least one sample parameter that is specific to a sample, such as the type of sample. In an embodiment, the system has an accuracy of at least about 20%, or 25%, or 30%, or 35%, or 40%, or 45%, 55%, or 60%, or 65%, or 70%, or 75%, or 80%, or 85%, or 90%, or 91%, or 92%, or 93%, or 94%, or 95%, or 96%, or 97%, or 98%, or 99%, or 99.9%, or 99.99%, or 99.999%. The modules, and/or components may have any accuracy, including those described elsewhere herein. In some embodiments, a system, including one or more modules of the system, has an accuracy that is sample-specific. That is, the accuracy of the system is dependent on at least one sample parameter that is specific to the sample, such as the type of sample. In such a case, the system may be able to provide more accurate results for one type of sample than another type of sample. In some embodiments, the system has a precision that is the same irrespective of at least one parameter that is specific to a sample, such as the type of sample. In other embodiments, the system has a precision that is sample-specific. In such a case, the system processes one type of sample at a higher precision than another type of sample. A coefficient of variation is the ratio between the standard deviation and an absolute value of the mean. In an embodiment, the system has a coefficient of variation (CV) (also “relative standard deviation” herein) less than or equal to about 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.3%, or 0.1%. In another embodiment, a module in the system has a coefficient of variation less than or equal to about 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.3%, or 0.1%. In another embodiment, a processing routine has a coefficient of variation less than or equal to about 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.3%, or 0.1%. Systems provided herein have coefficients of variation that are suited for longitudinal trend analysis, such as research study that involves repeated observations of the same variables over a predetermined period of time. In an example, results from a sample processed with a first system having a CV less than about 15% and a second system having a CV less than about 15% may be correlated to assess trends in health or treatment of a subject. Systems provided herein have dynamic ranges suited to processing samples having concentrations ranging over 100 orders of magnitude or more, 50 orders of magnitude or more, 30 orders of magnitude or more, 10 orders of magnitude or more, 7 orders of magnitude or more, 5 orders of magnitude or more, 4 orders of magnitude or more, 3 orders of magnitude or more, 2 orders of magnitude or more, or one order of magnitude or more. In an example, a system processes the same sample twice, first with a sample volume of about 0.1 mL and second with a sample volume of about 10 mL. The results of both cases fall within the accuracy, precision and coefficient of variation described above. In addition, systems provided herein are configured to detect signals within a range (“dynamic range”) of over 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more orders of magnitude. In some cases, the dynamic range is enabled by dilution. In an embodiment, dynamic feedback is used to determine the level of sample dilution. Sample Processing Rates In an embodiment, a point of service system or one or more modules within the system is configured to centrifuge a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a cytometry assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an immunoassay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a nucleic acid assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a receptor-based assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a colorimetric assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an enzymatic assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a mass spectrometry (or mass spectroscopy) assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an infrared spectroscopy assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an x-ray photoelectron spectroscopy assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an electrophoresis assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a nucleic acid sequencing (e.g., single-molecule sequencing) assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform an agglutination assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a chromatography assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a coagulation assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform electrochemical measurements on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a histology assay on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In another embodiment, a point of service system or one or more modules within the system is configured to perform a live cell analysis (assay) on a sample in a time period of at most about 4 hours, or 3 hours, or 2 hours, or 1 hour, or 45 minutes, or 30 minutes, or 15 minutes, or 10 minutes, or 9 minutes, or 8 minutes, or 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes, or 3 minutes, or 2 minutes, or 1 minute, or 45 seconds, or 30 seconds, or 20 seconds, or 10 seconds, or 5 seconds, or 3 seconds, or 1 second, or 0.5 second, or 0.1 second. In an embodiment, a processing system, such as a point of service system, is configured to perform any one assay selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof in a time period of at most about 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to perform any two assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof in a time period of at most about 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute. In another embodiment, a processing system, such as a point of service system, is configured to perform any three assays selected from the group consisting of immunoassay, nucleic acid assay, receptor-based assay, cytometric assay, colorimetric assay, enzymatic assay, electrophoretic assay, electrochemical assay, spectroscopic assay, chromatographic assay, microscopic assay, topographic assay, calorimetric assay, turbidimetric assay, agglutination assay, radioisotope assay, viscometric assay, coagulation assay, clotting time assay, protein synthesis assay, histological assay, culture assay, osmolarity assay, and/or other types of assays or combinations thereof in a time period of at most about 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute. In an embodiment, a point of service system, such as the system 700 of FIG. 7, is configured to process at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 samples in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a plurality of point of service systems working in parallel are configured to process at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 samples in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a sample and processes the sample in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a sample, processes the sample and provide (or transmit) results of the processing in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a plurality of samples and processes the samples in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a plurality of samples, processes the samples and provide (or transmit) results of the processing in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a sample and assay the sample in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a sample, assay the sample and provide (or transmit) results of the assaying in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a sample, prepare the sample and assay the sample in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a sample, prepare the sample, assay the sample and provide (or transmit) results of the assaying in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a sample and perform multiple assays on the sample in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a sample, perform multiple assays on the sample and provide (or transmit) results of the assaying in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In an embodiment, a processing system, such as a point of service system, is configured to collect a plurality of samples and perform multiple assays on the samples in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a plurality of samples, perform multiple assays on the samples and provide (or transmit) results of the assaying in a time period of at most about 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. A processing system, such as a point of service system, may be configured to collect one or more samples and sequence a genetic signature from the sample. The entire genome may be sequenced or selected portions of the genome may be sequenced. The processing system may be configured to collect and sequence the sample in a time period of at most about 48 hours, 36 hours, 24 hours, 18 hours, 12 hours, 8 hours, 6 hours, 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. In another embodiment, a processing system, such as a point of service system, is configured to collect a plurality of samples, perform multiple assays on the samples and provide (or transmit) results of the assaying in a time period of at most about 48 hours, 36 hours, 24 hours, 18 hours, 12 hours, 8 hours, 6 hours, 5 hours, or 4 hours, or 3 hours, or 2 hours, or 1 hour, or 30 minutes, or 10 minutes, or 5 minutes, or 1 minute, or 30 seconds. Systems provided herein are configured to store data with the aid of data storage modules of the system or external storage systems coupled to the systems. In some situations, data collected and/or generated during or after sample processing is compressed and storage in a physical storage medium, such as a hard disk, memory or cache. In an embodiment, data is compressed with the aid of lossless compression. This may minimize or eliminate any loss of data fidelity. Processing systems described herein are configured for use as point of service systems. In an embodiment, a point of service system is a point of care system. A point of care system may be used at a point of service location, such as a subject's location (e.g., home or business or sports event or security screening or combat location), the location of a healthcare provider (e.g., doctor), a pharmacy or retailer, a clinic, a hospital, an emergency room, a nursing home, a hospice care location, or a laboratory. A retailer may be a pharmacy (e.g., retail pharmacy, clinical pharmacy, hospital pharmacy), drugstore, chain store, supermarket, or grocer. Examples of retailers may include but are not limited to Walgreen's, CVS Pharmacy, Duane Reade, Walmart, Target, Rite Aid, Kroger, Costco, Kaiser Permanente, or Sears. In some situations, a point of service system (including but not limited to point of care system) is deployed at any location that is designated for use by a certifying or licensing entity (e.g., a government certifying entity). In other situations, a point of service system may be used in or embedded in a transportation vehicle, such as a car, boat, truck, bus, airplane, motorcycle, van, traveling medical vehicle, mobile unit, ambulance, fire engine/truck, critical care vehicle, or other vehicle configured to transport a subject from one point to another. A sample collection site may be at a sample acquisition site and/or health assessment and/or treatment locations (which may include any of the sample collection sites described elsewhere herein including but not limited to emergency rooms, doctors' offices, urgent care, tents for screening (which may be in remote locations), a health care professional walking into someone's house to provide home care). The system (device) or a combination of systems (devices) may be located/positioned at strategic point of service locations. Locations may be selected and optimized based on a variety of objectives, such as but not limited to disease prevalence, rates of disease development, projected disease rates, estimated risk of outbreaks, population demographics, government policies and regulations, customer, physician and patient preferences, access to other technologies at said locations, safety and risk estimates, safety threats, etc. Devices can be relocated on a periodic basis to improve overall utility on a frequent basis, such as daily, weekly, monthly, annually, etc. Systems can be updated to improve performance and/or add functionality. Systems can be updated on a module by module basis. System updates can occur via hardware and/or via software. Systems can be updated with minimal downtime via features enabling blade and/or module extraction and insertion. Additionally, a point of service location where a sample may be collected from a subject or provided by a subject may be a location remote to an analyzing laboratory. The sample collection site may have a separate facility from the laboratory. The sample may or may not be collected fresh from the subject at the point of service location. Alternatively, the sample may be collected from the subject elsewhere and brought to the point of service location. In some embodiments, no sample preparation step is provided on the sample before being provided to the device. For example, no slide needs to be prepped before a sample is provided to the device. Alternatively, one or more sample preparation step may be performed on the sample before being provided to the device. A sample collection site at a point of service location may be a blood collection center, or any other bodily fluid collection center. The sample collection site may be a biological sample collection center. In some embodiments, a sample collection site may be a retailer. Other examples of sample collection sites may include hospitals, clinics, health care professionals' offices, schools, day-care centers, health centers, assisted living residences, government offices, traveling medical care units, or the home. For example, a sample collection site may be a subject's home. A sample collection site may be any location where a sample from the subject is received by the device. A collection site may be a moving location, such as on or with a patient or in a mobile unit or vehicle or with a travelling doctor. Any location may be designated as a sample collection site. The designation may be made by any party, including but not limited to the laboratory, entity associated with the laboratory, governmental agency, or regulatory body. Any description herein relating to sample collection site or point of service location may relate to or be applied to retailers, hospitals, clinics, or any other examples provided herein and vice versa. Point of service systems described in various embodiments, such as a point of care systems, are configured for with various types of sample, such as, tissue samples (e.g., skin, parts of organs), fluid samples (e.g., breath, blood, urine, saliva, cerebrospinal fluid) and other biological samples from a subject (e.g., feces). Point of service systems described herein are configured to process samples at a location where the point of service system is accessible by a user. In an example, a point of service system is located at a subject's home and a sample is collected from a subject and processed in the subject's home. In another example, a point of service system is located at a drug store and a sample is collected from a subject and processed in the drug store. In another example, a point of service system is located at the location of a healthcare provider (e.g., doctor's office) and a sample is collected from a subject and processed at the location of the healthcare provider. In another example, a point of service system is located onboard a transportation system (e.g., vehicle) and a sample is collected from a subject and processed on the transportation system. In some embodiments, a sample processing system may be deployed at a location outside of a central laboratory (e.g. at a school, home, field hospital, clinic, business, vehicle, etc.). In some embodiments, a sample processing system may be deployed at a location that has a primary purpose other than laboratory services (e.g. at a school, home, field hospital, clinic, business, vehicle, etc.). In some embodiments, the sample processing system may be deployed at a location that is not dedicated to processing samples received from multiple sample acquisition locations. In some embodiments, a sample processing system may be located less than about 1 kilometer, 500 meters, 400 meters, 300 meters, 200 meters, 100 meters, 75 meters, 50 meters, 25 meters, 10 meters, 5 meters, 3 meters, 2 meters, or 1 meter from the location at which a sample is obtained from a subject. In some embodiments, a sample processing system may be located within the same room, building, or campus at which a sample is obtained from a subject. In some embodiments, a sample processing system may be on or in a subject. In some embodiments, a sample may be provided directly from a subject to a sample processing system. In some embodiments, a sample may be provided to a sample processing system within 48 hours, 36 hours, 24 hours, 12 hours, 8 hours, 6 hours, 4 hours, 3 hours, 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, 5 minutes, 1 minute, or 30 seconds of collection of the sample from a subject. In some embodiments, a sample processing system may be portable. In some embodiments, a sample processing system may have a total volume of less than about 4 m3, 3 m3, 2 m3, 1 m3, 0.5 m3, 0.4 m3, 0.3 m3, 0.2 m3, 0.1 m3, 1 cm3, 0.5 cm3, 0.2 cm3, or 0.1 cm3. In some embodiments, a sample processing system may have a mass of than about 1000 kg, 900 kg, 800 kg, 700 kg, 600 kg, 500 kg, 400 kg, 300 kg, 200 kg, 100 kg, 75 kg, 50 kg, 25 kg, 10 kg, 5 kg, 2 kg, 1 kg, 0.5 kg, 0.1 kg, 25 g, 10 g, 5 g, or 1 g. In some embodiments, a sample processing system may be configured for ambulatory sample processing. In some embodiments, a system provided herein may be used in space or in zero or low gravity. In such embodiments, the system may be modified to adjust for the reduced gravity, such as by including seals on all liquid vessels and sample handling systems. In addition, steps which rely on gravity (e.g. settling of samples) may instead be achieved by the application of a force (e.g. centrifugation). Furthermore, the assays may be calibrated to account for changes to the reactions due to low gravity. In some embodiments, point of service testing may be performed at the location of a sample processing system. In some embodiments, post-sample processing analysis, including diagnosis and/or treatment, is performed by the point of service system at the location of the point of service system. In other embodiments, post-sample processing analysis is performed remotely from a location in which a sample is collected and processed. In an example, post-sample processing analysis is performed at the location of a healthcare provider. In another example, post-sample processing analysis is performed at the location of a processing system. In another example, post-sample processing analysis is performed on a server (e.g., on the cloud). The post-sampling analysis may occur at a laboratory or by an entity affiliated with a laboratory. A laboratory can be an entity or facility capable of performing a clinical test or analyzing collected data. A laboratory can provide controlled conditions in which scientific research, experiments, and measurement can be performed. The laboratory can be a medical laboratory or clinical laboratory where tests can be done on clinical specimens, or analysis can occur on data collected from clinical specimens, in order to get information about the health of a patient as pertaining to the diagnosis, prognosis, treatment, and/or prevention of disease. A clinical specimen may be a sample collected from a subject. Preferably, a clinical specimen may be collected from the subject at a sample collection site that is at a separate facility from the laboratory, as described in further detail elsewhere herein. The clinical specimen may be collected from the subject using a device, which is placed at a designated sample collection site or in or on the subject. In some embodiments, a laboratory may be a certified laboratory. The certified laboratory may be an authorized analytical facility. Any description herein of a laboratory may apply to an authorized analytical facility and vice versa. In some instances, the laboratory may be certified by a governmental agency. A laboratory may receive certification or oversight by a regulatory body. In one example, the laboratory may be certified by an entity, such as Centers for Medicare & Medicaid Services (CMS). For instance, an authorized analytical facility may be a Clinical Laboratory Improvement Amendments (CLIA) certified laboratory or its equivalent in any foreign jurisdiction. In other embodiments, post-processing analysis is performed on the device. The same device that receives a sample and/or processes the sample may also perform post-processing analysis. Alternatively the device that receives the same and/or processes the sample does not perform post-processing analysis. In some instances, post-processing analysis may occur both on-board and off-board the device. In an embodiment, post-processing analysis is performed with the aid of a post-processing module of the point of service system. In another embodiment, post-processing analysis is performed with the aid of a post-processing system that is external to the point of service system. In an example, such post-processing system may be located at a healthcare provider or other entity that is authorized to perform post-processing analysis. In some situations, a point of service system is disposed at a location of a paying party or entity. In an example, a point of service system is disposed at the location of a healthcare provider that has provided (or will provide) payment to use the point of service system. In another example, a point of service system is disposed at drugstore that has provided (or will provide) payment to use the point of service system. In an embodiment, post-processing systems enable diagnosis, such as disease diagnosis. In another embodiment, post-processing systems enable treatment. In another embodiment, post-processing systems enable diagnosis and treatment. Post-processing systems may be useful for disease diagnosis, treatment, monitoring, and/or prevention. In an example, post-processing systems enable drug screening. In such a case, a point of service system collects a sample (e.g., urine sample) from a subject and processes the sample, such as by performing centrifugation and one or more assays. Next, the point of service system generates data for subsequent post-processing analysis, which includes identifying (or flagging) whether a predetermined drug has been found in the sample. The post-processing analysis is done on the system. Alternatively, the post-processing analysis is done at a location remote from the location of the point of service system. In some cases, point of service systems are used in clinical trials, such as for the development of therapeutics. Such clinical trials include one or more procedures conducted to allow safety (or, more specifically, information about adverse drug reactions and adverse effects of other treatments) and efficacy data to be collected for health interventions (e.g., drugs, diagnostics, devices, therapy protocols). Point of service systems and information systems provided herein may be used to facilitate enrollment of patients in clinical trials, either through testing or through integrated EMR (electronic medical record) systems or both. Point of service systems provided herein, in some cases, are configured for use in pre-clinical development (or trials). In an example, a point of service system, such as the system 700 of FIG. 7, is used for processing samples and collecting data for feasibility testing, iterative testing and safety, which may be used in pre-clinical development. Such trials may include animal testing. Point of service systems described herein advantageously enable testing using small sample volumes at processing rates that enable numerous tests to be performed with a given sample. Pre-clinical trials with the aid of point of service systems provided herein enable the assessment of efficacy and/or toxicity of a therapeutic drug or metabolite thereof, or a treatment regimen. Point of service systems provided herein may optionally be used for biotoxin testing. The point of service system may process environmental or product samples, and may detect one or more toxin. Point of service systems described herein advantageously enable testing using small sample volumes at processing rates that enable numerous tests to be performed with a given sample. Toxin testing with the aid of point of service systems provided herein enable the assessment of a threat in the environment (e.g., contaminated water, air, soil) or product (e.g., food and/or beverage products, building materials, and/or any other products). Point of service systems provided herein, such as the system 700 of FIG. 7, enable phylogenetic classification, parental identification, forensic identification, compliance or non-compliance testing, monitoring adverse drug reactions (ADRs), developing individualized medicine, calibration of treatment or therapeutic systems and methods, assessing the reliability of treatment or therapeutic systems and methods, and/or trend analysis (e.g., longitudinal trend analysis). Compliance or non-compliance testing with the aid of point of service systems described above may improve patience compliance, which may lower healthcare costs associated with complying with a particular treatment. As part of individualized medicine, a subject uses a point of service system to collect a sample from the subject and process the sample. In an example, a urine sample is collected from the subject and tested for the presence of one or more predetermined drugs. In some situations, the collection of samples, processing of the samples and post-processing analysis provides subject-specific (or individualized) care. In some cases, following sample collection and processing from a subject, the point of service system or post-processing system transmits a notification or alert to the subject or a healthcare provider. In an example, a point of service system transmits an alert to a subject's doctor if the system determines that the concentration of a monitored drug (or metabolite of the drug) is above and/or below a predetermined limit. In an embodiment, a point of service system is used to process a sample and perform post-processing analysis to generate data that is used with other systems. In another embodiment, a point of service system is used to process a sample and direct post-processing data to another system for post-processing analysis with the post-processing data. In such a case, the results of the analysis are configured to be shared with other systems or individuals, such as if certain access requirements are met. In an example, post-processing data or the results of post-processing analysis are shared with a payer (e.g., insurance company), healthcare provider, laboratory, clinic, other point of service device or module, and/or a subject. Point of service systems may be used to accept, process, and/or analyze a small volume of sample, which may include the volumes described elsewhere herein. Point of service systems may also be used for providing rapid results. The point of service systems may be able to process and/or analyze a sample within a short amount of time, which may include the lengths of time described elsewhere herein. Systems provided herein are configured for use as point of service systems. Such systems are configured to collect and process one or more samples at various locations, such as a subject's home or the location of a healthcare provider. In some embodiments, systems provided herein, such as the system 700 of FIG. 7, have a downtime of at most about 2 hours, 1 hour, 30 minutes, 10 minutes, 5 minutes, 1 minute, 30 seconds, 1 second, or 0.5 seconds between sample processing routines. In some cases, during the downtime the system resets. In other embodiments, systems provided herein, such as the system 700 of FIG. 7, are configured to transmit data to a post-processing system within a time period of at most about 10 minutes, 9 minutes, 8 minutes, 7 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, 1 minute, 30 seconds, 10 seconds, 5 seconds, 1 second, 0.5 seconds, 0.1 seconds, or 0.01 seconds, or 0.001 seconds after processing. In an example, the system 700 collects and processes a first sample and transmits data to a post-processing system. The system 700 is able to accept a second sample for processing 0.5 seconds after the system 700 transmits data. In some situations, a system, such as the system 700 of FIG. 7, is configured to accept 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10 samples per collection routines. In other situations, a system, such as the system 700 of FIG. 7, is configured to accept 1 sample at a time, at a time period of at most about 10 minutes, 9 minutes, 8 minutes, 7 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, 1 minute, 30 seconds, 10 seconds, 5 seconds, or 1 second between sample collection points. In some embodiments, multiple samples may include multiple types of samples. In other instances, multiple samples may include the same type of sample. The multiple samples may be collected from the same subject or from different subjects. The multiple samples may be collected at the same time or at different points in time. Any combination of these may be provided for multiple samples. In some embodiments, point of service systems, such as the system 700 of FIG. 7, are configured for remote treatment, such as with the aid of audio and/or visual media coupled with a communications system, such as a network or telephonic system. In an example, a subject provides a sample to a point of service system, which processes the sample to generate data is processed. Next, the system establishes a communications link with a remote healthcare provider who reviews the subject's data and provides a diagnosis. The healthcare provider then aids the subject in treatment. In an embodiment, the healthcare provider is selected by the subject. In some embodiments, at least one of the components of the system is constructed of polymeric materials. Non-limiting examples of polymeric materials include polystyrene, polycarbonate, polypropylene, polydimethysiloxanes (PDMS), polyurethane, polyvinylchloride (PVC), polysulfone, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene (ABS), and glass. Systems and subcomponents of the systems may be manufactured by variety of methods including, without limitation, stamping, injection molding, embossing, casting, blow molding, machining, welding, ultrasonic welding, and thermal bonding. In an embodiment, a device in manufactured by injection molding, thermal bonding, and ultrasonic welding. The subcomponents of the device may be affixed to each other by thermal bonding, ultrasonic welding, friction fitting (press fitting), adhesives or, in the case of certain substrates, for example, glass, or semi-rigid and non-rigid polymeric substrates, a natural adhesion between the two components. Device Use and Identification Methods The device may be configured to perform only sample processing and data generation. Alternatively, the device may be configured to perform sample processing, data generation as well as subsequent qualitative and/or quantitative evaluation. In other embodiments, the same device may perform sample processing, data generation, and/or qualitative and/or quantitative evaluation on a case-by-case basis. For example, any combination of these device functionalities can be applied on a per test basis, on a per sample basis, on a per patient basis, on a per customer basis, on a per operator basis, and/or on a per location basis. Prior to, concurrently with, and/or subsequent to receiving a sample at a device, a subject's identity may be verified. The sample may have been collected from the subject. A subject's identity may also be verified prior to, concurrently with, and/or subsequent to processing a sample at a device. This may include verifying a subject's identity prior to, concurrently with, and/or subsequent to preparing a sample at the device, and/or assaying the sample at the device. In some embodiments, a subject may be associated with a payer. For example, a payer, such as a health insurance company, government payer, or any other payer as described herein, may provide coverage for the subject. A payer may pay some or all of the subject's medical bills. Any description herein of the subject's insurance coverage and/or verifying the insurance coverage may also apply to any other coverage by any payer. A subject's insurance coverage may be verified. For example, the system may verify that the subject is a member having access to insurance coverage. The system may also verify that that the subject is eligible for certain tests and/or programs under the insurance. For example, certain subjects may be eligible for free diabetes tests or genetic tests. In some instances, different subjects may be eligible for different tests. Such availability of tests may be customized for individual subjects or for population groups. Such test eligibility may be based on a set of rules or guidelines generated for an insurance company. Such verification of insurance membership and/or test eligibility may be implemented by a software system. A subject may arrive at a point of service and may be checked in. In some embodiments, checking in may include verifying the identity of the subject. Checking in may also include determining a payer for a subject, such as whether the subject has health insurance coverage. Such procedures may be automated at the point of service. The point of service may include a physician's office, a retailer site, or any other point of service as described elsewhere herein. In some embodiments, the device may be used to check in the subject. Alternatively, an external device which may or may not be in communication with the device may be used to check in the subject. Checking a subject in may permit a system to access one or more pre-existing records for the subject. In some embodiments, when a subject arrives at a point of service, the identification of the subject may be verified. In some embodiments, a sample collected from the subject may arrive at a point of service with or without the subject. The identification of the subject may be verified using the device, and/or verified by personnel at the point of service. For example, the personnel at the point of service may view the subject's identification and/or insurance card. The device may or may not capture an image of the subject and/or collect one or more biometric parameter from the subject. The device may assess one or more characteristics associated with the subject including but not limited to subject's appearance, facial recognition, retinal scan, fingerprint scan, handprint scan, weight, height, circumference, voice, gait, movement, proportions, proteomic data, genetic data, analyte levels, heart rate, blood pressure, electrophysiological readings, and/or body temperature, in order to assist with identifying the subject. One or more of the characteristics of the subject that may be assessed may include one or more physiological parameters of the subject, which may include one or more of the characteristics listed above (e.g., heart rate, blood pressure, electrophysiological readings, body temperature). The device may generate a genetic signature for the subject from a sample collected from the subject, and compare the genetic signature with a pre-stored genetic signature for the subject. The device may also generate a proteomic signature for the subject from a sample collected from the subject, and compare the proteomic signature with a pre-stored proteomic signature for the subject. In some embodiments, a subject's identification may be verified when a genetic signature matches the pre-stored genetic signature. An exact match and/or approximate match may be required. A subject's identification may be verified when a difference between the proteomic signature and a pre-stored proteomic signature falls within an acceptable range. The subject's identification may be verified using a combination of a static and dynamic signature verification from one or more biological sample of the subject. For example, a subject's genetic signature may be static while the subject's proteomic signature may be dynamic. Other examples of dynamic signatures may include one or more analyte levels, and/or other physiological characteristics of the subject. Identity verification may include comparing one or more static and/or dynamic signature information with previously stored information relating to the subject. The previously stored information may be accessed by the device. The previously stored information may be on-board or external to the device. Identity verification may also incorporate general knowledge that need not be subject-specific. For example, the verification may flag a possible issue for a dynamic signature if the subject's height changes drastically when the subject is a fully grown adult, but may not flag an issue if the subject's height changes within an acceptable range when the subject is a growing child or adolescent. The general knowledge may be on-board or external to the device. The general knowledge may be stored in one or more memory. In some embodiments, the device and/or an external device may be capable of data mining public information provided across a network. Verification may occur on-board the device. Alternatively, the identification of the subject may be collected at the point of service and may be further verified at another entity or location. The other entity or location may verify identity and/or coverage automatically without human intervention, or with human intervention. Verification may occur on-board and/or off-board using a software program. In some examples, a laboratory, health care professional, or payer may verify the subject identity. The device, laboratory, health care professional, and/or payer may be capable of accessing subject information, such as electronic health records. Verification may occur rapidly and/or in real-time. For example, verification may occur within 1 hour or less, 30 minutes or less, 20 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, 3 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 20 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, 3 seconds or less, 1 second or less, 0.5 seconds or less, or 0.1 seconds or less. The verification may be automated without requiring any human intervention. The system may verify the identity of the subject for the system's records, for insurance coverage, to reduce cost, to save time, to prevent fraud, or any other purpose. The verification may be performed by the device. The verification may be performed by an entity or external device in communication with the device. The verification may occur at any time. In one example, the subject's identity may be verified prior to preparing the subject's sample for the test. The subject's identity may be verified prior to providing a sample to the device and/or cartridge. The verification of the subject's identity may be provided prior to, currently with, or after verifying the subject's insurance coverage. The verification of the subject's identity may be provided prior to, currently with, or after verifying the subject has received a prescription to undergo said qualitative and/or quantitative evaluation. The verification may take place through communications with the medical care provider, laboratory, payer, laboratory benefits manager, or any other entity. Verification may occur by accessing one or more data storage units. The data storage units may include an electronic medical records database and/or a payer database. An electronic medical records database may include any information relating to the subject's health, medical records, history, or treatment. Verification may occur rapidly and/or in real-time. For example, verification may occur within 10 minutes or less, 5 minutes or less, 3 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 20 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, 3 seconds or less, 1 second or less, 0.5 seconds or less, or 0.1 seconds or less. The verification may be automated without requiring any human intervention. The verification may include information provided by the subject. For example, the verification may include scanning an identification card and/or insurance card of the subject. The verification may include taking a picture of the subject and/or the subject's face. For example, the verification may include taking a two-dimensional or three-dimensional snapshot of the subject. Cameras may be used which may provide a two-dimensional digital image of the subject and/or that may be capable of formulating a three-dimensional or four-dimensional image of the subject. In some embodiments, a plurality of cameras may be used simultaneously. A four-dimensional image of the subject may incorporate changes over time. The verification may include taking a picture of the subject's face for identification. The verification may include taking a picture of another portion of the subject's face for identification, including but not limited to the patient's whole body, arm, hand, leg, torso, foot, or any other portion of the body. The verification may employ a video camera and/or a microphone that may capture additional visual and/or audio information. The verification may include comparing the subject's movements (e.g., gait), or voice. The verification of a subject may include entering personal information related to the subject, such as the subject's name, insurance policy number, answers to key questions, and/or any other information. The verification may include collecting one or more biometric read-out of the subject. For example, the verification may include a fingerprint, handprint, footprint, retinal scan, temperature readout, weight, height, audio information, electrical readouts, or any other information. The biometric information may be collected by the device. For example, the device may have a touchscreen upon which the subject may put the subject's palm to be read by the device. The touchscreen may be capable of scanning one or more body part of the subject, and/or receiving a temperature, electrical, and/or pressure readout from the subject. In some embodiments, the touchscreen may be capable of measuring a body-mass index for the subject. Such a measurement may be based on an electrical readout from the subject. In one example a method for measuring the body-fat percentage of a subject may be provided, comprising providing a touchscreen, and placing a first finger on a first side of the touchscreen and a second finger on a second side of the touchscreen. A current may be directed through the body of the subject, wherein the current is directed through the body of the subject through the first finger and the second finger. The body-fat percentage of the subject may be determined by measuring the resistance between the first finger and the second finger with the aid of the current directed through the body of the subject. The touchscreen may be a capacitive touchscreen or resistive touchscreen. In one example, the touchscreen may be at least a 60-point touchscreen. The first finger may be on a first hand of the subject and the second finger may be on a second hand of the subject. In one non-limiting example, the bioelectrical impedance analysis (BIA) method allows one to estimate body fat percentage. The general principle behind BIA: two or more conductors are attached to a person's body and a small electric current is sent through the body. The resistance between the conductors will provide a measure of body fat between a pair of electrodes, since the resistance to electricity varies between adipose, muscular and skeletal tissue. Calculation of fat percentage uses the weight, so that must be measured with scales, estimated by the device computer vision system, and/or entered by the user. Another implementation measures impendence with conductors applied to both hands and feet for additional accuracy. Alternatively, the device may receive the biometric information from other devices. For example, the device may receive the subject's weight from a scale that may be separate from the device. The information may be sent directly from the other devices (e.g., over wired or wireless connection) or may be entered manually. The verification may also include information based on a sample collected from the subject. For example, the verification may include a genetic signature of the subject. When the sample is provided to the device, the device may use at least part of the sample to determine the genetic signature of the subject. For example, the device may perform one or more nucleic acid amplification step and may determine key genetic markers for the subject. This may form the subject's genetic signature. The subject's genetic signature may be obtained prior to, concurrently with, or after processing the sample on the device. The subject's genetic signature may be stored on one or more data storage unit. For example, the subject's genetic signature may be stored in the subject's electronic medical records. The subject's collected genetic signature may be compared with the subject's genetic signature already stored in the records, if it exists. Any other unique identifying characteristic of the subject may be used to verify the subject's identity. Methods for the amplification of nucleic acids, including DNA and/or RNA, are known in the art. Amplification methods may involve changes in temperature, such as a heat denaturation step, or may be isothermal processes that do not require heat denaturation. The polymerase chain reaction (PCR) uses multiple cycles of denaturation, annealing of primer pairs to opposite strands, and primer extension to exponentially increase copy numbers of the target sequence. Denaturation of annealed nucleic acid strands may be achieved by the application of heat, increasing local metal ion concentrations (e.g. U.S. Pat. No. 6,277,605), ultrasound radiation (e.g. WO/2000/049176), application of voltage (e.g. U.S. Pat. No. 5,527,670, U.S. Pat. No. 6,033,850, U.S. Pat. No. 5,939,291, and U.S. Pat. No. 6,333,157), and application of an electromagnetic field in combination with primers bound to a magnetically-responsive material (e.g. U.S. Pat. No. 5,545,540), which are hereby incorporated by reference in their entirety. In a variation called RT-PCR, reverse transcriptase (RT) is used to make a complementary DNA (cDNA) from RNA, and the cDNA is then amplified by PCR to produce multiple copies of DNA (e.g. U.S. Pat. No. 5,322,770 and U.S. Pat. No. 5,310,652, which are hereby incorporated by reference in their entirety). One example of an isothermal amplification method is strand displacement amplification, commonly referred to as SDA, which uses cycles of annealing pairs of primer sequences to opposite strands of a target sequence, primer extension in the presence of a dNTP to produce a duplex hemiphosphorothioated primer extension product, endonuclease-mediated nicking of a hemimodified restriction endonuclease recognition site, and polymerase-mediated primer extension from the 3′ end of the nick to displace an existing strand and produce a strand for the next round of primer annealing, nicking and strand displacement, resulting in geometric amplification of product (e.g. U.S. Pat. No. 5,270,184 and U.S. Pat. No. 5,455,166, which are hereby incorporated by reference in their entirety). Thermophilic SDA (tSDA) uses thermophilic endonucleases and polymerases at higher temperatures in essentially the same method (European Pat. No. 0 684 315, which is hereby incorporated by reference in its entirety). Other amplification methods include rolling circle amplification (RCA) (e.g., Lizardi, “Rolling Circle Replication Reporter Systems,” U.S. Pat. No. 5,854,033); helicase dependent amplification (HDA) (e.g., Kong et al., “Helicase Dependent Amplification Nucleic Acids,” U.S. Pat. Appln. Pub. No. US 2004-0058378 A1); and loop-mediated isothermal amplification (LAMP) (e.g., Notomi et al., “Process for Synthesizing Nucleic Acid,” U.S. Pat. No. 6,410,278), which are hereby incorporated by reference in their entirety. In some cases, isothermal amplification uses transcription by an RNA polymerase from a promoter sequence, such as may be incorporated into an oligonucleotide primer. Transcription-based amplification methods commonly used in the art include nucleic acid sequence based amplification, also referred to as NASBA (e.g. U.S. Pat. No. 5,130,238); methods which rely on the use of an RNA replicase to amplify the probe molecule itself, commonly referred to as Qβ replicase (e.g., Lizardi, P. et al. (1988) BioTechnol. 6, 1197-1202); self-sustained sequence replication (e.g., Guatelli, J. et al. (1990) Proc. Natl. Acad. Sci. USA 87, 1874-1878; Landgren (1993) Trends in Genetics 9, 199-202; and HELEN H. LEE et al., NUCLEIC ACID AMPLIFICATION TECHNOLOGIES (1997)); and methods for generating additional transcription templates (e.g. U.S. Pat. No. 5,480,784 and U.S. Pat. No. 5,399,491), which are hereby incorporated by reference in their entirety. Further methods of isothermal nucleic acid amplification include the use of primers containing non-canonical nucleotides (e.g. uracil or RNA nucleotides) in combination with an enzyme that cleaves nucleic acids at the non-canonical nucleotides (e.g. DNA glycosylase or RNaseH) to expose binding sites for additional primers (e.g. U.S. Pat. No. 6,251,639, U.S. Pat. No. 6,946,251, and U.S. Pat. No. 7,824,890), which are hereby incorporated by reference in their entirety. Isothermal amplification processes can be linear or exponential. Nucleic acid amplification for subject identification may comprise sequential, parallel, or simultaneous amplification of a plurality of nucleic acid sequences, such as about or more than about 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 50, 100, or more target sequences. In some embodiments, a subjects entire genome or entire transcriptome is non-specifically amplified, the products of which are probed for one or more identifying sequence characteristics. An identifying sequence characteristic includes any feature of a nucleic acid sequence that can serve as a basis of differentiation between individuals. In some embodiments, an individual is uniquely identified to a selected statistical significance using about or more than about 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 50, 100, or more identifying sequences. In some embodiments, the statistical significance is about, or smaller than about 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14, 10−15 or smaller. Examples of identifying sequences include Restriction Fragment Length Polymorphisms (RFLP; Botstein, et al., Am. J. Hum. Genet. 32: 314-331, 1980; WO 90/13668), Single Nucleotide Polymorphisms (SNPs; Kwok, et al., Genomics 31: 123-126, 1996), Randomly Amplified Polymorphic DNA (RAPD; Williams, et al., Nucl. Acids Res. 18: 6531-6535, 1990), Simple Sequence Repeats (SSRs; Zhao & Kochert, Plant Mol. Biol. 21: 607-614, 1993; Zietkiewicz, et al. Genomics 20: 176-183, 1989), Amplified Fragment Length Polymorphisms (AFLP; Vos, et al., Nucl. Acids Res. 21: 4407-4414, 1995), Short Tandem Repeats (STRs), Variable Number of Tandem Repeats (VNTR), microsatellites (Tautz, Nucl. Acids. Res. 17: 6463-6471, 1989; Weber and May, Am. J. Hum. Genet. 44: 388-396, 1989), Inter-Retrotransposon Amplified Polymorphism (IRAP), Long Interspersed Elements (LINE), Long Tandem Repeats (LTR), Mobile Elements (ME), Retrotransposon Microsatellite Amplified Polymorphisms (REMAP), Retrotransposon-Based Insertion Polymorphisms (RBIP), Short Interspersed Elements (SINE), and Sequence Specific Amplified Polymorphism (SSAP). Additional examples of identifying sequences are known in the art, for example in US20030170705, which is incorporated herein by reference. A genetic signature may consist of multiple identifying sequences of a single type (e.g. SNPs), or may comprise a combination of two or more different types of identifying sequences in any number or combination. Genetic signatures can be used in any process requiring the identification of one or more subjects, such as in paternity or maternity testing, in immigration and inheritance disputes, in breeding tests in animals, in zygosity testing in twins, in tests for inbreeding in humans and animals; in evaluation of transplant suitability such as with bone marrow transplants; in identification of human and animal remains; in quality control of cultured cells; in forensic testing such as forensic analysis of semen samples, blood stains, and other biological materials; in characterization of the genetic makeup of a tumor by testing for loss of heterozygosity; and in determining the allelic frequency of a particular identifying sequence. Samples useful in the generation of a genetics signature include evidence from a crime scene, blood, blood stains, semen, semen stains, bone, teeth, hair, saliva, urine, feces, fingernails, muscle or other soft tissue, cigarettes, stamps, envelopes, dandruff, fingerprints, items containing any of these, and combinations thereof. In some embodiments, two or more genetic signatures are generated and compared. In some embodiments, one or more genetics signatures are compared to one or more known genetic signatures, such as genetic signatures contained in a database. The genetic signature may be generated by the device that receives the sample. The genetic signature may be generated by the device that prepares the sample and/or runs one or more assay. Data collected from the device may be sent to an external device that may generate the genetic signature. The genetic signature may be generated in combination on the device and an external device. In some embodiments, a system or device is linked to an automated Laboratory Automation System (LAS). This Laboratory Automation System may operate on the device or on an external device, including in the cloud. In some embodiments, it may operate in a centralized laboratory facility. The Laboratory Automation System may be operably linked to a Laboratory Information System (LIS), which is linked to and, in some embodiments, integrated into an Electronic Medical Records system (EMR). As assay or other data is generated on the device, the data may be fed into the LAS for analysis and in turn into the LIS and EMR systems. A self-learning data engine may be integrated into the EMR system such that as data is transmitted into the EMR, models running within the EMR can refit and retune based on real-time data from the field. Such models may power clinical decision support systems which may index comprehensive biochemical data generated from a wide range of assay methodologies running simultaneously on the devices against clinical rules-based systems, which can be customized in or imported into the EMR systems databases from various sources, such as hospitals, academic centers, or laboratories. Algorithms in the self-learning data engine may power selection of the appropriate clinical decision support programs for the end-user. Such selection may happen dynamically based on the data generated on the device or data prompts entered into the device. In some embodiments, certain applications of clinical decision support systems are provided below. In some embodiments, a system may verify whether the subject has received instruction to undergo a clinical test from a health care professional. The system may thus verify whether a subject has received an order from a health care professional to undertake a qualitative and/or quantitative evaluation of a biological sample. For example, the system may verify whether the subject has received a prescription from the health care professional to take the test. The system may verify whether the subject has received instructions from the health care professional to provide a sample to the device. The system may also verify whether the subject was authorized to go to a particular point of service to undergo the test. The verification may occur with aid of the device. The verification may occur at any time. In one example, the subject's authorization to take the test may be verified prior to preparing the subject's sample for the test. The subject's authorization to take the test may be verified prior to providing a sample to the device and/or cartridge. The verification of the subject's authorization may be provided after verifying the subject's identification. The verification of the subject's authorization may be provided before or after verifying the subject has insurance coverage for the clinical test. The system may verify whether the subject is covered by health insurance for a qualitative and/or quantitative evaluation of a sample, within the verifying step is performed prior to, concurrently with, or after processing a biological sample with the aid of a device, or transmitting the data from the device. The verification may take place through communications with the medical care provider, laboratory, payer, laboratory benefits manager, or any other entity. Verification may occur rapidly and/or in real-time. For example, verification may occur within 10 minutes or less, 5 minutes or less, 3 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 20 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, 3 seconds or less, 1 second or less, 0.5 seconds or less, or 0.1 seconds or less. The verification may be automated without requiring any human intervention. The system may also verify whether the subject has insurance coverage (and/or coverage by any other payer) for the one or more sample processing steps to occur. The system may verify whether the subject has insurance coverage, and also whether the subject has the coverage for the specific requested tests. The system may verify whether the subject has insurance coverage to provide a sample to the device. The system may also verify whether the subject has insurance coverage for going to the point of service and undergoing one or more test. The verification may occur at any time. In one example, the subject's insurance coverage may be verified prior to preparing the subject's sample for the test. The subject's insurance coverage may be verified prior to providing a sample to the device and/or cartridge. The verification of the subject's insurance coverage may be provided after verifying the subject's identification. The verification of the subject's insurance coverage may be provided before or after verifying the subject has received a prescription to take the clinical test. The verification may take place through communications with the medical care provider, laboratory, payer, laboratory benefits manager, or any other entity. The verification may occur with the aid of the device. Verification may occur rapidly and/or in real-time. For example, verification may occur within 10 minutes or less, 5 minutes or less, 3 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 20 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, 3 seconds or less, 1 second or less, 0.5 seconds or less, or 0.1 seconds or less. The verification may be automated without requiring any human intervention. The system may also verify whether the clinical test is appropriate for the subject. The system may verify whether an order for a qualitative and/or quantitative evaluation is within a set of policy restrictions. Such policy restrictions may form guidelines. Such policy restrictions may be policy restriction of a payer, prescribing physician or other ordering health care professional, laboratory, governmental or regulatory body, or any other entity. Such verification may depend on one or more known characteristic of the subject including but not limited to gender, age, or past medical history. A clinical decision support system may be provided. The system may be capable of accessing one or more medical records, or information associated with the subject. The system may also be able to access general medical data. The system may be able to access records relating to the identity of the subject, insurance coverage of the subject, past and present medical treatments of the subject, biological features of the subject, and/or prescriptions provided to the subject. The system may be able to access electronic health records and/or pull up patient records and history. The system may also be able to pull up payer records, such as insurance and financial information relating to the subject. The verification may occur with the aid of the device. In determining appropriateness of a test, the system may provide additional front-end decision support. For example, if a physician ordered the same test for the subject the previous week, and it is not the type of test that needs to be repeated within a week, the system may determine that the test is not appropriate. In another example, if the test somehow conflicts with a previous test or would not be appropriate in view of a treatment the subject is undergoing, the system may determine that the test is inappropriate. In some embodiments, prior to providing a qualitative and/or quantitative evaluation, the system may be capable of accessing one or more records database and/or payer database. In some instances, the system may be capable of determining which records database and/or payer database to access prior to providing said qualitative and/or quantitative evaluation, and/or prior to accessing said databases. Additionally, the system may be capable of accessing general information that may or may not be specific to the subject or a peer group of the subject. The system may be capable of web crawling and/or mining public information, which may include information on a network, such as the Internet. The system may make such determination based on the subject's identity, the subject's payer information, information collected about the sample, the proposed qualitative and/or quantitative evaluation, and/or any other information. In one example, an inappropriate test may be a pregnancy test for a male subject or a PSA level (prostrate-specific antigen) for a female subject. Such tests may fall outside the policy restrictions of a payer or prescribing physician. Such ordering errors may be detectable by reviewing the test ordered and information associated with the subject. Such information associated with the subject may include medical records for the subject or identifying information about the subject. In one example, the appropriateness of the test is verified prior to preparing the subject's sample for the test. The subject's test appropriateness may be verified prior to, concurrently with, or subsequent to providing a sample to the device and/or cartridge. The verification of the subject's test appropriateness may be provided after or prior to verifying the subject's identification and/or insurance coverage. The verification may take place through communications with the medical care provider, laboratory, payer, laboratory benefits manager, or any other entity. A clinical decision support system may operate rapidly and/or in real-time. For example, verification may occur within 10 minutes or less, 5 minutes or less, 3 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 20 seconds or less, 15 seconds or less, 10 seconds or less, 5 seconds or less, 3 seconds or less, 1 second or less, 0.5 seconds or less, or 0.1 seconds or less. The clinical decision support system may be automated without requiring any human intervention. In some embodiments, qualified personnel may assist with collecting the subject's identity and/or providing a sample from the subject to the device. The qualified personnel may be an authorized technician that has been trained to use the device. The qualified personnel may be a designated operator of the device. The qualified personnel may or may not be a health care professional. In some embodiments, the identity of the qualified personnel may be verified. The qualified personnel's identity may be verified prior to, currently with, or after receiving the biological sample, transmitting the data from the device electronically and/or analyzing the transmitted data. The qualified personnel's identity may be verified prior to, currently with, or after verifying the identity of the subject. The qualified person's identity may be verified using one or more of the techniques described elsewhere herein. The system may be capable of providing one or more laboratory reports. The laboratory reports may be provided to a health care professional. In some instances, a laboratory report may be provided to a subject. The laboratory report may be provided via a user interface on a sample processing device. Alternatively, the laboratory may be provided to one or more external devices. The laboratory report may include data that may be viewed longitudinally. The data may include information collected over time. Such information over time may include biochemical data, analyte levels, physiological information, lifestyle information, medical care and treatment information, and/or any other information that may be collected by a device. One or more graph or chart may show the change or stability of the information over time. One or more projected trend may also be displayed. In some situations, a laboratory report (or other report of or related to the health, condition, or well-being of a subject) is prepared with the aid of methods (e.g., multivariate methods) provided in U.S. patent application Ser. No. 12/412,334 to Michelson et al. (“METHODS AND SYSTEMS FOR ASSESSING CLINICAL OUTCOMES”), which is entirely incorporated herein by reference. In an example, a laboratory report includes details as to the trajectory, velocity and/or acceleration of the progression of a condition (e.g., health or disease condition) of a subject. The trajectory may be indicative of the likelihood of progression to the clinical outcome. A laboratory report may be prepared with the aid of asynchronous data management. In some embodiments, the longitudinal data may be displayed on the sample processing device. The sample processing device may process a sample and transmit data to an external device. Analysis may occur external to the device or on-board the device. The result of the analysis which may include one or more laboratory report, electronic medical record, laboratory analysis, medical consultation, medical reference, or any other display, may be displayed on the sample processing device. Any description herein of laboratory report and/or any other item on the aforementioned list may apply to mention of any other item on the aforementioned list. Alternatively, the laboratory report, electronic medical record, or any other display may be displayed on a device external to the sample processing device. The display of data may include longitudinal data presented over time. Such longitudinal data may account for changes in values, rates of changes of values, rates of rates of changes of value, or any further rates of change thereof. Such longitudinal data may include predictive data and/or past estimated data. Such information may include graphics or charts showing such data over time. Such information include videos that show change of an image over time. Such data may include evaluative information. Such information may include information relating to diagnosis, prognosis, and/or treatment. The longitudinal analysis may be possible due to low coefficient of variation of the data collected. The longitudinal display and/or analysis may be based on data having a coefficient of variation having any of the values described elsewhere herein. In some cases, the longitudinal analysis may be possible due to high frequency of testing. In some cases, high frequency of testing is enabled by convenient point of service locations, such as drug stores, doctors' offices, clinics, hospitals, supermarkets, or subjects' homes or offices. The system may include automated clinical decision support. The clinical decision support may include a front-end clinical decision support system and/or a back-end clinical decision support system. In one example of a front-end system, when a test is ordered for a subject, the clinical decision support system may indicate whether a test is appropriate/inappropriate for a subject, whether the subject has already undergone the test (e.g., if the test was conducted recently, it may show the test results rather than conducing the test), and/or whether a subject is undergoing too many tests. The clinical decision support may also recommend additional tests for a subject. In some embodiments, data may be provided in real-time on a user interface, such as a touchscreen. The displayed data may be customized for an individual viewing the data, or may be customized based on the data. For example, the display and associated clinical decision support may be customized for a health care professional based on biochemical data. A customized health report or the analysis may display customized recommendations based on best practices from relevant clinical decision support systems and provide better insight into disease onset, progression, and regression, through, e.g., the analysis, longitudinal and other multi-variate (or multivariate) analyses on the data. The analysis report may include information from the existing EMR system analysis or any results of any tests for a subject described herein, and/or any prognosis or treatment plans or otherwise health advice tailored for a given subject. In one example of a back-end system the clinical decision support system may refer to one or more guidelines or rules. The guidelines/rules may be customized per health care professional, per subject, per health insurance company or other payer, per hospital, clinic or other medical entity, or any other group. In some instances, the guidelines/rules may be customized based on biochemical data. The clinical decision support system may take biochemical data and customize a recommendation for a subject based on lifestyle information, dietary information, or any other information that may be collected, including those described elsewhere herein. In some in stances, the back-end clinical decision support may take the data (e.g., including the biochemical data) and customize one or more financial transaction. Such financial transactions may include reimbursements for an insurance company, and/or health care professional, or charging for one or more services. The clinical decision support may be linked to one or more subject's records. The clinical decision support may be linked to the subject's medical records and/or payer records. The clinical decision support may integrate the use of additional general knowledge. The clinical decision support may be updated periodically or continuously to accommodate up-to-date clinical knowledge. The clinical decision supports may include best practices or data associated with diagnosing, treating, monitoring, and/or preventing one or more disease. In one example, the clinical decision support system may have one or more instructions associated with taking care of diabetes. By linking the subject's records, the clinical decision support system may be able to provide individualized subject care. For example, by linking the subject's medical record with the clinical decision support system, the clinical decision support system may be able to order additional tests or suggest next steps based on additional information relating to the subject including but not limited to subject's medical history, subject's family's medical history, demographic information about these subject (age, gender), lifestyle information about the subject (subject's diet, exercise, habits), possible environmental considerations (e.g., if the subject lived in an area that was exposed to particular toxins or that has higher risks of certain diseases), and/or any other information about the subject. The clinical decision support system may also be able to provide population-based clinical decision support. The clinical decision support system may be able to provide support for one or more peer groups. Such groups may be divided in any manner. For example, the groups may be based on age, gender, lifestyle, geography, employment, medical history, family medical history, or any other factors. The clinical decision support system may use epidemiological models for providing decision support. Information gathered from epidemiological sources may be applied to one or more groups of patients. In one example, an individual may arrive and perform an eligibility test to see if they are eligible for one or more test. The individual may then be pre-screened and may answer a questionnaire. The questionnaire may include questions about the subject's lifestyle (e.g., diet, exercise, habits) and/or medical history. A physician may perform a physician check of the individual. In some situations, the questionnaire includes questions about the subject's dietary consumption, exercise, health condition and/or mental condition. The subject's health condition may be of or related to the subject's physiological condition. The subject's mental condition may be related to the subject's mood or a depressive disorder, such as depression. The questionnaire may be a guided questionnaire, having a plurality of questions of or related to the subject's dietary consumption, exercise, health condition and/or mental condition. In some situations, the questionnaire is presented to the subject with the aid of a system (or sub-system) configured to learn from the subject's responses and tailor subsequent questions in response to the subject's responses. The questionnaire may be presented to the subject with the aid of a user interface, such as graphical user interface (GUI), on a display of the device. In some embodiments, lifestyle recommendations may be made by the device and/or system back to the consumer. Such recommendations may be provided prior to, concurrently with, or subsequent to completing the questionnaire. Such recommendations may be made based on the information gathered within the questionnaire, medical records, biochemical data, and/or test results. The device may interpret subject responses to questions with the aid of reference information. In some situations, the reference information comprises a pictorial depiction of portion size of the dietary consumption, exertion level of the exercise, existing state of health condition and/or existing state of mental condition. The reference information may be included in a calibration matrix stored in a memory location (e.g., cache, hard drive, flash memory) of the device. The device and/or health care personnel may collect biometric information about the individual (e.g., blood pressure, weight, body temperature). This may be coupled with a test of a sample collected from the subject, which may be processed by the device. All the information may be linked and may be accessible by the clinical decision support system. In some embodiments, all the information may be linked within a single subject's records. Such procedures may be useful for annual checkups or preventative care. Such procedures may also be useful for diagnosing, treating, or monitoring a disease. Clinical decision support may provide improved patient triage. For example, the clinical decisions support system may make a diagnosis or suggest a condition of a subject based on the patient's information (e.g., analyte level, physiological information, additional information, or any combination thereof). Such conditions of the patient may be better narrowed or more precise/accurate probabilities may be assigned by incorporating the subject-specific information. The clinical decision support may also be able to flag one or more critical situations, and may cause an alert to be provided to the subject and/or a health care provider of the subject. The clinical decision support system may be able to flag one or more condition which may require expedited further analysis, and institute one or more proceeding to assist with the further analysis. A health care provider for the subject may be able to access the clinical decision support system and/or additional records associated with the subject. For example, the subject may provide a sample to a device, which may run one or more tests. The clinical decision support system may provide test results to the subject's primary care physician. The primary care physician may be able to view the subject's test results and/or past test results. The primary care physician may also be able to view additional information provided by the clinical decision support system. In some embodiments, the clinical decision support system may be able to provide the primary care physician with information for a specialty outside the primary care physician's expertise. For example, if a primary care physician has a cancer patient, the clinical decision support system may assist the primary care physician with cancer specific information. The clinical decision support system may provide one or more suggestion to the physician. The decision may include one or more recommended intervention by the physician. Such recommendations may be provided to the physician when requested by the physician, when particular conditions are detected, when the clinical decision support is completed with analysis, or upon a schedule. In some embodiments, a device may be provided at the physician's office. The subject may be able to provide a sample to the device at the physician's office, and the physician may receive one or more test results while the subject is visiting the physician's office. The clinical decision support system may determine the quality of care of a given health care professional. In some instances, the quality of care of a physician may be determined by the clinical decision support system to be provided to one more payer (e.g., health insurance company). The quality of care may be determined based on changes in the subject's data during the subject's interaction with the health care professional. Such changes may include lifestyle changes, changes in biochemical data, feedback from patients, or any other information. Methods may be provided which may advantageously accommodate reflex testing. Based on one or more test results, additional tests may be run on the device. Such tests and subsequent tests may be scheduled in real time. Since test results may be provided on-board the device, or may be performed automatically off-board, and may cause subsequent tests to be automatically performed using the device. The subsequent tests may be performed on the same sample upon which one or more initial tests were performed. Alternatively, the device may request an additional sample from a subject based on the needed tests. After a first test is performed, if a second test is needed, it may be initiated quickly. In some embodiments, the second test is initiated in 4 hours or less, 3 hours or less, 2 hours or less, 1 hour or less, 30 minutes or less, 15 minutes or less, 10 minutes or less, 5 minutes or less, 1 minute or less, 45 seconds or less, 30 seconds or less, 15 seconds or less, 5 seconds or less, 1 second or less, or 0.1 second or less from the completion of the first test. This may advantageously permit a plurality of tests to occur without requiring the subject to go to a sample collection site multiple times. This may also advantageously permit a plurality of tests to occur without requiring a doctor to prescribe additional steps. The amount of time to reach a diagnosis, monitoring, treatment, and/or prevention of disease may be greatly reduced. Such a reflex procedure may be used during a subject's visit to a physician. Such a reflex procedure may occur before the subject sees the physician, while the subject is seeing a physician, and/or after the subject has seen the physician. The reflex procedure may use the clinical decision support. In some instances, when a test is ordered, a health care professional may do the reflex, and determine additional tests or steps. Alternatively, the device and/or clinical decision support may provide reflex testing. For example, if a value is out of range (e.g., level of an analyte of a sample is outside an expected range), though a touchscreen, a health care professional can do reflex analysis on the same sample. Alternatively, all tests can be automatically run on a sample, and if the health care professional wants to perform another test because something is out of range, data can be displayed. In some instances, the data displayed may only include what the health care professional ordered. Alternatively, additional data may be displayed that may be deemed relevant by the clinical decision support. In some instances, one or more laboratory report may be provided to a health care professional. In some instances, the laboratory report may be displayed on a sample processing device, or any external device. Laboratory reports and/or laboratory order systems may be customized for reflex analysis. In one example, an order form may permit a user to order a test, and may also show a field to enter and/or display what reflex analysis is desired. A report may show reflex analysis that was conducted for a result. The results of the reflex analysis may also be displayed. The clinical decision support may be capable of self-learning. In some embodiments, a subject's response, a subject's response to one or more treatment may be monitored, and such data may be accessible by the clinical decision support system. The clinical decision support's self-learning may be directed to individualized subjects. For example, the clinical decision support may learn that a particular subject does not react well to a particular type of drug. The clinical decision support's self-learning may also be generalized. For example, the clinical decision support system may become aware of a pattern that people of a particular demographic or having particular characteristics may or may not respond well to a particular treatment. The clinical decision support may draw on the subject's records, other patients' records, general health information, public information, medical data and statistics, insurance information, or other information. Some of the information may be publicly available on the Internet (e.g., web sites, articles, journals, databases, medical statistics). The clinical decision support system may optionally crawl web sites or databases for updates to information. Additional information that may be collected/accessed by the clinical decision support system may include an entity's own trials and information about effectiveness and/or toxicity of drugs. In some embodiments, self-learning may occur on the cloud. As additional data is gathered, it may be uploaded to the cloud, and may be accessible by the clinical decision support system. The device may be useful for assisting with drug and/or medication prescriptions. For example, the device may be used to check analyte levels within a subject before a drug prescription is written. The device may determine a drug concentration. The device may be used to periodically test a subject in order to gauge how much medication the subject took, regardless of when a re-fill of a medication was made. The device may be used to test a drug presence or level within a subject prior to, concurrently with, or subsequent to providing a prescription for the drug. Such testing to determine drug levels and/or analyte levels may be useful for testing the efficacy and safety of a drug. After a drug has been prescribed to a subject, the device may be useful for determining whether the drug is safe or useful based on pharmacodynamic profiles. Such testing may also be useful for testing the subject's compliance and/or non-compliance with taking the drug (e.g., if drug levels are too high the subject may be overdosing, if drug levels are too low, the subject may not be taking the medication as often as the subject is supposed to). The device may be useful for monitoring the drug level within the subject over time, to determine whether the subject is complying with a schedule for taking the drug. Drug and/or analyte levels may be correlated with compliance and/or non-compliance. A component of the device, such as a blade, may store medicines, possibly in pill or liquid forms. Based on test results, historical data, physician orders, medical guidance, and/or additional medical records as required, such medicines may be dispensed to subjects. Medicines can be packed, sealed, and labeled as required automatically by the device and then dispensed to the subject. One or more alert may be provided to a health care professional and/or the subject if certain conditions are detected. For example, if the device is having a toxic or harmful effect on the subject and/or if the subject is not complying, then appropriate alerts may be provided. The sample, or a portion thereof, may be archived by the device for later testing. This process may be triggered by a test result, a device error, or other factors, as defined by a set of procedures and/or rules. The archived sample may be packaged to maintain the integrity of the sample and may be stored in a cooled chamber. The archived sample may be sealed in a vessel (e.g. with a septum) and labeled as required automatically by the device. Archived sample may be stored in a vessel under a vacuum. The archived sample may be later analyzed by the same device, or transferred to another device, or sent to another testing facility. The test results using the archived sample may be combined with any prior test results from the initial sample testing. Devices as described herein may be useful for telemedicine. As described elsewhere herein, the devices may be useful for verifying the identity of a subject and/or an operator of the device. The device and/or system may be able to confirm the subject's identity, access payer information, determine whether the subject received an order to perform a test, determine whether the test falls within a set of rules, access a clinical decision support system, dispense a prescription drug, or perform other steps. The devices may be capable of performing qualitative and/or quantitative analysis of a subject's health and/or medical condition. For example, the devices may be capable processing a sample of the subject, which may be useful for the determination of one or more analyte level of the subject. The presence and/or concentration of analyte may be used to assess a health condition of the subject and/or verify the identity of the subject. The device may also be capable of collecting one or more physiological measurement of the subject. Such information may also be useful to assess the health of the subject and/or verify the identity of the subject. In some instances, additional qualitative information about the subject's lifestyle and/or habits may be collected and may be used to assess the subject's health. Any information collected relating to the subject as described anywhere herein may be useful for assessing the health of the subject (e.g., diagnoses, treatment, and/or disease prevention of the subject). Any information collected by the device relating to the subject may be accessible by the subject's physician or other health care professional. In some embodiments, only a subset of the information collected by the device may be accessible to the subject's physician. Any description herein of a physician may apply to the subject's primary care physician, or other health care professional. The subject's physician may be at a separate location from the subject. Alternatively, the subject's physician may be at the same location from the subject. The subject's physician may be able to assess a state of the subject's health without seeing the subject in person. The device may be provided at a point of service location. The device may advantageously enable a subject to go to a point of service location and have information collected about the subject which may be relied upon by the physician in assessing the subject's state of health. The physician may be the subject's primary care physician, which may enable the subject to maintain personal relations with a physician that is familiar with the subject, and the subject's medical history and condition. In another embodiment, the device or system may perform real time language interpretation services when the patient and the healthcare provider speak different languages. For instance, a visitor to a country may go to a device locations, such as a retail location, connect with the best medical relevant, qualified or available healthcare person who may not be able to speak the visitor's language. In that case, the device may detect this barrier automatically or the device may prompt the patient or the healthcare provider for language preferences and provide translation services automatically. In another embodiment, the device may be placed in a remote and under-developed area, country or location where large pools of population may never get access to high quality healthcare professionals. In this example, the device, with the help of the external controller or the cloud automatically brings healthcare experts from developed world in contact with patients in remote and rural areas and performs language and other cultural interpretations based on not just spoken language, but sign language, body language and physical gestures using cameras, image analysis and motion detection and other sensors in the device or modules. In another embodiment, the device may use the external controller and cloud to overcome certain cultural barriers based on local customs that prevent delivery of healthcare to certain population. For example, in certain areas where only female healthcare professionals are allowed to interface with female patients, the device may detect the sex of a patient and automatically or with manual verification connect a female patient with a female healthcare provider in a remote or local location, enabling access to greater healthcare services where none or little access to such services would be possible. The device may use image acquisition, identification, voice and other physical cues using cameras and image analysis and facial recognition to provide this capability. In some embodiments, the physician may be interacting with the subject in real time through the device from a remote location, or at the same location. In other embodiments, the physician and the subject need not be interacting in real time—information relating to the subject may be collected via the device, and may be accessible by the physician at another time. The physician may determine what follow-up actions if any need to be made, or whether a real-time in person or remote visit should be scheduled. One or more camera may be provided which may capture an image of the subject. Any type of camera or combination of cameras, as described elsewhere herein may be useful for capturing the image. In some embodiments, the camera may capture a static image of the subject or a video image of the subject. In one example, a streaming video of a subject may be captured by the device, which may be sent to a physician at a remote location. A camera may or may not capture an image of the physician at the physician's location and send and image of the physician to the device. An image of the physician may be captured by a sample processing device at the physician's location. Alternatively, the image of the physician may be captured by any other type of device. For example, the subject and physician may video conference via the device. The video conferencing may show two-dimensional images of the subject and physician, or three-dimensional images of the subject and physician. In alternate embodiments, audio information may be used for teleconferencing between the subject and physician. One or more static and/or video images may be captured and sent between the subject and/or physician. In some embodiments, conferences may be provided between any number of parties. For example, a conference may be permitted between two parties (e.g., subject and subject's physician, or subject's primary care physician and a specialist), three parties (e.g., between the subject, subject's primary care physician, and specialist), four parties, five parties, six parties, or more. This may be useful when consulting one or more specialist or other health care providers for the subject. This may also be useful if the subject wishes to loop in a family member or friend on the conference. Each of the parties may be at separate locations, or some may be at the same location. Conversations between the subject and/or physician (or any of the parties or combinations of the parties described herein) may occur in real-time via the device. Alternatively, the subject may view a pre-recorded video of the subject's physician. The subject may record a statement and/or other information from the subject. The recorded video of the subject may be sent to the subject's physician who may view it in real-time or at a later time. Any description herein of subject-physician interactions may also apply to any other parties, numbers of parties, or combinations described elsewhere herein. Additionally, images may be captured of a subject, a portion of a subject, or a sample collected from a subject, as described elsewhere herein. Such images may be useful for identification purposes. Captured images may also be useful for additional purposes. For example, an image may be captured of the subject, and the change or maintenance of a subject's height and/or girth may be analyzed and assessed for health and/or medical purposes. For example, a sudden increase or decrease in circumference of a subject may raise a red flag or be assessed with other information collected relating to the sample to determine whether there is a health concern. The subject's gait may be analyzed to determine if the subject is limping or moving in a way that indicates an injury. The subject's facial expressions may be stored or analyzed to determine if the subject is in a particular psychological state. Images may also be collected of a portion of the body to assess the subject's state of health. For example, a rash or lesion on the subject's skin, a mole on the subject's skin, an image of the subject's throat, or any other type of image may be collected by the device and/or viewable by the physician. Dermatological conditions may be assessed by the physician based on one or more image collected of the subject's skin. Images of one or more of the subject's orifices may be accessible by the physician. In some embodiments, the images sent may be two-dimensional images. The images sent may also be three-dimensional images, which may be useful in viewing one or more features (e.g., whether a rash is puffy). In another example, images of a sample collected from a subject may be sent to the physician. For example, one or more images of a tissue sample, bodily fluid sample, or other sample may be sent to the physician. Images may also include sample at various stages of processing. The device may advantageously be able to produce the image quickly so that the physician need not wait on such images when interacting with the subject. In some embodiments, such images may be accessible by the subject's primary care physician, pathologist, or other health care professional. Such images may be analyzed with respect to earlier images collected with respect to the subject. Such images may also be analyzed in a stand alone fashion without requiring the review of historical images collected for the subject. In some embodiments, trend analysis may be performed on one or more of the images collected from the subject. Such trend analysis may extend over a long period of time (e.g., historical data relating to a mole on the subject and how it changes over a plurality of visits), or over a shorter period of time (e.g., how a sample reacts within the course of a visit). Images from multiple visits of a subject, or from a single visit of the subject may be analyzed. In some embodiments, a method for diagnosing or treating a subject with the aid of the device may be provided. The method may comprise authenticating a subject and obtaining a three-dimensional representation of the subject with the aid of a three-dimensional imaging device. The three-dimensional imaging device may be any of the cameras or plurality of cameras described elsewhere herein. In some embodiments, the three-dimensional imaging device may use a plurality of lenses. The three-dimensional imaging device may include optical, motion and/or audio capture techniques. A system may include an image recognition module for analyzing at least a portion of the dynamic three-dimensional spatial representation of the subject for treatment. The image recognition may or may not be on-board the device. The method may include providing the three-dimensional representation to a display of a computer system of a health care provider, the computer system communicatively coupled to the three-dimensional imaging device, the health care provider in remote communication with the subject. The method may also include diagnosing or treating the subject with the aid of the three-dimensional representation on the display of the computer system. In some instances, the three-dimensional image displayed to the physician may be an actual three-dimensional image of the portion of the subject that is imaged. Alternatively, the three-dimensional image may be representative of the subject captured. This may include simplified or modified images. In some embodiments, the three-dimensional representation may include visual indicators of other information collected from the subject. For example, a three dimensional image may be generated showing a rash on the subject's skin, as well as color indicators that may be indicative of heat at different areas of the rash, or concentrations of analytes detected at different portions of the rash. The three-dimensional image may include a computer-generated model. The health care provider may have been selected by the subject. In some embodiments, the health care provider is the subject's own primary care physician. The diagnosis may be provided in real-time. In some embodiments, the diagnosis may include combining the three-dimensional representation with subject specific information. In some embodiments, the subject may be authenticated by verifying the identity of the subject. Such identification verification may use any of the techniques described elsewhere herein. In some instances, the subject may be verified via a fingerprint or genetic signature. The subject may be verified by touching a touchscreen of the device. The authenticating step may be performed with the aid of one or more of a biometric scan, the subject's insurance card, the subject's name, the subject's driver's license, an identification card of the subject, an image of the subject taken with the aid of a camera in the point of care system, and a gesture-recognition device A point of service system may be provided for diagnosing or treating a subject. The system may comprise a point of service device having a three-dimensional imaging device for providing a dynamic three-dimensional spatial representation of the subject; and a remote computer system in communication with the three-dimensional imaging device, the remote computer system for authenticating the subject and, subsequent to said authenticating, retrieving the dynamic three-dimensional spatial representation of the subject. The system may include an image recognition module for analyzing at least a portion of the dynamic three-dimensional spatial representation of the subject for treatment. Other physiological data collected from the subject may be useful for assessing the health of the subject. For example, the subject's blood pressure level, heart rate, and/or body temperature may be accessed by the physician and/or may be assessed in view of other information relating to the subject to assess the subject's health. The subject's weight may also be used to assess the subject's health. For example, if the subject suddenly gains or loses weight, this may be an indicator that may be considered by the physician. Physical data relating to the subject's sample may be useful for assessing the health of the subject. For example, a sample from the subject may be processed, and the data collected may be accessible by the subject's physician. In some embodiments, one or more analytical steps may be performed on the data collected by the device before it is viewed by the physician. Furthermore, as described elsewhere herein, information may be collected relating to the subject's lifestyle and/or habits. Such information may be collected from a graphical user interface, as described elsewhere herein. In some instances, such information may be collected in a survey form, as described elsewhere herein. In some instances, such information may be collected via an external device which may be capable of communicating with the device. The external device may be a computer, server, tablet, mobile device, or any other type of network device described elsewhere herein. Such information may be stored in the device and/or transmitted from the sample processing device. Such information may be accessible by a subject's physician or other health care professional. Any information collected relating to the subject may be accessible by one or more physician of the subject, and may be relied upon by the physician in assessing the health of the subject. Having devices at point of service locations may permit a subject to go to one of the point of service locations that are convenient to the subject. This may broaden the subject's access to various physicians. For example, if a subject lives at a first location and has a primary care physician that the subject likes, if the subject relocates to a second location, the subject may still primarily interact with the same primary care physician. This may also provide flexibility with the subject and physician's schedules. For example, the subject may provide information to a sample processing device at a time that the subject is available or when convenient for the subject. The physician may be able to access information relating to the subject when the physician has time in the physician's schedule. In-person and/or real-time meetings or conferences between the physician and subject may be scheduled if/when necessary, but much preliminary data gathering and analysis may occur prior to such meetings, thus making such meetings more effective. Asynchronous Data Management The systems described herein may optionally use asynchronous data management. Asynchronous data management may use the sample processing device described herein. Alternatively, asynchronous data management may also occur outside the context of the sample processing device described herein. Data may be stored relating to a subject. Such data may include medical records for the subject. Such medical records may span a length of time (e.g., multiple visits), or may be from a single or short point in time (e.g., a single visit). Such data may be accessible by one or more parties. For example, a subject's physician may be able to access the information relating to the subject. In some embodiments, one or more parties may be able to control who has access to the subject's information, and to which information access is granted. For example, a subject may determine which physicians or health care facilities have access to the subject's data. The subject may want to choose the subject's physicians and/or specialists. The subject may specify which data the other parties have access to. For example, the subject may determine that certain health care professionals have access to only a certain subset of medical data. The subject may determine that a specialist only has access to data within the specialist's field or that may be relevant to the specialist for assessing the health of the subject. Different parties may be granted access to different subsets of information. Alternatively, the subject may choose to grant different parties access to the same information. In some instances, the subject may choose to grant access to all information. In some embodiments, other parties may determine who may have access to the subject's information. For example, a physician's office may collect information about the subject. The physician and/or entity affiliated with the subject may determine who has access to the information and to which portions of information the other parties have access to the information. In some instances, the physician may determine which information that the subject has access to. In some instances, the information collecting entity may determine who has access to which of the subject's information. Any other party may be the designated party who determines who has access to the subject's information. The granter of access may determine at what time the other parties may be able to access the selected information. For example, the subject, the physician, or any other party may be the designated granter of access. The granter may provide an expiration time and/or date for the access provided to another party. In some instances, the granter may specify a start time and/or end time for which the other party can access the information. In some instances, the granter need to not specify an expiration time, and may choose to remove access at any time. In some instances, the physician may want to share the information with another health care provider, the subject, or affiliate of the subject. In one example the physician may wish to get a second opinion from another health care provider, such as a specialist in a particular field. The physician may need to get the subject's approval to share information. Alternatively, the physician may have the authority to share certain portions of information. The first party (e.g., physician) may provide selected data to the second party (e.g., specialist) in a first format. In one example, the physician may be able to provide charts or other visual depictions of data while including an audio and/or video recording of the physician's thoughts. The data that is shared and/or provided may refer to access that may be granted to the original data. The second party may view the data in the first format. The second party may be able to modify the data from the first format to a second format. The second party may be able to insert or modify some of the data provided to the second party. For example, the second party may view the charts or other visual depictions of data with the recording of the physician's thoughts. The second party may be able to stop the recording at any point and insert the physician's own thoughts. For example, a video may be provided showing a visual aspect (e.g., data) and audio aspect (e.g., physician's notes). The second party may be able to stop the video and record the second party's own voice and thoughts, which may be inserted into the video. Similarly, the second party may be able to modify and manipulate the data shown. For example, the second party may be able to write the second party's own notes or views into the display of the data. In addition to adding or inserting additional information, the second party may be able to modify the data provided in the first format. For example, the first party may draw notes relating to the data. The second party may be able to modify the notes—e.g., changing the shape of a line of a trend, or modifying an equation. The data with the second format may be accessible by the second and the first party. In some instances, the second party may send the data in the second party back to the first party. Any reference of sending data may include providing access to original data. Original data may be stored in one or more database, or other memory. The original data may be stored in a cloud computing based infrastructure. Such modifications may occur asynchronously. For example, first party may send information with the first format to the second party. The second party may make such modifications at another time to a second format, after the information has been sent. The second party may then send the information with the second format to the first party. The information may be sent after the modifications have been made. Such modifications may manipulate the underlying live data. Discussion of sending information may relate to sending access to the underlying live data. In some instances, only one party may access the data to modify the data at a time. Alternatively, multiple parties may simultaneously access the data and/or modify the data. In some embodiments, data may be collected from a sample processing device. A sample processing device may also include an interface that may permit a user to provide access to one or more other party. For example, a send button or interface may be provided where the user can select the information to send/provide access to, the designated recipient(s), and/or time limits. The device may also include a camera and/or microphone through which the user can record one or more comments and/or notes that may accompany the data. A user may also be able to add comments or notes via a touchscreen or other user interface of the device. The data may be stored on the cloud. The user of the device may be able to select what parties have access to the information. The selected recipients may be able to access the data store on the cloud. The selected recipients may be able to access the data via one or more device, which may include a sample processing device, computer, tablet, mobile device, or any other type of network device described elsewhere herein. In alternate embodiments, such modifications may occur in real-time. For example, a video conference may occur where the multiple parties may be viewing the same information at the same time. The conference may permit one or more of the parties to modify the information—e.g., adding notes, drawing figures, or otherwise manipulating the information. The one or more parties may be manipulating the underlying information, or a visual representation of the information. Device Calibration and/or Maintenance In some embodiments the device may be capable of performing on-board calibration and/or controls. The device may be capable of performing one or more diagnostic step (e.g., preparation step and/or assay step). If the results fall outside an expected range, a portion of the device may be cleaned and/or replaced. The results may also be useful for calibrating the device. On-board calibration and/or controls may occur without requiring human intervention. Calibration and controls may occur within a device housing. A device may also be capable of performing on-board maintenance. If during a calibration, operation of device, diagnostic testing, or any other point in time a condition requiring repair and/or maintenance of the device is detected, the device may institute one or more automated procedures to perform said maintenance and/or repair. Any description of maintenance may include repair, cleaning, and/or adjustments. For example, a device may detect that a component is loose and may automatically tighten the component. The device may also detect that a wash or diluents level is running low in a module and provide an alert to add more wash or diluents, or bring over wash or diluents from another module. The system may be configured to continue to function after the removal and/or failure of certain modules. Calibration and/or maintenance may occur on a periodic basis. In some embodiments, device calibration and/or maintenance may automatically occur at regular or irregular intervals. Device calibration and/or maintenance may occur when one or more condition is detected from the device. For example, if a component appears to be faulty, the device may run a diagnostic on associated components. Device calibration and/or maintenance may occur at the instruction of an operator of the device. Device calibration and/or maintenance may also occur upon automated instruction from an external device. The calibration and quality control (QC) cartridge is briefly described in the next paragraph. The goal of the calibration cartridge is to enable the quantitative assessment and adjustment of each module/detector of the device. For example, by performing a variety of assay steps, functionality is tested/evaluated for the pipette, gantry, centrifuge, cameras, spectrometer, nucleic acid amplification module, thermal control unit, and cytometer. Each measurement made during calibration cartridge runs with reagent controls may be compared to device requirements for precision. By way of non-limiting example, there is a pass fail outcome for these results. If re-calibration is required, the data generated is used to recalibrate the device (such as the device sensors and pipettes). Recalibration ensures that each device is accurate. Some QC can also be performed automatically in the device without introducing a cartridge. For example, the light sources in the device can be used to periodically QC the optical sensors in the device. An external device or control may maintain a device calibration schedule and/or device maintenance schedule for a plurality of devices. Device calibration and/or maintenance may occur on a time-based schedule or a use-based schedule. For example, devices that are used more frequently than others may be calibrated and/or maintained more frequently and/or vice versa. QC data may be indexed with data stored, for example, on the sample processing device or an external device. In some embodiments, a calibration protocol may be stored on a sample processing device, or on an external device and transmitted from the external device to the sample processing device. In some embodiments, a sample processing device may communicate with an external device to provide QC data to the external device. In some embodiments, the external device may send a protocol or calibration instructions to a sample processing device based on QC data provided from the sample processing device to the external device. In some embodiments, the device may be periodically calibrated and quality controlled. Each module, consisting of one or more hardware units, could be calibrated periodically by utilizing a calibration cartridge. The calibration cartridge may consist of a series of standard fluids, which a properly calibrated system gives a known response to. The module results to these standards could be read, analyzed and based on deviations or absence thereof, module status can be determined, and corrected for, if necessary. The calibration standards could either be stored in the device or introduced separately as a cartridge. In some embodiments, some modules may auto-correct for any changes in the environment. For example, temperature sensors on the pipette may automatically trigger an adjustment in the required piston movement, to correct for temperature fluctuations. In general, modules where feedback regarding performance is available, may auto-correct for any changes over time. In some embodiments, the output measurements of the cytometer may be calibrated to match results from predicate devices or devices utilizing other technologies as required. In embodiments, a device may monitor its environment, including its internal and external environment. In embodiments, a device may provide device environmental information to a laboratory. Device environmental information includes, e.g., internal temperature, external temperature, internal humidity, external humidity, time, status of components, error codes, images from an internal camera, images from an external camera, and other information. In some embodiments, a device may contain a thermal sensor. In embodiments, an internal camera may be fixed at an internal location. In embodiments, an internal camera may be fixed at an internal location and may be configured to rotate, scan, or otherwise provide views of multiple areas or regions within the device. In embodiments, an internal camera may be movable within the device; for example, an internal camera may be mounted on a movable element, such as a pipette, within the device. In embodiments, an internal camera may be movable within the device and may be configured to rotate, scan, or otherwise provide multiple views of areas within the device from multiple locations within the device. In embodiments, an external camera may be fixed at an external location. In embodiments, an external camera may be fixed at an external location and may be configured to rotate, scan, or otherwise provide multiple views of areas outside the device. In embodiments, an external camera may be movable on or around the outside of the device. In embodiments, an external camera may be movable and may be configured to rotate, scan, or otherwise provide multiple views of areas outside the device from multiple locations on or around the outside of the device. Transmission of device environmental information to a laboratory is useful for the oversight and control of the device, including being useful for the oversight and control of the dynamic operation of the device. Transmission of device environmental information to a laboratory is useful for maintaining the integrity of the operation and control of the device, quality control of the operation and control of the device, and for reducing variation or error in the data collection and sample processing performed by the device. For example, transmission of temperature information to a laboratory is useful for the oversight and control of the device, and is useful in the analysis by the laboratory of data provided by the device to the laboratory. For example, a device may have dedicated temperature zones, and this information may be transmitted to a laboratory. In embodiments, a device may be configured to control the temperature within the device, or within a portion of the device. The device or portion thereof may be maintained at a single constant temperature, or at a progression of different selected temperatures. Such control improves the reproducibility of measurements made within the device, may unify or provide regularity of conditions for all samples, and reduce the variability of measurements and data, e.g., as measured by the coefficient of variance of multiple measurements or replicate measurements. Such control may also affect chemistry performance in the assay(s) and speed/kinetics of the assay reaction. Temperature information may be useful for quality control. In embodiments, a device may monitor temperature and control its internal temperature. Temperature control may be useful for quality control. A device that monitors and controls its temperature may transmit temperature information to a laboratory; a laboratory may use such temperature information in the control of the operation of the instrument, in the oversight of the instrument, and in the analysis of data transmitted from the instrument. Temperature control may also be used for regulating the speed of assays performed with the device. For example, a device may be maintained at a temperature which optimizes the speed of one or more selected assays (e.g. at 20° C., 22° C., 25° C., 27° C., 32° C., 35° C., 37° C., 40° C., 42° C., 45° C., 47° C., 50° C., 52° C., 55° C., 57° C., 60° C., 62° C., 65° C., 67° C., 70° C., 72° C., 75° C., 77° C., 80° C., 82° C., 85° C., 87° C., 90° C., 92° C., 95° C., or 97° C.). In embodiments, a device may be configured to acquire images from within the device, or within a portion of the device. Such images may provide information about the position, condition, availability, or other information regarding components, reagents, supplies, or samples within the device, and may provide information used in control of the operation of the device. Such images may be useful for quality control. A device that acquires images from within the device may transmit image information to a laboratory; a laboratory may use such image information in the control of the operation of the instrument, possibly dynamically or in real-time continuously or in real-time but in select intervals, in the oversight of the instrument, and in the analysis of data transmitted from the instrument. Device Security One or more security features may be provided on a sample processing device. The device may have one or more motion sensor that may determine when the device changes orientation or is moved. The device may be able to detect if someone is trying to open the device. For example one or more sensor may detect if portions of the device are taken apart. The device may be able to detect if the device falls or is tipped over. The device may be able to sense any motion of the device or any motion near the device. For example, the device may be able to sense if an object or person gets within a certain distance of the device (e.g., using motion sensors, optical sensors, thermal sensors, and/or audio sensors). The device may be able to determine if the device is unplugged or if an error occurs on the device. Any description of actions that may occur as a result of device tampering may be applied to any other device condition as described herein, and vice versa. Accelerometer(s), vibration sensor(s), and/or tilt sensor(s) are used to determine rapid movements and jarring of the device. Optionally, cameras on the outside of the device can image and recognize their surroundings and/or provide security to the device in terms of video capture, sounding an alert, or only providing access to verified individual(s) or device(s). In some embodiments, an alert may be provided if someone is trying to open a device, or if someone comes within the device's proximity. In some instances, an alert may be provided if the device housing is breached. Similarly, an alert may be provided if the device falls, tips over, or if an error is detected. The device may encompass a stabilization system with, optionally, shock absorbance and dampening capabilities to prevent it from tipping when for example moving in vehicles at high speeds. In some instances, if the device detects that the device is being opened, approached, or tampered with, a camera on the device may capture an image of the device surroundings. The device may capture an image of the individual trying to open the device. The data associated with the device may be sent to the cloud or an external device. The device associated with the tampering of the device, such as an image of an individual tampering with the device may be transmitted from the device. The data associated with the device, which may include one or more image, may be stored in the device. In the event that the device is not able to immediately transmit the data, the data may be transmitted once the device is able and/or connected to a network. The device may include one or more microphone or audio detection device that may be able to record and/or relay sound. For example if a device is tampered with, the microphone may collect audio information and the audio information may be stored on the device or may be transmitted from the device. Optionally, the device may include one or more location sensing device. For example, the device may have a GPS tracker within the device. When any tampering with the device is detected, the location of the device may be transmitted from the device. The location may be transmitted to an external device or the cloud. In some instances, the location of the device may be continuously broadcast once the tampering is detected, or may be transmitted at one or more intervals or other detected events. An owner or entity associated with the device may be able to track the location of the device. In some instances, a plurality of location sensors may be provided so that even the device is taken apart and/or one or more location sensor is found and destroyed, it may be possible to track other parts of the device. In the event that the device is unable to transmit the device location at a particular moment, the device may be able to store the device location and transmit it once it is able. In some embodiments, the device may be designed so that it can only be opened from the inside, or be designed to be only opened from the inside. For example, in some embodiments the device does not have fasteners or screws on the outside of the device. Any mechanical fastening and/or opening features may be on the inside of the device. The device may be mechanically locked from inside the housing. The external portion of the housing may include no exterior fastening/locking mechanisms. The device may be opened from the inside upon one or more instructions from a controller. For example, the device may have one or more touchscreen or other user interface that may accept an instruction from a user for the device to open. The device may have one or more communication unit that may receive an instruction from an external device for the device to open. Based on said instructions, one or more opening mechanism within the device may cause the device to open. In some instances, the device may require electrical power for the device to open. In some instances, the device may only when plugged in. Alternatively, the device may open when powered by a local energy storage system or energy generation system. In some instances, the device may only open if it receives instructions from a user who has been identified and/or authenticated. For instance, only certain users may be granted the authority to cause the device to open. The device may have one or more local energy storage system. The energy storage system may permit one or more portions of the device to operate even if the device is separated from an external energy source. For example, if the device is unplugged, one or more energy storage system may permit one or more portion of the device to operate. In some instances, the energy storage system may permit all parts of the device to operate. In other examples, the local energy storage system may permit certain information to be transmitted from the device to the cloud. The local energy storage may be sufficient to power a camera that may capture one or more image of the device surroundings and/or an individual tampering with the device. The local energy storage may be sufficient to power a GPS or other location sensor that may indicate the location of the device. The local energy storage may be sufficient to save and/or transmit the state of the device e.g., in a log-based journaling approach so that the device can pick up where it left off or know what steps need to be performed. The local energy storage may be sufficient to power a transmission unit that may send information relating to the device to the cloud and/or an external device. In one embodiment, the device and the external controller maintain a security mechanism by which no unauthorized person with physical access to the device may be able to retrieve test information and link it back to an individual, thus protecting the privacy of patient health data. An example of this would be where the device captures user identification information, send it to the external device or cloud, receives a secret key from the cloud and erases all patient information from the device. In such a scenario, if the devices send any further data about that patient to the external device, it will be referred to link through the secret key already obtained from the external device. Spectrophotometer Spectrophotometers may contain a light source and an optical sensor, and in some embodiments, may be used for measuring any assay that may be measured by assessing an optical property of the assay reaction. For example, a spectrophotometer may be used to measure the color, absorbance, transmittance, fluorescence, light-scattering properties, or turbidity of a sample. A spectrophotometer may measure visible light, near-ultraviolet light, or near-infrared light. A spectrophotometer may be configured to measure a single wavelength of light, or a range of wavelengths. In some embodiments, a spectrophotometer may measure a range of wavelengths between 100-900 nm, such as, for example 200-600 nm, 300-800 nm, 400-800 nm, or 200-800 nm. In some embodiments, a spectrophotometer may measure an optical property of a single sample at multiple different wavelengths (e.g. the absorbance of a sample at multiple wavelengths). A spectrophotometer may be configured such that it may direct light of one or more different wavelengths to a sample and it may detect the transmittance, reflection, or emission of one or more different wavelengths of light by the sample. A spectrophotometer may direct light of different wavelengths to a sample by, for example, by containing contain a monochromator and adjustable filter, such that light from the light source may be filtered so that only a selected wavelength or range of wavelengths reaches the sample. In some embodiments, transmitted light is separated spectrally using a grating, and the spectrally separated signal is read by a spatial sensor. In some embodiments, the light source could be a broad-spectrum light source such as a Xe, Hg—Xe, Hg—Ar light source. The light source can either be pulsed or continuous, and may allow for adjustable intensity. In another example, a spectrophotometer may contain at least two different light sources which emit light of different peak wavelength ranges (e.g. different LEDs). A spectrophotometer may also be configured such that the optical sensor only detects light of a certain wavelength or range of wavelengths (e.g. by use of a filter in front of the sensor). A spectrophotometer may be a dedicated spectrophotometer (i.e. it may be optimized for performing spectrophotometric readings; for example, it may not contain extraneous hardware, such as a sample heater). Optionally, the spectrophotometer may, in certain embodiments, include an electrode or electrochemical detection unit that can be used in conjunction with optical measurements being performed. Optionally, other hardware such as heating units, cuvette holders, or the like are not excluded in other embodiments of the spectrophotometer. FIGS. 74A-74D show a spectrophotometer 7400, in accordance with an embodiment of the invention. The spectrophotometer 7400 may be the spectrophotometer 714 described in the context of FIG. 7. The spectrophotometer 7400 includes a detection block 7401 (“block”) having a laser diode, light filter, a sensor (for detecting electromagnetic radiation) and a printed circuit board. In some cases, the spectrophotometer 7400 includes a controller having one or more processors. A light source, such as but not limited to a xenon light source, is located in a compartment 7402 adjacent the block 7401. The block 7401 includes a sample receptacle (or inlet) port or channel 7403, which is configured to accept a first consumable 7404 or a second consumable 7405. The first consumable 7404 is a cuvette and the second consumable is a tip. The consumables 7404 and 7405 are configured to be moved, carried and manipulated by various sample handling systems (e.g., robots) provided herein. The cuvette includes sample holders. Some embodiments may use a light source with specific wavelengths. Optionally, other embodiments do not specifically limit the wavelengths. With reference to FIG. 74C, the first consumable 7404 is configured to be mounted in the port 7403. Individual sample holders 7406 of the first consumable 7404 are configured to be placed in the line of sight of the light source 7407 (e.g., xenon light source), either in direct line of sight or with the aid of optics. Light from the individual sample holders passes to a detector 7408 (e.g., CCD sensor) for detection. With reference to FIG. 74D, the second consumable 7405 is inserted into the port 7403 for sample detection. Light from a laser diode 7409 is directed to the second consumable 7405. Light then passes to a filter 7410, which is moved into the path of light emanating from the second consumable 7405. Light is then directed to the sensor 7408. Light from the first consumable 7404 or second consumable 7405 may be directed to the sensor 7408 using optics. The consumables 7404 and 7405 are configured to hold a sample for detection. The consumables 7404 and 7405 may be discarded after use. The spectrophotometer 7400 in some cases is configured to hold one consumable at a time, though in some situations the spectrophotometer 7400 may hold multiple consumables during processing. In some situations, non-consumable sample holders may be used. In one embodiment, the fluid handling device might be used to transfer an assay vessel into the spectrophotometer where an optical characteristic of the sample is measured. This characteristic may include, but not limited to absorbance, fluorescence, turbidity, etc. The spectrophotometer might include one or more sensors, capable of handling one or more sample simultaneously. Analogously, one or more signals (absorbance, turbidity, etc.) might be measured simultaneously. The spectrometer may include a PCB board that connects to an external computer and/or processing unit. Alternatively, the computer may be part of the PCB board itself. The computer may receive data from the spectrophotometer sensor, after being processed by the board. The computer may be programmed to analyze the data sent from the board in real-time. In one embodiment, the results of the computer analysis may provide feedback to the board. The feedback may include changes in acquisition time, number of acquisitions for averaging, etc. In some embodiments, this feedback might be used to auto-calibrate the spectrophotometer components. In some embodiments, the light source and optical sensor of a spectrometer may be oriented in-line with each other. In other embodiments, the optical sensor is at an angle to the light path from the light source (for example, 45 or 90 degrees). An optical sensor at an angle from the light path from the light source may be used, for example, for detecting light scattered by a sample or light emitted by a fluorescent compound. Referring now to FIG. 74E, yet another embodiment of a spectrophotometer will now be described. This embodiment shown in FIG. 74E uses a different mechanism 7440 for the transport of the cuvette from the cartridge. Instead of using a pipette or other instrument to lift the cuvette out of the pipette and into the detector station, this embodiment uses a gear in the mechanism 7440 to engage gear teeth 7442 formed in the cuvette. This allows for the cuvette 7444 to be moved out from the cartridge without having to use a lifting mechanism such as the pipette, a robot, or other end-effector in the system, which then frees that hardware to perform other tasks. As seen in FIG. 74E, the cuvette may be moved to detector 7446 which may be single detector or an arrayed detector. Referring now to FIGS. 74F and 74G, a still further embodiment of a spectrophotometer will now be described. FIG. 74F is a top-down view of a fiber-based spectrophotometer wherein the illumination source and/or the detector can be spaced apart from the sample location and are connected by fiberoptics 7460 and 7462. This may allow for greater flexibility in placement of components. Optionally, this also allows for specific illumination conditions for each sample well of the cuvette, multiple illumination wavelengths per sample well 7464, or other custom illumination or detection based on the ability to provide and receive wavelengths of light from and to certain illumination sources and detectors. By way of non-limiting example, the detector may be a single detector as shown in this figure or it may be an arrayed detector. FIG. 74G shows a cutaway perspective view showing the inbound light pathway 7470 and the outbound light pathway 7472. This embodiment showing a fiber coupling 7474, a collimator 7476, a mirror 7478, a filter 7480, a reflector 7482, and a fiber coupling 7484 for the outbound light pathway to the detector. In one embodiment, the sample well 7464 may be part of a cuvette, or optionally, it may be an opening designed to hold a reaction vessel. A fiber-based version of the spectrophotometer can separate the illumination source and the detector from the sample handling unit. The fibers could carry the light source from a separate location, creating a shared illumination source. This provides for greater flexibility in terms of light source placement and sharing. With regards to the color strip and the cuvette handling, the spectrophotometer can be configured to accept a single cuvette, multiple cuvettes, or a single cuvette with multiple reaction wells or reaction vessels therein. The positioning of the cuvette by the pipette can be by way of a centralized pipette and the read windows of the cuvette are on each side of the centralized holder as seen in FIG. K1. Optionally, the pipette can be on or near each end as seen in FIG. K. Optionally, the holder can be on only one end. This can also improve time used for sample preparation if the cuvette has larger number of vessels on the cuvette, particularly if a plurality can be read simultaneously. Optionally, some embodiments may disengage the pipette, robot, or end effector to drop-off the cuvette at the detector station for detection. During this read or detection time, the sample handling device such as but not limited to the pipette, robot, or end effector can perform other task before returning to retrieve the cuvette. It should be understood that the cuvette and/or the detector station may have structural features such as but not limited to lips, edges, legs, or stands that allow the cuvette to remain upright or in other stable configuration to allow for analyte detection to occur after the drop-off by the sample handling system. Optionally, there may be a cuvette that is configured to be disconnected at the detector and having features such as but not limited to ledges, ridges, lips, hands, or other features to stabilize the cuvette while it is in the detector. The spectrophotometer may have a receiving area that is shaped to accept this type of cuvette. The system may also be configured to accept a single cuvette or have a cuvette that can be loaded with other sample vessels in a sequential, non-simultaneous manner to provide greater flexibility in scheduling. Fiberoptics can also provide for multiple channel configurations to enable greater range of excitation and detector configurations. The fiberoptics can also allow for multiple internal reflections in the cuvette designed to cause this multiple internal reflection path to extend the pathlength beyond the physical geometric pathlength of the cuvette. Some embodiment may have side walls of the cuvette that have inner wall surfaces with a convex shape such that the vessel that causes reflections of light entering therein. Assays Receptor Binding Assays Receptors: In some embodiments, the assay station is configured to perform a receptor based assay. In general, receptor based assays comprise detecting an interaction between two binding partners, an analyte receptor and an analyte. In general, an analyte receptor and an analyte in a given pair of binding partners are distinguished on the basis of which one is known (the analyte receptor), and which is being detected (the analyte). As such, exemplary analyte receptors described herein may be detected as analytes in other embodiments, and exemplary analytes as described herein may be used as analyte receptors for detection of respective binding partners in other embodiments. In some embodiments, the analyte receptor, the analyte, or both comprise a protein. Analyte receptors include, but are not limited to: natural or synthetic proteins, cellular receptor proteins, antibodies, enzymes, polypeptides, polynucleotides (e.g. nucleic acid probes, primers, and aptamers), lipids, small organic or inorganic molecules, antigens (e.g. for antibody detection), metal binding ligands, and any other natural or synthetic molecule having a binding affinity for a target analyte. In some embodiments, the binding affinity of an analyte receptor for an analyte is a KD of less than about 5×10−6M, 1×10−6M, 5×10−7M, 1×10−7M, 5×10−8M, 1×10−8M, 5×10−9M, 1×10−9M, 5×10−10 M, 1×10−10 M, 5×10−11, 1×10−11, or less. In some embodiments, an analyte receptor described herein (for example, an antibody) may be provided, for example, in an assay unit, reagent unit, vessel, tip, or container in a cartridge or assay station provided herein. Analyte receptors may be provided in various forms, including, for example, in lyophilized, gel, or liquid forms. In some embodiments, the analyte receptor is a peptide comprising a recognition structure that binds to a target structure on an analyte, such as a protein. A variety of recognition structures are well known in the art and can be made using methods known in the art, including by phage display libraries (see, e.g., Gururaja et al. (2000) Chem. Biol. 7:515-27; Houimel et al., (2001) Eur. J. Immunol 31:3535-45; Cochran et al. (2001) J. Am. Chem. Soc. 123:625-32; Houimel et al. (2001) Int. J. Cancer 92:748-55, each incorporated herein by reference). A variety of recognitions structures are known in the art (see, e.g., Cochran et al., (2001) J. Am. Chem. Soc. 123:625-32; Boer et al., (2002) Blood 100:467-73; Gualillo et al., (2002) Mol. Cell Endocrinol. 190:83-9, each expressly incorporated herein by reference), including for example combinatorial chemistry methods for producing recognition structures such as polymers with affinity for a target structure on a protein (see, e.g., Barn et al., (2001) J. Comb. Chem. 3:534-41; Ju et al., (1999) Biotechnol. 64:232-9, each expressly incorporated herein by reference). In some embodiments, the analyte receptor is a peptide, polypeptide, oligopeptide or a protein. The peptide, polypeptide, oligopeptide or protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures. Thus “amino acid”, or “peptide residue”, as used herein include both naturally occurring and synthetic amino acids. For example, homo-phenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention. The side chains may be in either the (S) or the (R) configuration. In some embodiments, the amino acids are in the (S) or L-configuration. If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradation. Proteins comprising non-naturally occurring amino acids may be synthesized or in some cases, made recombinantly; see, for example, van Hest et al., FEBS Lett 428:(1-2) 68-70 May 22, 1998 and Tang et al., Abstr. Pap Am. Chem. S218: U138 Part 2 Aug. 22, 1999, both of which are expressly incorporated by reference herein. In some embodiments, the analyte receptor is cell signaling molecule that is part of a signaling pathway, such as a receptor protein. Receptor proteins may be membrane associated proteins (e.g. extracellular membrane proteins, intracellular membrane proteins, integral membrane proteins, or transiently membrane-associated proteins), cytosolic proteins, chaperone proteins, or proteins associated with one or more organelles (e.g. nuclear proteins, nuclear envelope proteins, mitochondrial proteins, golgi and other transport proteins, endosomal proteins, lysosomal proteins, etc.). Examples of receptor proteins include, but are not limited to, hormone receptors, steroid receptors, cytokine receptors, such as IL1-α, IL-β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-15, IL-18, IL-21, CCR5, CCR7, CCR-1-10, CCL20, chemokine receptors, such as CXCR4, adhesion receptors and growth factor receptors, including, but not limited to, PDGF-R (platelet derived growth factor receptor), EGF-R (epidermal growth factor receptor), VEGF-R (vascular endothelial growth factor), uPAR (urokinase plasminogen activator receptor), ACHR (acetylcholine receptor), IgE-R (immunoglobulin E receptor), estrogen receptor, thyroid hormone receptor, CD3 (T cell receptor complex), BCR (B cell receptor complex), CD4, CD28, CD80, CD86, CD54, CD102, CD50, ICAMs (e.g. ICAMs 1, 2 and 3), opioid receptors (mu and kappa), FC receptors, serotonin receptors (5-HT, 5-HT6, 5-HT7), β-adrenergic receptors, insulin receptor, leptin receptor, TNF receptor (tissue-necrosis factor), statin receptors, FAS receptor, BAFF receptor, FLT3 LIGAND receptor, GMCSF receptor, and fibronectin receptor. Other examples of receptor proteins include the integrin family of receptors. Members of the integrin family of receptors function as heterodimers, composed of various α and β subunits, and mediate interactions between a cell's cytoskeleton and the extracellular matrix (reviewed in Giancotti and Ruoslahti, Science 285, 13 Aug. 1999). Different combinations of the α and β subunits give rise to a wide range of ligand specificities, which may be increased further by the presence of cell-type-specific factors. Integrin clustering is known to activate a number of intracellular pathways, such as the RAS, Rab, MAP kinase pathway, and the PI3 kinase pathway. In some embodiments the analyte receptor is a heterodimer composed of a β integrin and an a integrin chosen from the following integrins; β1, β2, β3, β4, β5, β6, α1, α2, α3, α4, α5, and α6, or is MAC-1 (β2 and cd11b), or αvβ3. Receptor proteins may be members of one or more cell signaling pathways, including but not limited to MAP kinase, PI3K/Akt, NFkB, WNT, RAS/RAF/MEK/ERK, JNK/SAPK, p38 MAPK, Src Family Kinases, JAK/STAT and/or PKC signaling pathways. In some embodiments, the analyte receptor is an antibody, and the receptor-based assay is referred to as an immunoassay having one or more antigens as analyte. Alternatively, an immunoassay may involve using an antigen as the analyte receptor in order to detect the presence of a target antibody as an analyte. In some embodiments, an immunoassay may be an Enzyme-linked ImmunoSorbent assay (“ELISA”). For example, tips having adherent antibodies or target antigens may be used in ELISAs performed by devices, or on beads in tips/vessels, and according to methods disclosed herein. Performing an ELISA generally involves at least one antibody capable of binding an antigen of interest (i.e., an analyte that is indicative of influenza viral infection). A sample containing or suspected to contain the antigen of interest is immobilized on a support (e.g., a tip or other support having a surface for immobilization) either non-specifically (e.g., via adsorption to the surface) or specifically (e.g., via capture by another antibody specific to the same antigen, in a “sandwich” ELISA). After the antigen is immobilized the detection antibody is added, forming a complex with the antigen. The detection antibody can be conjugated to an enzyme, or can itself be detected by a secondary antibody which is in turn conjugated to an enzyme. Upon addition of a substrate for the conjugated enzyme, a detectable signal is generated which indicates the presence and/or quantity of the antigen in the sample. The choice of substrates will depend on the enzyme conjugated. Suitable substrates include fluorogenic and chromogenic substrates. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. In some ELISAs, a solid phase capture surface can include an attached first antibody to which a sample (e.g., diluted blood, plasma, or biological specimen) can be added. If present, an analyte in the sample can bind to the first antibody and become immobilized. An enzyme reagent can be added that includes, for example, an antibody coupled or conjugated to an enzyme (e.g., alkaline phosphatase or horseradish peroxidase) that produces a detectable product, or can be otherwise detected. If the antibody portion of the enzyme reagent can bind the analyte, then the enzyme reagent also becomes immobilized at the capture surface. Addition of a substrate for the enzyme can result in a product producing an effect, for example, light that can be measured and plotted. In this manner the amount of analyte present in a sample can be measured. Thus, for example, an exemplary ELISA which may be performed using a device, system, or method as disclosed herein includes a solid phase capture surface (e.g., a tip) on which a first antibody is immobilized. The first antibody is specific for a test antigen (e.g., antibody specific for a target blood analyte, such as cholesterol, or for e.g., neuraminidase on the coat of a virus of interest, or other antigen). If the test antigen is present in a test sample (e.g., whole blood, plasma, or serum) that is exposed to the antibody immobilized on the surface, then the test antigen can become immobilized (captured) at the capture surface. Addition of a second, labeled antibody that binds to the first antibody (e.g., where the first antibody is a sheep antibody including an Fc portion, the second antibody may be an antibody targeting sheep Fc and labeled with alkaline phosphatase) allows the detection and quantification of the amount of antigen in the sample. The first antibody, which is bound to the substrate, is not washed out by the addition of the second antibody. Such detection and quantification may be accomplished, for example, by providing a substrate for the enzyme coupled to the second antibody, leading to the production of colored, fluorescent, luminescent (e.g., chemiluminescent), or otherwise detectable compounds which may be detected and measured. Alternatively, after the blood sample is placed in contact with the surface having the immobilized first antibody (and, optionally, labeled with an enzyme which catalyzes a reaction that produces a first detectable compound) that targets a first antigen, a second antibody, targeting second antigen and labeled with a second enzyme which can produce a second detectable compound may be added. The first antibody, which is bound to the substrate, is not washed out by the addition of the second antibody, and may be detected by providing the substrate and proper reaction conditions for the production of a first detectable product by an enzyme linked to the first antibody. Binding and subsequent detection of the second, labeled antibody at the capture surface indicates the presence of both the first and the second test antigens in the test sample. Both the first and second detectable compounds produced by the enzymes linked to the antibodies may be detected by any means desired, including by detection of fluorescence, luminescence, chemiluminescence, absorbance, colorimetry, or other means for detecting the products of the enzymatic reactions due to the attached enzymes. In some embodiments, photomultipliers tubes, charge-coupled devices, photodiodes, cameras, spectrophotometers, and other components and devices may be used to measure light emitted or affected during the performance of an ELISA. For example, the amount of light detected (e.g., in relative light units, or other measurements of luminosity) during the performance of an ELISA on a sample may be compared to a standard curve (e.g., a calibration curve prepared for a particular assay, device, cartridge, or reagent) to calculate the concentration of the target analyte in the sample. In some embodiments, any antibody described herein (including antibodies against antigens and pathogens described herein) may be used with an ELISA or optionally in a sandwich immunoassay. ELISAs may also be used, for example, in competitive binding experiments, in which the concentration of an analyte in a solution may be measured by adding a known amount of labeled analyte, and measuring the binding of the analyte. Increased concentrations of the sample analyte (which does not include the label) interfere with (“compete”) the binding of the labeled analyte, allowing calculation of the amount of analyte in the sample. For example, competitive ELISA experiments may be used to determine the binding characteristics of an antibody or antibody fragment to its target. In such experiments, a target analyte is present in solution or bound to a substrate (e.g., a tip, a bead, a microtiter plate). Biotinylated antibodies or antibody fragments may be preincubated with known concentrations of target in the presence of streptavidin-linked alkaline phosphatase. After allowing time for incubation, the antibody or antibody fragment may be allowed to bind to its target, and unbound target washed away. Signal may be developed using Alkaline-Phosphatase chemiluminescent substrate and read using a device as disclosed herein, or a separate luminometer, spectrophotometer, or other device. Experimental conditions otherwise identical to those of the test condition, expect that the solutions do not contain unlabeled target may be used as baseline measurements as a control. The concentration of unlabeled target for which 50% of maximal response value is obtained may be termed the Kd. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that comprise an antigen-binding unit (“Abu” or plural “Abus”) which specifically binds (“immunoreacts with”) an antigen. Structurally, the simplest naturally occurring antibody (e.g., IgG) comprises four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. The immunoglobulins represent a large family of molecules that include several types of molecules, such as IgD, IgG, IgA, IgM and IgE. The term “immunoglobulin molecule” includes, for example, hybrid antibodies, or altered antibodies, and fragments thereof. Antigen-binding unit can be broadly divided into “single-chain” (“Sc”) and “non-single-chain” (“Nsc”) types based on their molecular structures. Also encompassed within the terms “antibodies” and “antigen-binding unit” are immunoglobulin molecules and fragments thereof that may be human, nonhuman (vertebrate or invertebrate derived), chimeric, or humanized. For a description of the concepts of chimeric and humanized antibodies see Clark et al., 2000 and references cited therein (Clark, (2000) Immunol Today 21:397-402). Chimeric antibodies comprise the variable region of a nonhuman antibody, for example VH and VL domains of mouse or rat origin, operably linked to the constant region of a human antibody (see for example U.S. Pat. No. 4,816,567). In some embodiments, the antibodies of the present invention are humanized. By “humanized” antibody as used herein is meant an antibody comprising a human framework region (FR) and one or more complementarity determining regions (CDR's) from a non-human (usually mouse or rat) antibody. The non-human antibody providing the CDR's is called the “donor” and the human immunoglobulin providing the framework is called the “acceptor”. Humanization relies principally on the grafting of donor CDRs onto acceptor (human) VL and VH frameworks (Winter U.S. Pat. No. 5,225,539). This strategy is referred to as “CDR grafting”. “Backmutation” of selected acceptor framework residues to the corresponding donor residues is often required to regain affinity that is lost in the initial grafted construct (U.S. Pat. No. 5,530,101; U.S. Pat. No. 5,585,089; U.S. Pat. No. 5,693,761; U.S. Pat. No. 5,693,762; U.S. Pat. No. 6,180,370; U.S. Pat. No. 5,859,205; U.S. Pat. No. 5,821,337; U.S. Pat. No. 6,054,297; U.S. Pat. No. 6,407,213). The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region, typically that of a human immunoglobulin, and thus will typically comprise a human Fc region. Methods for humanizing non-human antibodies are well known in the art, and can be essentially performed following the method of Winter and co-workers (Jones et al., 1986, Nature 321:522-525; Riechmann et al., 1988, Nature 332:323-329; Verhoeyen et al., 1988, Science, 239:1534-1536). Additional examples of humanized murine monoclonal antibodies are also known in the art, for example antibodies binding human protein C (O'Connor et al., 1998, Protein Eng 11:321-8), interleukin 2 receptor (Queen et al., 1989, Proc Natl Acad Sci, USA 86:10029-33), and human epidermal growth factor receptor 2 (Carter et al., 1992, Proc Natl. Acad Sci USA 89:4285-9). In an alternate embodiment, the antibodies of the present invention may be fully human, that is the sequences of the antibodies are completely or substantially human. A number of methods are known in the art for generating fully human antibodies, including the use of transgenic mice (Bruggemann et al., 1997, Curr Opin Biotechnol 8:455-458) or human antibody libraries coupled with selection methods (Griffiths et al., 1998, Curr Opin Biotechnol 9:102-108). Furthermore, the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance and minimize immunogenicity when introduced into a human body. “Non-single-chain antigen-binding unit” (“Nsc Abus”) are heteromultimers comprising a light-chain polypeptide and a heavy-chain polypeptide. Examples of the Nsc Abus include but are not limited to (i) a ccFv fragment stabilized by heterodimerization sequences; (ii) any other monovalent and multivalent molecules comprising at least one ccFv fragment; (iii) an Fab fragment consisting of the VL, VH, CL and CH1 domains; (iv) an Fd fragment consisting of the VH and CH1 domains; (v) an Fv fragment consisting of the VL and VH domains of a single arm of an antibody; (vi) an F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (vii) a diabody; and (viii) any other Nsc Abus that are described in Little et al. (2000) Immunology Today, or in U.S. Pat. No. 7,429,652. As noted above, a Nsc Abus can be either “monovalent” or “multivalent.” Whereas the former has one binding site per antigen-binding unit, the latter contains multiple binding sites capable of binding to more than one antigen of the same or different kind. Depending on the number of binding sites, a Nsc Abus may be bivalent (having two antigen-binding sites), trivalent (having three antigen-binding sites), tetravalent (having four antigen-binding sites), and so on. Multivalent Nsc Abus can be further classified on the basis of their binding specificities. A “monospecific” Nsc Abu is a molecule capable of binding to one or more antigens of the same kind. A “multispecific” Nsc Abu is a molecule having binding specificities for at least two different antigens. While such molecules normally will only bind two distinct antigens (i.e. bispecific Abus), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein. Examples of bispecific antigen binding units include those with one arm directed against a tumor cell antigen and the other arm directed against a cytotoxic trigger molecule such as anti-CD3/anti-malignant B-cell (1D10), anti-CD3/anti-p185 HER2, anti-CD3/anti-p97, anti-CD3/anti-renal cell carcinoma, anti-CD3/anti-OVCAR-3, anti-CD3/L-D1 (anti-colon carcinoma), anti-CD3/anti-melanocyte stimulating hormone analog, anti-FcγRI/anti-CD15, anti-p185 HER2/FcγRIII (CD16), anti-EGF receptor/anti-CD3, anti-CD3/anti-CAMA1, anti-CD3/anti-CD19, anti-CD3/MoV18, anti-FcγR/anti-HIV; bispecific Abus for tumor detection in vitro or in vivo such as anti-CEA/anti-EOTUBE, anti-CEA/anti-DPTA, anti-p185 HER2/anti-hapten; BsAbs as vaccine adjuvants (see Fanger et al., supra); and bispecific Abus as diagnostic tools such as anti-rabbit IgG/anti-ferritin, anti-horse radish peroxidase (HRP)/anti-hormone, anti-somatostatin/anti-substance P, anti-neural cell ahesion molecule (NCAM)/anti-CD3, anti-folate binding protein (FBP)/anti-CD3, anti-pan carcinoma associated antigen (AMOC-31)/anti-CD3; bispecific Abus with one arm which binds specifically to a tumor antigen and one arm which binds to a toxin such as anti-saporin/anti-Id-1, anti-CD22/anti-saporin, anti-CD7/anti-saporin, anti-CD38/anti-saporin, anti-CEA/anti-ricin A chain, anti-interferon-α (IFN-α)/anti-hybridoma idiotype, anti-CEA/anti-vinca alkaloid; BsAbs for converting enzyme activated prodrugs such as anti-CD30/anti-alkaline phosphatase (which catalyzes conversion of mitomycin phosphate prodrug to mitomycin alcohol); bispecific Abus which can be used as fibrinolytic agents such as anti-fibrin/anti-tissue plasminogen activator (tPA), anti-fibrin/anti-urokinase-type plasminogen activator (uPA); bispecific antigen-binding units for targeting immune complexes to cell surface receptors such as anti-low density lipoprotein (LDL)/anti-Fc receptor (e.g. Fcγ RI, FcγRII or FcγRIII); bispecific Abus for use in therapy of infectious diseases such as anti-CD3/anti-herpes simplex virus (HSV), anti-T-cell receptor:CD3 complex/anti-influenza, anti-HRP/anti-FITC, anti-CEA/anti-β-galactosidase (see Nolan et al., supra). Examples of trispecific antibodies include anti-CD3/anti-CD4/anti-CD37, anti-CD3/anti-CD5/anti-CD37 and anti-CD3/anti-CD8/anti-CD37. “Single-chain antigen-binding unit” (“Sc Abu”) refers to a monomeric Abu. Although the two domains of the Fv fragment are coded for by separate genes, a synthetic linker can be made that enables them to be made as a single protein chain (i.e. single chain Fv (“scFv”) as described in Bird et al. (1998) Science 242:423-426 and Huston et al. 1988) PNAS 85:5879-5883) BY RECOMBINANT METHODS. Other Sc Abus include antigen-binding molecules stabilized by heterodimerization sequences, and dAb fragments (Ward et al., (1989) Nature 341:544-546) which consist of a VH domain and an isolated complementarity determining region (CDR). An example of a linking peptide is a sequence of four glycines followed by a serine, the sequence of 5 amino acids repeated twice for a total length of 15 amino acids, which linking peptide bridges approximately 3.5 nm between the carboxyl terminus of one V region and the amino terminus of another V region. Other linker sequences can also be used, and can provide additional functions, such as a means for attaching a drug or a solid support. A preferred single-chain antigen-binding unit contains VL and VH regions that are linked together and stabilized by a pair of subject heterodimerization sequences. The scFvs can be assembled in any order, for example, VH-(first heterodimerization sequence)-(second heterodimerization sequence)-VL, or VL-(first heterodimerization sequence)-(second heterodimerization sequence)-VH. An antibody or Abu “specifically binds to” or “immunoreactive with” an antigen if it binds with greater affinity or avidity than it binds to other reference antigens including polypeptides or other substances. In some embodiments, the analyte receptor is an enzyme and the target analyte is a substrate of the enzyme, or the analyte receptor is an enzyme substrate and the analyte is an enzyme that acts on the substrate, such that detection is effected by the activity of the enzyme on the substrate, such as by the production of a detectable product. Many enzymes useful in the detection of or detectable by activity on various substrates are known in the art, and include without limitation, proteases, phosphatases, peroxidases, sulfatases, peptidases, glycosidases, hydrolases, oxidoreductases, lyases, transferases, isomerases, ligases, and synthases, Of particular interest are classes of enzymes that have physiological significance. These enzymes include, without limitation, protein kinases, peptidases, esterases, protein phosphatases, isomerases, glycosylases, synthetases, proteases, dehydrogenases, oxidases, reductases, methylases and the like. Enzymes of interest include those involved in making or hydrolyzing esters, both organic and inorganic, glycosylating, and hydrolyzing amides. In any class, there may be further subdivisions, as in the kinases, where the kinase may be specific for phosphorylation of serine, threonine and/or tyrosine residues in peptides and proteins. Thus, the enzymes may be, for example, kinases from different functional groups of kinases, including cyclic nucleotide-regulated protein kinases, protein kinase C, kinases regulated by Ca.sup.2+/CaM, cyclin-dependent kinases, ERK/MAP kinases, and protein-tyrosine kinases. The kinase may be a protein kinase enzyme in a signaling pathway, effective to phosphorylate an oligopeptide substrate, such as ERK kinase, S6 kinase, IR kinase, P38 kinase, and AbI kinase. For these, the substrates can include an oligopeptide substrate. Other kinases of interest may include, for example, Src kinase, JNK, MAP kinase, cyclin-dependent kinases, P53 kinases, platelet-derived growth factor receptor, epidermal growth factor receptor, and MEK. In particular, enzymes that are useful in the present invention include any protein that exhibits enzymatic activity, e.g., lipases, phospholipases, sulphatases, ureases, peptidases, proteases and esterases, including acid phosphatases, glucosidases, glucuronidases, galactosidases, carboxylesterases, and luciferases. In one embodiment, one of the enzymes is a hydrolytic enzyme. In another embodiment, at least two of the enzymes are hydrolytic enzymes. Examples of hydrolytic enzymes include alkaline and acid phosphatases, esterases, decarboxylases, phospholipase D, P-xylosidase, β-D-fucosidase, thioglucosidase, β-D-galactosidase, α-D-galactosidase, α-D-glucosidase, β-D-glucosidase, β-D-glucuronidase, α-D-mannosidase, β-D-mannosidase, β-D-fructofuranosidase, and β-D-glucosiduronase. In some embodiments, the product of the enzyme directly produces a detectable feature in a reaction (e.g. change in color, turbidity, absorbance of a wavelength of light, fluorescence, chemiluminescence, electrical conductance, or temperature). In some embodiments, the product of the enzyme is detected indirectly by binding of a second analyte receptor having a detectable label. In some embodiments, an analyte receptor used to detect an analyte is an aptamer. An aptamer can be on a bead or other surface, such as a micro array-type surface. The term “aptamer” is used to refer to a peptide, nucleic acid, or a combination thereof that is selected for the ability to specifically bind one or more target analytes. Peptide aptamers are affinity agents that generally comprise one or more variable loop domains displayed on the surface of a scaffold protein. A nucleic acid aptamer is a specific binding oligonucleotide, which is an oligonucleotide that is capable of selectively forming a complex with an intended target analyte. The complexation is target-specific in the sense that other materials, such as other analytes that may accompany the target analyte, do not complex to the aptamer with as great an affinity. It is recognized that complexation and affinity are a matter of degree; however, in this context, “target-specific” means that the aptamer binds to target with a much higher degree of affinity than it binds to contaminating materials. The meaning of specificity in this context is thus similar to the meaning of specificity as applied to antibodies, for example. The aptamer may be prepared by any known method, including synthetic, recombinant, and purification methods. Further, the term “aptamer” also includes “secondary aptamers” containing a consensus sequence derived from comparing two or more known aptamers to a given target. In general, nucleic acid aptamers are about 9 to about 35 nucleotides in length. In some embodiments, a nucleic acid aptamer is at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, or more nucleic acids in length. Although the oligonucleotides of the aptamers generally are single-stranded or double-stranded, it is contemplated that aptamers may sometimes assume triple-stranded or quadruple-stranded structures. In some embodiments, a nucleic acid aptamer is circular, such as in US20050176940. The specific binding oligonucleotides of the aptamers should contain the sequence-conferring specificity, but may be extended with flanking regions and otherwise derivatized or modified. The aptamers found to bind to a target analyte may be isolated, sequenced, and then re-synthesized as conventional DNA or RNA moieties, or may be modified oligomers. These modifications include, but are not limited to incorporation of: (1) modified or analogous forms of sugars (e.g. ribose and deoxyribose); (2) alternative linking groups; or (3) analogous forms of purine and pyrimidine bases. Nucleic acid aptamers can comprise DNA, RNA, functionalized or modified nucleic acid bases, nucleic acid analogues, modified or alternative backbone chemistries, or combinations thereof. The oligonucleotides of the aptamers may contain the conventional bases adenine, guanine, cytosine, and thymine or uridine. Included within the term aptamers are synthetic aptamers that incorporate analogous forms of purines and pyrimidines. “Analogous” forms of purines and pyrimidines are those generally known in the art, many of which are used as chemotherapeutic agents. Non-limiting examples of analogous forms of purines and pyrimidines (i.e. base analogues) include aziridinylcytosine, 4-acetylcytosine, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl-aminomethyluracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyl-uracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5-methoxyuracil, 2-methyl-thio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid, 5-pentynyl-uracil, and 2,6-diaminopurine. The use of uracil as a substitute base for thymine in deoxyribonucleic acid (hereinafter referred to as “dU”) is considered to be an “analogous” form of pyrimidine in this invention. Aptamer oligonucleotides may contain analogous forms of ribose or deoxyribose sugars that are known in the art, including but not limited to 2′ substituted sugars such as 2′-O-methyl-, 2′-O-allyl, 2′-fluoro- or 2′-azido-ribose, carbocyclic sugar analogs, alpha-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, locked nucleic acids (LNA), peptide nucleic acid (PNA), acyclic analogs and abasic nucleoside analogs such as methyl riboside. Aptamers may also include intermediates in their synthesis. For example, any of the hydroxyl groups ordinarily present may be replaced by phosphonate groups, phosphate groups, protected by a standard protecting group, or activated to prepare additional linkages to additional nucleotides or substrates. The 5′ terminal OH is conventionally free but may be phosphorylated; OH substituents at the 3′ terminus may also be phosphorylated. The hydroxyls may also be derivatized to standard protecting groups. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to embodiments wherein P(O)O is replaced by P(O)S (“thioate”), P(S)S (“dithioate”), P(O)NR 2 (“amidate”), P(O)R, P(O)OR′, CO or CH 2 (“formacetal”), wherein each R or R′ is independently H or substituted or unsubstituted alkyl (1-20 C.) optionally containing an ether (—O—) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or aralkyl. One particular embodiment of aptamers that are useful in the present invention is based on RNA aptamers as disclosed in U.S. Pat. Nos. 5,270,163 and 5,475,096, which are incorporated herein by reference. The aforementioned patents disclose the SELEX method, which involves selection from a mixture of candidate oligonucleotides and stepwise iterations of binding, partitioning and amplification, using the same general selection scheme, to achieve virtually any desired criterion of binding affinity and selectivity. Starting from a mixture of nucleic acids, preferably comprising a segment of randomized sequence, the SELEX method includes steps of contacting the mixture with a target, such as a target analyte, under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound specifically to target molecules, dissociating the nucleic acid-target complexes, amplifying the nucleic acids dissociated from the nucleic acid-target complexes to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired to yield highly specific, high affinity nucleic acid ligands to the target molecule. In some embodiments, negative screening is employed in which a plurality of aptamers are exposed to analytes or other materials likely to be found together with target analytes in a sample to be analyzed, and only aptamers that do not bind are retained. The SELEX method encompasses the identification of high-affinity nucleic acid ligands containing modified nucleotides conferring improved characteristics on the ligand, such as improved in vivo stability or improved delivery characteristics. Examples of such modifications include chemical substitutions at the ribose and/or phosphate and/or base positions. In some embodiments, two or more aptamers are joined to form a single, multivalent aptamer molecule. Multivalent aptamer molecules can comprise multiple copies of an aptamer, each copy targeting the same analyte, two or more different aptamers targeting different analytes, or combinations of these. Analyte receptors can be used to detect an analyte in any of the detection schemes described herein. In one embodiment, analyte receptors are covalently or non-covalently coupled to a substrate. Non-limiting examples of substrates to which analyte receptors may be coupled include microarrays, microbeads, pipette tips, sample transfer devices, cuvettes, capillaries or other tubes, reaction chambers, or any other suitable format compatible with the subject detection system. Biochip microarray production can employ various semiconductor fabrication techniques, such as solid phase chemistry, combinatorial chemistry, molecular biology, and robotics. One process typically used is a photolithographic manufacturing process for producing microarrays with millions of analyte receptors on a single chip. Alternatively, if the analyte receptors are pre-synthesized, they can be attached to an array surface using techniques such as micro-channel pumping, “ink-jet” spotting, template-stamping, or photocrosslinking. An exemplary photolithographic process begins by coating a quartz wafer with a light-sensitive chemical compound to prevent coupling between the quartz wafer and the first nucleotide of a DNA probe being created. A lithographic mask is used to either inhibit or permit the transmission of light onto specific locations of the wafer surface. The surface is then contacted with a solution which may contain adenine, thymine, cytosine, or guanine, and coupling occurs only in those regions on the glass that have been deprotected through illumination. The coupled nucleotide bears a light-sensitive protecting group, allowing the cycle can be repeated. In this manner, the microarray is created as the probes are synthesized via repeated cycles of deprotection and coupling. The process may be repeated until the probes reach their full length. Commercially available arrays are typically manufactured at a density of over 1.3 million unique features per array. Depending on the demands of the experiment and the number of probes required per array, each wafer, can be cut into tens or hundreds of individual arrays. Other methods may be used to produce a coated solid surface with analyte receptors attached thereto. A coated solid surface may be a Langmuir-Bodgett film, functionalized glass, germanium, silicon, PTFE, polystyrene, gallium arsenide, gold, silver, membrane, nylon, PVP, polymer plastics, or any other material known in the art that is capable of having functional groups such as amino, carboxyl, Diels-Alder reactants, thiol or hydroxyl incorporated on its surface. These groups may then be covalently attached to crosslinking agents, so that the subsequent binding of the analyte receptors and target analyte will occur in solution without hindrance from the biochip. Typical crosslinking groups include ethylene glycol oligomer, diamines, and amino acids. Alternatively, analyte receptors may be coupled to an array using enzymatic procedures, such as described in US20100240544. In some embodiments, analyte receptors are coupled to the surface of a microbead. Microbeads useful in coupling to analyte receptors, such as oligonucleotides, are known in the art, and include magnetic and non-magnetic beads. Microbeads can be labeled with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more dyes to facilitate coding of the beads and identification of an analyte receptor joined thereto. Coding of microbeads can be used to distinguish at least 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 5000, or more different microbeads in a single assay, each microbead corresponding to a different analyte receptors with specificity for a different analyte. In some embodiments, analyte receptors are coupled to the surface of a reaction chamber, such as a tip. For example, the interior surface of a tip may be coated with an analyte receptor specific for a single analyte. Alternatively, the interior surface of a tip may be coated with two or more different analyte receptors specific for different analytes. When two or more different analyte receptors are coupled to the same interior tip surface, each of the different analyte receptors may be coupled at different known locations, such as forming distinct ordered rings or bands at different positions along the axis of a tip. In this case, multiple different analytes may be analyzed in the same sample by drawing a sample up a tip and allowing analytes contained in the sample to bind with the analyte receptors coated at successive positions along the tip. Binding events can then be visualized as described herein, with the location of each band in a banding pattern corresponding to a specific known analyte. Analytes: Analyte receptors can be used as diagnostic and prognostic reagents, as reagents for the discovery of novel therapeutics, as reagents for monitoring drug response in individuals, and as reagents for the discovery of novel therapeutic targets. Analyte receptors can be used to detect one or more target analytes. The term “analytes” refers to any type of biological molecule including, for example, simple intermediary metabolites, sugars, lipids, and hormones as well as macromolecules such as complex carbohydrates, phospholipids, nucleic acids (e.g. DNA, RNA, mRNA, miRNA, rRNA, tRNA), polypeptides and peptides. Further non-limiting examples of analytes include drugs, drug candidates, prodrugs, pharmaceutical agents, drug metabolites, biomarkers such as expressed proteins and cell markers, antibodies, serum proteins, cholesterol and other metabolites, electrolytes, metal ions, polysaccharides, genes, proteins, glycoproteins, glycolipids, lectins, growth factors, cytokines, vitamins, enzymes, enzyme substrates, enzyme inhibitors, steroids, oxygen and other gases found in physiologic fluids (e.g. CO2), cells, cellular constituents, cell adhesion molecules, plant and animal products, cell surface markers (e.g. cell surface receptors and other molecules identified herein as receptor proteins), and cell signaling molecules. Non-limiting examples of protein analytes include membrane associated proteins (e.g. extracellular membrane proteins, intracellular membrane proteins, integral membrane proteins, or transiently membrane-associated proteins), cytosolic proteins, chaperone proteins, proteins associated with one or more organelles (e.g. nuclear proteins, nuclear envelope proteins, mitochondrial proteins, golgi and other transport proteins, endosomal proteins, lysosomal proteins, etc.), secreted proteins, serum proteins, and toxins. Non-limiting examples of analytes for detection include Adiponectin, Alanine Aminotransferase (ALT/GPT), Alpha-fetoprotein (AFP), Albumin, Alkaline Phosphatase (ALP), Alpha Fetoprotein, Apolipoprotein A-I (Apo A-I), Apolipoprotein B (Apo B), Apolipoprotein B/Apoplipoprotien A-1 Ratio (Apo B/A1 ratio), Aspartate Aminotransferase (AST/GOT), AspirinWorks® (11-Dehydro-Thromboxane B2), Bicarbonate (CO2), Bilirubin, Direct (DBIL), Bilirubin, Total (TBIL), Blood Urea Nitrogen (BUN), Carboxy terminal collagen crosslinks (Beta-CrossLaps), Calcium, Cancer Antigen 125 (CA 125), Cancer Antigen 15-3 (CA 15-3), Cancer Antigen 19-9 (CA 19-9), Carcinoembryonic Antigen (CEA), Chloride (Cl), Complete Blood Count w/differential (CBC), C-peptide, C-reactive protein (CRP-hs), Creatine Kinase (CK), Creatinine (serum), Creatinine (urine), Cytochrome P450, Cystatin-C, D-Dimer, Dehydroepiandrosterone Sulfate (DHEA-S), Estradiol, F2 Isoprostanes, Factor V Leiden, Ferritin, Fibrinogen (mass), Folate, Follicle-stimulating Hormone (FSH), Free Fatty Acids/Non-Esterified Fatty Acids (FFA/NEFA), Fructosamine, Gamma-glutamyl Transferase (GGT), Glucose, HbA1c & estimated Average Glucose (eAG), HDL2 subclass, High-density Lipoprotein Cholesterol (HDL-C), High-density Lipoprotein Particle Number (HDL-P), High-sensitivity C-reactive Protein (hs-CRP), Homocysteine, Insulin, Iron and TIBC, Lactate dehydrogenase (LDH), Leptin, Lipoprotein (a) Cholesterol (Lp(a) chol), Lipoprotein (a) Mass (Lp(a) mass), Lipoprotein-associated Phospholipase A2 (Lp-PLA2), Low-density Lipoprotein Cholesterol, Direct (LDL-C), Low-density Lipoprotein Particle Number (LDL-P), Luteinizing Hormone (LH), Magnesium, Methylenetetrahydrofolate reductase (MTHFR), Micro-albumin, Myeloperoxidase (MPO), N-terminal Pro b-type Natriuretic Peptide (NT-proBNP), Non-High-density Lipoprotein Cholesterol, Omega-3 Fatty Acid Profile, Osteocalcin, Parathyroid Hormone (PTH), Phosphorus, Potassium (K+), Prostate Specific Antigen, total (PSA, total), Prothrombin, Resistin, Sex Hormone Binding Globulin (SHBG), Small Dense Low-density Lipoprotein (sdLDL), Small dense low-density Lipoprotein/Low-density Lipoprotein Cholesterol Ratio (sd LDL/LDL-C ratio), Sodium (NA+), T Uptake, Testosterone, Thyroid-stimulating hormone (TSH), Thyroxine (T4), Total Cholesterol (TCHOL), Total Protein, Triglycerides (TRIG), Triiodothyronine (T3), T4 (free), Uric Acid, Vitamin B12, 25-hydroxy-vitamin D, clotting factors (e.g. factor I (fibrinogen), factor II (prothrombin), factor III (tissue thromboplastin), factor IV (calcium), factor V (proaccelerin), factor VI (no longer considered active in hemostasis), factor VII (proconvertin), factor VIII (antihemophilic factor), factor IX (plasma thromboplastin component; Christmas factor), factor X (stuart factor), factor XI (plasma thromboplastin antecedent), factor XII (hageman factor), factor XIII (fibrin stabilizing factor)). In some embodiments, the analyte is a cell signaling molecule, such as a protein. Non-limiting examples of proteins that may be detected as analytes include kinases, phosphatases, lipid signaling molecules, adaptor/scaffold proteins, GTPase activating proteins, isomerases, deacetylases, methylases, demethylases, tumor suppressor genes, caspases, proteins involved in apoptosis, cell cycle regulators, molecular chaperones, metabolic enzymes, vesicular transport proteins, cytokines, cytokine regulators, ubiquitination enzymes, adhesion molecules, cytoskeletal/contractile proteins, heterotrimeric G proteins, small molecular weight GTPases, guanine nucleotide exchange factors, hydroxylases, proteases, ion channels, molecular transporters, transcription factors/DNA binding factors, regulators of transcription, and regulators of translation. Analytes may be members of any cell signaling pathway, including but not limited to MAP kinase, PI3K/Akt, NFkB, WNT, RAS/RAF/MEK/ERK, JNK/SAPK, p38 MAPK, Src Family Kinases, JAK/STAT and/or PKC signaling pathways. Examples of signaling molecules include, but are not limited to, HER receptors, PDGF receptors, Kit receptor, FGF receptors, Eph receptors, Trk receptors, IGF receptors, Insulin receptor, Met receptor, Ret, VEGF receptors, TIE1, TIE2, FAK, Jak1, Jak2, Jak3, Tyk2, Src, Lyn, Fyn, Lck, Fgr, Yes, Csk, Abl, Btk, ZAP70, Syk, IRAKs, cRaf, ARaf, BRAF, Mos, Lim kinase, ILK, Tpl, ALK, TGFβ receptors, BMP receptors, MEKKs, ASK, MLKs, DLK, PAKs, Mek 1, Mek 2, MKK3/6, MKK4/7, ASK1, Cot, NIK, Bub, Myt 1, Weel, Casein kinases, PDK1, SGK1, SGK2, SGK3, Akt1, Akt2, Akt3, p90Rsks, p70S6 Kinase, Prks, PKCs, PKAs, ROCK 1, ROCK 2, Auroras, CaMKs, MNKs, AMPKs, MELK, MARKs, Chk1, Chk2, LKB-1, MAPKAPKs, Pim1, Pim2, Pim3, IKKs, Cdks, Jnks, Erks, IKKs, GSK3α, GSK3β, Cdks, CLKs, PKR, PI3-Kinase class 1, class 2, class 3, mTor, SAPK/JNK1, 2, 3, p38s, PKR, DNA-PK, ATM, ATR, Receptor protein tyrosine phosphatases (RPTPs), LAR phosphatase, CD45, Non receptor tyrosine phosphatases (NPRTPs), SHPs, MAP kinase phosphatases (MKPs), Dual Specificity phosphatases (DUSPs), CDC25 phosphatases, Low molecular weight tyrosine phosphatase, Eyes absent (EYA) tyrosine phosphatases, Slingshot phosphatases (SSH), serine phosphatases, PP2A, PP2B, PP2C, PP1, PPS, inositol phosphatases, PTEN, SHIPs, myotubularins, phosphoinositide kinases, phopsholipases, prostaglandin synthases, 5-lipoxygenase, sphingosine kinases, sphingomyelinases, adaptor/scaffold proteins, Shc, Grb2, BLNK, LAT, B cell adaptor for PI3-kinase (BCAP), SLAP, Dok, KSR, MyD88, Crk, CrkL, GAD, Nck, Grb2 associated binder (GAB), Fas associated death domain (FADD), TRADD, TRAF2, RIP, T-Cell leukemia family, IL-2, IL-4, IL-8, IL-6, interferon β, interferon α, suppressors of cytokine signaling (SOCs), Cbl, SCF ubiquitination ligase complex, APC/C, adhesion molecules, integrins, Immunoglobulin-like adhesion molecules, selectins, cadherins, catenins, focal adhesion kinase, p130CAS, fodrin, actin, paxillin, myosin, myosin binding proteins, tubulin, eg5/KSP, CENPs, β-adrenergic receptors, muscarinic receptors, adenylyl cyclase receptors, small molecular weight GTPases, H-Ras, K-Ras, N-Ras, Ran, Rac, Rho, Cdc42, Arfs, RABs, RHEB, Vav, Tiam, Sos, Dbl, PRK, TSC1, 2, Ras-GAP, Arf-GAPs, Rho-GAPs, caspases, Caspase 2, Caspase 3, Caspase 6, Caspase 7, Caspase 8, Caspase 9, Bcl-2, Mcl-1, Bcl-XL, Bcl-w, Bcl-B, A1, Bax, Bak, Bok, Bik, Bad, Bid, Bim, Bmf, Hrk, Noxa, Puma, IAPB, XIAP, Smac, survivin, Plk1, Cdk4, Cdk 6, Cdk 2, Cdk1, Cdk 7, Cyclin D, Cyclin E, Cyclin A, nucleoside transporters, Ets, Elk, SMADs, Rel-A (p65-NFKB), CREB, NFAT, ATF-2, AFT, Myc, Fos, Spl, Egr-1, T-bet, β-catenin, HIFs, FOXOs, E2Fs, SRFs, TCFs, Egr-1, β-catenin, STAT1, STAT 3, STAT 4, STAT 5, STAT 6, Cyclin B, Rb, p16, p14Arf, p27KIP, p21CIP, molecular chaperones, Hsp90s, Hsp70, Hsp27, metabolic enzymes, Acetyl-CoA Carboxylase, ATP citrate lyase, nitric oxide synthase, caveolins, endosomal sorting complex required for transport (ESCRT) proteins, vesicular protein sorting (Vsps), hydroxylases, prolyl-hydroxylases PHD-1, 2 and 3, asparagine hydroxylase FIH transferases, Pin1 prolyl isomerase, topoisomerases, deacetylases, Histone deacetylases, sirtuins, histone acetylases, CBP/P300 family, MYST family, ATF2, DNA methyl transferases, DMNT1, DMNT3a, DMNT3b, Histone H3K4 demethylases, H3K27, JHDM2A, UTX, VHL, WT-1, p53, Hdm, PTEN, ubiquitin proteases, urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) system, cathepsins, metalloproteinases, esterases, hydrolases, separase, potassium channels, sodium channels, multi-drug resistance proteins, P-Gycoprotein, p53, WT-1, HMGA, pS6, 4EPB-1, eIF4E-binding protein, RNA polymerase, initiation factors, elongation factors. In some embodiments target analytes may be selected from endogenous analytes produced by a host or exogenous analytes that are foreign to the host. Suitable endogenous analytes include, but are not restricted to, self-antigens that are targets of autoimmune responses as well as cancer or tumour antigens. Illustrative examples of self antigens useful in the treatment or prevention of autoimmune disorders include, but are not limited to, antigens associated with diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), Crohn's disease, ulcerative colitis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginitisμ, proctitis, drug eruptions, leprosy reversal reactions, erythema nodosum leprosum, autoimmune uveitis, allergic encephalomyelitis, multiple sclerosis, myasthenia gravis, systemic lupus erythematosis, autoimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), Wegener's granulomatosis, chronic active hepatitis, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Graves opthalmopathy, sarcoidosis, primary biliary cirrhosis, uveitis posterior, psoriasis, Sjögren's Syndrome, including keratoconjunctivitis sicca secondary to Sjögren's Syndrome, alopecia greata, allergic responses due to arthropod bite reactions, acute necrotizing haemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing loss, aplastic anaemia, pure red cell anaemia, idiopathic thrombocytopenia, polychondritis, and interstitial lung fibrosis. Other autoantigens include those derived from nucleosomes for the treatment of systemic lupus erythematosus. Further non-limiting examples of analytes include U1-RNP, fibrillin (scleroderma), pancreatic β cell antigens, GAD65 (diabetes related), insulin, myelin basic protein, myelin proteolipid protein, histones, PLP, collagen, glucose-6-phosphate isomerase, citrullinated proteins and peptides, thyroid antigens, thyroglobulin, thyroid-stimulating hormone (TSH) receptor, various tRNA synthetases, components of the acetyl choline receptor (AchR), MOG, proteinase-3, myeloperoxidase, epidermal cadherin, acetyl choline receptor, platelet antigens, nucleic acids, nucleic acid:protein complexes, joint antigens, antigens of the nervous system, salivary gland proteins, skin antigens, kidney antigens, heart antigens, lung antigens, eye antigens, erythrocyte antigens, liver antigens and stomach antigens. In some embodiments, the analyte is associated with the presence of cancer or other tumorous growth. Examples of cancer- and tumor-related analytes detected by binding with an analyte receptor include, but are not limited to gp100, MART, Melan-A/MART-1, TRP-1, Tyros, TRP2, MC1R, MUC1F, MUC1R, BAGE, GAGE-1, gp100In4, MAGE-1, MAGE-3, MAGE4, PRAME, TRP2IN2, NYNSO1a, NYNSO1b, LAGE1, p97 melanoma antigen, p5 protein, gp75, oncofetal antigen, GM2 and GD2 gangliosides, cdc27, p21ras, gp100Pmel117, etv6, aml1, cyclophilin b (acute lymphoblastic leukemia); Imp-1, EBNA-1 (nasopharyngeal cancer); MUC family, HER2/neu, c-erbB-2, MAGE-A4, NY-ESO-1 (ovarian cancer); Prostate Specific Antigen (PSA) and its antigenic epitopes PSA-1, PSA-2, and PSA-3, PSMA, HER2/neu, c-erbB-2, ga733 glycoprotein (prostate cancer); Ig-idiotype (B cell lymphoma); E-cadherin, α-catenin, β-catenin, γ-catenin, p1120ctn (glioma); p21ras (bladder cancer); p21ras (biliary cancer); HER2/neu, c-erbB-2 (non-small cell lung carcinoma); HER2/neu, c-erbB-2 (renal cancer); viral products such as human papilloma virus proteins (squamous cell cancers of the cervix and oesophagus); NY-ESO-1 (testicular cancer); MUC family, HER2/neu, c-erbB-2 (breast cancer); p53, p21ras (cervical carcinoma); p21ras, HER2/neu, c-erbB-2, MUC family, Cripto-1protein, Pim-1 protein (colon carcinoma); Colorectal associated antigen (CRC)-CO17-1A/GA733, APC (colorectal cancer); carcinoembryonic antigen (CEA) (colorectal cancer; choriocarcinoma); cyclophilin b (epithelial cell cancer); HER2/neu, c-erbB-2, ga733 glycoprotein (gastric cancer); α-fetoprotein (hepatocellular cancer); Imp-1, EBNA-1 (Hodgkin's lymphoma); CEA, MAGE-3, NY-ESO-1 (lung cancer); cyclophilin b (lymphoid cell-derived leukemia); MUC family, p21ras (myeloma); and HTLV-1 epitopes (C cell leukemia). In some embodiments, the analyte is a foreign antigen. Foreign antigens include, but are not limited to, transplantation antigens, allergens, and antigens from pathogenic organisms. Transplantation antigens can be derived from donor cells or tissues from e.g., heart, lung, liver, pancreas, kidney, neural graft components, or from the donor antigen-presenting cells bearing MHC loaded with self antigen in the absence of exogenous antigen. Non-limiting examples of allergens include Fel d 1 (i.e., the feline skin and salivary gland allergen of the domestic cat); Der p L Der p II, or Der fi (i.e., the major protein allergens from the house dust mite); and allergens derived from: grass, tree and weed (including ragweed) pollens; fungi and moulds; foods such as fish, shellfish, crab, lobster, peanuts, nuts, wheat gluten, eggs and milk; stinging insects such as bee, wasp, and hornet and the chimomidae (non-biting midges); other insects such as the housefly, fruitfly, sheep blow fly, screw worm fly, grain weevil, silkworm, honeybee, non-biting midge larvae, bee moth larvae, mealworm, cockroach and larvae of Tenibrio molitor beetle; spiders and mites, including the house dust mite; allergens found in the dander, urine, saliva, blood or other bodily fluid of mammals such as cat, dog, cow, pig, sheep, horse, rabbit, rat, guinea pig, mouse and gerbil; airborne particulates in general; latex; and protein detergent additives. In some embodiments, the analyte is a pathogen or a product or fragment thereof. Exemplary pathogens include, but are not limited to, viruses, bacteria, prions, protozoans, single-celled organisms, algae, eggs of pathogenic organisms, microbes, cysts, molds, fungus, worms, amoeba, pathogenic proteins, parasites, algae, and viroids. Many pathogens, and markers thereof, are known in the art (see e.g., Foodborne Pathogens: Microbiology and Molecular Biology, Caister Academic Press, eds. Fratamico, Bhunia, and Smith (2005); Maizels et al., Parasite Antigens Parasite Genes: A Laboratory Manual for Molecular Parasitology, Cambridge University Press (1991); National Library of Medicine; US20090215157; and US20070207161). Illustrative examples of viruses include viruses responsible for diseases including, but not limited to, measles, mumps, rubella, poliomyelitis, hepatitis (e.g. hepatitis A, B, C, delta, and E viruses), influenza, adenovirus, rabies, yellow fever, Epstein-Barr virus and other herpesviruses such as papillomavirus, Ebola virus, influenza virus, Japanese encephalitis, dengue virus, hantavirus, Sendai virus, respiratory syncytial virus, othromyxoviruses, vesicular stomatitis virus, visna virus, cytomegalovirus, and human immunodeficiency virus (HIV). Any suitable antigen derived from such viruses are useful in the practice of the present invention. For example, illustrative retroviral antigens derived from HIV include, but are not limited to, antigens such as gene products of the gag, pol, and env genes, the Nef protein, reverse transcriptase, and other HIV components. Illustrative examples of herpes simplex viral antigens include, but are not limited to, antigens such as immediate early proteins, glycoprotein D, and other herpes simplex viral antigen components. Non-limiting examples of varicella zoster viral antigens include antigens such as 9PI, gpII, and other varicella zoster viral antigen components. Non-limiting examples of Japanese encephalitis viral antigens include antigens such as proteins E, M-E, M-E-NS 1, NS 1, NS 1-NS2A, and other Japanese encephalitis viral antigen components. Illustrative examples of hepatitis viral antigens include, but are not limited to, antigens such as the S, M, and L proteins of hepatitis B virus, the pre-S antigen of hepatitis B virus, and other hepatitis (e.g., hepatitis A, B, and C), viral components such as viral DNA and/or RNA. Illustrative examples of influenza viral antigens include; but are not limited to, antigens such as hemagglutinin and neurarnimidase and other influenza viral components. Illustrative examples of measles viral antigens include, but are not limited to, antigens such as the measles virus fusion protein and other measles virus components. Illustrative examples of rubella viral antigens include, but are not limited to, antigens such as proteins E1 and E2 and other rubella virus components; rotaviral antigens such as VP7sc and other rotaviral components. Illustrative examples of cytomegaloviral antigens include, but are not limited to, antigens such as envelope glycoprotein B and other cytomegaloviral antigen components. Non-limiting examples of respiratory syncytial viral antigens include antigens such as the RSV fusion protein, the M2 protein and other respiratory syncytial viral antigen components. Representative examples of rabies viral antigens include, but are not limited to, antigens such as rabies glycoprotein, rabies nucleoprotein and other rabies viral antigen components. Illustrative examples of papillomavirus antigens include, but are not limited to, the L1 and L2 capsid proteins as well as the E6/E7 antigens associated with cervical cancers. See e.g. Fundamental Virology, Second Edition, eds. Fields, B. N. and Knipe, D. M., 1991, Raven Press, New York, for additional examples of viral antigens. Illustrative examples of fungi include Acremoniuin spp., Aspergillus spp., Epidermophytoni spp., Exophiala jeanselmei, Exserohilunm spp., Fonsecaea compacta, Fonsecaea pedrosoi, Fusarium oxysporum, Basidiobolus spp., Bipolaris spp., Blastomyces derinatidis, Candida spp., Cladophialophora carrionii, Coccoidiodes immitis, Conidiobolus spp., Cryptococcus spp., Curvularia spp., Fusarium solani, Geotrichum candidum, Histoplasma capsulatum var. capsulatum, Histoplasma capsulatum var. duboisii, Hortaea werneckii, Lacazia loboi, Lasiodiplodia theobromae, Leptosphaeria senegalenisis, Piedra iahortae, Pityriasis versicolor, Pseudallesheria boydii, Pyrenochaeta romeroi, Rhizopus arrhizus, Scopulariopsis brevicaulis, Scytalidium dimidiatum, Sporothrix schenckii, Trichophyton spp., Trichosporon spp., Zygomcete fungi, Madurella grisea, Madurella mycetomatis, Malassezia furfur, Microsporum spp., Neotestudina rosatii, Onychocola canadensis, Paracoccidioides brasiliensis, Phialophora verrucosa, Piedraia hortae, Absidia coryinbifera, Rhizomucor pusillus, and Rhizopus arrhizus. Thus, illustrative fungal antigens that can be used in the compositions and methods of the present invention include, but are not limited to, candida fungal antigen components; cryptococcal fungal antigens such as capsular polysaccharides and other cryptococcal fungal antigen components; histoplasma fungal antigens such as heat shock protein 60 (HSP60) and other histoplasma fungal antigen components; coccidiodes fungal antigens such as spherule antigens and other coccidiodes fungal antigen components; and tinea fungal antigens such as trichophytin and other coccidiodes fungal antigen components. Illustrative examples of bacteria include bacteria that are responsible for diseases including, but not limited to, diphtheria (e.g., Corynebacterium diphtheria), pertussis (e.g., Bordetella pertussis), anthrax (e.g., Bacillus anthracia), typhoid, plague, shigellosis (e.g., Shigella dysenteriae), botulism (e.g., Clostridium botulinum), tetanus (e.g., Clostridium tetani), tuberculosis (e.g., Mycobacterium tuberculosis), bacterial pneumonias (e.g., Haemophilus influenzae.), cholera (e.g., Vibrio cholerae), salmonellosis (e.g., Salmonella typhi), peptic ulcers (e.g., Helicobacter pylori), Legionnaire's Disease (e.g. Legionella spp.), and Lyme disease (e.g. Borrelia burgdorferi). Other pathogenic bacteria include Escherichia coli, Clostridium perfringens, Clostridium difficile, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Further examples of bacteria include Staphylococcus epidermidis, Staphylococcus sp., Streptococcus pneumoniae, Streptococcus agalactiae, Enterococcus sp., Bacillus cereus, Bifidobacterium bifidum, Lactobacillus sp., Listeria monocytogenes, Nocardia sp., Rhodococcus equi, Erysipelothrix rhusiopathiae, Propionibacterium acnes, Actinomyces sp., Mobiluncus sp., Peptostreptococcus sp., Neisseria gonorrhoeae, Neisseria meningitides, Moraxella catarrhalis, Veillonella sp., Actinobacillus actinomycetemcomitans, Acinetobacter baumannii, Brucella sp., Campylobacter sp., Capnocytophaga sp., Cardiobacterium hominis, Eikenella corrodens, Francisella tularensis, Haemophilus ducreyi, Helicobacter pylori, Kingella kingae, Legionella pneumophila, Pasteurella multocida, Klebsiella granulomatis, Enterobacteriaceae, Citrobacter sp., Enterobacter sp., Escherichia coli, Klebsiella pneumoniae, Proteus sp., Salmonella enteriditis, Salmonella typhi, Shigella sp., Serratia marcescens, Yersinia enterocolitica, Yersinia pestis, Aeromonas sp., Plesiomonas shigelloides, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Acinetobacter sp., Flavobacterium sp., Burkholderia cepacia, Burkholderia pseudomallei, Xanthomonas maltophilia, Stenotrophomonas maltophila, Bacteroides fragilis, Bacteroides sp., Prevotella sp., Fusobacterium. sp., and Spirillum minus. Thus, bacterial antigens which can be used in the compositions and methods of the invention include, but are not limited to: pertussis bacterial antigens such as pertussis toxin, filamentous hemagglutinin, pertactin, F M2, FIM3, adenylate cyclase and other pertussis bacterial antigen components; diphtheria bacterial antigens such as diphtheria toxin or toxoid and other diphtheria bacterial antigen components; tetanus bacterial antigens such as tetanus toxin or toxoid and other tetanus bacterial antigen components, streptococcal bacterial antigens such as M proteins and other streptococcal bacterial antigen components; gram-negative bacilli bacterial antigens such as lipopolysaccharides and other gram-negative bacterial antigen components; Mycobacterium tuberculosis bacterial antigens such as mycolic acid, heat shock protein 65 (HSP65), the 30 kDa major secreted protein, antigen 85A and other mycobacterial antigen components; Helicobacter pylori bacterial antigen components, pneumococcal bacterial antigens such as pneumolysin, pneumococcal capsular polysaccharides and other pnermiococcal bacterial antigen components; Haemophilus influenza bacterial antigens such as capsular polysaccharides and other Haemophilus influenza bacterial antigen components; anthrax bacterial antigens such as anthrax protective antigen and other anthrax bacterial antigen components; rickettsiae bacterial antigens such as rompA and other rickettsiae bacterial antigen component. Also included with the bacterial antigens described herein are any other bacterial, mycobacterial, mycoplasmal, rickettsial, or chlamydial antigens. Illustrative examples of protozoa and other parasites that are responsible for diseases include, but not limited to, malaria (e.g. Plasmodium falciparum), hookworm, tapeworms, helminths, whipworms, ringworms, roundworms, pinworms, ascarids, filarids, onchocerciasis (e.g., Onchocerca volvulus), schistosomiasis (e.g. Schistosoma spp.), toxoplasmosis (e.g. Toxoplasma spp.), trypanosomiasis (e.g. Trypanosoma spp.), leishmaniasis (Leishmania spp.), giardiasis (e.g. Giardia lamblia), amoebiasis (e.g. Entamoeba histolytica), filariasis (e.g. Brugia malayi), and trichinosis (e.g. Trichinella spiralis). Thus, antigens which can be used in the compositions and methods of the invention include, but are not limited to: plasmodium falciparum antigens such as merozoite surface antigens, sporozoite surface antigens, circumsporozoite antigens, gametocyte/gamete surface antigens, blood-stage antigen pf 155/RESA and other plasmodial antigen components; leishmania major and other leishmaniae antigens such as gp63, lipophosphoglycan and its associated protein and other leishmanial antigen components; toxoplasma antigens such as SAG-1, p30 and other toxoplasmal antigen components; schistosomae antigens such as glutathione-S-transferase, paramyosin, and other schistosomal antigen components; and trypanosoma cruzi antigens such as the 75-77 kDa antigen, the 56 kDa antigen and other trypanosomal antigen components. In some embodiments, the analyte is a drug or drug metabolite. A feature of the system is the ability to run any type of assay on the same system. In some embodiments, certain analytes provided herein may be detected in a nucleic acid assay (e.g. a nucleic acid amplification assay). These nucleic acid assays may contain one or more nucleic acid probes which specifically hybridize with a nucleic acid that is part of or is related to an analyte of interest. For example, nucleic acid probes may specifically hybridize with a nucleic acid encoding a protein analyte described herein. In another example, nucleic acid probes may specifically hybridize with a nucleic acid from a pathogen described herein. These or other nucleic acid probes may be provided, for example, in an assay unit, reagent unit, vessel, tip, or container in a cartridge or assay station provided herein. Nucleic acid probes may be provided in various forms, including, for example, in lyophilized, gel, or liquid forms. Detection In some embodiments, binding of one or more analyte receptors to one or more target analytes is detected using one or more detectable labels or tags. In general a label is a molecule that can be directly (i.e., a primary label) or indirectly (i.e., a secondary label) detected; for example a label can be visualized and/or measured or otherwise identified so that its presence or absence can be known. A label can be directly or indirectly conjugated to one or more of an analyte receptor, an analyte, or a tag (e.g. a probe) that interacts with either or both of the analyte or analyte receptor. In general, a label provides a detectable signal. Non-limiting examples of labels useful in the invention include fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), enzymes (e.g., LacZ, CAT, horseradish peroxidase, alkaline phosphatase, I 2-galactosidase, β-galactosidase, and glucose oxidase, acetylcholinesterase and others, commonly used as detectable enzymes), quantum dot-labels, chromophore-labels, enzyme-labels, affinity ligand-labels, electromagnetic spin labels, heavy atom labels, probes labeled with nanoparticle light scattering labels or other nanoparticles, fluorescein isothiocyanate (FITC), TRITC, rhodamine, tetramethylrhodamine, R-phycoerythrin, Cy-3, Cy-5, Cy-7, Texas Red, Phar-Red, allophycocyanin (APC), epitope tags such as the FLAG or HA epitope, and enzyme tags such as and hapten conjugates such as digoxigenin or dinitrophenyl, or members of a binding pair that are capable of forming complexes such as streptavidin/biotin, avidin/biotin or an antigen/antibody complex including, for example, rabbit IgG and anti-rabbit IgG; magnetic particles; electrical labels; thermal labels; luminescent molecules; phosphorescent molecules; chemiluminescent molecules; fluorophores such as umbelliferone, fluorescein, rhodamine, tetramethyl rhodamine, eosin, green fluorescent protein, erythrosin, coumarin, methyl coumarin, pyrene, malachite green, stilbene, lucifer yellow, Cascade Blue, dichlorotriazinylamine fluorescein, dansyl chloride, phycoerythrin, fluorescent lanthanide complexes such as those including Europium and Terbium, molecular beacons and fluorescent derivatives thereof, a luminescent material such as luminol; light scattering or plasmon resonant materials such as gold or silver particles or quantum dots; radiolabels or heavy isotopes including 14C, 123I, 124I, 131I, 125I, Tc99m, 32P, 35S or 3H; or spherical shells; and probes labeled with any other signal generating label known to those of skill in the art, as described, for example, in Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz (Editor), Plenum Pub Corp, 2nd edition (July 1999) and the 6 th Edition of the Molecular Probes Handbook by Richard P. Hoagland. Two or more different labels may be used together to detect two or more analytes in a single assay. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more different labels are used in a single assay. In some embodiments, the label is an enzyme, the activity of which generates a product having a detectable signal. Substrates used for sensitive detection can be colorimetric, radioactive, fluorescent or chemiluminescent. Conventional colorimetric substrates produce a new color (or change in spectral absorption) upon enzyme action on a chromogenic substrate. In general, colorimetric substrates produce a change in spectral absorption. In some embodiments, the enzyme is horseradish peroxidase, substrates of which include but are not limited to 3,3′-diaminobenzidine (DAB), 3-Amino-9-ethylcarbazole (AEC), and Bajoran Purple. In some embodiments, the enzyme is alkaline phosphatase, substrates of which include but are not limited to Fast Red and Ferangi Blue. A variety of other enzymatic labels and associated chromagens are known in the art, and are available from commercial suppliers such as Thermo Fisher Scientific. A non-limiting example of an enzymatic assay is an enzyme-linked immunosorbant assay (ELISA). Methods for performing ELISA are known in the art, and may be similarly applied in the methods of the invention. An analayte may or may not be bound by a first analyte receptor that is not labeled before exposure to a second analyte receptor that is labeled (e.g. sandwich ELISA) and specifically binds to either the analyte or the first analyte receptor. In a typical ELISA assay, the analyte receptor linked to an enzyme is an antibody. Similar assays may be performed where the antibody is replace with another analyte receptor. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue™, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705 and Oregon green. Suitable optical dyes are described in the 1996 Molecular Probes Handbook by Richard P. Haugland, hereby expressly incorporated by reference. Suitable fluorescent labels also include, but are not limited to, green fluorescent protein (GFP), enhanced GFP (EGFP), blue fluorescent protein (BFP), enhanced yellow fluorescent protein (EYFP), luciferase, β-galactosidase, and Renilla. Further examples of fluorescent labels are described in WO 92/15673; WO 95/07463; WO 98/14605; WO 98/26277; WO 99/49019; U.S. Pat. No. 5,292,658; U.S. Pat. No. 5,418,155; U.S. Pat. No. 5,683,888; U.S. Pat. No. 5,741,668; U.S. Pat. No. 5,777,079; U.S. Pat. No. 5,804,387; U.S. Pat. No. 5,874,304; U.S. Pat. No. 5,876,995; and U.S. Pat. No. 5,925,558, which are incorporated herein by reference. In some embodiments, labels for use in the present invention include: Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes) (Eugene, Oreg.), FITC, Rhodamine, and Texas Red (Pierce, Rockford, Ill.), Cy5, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh, Pa.). Tandem conjugate protocols for Cy5PE, Cy5.5PE, Cy7PE, Cy5.5APC, Cy7APC are known in the art. Quantitation of fluorescent probe conjugation may be assessed to determine degree of labeling and protocols including dye spectral properties are also well known in the art. In some embodiments the fluorescent label is conjugated to an aminodextran linker which is conjugated to a binding element or antibody. Additional labels are listed in and are available through the on-line and hard copy catalogues of BD Biosciences, Beckman Coulter, AnaSpec, Invitrogen, Cell Signaling Technology, Millipore, eBioscience, Caltag, Santa Cruz Biotech, Abcam and Sigma, the contents of which are incorporated herein by reference. Labels may be associated with the analyte receptor, the analyte, or both, which association may be covalent or non-covalent. Detection may result from either an increase or decrease in a detectable signal from a label. In some embodiments, the degree of increase or decrease correlates with the amount of an analyte. In some embodiments, a sample containing analytes to be analyzed is treated with a labeling compound to conjugate the analytes with a label, such as a fluorescent tag. Binding can then be measured by detection of the label, such as by measuring fluorescence, to detect presence and optionally quantity of one or more analytes, such as in combination with analyte receptors coupled to an array or analyte receptors coupled to coded beads. In some embodiments, the sample is treated with a labeling compound to conjugate the analytes with a linker. Upon binding the linker is functionalized with a label, such as a fluorescent tag, and the positive event is measured by detection of the tag, such as an increase in fluorescence. In some embodiments, the analyte binding domain of an analyte receptor is bound by a probe comprising a label, such as a fluorescent label; upon binding to the analyte, the probe is released, which results in a measurable decrease in a detectable signal from the label (e.g. a decrease in fluorescence). In some embodiments, an analyte receptor is fluorescently labeled and is partially bound by a probe labeled with a quencher that is in proximity to the fluorescent label; upon binding to the analyte, the complementary probe is released resulting in a measurable increase in fluorescence of the label conjugated to the analyte receptor. In some embodiments, the analyte receptor is bound by a probe, which hybridization occludes a domain containing a secondary structure; upon binding to the analyte, the probe is released, and the secondary structure is made available to a label, such as an intercalating dye, used to produce a measurable signal. Labels useful in the detection of binding between an analyte receptor and an analyte in a binding pair can include, for example, fluorescein, tetramethylrhodamine, Texas Red, or any other fluorescent molecules known in the art. The level of label detected will then vary with the amount of target analyte in the mixture being assayed. In some embodiments, a displaced probe is conjugated to one member of an affinity pair, such as biotin. A detectable molecule is then conjugated to the other member of the affinity pair, for example avidin. After a test mixture is applied to an assay unit comprising analyte receptors, a detectable molecule is added. The amount of detectable molecule will vary inversely with the amount of target molecule present in the test mixture. In another embodiment, the displaced probe will be biotin labeled, and can be detected by addition of fluorescently labeled avidin; the avidin itself will then be linked to another fluorescently labeled, biotin-conjugated compound. The biotin group on the displaced oligonucleotide can also be used to bind an avidin-linked reporter enzyme; the enzyme will then catalyze a reaction leading to the deposition of a detectable compound. Alternatively, the reporter enzyme will catalyze the production of an insoluble product that will locally quench the fluorescence of an intrinsically-fluorescent solid surface. In another embodiment of a displacement assay, a displaced probe will be labeled with an immunologically-detectable probe, such as digoxigenin. The displaced probe will then be bound by a first set of antibodies that specifically recognize the probe. These first antibodies will then be recognized and bound by a second set of antibodies that are fluorescently labeled or conjugated to a reporter enzyme. In some embodiments, an analyte receptor, such as an antibody, induces an agglutination reaction in the presence of one or more target analytes (e.g. antigens). Typical agglutination reactions involving the use of antibodies include (i) mixing polyclonal antibodies with a sample containing an antigen corresponding to the antibodies, and observing the formation of immunoagglutinates; (ii) mixing a monoclonal antibody with a sample containing an antigen carrying at least two antigenic functions (bivalent or multivalent antigen) and observing the formation of immunoagglutinates; (iii) mixing at least two different monoclonal antibodies with a sample containing a monovalent antigen and observing immunoagglutination; (iv) any of the reactions mentioned above, but applying the antibodies, or other suitable analyte receptor as described herein, coupled to particles, such as latex particles, colloids, etc.; and (v) any of the reactions mentioned above, but applied to antigens present on cell surfaces in which case the number of antigens per physical unit is normally a hundred or more, and in which case such cells may be agglutinated by monoclonal antibodies, or other suitable analyte receptor as described herein, even if each antigen molecule is monovalent. Agglutination reactions can be observed on the surface of a solid substrate such as a glass or plastic plate, or in a solution, such as in a microtitre plate, cuvette, tip, capillary, or other suitable container. The solid surface or container is preferably colored to contrast with the color of the agglutinate. In some embodiments, the solid surface or container is optically clear, such that agglutination may be measured by changes in color, contrast, absorbance, or detection of any other suitable label as described herein. In some embodiments, agglutination is measured is a fluid flow, where the presence of an agglutinate is determined by disruptions in the flow of the fluid. In some embodiments the agglutination reaction is a hemagglutination reaction. In some embodiments, the agglutination reaction is an agglutination inhibition reaction, wherein the presence of an analyte (e.g. a small molecule, drug, or drug metabolite) inhibits or slows the rate of an agglutination reaction, such as by competing for binding with an analyte receptor (e.g. an antibody) in the presence of an agglutinatable target (e.g. beads coated with analyte). Receptor binding assays as described herein may be combined with one or more other assays, such as on different samples within a system of the invention, or on the same sample. Different assays may be performed simultaneously or sequentially on one or more samples. In some embodiments, multiple analytes can assayed simultaneously. Multiple analytes may be analyzed in separate vessels or in the same vessel. The same analyte might be assayed using different detectors. This may allow the system to maintain high precision on different concentration ranges of the analyte. Nucleic Acid Hybridization Assays In some embodiments, the analyte is a target nucleic acid (e.g. DNA, RNA, mRNA, miRNA, rRNA, tRNA, and hybrids of these) that is detected in a nucleic acid hybridization reaction. Target nucleic acid in a sample may be a nucleic acid from the subject from which the sample is derived, or from a source to which the subject providing the sample is a host, such as a pathogen as described herein. In general, hybridization refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of an amplification process (e.g. PCR, ligase chain reaction, self-sustained sequence replication), or the enzymatic cleavage of a polynucleotide by an endonuclease. A sequence capable of hybridizing with a given sequence is referred to as the “complement” of the given sequence. In some embodiments, hybridization occurs between a target nucleic acid (analyte) and a nucleic acid probe. In some embodiments, the target nucleic acid is modified before hybridization with a probe, such as by the ligation of an adapter to one or both ends of the target nucleic acid to generate a modified target nucleic acid. In a modified nucleic acid comprising a linker, a probe may hybridize only to linker sequence, only to target nucleic acid sequence, or to both linker and target nucleic acid sequence. Non-limiting examples of uses for nucleic acid probes of the invention include detecting the presence of viral or bacterial nucleic acid sequences indicative of an infection, detecting the presence of variants or alleles of mammalian genes associated with disease and cancers, genotyping one or more genetic loci (e.g. single nucleotide polymorphisms), identifying the source of nucleic acids found in forensic samples, and determining paternity. The nucleic acid probe of this invention may comprise DNA, RNA, modified nucleotides (e.g. methylated or labeled nucleotides), modified backbone chemistries (e.g. morpholine ring-containing backbones), nucleotide analogs, or combinations of two or more of these. The probe can be the coding or complementary strand of a complete gene or gene fragment, or an expression product thereof. The nucleotide sequence of the probe can be any sequence having sufficient complementarity to a nucleic acid sequence in a biological sample to allow for hybridization of the probe to the target nucleic acid in the biological sample under a desired hybridization condition. Ideally, the probe will hybridize only to the nucleic acid target of interest in the sample and will not bind non-specifically to other non-complementary nucleic acids in the sample or other regions of the target nucleic acid in the sample. The hybridization conditions can be varied according to the degree of stringency desired in the hybridization reaction. For example, if the hybridization conditions are for high stringency, the probe will bind only to the nucleic acid sequences in the sample with which it has a very high degree of complementarity. Low stringency hybridization conditions will allow for hybridization of the probe to nucleic acid sequences in the sample which have some complementarity but which are not as highly complementary to the probe sequence as would be required for hybridization to occur at high stringency. The hybridization conditions will vary depending on the biological sample, probe type and target. An artisan will know how to optimize hybridization conditions for a particular application of the present method, or alternatively, how to design nucleic acid probes for optimal use under a specified set of conditions. Also, references herein to “the nucleic acid probe of this invention”, “the nucleic acid probe”, and the like may refer to any of the various embodiments of nucleic acid probes described herein. The nucleic acid probe can be commercially obtained or can be synthesized according to standard nucleotide synthesizing protocols well known in the art. Alternatively, the probe can be produced by isolation and purification of a nucleic acid sequence from biological materials according to methods standard in the art of molecular biology (Sambrook et al. 1989. Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Pres, Cold Spring Harbor, N.Y.). The nucleic acid probe can be amplified according to well known procedure for amplification of nucleic acid (e.g., polymerase chain reaction). Furthermore, the probe of this invention can be linked to any of the labels of this invention by protocols standard in the art. It is further contemplated that the present invention also includes methods for nucleotide hybridization wherein the nucleic acid probe is used as a primer for an enzyme catalyzed elongation reaction such as PCR and primer extension labeling reactions (e.g. in situ and in vitro PCR and other primer extension based reactions). Additionally included are methods for in situ hybridization. The labels to which a nucleic acid probe of this invention can be linked to include, but are not limited to, a hapten, biotin, digoxigenin, fluorescein isothiocyanate (FITC), dinitrophenyl, amino methyl coumarin acetic acid, acetylaminofluorene and mercury-sulfhydryl-ligand complexes, chromogenic dyes, fluorescent dyes, and any other suitable label as described herein, such as described in combination with labeling of analyte receptors. In some embodiments, hybridization is detected indirectly by detection of a product of a hybridization reaction, such as PCR. For example, amplification products may be detected by a dye or stain capable of detecting amplified nucleic acids (e.g. intercalating or groove-binding dyes), such as ethidium bromide, SYBR green, SYBR blue, DAPI, acriflavine, fluorcoumanin, ellipticine, daunomycin, chloroquine, distamycin D, chromomycin, propidium iodine, Hoeste, SYBR gold, acridines, proflavine, acridine orange, homidium, mithramycin, ruthenium polypyridyls, anthramycin, and other suitable agents known in the art. In some embodiments, multiple probes, each having a different target nucleic acid and a different label, are hybridized to a single sample simultaneously, such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more different probes. In one embodiment, nucleic acid probes are covalently or non-covalently coupled to a substrate. Non-limiting examples of substrates to which nucleic acid probes may be coupled include microarrays, microbeads, pipette tips, sample transfer devices, cuvettes, capillaries or other tubes, reaction chambers, or any other suitable format compatible with the subject detection system. Biochip microarray production can employ various semiconductor fabrication techniques, such as solid phase chemistry, combinatorial chemistry, molecular biology, and robotics. One process typically used is a photolithographic manufacturing process for producing microarrays with millions of nucleic acid probes on a single chip. Alternatively, if the nucleic acid probes are pre-synthesized, they can be attached to an array surface using techniques such as micro-channel pumping, “ink-jet” spotting, template-stamping, or photocrosslinking. An exemplary photolithographic process begins by coating a quartz wafer with a light-sensitive chemical compound to prevent coupling between the quartz wafer and the first nucleotide of a DNA probe being created. A lithographic mask is used to either inhibit or permit the transmission of light onto specific locations of the wafer surface. The surface is then contacted with a solution which may contain adenine, thymine, cytosine, or guanine, and coupling occurs only in those regions on the glass that have been deprotected through illumination. The coupled nucleotide bears a light-sensitive protecting group, allowing the cycle can be repeated. In this manner, the microarray is created as the probes are synthesized via repeated cycles of deprotection and coupling. The process may be repeated until the probes reach their full length. Commercially available arrays are typically manufactured at a density of over 1.3 million unique features per array. Depending on the demands of the experiment and the number of probes required per array, each wafer, can be cut into tens or hundreds of individual arrays. Other methods may be used to produce a coated solid surface with nucleic acid probes attached thereto. A coated solid surface may be a Langmuir-Bodgett film, functionalized glass, germanium, silicon, PTFE, polystyrene, gallium arsenide, gold, silver, membrane, nylon, PVP, polymer plastics, or any other material known in the art that is capable of having functional groups such as amino, carboxyl, Diels-Alder reactants, thiol or hydroxyl incorporated on its surface. These groups may then be covalently attached to crosslinking agents, so that the subsequent binding of the nucleic acid probes and target nucleic acid analyte can occur in solution without hindrance from the biochip. Typical crosslinking groups include ethylene glycol oligomer, diamines, and amino acids. Alternatively, nucleic acid probes may be coupled to an array using enzymatic procedures, such as described in US20100240544. In some embodiments, nucleic acid probes are coupled to the surface of a microbead. Microbeads useful in coupling to nucleic acid probes are known in the art, and include magnetic and non-magnetic beads. Microbeads can be labeled with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more dyes to facilitate coding of the beads and identification of nucleic acid probes joined thereto. Coding of microbeads can be used to distinguish at least 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 5000, or more different microbeads in a single assay, each microbead corresponding to a different nucleic acid probes with specificity for a different target nucleic acid analyte. In some embodiments, nucleic acid probes are coupled to the surface of a reaction chamber, such as a tip. For example, the interior surface of a tip may be coated with nucleic acid probes specific for a single target nucleic acid analyte. Alternatively, the interior surface of a tip may be coated with two or more different nucleic acid probes specific for different target nucleic acid analytes. When two or more different nucleic acid probes are coupled to the same interior tip surface, each of the different nucleic acid probes may be coupled at different known locations, such as forming distinct ordered rings or bands at different positions along the axis of a tip. In this case, multiple different nucleic acid analytes may be analyzed in the same sample by drawing a sample up a tip and allowing nucleic acid analytes contained in the sample to bind with the nucleic acid probes coated at successive positions along the tip. Binding events can then be visualized as described herein, with the location of each band in a banding pattern corresponding to a specific known nucleic acid analytes. In some embodiments, the nucleic acid hybridization reaction is a sequencing reaction. Sequencing reactions may proceed directly from sample nucleic acids, or may involve a pre-amplification step, such as reverse transcription and/or PCR. Sequence analysis using template-dependent synthesis can include a number of different processes. For example, one of the earliest methods for DNA sequencing was the four-color chain-termination Sanger sequencing methodology in which a population of template molecules is used to create a population of complementary fragments. Primer extension is carried out in the presence of the four naturally occurring nucleotides, and with a sub-population of dye-labeled terminator nucleotides, e.g., dideoxyribonucleotides, where each type of terminator (ddATP, ddGTP, ddTTP, ddCTP) includes a different detectable label. As a result, a nested set of fragments is created where the fragments terminate at each nucleotide in the template beyond the primer, and are labeled in a manner that permits identification of the terminating nucleotide. The nested fragment population is then subjected to size-based separation, e.g., using capillary electrophoresis, and the labels associated with each different sized fragment is identified to identify the terminating nucleotide. As a result, the sequence of labels moving past a detector in the separation system provides a direct readout of the sequence information of the synthesized fragments, and by complementarity, the underlying template (See, e.g., U.S. Pat. No. 5,171,534, incorporated herein by reference in its entirety for all purposes). Other examples of template-dependent sequencing methods include sequence-by-synthesis processes, where individual nucleotides are identified iteratively, as they are added to the growing primer extension product. In one category of sequencing-by-synthesis, a nucleic acid synthesis complex is contacted with one or more nucleotides under conditions that permit the addition of a single base, and little or no extension beyond that base. The reaction is then interrogated or observed to determine whether a base was incorporated, and provide the identity of that base. In a second category of sequencing-by-synthesis, addition of nucleotides to the growing nascent strand are observed in real-time in an uninterrupted reaction process, e.g., without wash steps. One example of sequencing-by-synthesis is pyrosequencing, which is a process that identifies the incorporation of a nucleotide by assaying the resulting synthesis mixture for the presence of by-products of the sequencing reaction, namely pyrophosphate. In particular, a primer, polymerase template complex is contacted with a single type of nucleotide. If that nucleotide is incorporated, the polymerization reaction cleaves the nucleoside triphosphate between the α and β phosphates of the triphosphate chain, releasing pyrophosphate. The presence of released pyrophosphate is then identified using a chemiluminescent enzyme reporter system that converts the pyrophosphate, with AMP, into ATP, then measures ATP using a luciferase enzyme to produce measurable light signals. Where light is detected, the base is incorporated, where no light is detected, the base is not incorporated. Following appropriate washing steps, the various bases are cyclically contacted with the complex to sequentially identify subsequent bases in the template nucleic acid. See, e.g., U.S. Pat. No. 6,210,891, incorporated herein by reference in its entirety for all purposes). In related processes, the primer/template/polymerase complex is immobilized upon a substrate and the complex is contacted with labeled nucleotides. The immobilization of the complex may be through the primer sequence, the template sequence and/or the polymerase enzyme, and may be covalent or noncovalent. In general, preferred aspects, particularly in accordance with the invention provide for immobilization of the complex via a linkage between the polymerase or the primer and the substrate surface. A variety of types of linkages are useful for this attachment, including, e.g., provision of biotinylated surface components, using e.g., biotin-PEG-silane linkage chemistries, followed by biotinylation of the molecule to be immobilized, and subsequent linkage through, e.g., a streptavidin bridge. Other synthetic coupling chemistries, as well as non-specific protein adsorption can also be employed for immobilization. In alternate configurations, the nucleotides are provided with and without removable terminator groups. Upon incorporation, the label is coupled with the complex and is thus detectable. In the case of terminator bearing nucleotides, all four different nucleotides, bearing individually identifiable labels, are contacted with the complex. Incorporation of the labeled nucleotide arrests extension, by virtue of the presence of the terminator, and adds the label to the complex. The label and terminator are then removed from the incorporated nucleotide, and following appropriate washing steps, the process is repeated. In the case of non-terminated nucleotides, a single type of labeled nucleotide is added to the complex to determine whether it will be incorporated, as with pyrosequencing. Following removal of the label group on the nucleotide and appropriate washing steps, the various different nucleotides are cycled through the reaction mixture in the same process. See, e.g., U.S. Pat. No. 6,833,246, incorporated herein by reference in its entirety for all purposes). In yet a further sequence by synthesis process, the incorporation of differently labeled nucleotides is observed in real time as template dependent synthesis is carried out. In particular, an individual immobilized primer/template/polymerase complex is observed as fluorescently labeled nucleotides are incorporated, permitting real time identification of each added base as it is added. In this process, label groups are attached to a portion of the nucleotide that is cleaved during incorporation. For example, by attaching the label group to a portion of the phosphate chain removed during incorporation, i.e., a β, γ, or other terminal phosphate group on a nucleoside polyphosphate, the label is not incorporated into the nascent strand, and instead, natural DNA is produced. Observation of individual molecules typically involves the optical confinement of the complex within a very small illumination volume. By optically confining the complex, one creates a monitored region in which randomly diffusing nucleotides are present for a very short period of time, while incorporated nucleotides are retained within the observation volume for longer as they are being incorporated. This results in a characteristic signal associated with the incorporation event, which is also characterized by a signal profile that is characteristic of the base being added. In related aspects, interacting label components, such as fluorescent resonant energy transfer (FRET) dye pairs, are provided upon the polymerase or other portion of the complex and the incorporating nucleotide, such that the incorporation event puts the labeling components in interactive proximity, and a characteristic signal results, that is again, also characteristic of the base being incorporated (See, e.g., U.S. Pat. Nos. 6,056,661, 6,917,726, 7,033,764, 7,052,847, 7,056,676, 7,170,050, 7,361,466, 7,416,844 and Published U.S. Patent Application No. 2007-0134128, the full disclosures of which are hereby incorporated herein by reference in their entirety for all purposes). A photodetector could be used instead of a CCD camera to detect a change in scattering. A combination of fluorescence and transmittance can be used to enhance the signal. Nucleic acid hybridization assays as described herein may be combined with one or more other assays, such as on different samples within a system of the invention, or on the same sample. Different assays may be performed simultaneously or sequentially on one or more samples. Various samples may be used for nucleic acid assays provided herein. For example, a nasopharyngeal swab, nasopharyngeal aspirate, or sputum sample may be used as a biological sample from which an infectious pathogen may be detected. In some embodiments, any other biological sample described elsewhere herein may be used for a nucleic acid assay. Nucleic acid assays may be monitored using various method for assay detection provided herein. For example, nucleic acid amplification assays may be measured by monitoring the increase in fluorescence of the reaction (for example, in assays in which a fluorescent dye which intercalculates with double-stranded DNA is used) or by monitoring the increase in absorbance or turbidity of the reaction (for example, in assays in which the pyrophosphate that is generated, as a result of nucleotide incorporation during DNA synthesis, reacts with Mg++ to form insoluble magnesium pyrophosphate). Nucleic acid amplification assays may be further analyzed, for example, by obtaining fluorescence, absorbance, or turbidity values over a period of time, and analyzing the data to identify an inflection point indicating the presence or amount of a nucleic acid of interest in a sample. This analysis maybe performed, for example, by fitting the data to an exponential curve and selecting the inflection point based on a threshold value above baseline. A baseline may be determined, for example, by using a moving average of at least 3 data points. An inflection point for data may be selected for a particular assay, and may be, for example, a time when a value is 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% above a baseline. General Chemistry Assays In some embodiments, devices and systems provided herein may be configured to perform one or more general chemistry assays. General chemistry assays may include, for example, assays of a Basic Metabolic Panel [glucose, calcium, sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate), creatinine, blood urea nitrogen (BUN)], assays of an Electrolyte Panel [sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate)], assays of a Chem 14 Panel/Comprehensive Metabolic Panel [glucose, calcium, albumin, total protein, sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate), creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), total bilirubin] assays of a Lipid Profile/Lipid Panel [LDL cholesterol, HDL cholesterol, total cholesterol, and triglycerides], assays of a Liver Panel/Liver Function [alkaline phosphatase (ALP), alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), total bilirubin, albumin, total protein, gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), prothrombin time (PT)], alkaline phosphatase (APase), hemoglobin, VLDL cholesterol, ethanol, lipase, pH, zinc protoporphyrin, direct bilirubin, blood typing (ABO, RHD), lead, phosphate, hemagglutination inhibition, magnesium, iron, iron uptake, fecal occult blood, and others, individually or in any combination. In general chemistry assays provided herein, in some examples, the level of an analyte in a sample is determined through one or more assay steps involving a reaction of the analyte of interest with one or more reagents, leading to a detectable change in the reaction (e.g. change in the turbidity of the reaction, generation of luminescence in the reaction, change in the color of the reaction, etc.). In some examples, a property of a sample is determined through one or more assay steps involving a reaction of the sample of interest with one or more reagents, leading to a detectable change in the reaction (e.g. change in the turbidity of the reaction, generation of luminescence in the reaction, change in the color of the reaction, etc.). Typically, as used herein, “general chemistry” assays do not involve amplification of nucleic acids, imaging of cells on a microscopy stage, or the determination of the level of an analyte in solution based on the use of a labeled antibody/binder to determine the level of an analyte in a solution. In some embodiments, general chemistry assays are performed with all reagents in a single vessel—i.e. to perform the reaction, all necessary reagents are added to a reaction vessel, and during the course of the assay, materials are not removed from the reaction or reaction vessel (e.g. there is no washing step; it is a “mix and read” reaction). General chemistry assays may also be, for example, colorimetric assays, enzymatic assays, spectroscopic assays, turbidimetric assays, agglutination assays, coagulation assays, and/or other types of assays. Many general chemistry assays may be analyzed by measuring the absorbance of light at one or more selected wavelengths by the assay reaction (e.g. with a spectrophotometer). In some embodiments, general chemistry assays may be analyzed by measuring the turbidity of a reaction (e.g. with a spectrophotometer). In some embodiments, general chemistry assays may be analyzed by measuring the chemiluminescence generated in the reaction (e.g. with a PMT, photodiode, or other optical sensor). In some embodiments, general chemistry assays may be performed by calculations, based on experimental values determined for one or more other analytes in the same or a related assay. In some embodiments, general chemistry assays may be analyzed by measuring fluorescence of a reaction (e.g. with a detection unit containing or connected to i) a light source of a particular wavelength(s) (“excitation wavelength(s)”); and ii) a sensor configured to detect light emitted at a particular wavelength(s) (“emission wavelength(s)”). In some embodiments, general chemistry assays may be analyzed by measuring agglutination in a reaction (e.g. by measuring the turbidity of the reaction with a spectrophotometer or by obtaining an image of the reaction with an optical sensor). In some embodiments, general chemistry assays may be analyzed by imaging the reaction at one or more time points (e.g. with a CCD or CMOS optical sensor), followed by image analysis. Optionally analysis may involve prothrombin time, activated partial thromboplastin time (APTT), either of which may be measured through a method such as but not limited to turbidimetry. In some embodiments, general chemistry assays may be analyzed by measuring the viscosity of the reaction (e.g. with a spectrophotometer, where an increase in viscosity of the reaction changes the optical properties of the reaction). In some embodiments, general chemistry assays may be analyzed by measuring complex formation between two non-antibody reagents (e.g. a metal ion to a chromophore; such a reaction may be measured with a spectrophotometer or through colorimetry using another device). In some embodiments, general chemistry assays may be analyzed by non-ELISA or cytometry-based methods for assaying cellular antigens (e.g. hemagglutination assay for blood type, which may be measured, for example, by turbidity of the reaction). In some embodiments, general chemistry assays may be analyzed with the aid of electrochemical sensors (e.g. for carbon dioxide or oxygen). Additional methods may also be used to analyze general chemistry assays. In some embodiments, a spectrophotometer may be used to measure a general chemistry assay. In some embodiments, general chemistry assays may be measured at the end of the assay (an “end-point” assay) or at two or more times during the course of the assay (a “time-course” or “kinetic” assay). A glucose assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with glucose oxidase, to generate gluconic acid and hydrogen peroxide. In an example, the hydrogen peroxide may be incubated with a peroxidase and a chromogen that can change color when oxidized—e.g. o-dianisidine. A colored product may be further stabilized by reaction with sulfuric acid. The colored product may be measured in a spectrophotometer by absorbance at 405 nm. In another example, the hydrogen peroxide may be incubated with a peroxidase, 4-aminoantipyrine, and a phenolic compound (e.g. N, N diethylaniline), to form a colored product. The product may be measured, for example, in a spectrophotometer at 510 nm. An alanine aminotransferase assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with alpha-ketoglutarate and alanine, to generate glutamate and pyruvate. Incubation of these products with an oxidizable chromogen [e.g. 10-acetyl-3,7-dihydroxyphenoxazine (ADHP)] may generate a colored product. Oxidized 10-acetyl-3,7-dihydroxyphenoxazine may be detected, for example, colorimetrically in a spectrophotometer by absorbance at 570 nm, or fluorescently, at EX/EM=535/587 nm. In another example, the glutamate and pyruvate products may be incubated with lactate dehydrogenase and NADH, where pyruvate reacts with NADH in a lactate dehydrogenase-catalyzed reaction to form NAD+ and lactate. This reaction may be monitored by absorbance at 340 nm, at which NADH absorbs (i.e. the more NADH is consumed, the lower the absorbance at 340 nm). A potassium assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with tetraphenylborate. Potassium in the plasma may form an insoluble salt with the tetraphenylborate, which may precipitate out of solution and/or increase the turbidity of the sample. The assay may be measured in a spectrophotometer, for example, by measuring absorbance of the sample at 578 nm. An alkaline phosphatase assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with the chromogen p-nitrophenyl phosphate (pNPP). pNPP may be dephosphorylated by alkaline phosphatase to form p-nitrophenol and phosphate; it forms a yellow color upon dephosphorylation. The assay may be measured, for example, in a spectrophotometer by measuring, colorimetrically, the absorbance of the sample at 405 nm. In another example, an alkaline phosphatase assay may be performed, for example, by incubating plasma with a chemiluminescent substrate that releases light upon alkaline phosphatase-mediated cleavage (e.g. 3-(2′-spiroadamantyl)-4-methoxy-4-(3″-phosphoryloxy)-phenyl-1,2-dioxetane (AMPPD)). The assay may be measured, for example, by obtaining a reading of the assay at a light sensor (e.g. a PMT or photodiode). A sodium assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with beta-galactosidase and ortho-nitrophenyl-beta-galactoside (ONPG). Beta-galactosidase may have sodium-dependent activity, and hydrolyze ONPG to galactose and ortho-nitrophenol. Ortho-nitrophenol generation may be measured in a spectrophotometer by absorbance at 420 nm. A calcium assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with o-cresolphthalein and 2-amino-2-methyl-1-propanol. Calcium in the plasma may form a complex with the o-cresolphthalein, the complex having a purple color. The complex may be measured in a spectrophotometer by absorbance at 575 nm. A hemoglobin assay may be performed, for example, by incubating whole blood with one or more detergents, ferricyanide, and cyanide. Hemoglobin may form a complex with cyanide, which may be measured in a spectrophotometer by absorbance at 540 nm. An HDL-cholesterol assay may be performed, for example, by incubating a biological sample (e.g. plasma, etc.) with reagents that protect non-HDL cholesterol (e.g. LDL, VLDL, and chylomicrons) but leave HDL-cholesterol exposed to enzymes. These reagents may include, for example, polyvinylsulfonic acid (PVS), polyethylene glycol methylether (PEGME) or dextran sulfate. The reaction mixture is then incubated with cholesterol esterase (to convert cholesteryl ester to cholesterol) and cholesterol oxidase (to convert cholesterol to cholest-4-ene-3-one, and simultaneously producing hydrogen peroxide). The reaction mixture is incubated with an oxidizable chromogen (e.g. N-(2-hydroxy-3-sulfopropyl)-3,5-dimethyoxyaniline (ALPS) and aminoantipyrene (AAP)) or fluorescent dye, which may be oxidized by hydrogen peroxide, catalyzed by a peroxidase (e.g. horseradish peroxidase). A VLDL-cholesterol assay may be performed, for example, by calculating the level of VLDL in a sample based on the enzyme-based determination of the level of other cholesterol molecules in the sample (e.g. total cholesterol and HDL-cholesterol). In some instances, VLDL is estimated to be one-fifth of the total triglycerides in the sample. In another example, VLDL-cholesterol may be determined with LDL-cholesterol, by physically or chemically separating LDL and VLDL-cholesterol from HDL-cholesterol. The isolated LDL/VLDL may then be incubated with cholesterol esterase (to convert cholesteryl ester to cholesterol) and cholesterol oxidase (to convert cholesterol to cholest-4-ene-3-one, and simultaneously producing hydrogen peroxide). The reaction mixture is incubated with an oxidizable chromogen (e.g. ALPS/AAP) or fluorescent dye, which may be oxidized by hydrogen peroxide, catalyzed by a peroxidase (e.g. horseradish peroxidase). A pH assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with a pH indicator molecule. Commonly, the color of pH indicator changes in response to the pH of the surrounding solution. pH indicators are well known in the art, and include, for example bromophenol blue, methyl red, litmus, phenolphthalein and phenol red. A prothrombin time (PT) assay may be performed, for example, by incubating blood with citrate or other anticoagulant, and isolating the blood plasma. A substance is then added to the plasma to reverse the effects of the anticoagulant (e.g. in the case of citrate, calcium is added). Then tissue factor (factor (III)) is added to the plasma, and the time required for the sample to clot is measured. Clotting of the sample may, for example, increase the turbidity of the sample and/or increase its viscosity. The assay may be measured in a spectrophotometer, for example, by measuring absorbance of the sample. A zinc protoporphyrin assay may be performed, for example, by incubating red blood cells with a solution to lyse the red blood cells (e.g. water or water containing 10 mM phosphate buffer, pH 7.4), and observing the fluorescence of the sample at EX/EM=424/594 nm, which are strong excitation and emission wavelengths for zinc protoporphyrin. A chloride assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with a reagent which has one color when in complex with a mercury atom, and which has a second color when in complex with an iron atom (e.g. 2,4,6-Tripyridyl-s-triazine (TPTZ) or thiocyanate). These reagents preferentially form complexes with mercury atoms over iron atoms. However, in the presence of chloride ions, mercury disassociates from the reagent and forms HgCl2, and iron is able to form a complex with the reagent. The iron-containing complex may be colored and can be measured, for example, in a spectrophotometer: Fe-TPTZ at 620 nm or Fe-thiocyanate at 480 nm. A triglycerides assay may be performed, for example, by incubating a biological sample (e.g. plasma, etc.) with lipase enzyme, which can convert triglycerides to glycerol and fatty acids. Glycerol may then be incubated with additional enzymes which react with glycerol and products thereof, ultimately resulting in the formation of hydrogen peroxide (in an example, glycerol kinase catalyzes the reaction of glycerol and ATP to form glycerol phosphate, and glycerol-3-phosphate oxidase catalyzes the conversion of glycerol phosphate to dihydroxyacetone phosphate and hydrogen peroxide). The reaction may be incubated with a peroxidase and oxidizable substrate (e.g. a chromogen or fluorescent dye), the oxidation of which may be monitored (for example, with a spectrophotometer). A total cholesterol assay may be performed, for example by incubating a biological sample (e.g. plasma, etc.) with cholesterol esterase (to convert cholesteryl ester to cholesterol) and cholesterol oxidase (to convert cholesterol to cholest-4-ene-3-one, and simultaneously producing hydrogen peroxide). The reaction may be incubated with a peroxidase and an oxidizable substrate (e.g. a chromogen or fluorescent dye), the oxidation of which may be monitored (for example, with a spectrophotometer). An albumin assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with a dye which binds to albumin, such as 5′,5″-dibromo-o-cresolsulfophthalein (Bromocresol Purple (BCP)) or Bromocresol Green (BCG)). The assays can be measured, for example, in a spectrophotometer by absorbance at 600 nm for BCP, or absorbance at 628 nm for BCG. A total protein assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with a reagent which binds to one or more structures in proteins (e.g. peptide bonds). These reagents include, for example, copper (II) ions (for the Biuret test) and Coomassie™ dyes. Protein-dye complexes may be further stabilized by incubating the complexes with another reagent, such as bicinchoninic acid (BCA) (for the BCA test). For assays with copper (II) ions, the samples can be measured, for example in a spectrophotometer at 540 nm. For assays with a Coomassie™ dye, the samples can be measured, for example in a spectrophotometer at 595 nm. A bicarbonate/carbon dioxide assay may be performed, for example, by adjusting the pH of biological sample (e.g. plasma, urine, etc.) to a pH greater than 7, so that carbon dioxide in the sample is converted to bicarbonate (HCO3-). Phosphoenolpyruvate (PEP) and phosphoenolpyruvate carboxylase (PEPC) are provided to the sample, such that PEPC catalyzes the reaction between PEP and bicarbonate to form oxaloacetate and phosphate. The oxaloacetate may be detected by a variety of mechanisms. For example, oxaloacetate may be incubated with NADH and malate dehydrogenase, in which malate dehydrogenase catalyzes the conversion of oxaloacetate and NADH to malate and NAD+. The reaction may be monitored by measuring absorbance at 340 nm, to monitor the level of NADH. In another example, oxaloacetate may be incubated with a chromogen which can form a complex with oxaloacetate, such as Fast Violet B. The reaction may be monitored, for example, in a spectrophotomer measuring the absorbance at 578 nm, to monitor the level of oxaloacetate-Fast Violet B complex. An aspartate aminotransferase (AST/SGOT) assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with one or more substrates for aspartate aminotransferase (e.g. aspartate and alpha-ketoglutarate). Aspartate aminotransferase in the sample may catalyze the transfer of an amino group from aspartate to alpha-ketoglutarate, to form oxaloacetate and glutamate. Malate dehydrogenase may also be provided in the assay, which may catalyze the conversion of oxaloacetate to malate, coupled with the oxidation of NADH to NAD+. Lactate dehydrogenase may also be provided in the assay, to reduce interference from pyruvate. The assay may be monitored by absorbance at 340 nm, at which NADH absorbs (i.e. the more NADH is consumed, the lower the absorbance at 340 nm). The rate of conversion of NADH to NAD+ may be directly proportional to the quantity of aspartate aminotransferase in the sample. A blood urea nitrogen (BUN) assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with urease, which may cleave urea in the sample to yield carbon dioxide and ammonia. The ammonia may then be involved in a reaction which may be readily monitored. In an example, the ammonia may be incubated with ammonia and alpha-ketoglutarate in the presence of glutamate dehydrogenase and NADH, to yield glutamate and NAD+. The assay may be monitored by absorbance at 340 nm, at which NADH absorbs; the rate of conversion of NADH to NAD+ may be directly proportional to the quantity of urea in the sample. In another example, ammonia may be incubated with salicylate and sodium nitroprusside, and then with hypochlorite, to yield a blue-green colored product, which may be measured, for example, in a spectrophotometer at 630 nm. A total bilirubin assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with a reagent that converts bilirubin to a readily detectable molecule. For example, a sample may be incubated with sulfanilic acid and sodium nitrite to convert bilirubin to an azobilirubin form which may, for example, be readily detected in a spectrophotometer by absorbance at 550 nm. A creatinine assay may be performed, for example, by incubating a biological sample (e.g. plasma, urine, etc.) with creatininase, which that converts creatinine to creatine. Creatine may then be converted to sarcosine by creatine amidinolydrolase. Sarcosine oxidase may then catalyze the reaction of sarcosine with water and oxygen to form glycine, formaldehyde, and hydrogen peroxide. The hydrogen peroxide may be used with any oxidizable chromogen or other detectable agent described herein, according to methods disclosed elsewhere herein. The level of the oxidized product may be directly proportional to the quantity of creatinine in the sample. It should be understood that for substantially all of the foregoing, embodiments of the system herein may process two or more of these assays in the system using multiple same or different detection methods using the same system. This simultaneous processing of at least two, optionally three assays, within the same device (or optionally using the same system) using aliquots from the same sample provides substantial advantages over known systems due to savings in at least the reduced amount of sample used and the reduced processing time for the multiple assays. Electrophoresis In some embodiments, a system of the invention comprises subjecting analytes to an electrophoresis process. The present invention may be used for the separation, detection and measurement of one or more analytes in one or more samples of biological, ecological, or chemical interest. Of particular interest are macromolecules such as proteins, polypeptides, saccharides and polysaccharides, genetic materials such as nucleic acids and polynucleotides, carbohydrates, cellular materials such as bacteria, viruses, organelles, cell fragments, metabolites, drugs, any other analyte as described herein, and combinations thereof. Proteins that are of interest include proteins that are present in blood plasma, albumin, globulin, fibrinogen, blood clotting factors, hormones, interferons, enzymes, growth factors, and other proteins described herein. Other chemicals that can be separated and detected using the present invention include, but are not limited to pharmaceuticals such as antibiotics, as well as agricultural chemicals such as insecticides and herbicides. Electrophoresis may comprise the use of gels and/or capillaries. Electrophoretic separation can be conducted with or without using a molecular matrix (also referred to herein as a sieving matrix or medium as well as a separation matrix or medium) to effect separation. Where no matrix is used as part of a capillary electrophoresis process, the technique is commonly termed capillary zone electrophoresis (CZE). Where a matrix is used in combination with a capillary electrophoresis process, the technique is commonly termed capillary gel electrophoresis (CGE). Non-limiting examples of matrices for use in electrophersis processes include linear polymer solutions, such as a poly(ethyleneoxide) solution, cross-linked polyacrylamide, and agarose. Suitable matrices can be in the form of liquid, gel, or granules. In electrophoresis, the separation buffer is typically selected so that it aids in the solubilization or suspension of the species that are present in the sample. Typically the liquid is an electrolyte which contains both anionic and cationic species. Preferably the electrolyte contains about 0.005-10 moles per liter of ionic species, more preferably about 0.01-0.5 mole per liter of ionic species. Examples of an electrolyte for a typical electrophoresis system include mixtures of water with organic solvents and salts. Representative materials that can be mixed with water to produce appropriate electrolytes includes inorganic salts such as phosphates, bicarbonates and borates; organic acids such as acetic acids, propionic acids, citric acids, chloroacetic acids and their corresponding salts and the like; alkyl amines such as methyl amines; alcohols such as ethanol, methanol, and propanol; polyols such as alkane diols; nitrogen containing solvents such as acetonitrile, pyridine, and the like; ketones such as acetone and methyl ethyl ketone; and alkyl amides such as dimethyl formamide, N-methyl and N-ethyl formamide, and the like. The above ionic and electrolyte species are given for illustrative purposes only. A researcher skilled in the art is able to formulate electrolytes from the above-mentioned species and optionally species such an amino acids, salts, alkalis, etc., to produce suitable support electrolytes for using capillary electrophoresis systems. The voltage used for electrophoretic separations is not critical to the invention, and may vary widely. Typical voltages for capillary electrophoresis are about 500 V-30,000 V, preferably about 1,000-20,000 V. In some embodiments, the electrophoresis process is a capillary electrophoresis process. In a typical capillary electrophoresis process, a buffer-filled capillary is suspended between two reservoirs filled with buffer. An electric field is applied across the two ends of the capillary. The electrical potential that generates the electric field is in the range of kilovolts. Samples containing one or more components or species are typically introduced at the high potential end and under the influence of the electrical field. Alternatively, the sample is injected using pressure or vacuum. The same sample can be introduced into many capillaries, or a different sample can be introduced into each capillary. Typically, an array of capillaries is held in a guide and the intake ends of the capillaries are dipped into vials that contain samples. After the samples are taken in by the capillaries, the ends of the capillaries are removed from the sample vials and submerged in a buffer which can be in a common container or in separate vials. The samples migrate toward the low potential end. During the migration, components of the sample are electrophoretically separated. After separation, the components are detected by a detector. Detection may be effected while the samples are still in the capillaries or after they have exited the capillaries. The channel length for capillary electrophoresis is selected such that it is effective for achieving proper separation of species. Generally, the longer the channel, the greater the time a sample will take in migrating through the capillary. Thus, the species may be separated from one another with greater distances. However, longer channels contribute to the band broadening and lead to excessive separation time. Generally, for capillary electrophoresis, the capillaries are about 10 cm to about 5 meters long, and preferably about 20 cm to about 200 cm long. In capillary gel electrophoresis, where typically a polymer separation matrix is used, the more preferred channel length is about 10 cm to about 100 cm long. The internal diameter (i.e., bore size) of the capillaries is not critical, although small bore capillaries are more useful in highly multiplexed applications. The invention extends to a wide range of capillary sizes. In general, capillaries can range from about 5-300 micrometers in internal diameter, with about 20-100 micrometers preferred. The length of the capillary can generally range from about 100-3000 mm, with about 300-1000 mm preferred. A suitable capillary is constructed of material that is sturdy and durable so that it can maintain its physical integrity through repeated use under normal conditions for capillary electrophoresis. It is typically constructed of nonconductive material so that high voltages can be applied across the capillary without generating excessive heat. Inorganic materials such as quartz, glass, fused silica, and organic materials such as polytetrafluoroethylene, fluorinated ethylene/propylene polymers, polyfluoroethylene, aramide, nylon (i.e., polyamide), polyvinyl chloride, polyvinyl fluoride, polystyrene, polyethylene and the like can be advantageously used to make capillaries. Where excitation and/or detection are effected through the capillary wall, a particularly advantageous capillary is one that is constructed of transparent material, as described in more detail below. A transparent capillary that exhibits substantially no fluorescence, i.e., that exhibits fluorescence lower than background level, when exposed to the light used to irradiate a target species is especially useful in cases where excitation is effected through the capillary wall. One such a capillary is available from Polymicro Technologies (Phoenix, Ariz.). Alternatively, a transparent, non-fluorescing portion can be formed in the wall of an otherwise nontransparent or fluorescing capillary so as to enable excitation and/or detection to be carried out through the capillary wall. For example, fused silica capillaries are generally supplied with a polyimide coating on the outer capillary surface to enhance its resistance to breakage. This coating is known to emit a broad fluorescence when exposed to wavelengths of light under 600 nm. If a through-the-wall excitation scheme is used without first removing this coating, the fluorescence background can mask a weak analyte signal. Thus, a portion of the fluorescing polymer coating can be removed by any convenient method, for example, by boiling in sulfuric acid, by oxidation using a heated probe such as an electrified wire, or by scraping with a knife. In a capillary of approximately 0.1 mm inner diameter or less, a useful transparent portion is about 0.01 mm to about 1.0 mm in width. Coagulation Assay In some embodiments a system of the invention comprises subjecting analytes to a coagulation assay. Coagulation assays include, but are not limited to, assays for the detection of one or more coagulation factors and measurement of clotting time. Typically the read-out of a coagulation assay is the formation of a clot, a rate of clot formation, or the time to clot formation. Clotting factors include factor I (fibrinogen), factor II (prothrombin), factor III (tissue thromboplastin), factor IV (calcium), factor V (proaccelerin), factor VI (no longer considered active in hemostasis), factor VII (proconvertin), factor VIII (antihemophilic factor), factor IX (plasma thromboplastin component; Christmas factor), factor X (stuart factor), factor XI (plasma thromboplastin antecedent), factor XII (hageman factor), and factor XIII (fibrin stabilizing factor). Diagnosis of hemorrhagic conditions such as hemophilia, where one or more of the twelve blood clotting factors may be defective, can be achieved by a wide variety of coagulation tests. In addition, several tests have been developed to monitor the progress of thrombolytic therapy. Other tests have been developed to signal a prethrombolytic or hypercoagulable state, or monitor the effect of administering protamine to patients during cardiopulmonary bypass surgery. Coagulation tests are also useful in monitoring oral and intravenous anticoagulation therapy. Three examples of diagnostic coagulation tests useful in the present invention are activated partial thromboplastin time (APTT), prothrombin time (PT), and activated clotting time (ACT). An APTT test evaluates the intrinsic and common pathways of coagulation. For this reason APTT is often used to monitor intravenous heparin anticoagulation therapy. Specifically, it measures the time for a fibrin clot to form after the activating agent, such as calcium, and a phospholipid have been added to a citrated blood sample. Heparin administration has the effect of suppressing clot formation. A PT test evaluates the extrinsic and common pathways of coagulation (e.g. conversion of prothrombin to thrombin in the presence of calcium ions and tissue thromoplastin) and can be used to monitor oral anticoagulation therapy. The oral anticoagulant coumadin suppresses the formation of prothrombin. Consequently, the test is based on the addition of calcium and tissue thromboplastin to the blood sample. An ACT test evaluates the intrinsic and common pathways of coagulation. It is often used to monitor anticoagulation via heparin therapy. The ACT test is based on addition of an activator to the intrinsic pathway to fresh whole blood to which no exogenous anticoagulant has been added. Coagulation assays may use a turbidimetric method of measurement. In one example of coagulation assay analysis, whole-blood samples are collected into a citrate vacutainer and then centrifuged. The assay is performed with plasma to which a sufficient excess of calcium has been added to neutralize the effect of citrate. For a PT test, tissue thromboplastin is provided as a dry reagent that is reconstituted before use. This reagent is thermally sensitive and is maintained at 4° C. by the instruments. Aliquots of sample and reagent are transferred to a cuvette heated at 37° C., and the measurement is made based on a change in optical density. As an alternative to the turbidimetric method, Beker et al. (See, Haemostasis (1982) 12:73) introduced a chromogenic PT reagent (Thromboquant PT). The assay is based on the hydrolysis of p-nitroaniline from a modified peptide, Tos-Gly-Pro-Arg-pNA, by thrombin and is monitored spectrophotometrically. Coagulation may also be measured by changes or disruptions in the flow of a fluid, such as by reduced flow rate, increased flow time between two points, and formation of a blockage to fluid flow, such as in a capillary. Standards for normal coagulation results to which a test result may be compared will vary with the method used, and are known in the art or may be determined using a control sample (e.g. from a normal subject). Cytometry In some embodiments, the assay system is configured to perform cytometry assays. Cytometry assays are typically used to optically, electrically, or acoustically measure characteristics of individual cells. For the purposes of this disclosure, “cells” may encompass non-cellular samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), small groups of cells, virions, bacteria, protozoa, crystals, bodies formed by aggregation of lipids and/or proteins, and substances bound to small particles such as beads or microspheres. Such characteristics include but are not limited to size; shape; granularity; light scattering pattern (or optical indicatrix); whether the cell membrane is intact; concentration, morphology and spatio-temporal distribution of internal cell contents, including but not limited to protein content, protein modifications, nucleic acid content, nucleic acid modifications, organelle content, nucleus structure, nucleus content, internal cell structure, contents of internal vesicles (including pH), ion concentrations, and presence of other small molecules such as steroids or drugs; and cell surface (both cellular membrane and cell wall) markers including proteins, lipids, carbohydrates, and modifications thereof. By using appropriate dyes, stains, or other labeling molecules either in pure form, conjugated with other molecules or immobilized in, or bound to nano- or micro-particles, cytometry may be used to determine the presence, quantity, and/or modifications of specific proteins, nucleic acids, lipids, carbohydrates, or other molecules. Properties that may be measured by cytometry also include measures of cellular function or activity, including but not limited to phagocytosis, antigen presentation, cytokine secretion, changes in expression of internal and surface molecules, binding to other molecules or cells or substrates, active transport of small molecules, mitosis or meiosis; protein translation, gene transcription, DNA replication, DNA repair, protein secretion, apoptosis, chemotaxis, mobility, adhesion, antioxidizing activity, RNAi, protein or nucleic acid degradation, drug responses, infectiousness, and the activity of specific pathways or enzymes. Cytometry may also be used to determine information about a population of cells, including but not limited to cell counts, percent of total population, and variation in the sample population for any of the characteristics described above. The assays described herein may be used to measure one or more of the above characteristics for each cell, which may be advantageous to determine correlations or other relationships between different characteristics. The assays described herein may also be used to independently measure multiple populations of cells, for example by labeling a mixed cell population with antibodies specific for different cell lines. A microscopy module may permit the performance of histology, pathology, and/or morphological analysis with the device, and also facilitates the evaluation of objects based on both physical and chemical characteristics. Tissues can be homogenized, washed, deposited on a cuvette or slide, dried, stained (such as with antibodies), incubated and then imaged. When combined with the data transmission technologies described elsewhere herein, these innovations facilitate the transmission of images from a CMOS/CDD or similar to a licensed pathologist for review, which is not possible with traditional devices that only perform flow cytometry. The cytometer can measure surface antigens as well as cell morphology; surface antigens enable more sensitive and specific testing compared to traditional hematology laboratory devices. The interpretation of cellular assays may be automated by gating of one or more measurements; the gating thresholds may be set by an expert and/or learned based on statistical methods from training data; gating rules can be specific for individual subjects and/or populations of subjects. In some embodiments, the incorporation of a cytometer module into a point of service device provides the measurement of cellular attributes typically measured by common laboratory devices and laboratories for interpretation and review by classically-trained medical personnel, improving the speed and/or quality of clinical decision-making. A point of service device may, therefore, be configured for cytometric analysis. Cytometric analysis may, for example, be by flow cytometry or by microscopy. Flow cytometry typically uses a mobile liquid medium that sequentially carries individual cells to an optical, electrical or acoustic detector. Microscopy typically uses optical or acoustic means to detect stationary cells, generally by recording at least one magnified image. It should be understood that flow cytometry and microscopy are not entirely exclusive. As one example, flow cytometry assays may use microscopy to record images of cells passing by the detector. Many of the targets, reagents, assays, and detection methods may be the same for flow cytometry and microscopy. As such, unless otherwise specified, the descriptions below should be taken to apply to these and other forms of cytometric analyses known in the art. In some embodiments, a cytometry module may contain a microscopy stage and an objective. The microscopy stage may be configured to receive a cytometry cuvette. The microscopy stage may be accessed by a module-level sample handling system (e.g. configured to transport items within a module) or a device-level sample handling system (e.g. configured to transport items between modules). A cytometry module may contain a camera, CCD/CMOS sensor, or other imaging device operatively coupled to the objective or microscopy stage, such that the imaging device may obtain a digital image of cells in a cuvette, assay unit, or other vessel. Cells in a cuvette, assay unit, or other vessel may be settled. The vessel may be fluidically isolated or independently movable. The digital image may be two-dimensional or three dimensional, and it may be a single image or a collection of images. The microscopic objective can be finely positioned to focus the image via an actuator, such as by a cam connected to a motor. The objective may be focused on one or more planes of the sample. Focusing may be automated by image analysis procedures by computing the image sharpness of digital images among other methods. Flow Cytometry Flow cytometry may be used to measure, for example, cell size (forward scatter, conductivity), cell granularity (side scatter at various angles), DNA content, dye staining, and quantitation of fluorescence from labeled markers. Flow cytometry may be used to perform cell counting, such as by marking the sample with fluorescent markers and flowing past a sensing device. Cell counting may be performed on unlabeled samples as well. Preferably up to 1000000 cells of any given type may be measured. In other embodiments, various numbers of cells of any given type may be measured, including but not limited to more than or equal to about 10 cells, 30 cells, 50 cells, 100 cells, 150 cells, 200 cells, 300 cells, 500 cells, 700 cells, 1000 cells, 1500 cells, 2000 cells, 3000 cells, 5000 cells, 6000 cells, 7000 cells, 8000 cells, 9000 cells, 10000 cells, 100000 cells, 1000000 cells. In some embodiments, flow cytometry may be performed in microfluidic channels. Flow cytometry analysis may be performed in a single channel or in parallel in multiple channels. In some embodiments, flow cytometry may sequentially or simultaneously measure multiple cell characteristics. Flow cytometry may be combined with cell sorting, where detection of cells that fulfill a specific set of characteristics are diverted from the flow stream and collected for storage, additional analysis, and/or processing. It should be noted that such sorting may separate out multiple populations of cells based on different sets of characteristics, such as 3 or 4-way sorting. Microscopy Microscopy methods that may be used with this invention include but are not limited to bright field, oblique illumination, dark field, dispersion staining, phase contrast, differential interference contrast (DIC), polarized light, epifluorescence, interference reflection, fluorescence, confocal (including CLASS), confocal laser scanning microscopy (CLSM), structured illumination, stimulated emission depletion, electron, scanning probe, infrared, laser, widefield, light field microscopy, lensless on-chip holographic microscopy, digital and conventional holographic microscopy, extended depth-of-field microscopy, optical scatter imaging microscopy, deconvolution microscopy, defocusing microscopy, quantitative phase microscopy, diffraction phase microscopy, confocal Raman microscopy, scanning acoustic microscopy and X-ray microscopy. Magnification levels used by microscopy may include, as nonlimiting examples, up to 2×, 5×, 10×, 20×, 40×, 60×, 100×, 100×, 1000×, or higher magnifications. Feasible magnification levels will vary with the type of microscopy used. For example, images produced by some forms of electron microscopy may involve magnification of up to hundreds of thousands of times. Multiple microscopy images may be recorded for the same sample to generate time-resolved data, including videos. Individual or multiple cells may be imaged simultaneously, by parallel imaging or by recording one image that encompasses multiple cells. A microscopic objective may be immersed in media to change its optical properties, such as through oil immersion. A microscopic objective may be moved relative to the sample by means of a rotating CAM to change the focus. Cytometry data may be processed automatically or manually, and may further include analyses of cell or tissue morphology, such as by a pathologist for diagnostic purposes. Cell counting can be performed using imaging and cytometry. In situations where the subjects may be bright-field illuminated, the preferred embodiment is to illuminate the subjects from the front with a white light and to sense the cells with an imaging sensor. Subsequent digital processing will count the cells. Where the cells are infrequent or are small, the preferred embodiment is to attach a specific or non-specific fluorescent marker, and then illuminate the subject field with a laser. Confocal scanning imaging is preferred. Preferably up to 1000 cells of any given type may be counted. In other embodiments, various numbers of cells of any given type may be counted, including but not limited to more than or equal to about 1 cell, 5 cells, 10 cells, 30 cells, 50 cells, 100 cells, 150 cells, 200 cells, 300 cells, 500 cells, 700 cells, 1000 cells, 1500 cells, 2000 cells, 3000 cells, 5000 cells. Cells may be counted using available counting algorithms. Cells can be recognized by their characteristic fluorescence, size and shape. In some microscopy embodiments, brightfield illumination may be achieved by the use of a white light source along with a stage-condenser to create Koehler illumination. Brightfield images of cells, which may detect properties similar to that of forward scattering in flow cytometry, can reveal cell size, phase-dense material within the cells and colored features in the cell if the cells have been previously stained. In one example embodiment, the Wright-Giemsa staining method can be used to stain human whole blood smear. Brightfield imaging shows characteristic patterns of staining of human leukocytes. The characteristically shaped red cells can also be identified in these images. In some microscopy embodiments, darkfield imaging may be achieved by the use of a ringlight based illumination scheme, or other epi- or trans-darkfield illumination schemes available. Darkfield imaging may, for example, be used to determine light scattering properties of cells, equivalent to side scatter in flow cytometry, such as when imaging human leukocytes. The internal and external features of the cell which scatter more light appear brighter and the features which scatter lesser amounts of light appear darker in a darkfield image. Cells such as granulocytes have internal granules of size range (100-500 nm) which can scatter significant amount of light and generally appear brighter in darkfield images. Furthermore, the outer boundary of any cell may scatter light and may appear as a ring of bright light. The diameter of this ring may directly give the size of the cell. Microscopy methods may additionally be used to measure cell volume. For example, red blood cell volume may be measured. To increase accuracy, red blood cells may be transformed into spheres through the use of anionic or zwitterionic surfactants, and dark field imaging used to measure the size of each sphere, from which cell volumes may be calculated. In some microscopy embodiments, small cells or formed elements which may be below the diffraction-limited resolution limit of the microscope, may be labeled with fluorescent markers; the sample may be excited with light of appropriate wavelength and an image may be captured. The diffraction pattern of the fluorescent light emitted by the labeled cell may be quantified using computer analysis and correlated with the size of the cell. The computer programs used for these embodiments is described elsewhere herein. To improve the accuracy of this method, the cells may be transformed into spheres by the use of anionic and zwitterionic surfactants. Cell imaging may be used to extract one or more of the following information for each cell (but is not limited to the following): a. Cell size b. Quantitative measure of cell granularity or light scattering (also popularly called side scatter, based on flow cytometry parlance) c. Quantitative measure of fluorescence in each spectral channel of imaging, after compensating for cross-talk between spectral channels, or intracellular distribution pattern of fluorescent or other staining d. Shape of the cell, as quantified by standard and custom shape attributes such as aspect ratio, Feret diameters, Kurtosis, moment of inertia, circularity, solidity etc. e. Color, color distribution and shape of the cell, in cases where the cells have been stained with dyes (not attached to antibodies or other types of receptor). f. Intracellular patterns of staining or scattering, color or fluorescence that are defined as quantitative metrics of a biological feature such as morphology, for example density of granules within cells in a darkfield image, or the number and size of nucleolar lobes in a Giemsa-Wright stained image of polymorphonuclear neutrophils etc. g. Co-localization of features of the cell revealed in images acquired in different channels. h. Spatial location of individual cells, cellular structures, populations of cells, intracellular proteins, ions, carbohydrates and lipids or secretions (such as to determine the source of secreted proteins). A wide range of cell-based assays can be designed to use the information gathered by cytometry. For example, an assay for performing a 5-part leukocyte differential may be provided. The reportables in this case may, for example, be number of cells per microliter of blood for the following types of leukocytes: monocytes, lymphocytes, neutrophils, basophils and eosinophils. Reportables may also be used to classify leukocyte differentiation, or identify T and B-cell populations. Fluorescence Microscopy Fluorescence microscopy generally involves labeling of cells or other samples with fluorescent labels, described in more detail below. Microscopic imaging of fluorescently labeled samples may gather information regarding the presence, amounts, and locations of the target that is labeled at a given moment in time or over a period of time. Fluorescence may also be used to enhance sensitivity for detecting cells, cellular structures, or cellular function. In fluorescence microscopy, a beam of light is used to excite the fluorescent molecules, which then emit light of a different wavelength for detection. Sources of light for exciting fluorophores are well known in the art, including but not limited to xenon lamps, lasers, LEDs, and photodiodes. Detectors include but are not limited to PMTs, CCDs, and cameras. Electron Microscopy Another nonlimiting example of microscopy uses electron beams instead of visible light, such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). In TEM, a beam of electrons is transmitted through a thin sample, and interactions between the electrons and the specimens are mapped and magnified. TEM is thus capable of imaging resolutions up to individual atoms. TEM contrast may use a bright field imaging mode, where electrons are absorbed by the sample; a diffraction contrast mode, where electrons are scattered by the sample; electron energy loss spectroscopy (EELS), which detects electrons that have interacted with specific components of a sample based on their voltages; phase contrast or high-resolution transmission electron microscopy; diffraction, which produces characteristic diffraction patterns that can be computationally analyzed to determine the sample structure; three dimensional imaging, where the sample is rotated and imaged multiple times to reconstruct the overall three-dimensional structure. Samples for TEM may be prepared by forming a dilute solution of molecules or carving larger samples to a layer at most hundreds of nanometers thick. For negative staining EM, biological samples are typically spread on a grid, dried, and fixed with negative staining reagents containing heavy metals, such as osmium, lead, uranium, or gold; one such staining reagent is uranyl acetate. For cryo-EM, samples may be embedded in vitreous ice and further cooled to liquid nitrogen or helium temperatures. In SEM, a focused electron beam is rastered over a surface to produce secondary electrons, back-scattered electrons, X-rays, light, current, and/or transmitted electrons. SEM can be used to visualize samples less than 1 nm in size with a large field depth to produce information regarding the 3D surface structure of a sample. SEM using back-scattered electrons may be used with labels such as colloidal gold, for example attached to immunolabels, to better detect specific targets. For SEM, samples typically contain no water. Biological samples such as cells may be fixated to preserve their internal structures before drying, such as by evaporation, heat, or with critical point drying, where water is sequentially replaced with an organic solvent, followed by liquid carbon dioxide. Conducting samples generally require little or no additional sample preparation, other than mounting onto a specimen holder compatible with the scanning electron microscope. Nonconducting samples may be coated with a thin layer of a conducting material, such as gold, gold/palladium, platinum, osmium, iridium, tungsten, chromium, or graphite, which may increase signal, increase resolution, and decrease accumulation of static electric charges during irradiation. Other methods for increasing conductivity of an SEM sample include staining with the OTO staining method. Nonconducting samples do not require increased conductivity for SEM imaging. As some nonlimiting examples, environmental SEM and field emission gun (FEG) SEM may be used to image nonconducting samples. Reagents Cells may be prepared for cytometry assays by any method known in the art. Cells may be optionally fixed, stained, and/or otherwise labeled with a detectable marker. Cells may be fixed with a variety of methods known in the art, including but not limited to heat, freeze, perfusion, immersion, and chemical fixation. Chemical fixation may be achieved by a wide variety of agents, including but not limited to crosslinking agents (such as formaldehyde, glutaraldehyde, other aldehydes, and their derivatives), precipitating agents (such as ethanol and other alcohols), oxidizing agents (such as osmium tetroxide or potassium permanganate), potassium dichromate, chromic acid, mercury-containing fixatives, acetic acid, acetone, picrates, and HOPE fixative. Cells may also be permeabilized, such as through the use of surfactants, as may be useful for subsequent internal labeling or staining. Cells may be stained with any optically detectable dye, stains, or coloring agents, such as nucleic acid dyes (including intercalator dyes), lipophilic dyes, protein dyes, carbohydrate dyes, heavy metal stains. Such dyes and stains or staining processes include but are not limited to Acid Fast Bacilli staining, Alcian Blue staining, Alcian Blue/PAS staining, Alizarin Red, alkaline phosphatase staining, aminostyryl dyes, ammonium molybdate, Azure A, Azure B, Bielschowsky Staining, Bismark brown, cadmium iodide, carbocyanines, carbohydrazide, carboindocyanines, Carmine, Coomassie blue, Congo Red, crystal violet, DAPI, ethidium bromide, Diff-Quik staining, eosin, ferric chloride, fluorescent dyes, fuchsin, Giemsa stain, Golgi staining, Golgi-Cox staining, Gomori's Trichrome staining, Gordon Sweet's staining, Gram staining, Grocott Methenamine staining, haematoxylin, hexamine, Hoechst stains, Hyaluronidase Alcian Blue, indium trichloride, indocarbocyanines, indodicarbocyanines, iodine, Jenner's stain, lanthanum nitrate, lead acetate, lead citrate, lead(II) nitrate, Leishman stain, Luna staining, Luxol Fast Blue, Malachite green, Masson Fontana staining, Masson Trichrome staining, methenamine, methyl green, methyline blue, microglia staining, Miller's Elastic staining, neutral red, Nile blue, Nile red, Nissl staining, Orange G, osmium tetroxide, Papanicolaou staining, PAS staining, PAS diastase staining, periodic acid, Perls Prussian Blue, phosphomolybdic acid, phosphotungstic acid, potassium ferricyanide, potassium ferrocyanide, Pouchet staining, propidium iodide (PI), Prussian Blue, Renal Alcian Blue/PAS staining, Renal Masson Trichrome staining, Renal PAS Methenamine staining, Rhodamine, Romanovsky stain, Ruthenium Red, Safranin O, silver nitrate, Silver staining, Sirius Red, sodium chloroaurate, Southgate's Mucicannine, Sudan staining, Sybr Green, Sybr Gold, SYTO dyes, SYPRO stains, thallium nitrate, thiosemicarbazide, Toluidine Blue, uranyl acetate, uranyl nitrate, van Gieson staining, vanadyl sulfate, von Kossa staining, WG staining, Wright-Giemsa stain, Wright's stain, X-Gal, and Ziehl Neelsen staining Cells may be treated with uncolored dye precursors that are converted to a detectable product after treatment, such as by enzymatic modification (such as by peroxidases or luciferases) or binding to an ion (such as Fe ions, Ca2+ or H+). Cells may further be labeled with fluorescent markers. Useful fluorescent markers include natural and artificial fluorescent molecules, including fluorescent proteins, fluorophores, quantum dots, and others. Some examples of fluorescent markers that may be used include but are not limited to: 1,5 IAEDANS; 1,8-ANS; 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5-FAM); fluorescein amidite (FAM); 5-Carboxynapthofluorescein; tetrachloro-6-carboxyfluorescein (TET); hexachloro-6-carboxyfluorescein (HEX); 2,7-dimethoxy-4,5-dichloro-6-carboxyfluorescein (JOE); VIC®; NED™; tetramethylrhodamine (TMR); 5-Carboxytetramethylrhodamine (5-TAMRA); 5-HAT (Hydroxy Tryptamine); 5-Hydroxy Tryptamine (HAT); 5-ROX (carboxy-X-rhodamine); 6-Carboxyrhodamine 6G; 6-JOE; Light Cycler® red 610; Light Cycler® red 640; Light Cycler® red 670; Light Cycler® red 705; 7-Amino-4-methylcoumarin; 7-Aminoactinomycin D (7-AAD); 7-Hydroxy-4-methylcoumarin; 9-Amino-6-chloro-2-methoxyacridine; ABQ; Acid Fuchsin; ACMA (9-Amino-6-chloro-2-methoxyacridine); Acridine Orange; Acridine Red; Acridine Yellow; Acriflavin; Acriflavin Feulgen SITSA; AutoFluorescent Proteins; Texas Red and related molecules; Thiadicarbocyanine (DiSC3); Thiazine Red R; Thiazole Orange; Thioflavin derivatives; Thiolyte; Thiozole Orange; Tinopol CBS (Calcofluor White); TMR; TO-PRO-1; TO-PRO-3; TO-PRO-5; TOTO-1; TOTO-3; TriColor (PE-Cy5); TRITC (TetramethylRodamine-lsoThioCyanate); True Blue; TruRed; Ultralite; Uranine B; Uvitex SFC; WW 781; X-Rhodamine; XRITC; Xylene Orange; Y66F; Y66H; Y66W; YO-PRO-1; YO-PRO-3; YOYO-1; interchelating dyes such as YOYO-3, Sybr Green, Thiazole orange; members of the Alexa Fluor® dye series (from Molecular Probes/Invitrogen) such as Alexa Fluor 350, Alexa Fluor 405, 430, 488, 500, 514, 532, 546, 555, 568, 594, 610, 633, 635, 647, 660, 680, 700, and 750; members of the Cy Dye fluorophore series (GE Healthcare), such as Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7; members of the Oyster® dye fluorophores (Denovo Biolabels) such as Oyster-500, -550, -556, 645, 650, 656; members of the DY-Labels series (Dyomics), such as DY-415, -495, -505, -547, -548, -549, -550, -554, -555, -556, -560, -590, -610, -615, -630, -631, -632, -633, -634, -635, -636, -647, -648, -649, -650, -651, -652, -675, -676, -677, -680, -681, -682, -700, -701, -730, -731, -732, -734, -750, -751, -752, -776, -780, -781, -782, -831, -480XL, -481XL, -485XL, -510XL, -520XL, -521XL; members of the ATTO series of fluorescent labels (ATTO-TEC GmbH) such as ATTO 390, 425, 465, 488, 495, 520, 532, 550, 565, 590, 594, 610, 611X, 620, 633, 635, 637, 647, 647N, 655, 680, 700, 725, 740; members of the CAL Fluor® series or Quasar® series of dyes (Biosearch Technologies) such as CAL Fluor® Gold 540, CAL Fluor® Orange 560, Quasar® 570, CAL Fluor® Red 590, CAL Fluor® Red 610, CAL Fluor® Red 635, Quasar® 570, and Quasar® 670. Fluorescent markers may be coupled to a targeting moiety to allow specific binding or localization, for example, to a specific population of cells, of which there are many known in the art. Nonlimiting examples include antibodies, antibody fragments, antibody derivatives, aptamers, oligopeptides such as the nuclear localization sequence (NLS), small molecules that serve as specific ligands for receptors including many hormones and drugs, nucleic acid sequences (such as for FISH), nucleic acid binding proteins (including repressors and transcription factors), cytokines, ligands specific for cellular membranes, enzymes, molecules that specifically bind to enzymes (such as inhibitors), lipids, fatty acids, and members of specific binding interactions such as biotin/iminobiotin and avidin/streptavidin. Targets for specific labeling may be natural or artificial and may encompass proteins, nucleic acids, lipids, carboyhydrates, small molecules, and any combinations thereof. These include intracellular and cell surface markers. Intracellular markers include any molecule, complex, or other structure within the cell. A few nonlimiting examples include genes, centromeres, telomeres, nuclear pore complexes, ribosomes, proteasomes, an internal lipid membrane, metabolites such as ATP, NADPH, and their derivatives, enzymes or enzyme complexes, protein chaperones, post-translational modifications such as phosphorylation or ubiquitinylation, microtubules, actin filaments, and many others. Cell surface markers include but are not limited to proteins such as CD4, CD8, CD45, CD2, CRTH2, CD19, CD3, CD14, CD36, CD56, CD5, CD7, CD9, CD10, CD11b, CD11c, CD13, CD15, CD16, CD20, CD21, CD22, CD23, CD24, CD25, CD33, CD34, CD37, CD38, CD41, CD42, CD57, CD122, CD52, CD60, CD61, CD71, CD79a, CD95, CD103, CD117, CD154, GPA, HLA, KOR, FMC7. In some embodiments, the targets may be specific regions within a cell, such as targeting to the interior of specific organelles or membrane-bound vesicles. In some embodiments, the target may be the result of genetic or other manipulation, such as cloning Lac binding sites into a genetic sequence for targeted binding by a labeled Lac protein. Cells may be labeled through various means, including but not limited to surface labeling, permeabilization of the cell membrane and/or cell wall, active transport or other cellular processes, diffusion through the membrane, carrier particles such as lipid vesicles or other hydrophobic molecules, and production by the cell (such as for recombinantly fluorescent proteins). In some embodiments, samples containing mixed populations of cells may be treated before optical detection to enrich for detection of target population(s) of cells. Some example methods for enrichment include but are not limited to centrifugation, sorting (with or without labeling), selective killing of non-target cells such as by lysis, and selective labeling to improve detection of target cells. For imaging, cells may be suspended in liquid medium (as is preferred for flow cytometry), attached to a surface, or confined in a small volume, such as in a microfluidic well or channel. One or more agents such as cell activators, stimulators, or inhibitors, may be added to the entire sample, or portions of the sample, to determine how the cells/samples respond. Such agents can be non-specific (such as cytokines), or specific (such as antigens), or a combination thereof. Tissue samples may be cultured in the presence of one or more agents for different periods of time under different environmental conditions and analyzed in real time. Culture conditions can be varied over time based on measured response, and additional agents added over time as required. Also, one may examine sensitivity to certain drugs, such as resistance to antibiotics, using these techniques. The samples may be analyzed before, during and after agent administration. Exposure with one or more agents can be sequential and/or repeated over time. The concentration of the agents can be titrated based on measured responses. Tissue samples (such as from biopsy) may be homogenized in a variety of ways, including through the use of a grinder, a pulverizer, actuation by pipette/nozzles, or centrifugation with or without beads (such as nano sharp beads), pushing the sample through a mesh and/or micro-column, or ultrasonication. Fluorescence activated cell sorting (FACS) may be performed with the inclusion of flow and/or other cell-separation methods (such as magnetic separation). Spectroscopy Spectroscopy includes any and all assays that produce luminescence or change light (e.g., color chemistry). These may include one or more of the following: spectrophotometry, fluorimetry, luminometry, turbidimetry, nephelometry, refractometry, polarimetry, and measurement of agglutination. Spectrophotometry refers to measuring a subject's reflection or transmission of electromagnetic waves, including visible, UV, and infrared light. Spectrophotometry may, for example, be used to determine nucleic acid concentrations in a sample, such as by measuring absorbance at a wavelength of about 260, to determine protein concentration by measuring absorbance at a wavelength of about 280, and/or to determine salt concentration by measuring absorbance at a wavelength of about 230. Other examples of spectrophotometry may include infrared (IR) spectroscopy. Examples of infrared spectroscopy include near-infrared spectroscopy, far-infrared spectroscopy laser-Raman spectroscopy, Raman confocal laser spectroscopy, Fourier Transform infrared spectroscopy, and any other infrared spectroscopy technique. Frequencies of less than about 650 cm-1 are typically used for far-infrared spectroscopy, frequencies greater than about 4000 cm-1 are typically used for near-infrared spectroscopy, while frequencies between about 650 and about 4000 cm-1 are typically used for other types of IR spectroscopy. IR spectroscopy has many biomedical applications, including in cancer diagnosis, arthritis diagnosis, determining chemical compositions of biological fluids, determining septic state, and others. IR spectroscopy may be used on solid samples, such as tissue biopsies, cell cultures, or Pap smears; or on liquid samples, such as blood, urine, synovial fluid, mucus, and others. IR spectroscopy may be used to differentiate between normal and cancerous cells as described in U.S. Pat. No. 5,186,162, herein incorporated by reference. IR spectroscopy may also be used on blood samples to detect markers for cancers of various solid organs. IR spectroscopy may also be used to determine cellular immunity in patients, such as to diagnose immunodeficiencies, autoimmune disorders, infectious diseases, allergies, hypersensitivity, and tissue transplant compatibility. IR spectroscopy may be used to determine glucose levels in blood, which is of use for diabetic patients, such as for monitoring insulin response. IR spectroscopy may further be used to measure other substances in blood samples, such as alcohol levels, fatty acid content, cholesterol levels, hemoglobin concentration. IR spectroscopy can also distinguish between synovial fluid from healthy and arthritic patients. Fluorimetry refers to measuring the light emitted by a fluorescent molecule coupled to a subject upon exciting the fluorescent molecule with incident light. Fluorimetry may use any of the fluorescent molecules, labels, and targets as described for cytometric assays above. In some embodiments, fluorimetry uses substrate molecules that change in fluorescence based on an enzymatic activity, such as converting NAD+ to NADH or vice versa or producing beta-galactosidase from a precursor molecule. Fluorimetry may be used with a polarized excitation source to measure fluorescence polarization or anisotropy of a subject, which may provide information about the size and/or binding state. Colorimetry refers to measuring the transmissive color absorption of a subject, preferably by backlighting the subject with white light with the result sensed by an imaging sensor. Examples include some assays that use oxidases or peroxidases combined with a dye that becomes colored in the presence of hydrogen peroxide. One method that measures peroxidase activity in whole cell suspensions of human white blood cells is disclosed in Menegazzi, et al., J. Leukocyte Biol 52: 619-624 (1992), which is herein incorporated by reference in its entirety. Such assays may be used to detect analytes that include but are not limited to alcohols, cholesterols, lactate, uric acid, glycerol, triglycerides, glutamate, glucose, choline, NADH. Some of the enzymes that may be used include horseradish peroxidase, lactoperoxidase, microperoxidase, alcohol oxidase, cholesterol oxidase, NADH oxidase. Other nonlimiting examples of colorimetric assays include dye-based assays to determine protein concentration, such as Bradford, Lowry, biureat, and Nano-orange methods. The pH of a sample may also be determined by colorimetric assays with indicator dyes, including but not limited to phenolphtalein, thymolphtalein, alizarin Yellow R, indigo carmine, m-cresol purple, cresol red, thymol blue, xylenol blue, 2,2′,2″,4,4′-pentamethoxytriphenyl carbinol, benzopurpurin 4B, metanil yellow, 4-phenylazodiphenylamine, malachite green, quinaldine red, orange IV, thymol blue, xylenol blue, and combinations thereof. Luminometry uses no illumination method as the subject emits its own photons. The emitted light can be weak and can be detecting using an extremely sensitive sensor such as a photomultiplier tube (PMT). Luminometry includes assays that produce chemiluminescence, such as those using luciferases or some assays using peroxidases. In some embodiments, systems, devices, methods, or assays provided herein include a chemiluminescent compound. In some embodiments, chemiluminescent compounds may emit light, such as upon a chemical alteration (e.g. oxidation, phosphorylation, dephosphorylation, hydrolysis, etc.) of the original chemiluminescent compound. Chemiluminescent compounds may include, for example: 3-(2′-spiroadamantyl)-4-methoxy-4-(3″-phosphoryloxy)-phenyl-1,2-dioxetane (AMPPD), luminol, N-(4-aminobutyl)-N-ethylisoluminol, 4-aminophthalhydrazide, coelenterazine hcp, coelenterazine fcp, and D-luciferin. These or other chemiluminescent compounds may be provided, for example, in an assay unit, reagent unit, vessel, tip, or container in a cartridge or assay station provided herein and may be used in systems configured for discretely multiplexing assays with other of other assay methodologies (that may be the same or different). Chemiluminescent compounds may be provided in various forms, including, for example, in lyophilized, gel, or liquid forms. In some embodiments, a chemiluminescent enhancer molecule (for example, 4-(4,5-diphenyl-2-imidazolyl) phenol) is provided with a chemiluminescent compound. For turbidimetry, the preferred embodiment for sensing is backlighting the subject with white light with the result sensed by an imaging sensor. For turbidimetry, the reduction of the intensity of the transmitted light is measured. Turbidimetry may be used, for example, to determine a concentration of cells in solution. In some embodiments, turbimetry is measured by nephelometry. Nephelometry measures the light that is transmitted or scattered after passing through a subject in a suspension. In some embodiments, the subject in suspension is a substrate bound to an immunoglobin such as IgM, IgG, and IgA, or salts which have precipitated out of solution Polarimetry measures the polarization of, typically, electromagnetic waves by a subject. Polarimetry assays include circular dichroism, which may provide structural information and light scattering assays, which may provide information about the size and/or shape of the subject. One nonlimiting example of light scattering assays uses dynamic light scattering (DLS). Subjects for these assays do not require labeling. Chromogens In some embodiments, systems, devices, methods, or assays (including, for example, colorimetric assays, absorbance assays, fluorescent assays, and turbimetric assays) provided herein include a chromogen (also termed herein, e.g., colorants, colored products, and other terms). In some embodiments, chromogens may be capable of conversion from a first color to a second color, such as upon a chemical alteration (e.g. oxidation, phosphorylation, dephosphorylation, etc.) of the original chromogen molecule. In some instances, a chromogen is an essentially colorless molecule which converts into a colored pigment upon chemical alteration of the molecule. Formation of chemically altered chromogen product may be monitored, for example, by observing a decrease in the level of the original, non-chemically altered chromogen, or by observing an increase in the level of the chemically altered chromogen. Levels of a particular chromogen (chemically altered or non-chemically altered) may be monitored, for example, by measuring the absorbance of one or more selected wavelength(s) of light by a sample which may contain the chromogen. For such measurements, commonly, the monitored wavelength(s) is a wavelength of light that the chromogen absorbs. In such instances, higher amounts of the chromogen in a sample are correlated with higher absorbance of the selected wavelength of light by the sample. These chromogen(s) may be used in systems configured for discretely multiplexing assays with other of other assay methodologies (that may be the same or different). Chromogens that may be used with systems, devices, and methods provided herein may include, for example, i) substrates which may be oxidized (e.g. molecules that change color upon oxidization, such as by peroxidase and hydrogen peroxide), for example: aniline and related derivatives [e.g. 2-amino-4-hydroxybenzenesulfonic acid (AHBS)(forms a yellow dye upon oxidation which may be monitored at 415 nm), N-(2-hydroxy-3-sulfopropyl)-3,5-dimethyoxyaniline (ALPS) coupled with AAP (forms a dye upon oxidation that may be monitored at 610 nm), N, N diethylaniline], o-dianisidine (forms a yellow-orange dye upon oxidation that may be monitored at 405 nm), 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) (forms a dye upon oxidation that may be monitored, for example, colorimetrically at 570 nm or fluorescently at EX/EM=535/587 nm) resazurin (7-hydroxy-3H-phenoxazin-3-one 10-oxide) and related derivatives [e.g 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) and 7-ethoxyresorufin (form a pink color on oxidation which may be monitored colorimetrically or fluorescently at EX/EM=570/585); ii) substrates of phosphatases (e.g. molecules that change color upon dephosphorylation), for example: p-nitrophenyl phosphate (pNPP) (forms p-nitrophenol upon dephosphorylation, which may be measured by absorbance at 405 nm); iii) substrates of hydrolases (e.g. molecules that change color upon hydrolysis), for example: ortho-nitrophenyl-beta-galactoside (ONPG) (may be hydrolyzed by beta-galactosidase to galactose and ortho-nitrophenol; ortho-nitrophenol may be measured by absorbance at 420 nm); iv) substrates which may change color upon complex formation, for example: o-cresolphthalein (forms a complex with calcium, which may be measured by absorbance at 575 nm), potassium cyanide (forms a complex with hemoglobin, which may be measured by absorbance at 540 nm), thiocyanate (forms a complex with iron, which may be measured by absorbance at 480 nm), 2,4,6-Tripyridyl-s-triazine (TPTZ) (forms a complex with iron, which may be measured by absorbance at 620 nm); v) substrates which may be insoluble upon complex formation, for example: tetraphenylborate (forms a complex with potassium, which may precipitate out of solution); vi) substrates which may change color upon a change in pH (pH indicators), for example: bromophenol blue, methyl red, litmus, phenolphthalein and phenol red. These or other chromogens may be provided, for example, in an assay unit, reagent unit, vessel, tip, or container in a cartridge, assay station, or device provided herein. Chromogens may be provided in various forms, including, for example, in lyophilized, gel, or liquid forms. Radioactivity Assays Radioactive assays use at least one radioactive isotype as a detectable label. Radioactive labels may be used as labels for imaging or to calculate enzymatic activity. Such enzymatic assays may be measured at the end of the reaction (endpoint assays) or measured multiple times over the course of the reaction (time course assays). As a nonlimiting example, ATP labeled with 32P on the gamma phosphate may be used to assay activity of ATPases present in the sample. In another embodiment, a labeled precursor compound or other molecule may be introduced to a cell or other sample to measure synthesis of a product molecule (a “pulse”). Such introduction of a labeled precursor may be followed by addition of an unlabeled version of the precursor (a “chase”). Some examples of pulse-chase assays include but are not limited to using 3H-leucine as a precursor for insulin synthesis and 35S-methionine as a precursor for protein synthesis. It should be noted that these types of assays do not necessarily require the use of a radioactive label, as is known to one familiar in the art. Mass Spectrometry In some embodiments, at least a portion of the sample may be analyzed by mass spectrometry. The sample may be provided to the mass spectrometer as a solid, liquid, or gas, and any of a variety of ionization techniques may be used, including matrix-assisted laser desorption/ionization (MALDI), electrospray (including electrospray, microspray, and nanospray), inductively coupled plasma (ICP), glow discharge, field desorption, fast atom bombardment, thermospray, desorption/ionization on silicon, atmospheric pressure chemical ionization, DART, secondary ion mass spectrometry, spark ionization, thermal ionization, and ion attachment ionization. Ionization may form positive or negative ions. Methods for performing these techniques are well-known in the art. For solid and liquid phase mass spectrometry, samples may be presented on a sample presentation apparatus composed of any suitable material, which may be solid or liquid. The sample presentation surface may have attached enzymes or enzyme complexes that chemically modify or bind to the sample. Examples of chemical modification include but are not limited to enzymatic cleavage, purification, and adding a chemical moiety. In MALDI, samples are typically premixed with a highly absorbing matrix, then bombarded with laser light for ionization. Samples for MALDI are typically thermolabile, non-volatile organic compounds of high molecular mass, preferably up to 30,000 Da. Samples may be presented in any appropriate volatile solvent. For positive ionization, trace amounts of trifluoroacetic acid may be used. The MALDI matrix may be any material that solubilizes biomolecules, absorbs light energy at a frequency easily accessible by a laser, and is unreactive with respect to biomolecules. Suitable matrices include nicotinic acid, pyrozinoic acid, vanillic acid, succinic acid, caffeic acid, glycerol, urea or tris buffer (pH 7.3). Preferable matrices include a-cyano-4-hydroxycinnamic acid, ferulic acid, 2,5-dihydroxybenzoic acid, sinapic (or sinapinic) acid, 3,5-dimethoxy, 4-hydroxy-trans-cinnamic acid, other cinnamic acid derivatives, gentisic acid and combinations thereof. In electrospray ionization (ESI), samples are typically dissolved in a volatile polar solvent, such as an acetonitrile solution, and aerosolized by a strong voltage (for example, 3-4 kV, or lower for smaller samples, such as are used in microspray and nanospray) at a capillary tip. Samples for ESI typically range from less than 100 Da to more than 1 Mda in mass. Aerosolization may be enhanced by flowing a nebulizing gas past the capillary tip, such as nitrogen gas. The resulting charged droplets are further decreased in size by solvent evaporation, aided by a drying gas such as nitrogen that is typically heated. Additional reagents may be added to the solvent to aid in ionization. As nonlimiting examples, trace amounts of formic acid may aid protonation of the sample for positive ionization, while trace amounts of ammonia or a volatile amine may aid deprotonation of the sample for negative ionization. Analytes for mass spectrometry include but are not limited to proteins, carbohydrates, lipids, small molecules, and modifications and/or combinations thereof. Usually, proteins and peptides are analyzed with positive ionization, while saccharides and oligonucleotides are analyzed with negative ionization. Analytes may be analyzed whole or in fragments. Mass spectrometry may be used to determine the composition of a mixture, total size of subject(s), chemical structures, and sequencing, such as of oligopeptides or oligonucleotides. In some embodiments, mass spectrometry can be used to determine binding interactions, such as (but not limited to) between protein and ligands including small molecules, peptides, metal ions, nucleic acids, and other small molecules. In some embodiments, tandem mass spectrometry may be used, where two or more analyzers are used in sequence, separated by a collision cell to fragment the subject ions. Tandem MS thus is capable of first determining the overall mass of a subject, followed by determining additional structural information based on how the subject fragments. Examples of tandem spectrometry include, but are not limited to quadrupole—quadrupole, magnetic sector—quadrupole, magnetic sector—magnetic sector, quadrupole—time-of-flight. Tandem spectrometry is particularly suited for determining structures, including of small organic molecules and for peptide or oligonucleotide sequencing. Dual light source for measuring absorbance and/or fluorescence, comprising of a broad-band light source for absorbance measurement and a laser diode for fluorescence measurement. CCD-based compact spectrophotometers typically use an FPGA/CLPD to control acquisition; however, spectrometers provided herein use a general purpose microprocessor, which may offer more flexibility in terms of general-purpose computing, as well as the ability to update firmware remotely. In addition, the spectrometer can be equipped with a general purpose camera which enables interrogation of the sample before a reading to ensure sample/vessel integrity. Feedback such as this helps in reducing catastrophic failures, and allows for real-time correction. At least some embodiments of systems herein may have one or more stations that include a mass spectrometry station to configured to receive individual sample vessel(s) or arrays of sample vessels. X-Ray Photoelectron Spectroscopy X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a photoelectron spectroscopic analysis method for detecting photoelectrons emitted by surfaces of samples to determine their composition. Photoelectron spectroscopic analysis may be further classified according to light source as XPS and UV photoelectron spectroscopy (UPS). ESCA involves irradiating a sample surface with ultraviolet or x-rays and detecting the characteristic photoelectrons emitted by the elements of the sample. XPS specifically refers to ESCA using x-rays. The photoelectrons are filtered by an electrostatic or magnetic analyzer which allows only electrons of a specified narrow energy band to pass through to a detector. The binding energy of the emitted electrons is unique for each element, allowing identification of each element on the surface. The intensity of the detected beam typically represents the concentration of a given chemical constituent on or near a specimen surface. U.S. Pat. No. 3,766,381, herein incorporated by reference, describes such a system. ESCA and XPS may detect any element with an atomic number of 3 or above, and may detect the compositions of samples up to 10 nm from the surface. As a result, ESCA and XPS are particularly suited to determine empirical formulas of pure materials, to detect contaminants as low as parts per million, and to detect the chemical or electronic state of each element of a sample surface. In XPS, the emitted electrons typically have short inelastic free paths in solid samples. As a result, further information about the amount of an element (such as the depth an element extends from the surface) may be determined by analyzing the angle at once the emitted electrons emerge from the surface. ESCA/XPS may be used to analyze samples including but not limited to inorganic compounds, semiconductors, polymers, metal alloys, elements, catalysts, glasses, ceramics, paints, papers, inks, woods, plant parts, make-up, teeth, bones, medical implants, bio-materials, viscous oils, glues, ion-modified materials. Another method of sample analysis uses Auger electrons, called Auger electron spectroscopy (AES), which functions similarly to ESCA, except that it uses a beam of electrons instead of UV or X-rays. Chromatography Chromatography methods use different properties of solutes in a mixture to allow separation. Many different chromatography methods are known in the art, including but not limited to paper chromatography, thin layer chromatography (TLC), column chromatography gas chromatography, liquid chromatography, affinity chromatography, displacement chromatography, ion exchange chromatography (cation and anion), hydrophobic interaction chromatography, size exclusion chromatography such as gel filtration, perfusion chromatography, push column chromatography, reversed-phase chromatography, two-dimensional chromatography, high performance liquid chromatography, packed capillary chromatography, open tubular liquid chromatography, pyrolysis gas chromatography, chiral chromatography, and many others. Chromotography typically relies on a solid stationary phase and a mobile phase (a solvent) that carries the sample. The stationary phase can comprise a solid polymer, e.g., plastic, glass, other polymers, paper, cellulose, agarose, starch, sugars, magnesium silicate, calcium sulfate, silicic acid, silica gel, florisil, magnesium oxide, aluminum oxide (alumina), activated charcoal, diatomaceous earth, perlite, clays, or other similar substances known in the art. The stationary phase may be treated or otherwise modified to have a characteristic that slows the mobility of at least one solute in the sample mixture. For ion exchange chromatography, the stationary phase may comprise a charged residue, for example an anion that attracts positively charged solutes. For size exclusion chromatography, the stationary phase may comprise pores, tunnels, or other structures that may slow migration of smaller solutes compared to larger solutes. For affinity chromatography, the stationary phase may comprise a binding moiety that specifically recognizes some solutes. Typically, different solutes have different distribution equilibria. Therefore, different solutes will move across the stationary phase at differing rates depending on their relative affinity for the stationary phase on one hand and for the solvent on the other. As the components of the mixture (i.e., analytes) are separated, they begin to form moving bands or zones, which may be detected on the stationary phase, as is typical for example on TLC, or as they are sequentially eluted, as is typical but not required for column chromatography methods. Separation results depend on many factors, including, but not limited to, the stationary phase chosen, polarity of the solvent, size of the stationary phase (such as length and diameter of columns) relative to the amount of material to be separated, and the rate of elution. In some cases, a long column or multiple columns arranged in series may be required to separate the sample effectively. This is particularly true when the sample has a relatively low distribution equilibrium between the stationary phase and the solvent. In other cases, the sample can bind tightly to the adsorbent material and may require a different solvent to elute the sample from the adsorbent. As one nonlimiting example, proteins or peptides with molecular weight of greater than 1000 in aqueous medium bind tightly to a C-18 alkyl stationary phase. This bonding is so strong that it is difficult to effectively remove the protein from the stationary phase using water. Typically an organic eluent, such as acetonitrile, alcohol (e.g., methanol, ethanol, or isopropanol), other relatively polar organic solvents (e.g., DMF), or mixtures thereof, may be used as an eluent to remove the protein from the stationary phase. Other examples include binding chromatography columns where the sample binds the stationary phase with such high affinity that a competing binder is required to elute the sample. Chromatography methods may be used to separate nearly any substance from a mixture. A few nonlimiting examples include separating specific hormones, cytokines, proteins, sugars, or small molecules such as drugs from biological samples such as blood. The separated samples may be detected more easily after elution, or may be subjected to further separation, purification, or processing. For example, nucleic acids may be separated from a sample and used as templates for nucleic acid amplification. Other samples may also be separated, such as separating toxins from environmental samples or targets of interest from lysed cells. Ion Exchange Chromatography Ion exchange chromatography relies on charge-charge interactions between the components of a sample and charges on the stationary phase (such as resin packed in a column) and/or mobile phase. In cation exchange chromatography, positively charged solutes bind to negatively charged stationary phase molecules, while in anion exchange, negatively charged solutes bind to positively charged stationary phases. In typical embodiments, the solutes bind to the column in a solvent of low ionic strength, then the bound molecules are eluted off using an increasing gradient of a second elution solvent with a higher ionic strength. In some examples, the gradient changes the pH or salt concentrations of the eluent solvent. Ion exchange is well suited for purifying nucleic acids, which are typically negatively charged, from mixed samples. Common resins for anion exchange chromatography include but are not limited to Q-resins, and diethylaminoethane (DEAE) resin. Cation exchange resins include but are not limited to S resins and CM resins. Some commercially available resins include Nuvia, UNOsphere, AG, Bio-Rex, Chelex, Macro-Prep MonoBeads, MiniBeads, Resource Q, Source Media, Capto IEX, Capto MMC, HiScreen IEX, HiPrep IEX, Sepharose Fast Flow, HiLoad IEX, Mono Q, Mono S, and MacroCap SP. Buffers for anion exchange include but are not limited to N-methyl piperazine, piperazine, L-histidine, bis-Tris, bis-Tris propane, triethanolamine, Tris, N-methyl-diethanolamine, diethanolamine, 1,3-diaminopropane, ethanolamine, piperazine, 1,3-diaminopropane, piperidine, and phosphate buffer. Buffers for cation exchange include maleic acid, malonic acid, citric acid, lactic acid, formic acid, butaneandioic acid, acetic acid, malonic acid, phosphate buffer, HEPES buffer, and BICINE. Size-Exclusion Chromatography Size-exclusion chromatography (SEC) separates solutes based on their size, and is typically used for large molecules or macromolecular complexes. In SEC, the stationary phase consists of porous particles such that molecules smaller than the pore size may enter the particles. As a result, smaller solutes have a longer flow path and a longer transit time through the SEC column and are separated from larger solutes that cannot fit in the pores. Size-exclusion chromatography may use aqueous or organic solvents, which may be known as gel-filtration or gel permeation chromatography, respectively. Size-exclusion chromatography may also be used to determine general size information about the solutes when compared to a standard macromolecule of known size. Size-exclusion chromatography is also affected by the shape of the solute, such that exact size determinations typically cannot be made. In one example, size-exclusion chromatography may be combined with dynamic light scattering to obtain absolute size information on proteins and macromolecules. Resins for SEC may be selected based on the size of the target solute to increase separation on the chromatography column. Commercially available resins for size-exclusion chromatography include Superdex, Sepharcryl, Sepharose, and Sephadex resins. Examples of buffers for SEC include but are not limited to Tris-NaCl, phosphate buffered saline, and Tris-NaCl-urea. Affinity Chromatography Affinity chromatography uses differences in affinities of individual solutes for a surface such as by chelation, immunochemical bonding, receptor-target interactions, and combinations of these effects. Any sample for which a suitable binding partner is known, preferably with a dissociation constant (Kd) of 10−6 or less, may be separated by affinity chromatography. In some embodiments, the target may be engineered to contain an artificial binding moiety, such as a poly-Histidine, polyarginine, polylysine, GST, MBP, or other peptide tag (which may be removed subsequent to chromatography). Ligands and their target molecules for affinity chromatography include but are not limited to biotin and avidin and related molecules, monoclonal or polyclonal antibodies and their antigens, procainamide and cholinesterase, N-methyl acridinium and acetylcholinesterase; P-aminobenzamidine and trypsin; P-aminophenol-beta-D-thiogalacto-pyranoside and beta-galactosidase; chitin and lysozyme; methotrexate and dihydrofolate reductase; AND and dehydrogenase; sulfanilamide and carbonic anhydrase; DNA and DNA polymerase; complementary nucleic acid sequences; oxidized glutathione and glutathione reductase; P-aminobenzamidine and urokinase; trypsin and soybean trypsin inhibitor; N 6-aminocaproyl-3′,5′-cAMP and Protein Kinase; Pepstatin and Renin; 4-Chlorobenzylamine and Thrombin; N-(4-amino phenyl) Oxamic Acid and Influenza Virus; Prealbumin and Retinal-binding Protein; Neurophysin and Vasopressin; Lysine and Plasminogen; Heparin and Antithrombin; Cycloheptaamylose and Human Serum Amylase; Cortisol and Transcortin; Pyridoxal-5-phosphate and Glutamate-pyruvate transaminase; Chelating Agents and Metal Ions; Chelating Agent-Cu and Superoxide Dismutase; Chelating Agent-Zn and Human Fibrinogen; Coenzyme A and Succinic Thiokinase; Flavin and Luciferase; Pyridoxal Phosphate and Tyrosine Aminotransferase; Porphyrin and Haemopexin; Lysine and Ribosomal RNA; Polyuridine and mRNA; Concanavalin A and Immunoglobulins; 3-phospho-3-hydroxypropionate and Enolase; D-malate and Fumarate Hydratase; Atropine or Cobratoxin and Cholinergic Receptors; 6-Aminopenicillanic acid and D-Alanine Carboxypeptidase; Plant Lectins and Epidermal Growth Factor Receptors; Alprenolol and Epinephrine Receptors; Growth Hormone and Prolactin Receptors; Insulin and Insulin Receptors; Estradiol or Diethylstilbestrol and Estrogen Receptors; Dexamethasone and Glucocorticoid Receptors; Hydroxycholecalciferol and Vitamin D Receptors. Suitable ligands include, but are not limited to, antibodies, nucleic acids, antitoxins, peptides, chelating agents, enzyme inhibitors, receptor agonists, and receptor antagonists. The term “antibody”, as used herein, means immunoglobulins such as IgA, IgG, IgM, IgD, and IgE, whether monoclonal or polyclonal in origin. The methods for binding and elution for the binding pairs for affinity chromatography depend on the binding pair used, and are generally well known in the art. As one example, solutes with polyhistidine labels may be purified using resins including but not limited to commercially available resins such as Superflow Ni-NTA (Qiagen) or Talon Cellthru Cobalt (Clontech). Polyhistidine-labeled solutes may, for example, be eluted from such resins with buffers containing imidzole or glycine. Buffers for ion exchange chromatography may be selected such that the binding pair used is soluble in the buffer. Buffers are typically single phase, aqueous solutions, and may be polar or hydrophobic. Resins for binding by the targeting ligand may be selected based on the targeting ligand and the buffers to be used. Hydrophobic Interaction Chromatography Hydrophobic interaction chromatography (HIC) relies on hydrophobic interactions between the solute and the stationary phase. Typically, HIC is performed with buffers at high ionic strength to increase the strength of hydrophobic interactions, and elution is achieved by reducing the ionic strength of the buffer composition, such as pH, ionic strength, addition of chaotropic or organic agents, such as ethylene glycol. Varying the pH of the mobile phase may also affect the charge and thus the hydrophobicity of the substrates to effect more efficient separation. Nonlimiting examples of resins for HIC include agarose, sepharose, cellulose, or silica particles that may be modified with benzyl groups, linear or branched alkyl groups with any degree of saturation containing 2 to 50 carbon atoms, including octayl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, and eicosyl groups. Resins comprising hydrophobic polymers may be of particular use, as they eliminate the need for covering the resin with hydrophobic functional groups. Such solid hydrophobic polymers comprise a matt of intertwined hydrophobic polymer chains, the chains having molecular weights of from about 10,000 daltons to about 10,000,000 daltons. The polymer may optionally be porous. Suitable polymer materials include, for example, polyethylene, polypropylene, polyether sulfone, polystyrene, polydivinylbenzene, polytetrafluoroethylene, polymethyl methacrylate, polydimethyl siloxane, and blends thereof. The polymer support may be in any form, including, for example, particles, beads, cards, sheets, fibers, hollow fibers, and semipermeable membranes. Electrochemical Measurements Electrochemical analysis of a liquid sample typically uses electrodes that are dipped in a liquid sample for electrochemical determination of the type of analyte, measurement of the analyte concentration, or both. The electrodes are spaced apart from each other, and the electrolytes in the sample provide ionic communication between the electrodes. In a majority of situations, the sample is static during measurement; in some instances, the sample flows through an electrochemical detector when the sample is in fluid motion, such as in the case of flow injection analysis. The dimensions of the electrodes may define the volume of the sample required for the measurement. The constraints relating to the volume of the sample and the requirement of rapid measurement may call for the use of microelectrodes, when the volume of the sample is not sufficient to cover the surface area of electrodes of conventional size. Samples that may be measured by electrochemical analysis include but are not limited to biological fluids such as processed or unprocessed blood or plasma, solutions of biological samples, and liquid environmental samples. Analytes that may be measured with electrochemical sensors include, for example, blood gases (e.g. carbon dioxide, oxygen, pH, amongst others), electrolytes (e.g. sodium ions, potassium ions), and metabolites (e.g. glucose, lactate). Electrochemical measurements may be used to measure any reagent that can be used in a reaction to effect electron or charge transfer to or from an electrode. Reagents include, but are not limited to, enzymes such as glucose oxidase, glucose dehydrogenase, beta-hydroxybutyrate dehydrogenase, and lactate dehydrogenase; mediators such as ferrocene, ferricyanide, quinones, and the like; co-enzymes such as nicotinamide adenine dinucleotide (NAD) if necessary; ionophores; cells; small molecules such as glucose; or combinations of the foregoing. The reagents typically comprise an enzyme and a mediator. A mediator is a chemical species that has two or more oxidation states of distinct electro-active potentials that allow a reversible mechanism of transferring electrons/charge to an electrode. The enzyme reacts with the analyte in the sample, thereby catalyzing oxidation of the analyte. The enzyme is reduced in the oxidation reaction, and the reduced enzyme is regenerated by the mediator. Alternatively, ionic species and metal ions can be used in place of the enzyme to form electrochemically detectable compounds when they react with the analyte, such as ionophores used for the ion-sensitive electrodes. In assays where an electroactive species in a liquid sample is measured without the need for any reagent at all, the conducting layer constituting the working electrode need not have any reagent deposited thereon. As is well-known, electrochemical measurement may be carried out by using a working electrode coupled to a reference electrode. The measurement can involve a change in the potential (potentiometry) or the generation of current (amperometry). The electrodes by themselves do not exhibit specificity to an analyte. The specificity can be imparted to the electrode by having an enzyme (in the case of biosensor) that reacts with only one of a plurality of analytes in a mixture of analytes or by employing a filtration technique that would selectively allow only one of a plurality of analytes in a mixture to pass through a filtration device. In electrochemical measurements of certain analytes, such as dopamine in the brain, the determination of interfering agents in a “dummy” electrode of a biosensor is one example wherein an electrochemical measurement is carried out without the use of any reagent on the surface of the working electrode. See, for example, U.S. Pat. No. 5,628,890, incorporated herein by reference. In an amperometric measurement, a constant voltage is applied at the working electrode with respect to the reference electrode, and the current between the working and counter electrodes is measured. The response of the electrochemical cell has two components, catalytic (glucose response component) and Faradaic (solution resistance component). If the resistance of the solution is minimized, the response of the electrochemical cell at any given time will have substantially higher glucose response component, as compared with the solution resistance component. Therefore, one is able to obtain good correlation with the concentration of glucose from the response of the electrochemical cell even at assay times as short as one second. If the resistance of the solution is high, the voltage experienced at the working electrode will lag significantly from the voltage applied. This lag is significantly higher for a two-electrode system, as compared with a three-electrode system. In the case of two-electrode system, the value of iR between the working and the reference electrode is significantly higher than that in a three-electrode system. In a three-electrode system, no current flows between the working electrode and the reference electrode, and hence the voltage drop is lower. Therefore, once the charging current (Faradaic current) decays to a minimum (within two to three milliseconds), the current observed is all catalytic current. In a two-electrode system, the charging current is not diminished until the voltage at the working electrode attains a steady state (reaches the applied voltage). Thus, in a two-electrode system, there is a slow decay of the response profile. The passage of the electrochemical cell can be filled with a liquid sample by any of numerous methods. Filling can be carried out by, for example, capillary attraction, chemically-aided wicking, or vacuum. Alternatively, the liquid sample can flow through the passage. The manner of filling the electrochemical cell depends on the application, such as single use of the sensor or continuous measurements in a flow injection analysis. In one example, electrochemical measurements may be used to measure the level of glucose in a sample of blood, which can aid in determining the quantity of insulin to be administered. Glucose is typically measured by amperometrics in the presence of an enzyme that specifically uses glucose as a substrate. An enzyme that is currently used is glucose oxydase (GOD) because it is very specific to glucose, does not react to any other oligosaccharides, and is insensitive to temperature variations. Glucose oxydase has, however, the drawback of being very sensitive to the presence of oxygen. As a result, variations in the oxygen levels of blood samples may prevent precise measurement of glucose levels. To reduce or eliminate the effects of oxygen concentration, a mediator may be used to accelerate electron transfer. Some nonlimiting examples of such mediators include ferrocene, its derivatives, and osmium complexes, such as those disclosed in U.S. Pat. No. 5,393,903, which is incorporated herein by reference. An alternate enzyme for glucose assays may be glucose dehydrogenase (GDH), which has the advantage of being insensitive to the presence of oxygen. Glucose dehydrogenase has, however, the drawback of being less glucose specific and of interfering with other saccharides, oligosaccharides, and oligopolysaccharides, such as maltose, which results in overestimation of the glucose level. FIGS. 99 to 100 show some embodiments of electrochemical sensor configurations that can be adapted for use as part of probes, tips, or other components of the system for detection of analytes. Optionally, these electrochemical sensor configurations can be integrated to be part of the device. In one non-limiting example, these can be part of the hardware, such as but not limited to integration with the pipette units 6720 or they may be part of the cartridge or other disposable. Some embodiment may integrate these electrodes with electrochemical sensor configuration(s) herein to be part of a sample collection disposable with a connector on the disposable and a matching one on the device to read signal(s), data, or information from the disposable. This linkage can be by direct wired connection, wireless connection, or the like. Other detection systems such as but not limited to electrochemical systems may allow the embodiment to work with whole blood samples instead of plasma. This may decrease processing time due to the generally much more immediate availability of whole blood sample versus plasma. This creates a consolidated protocol without as many sample preparation steps. Optionally, electrochemical techniques may have a system that comprises ion selective electrodes, pH type of electrode such as but not limited to Clark electrode, current measuring electrode, voltage measuring electrode. This may be useful for blood-gas measurements that may desire to engage the sample in assay measurement soon after collection to maintain sample integrity. Optionally, these electrodes may be integrated into the sample collection device, into the device and the system, or only in the system. In one non-limiting example, the collection device may contain electrode(s) that engage the sample, the collection device may plug into the cartridge, and the cartridge is plugged into the device. Ion selective detectors may also be used. Ion-selective electrodes may interact with specific ions in a solution to generate an electrical signal, which may be measured. Ion-selective electrodes may be used to monitor various ions such as, fluoride, bromide, cadmium, hydrogen, sodium, silver, lead, and gases such as ammonia, carbon dioxide, oxygen, and nitrogen oxide. Ion-selective electrodes may include, for example, glass membranes, crystalline membranes, and organic polymer membranes. In some embodiments, ion-selective electrodes may be used with general chemistry assays disclosed herein. In some embodiments, ion selective electrodes or membranes are doped with certain chemicals for detecting, for example, potassium or calcium. If when using ion-selective electrodes, the final signal may be an electrical voltage change, current change, or change in impedance. Optionally, a detector may be doped with fluorescent compounds or fluorophores such as porphyrin phosphorescence, Pd-phosphor, tris(4,7-diphenyl-1,10-phenanthroline) cation, that can detect oxygen and are sensitive to oxygen changes. In one non-limiting example, the detector may be a PET membrane doped with fluorophores, other polymetric compound, or western blot materials. This may be desirable where the confirmation test uses a technique different from the initial test technique. It may also result in a higher integrity assay, particularly for time-sensitive assays. These assays may be oxygen or other gas sensitive assays where there is greater risk of the loss of assay integrity due to undesired gas exposure during assay processes that have many steps versus those with much fewer steps. In some embodiments, ion assays may be performed with ionophores that are selective for certain ions. These selective ionophores may be doped into a substrate such as but not limited to PET. The convenience and optionally, a lack of need for sample processing, may allow use of a sample sooner after collection from a subject, and at smaller volumes. Ionophores may be used for blood analysis, including blood gas and electrolyte profile. Some embodiments may use lateral or laminar flow strips, such as but not limited to those similar those from Millipore, Inc., that may have membranes that are treated with ionophores to provide the desired detection. Multivariate Analysis Devices and systems provided herein may be used for multivariate analysis. This can enable the characterization of a clinical outcome of a subject. Devices and systems provided herein may be used to aid an end-user in diagnosis, prognosis, and treatment of a clinical outcome. Devices and systems provided herein may be used in multivariate analysis, in some cases with the aid of a probability or reference space. In some cases, systems and devices provided herein are configured to collect data for use with methods provided in U.S. patent application Ser. No. 12/412,334 to Michelson et al. (“METHODS AND SYSTEMS FOR ASSESSING CLINICAL OUTCOMES”), which is entirely incorporated herein by reference. In an example, the system 700 (including one or more of the modules 701-706) is configured to process samples to assist in determining the trajectory, velocity and/or acceleration of a treatment or the progression of a condition (e.g., health or disease condition) of a subject. The trajectory may be indicative of the likelihood of progression to the clinical outcome. In another example, the system 700 collects data for use in trend analysis. All vessels (e.g., cuvettes, tips), tips, methods, systems and apparatuses described in U.S. Provisional Patent Application No. 61/435,250, filed Jan. 21, 2011 (“SYSTEMS AND METHODS FOR SAMPLE USE MAXIMIZATION”), and U.S. Patent Publication No. 2009/0088336 (“MODULAR POINT-OF-CARE DEVICES, SYSTEMS, AND USES THEREOF”), are entirely incorporated herein by reference. EXAMPLES The following examples are offered for illustrative purposes only, and are not intended to limit the present disclosure in any way. Example 1: Chem 14 and Lipid Panel A fingerstick was used to release blood from a subject. 120 microliters of the released whole blood was collected and mixed with an anti-coagulant (EDTA or heparin—80 microliters with EDTA and 40 microliters with heparin), and transferred to two separate vessels for the two different anti-coagulant-containing samples. Both vessels were loaded into a cartridge containing multiple fluidically isolated reagents, vessels, and tips. The cartridge was loaded into a device provided herein containing a module containing various components, including a centrifuge, a pipette containing multiple cards, a spectrophotometer, and a PMT. Inside the device, the pipette was used to engage the EDTA-containing and heparin-containing sample vessels, and to load them into the centrifuge. The vessels were centrifuged for 5 minutes at 1200 g, to separate the blood cells from the blood plasma. The vessels were then removed from the centrifuge, and returned to the cartridge. The pipette was used to aspirate 16 microliters of plasma from the vessel containing the EDTA-containing sample, and to deposit the aspirated EDTA plasma into an empty vessel in the cartridge. The pipette was also used to aspirate 32 microliters of plasma from the vessel containing the heparin-containing sample, and to deposit the aspirated heparin plasma into an empty vessel in the cartridge. The pipette was used to dilute the EDTA and heparin plasma with diluents and to yield different plasma dilutions, through step-wise and serial dilutions. For each dilution step, a diluent was first aspirated by the pipette from a vessel on the cartridge, and deposited in an empty vessel. The sample was then added to the diluent by the pipette, and the diluent and sample were mixed. As a result of the dilution steps, ultimately, vessels containing plasma diluted 3 to 300-fold were generated. The diluted plasma was used to perform all fourteen assays of a Chem 14 panel [glucose, calcium, albumin, total protein, sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate), creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), total bilirubin] and four assays of a lipid panel (LDL cholesterol, HDL cholesterol, total cholesterol, and triglycerides). Chem 14 Panel For the chloride assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 20 microliters of a chloride reaction mixture containing mercury nitrate, ferrous sulfate, and 2,4,6-Tripyridyl-s-triazine (TPTZ) from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of diluted plasma, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 600 nm. The measured absorbance was 2.150 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a level of 99.0 mmol/L chloride in the plasma sample. For the total protein assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 20 microliters of a total protein assay reaction mixture containing copper (II) sulfate from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of diluted plasma, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 540 nm. The measured absorbance was 0.089 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 5.7 g/dL total protein in the plasma sample. For the albumin assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 20 microliters of an albumin assay reaction mixture containing Bromocresol Green from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of diluted plasma, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 620 nm. The measured absorbance was 0.859 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 3.2 g/dL albumin in the plasma sample. For the aspartate aminotransferase (AST/SGOT) assay, the pipette aspirated 15 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 15 microliters of an aspartate aminotransferase assay reaction mixture containing aspartatic acid, alpha-ketoglutaric acid, malic dehydrogenase, lactate dehydrogenase, and NADH from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 15 microliters of diluted plasma, and mixed the solutions. The assay was moved to the spectrophotometer, where the absorbance of the sample was measured at 340 nm. The assay was then incubated, and then measured again at 340 nm, to determine a rate of change. The rate of change was plotted on a calibration curve, and determined to indicate a concentration of 34.0 IU/L aspartate aminotransferase in the plasma sample. For the potassium assay, the pipette aspirated 15 microliters of heparin-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 15 microliters of a potassium assay reaction mixture containing sodium tetraphenylborate from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 15 microliters of diluted plasma, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 450 nm. The measured absorbance was −0.141. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 3.4 mmol/L potassium in the plasma sample. For the blood urea nitrogen (BUN) assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first BUN assay reaction mixture containing urease, sodium salicylate, and sodium nitroprusside from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was incubated, and then the pipette aspirated 10 microliters of a second BUN assay reaction mixture containing sodium hypochlorite from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first BUN assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 630 nm. The measured absorbance was 0.0159 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 10.4 mg/dL BUN in the plasma sample. For the bicarbonate/carbon dioxide assay, the pipette aspirated 10 microliters of heparin-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first bicarbonate/carbon dioxide assay reaction mixture containing phosphoenolpyruvate (PEP) and phosphoenolpyruvate carboxylase (PEPC) from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was incubated, and then the pipette aspirated 10 microliters of a second bicarbonate/carbon dioxide assay reaction mixture containing Fast Violet B from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first bicarbonate/carbon dioxide assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 520 nm. The measured absorbance was 3.218 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 20.0 mmol/L bicarbonate/carbon dioxide in the plasma sample. For the glucose assay, the pipette aspirated 10 microliters of heparin-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first glucose assay reaction mixture containing glucose oxidase from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The pipette aspirated 10 microliters of a second glucose assay reaction mixture containing horseradish peroxidase, 4-aminoantipyrine, and 4-hydroxybenzoic acid from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first glucose assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 510 nm. The measured absorbance was 0.623 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 69.3 mg/dL glucose in the plasma sample. For the alkaline phosphatase (ALP) assay, the pipette aspirated 10 microliters of heparin-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 20 microliters of an alkaline phosphatase assay reaction mixture containing AMPPD from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was incubated, and moved to the photomultiplier tube, where the luminescence of the sample was measured at 510 nm. The measured signal was 188,453 counts. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 129.0 U/L alkaline phosphatase in the plasma sample. For the calcium assay, the pipette aspirated 10 microliters of heparin-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first calcium assay reaction mixture containing 2-amino-2-methyl-1-propanol from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The pipette aspirated 10 microliters of a second calcium assay reaction mixture containing o-cresolphthalein from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first calcium assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 570 nm. The measured absorbance was −0.0112. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 8.7 mg/dL calcium in the plasma sample. For the total bilirubin assay, the pipette aspirated 10 microliters of a first bilirubin assay reaction mixture containing sulfanilic acid from a vessel in the cartridge, and dispensed the reaction mixture into an empty vessel. The pipette then aspirated 5 microliters of a second bilirubin assay reaction mixture containing sodium nitrite from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of a first bilirubin assay reaction mixture, and mixed the solutions. The pipette then aspirated 15 microliters of the diluted plasma, and dispensed the diluted plasma into the vessel containing the first and second bilirubin assay reaction mixtures, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 570 nm. The measured absorbance was 0.081 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 0.8 mg/dL total bilirubin in the plasma sample. For the creatinine assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first creatinine assay reaction mixture containing glutamic dehydrogenase, alpha-ketoglutaric acid, and NADH from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, mixed the solutions, and incubated for 5 minutes. The pipette aspirated 10 microliters of a second creatinine assay reaction mixture containing creatinine deiminiase from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first creatinine assay reaction mixture, and mixed the solutions. The assay was then moved to the spectrophotometer, where the absorbance of the sample was measured at 340 nm for a set period of time, and the rate of change was determined. The rate of change was compared to a calibration curve, and was determined to indicate a concentration of 1.1 mg/dL creatinine in the plasma sample. For the sodium assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first sodium assay reaction mixture containing lithium chloride and a chelating agent from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The pipette aspirated 5 microliters of a second sodium assay reaction mixture containing beta-galactosidase from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first sodium assay reaction mixture, and mixed the solutions. The pipette then aspirated 5 microliters of a third sodium assay reaction mixture containing 2-nitrophenyl b-D-galactopyranoside from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first and second sodium assay reaction mixture, and mixed the solutions. The assay was then moved to the spectrophotometer, where the absorbance of the sample was measured at 570 nm and again after a set period of time, to determine a rate of change of absorbance. The rate of change was plotted on a calibration curve, and was determined to indicate a concentration of 132.0 mmol/L sodium in the plasma sample. For the alanine aminotransferase/alanine transaminase (ALT) assay, the pipette aspirated 7.5 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 7.5 microliters of a first ALT assay reaction mixture containing L-alanine and alpha-ketoglutaric acid from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 7.5 microliters of the diluted plasma, and mixed the solutions. The mixture was incubated. The pipette then aspirated 7.5 microliters of a second ALT assay reaction mixture containing pyruvate oxidase, 4-aminoantipyrene, horseradish peroxidase, and N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline, (ALPS) from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first ALT assay reaction mixture, and mixed the solutions. The mixture was incubated. The pipette then aspirated 7.5 microliters of a third ALT assay reaction mixture containing sodium phosphate from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first and second ALT assay reaction mixture, and mixed the solutions. The assay was then moved to the spectrophotometer, where the absorbance of the sample was measured at 561 nm. The measured absorbance was 1.515 at a 10 mm pathlength equivalent. The absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 49.0 U/L ALT in the plasma sample. Lipid Panel For the LDL-cholesterol assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first LDL-cholesterol assay reaction mixture containing cholesterol esterase, cholesterol oxidase, and ALPS from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was incubated, and then the pipette aspirated 10 microliters of a second LDL-cholesterol assay reaction mixture containing horseradish peroxidase and 4-aminoantipyrene from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first LDL-cholesterol assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 560 nm. The measured absorbance was 0.038 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 93.7 mg/dL LDL-cholesterol in the plasma sample. For the HDL-cholesterol assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first HDL-cholesterol assay reaction mixture containing dextran sulfate and ALPS from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was incubated, and then the pipette aspirated 10 microliters of a second HDL-cholesterol assay reaction mixture containing cholesterol esterase, cholesterol oxidase, horseradish peroxidase and 4-aminoantipyrene from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first HDL-cholesterol assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 560 nm. The measured absorbance was 0.015 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 40 mg/dL HDL-cholesterol in the plasma sample. For the total cholesterol assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 20 microliters of a total cholesterol assay reaction mixture containing cholesterol esterase, cholesterol oxidase, horseradish peroxidase, ALPS, and 4-aminoantipyrene from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The assay was moved to the spectrophotometer, where the absorbance of the sample was measured at 500 nm and again after a set period of time, to determine a rate of change of absorbance. The rate of change was plotted on a calibration curve, and was determined to indicate a concentration of 120.0 mg/dL total cholesterol in the plasma sample. For the triglycerides assay, the pipette aspirated 10 microliters of EDTA-containing diluted plasma, and dispensed the diluted plasma into an empty vessel. The pipette then aspirated 10 microliters of a first triglycerides assay reaction mixture containing lipase and ALPS from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the 10 microliters of the diluted plasma, and mixed the solutions. The pipette then aspirated 10 microliters of a second triglycerides assay reaction mixture containing glycerol kinase, glycerol-3-phosphate oxidase, horseradish peroxidase and 4-aminoantipyrene from a vessel in the cartridge, and dispensed the reaction mixture into the vessel containing the plasma and first triglycerides assay reaction mixture, and mixed the solutions. The assay was incubated, and moved to the spectrophotometer, where the absorbance of the sample was measured at 560 nm. The measured absorbance was 0.552 at a 10 mm pathlength equivalent. This absorbance value was plotted on a calibration curve, and was determined to indicate a concentration of 69.2 mg/dL triglycerides in the plasma sample. Unless otherwise noted, each of the above pipetting steps was performed using a new pipette tip. New pipette tips were stored in the cartridge, and used pipette tips returned to the cartridge at their original location. Each of the incubation steps was for no more than 15 minutes. Each of the above assays was individually completed in less than 20 minutes, and the total time for multiplexing all of the above assays was less than 1 hour. Example 2: COV of Measurements Samples of SeraCon I (difibrinated, pooled plasma, 0.2 μm filtered; SeraCare, Inc., Milford, Mass.) containing 3, 7.9, 10.2, or 18.1 mg/dL calcium ions were prepared. Each of the samples was separately assayed for calcium four times on a device provided herein, following the procedure for the calcium assay as described in Example 1 above. After mixing all of the reagents for each reaction and incubating the reactions, the absorbance of the reaction mixture at 570 nm was measured in a spectrophotometer in the device. This data is provided in Table 1. TABLE 1 Absorbance at t = 4 min COV Ca conc (mg/dl) Exp 1 Exp 2 Exp 3 Exp 4 Avg (%) 3.0 0.22 0.22 0.20 0.23 0.22 5.99 7.9 0.41 0.46 0.36 0.39 0.41 10.08 10.2 0.51 0.52 0.48 0.49 0.50 4.15 18.1 0.74 0.70 0.63 0.77 0.71 8.57 As shown in Table 1, each of the different assays with each of the different calcium-containing samples yielded a similar absorbance value for the same calcium concentration. Based on the different assays, the coefficient of variation (COV) for the assay was determined, for each of the different calcium concentrations. As shown in the Table 1, for each of the different calcium-containing samples, the COV was 10.08% or lower. In addition, the average COV for the assay was 7.20%, calculated based on the COV for each different calcium-containing samples (5.99+10.08+4.15+8.57/4). FIG. 102 provides a graph of absorbance at 570 nm (Y-axis) vs. concentration of the calcium in the sample (X-axis), indicating a linear relationship between the values. Example 3: Centrifuge A centrifuge as provided herein having 4 swinging buckets and a total capacity of less than 500 microliters, a diameter of approximately 3 inches, base plate dimensions of approximately 3.5 inches×3.5 inches, and a height of approximately 1.5 inches was loaded with 4 centrifuge tubes, with 2 of them containing 60 microliters of water containing dye and the other 2 being empty. The centrifuge was operated for 4 “high speed” and 3 “low speed” runs, with the high speed run having a target RPM 6.2 times greater than the low speed run. Each run was for at least 180 seconds in duration. For the first 3 minutes of each centrifuge run, the RPM of the rotor was recorded every second. The coefficient of variation for the centrifuge was calculated. The average speed of the rotor between 50 and 150 seconds for each of the high speed runs and the low speed runs was determined Based on this data, the COV for both the high speed and low speed runs across the different runs was determined. COV for the low speed runs was 2.2%, and for the high speed runs was 1.5%. Example 4: Fluid Handling Apparatus A fluid handling apparatus as provided herein having 9 pipette blades/cards, each mounted on a common support structure, was tested for precision and coefficient of variation of liquid transfer. 8 of the 9 cards (card numbers 1-8) had the same internal configuration, optimized for pipetting small volumes (“low capacity” cards). 1 of the 9 cards (card number 9) had an internal configuration optimized for pipetting larger volumes (a “high capacity” card) and had a larger internal volume of the piston cavity and piston than the low capacity cards. Each of the 9 cards was tested for performance of pipetting a relatively small volume and a relatively large volume, based on the overall capacity of the cards. For the low capacity cards, the relatively small volume was approximately 2 microliters and the relatively large volume was approximately 10 microliters; for the high capacity card, the relatively small volume was approximately 5 microliters and the relatively large volume was approximately 40 microliters. Specifically, the low capacity cards were tested for performance of aspirating an aqueous solution based on movement of the piston within the card as a result of a first selected number of ticks and a second selected number of ticks of an encoder wheel of the motor operatively connected to the piston; the first selected number of ticks correspond approximately to 2 microliters and the second selected number of ticks correspond approximately to 10 microliters. The high capacity card was tested for performance of aspirating an aqueous solution based on movement of the piston within the card as a result of a first selected number of ticks and second selected number of ticks of an encoder wheel of the motor operatively connected to the piston; the first selected number of ticks correspond approximately to 5 microliters and the second selected number of ticks correspond approximately to 40 microliters. Performance of the each pipette cards was measured as follows. Each pipette card aspirated an aqueous dye based on the movement of the piston within the card as a result of the respective first or second number of ticks of the motor operatively connected to the piston, as described above. The dye was dispensed into known volume of water, and the absorbance of each water-dye solution was determined. The absorbance is directly related to the quantity of dye dispensed by the pipette card into the water, and it may be used to calculate the volume of dye dispensed into the water. Each pipette card performed the relatively small volume and the relatively large volume pipetting procedure as described above 10 times, and the volume of liquid pipetted by the card for each procedure was determined. Then, the average volume of liquid pipetted by each card for the relatively small volume and the relatively large volume procedure was determined. These values are provided in Table 2. In addition, based on the variance between volumes pipetted by each card across each of the 10 pipetting procedures for each of the relatively large volume and relatively small volume procedures, the coefficient of variation (COV) for each pipette card for the relatively large volume and relatively small volume procedures was determined. These values are also provided in Table 2. As indicated in the Table, for the relatively low volume procedures, all pipette cards have a COV of 2.2% or lower. For the relatively high volume procedures, all pipette cards have a COV of 0.8% or lower. Furthermore, the average coefficient of variation between each of the 9 cards of the fluid handling apparatus for pipetting: i) the relatively small volume and ii) the relatively large volume was also determined, and is provided in Table 2. As shown in the Table, across all cards in the fluid handling apparatus, the average COV for the relatively small volume pipetting was 1.3%, and for the relatively large volume pipetting was 0.5%. TABLE 2 Average Volume Coefficient of Pipetted (μl) Variation (%) Relatively Relatively Relatively Relatively Small Large Small Large Card/Blade # Volume Volume Volume Volume 1 1.90 10.43 0.5 0.4 2 1.93 10.46 1.6 0.8 3 1.92 10.40 1.7 0.5 4 1.91 10.40 0.6 0.6 5 1.90 10.41 1.0 0.6 6 1.93 10.41 0.9 0.6 7 1.91 10.44 1.4 0.4 8 1.91 10.39 1.7 0.6 9 4.80 40.56 2.2 0.4 Fluid Handling 1.3 0.5 Apparatus-Wide Average COV: Example 5: Spectrophotometer A spectrophotometer in a device described herein was used for various measurements. In one experiment, the spectrophotometer was used to obtain multiple measurements of the absorbance of different NADH-containing solutions. Solutions of 62.5, 125, 250, 500, and 1000 micromolar NADH in 20 mm Tris, 0.05% sodium azide were prepared. The absorbance of each solution at 340 nm was measured each minute for a period of 20 minutes. The results of the measurement at each minute for each solution are provided in FIG. 103. Based on the 20 measurements for each different NADH solution, a COV of variation for measurement of each of the solutions was determined, and is provided below in Table 3. Table 3 also provides the average absorbance measurement and the standard deviation for each solution. TABLE 3 NADH, uM Average A340 nm St. Dev % CV 62.5 0.0622 0.0037 5.88 125 0.1531 0.0039 2.56 250 0.3390 0.0043 1.26 500 0.7170 0.0053 0.74 1000 1.2524 0.0075 0.60 In another experiment, solutions of 62.5, 125, 250, 500, and 1000 micromolar NADH in 10 mm potassium phosphate, pH 8.0 were prepared. The absorbance of each of the solutions at 340 nm was measured in both: i) a SPECTROstar Nano (BMG Labtech) plate reader (“commercial plate reader”); and ii) a spectrophotometer provided herein (“Theranos”) in a device provided herein. The absorbance measurements by each device was plotted (X-axis: concentration of NADH in micromolarity; Y-axis: absorbance of the sample at 340 nm), and the slope for the values from each device was calculated (FIG. 104). For the SPECTROstar Nano, the calculated slope was: y=0.0018x+0.0289; R2=0.9937. For the Theranos spectrophotometer, the calculated slope was: y=0.0013x+0.0129; R2=0.9934. The high R2 value for slope based on values from the Theranos spectrophotometer indicates the linearity of the spectrophotometer for measuring absorbance across a wide range of concentrations of solution. In another experiment, samples containing different amounts of urea were assayed for absorbance. Samples of SeraCon I (difibrinated, pooled plasma, 0.2 μm filtered; SeraCare, Inc., Milford, Mass.) containing approximately 1, 16, 23, or 71 milligrams/deciliter blood urea nitrogen were assayed for urea. The absorbance of each of the assays at 630 nm was measured in both: i) a SPECTROstar Nano plate reader (“commercial plate reader”); and ii) a spectrophotometer provided herein (“Theranos”) in a device provided herein. The absorbance measurements by each device was plotted (X-axis: concentration of blood urea nitrogen in sample in mg/dl; Y-axis: absorbance of the sample at 630 nm), and the slope for the values from each device was calculated (FIG. 105). For the SPECTROstar Nano, the calculated slope was: y=0.0058x+0.0854; R2=0.9985. For the Theranos spectrophotometer, the calculated slope was: y=0.0061x+0.0358; R2=0.9974. The high R2 value for slope based on values from the Theranos spectrophotometer indicates the linearity of the spectrophotometer for measuring absorbance across a wide range of concentrations of solution. Referring now to FIGS. 106 and 107, one embodiment of a module 10100 suitable for use in a rack or other common mounting structure will now be described. FIG. 106 is a top-down view of some components in a module 10100. In this non-limiting example, a gantry system 10102 that provides X-Y axis or other axis movement of a pipette 10104 is shown in phantom. The pipette 10104 may be one such as that shown in FIGS. 66 to 67D. The gantry system 10102 may move as indicated by arrow 10106. In one embodiment, pipette 10104 can move as indicated by arrow 10108. This combination of the gantry 10102 and pipette 10104 allows for movement in at least the XYZ axis, allowing for the movement of sample vessels to and from multiple locations in the module. FIG. 106 also shows that the pipette 10104 in a second location, or optionally, some systems may use second pipette and gantry system with the module 10100. FIG. 106 shows that there may be an assay station receiving location 10110 configured to receive a cartridge. In one non-limiting example, the assay station receiving location 10110 may be a tray that is movable as indicated by arrow 10112 by the use of motor 10114 and gear tracks 10116 to move the tray outside of the module to facilitate user placement of one or more cartridges into the module. Once a cartridge is in the system, individual elements of the cartridge such as but not limited to cuvettes, pipette tips, vessels, other physical items, regent(s), fluids, or the like may be moved from the cartridge. FIG. 106 also shows that there may be a variety of components in the module 10100 such as but not limited to a centrifuge 10120, a high sensitivity optical detector 10122 such as but not limited to a PMT, a multi-array optical detector 10124 such as but not limited to a spectrophotometer, and a nucleic acid amplification module 10126. Each of these components may have its own sample vessel receiving location such as but not limited to locations 10130, 10132, 10134, and 10136. In one non-limiting example, the locations 10130, 10132, 10134, and 10136 may be sized to be different shapes, sized to receive different types of vessels, and in the case of the centrifuge, may have a variable location depending on where the centrifuge finishes spinning A controller of the system is configured to direct sample vessels to the desired locations and be able to accurately place them in the appropriate receiving locations for each of the components. FIG. 107 shows a side view of the various components in the module 10100. It should also be understood that thermal control of conditions within the module 10100 can be regulated so that thermal conditioning by way of controlled temperature air flow through the system is accomplished so that temperature sensor(s) in the module detect that ambient air in the system is within a desired range. Optionally, the thermal regulation is by way of a combination of controlled air temperature and controlled support structure temperature. This can be of particular use when the support structure comprises of a thermally conductive material. Referring now to FIG. 108, one embodiment of a system 10200 with linked convective flow between modules will now be described. As seen in FIG. 108, the common flow between modules 10100 is shown by arrow 10202. Inlet air flow into each of the modules 10100 is indicated by arrow 10204. Optionally, the thermal conditioning of adjacent modules can be used to condition the underside or other surfaces of adjacent modules. In this manner, combined module thermal conditioning can create a more stable thermal state for all of the modules sharing a common mounting. This convective air flow within a module is indicated by arrow 10208. Optionally, a convective flow unit 10220 which may provide thermally conditioned (heated, cooled, or neutral) airflow can be used to maintain a desired air temperature range within the substantially light tight confines of the modules 10100. One more temperature sensors 10230 may be included in the modules 10100 to provide feedback to a controller to adjust flow rate and/or air temperature coming from device 10220. A fully or at least partially enclosed pathway 10232 may be used to direct exhaust air flow to a filtered outlet 10234 that may have an exhaust fan therein. Optionally, flow can be reversed on the exhaust fan such that it can also function as an inlet if the fan is operated in reversed. Referring now to FIGS. 109 and 110, optionally, some embodiments may have a bilayer module configuration wherein certain hardware elements are mounted on a first plane while second elements that may have a different height are mounted on a second plane such that the features on the first plane and second plane have sample vessel loading areas in zones or planes accessible by a common pipette system mounted on an XY gantry. By way of non-limiting example, Figure AH1 shows that an optical detector component 10250 may have an upper surface 10252 that is located within the range of motion of the sample handling system with gantry 10102. In one non-limiting example, the upper surface 10252 is above the first support layer 10260 while the device 10250 is mounted on the second support layer 10262. The surface 10252 may be sized to receive one cuvette or multiple cuvettes. FIG. 109 also shows that the pipette 10104 in a second location, or optionally, some systems may use second pipette and gantry system with the module 10100. It should be understood that the housing 10270 may be a light-tight housing. Some embodiments may align a plurality of the bilayer modules in a stack (similar to FIG. 108) and/or horizontal combination wherein all of the resources are contained in each of the bilayer modules. Some may not use any additional transport devices between bilayer modules, but such transport devices are not excluded in alternative embodiments. FIGS. 106 to 110 show non-limiting examples of configurations of modules according to embodiments described herein. The primary challenge in being able to accurately measure blood gas concentrations is in maintaining the integrity of sample starting from collection and through sample processing, reaction, and signal read. The goal is to minimize mass transfer of blood gas components to and from the sample. In what follows, the different steps where the sample has potential to come in contact with air are detailed, along with ways to minimize or eliminate mass transfer. Although this example is discussed in the context of measuring blood gas, it should be understood that this is also applicable to other assays where the combination of structure in the hardware, structure in the disposable, processing techniques in the system, and specific chemistries in the vessels can be combined in one or more sequences to perform assays not otherwise possible in traditional settings due to the lack of system integration and variable application of the combinations of factors and capabilities herein. Penetrating the sealed sample vessel and depositing into the centrifuge vessel or other sample vessel. Optionally, the system skips the sealed sample vessel and deposits arterial blood from a syringe into the centrifuge vessel or sample vessel. Optionally, the centrifuge vessel or sample vessel has a re-sealable seal, septa, or other seal on it to maintain a gas tight environment therein. The seal may be polypropylene, foil polypro combination, rubber, or any material that can reseal after being penetrated. When the needle tip penetrates the seal, the seal or septa on the centrifuge vessel or sample vessel can maintain the environment therein without loss of integrity of the atmosphere therein. If the pressure difference between the sample (atmospheric pressure), and the pressure inside the sample vessel is high or the speed at which fluid is transferred is high, this results in turbulent mixing in the fluid. This can increase mass transfer between the sample and air. In one embodiment, lowering the pressure drop will result in a more gradual fill, which minimizes mixing. In some embodiments, particularly those not collected from an arterial sample into a syringe, the sample collected in the vessel is in contact with air which fills up the rest of the sample vessel. This can result in mass transfer between sample and air. One method to circumvent this is to pre-fill the sample with an inert liquid which is immiscible with, and has a lower density than the sample. By doing so, when the sample is collected, it displaces the less dense liquid to the top, thereby forming a liquid barrier between the sample and air. There are several options for this liquid barrier. Simple examples include alkane solvents such as hexane, heptane, decane, and cyclohexane. Optionally, some may use fluorohydrocarbon materials. The choice of barrier fluid is mostly based on chemical compatibility with the sample. In addition, low oxygen solubility of the barrier fluid is preferred to further reduce any possibility of mass transfer. An example of a low-oxygen solubility barrier is EPDM liquid copolymer (ethylene propylene diene monomer). Long-chain fatty acid based surfactants and proteins (eg. Whey protein) also act like liquid barriers. Optionally, oxygen scavengers embedded into the polymer matrix is an option, such as used in the food packaging industry. Optionally, a transition metal (iron, Cobalt, Nickel etc.) embedded into a polymer such as PET, PP, HDPE along with an activating component (electrolytes such as NaCl, electrolytic acidifying component, Na Bisulfate) can promote the reaction of the oxidizable metal with O2. Any single or multiple combination of the foregoing may be used. Then the vessel may go to a sample separation device such as but not limited to a centrifuge or magnetic separation facility, which performs the separation. The vessel is then returned to an assay station such as but not limited to a cartridge. The seal or septum on the sample vessel is then penetrated again by a liquid head pipette needle or tip, extracts the sample, deposits the sample in an detector vessel such as but not limited to a colorimetry vessel, cuvette, or clinical chemistry vessel. This vessel is also sealed from the external atmosphere. In another configuration, this vessel is not sealed. In the sealed configuration, it has in it a set of reagents that are oxygen depleted and pre-mixed where they have already been oxygen depleted and sealed in this vessel or cuvette. Then, the seal can be resealable or not, depending on the embodiment. This seal is punctured by a liquid head pipette needle or tip that comes in. The sample is deposited in the vessel with the oxygen depleted reagents and begins reacting. In an open vessel, some chromogen on the top portion of the mixture begins absorbing oxygen, but the oxygen reading is occurring in the lower portion of the sample and is not impacted by the upper surface interaction with oxygen. Optionally, in a seal vessel, this chromogen interaction with outside air is less of an issue, particularly if sample is still being read from the bottom of the vessel. Starting from separation (such as through centrifugation), plasma extraction, dilution, mixing with reagents, incubation of reaction mixture, and finally signal read. Mass transfer can be minimized in all these steps by utilizing the same barrier fluid in all vessels the sample is transferred into. This is especially critical in the first few stages of centrifugation, plasma extraction, and dilution, where neat plasma is handled. Having a liquid barrier prevents the sample from coming in direct contact with air. The liquid barrier also allows for routine pipette operations such as extraction and mixing to be performed as normal. Optionally, the cartridge may have a tip that has a hook, such as but not limited to a harpoon shaped tip, that can pierce through the seal at the top of the vessel and remove the entire plug or seal so that the entire vessel may be more easily accessible for sample removal using a larger volume tip that will less agitate the sample as it is being transferred. Optionally, some may have a needle tips to pierce through the seal on the sample vessel without removing the cap or seal. Some embodiments may have a knife or cutting attachment that may be engaged by a pipette nozzle. This can be of particular use when preparing tissues for slides or staining. The pipette or other end-effector in the system can use one nozzle with a cutting tip to cut while one or more other nozzles can engage the tissue directly or through a tip, cuvette, tissue holder, or the like to cut the tissue. For body fat measurement, it should be understood that some embodiments may use not just the touch screen. Some may have other locations on the system for the user to contact such as an electrode or the like. It should be understood that some cartridges with only a single rail can also be engaged to the cartridge receiving location in a manner so that the cartridge can read the materials therein. Pushing the cartridge along one rail until it reaches an alignment location registers the location of the cartridge in a manner that the system can then process based on machine vision or system configuration of the cartridge ID allows the system to determine the type and configuration of the cartridge that is inserted. This correlation may be based on information on board the device or based on information retrieved based on lookup on a remote server. The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. The following applications are also incorporated herein by reference for all purposes: U.S. Pat. Nos. 7,888,125, 8,007,999, 8,088,593 and U.S. Publication No., US20120309636, PCT Application No. PCT US2012/057155, U.S. patent application Ser. No. 13/244,952, and PCT Application No. PCT/US2011/53188, filed Sep. 25, 2011. PCT Application No. PCT/US2011/53188, filed Sep. 25, 2011, U.S. patent application Ser. No. 13/244,946, filed Sep. 26, 2011, PCT Application No. PCT/US11/53189, filed Sep. 25, 2011, Patent Cooperation Treaty Application No. PCT/US2011/53188; Patent Cooperation Treaty Application No. PCT/US2012/57155; U.S. patent application Ser. No. 13/244,947; U.S. patent application Ser. No. 13/244,949; U.S. patent application Ser. No. 13/244,950; U.S. patent application Ser. No. 13/244,951; U.S. patent application Ser. No. 13/244,952; U.S. patent application Ser. No. 13/244,953; U.S. patent application Ser. No. 13/244,954; U.S. patent application Ser. No. 13/244,956; and U.S. patent application Ser. No. 13/769,779, entitled “Systems and Methods for Multi-Purpose Analysis,” filed Feb. 18, 2013, all of which applications are hereby incorporated by reference in their entireties. While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. For example, a reference to “an assay” may refer to a single assay or multiple assays. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meaning of “or” includes both the conjunctive and disjunctive unless the context expressly dictates otherwise. Thus, the term “or” includes “and/or” unless the context expressly dictates otherwise. 14872995 theranos ip company, llc USA B2 Utility Patent Grant (with pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Jun 5th, 2018 12:00AM May 23rd, 2016 12:00AM https://www.uspto.gov?id=US09989470-20180605 Methods and devices for sample analysis Methods and devices for cytometric analysis are provided. A cytometry apparatus is provided which may be used with a stationary sample cuvette for analysis of a stationary sample or with a flow sample cuvette for analysis of a flowing sample. The methods and devices provided herein may be used to perform cytometric analysis of samples under a wide range of experimental and environmental conditions. 9989470 1. A method of analyzing a biological sample, the method comprising: dividing the biological sample into at least a first portion and a second portion, wherein both the first portion and the second portion contain multiple cells; moving a flow sample cuvette onto the stage of a cytometry apparatus, wherein the flow sample cuvette is configured to receive and support a biological sample, wherein the flow sample cuvette contains a flow channel through which the biological sample may flow, and wherein the flow channel comprises a bottom surface, wherein the bottom surface comprises a sample plane over which the biological sample and objects therein may flow, and wherein the cytometry apparatus comprises an illumination train, wherein the illumination train comprises a light source, wherein the illumination train is configured to provide at least a first illumination output and a second illumination output, and wherein for the first illumination output the illumination train is configured to focus light of a first range of wavelengths from the light source onto a first location on the sample plane of the flow cytometry cuvette and the illumination train is configured to focus light of a second range of wavelengths from the light source on a second location on the sample plane of the flow cytometry cuvette; using an objective and a sample coplanar light source disposed in substantially the same plane as the sample plane, wherein light from said sample coplanar light source is not in optical communication with the objective wherein the objective is optically coupled to a stage such that light from the biological sample supported by the flow sample cuvette enters the objective; loading the first portion of the biological sample into the flow sample cuvette; flowing the first portion of the biological sample through the flow channel of the flow sample cuvette, wherein during the flowing, light of a first range of wavelengths from the light source is focused on a first location in the flow channel and light of a second range of wavelengths from the light source is focused on a second location in the flow channel; and detecting light emitted from a cell in the first location in the flow channel and light emitted from a cell in the second location in the flow channel; removing the flow sample cuvette from the stage of the cytometry apparatus; moving a stationary sample cuvette to the stage of the cytometry apparatus, wherein the stationary sample cuvette is configure to receive and support a biological sample, wherein the stationary sample cuvette comprises a well for holding the biological sample in a stationary portion, wherein the well comprises side walls and a bottom surface, and wherein the bottom surface of the well comprises a sample plane on which the biological sample and objects therein may settle; loading the second portion of the biological sample into the stationary sample cuvette; and obtaining an image of some or all of the second portion of the biological sample in the stationary sample cuvette, wherein the image includes information from at least two cells in the second portion of the biological sample. 2. The method of claim 1, wherein the cells are white blood cells. 3. The method of claim 1, wherein the first location and second location each have a diameter between about 10 and about 200 microns. 4. The method of claim 1, wherein the first location and second location each have a center, and wherein the center of the first location is separated from the center of the second location by between about 10 and about 200 microns. 5. The method of claim 1, wherein the first location and second location each have a center, and wherein the center of the first location is separated from the center of the second location by a distance of at least the average diameter size of cells in the sample. 6. The method of claim 1, wherein detecting said light comprises using a first detection train comprises at least three image sensors. 7. The method of claim 1, wherein detecting said light comprises using a second detection train comprises at least a first light detector, a second light detector, and a third light detector, wherein the detection train is configured such that the first light detector is configured to receive light of a first range of wavelengths, the second light detector is configured to receive light of a second range of wavelengths, and the third light detector is configured to receive light of a third range of wavelengths. 8. The method of claim 7, wherein the second detection train comprises a first emission filter placed before the first light detector, a second emission filter placed before second light detector, and a third emission filter placed before the third light detector. 9. The method of claim 1, wherein for the first illumination output the illumination train is further configured to focus light of a third range of wavelengths from the light source on a third location on the sample plane of the cytometry cuvette. 10. The method of claim 1, wherein the first portion of the biological sample is loaded into the stationary sample cuvette before the stationary sample cuvette is moved onto the stage of the cytometry apparatus. 11. The method of claim 1, wherein the first portion of the biological sample is loaded into the stationary sample cuvette after the stationary sample cuvette is moved onto the stage of the cytometry apparatus. 12. The method of claim 1, wherein the first location in the flow channel and the second location in the flow channel are separated from each other by at least 10 and no more than 100 microns. 13. A cytometry apparatus comprising: A) a stage configured to receive a cytometry cuvette having a sample plane; B) an objective in optical communication with an opening in the stage; C) a first optical pathway, wherein the first optical pathway comprises one or more image sensors; D) a second optical pathway, wherein the second optical pathway comprises one or more light detectors; E) an actuatable structure for directing the path of light, wherein the actuatable structure is configured to direct light from the objective to either the first optical pathway or the second optical pathway; and F) a sample coplanar light source; wherein the objective and the sample coplanar light source disposed in substantially the same plane as the sample plane when the cuvette is received by the stage, wherein light from said sample coplanar light source is not in optical communication with the objective wherein the objective is optically coupled to said stage such that light from the biological sample supported by the flow sample cuvette enters the objective. 14. The cytometry apparatus of claim 13, wherein the apparatus is configured to receive at least two different types of cuvettes. 15. The cytometry apparatus of claim 14, wherein the apparatus is configured to receive a stationary sample cuvette and a flow sample cuvette. 16. The cytometry apparatus of claim 15, wherein the apparatus is configured to obtain data from stationary samples and moving samples. 17. The cytometry apparatus of claim 16, wherein light from stationary samples is directed to the first optical pathway, and wherein light from moving samples is directed to the second optical pathway. 18. The method of claim 1, wherein said detecting light from cells in the first location and in the second location in the flow channel comprises detecting light with at least two image sensors. 19. The method of claim 1, further comprising use of a detection train, wherein said detection train comprises at least a first light detector, a second light detector, and a third light detector, wherein the detection train is configured such that the first light detector is configured to receive light of a first range of wavelengths, the second light detector is configured to receive light of a second range of wavelengths, and the third light detector is configured to receive light of a third range of wavelengths. 20. The method of claim 19, wherein the detection train comprises a first emission filter before the first light detector, a second emission filter before second light detector, and a third emission filter before the third light detector. 20 CROSS-REFERENCE TO RELATED APPLICATIONS This applications claims the benefit of, and priority to U.S. Provisional Patent Application No. 61/837,167, filed Jun. 19, 2013, the content of which is hereby incorporated by reference in its entirety for all purposes. BACKGROUND Cytometric analysis of a sample can provide a wealth of information about the sample, such as the number and type of cells or other particles in the sample, specific molecules which may be present in the sample, and other information. While a large number of systems and devices for the analysis of samples are known, there is a need for improved systems for cytometric analysis. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. SUMMARY Provided herein are devices and methods for sample analysis. In an embodiment, a cytometry apparatus is provided. The cytometry apparatus may be configured to receive cytometry cuvettes which are configured for analysis of stationary or flowing samples. The cytometry apparatus may be used to obtain information from stationary or flowing samples. In embodiments, the cytometry apparatus may direct light from a sample to a first optical pathway or a second optical pathway, where the first optical pathway contains one or more image sensors and the second optical pathway contains one or more light detectors. In embodiments, devices and methods provide herein may be used and performed in micro-gravity environments. In embodiments, provided herein is a cytometry apparatus comprising: a stage, wherein the stage is configured to receive and support a cytometry cuvette, wherein the cytometry cuvette is configured to receive and support a biological sample, and wherein the cytometry cuvette comprises a sample plane on which the biological sample is supported; an objective, wherein the objective comprises an entrance pupil and an exit pupil, and wherein the objective is optically coupled to the stage such that light from the biological sample supported by the cytometry cuvette supported by the stage may enter the entrance pupil and exit the exit pupil; a first detection train, wherein the first detection train comprises one or more image sensors; a second detection train, wherein the second optical pathway comprises one or more light detectors; an actuatable structure for directing light, wherein the actuatable structure is configured to direct light from the exit aperture of the objective to the first detection train or the second detection train; and an illumination train, wherein the illumination train comprises a light source, wherein the illumination train is configured to provide at least a first illumination output and a second illumination output, and wherein for the first illumination output the illumination train is configured to focus light of a first range of wavelengths from the light source on a first location on the sample plane of the cytometry cuvette and the illumination train is configured to focus light of a second range of wavelengths from the light source on a second location on the sample plane of the cytometry cuvette. Other related cytometry apparatuses, systems and methods are also provided. In embodiments, in systems and methods provided herein, a sample may be loaded into a cytometry cuvette before the cuvette is moved to a stage of a cytometry apparatus, or after the cuvette is moved to the stage of the cytometry apparatus. In embodiments, a stage of a cytometry apparatus provided herein may have an opening. In embodiments, the opening may have no material in the opening. In other embodiments, the opening may have an optically transmissive material (e.g. glass, clear plastic, etc.). In embodiments, a sample provided herein may contain multiple cells. Multiple cells typically includes at least two cells. In embodiments, context indicate that a sample described herein as containing “multiple cells” may contain more than two cells, such as at least 4, 5, 6, 7, 9, 10, or more cells. In embodiments a focal point in a flow cytometry cuvette has a diameter of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 microns, a diameter of no more than 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, or 300 microns, or a diameter of at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 microns and no more than 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, or 300 microns. In embodiments the space between focal points in a flow channel may be least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 microns, no more than 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, or 300 microns, or at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 microns and no more than 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, or 300 microns. In embodiments, a light source provided herein may provide continuous light, or it may intermittently provide light. For example, it may provide flashes of light to coincide with the timing of the movement of cells through a flow channel of a flow sample cuvette. In embodiments, references herein to “cells” in systems and methods provided herein also apply to similarly sized and shaped small objects (e.g. particles, beads, etc.), unless the context dictates otherwise. Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, FIG. 1 shows an exemplary schematic of a cytometry apparatus. FIG. 2 shows an exemplary schematic of a stationary sample cuvette. FIGS. 3A and 3B show an exemplary schematic of a flow sample cuvette; 3A shows a side view and 3B shows a top-down view. FIG. 4 shows an exemplary schematic of an image that can be obtained by an image sensor of a cytometry apparatus. It is noted that the drawings and elements therein are not necessarily drawn to shape or scale. For example, the shape or scale of elements of the drawings may be simplified or modified for ease or clarity of presentation. It should further be understood that the drawings and elements therein are for exemplary illustrative purposes only, and not be construed as limiting in any way. DETAILED DESCRIPTION While various embodiments of the invention are shown and described herein, these are provided by way of example only. It should be understood that there is no intent to limit the invention to the particular forms disclosed, but rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention provided herein. As used herein, references to a “sample” refer to the sample as a whole or any portion thereof, unless the context clearly dictates otherwise. For example, a description of an image of a “sample” may refer to an image of a single cell within the sample, or it may refer to an image of a field of view of a sample within a cuvette, which may contain, for example, one or more cells, no cells, one or more non-cellular particles, or any combination thereof. As used herein, descriptions of objects being in “optical communication” refer to objects which are spatially positioned such that they may be directly or indirectly optically coupled. An object which is in optical communication with another object may, for example, emit light, reflect light, transmit light, or absorb light. Objects which are in optical communication may be positioned from each other in a straight path (e.g. a light source and a light sensor may be in a straight line relative to each other, such that light travels in a straight line between the light source and light sensor), or they may be at an angle to each other, with one or more structures positioned between the objects which to change the direction of movement of light (e.g. a light source and a light sensor may be at a 90 degree angle relative to each other, with an angled mirror being situated in the light path between the light source and light sensor, such that light from the light source is reflected off the mirror at a 90 degree angle towards the light sensor). Also, light does not need to be continuously moving between two objects for them to be considered to be in optical communication. For example, a light source and light sensor are considered to be in optical communication if the light source and light sensor are situated such that light from the light source can reach the light sensor under selected conditions; light from the light source does not need to continuously reach the light sensor for them to be considered to be in optical communication. In another example, an object which may reflect light (e.g. a cytometry cuvette) may be considered to be in optical communication with a light source which emits light which strikes the object or with a light sensor which absorbs light reflected by the object. As used herein, objects described as being in “optical communication” may also be described as being “optically coupled”. In embodiments, provided herein is a cytometry apparatus. The cytometry apparatus may be configured to obtain at least a 2-dimensional or 3-dimensional image of a sample. The cytometry apparatus may be configured to obtain multiple images of a sample over a period of time. The cytometry apparatus may alternatively or additionally be configured to detect light of one or more selected wavelength(s) emitted by or scattered by a sample. A cytometry apparatus may be used to obtain information relating to, for example, cells, crystals, particles, or other small objects. The cytometry apparatus may contain a stage. The stage may be configured to receive a cytometry cuvette, slide, or other structure which may contain a sample for cytometric analysis. The stage may contain an opening through which light may pass between a cuvette and an objective (discussed further below) adjacent to or in optical communication with the cuvette. The cytometry apparatus may contain one or more light sources. The light source may be, for example, a tungsten bulb, a tungsten-halogen bulb, an arc lamp (e.g. mercury, xenon, zirconium, or metal halide), a laser (e.g. argon-ion laser, krypton-ion laser), or a light-emitting diode. A light source may emit light which has approximately uniform brightness across the wavelengths of the visible spectrum (e.g. white light), or it may emit light of variable brightness across the visible spectrum (e.g. a lamp, such as a mercury arc lamp, may emit light having brightness peaks at 365, 405, 436, 546, and 579 nm). In embodiments, a light source may emit light having a single peak of brightness in the visible spectrum. For example, LEDs may emit light of only a single brightness peak, which may have a spectral width (i.e. the width of the emission peak at 50% maximum intensity/full width at half maximum (FWHM)) of, for example, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, or 200 nm. Different LEDs may have brightness peaks at different wavelengths. For example, an LED may have brightness peak at, for example, 365, 400, 445, 455, 465, 470, 505, 525, 530, 535, 565, 585, 590, 595, 625, or 635 nm. In embodiments, the cytometry apparatus may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 50, 100, 500, 1000, or more light sources. In a cytometry apparatus containing two or more light sources, the light sources may be all of the same type (e.g. all lasers or all LEDs), or the light sources may be of two or more different types (e.g. a tungsten bulb and a mercury arc lamp). In a cytometry apparatus containing two or more light sources, the light sources may have the same or different emission brightness peak(s). The cytometry apparatus may contain an objective. The objective may contain one or more lenses and may serve to capture light from a sample in a cuvette on the stage. The objective may also be positioned in the apparatus such that light from the light source(s) is directed into and through the objective to a cuvette on the stage. In embodiments, the objective may also function as a condenser such that the light is focused onto the sample in the cuvette as it passes through the objective. The position of the objective, the stage, the cuvette, or other component of the cytometry apparatus may be adjusted in order to focus the light from the objective onto the sample or to collect light from the sample. In embodiments, a light source may be in-line with the objective, such that light travels in a straight path from the light source to the objective. In other embodiments, a light source may be at an angle to the objective, such light is directed in a non-straight path from the light source to the objective. For example, a light source may be situated at a 90 degree angle from the aperture of the objective, and the light from the light source may be directed to the aperture of the objective by, for example, a mirror or fiber optics. In embodiments, a mirror which directs light from a light source into the objective may be a dichroic mirror. A dichroic mirror may reflect light above or below a given cutoff wavelength, and may transmit light on the opposite side of the cutoff wavelength. For example, a particular dichroic mirror may have a cutoff wavelength of 425 nm, and it may transmit 90% of light at 440-700 nm and reflect 90% of light at 380-410 nm. In another example, another dichroic mirror may also have a cutoff wavelength of 425 nm, but it may reflect 90% of light at 440-700 nm and transmit 90% of light at 380-410 nm. Dichroic mirrors are available, for example, from Thorlabs, Inc. (Newton N.J.). As used herein, “dichroic mirrors” also may include mirrors that are polychroic—i.e. which transmit or reflect multiple ranges of wavelengths of light. The objective may also be configured to capture light emitted from or scattered by the sample. For example, light of a first wavelength may be directed through the objective onto a sample in a cuvette on the stage. The sample may contain a fluorescent molecule which is excited by light of the first wavelength. Upon excitation by light of the first wavelength, the fluorescent molecule may emit light of a second wavelength. The emitted light from the fluorescent molecule may travel back through the objective and into the interior of the cytometry apparatus. In embodiments, light passing from the sample through the objective may encounter a dichroic mirror downstream from the objective (i.e. after passing through the objective). The dichroic mirror may be the same mirror which reflected light from the light source into the aperture of the objective. Light of one or more wavelengths from the objective may be transmitted through the dichroic mirror. As discussed above, different dichroic mirrors may transmit or reflect different wavelengths or ranges of wavelengths of light. The cytometry apparatus may contain one or more sensors for detecting light emitted, reflected, or scattered from a sample in a cuvette. Sensors for detecting light (also referred to herein as “optical sensors”) may include image sensors and light detectors. In embodiments, the cytometry apparatus may contain an image sensor capable of obtaining at least a two-dimensional image of an object. As used herein, an “image sensor” refers to a device which can convert an optical image into one or more electrical signals. Image sensors include, for example, charge-coupled device (CCD), complementary metal-oxide semiconductor (CMOS), and hybrid CCD/CMOS (e.g. sCMOS) sensors. Digital cameras contain an image sensor such as a CCD or CMOS sensor, and, in embodiments, a digital camera itself may be referred to as an image sensor. Generally, a single image sensor contains an array of a large number of photoactive structures (e.g. capacitors, photodiodes), such that when the image sensor is exposed to light, each of the many photoactive structures generates an electric charge proportional to the light intensity on the respective structure, thereby initiating the conversion of an image into an electrical signal. In embodiments, the photoactive structures of an image sensor may be referred to as “pixels”, and an image sensor may be referred to as a “pixelated” sensor. In embodiments, an image sensor may be used to generate a three-dimensional image of an object, by, for example, using a processor to combine multiple optical images obtained with an image sensor. In embodiments, an image sensor may be used to generate an image of an object over time, by collecting multiple images of the object with the image sensor. An image sensor may be used to record video of a sample. In embodiments, the cytometry apparatus may contain a light detector. As used herein, a “light detector” refers to a non-pixelated/non-arrayed light sensor. An individual “light detector” as used herein is capable of detecting photons of light, but not of converting an optical image into an electrical signal. Examples of “light detectors” as used herein include, for example, photomultiplier tubes (PMT), photodiodes, and avalanche photodiodes. In embodiments, a light detector may have greater light sensitivity than an image sensor. In embodiments, a light detector may be optically coupled to one or more optical filters such that only light a selected range of wavelengths is permitted to reach the light detector. In embodiments, light which has been emitted or scattered from a sample and passed through the objective of a cytometry apparatus provided herein may be directed into an optical pathway in which the light may be selectively directed into a first optical pathway towards one or more imaging sensors or into a second optical pathway towards one or more light detectors. Light may be selectively directed into a first or second optical pathway by use of one or more structure for the direction of light such as, for example, a mirror, fiber optics, prism, lens, filter, or a combination thereof. In embodiments, a structure for directing the path of light may be coupled to an actuation mechanism (e.g. an electric motor, a pneumatic actuator, hydraulic piston, relay, comb drive, piezoelectric actuator, thermal bimorph, digital micromirror, or an electroactive polymer). The actuation mechanism may be coupled to a controller. The controller may be configured to receive protocols or instructions from, for example, a user, local memory, or an external database. The controller may provide instructions to the actuation mechanism to change the position of the hardware for directing the path of light, in order to control the direction of the light. In embodiments, an optical pathway in which light may be selectively directed towards an imaging sensor or light detector may contain one or more mirrors to direct light towards a selected optical sensor. A mirror in an optical pathway may be used in various different ways to direct light towards a selected pathway or sensor. For example, in embodiments, a mirror may be movable by an actuation mechanism such that in a first position it is in the path of light coming from the objective of the cytometry apparatus (and it therefore reflects the light from the objective), and in a second position it is not in the path of light coming from the objective of the cytometry apparatus (and it therefore does not reflect or otherwise interfere with the light from the objective). By such a mechanism, a mirror may selectively directing light from the objective to a first or a second optical pathway. In another example, in embodiments, a mirror may be movable by an actuation mechanism such that in a first position it reflects the light from the objective at a first angle, and in a second position it reflects light the from the objective at a second angle, thereby selectively directing light from the objective to a first or a second optical pathway. In embodiments, an optical pathway containing one or more light detectors may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, or more light detectors. A plurality of light detectors in an apparatus may be arranged such that different detectors of the plurality are each positioned to receive light of different ranges of wavelengths. For example, an optical pathway containing three light detectors may contain a first light detector configured to receive light of 400-500 nm, a second light detector configured to receive light of 500-600 nm, and a third light detector configured to receive light of 600-700 nm. Various materials may be used in an optical pathway containing one or more light detectors in order to restrict the wavelength(s) of light that reach a given light detector. For example, a light detector may be behind a filter or monochromator, which may transmit light of only a limited range of wavelengths (blocking the transmission of light of wavelengths outside of the limited transmission range). In another example, a dichroic mirror may be provided in an optical pathway containing one or more light detectors. The dichroic mirror may be positioned such that, for example, it reflects light of certain wavelengths to a light detector or such that it transmits light of certain wavelengths to a light detector. In embodiments, an optical pathway containing a dichroic mirror may contain two or more light detectors, such that light reflected by the dichroic mirror is detected, and also such that light transmitted by the dichroic mirror is detected. As used herein, an “optical pathway” may also be referred to as an “optical train”. Also, an optical train containing materials and a configuration specialized for emitting light may be referred to herein as an “illumination train”, and an optical train containing materials and a configuration specialized for detecting light may be referred to as a “detection train”. An optical train may include, for example, one or more of and any combination of lenses, mirrors, prisms, grating elements, light sources, light sensors, or other materials for guiding the movement of, emitting, or detecting light. An illumination train typically comprises at least a light source, and a detection train typically comprises at least an optical sensor. In embodiments, a cytometry apparatus may contain one or more image sensors and one or more light detectors. In embodiments, the objective of the cytometry apparatus may be configured to be in optical communication with both image sensor(s) and light detector(s), such that light emitted or reflected from a sample through the objective may be detected by one or more image sensor or light detector. In some embodiments, the cytometry apparatus may be configured such that light from the objective is directed to either the image sensor(s) or light detector(s). In other embodiments, the cytometry apparatus may be configured such that some light from the objective is directed to the image sensor(s) (e.g. light of a first range of wavelengths) and other light from the objective is directed to the light detector(s) (e.g. light of a second range of wavelengths). The cytometry apparatus may contain one or more mechanisms to direct light from the sample to the image sensor(s) and/or the light detector(s), as discussed above. The cytometry apparatus may also contain light sources and optical sensors which are not in optical communication with the objective of the apparatus. For example, the cytometry apparatus may contain one or more light sources or optical sensors which are in the same or similar plane as a sample in a cuvette on the stage. The plane may be parallel to, or at a different angle (e.g. 15, 30, 45, 60, 75, or 90 degrees) relative to the cuvette. This type of light source or detector may be referred to herein as a “sample coplanar” or “non-objective-linked” light source or optical sensor, and may have any of the features of light sources or optical sensors described elsewhere herein. In some embodiments, a sample coplanar/non-objective-linked light source or optical sensor may have any orientation in which it is in optical communication with a sample in a cuvette. In embodiments, a cuvette for use with a cytometry apparatus may contain one or more openings or optical pathways to permit light from a sample coplanar light source to reach the sample in the cuvette or to permit light scattered or emitted from the sample to travel to a sample coplanar optical sensor. In an embodiment, a sample coplanar light source generates white light and a corresponding sample coplanar optical sensor detects light across the visible spectrum. In embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more sample coplanar light sources or optical sensors may be provided in relation to a cytometry apparatus stage. In some embodiments, fiber optics may be used to connect an optical pathway to or from a cuvette to a sample coplanar optical sensor or light source. Through the use of fiber optics, two or more optical pathways in a cuvette may be operably connected to a single sample coplanar optical sensor or light source. For example, a first end of a fiber optic cable may be permanently attached to an optical sensor or light source. However, the second of the cable may be moveable such that it may be attached to different optical pathways in the cuvette. This may permit multiple optical configurations to be generated with the same cuvette. In some embodiments, a sample coplanar optical sensor is a light detector, as described herein. In embodiments, sample coplanar light sources or optical sensors may be provided which are within a housing of the cytometry apparatus. In other embodiments, sample coplanar light sources or optical sensors may be provided which are not within a housing of the cytometry apparatus. In still other embodiments, sample coplanar light sources or optical sensors may be provided which are not part of the cytometry apparatus, but which are in electrical or optical communication with the apparatus. A schematic of an example cytometry apparatus is provided in FIG. 1. FIG. 1 shows a side view of the exemplary cytometry apparatus. The exemplary cytometry apparatus 1001 may have a housing 1011 and a stage 1012. The stage 1012 may be configured to receive and support a cuvette 1021. The stage 1012 may contain an opening 1013 through which light may travel from an objective 1031 to a sample in a cuvette 1021 and from a sample in a cuvette 1021 to an objective 1031 in the cytometry apparatus. The stage 1012 may also contain one or more supports 1014 to aid in the positioning of a cuvette on the stage. A dichroic mirror 1032 may be present and situated so as to reflect to the objective 1031 light of certain wavelengths from one or more light sources 1033, 1034, 1035 and to transmit light from the sample (and the objective) of certain wavelengths. In the exemplary apparatus of FIG. 1, three light sources 1033, 1034, and 1035 are present. The light sources 1033, 1034, 1035 are LEDs, each with a different range of emission wavelengths. The light sources 1033, 1034, 1035 may be arranged in a larger compound light source 1039 which contains one or more of the light sources 1033, 1034, 1035 and which may direct light from the one or more light sources, such as through the use of dichroic mirrors 1036, 1037, 1038. Light from the light source 1039 may have any configuration; for example, although FIG. 1 depicts the light as being focused, with a focal point at the dichroic mirror 1032, the light from the light source may be collimated and not focused on the mirror 1032. Also, in embodiments, collimated light may be reflected from the mirror into the objective. In certain configurations, light from the objective may focus light of one or more selected ranges of wavelengths onto one or more locations. For example, in FIG. 1, light of a first selected range of wavelengths from the light source is focused on a first location, light of a second selected range of wavelengths from the light source is focused on a second location, and light of a third selected range of wavelengths from the light source is focused on a third location (collectively indicated by 1080). A mirror 1040 may be included which is configured to reflect light transmitted through the dichroic mirror 1032. Also, although not depicted in FIG. 1, in embodiments, one or more actuatable lens may be present, which may be moved between the light source 1039 and the mirror 1040. Positioning of the actuatable lens between the light source 1039 and the mirror 1040 may configure light for use with obtaining images of stationary samples with an image sensor. The cytometry apparatus may contain an actuatable mirror 1041, which can be moved to selectively direct light from the objective to either a first optical pathway 1042 towards one or more imaging sensors or to a second optical pathway 1043 towards one or more light detectors. In the exemplary apparatus of FIG. 1, the actuatable mirror 1041 may be moved to at least a first position or a second position. In the first position (not shown), the actuatable mirror 1041 is positioned such that it does not interfere with the movement of light from the mirror 1040 (i.e. it is positioned out of the way of the path of light), and, as a result, the light travels along the first optical pathway 1042 which leads to an image sensor 1051. In the second position (shown), the actuatable mirror 1041 is position such that it reflects light from the 1040 (i.e. it is position in the way of the path of the light), and, as a result, the light is directed to the second optical pathway 1043, which leads to a collection of light detectors 1052, 1053, 1054, and 1055. Accordingly, light from the objective may be selectively directed towards the first optical pathway 1042 or the second optical pathway 1043. Dichroic mirrors 1056, 1057, 1058, 1059 may be included in the second optical pathway 1043. The dichroic mirrors 1056, 1057, 1058, 1059 in the second optical pathway may separate the light in the second optical pathway into multiple different light paths, based on the light wavelength. The light of different wavelength ranges may, in turn, be directed to different light detectors 1052, 1053, 1054, 1055. In embodiments, the first optical pathway 1042, second optical pathway 1043, or portions thereof may further include one or more filters 1061 or lenses 1062 (for clarity, only a single filter and lens is notated in the figure). The filter 1061 may transmit only a limited range of wavelength(s), and the lens 1062 may focus the light onto the image sensor or light detector. The exemplary cytometry apparatus of FIG. 1 may further contain a sample coplanar light source 1071 and a sample coplanar optical sensor 1072. The stage of the cytometry apparatus may be configured to receive and support a variety of different structures which may contain a sample for cytometric analysis. Structures which may contain a sample may be referred to, for example, as cytometry cuvettes or slides. Typically, a stage will support a cytometry cuvette by the cuvette resting on top of the stage. In other embodiments, a stage may be configured support a cytometry cuvette from above the cuvette, such as by containing a slot for the cuvette, or by having structures to attach a cuvette (e.g. magnets, screws, clamps, etc.). A cytometry cuvette or slide which contains a sample may also be described as “supporting” a sample. Samples may be loaded into cytometry cuvettes, and cuvettes may be described as “receiving” a sample. Cytometry cuvettes or slides may have different configurations. In some embodiments, a cytometry cuvette may be configured to retain a sample in a stationary position. These cuvettes may be referred to herein as “stationary sample cuvettes”. In such cuvettes, components of a sample (e.g. cells, crystals, etc.) may, for example, settle to the floor of the sample well of the cuvette, and may be sensed (e.g. imaged) while stationary on the floor of the sample well. In embodiments, two or three-dimensional images of stationary sample may be obtained with an image sensor. Such images, for example, may be of cells or other components of a sample. These images may provide a wealth of information about a selected component(s) of a sample. For example, in the case of a cell, an image may provide, for example, information regarding cell size, cell morphology, cell staining pattern, etc. Images of a sample obtained with an image sensor may be analyzed with automated programs. A schematic of an example cuvette for stationary sample analysis is provided in FIG. 2. FIG. 2 shows a top-down view the exemplary cuvette for stationary sample analysis. The exemplary cuvette 1101 contains four sample wells 1111, 1112, 1113, and 1114. A cuvette for stationary sample analysis may contain any number of sample wells, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, or more wells. A sample well may have any shape that permits it to support a sample. For example, a sample well may be circular, elongated, square, etc. The sample wells may be fluidically isolated. Fluidically isolated wells may be advantageous, for example, to permit the loading of multiple different samples onto the same cuvette. Different samples may be, for example, samples from the same subject that has been treated differently (e.g. stained with different markers, dyes, etc.), or samples from different subjects. A sample well may have one or more ports 1121 for loading sample into the cuvette (each of the wells in FIG. 2 contains two ports; however, for clarity, only a single port is annotated in the Figure). In some embodiments, a cytometry cuvette may be configured to support the flow of a sample from a first location to a second location within the cuvette. These cuvettes may be referred to herein as “flow sample cuvettes”. In flow sample cuvettes, a sample may, for example, move from a first location in the cuvette (e.g. the location where the sample is introduced into the cuvette) to a second location in the cuvette (e.g. a sample collection area). As a sample moves from a first location to a second location in the cuvette, components of the sample (e.g. cells) may also move locations. In embodiments, a flow sample cuvette may contain a port for introduction of sample into the cuvette, a sample collection area, and a channel connecting the sample introduction port and the sample collection area. The channel may be enclosed. The channel may have dimensions which are only a small amount larger than the diameter of cells of interest for analysis in the cuvette. For example, the channel may have a height, width, both height and width, or diameter of no greater than 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 microns. The channel of the cuvette may have any orientation relative to the cuvette or the cytometry apparatus. For example, relative to a horizontal stage, the channel may be also be horizontal or it may be vertical or at an angle. Fluid may be propelled through the channel by a variety of different forces, such as, for example, capillary action, gravity, positive pressure from a force behind the liquid, or negative pressure in front of the liquid. In embodiments, positive pressure may be exerted on a liquid in a channel by a pipette tip which loads sample into the channel through the sample introduction port and provides sufficient force on the sample to propel the sample through the channel. In embodiments, a sample collection area may have an air vent, to relieve pressure generated by the movement liquid towards or into the sample collection area. In embodiments, light from a light source may by directed at the channel of a flow sample cuvette. In embodiments, light from the objective may be focused on or close to one or more particular location in the channels of a flow sample cuvette (a “focal point” in the channel). At a focal point, light of a selected range of wavelengths from the light source may be focused. At a focal point in the channel, light from the objective may be at a relatively high intensity, such that a greater amount of light may strike a cell at the focal point in the channel than would strike a cell in a stationary sample cuvette on the same cytometry apparatus. Accordingly, in some embodiments, when using the same cytometry apparatus, individual cells may be excited with greater light intensity when they are in a flow sample cuvette than in a stationary sample cuvette. In some situations, it may be desirable to contact a sample with a relatively high light intensity in order, for example, to increase the intensity of scattered or emitted light from the sample. Increasing the intensity of light from a sample may, in turn, for example, increase the speed or sensitivity at which a sample or component therein may be detected. In embodiments, an illumination train of a cytometry apparatus provided herein may be configured to focus light of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more ranges of wavelengths at one or more different locations in a flow channel of a flow cytometry cuvette. For example, in order to interrogate a sample and cells therein flowing through the flow channel of a flow cytometry cuvette for fluorescence, it may be desirable to focus light of a first range of wavelengths at a first location in the channel, in order to excite a first type of fluorescent marker which may be on cells which has a first peak (maximum) excitation wavelength and it may be desirable to focus light of a second range of wavelengths at a second location in the channel, in order to separately excite a separate type of fluorescent marker which may be on cells which has a second peak excitation wavelength. As is discussed further below, in embodiments, by spatially separating the locations at which a cell may be exposed to focused light of different ranges of wavelengths, information from a cell may be efficiently obtained. A range of wavelengths that may be focused may be, for example, a range of 200, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 5, or fewer nanometers. In embodiments, the range may be centered around the peak excitation wavelength of a particular fluorescent marker of interest. For example, the fluorphore fluorescein has a peak excitation wavelength of 494 nanometers; a range of 20 nanometers around the 494 nanometer peak may be selected as the range of wavelengths, such that light of 484-504 nanometers is focused at a location in the channel of a flow sample cuvette. In another example, a range of 30 nanometers around the 494 nanometer peak may be selected as the range of wavelengths, such that light of 479-509 nanometers is focused. Other ranges of wavelengths may be selected based on other fluorescent markers, as appropriate. In embodiments, a range of wavelengths may be, for example, selected based on the color of the focused light, such as between 620-645 nanometers (red light), 520-550 nanometers (green light), 490-520 nanometers (cyan light), or 460-490 (blue light). In some embodiments, light emitted or scattered by a sample in a flow sample cuvette may be detected by a light detector of the cytometry apparatus, after the light has travelled through the objective of the cytometry apparatus and been directed to a detection train optical pathway downstream of the objective which leads to one or more light detectors. For example, light detectors downstream of the objective may be configured to detect emitted light from the sample of one or more selected wavelengths. In embodiments, light detectors downstream of the objective may be configured for detection of fluorescent light emission from samples. Thus, in some embodiments, light detectors downstream of the objective may be used for detecting fluorescent molecules in a sample in a flow sample cuvette. Typically, for fluorescence analysis of samples in a flow sample cuvette, light of one or more selected wavelengths is directed to the sample from the objective in the cytometry apparatus. The light source for this light may be located in the cytometry apparatus, and it may be filtered to contain only a selected range of wavelengths. In embodiments, light emitted or scattered by a sample in a flow sample cuvette may be detected by a light detector of the cytometry apparatus. This light may provide, for example, information regarding the presence of a marker on a cell, nucleic acid content of a cell, cell shape, etc. In embodiments, any information that can be obtained from a traditional flow cytometer may be obtained with a cytometry apparatus and flow sample cuvette as provided herein. In some embodiments, light emitted or scattered by a sample in a flow sample cuvette may be detected by a sample coplanar optical sensor. A flow sample cuvette may contain one or more openings or optical pathways to permit light scattered or emitted from the sample in the channel of the flow sample cuvette to travel to a sample coplanar optical sensor. A flow sample cuvette may additionally or alternatively contain one or more openings or optical pathways to permit light from a sample coplanar light source to reach the sample. In embodiments, an optical pathway from the channel of the flow sample cuvette to a coplanar optical sensor may be at, for example, a 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, or 180 degree angle relative to an optical pathway to the channel from a coplanar light source. In some embodiments, a flow sample cuvette may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more openings or optical pathways to permit light from a sample to travel to a sample coplanar optical sensor. In a flow sample cuvette having two or more optical pathways to a sample coplanar optical sensor, the optical pathways to the sensors may be at different angles relative to an optical pathway from a coplanar light source (e.g. if the flow sample cuvettes contains two optical pathways to a sample coplanar optical sensor, the first optical pathway may be at a 15 degree angle relative to the optical pathway from the coplanar light source, and the second optical pathway may be at a 45 degree angle relative to the optical pathway from the coplanar light source). In some embodiments, as discussed above, through the use of fiber optics, different optical pathways in flow sample cuvette may be connected to the same optical sensor or light source. In some embodiments, it may be advantageous to measure light scattering of a sample with one or more sample coplanar optical sensors, rather than with one or more optical sensors which are downstream of the objective. For example, if a flow sample cuvette contains a narrow optical pathway from the channel to an optical sensor, scattered light of a very limited range may be collected. Scatter information of a sample from a narrow optical pathway may provide more information for sample analysis that may be provided from a wider scatter range. While the objective in a cytometry apparatus may collect scattered light, typically, it may do so from a relatively large area, and thus, it may contain less information. A schematic of an example cuvette for flow sample analysis is provided in FIG. 3. FIG. 3A shows a top-down view and FIG. 3B shows a side-view of the exemplary cuvette for flow sample analysis. The exemplary cuvette 1201 contains a sample introduction port 1211, flow channel 1212, and sample collection area 1213. Light from the objective may have one or more focal point 1214 in the channel 1212. For example, in FIG. 3B, light of three selected ranges of wavelengths is focused onto three separate locations in the flow channel (collectively indicated by the three dots 1214). As indicated in FIG. 3 by the direction of the arrow, sample flows from left to right in the example cuvette. FIG. 3B further shows exemplary positions of a sample coplanar light source 1221 and optical sensors 1222, 1223. The optical pathway of the first optical sensor 1222 is at a 90 degree angle to the optical pathway of the light source 1221, while the optical pathway of the second optical sensor 1223 is in-line (at an 180 degree angle) to the optical pathway of the light source 1221. Optical pathways to the sample coplanar light source and optical sensors may intersect with at least one focal point 1214 in the channel 1212. In embodiments, when an illumination train of a cytometry apparatus provided herein focuses light of two or more ranges of wavelengths at two or more different locations in a flow channel of a flow cytometry cuvette, light emitted from objects present at the respective locations may be separately detected. For example, a cytometry apparatus provided herein may focus light of a first range of wavelengths on a first location in a flow channel of a flow cytometry cuvette, and may focus light of a second range of wavelengths on a second location in a flow channel of a flow cytometry cuvette. As a sample containing cells is flowed through the flow channel, cells may pass through the first location in the flow channel and then the second location in the flow channel. The cells may be labeled with different fluorescent markers, which have different excitation peaks. The excitation peak of the first fluorescent marker on the cells may overlap with the focused light of the first range of wavelengths, and the excitation peak of the second fluorescent marker on the cells may overlap with the focused light of the second range of wavelengths. In such a circumstance, a cell labeled with the first fluorescent marker will emit light at the first fluorescent marker's emission spectrum when it is illuminated by the focused light of the first range of wavelengths. Similarly, a cell labeled with the second fluorescent marker will emit light at the second fluorescent marker's emission spectrum when it is illuminated by the focused light of the second range of wavelengths. The light emitted by the cell may be detected by one or more optical sensor. For example, in an embodiment, a cytometry apparatus and flow sample cuvette may be configured such that during the flow of a sample containing cells through the flow channel of a flow sample cuvette, a single cell at a time passes through a region in the flow channel containing each of the different locations in the flow channel where light of a range of wavelengths. Such a region may be referred to as a “detection region” herein. For example, the flow channel of a flow sample cuvette on a stage of a cytometry apparatus may have light of the wavelengths 390-420 focused on a first location in the flow channel, it may have light of the wavelengths 460-490 focused on a second location in the flow channel, and it may have light of the wavelengths 530-560 focused on a third location in the flow channel. These three locations and the space between them may be collectively referred to as the “detection region” of the flow channel of the flow sample cuvette. Thus, in embodiments, a cytometry apparatus and flow sample cuvette may be configured such that during the flow of a sample containing cells through the flow channel of a flow sample cuvette, a single cell at a time passes through the detection region. As the cell passes through the detection region, if the cell contains a fluorescent marker which is excited by a wavelength of light focused on a respective location, the fluorescent marker on the cell will emit light which may be detected the cytometry apparatus. For example, the cell may be labeled with a first fluorescent marker which has a peak excitation wavelength of 400 nm and with a second fluorescent marker which has a peak excitation wavelength of 545 nm. This cell will thus fluoresce when it passes through the first location and the third location (but not the second location) in the flow channel of the example provided above. The emitted light from the cell can be detected by a detection train as provided herein. For example, light from the different locations in the detection region may be captured by the objective and directed to a detection train containing one or more light detectors. In other embodiments, a cytometry apparatus and flow sample cuvette may be configured such that during the flow of a sample containing cells through the flow channel of a flow sample cuvette, one cell per location of focused light of a range of wavelengths in the detection region flows through the detection region. For example, in the configuration described above (which has 3 locations in the flow channel with a focused light of a range of wavelengths), the sample and system may be configured so that 3 cells flow through the detection region at a time. In such embodiments, at certain instances during the flow, one cell may be present at each of the different locations having focused light of a range of wavelengths. Such a set up may permit a more rapid analysis of cells than a configuration in which only a single cell at a time is flowed through the detection region. In embodiments in which multiple cells flow through a detection region at the same time, light emitted from cells may be detected through various detection train configurations. In embodiments, the emitted light from multiple cells in the detection region may be detected by light detectors in a detection train comprising appropriate filters, lenses, mirrors, or other hardware for separating and detecting the relevant emitted light. In other embodiments, the emitted light from multiple cells in the detection region may be detected by an image sensor in a detection train comprising appropriate filters, lenses, mirrors, or other hardware for separating and detecting the relevant emitted light. For example, an objective may simultaneously capture light from cells in multiple different locations having focused light of a range of wavelengths in a flow channel. The light may be directed to an detection train which includes a prism or diffraction grating for separating light based on the wavelength of the light. Such a detection train may permit a single image obtained by an image sensor to contain information regarding cells at multiple different positions in a flow channel, each position being a location having focused light of a range of wavelengths, and also in which the cells may emit light of different wavelengths. For example, FIG. 4 provides an exemplary schematic of an image that may be obtained by an image sensor in a detection train as described immediately above. In the example for FIG. 4, an image is taken when one cell is at each of three different locations in the flow channel having focused light of a range of wavelengths. The focused range of wavelengths for the different locations may be the same or different. The light emitted from the cell present at each location is captured by the objective, and passed through a prism, diffraction grating, or other structure to separate light based on wavelength. In FIG. 4, the image 1401 contains information from each of the three locations in the flow channel having focused light of a range of wavelengths. In the image 1401, along the X-axis positions 1411, 1412, and 1413 correspond to the three locations in the flow channel having focused light of a range of wavelengths. Along the Y-axis, the numbers 400, 500, 600, and 700 indicate wavelengths of light. The parallel dotted lines for each of 1411, 1412, and 1413 are not in the actual image, but indicate a virtual line along which the emitted light for each respective position may be located. The black dots 1421, 1422, and 1423 indicate the wavelength of light which is sensed by the image sensor for each of the 1411, 1412, and 1413 positions. Thus, in the exemplary image of FIG. 4, the cell present at the first location in the flow channel emitted light having a peak intensity of approximately 650 nm, the cell present in the second location in the flow channel emitted light having a peak intensity of approximately 410 nm, and the cell present in the third location in the flow channel emitted light having a peak intensity of approximately 550 nm. In embodiments in which the illumination train focuses light of two or more ranges of wavelengths at two or more different locations in a flow channel of a flow cytometry cuvette, the the illumination train may remain in the same configuration regardless of whether the emitted light from interrogated cells is to be detected by a light detector or an image sensor. As an example of an analysis that may be performed with systems and method provided herein, a blood sample may be obtained from a subject. White blood cells may be isolated from the blood sample. The white blood cells may be treated with three different antibodies, each antibody being directed to a different cell surface marker optionally present on the surface of white blood cells (e.g. CD45, CD14, and CD3), each antibody being labeled with a different fluorescent marker, and each different fluorescent marker having a different peak excitation wavelength. The sample may be flowed through a flow sample cuvette as provided herein. As the sample flows through flow channel of the cuvette, cells (or other particles in the sample) may pass through three locations in the flow channel which are exposed to focused light of a range of wavelengths. As the cells pass through each of the first location, the second location, and the third location, the focused light may excite the fluorescent marker present on an antibody used to label the cell. If the fluorescent marker is excited, it may emit light at its emission wavelength, and this light may be detected as described elsewhere herein. The detected light may be analyzed to determine information regarding the cells flowed through the cuvette. The cytometry apparatus may have a housing. The housing may contain one or more of the components of the cytometry apparatus within the housing. In some embodiments, all of the components of the cytometry apparatus are within the housing. In some embodiments, the stage is on the surface of the housing, and cytometry cuvettes are supported outside the housing. In some embodiments, cytometry cuvettes loaded onto a stage inside the housing. In embodiments, methods and devices as provided herein may be used in micro-gravity environments. For example, a flow sample cuvette as provided herein may be used to perform sample assays in micro-gravity conditions. As described above, a flow sample cuvette contains a narrow channel through which the sample moves and is exposed to light. This channel may be of a dimension such that cells or particles may only travel through the channel in single-file. Accordingly, a sample in a flow sample cuvette may be positioned in the cuvette in the same way whether under standard gravity or micro-gravity environments. Biological samples may be analyzed with systems and methods provided herein. The biological sample may be a bodily fluid, a secretion, or a tissue sample. Examples of biological samples may include but are not limited to, blood, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, breath, spinal fluid, hair, fingernails, skin cells, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, microbiota, meconium, breast milk or other excretions. The sample may be provided from a human or animal. Samples may be from a plant, microorganism (e.g. virus, bacteria), or other biological material. Biological samples may contain cells, crystals, particles, or other small objects. Cells in a biological sample may be separate from each other, or they may be linked together. In embodiments, linked cells may be treated in order to separate them into individual, free-moving cells. Cells may be prokaryotic or eukaryotic. In embodiments, a biological sample may be a blood sample, or a portion thereof. In embodiments, cells in a biological sample may be white blood cells. In embodiments, a blood sample containing red blood cells and white blood cells may be treated with a reagent to lyse the red blood cells and stabilize white blood cells. Such stabilized white blood cells may be analyzed with a system or method provided herein. In embodiments, cells may be prepared for cytometry by systems and methods provided herein by any method known in the art. Cells may be optionally fixed, stained, or otherwise labeled with a detectable marker. Cells may be fixed with a variety of methods known in the art, including but not limited to heat, freeze, perfusion, immersion, and chemical fixation. Chemical fixation may be achieved by a wide variety of agents, including but not limited to crosslinking agents (such as formaldehyde, glutaraldehyde, other aldehydes, and their derivatives), precipitating agents (such as ethanol and other alcohols), oxidizing agents (such as osmium tetroxide or potassium permanganate), potassium dichromate, chromic acid, mercury-containing fixatives, acetic acid, acetone, picrates, and HOPE fixative. Cells may also be permeabilized, such as through the use of surfactants, as may be useful for subsequent internal labeling or staining. Cells may be stained with any optically detectable dye, stains, or coloring agents, such as nucleic acid dyes (including intercalator dyes), lipophilic dyes, protein dyes, carbohydrate dyes, heavy metal stains. Such dyes and stains or staining processes include but are not limited to Acid Fast Bacilli staining, Alcian Blue staining, Alcian Blue/PAS staining, Alizarin Red, alkaline phosphatase staining, aminostyryl dyes, ammonium molybdate, Azure A, Azure B, Bielschowsky Staining, Bismark brown, cadmium iodide, carbocyanines, carbohydrazide, carboindocyanines, Carmine, Coomassie blue, Congo Red, crystal violet, DAPI, ethidium bromide, Diff-Quik staining, eosin, ferric chloride, fluorescent dyes, fuchsin, Giemsa stain, Golgi staining, Golgi-Cox staining, Gomori's Trichrome staining, Gordon Sweet's staining, Gram staining, Grocott Methenamine staining, haematoxylin, hexarnine, Hoechst stains, Hyaluronidase Alcian Blue, indium trichloride, indocarbocyanines, indodicarbocyanines, iodine, Jenner's stain, lanthanum nitrate, lead acetate, lead citrate, lead(II) nitrate, Leishman stain, Luna staining, Luxol Fast Blue, Malachite green, Masson Fontana staining, Masson Trichrome staining, methenamine, methyl green, methyline blue, microglia staining, Miller's Elastic staining, neutral red, Nile blue, Nile red, Nissl staining, Orange G, osmium tetroxide, Papanicolaou staining, PAS staining, PAS diastase staining, periodic acid, Perls Prussian Blue, phosphomolybdic acid, phosphotungstic acid, potassium ferricyanide, potassium ferrocyanide, Pouchet staining, propidium iodide (PI), Prussian Blue, Renal Alcian Blue/PAS staining, Renal Masson Trichrome staining, Renal PAS Methenamine staining, Rhodamine, Romanovsky stain, Ruthenium Red, Safranin O, silver nitrate, Silver staining, Sirius Red, sodium chloroaurate, Southgate's Mucicannine, Sudan staining, Sybr Green, Sybr Gold, SYTO dyes, SYPRO stains, thallium nitrate, thiosemicarbazide, Toluidine Blue, uranyl acetate, uranyl nitrate, van Gieson staining, vanadyl sulfate, von Kossa staining, WG staining, Wright-Giemsa stain, Wright's stain, X-Gal, and Ziehl Neelsen staining. Cells may be treated with uncolored dye precursors that are converted to a detectable product after treatment, such as by enzymatic modification (such as by peroxidases or luciferases) or binding to an ion (such as Fe ions, Ca2+ or H+). In embodiments, cells may be labeled with fluorescent markers. Useful fluorescent markers include natural and artificial fluorescent molecules, including fluorescent proteins, fluorophores, quantum dots, and others. Some examples of fluorescent markers that may be used include but are not limited to: 1,5 IAEDANS; 1,8-ANS; 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5-FAM); fluorescein amidite (FAM); 5-Carboxynapthofluorescein; tetrachloro-6-carboxyfluorescein (TET); hexachloro-6-carboxyfluorescein (HEX); 2,7-dimethoxy-4,5-dichloro-6-carboxyfluorescein (JOE); VIC®; NED™; tetramethylrhodamine (TMR); 5-Carboxytetramethylrhodamine (5-TAMRA); 5-HAT (Hydroxy Tryptamine); 5-Hydroxy Tryptamine (HAT); 5-ROX (carboxy-X-rhodamine); 6-Carboxyrhodamine 6G; 6-JOE; Light Cycler® red 610; Light Cycler® red 640; Light Cycler® red 670; Light Cycler® red 705; 7-Amino-4-methylcoumarin; 7-Aminoactinomycin D (7-AAD); 7-Hydroxy-4-methylcoumarin; 9-Amino-6-chloro-2-methoxyacridine; ABQ; Acid Fuchsin; ACMA (9-Amino-6-chloro-2-methoxyacridine); Acridine Orange; Acridine Red; Acridine Yellow; Acriflavin; Acriflavin Feulgen SITSA; AutoFluorescent Proteins; Texas Red and related molecules; Thiadicarbocyanine (DiSC3); Thiazine Red R; Thiazole Orange; Thioflavin derivatives; Thiolyte; Thiozole Orange; Tinopol CBS (Calcofluor White); TMR; TO-PRO-1; TO-PRO-3; TO-PRO-5; TOTO-1; TOTO-3; TriColor (PE-Cy5); TRITC (TetramethylRodamine-lsoThioCyanate); True Blue; TruRed; Ultralite; Uranine B; Uvitex SFC; WW 781; X-Rhodamine; XRITC; Xylene Orange; Y66F; Y66H; Y66W; YO-PRO-1; YO-PRO-3; YOYO-1; interchelating dyes such as YOYO-3, Sybr Green, Thiazole orange; members of the Alexa Fluor® dye series (from Molecular Probes/Invitrogen) such as Alexa Fluor 350, Alexa Fluor 405, 430, 488, 500, 514, 532, 546, 555, 568, 594, 610, 633, 635, 647, 660, 680, 700, and 750; members of the Cy Dye fluorophore series (GE Healthcare), such as Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7; members of the Oyster® dye fluorophores (Denovo Biolabels) such as Oyster-500, -550, -556, 645, 650, 656; members of the DY-Labels series (Dyomics), such as DY-415, -495, -505, -547, -548, -549, -550, -554, -555, -556, -560, -590, -610, -615, -630, -631, -632, -633, -634, -635, -636, -647, -648, -649, -650, -651, -652, -675, -676, -677, -680, -681, -682, -700, -701, -730, -731, -732, -734, -750, -751, -752, -776, -780, -781, -782, -831, -480XL, -481XL, -485XL, -510XL, -520XL, -521XL; members of the ATTO series of fluorescent labels (ATTO-TEC GmbH) such as ATTO 390, 425, 465, 488, 495, 520, 532, 550, 565, 590, 594, 610, 611X, 620, 633, 635, 637, 647, 647N, 655, 680, 700, 725, 740; members of the CAL Fluor® series or Quasar® series of dyes (Biosearch Technologies) such as CAL Fluor® Gold 540, CAL Fluor® Orange 560, Quasar® 570, CAL Fluor® Red 590, CAL Fluor® Red 610, CAL Fluor® Red 635, Quasar® 570, and Quasar® 670. Fluorescent markers may be coupled to a targeting moiety to allow specific binding or localization, for example, to a specific population of cells, of which there are many known in the art. Nonlimiting examples include antibodies, antibody fragments, antibody derivatives, aptamers, oligopeptides such as the nuclear localization sequence (NLS), small molecules that serve as specific ligands for receptors including many hormones and drugs, nucleic acid sequences (such as for FISH), nucleic acid binding proteins (including repressors and transcription factors), cytokines, ligands specific for cellular membranes, enzymes, molecules that specifically bind to enzymes (such as inhibitors), lipids, fatty acids, and members of specific binding interactions such as biotin/iminobiotin and avidin/streptavidin. Targets for specific labeling in or on a cell may be natural or artificial and may encompass proteins, nucleic acids, lipids, carboyhydrates, small molecules, and any combinations thereof. These include intracellular and cell surface markers. Intracellular markers include any molecule, complex, or other structure within the cell. A few nonlimiting examples include genes, centromeres, telomeres, nuclear pore complexes, ribosomes, proteasomes, an internal lipid membrane, metabolites such as ATP, NADPH, and their derivatives, enzymes or enzyme complexes, protein chaperones, post-translational modifications such as phosphorylation or ubiquitinylation, microtubules, actin filaments, and many others. Cell surface markers include but are not limited to proteins such as CD4, CD8, CD45, CD2, CRTH2, CD19, CD3, CD14, CD36, CD56, CD5, CD7, CD9, CD10, CD11b, CD11c, CD13, CD15, CD16, CD20, CD21, CD22, CD23, CD24, CD25, CD33, CD34, CD37, CD38, CD41, CD42, CD57, CD122, CD52, CD60, CD61, CD71, CD79a, CD95, CD103, CD117, CD154, GPA, HLA, KOR, FMC7. In some embodiments, the targets may be specific regions within a cell, such as targeting to the interior of specific organelles or membrane-bound vesicles. In some embodiments, the target may be the result of genetic or other manipulation, such as cloning Lac binding sites into a genetic sequence for targeted binding by a labeled Lac protein. Cells may be labeled through various means, including but not limited to surface labeling, permeabilization of the cell membrane and/or cell wall, active transport or other cellular processes, diffusion through the membrane, carrier particles such as lipid vesicles or other hydrophobic molecules, and production by the cell (such as for recombinantly fluorescent proteins). In some embodiments, samples containing mixed populations of cells may be treated before optical detection to enrich for detection of target population(s) of cells. Some example methods for enrichment include but are not limited to centrifugation, sorting (with or without labeling), selective killing of non-target cells such as by lysis, and selective labeling to improve detection of target cells. In embodiments, cells for use with methods or devices provided herein may be prepared or analyzed (e.g. isolated, washed, stained, imaged, etc.) as described in any of U.S. Provisional Patent App. Nos. 61/675,811, 61/676,178, 61/766,116, 61/802,194, each of which is incorporated by reference in their entirety. In some embodiments, devices or methods disclosed herein may be used with any of systems, methods, or devices as disclosed in, for example, U.S. Pat. No. 8,380,541; U.S. Pat. App. Ser. No. 61/675,811, filed Jul. 25, 2012; U.S. Patent Application 61/837,168, filed Jun. 19, 2013, entitled “METHODS AND DEVICES FOR SMALL VOLUME LIQUID CONTAINMENT”; U.S. Patent Application 61/837,151, filed Jun. 19, 2013, entitled “DEVICES, SYSTEMS, AND METHODS FOR CELL ANALYSIS IN MICROGRAVITY”; U.S. Pat. App. Ser. No. 61/676,178, filed Jul. 26, 2012; U.S. Pat. App. Ser. No. 61/766,116, filed Feb. 18, 2013; U.S. Pat. App. Ser. No. 61/802,194, filed Mar. 15, 2013; U.S. patent application Ser. No. 13/769,798, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,779, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011; PCT/US2012/57155, filed Sep. 25, 2012; U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,949, filed Sep. 26, 2011; and U.S. Application Ser. No. 61/673,245, filed Sep. 26, 2011, the disclosures of which patents and patent applications are all hereby incorporated by reference in their entireties. While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. It should also be understood that while the invention provided herein has been described herein using a limited number of terms and phrases for purposes of expediency, the invention could also be described using other terms and phrases not provided herein which also accurately describe the invention. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. For example, a reference to “an assay” may refer to a single assay or multiple assays. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. As used in the description herein and through the claims that follow, a first object described as containing “at least a portion” of a second object may contain the full amount of/the complete second object. As used in the description herein and throughout the claims that follow, the terms “comprise”, “include”, and “contain” and related tenses are inclusive and open-ended, and do not exclude additional, unrecited elements or method steps. Finally, as used in the description herein and throughout the claims that follow, the meaning of “or” includes both the conjunctive and disjunctive unless the context expressly dictates otherwise. Thus, the term “or” includes “and/or” unless the context expressly dictates otherwise. This document contains material subject to copyright protection. The copyright owner (Applicant herein) has no objection to facsimile reproduction by anyone of the patent documents or the patent disclosure, as they appear in the US Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice shall apply: Copyright 2013-14, Theranos, Inc. 15161650 theranos ip company, llc USA B1 Utility Patent Grant (no pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology
private:theranos Theranos Apr 2nd, 2019 12:00AM Jun 11th, 2015 12:00AM https://www.uspto.gov?id=US10248765-20190402 Systems, devices, and methods for bodily fluid sample collection, transport, and handling Bodily fluid sample collection systems, devices, and method are provided. The device may comprise a first portion comprising at least a sample collection channel configured to draw the fluid sample into the sample collection channel via a first type of motive force. The sample collection device may include a second portion comprising a sample vessel for receiving the bodily fluid sample collected in the sample collection channel, the sample vessel operably engagable to be in fluid communication with the collection channel, whereupon when fluid communication is established, the vessel and/or another source provides a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channel into the vessel. 10248765 1. A method for use with a bodily fluid sample from a subject, the method comprising: shipping a plurality of sample containers from a first location to a second location, wherein each of said sample containers contains a microsample of about 500 uL or less and wherein interior volume of each of the sample containers is about 600 uL or less, wherein shipping of the plurality of samples containers is accomplished using a first frame sized to fit in a shipping container, said first frame comprises a plurality of openings each sized and shaped to engage at least one of the sample containers and hold the sample containers in a desired orientation; obtaining data from each of the sample containers; providing a plurality of processing frames at the second location; using said data from the sample containers to determine which of said processing frames receive which of said sample containers and provide sorting information for the sample containers; and moving said sample containers from the shipping frame to the processing frame based on data provided by the sample containers and based on said sorting information; and handling the processing frame to simultaneously process the sample containers in the processing frame. 2. The method of claim 1 wherein each of the sample containers further comprises at least one sample container information storage unit, wherein obtaining data from the sample containers comprises simultaneously scanning a plurality of sample container information storage units simultaneously. 3. The method of claim 2 wherein said scanning occurs when the containers are in the shipping frame. 4. The method of claim 2 wherein said scanning comprises scanning an underside surface of each of the sample containers. 5. The method of claim 1 further comprising providing at least one database at a server, wherein determining which processing frames receive which of the sample containers comprises referencing the data with said at least one database at said server. 6. The method of claim 1 further comprising providing at least one database of subject identifiers at a server, wherein said data from the sample containers comprise at least one sample container identifier, and wherein said determining comprises matching said at least one sample container identifier with at least one of said subject identifiers. 7. The method of claim 1 further comprising providing a plurality of sample container processing procedures wherein said data from the sample containers comprise at least one sample container identifier, and wherein said determining comprises matching said at least one sample container identifier with one of said sample container processing procedures. 8. The method of claim 1 wherein at least some of the sample containers contain sample having a first anticoagulant and at least some other of the sample containers have a second, different anticoagulant. 9. The method of claim 1 wherein moving said sample containers comprises using a robotic manipulator. 10. A method for use with a bodily fluid sample from a subject, the method comprising: shipping a plurality of sample containers from a first location to a second location, wherein each of said sample containers contains a microsample of about 500 uL or less and wherein interior volume of each of the sample containers is about 600 uL or less, wherein shipping of the plurality of samples containers is accomplished using a first frame sized to fit in a shipping container, said first frame comprises a plurality of openings each sized and shaped to engage at least one of the sample containers and hold the sample containers in a desired orientation; obtaining data from each of the sample containers; providing a plurality of processing frames at the second location; using said data from the sample containers to determine which of said processing frames receive which of said sample containers and provide sorting information for the sample containers; and moving said sample containers from the shipping frame to the processing frame based on data provided by the sample containers and based on said sorting information; and handling the processing frame to simultaneously process the sample containers in the processing frame, wherein at least one of said sample containers from the subject contains sample having a first anticoagulant and at least another of the sample containers from the subject has a second, different anticoagulant. 11. The method of claim 10 wherein each of the sample containers further comprises at least one sample container information storage unit, wherein obtaining data from the sample containers comprises simultaneously scanning a plurality of sample container information storage units simultaneously. 12. The method of claim 11 wherein said scanning occurs when the containers are in the shipping frame. 13. The method of claim 11 wherein said scanning comprises scanning an underside surface of each of the sample containers. 14. The method of claim 10 further comprising providing at least one database at a server, wherein determining which processing frames receive which of the sample containers comprises referencing the data with said at least one database at said server. 15. The method of claim 10 wherein moving said sample containers comprises using a robotic manipulator. 16. A method for use with a bodily fluid sample from a subject, the method comprising: shipping a plurality of sample containers from a first location to a second location, wherein each of said sample containers contains a microsample of about 500 uL or less and wherein interior volume of each of the sample containers is about 600 uL or less, wherein shipping of the plurality of samples containers is accomplished using a first frame sized to fit in a shipping container, said first frame comprises a plurality of openings each sized and shaped to engage at least one of the sample containers and hold the sample containers in a desired orientation; obtaining data from each of the sample containers; providing a plurality of processing frames at the second location; using said data from the sample containers to determine which of said processing frames receive which of said sample containers and provide sorting information for the sample containers; and moving said sample containers from the shipping frame to the processing frame based on data provided by the sample containers and based on said sorting information; and handling the processing frame to simultaneously process the sample containers in the processing frame at a processing frame centrifuge. 17. The method of claim 16 wherein at least some of the sample containers contain sample having a first anticoagulant and at least some other of the sample containers have a second, different anticoagulant. 18. The method of claim 16 wherein at least one of said sample containers from the subject contains sample having a first anticoagulant and at least another of the sample containers from the subject has a second, different anticoagulant. 19. The method of claim 16 wherein moving said sample containers comprises using a robotic manipulator. 20. The method of claim 16 wherein each of the sample containers further comprises at least one sample container information storage unit, wherein obtaining data from the sample containers comprises simultaneously scanning a plurality of sample container information storage units simultaneously. 20 CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to U.S. Patent Application Ser. No. 62/011,023 filed Jun. 11, 2014, U.S. patent application Ser. No. 14/447,099 filed Jul. 30, 2014, U.S. patent application Ser. No. 14/446,080 filed Jul. 29, 2014, and U.S. patent application Ser. No. 14/098,177 filed Dec. 5, 2013. All of the foregoing are fully incorporated herein by reference for all purposes. BACKGROUND A blood sample for use in laboratory testing is often obtained by way of venipuncture, which typically involves inserting a hypodermic needle into a vein on the subject. Blood extracted by the hypodermic needle may be drawn directly into a syringe or into one or more sealed vials for subsequent processing. When a venipuncture may be difficult or impractical such as on a newborn infant, a non-venous puncture such as a heel stick or other alternate site puncture may be used to extract a blood sample for testing. After the blood sample is collected, the extracted sample is typically packaged and transferred to a processing center for analysis. Unfortunately, conventional sample collection and testing techniques of bodily fluid samples have drawbacks. For instance, except for the most basic tests, blood tests that are currently available typically require a substantially high volume of blood to be extracted from the subject. Because of the high volume of blood, extraction of blood from alternate sample sites on a subject, which may be less painful and/or less invasive, are often disfavored as they do not yield the blood volumes needed for conventional testing methodologies. In some cases, patient apprehension associated with venipuncture may reduce patient compliance with testing protocol. Furthermore, the transportation of small volumes of sample fluid, while still maintaining sample integrity, can be problematic. SUMMARY At least some of disadvantages associated with the prior art are overcome by at least some or all of the embodiments described in this disclosure. Although the embodiments herein are typically described in the context of obtaining a fluid sample such as but not limited to a blood sample, it should be understood that the embodiments herein are not limited to blood samples and can also be adapted to acquire other fluid(s) or bodily sample(s) for analysis. In one embodiment described herein, a device is provided for collecting a bodily fluid sample. In embodiments, the bodily fluid may be blood. In embodiments where blood is collected, this embodiment may be useful for accurately collecting small volumes of bodily fluid sample that are often associated with non-venous blood draws. In one non-limiting example, the sample volume is about 1 mL or less. Optionally, the sample volume is about 900 uL or less. Optionally, the sample volume is about 800 uL or less. Optionally, the sample volume is about 700 uL or less. Optionally, the sample volume is about 600 uL or less. Optionally, the sample volume is about 500 uL or less. Optionally, the sample volume is about 400 uL or less. Optionally, the sample volume is about 300 uL or less. Optionally, the sample volume is about 200 uL or less. Optionally, the sample volume is about 100 uL or less. Optionally, the sample volume is about 90 uL or less. Optionally, the sample volume is about 80 uL or less. Optionally, the sample volume is about 70 uL or less. Optionally, the sample volume is about 60 uL or less. Optionally, the sample volume is about 50 uL or less. In one non-limiting example, this device can be used to split the bodily fluid sample directly into two or more different portions that are then deposited into their respective sample vessels. In one non-limiting example, the device comprises a first portion having at least two sample collection channels configured to draw the fluid sample into the sample collection channels via a first type of motive force, wherein one of the sample collection channels has an interior coating designed to mix with the fluid sample and another of the sample collection channels has another interior coating chemically different from said interior coating. The sample collection device includes a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection channels, the sample vessels operably engagable to be in fluid communication with the collection channels, whereupon when fluid communication is established, the vessels provide a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channels into the sample vessels. The sample vessels may be arranged such that mixing of the fluid sample between the vessels does not occur. This device may be used to collect blood or other bodily fluid. Blood collection from veins may be relatively rapid; however, non-venous blood draws may take a longer period of time to obtain a desired volume of sample and the early introduction of a material such as an anti-coagulant which may coat the channels, can prevent premature clogging of the channels during collection. In another embodiment described herein, a device is provided for collecting a bodily fluid sample. The device comprises a first portion comprising a plurality of sample collection channels, wherein at least two of the channels are configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force. The device may also include a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection channels, wherein the sample vessels have a first condition where the sample vessels are not in fluid communication with the sample collection channels, and a second condition where the sample vessels are operably engagable to be in fluid communication with the collection channels, whereupon when fluid communication is established, the sample vessels provide a second motive force different from the first motive force to move bodily fluid sample from the channels into the sample vessels. In embodiments, motive force to move a bodily fluid may include motive force derived from capillary action, from reduced pressure (e.g., vacuum or partial vacuum drawing fluid into a location having reduced pressure), from increased pressure (e.g., to force a fluid away from a location having increased pressure), from wicking material, or from other means. In a still further embodiment described herein, a method is provided comprising metering a minimum amount of sample into at least two channels by using a sample collection device with at least two of the sample collection channels configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force. After a desired amount of sample fluid has been confirmed to be in the collection channels, fluid communication is established between the sample collection channels and the sample vessels, whereupon the vessels provide a second motive force different from the first motive force use to collect the samples to move bodily fluid sample from the channels into the vessels. In some alternative embodiments, devices that use only a single channel to collect the body fluid or devices that have a plurality of channels but do not collect them simultaneously are not excluded. Optionally, the collection of sample fluid is performed without the use of a wicking material. In one embodiment, there is a discrete amount of time between sample collection and introduction of the sample into a sample pre-processing device. In one non-limiting example, the process is a non-continuous process. The sample collection occurs in one processing station and then the sample is taken to a second station. This second station may be in the sample building. Optionally, the second station may be located at another location where the sample needs to be walked, driven, flown, conveyor-ed, placed in a transport device, or placed in a transport container to reach the second location. In this manner, there is a discrete break in the processing to allow for time associated with sample transport. In another embodiment herein, separator gel(s) can also be included in the sample vessels such that the gels will separate cell-free fractions of whole blood from the cellular or other solid or semi-solid portions of the sample. Such a gel or other similar separator material may be included in the sample vessel prior to, during, or after sample has been introduced into the sample vessel. The separator material may have a density between that of the cells and solution components, so that the material separates the sample components by flowing to a position between the solution and non-solution sample layers during separation such as by centrifugation. Following centrifugation, the separator material stops flowing and remain as a soft barrier between the layers. In some embodiments, the separator material can be further processed to harden into a more rigid barrier. In on non-limiting example, the separator material may be a UV-curable material such as but not limited to thixotropic gel of sorbitol-based gelator in a diacrylate oligomer. The sample vessel may have the entire vessel or optionally, on that portion with the UV-curable material exposed to UV light for a period of time such as but not limited to 10 to 30 seconds to harden the material. Such hardening may involve cross-linking of material in the UV-curable material. Optionally, the UV curable material may be used in conjunction with traditional separator gel material such that only one side (the solution side or the solid side) is in contact with the UV cured material. Optionally, the UV cured material may be used with a third material such that the UV cured material is between two separator materials and is not in direct contact with the solution and non-solution portions of the sample. Samples of bodily fluid may be collected by the devices disclosed and described herein. Methods of collecting bodily fluid using these devices are disclosed and described herein. Samples of bodily fluid, e.g., samples that have been collected by the devices and/or methods disclosed and described herein, may be transported from a sample collection site to one or more other sites. In at least one embodiment described herein, methods are provided for the physical transport of small volumes of bodily fluid in liquid form from one location to another location. By way of nonlimiting example, the samples are collected in liquid form at a collection site, transported in liquid form, and arrive at an analysis site in liquid form. In many embodiments, the liquid form during transport is not held in a porous matrix, wicking material, webbing, or similar material that would prevent sample from being extracted in liquid form at the destination site. In one embodiment, small volume of sample in each sample vessel is in the range of about 1 ml to about 500 microliters. Optionally, small volumes are in the range of about 500 microliters to about 250 microliters. Optionally, small volumes are in the range of about 250 microliters to about 100 microliters. Optionally, small volumes are in the range of about 100 microliters to about 50 microliters. Optionally, small volumes are in the range of about 80 microliters to about 40 microliters. Optionally, small volumes are in the range of about 40 microliters to about 1 microliter. Optionally, small volumes are in the range of about 1 microliter to about 0.3 microliters. Optionally, small volumes are in the range of about 0.3 microliters or less. As disclosed and described herein, a transport container may include a component configured to receive and retain a sample vessel. In embodiments, a component configured to receive and retain a sample vessel may be configured to receive and retain a plurality of sample vessels. In embodiments, such a component may comprise a flat sheet, such as, e.g., a tray. In embodiments, such a component (e.g., a flat sheet) may comprise an opening (e.g., a slot, aperture or receptacle) having an internal surface configured to accept a sample vessel. In embodiments, a transport container may include a component comprising a plurality of openings (e.g., slots, apertures or receptacles) each having an internal surface configured to accept a sample vessel. In embodiments, such an internal surface may be, at least in part, substantially complementary to the outer surface, or a portion thereof, of a sample vessel. In another embodiment described herein, the transport container may provide a high density of sample vessels per unit area held in a fixed manner during transport, but removable at the destination location. In one non-limiting example, the sample vessels are positioned in an array where there are at least six sample vessels per square inch, when viewing the array from top down. Optionally, there are at least eight sample vessels per square inch, when viewing the array from top down. Optionally, there are at least ten sample vessels per square inch, when viewing the array from top down. Any traditional techniques that ship multiple samples typically use large bags where the sample vessels therein are in a loose, unconstrained manner. In some embodiments, the transport container can hold certain sample vessels such as those from the same subject, closer together relative to horizontal or other spacing to adjacent sample vessels so that they can be visually identified as being from a common subject. Optionally, the transport container has openings to receive carriers that hold one or more sample vessels together, wherein those vessels have a common denominator such as but not limited to being from the same subject. In embodiments, the sample vessels are adapted to aid in maintaining the samples in liquid form. In embodiments, the sample is treated prior to its arrival in a sample vessel in a manner adapted to maintain the sample in liquid form. For example, a sample vessel may include an anti-coagulating agent, or a sample may be treated with an anti-coagulating agent prior to, or during, transport to or into a sample vessel. In embodiments, an anti-coagulating agent may be selected from the group consisting of heparin (e.g. lithium heparin or sodium heparin), ethylenediaminetetraacetic acid, 4-hydroxycoumarins, vitamin K antagonist (VKA) anticoagulant, an anti-coagulant, or other additive. In addition to the high density per unit area, some embodiments of the transport container also contain a high diversity of samples, including those that contain samples from a plurality of different subjects. By way of non-limiting example, the transport container may have four samples from one subject, two samples from another subject, and so-on until the majority or all of the available openings in the transport container are filled. It should be understood that each of the samples can be destined for individually selected analysis and at least in one embodiment, are not grouped in the transport container based on tests to be performed. By way of non-limiting example, not all of the samples in the transport container are collected for the same test. A traditional test system may only group together for transport those samples destined for the exact same test. In at least one of the embodiments herein, there is a diversity of samples, each designated to receive its own set of tests. In such an embodiment, grouping in the transport container is not restricted to only those samples targeted for the same test. This can further simplify sample processing because sample transport does not need to be further segregated based on tests to be performed. Some embodiments of the transport container contain samples from at least three or more different patients. Some embodiments of the transport container contain samples from at least five or more different patients. Some embodiments of the transport container contain samples from at least ten or more different patients. Some embodiments of the transport container contain samples from at least twenty or more different patients. By way of non-limiting example, one embodiment described herein may optionally use tray(s) that have slots for holding the sample vessels and/or sample vessel holders. In one embodiment, the tray may also double as a holding device during storage in a cooling chamber while awaiting more samples or transport. In one embodiment, the tray can itself also be cleaned and sterilized, because in some embodiments, the tray is removable from the transport container. In some embodiments, the tray in the transport container may be held in manner parallel to a cover of the transport container. Optionally, the tray may be held inside the transport container at an angle to the cover of the transport container. Optionally, the tray is irremovably fixed to the transport container. Optionally, the tray is integrally formed with the transport container itself. Optionally, multiple trays of same or different size or configuration may be placed inside the transport container. In yet another embodiment described herein, methods are provided for shipping small volume sample vessels using a transport container with integrated thermal control unit and/or material that provides active and/or passive cooling. In one embodiment, the thermal control material may be but is not limited to embedded phase change material (PCM) material that maintains the temperature at a prior, or desired temperature. By way of non-limiting example, the phase change material can oppose changes in temperature around the critical temperature where the material would undergo a phase change. If the PCM is embedded, the vessel and the passive cooling element may be one and the same. Optionally, the transport container may use an active cooling system. Optionally, the transport container may use an active cooling system to keep and/or extend cooling time associated with a passive cooling component. In embodiments, a transport container may include material having a high heat capacity (i.e., high as compared to material such as a plastic or polymeric material), and may include a mass of such a high heat capacity material effective to maintain at least a portion of the transport container at or near to a desired temperature for an extended period of time. Optionally, the method comprises a single step for transferring multiple sample vessels from different subjects from a controlled temperature storage area into a transport container. By way of non-limiting example, this single step can transfer twenty-four or more sample vessels at one time from a storage location into a fixed position in the transport container. Optionally, this single step can transfer thirty-six or more sample vessels at one time from a storage location into a fixed position in the transport container. Optionally, this single step can transfer forty-eight or more sample vessels at one time from a storage location into a fixed position in the transport container. In such embodiments, the tray may be initially in a controlled thermal environment such as but not limited to a refrigerator wherein samples from various subjects are collected over time until a desired number is reached. In one such embodiment, the tray holding the sample vessel(s) in the transport container is the same tray holding the sample vessels in the storage area. Optionally, the tray may be the same as the storage holder that is used to hold samples prior to loading into the transport container. Because the same tray which holds the sample vessels will be used in the transport container, there is reduced risk that samples will be lost during this transfer, left out in a non-regulated thermal environment, or the like. Because substantially all sample vessels in the tray are accumulated in the controlled thermal storage area and then transferred in a single step, the samples all experience substantially the same thermal exposure while being transferred from the control thermal storage area into the transport container. Because sample vessels experience substantially the same exposure, there is less variability sample-to-sample due to different exposure times. Optionally, the method comprises using an individually addressable sample vessel configuration. Optionally, groups of sample vessels such as those in a common carrier may be addressed in the pre-defined groups. Optionally, even sample vessels in a common carrier may be individually addressed. Although not a requirement for all embodiments herein, this can be of particular use when loading and/or unloading samples, sample vessels, and/or sample holders from the tray. Some embodiments may use yet another container (an “outerbox”) outside the transport container to provide further physical protection and/or thermal control capability. One or more of the transport container can be placed inside the outerbox and the combination may be shipped from one location to a destination location. By way of non-limiting example, this can be in the form of a corrugated plastic outerbox, where the outerbox is configured to at least partially encase or enclose a transport container. In embodiments, an outerbox provides thermal insulation for a transport container enclosed therein. Some embodiments may use closed-cell extruded polystyrene foam outerbox. Some embodiments of the outerbox may be formed from thermoformed panels. In some embodiments, an outerbox may have grips, handles, pads, wheels, latches, stays, and/or other features useful in holding, manipulating, securing, protecting, transporting, or otherwise controlling the position, orientation, and/or access to the contents of the outerbox. Some embodiments of the outerbox may have its own active and/or passive thermal control unit. In embodiments, an outerbox provides cooling and thermal insulation for one or more transport containers enclosed therein. One or more embodiments of the outerbox may be configured to house one or more transport containers. Optionally, this container can also provide additional thermal control to the transport container by providing a thermally regulated environment between a desired temperature range to the transport container(s) therein. Optionally, this temperature range is between about 1 to 10° C., optionally 2 to 8° C., or between 2 to 6° C. In yet another embodiment described herein, a method is provided for thermally characterizing the transport container after a number of cooling cycles. By way of non-limiting example, after certain number of cycles, the transport container may be thermally characterized to ensure that the container is continuing to perform within a desired range. Some embodiments of the container and/or tray may include a thermal change indicator. In one non-limiting example, the indicator is integrated on a visible surface of the transport container, tray, and/or on the outerbox. In one non-limiting example, thermochromic ink may be used as an indicator of thermal change, particularly if the thermal change resulted in temperatures outside a desired range. In one embodiment, this indicator may be configured to have the entire box and/or tray change color. The change can be reversible or irreversible. Optionally, the indicator is positioned to be on only select portions of the transport container and/or tray, not the entire container or tray. In one embodiment described herein, a method is provided comprising collecting a bodily fluid sample on a surface of a subject, wherein collected sample is stored in one or more sample vessels; providing a transport container to house at least two or more sample vessels in a first orientation; and arranging to have the sample vessels shipped in the transport container from a first location to a second location, wherein each of the sample vessels arrives at the second location holding a majority of its bodily fluid sample in a non-wicked, non-matrixed form that is removable from the sample vessels in liquid form and wherein the amount of sample in each of the sample vessels does not exceed about 2 ml. In embodiments, the amount of sample in each of the sample vessels does not exceed about 1 ml, or does not exceed about 500 μL, or does not exceed about 250 μL, or does not exceed about 100 μL, or does not exceed about 50 μL, or less. In another embodiment described herein, a method is provided for shipping a plurality of sample vessels, the method comprising: providing a container configured to house at least five or more sample vessels each containing capillary blood; and arranging to have the sample vessels shipped in the transport container from a first location to a second location, wherein each of the sample vessels arrives holding a majority of its capillary blood in a liquid, non-wicked form that is removable from the sample vessels for further processing, and wherein the amount of capillary blood in each of the sample vessels does not exceed about 2 ml. In embodiments, the amount of capillary blood in each of the sample vessels does not exceed about 1 ml, or does not exceed about 500 μL, or does not exceed about 250 μL, or does not exceed about 100 μL, or does not exceed about 50 μL, or less. In another embodiment described herein, a method is provided for shipping a plurality of sample vessels for containing biological sample, the method comprising: providing a container configured to house at least five or more of the sample vessels, wherein the amount of sample in each of the sample vessels does not exceed about 2 ml; and shipping the container and sample vessels from a first location to a second location, wherein each of the sample vessels arrives at the second location holding a majority of its biological in a liquid, non-wicked form that is removable from the sample vessels for further processing. In embodiments, the amount of sample in each of the sample vessels does not exceed about 1 ml, or does not exceed about 500 μL, or does not exceed about 250 μL, or does not exceed about 100 μL, or does not exceed about 50 μL, or less. In another embodiment described herein, a method is provided for shipping a plurality of sample vessels containing capillary blood, the method comprising: providing a container having a thermally-regulated interior region that is configured to house at least five or more sample vessels in a controlled configuration such that at least one cooling surface of the container is directed towards the sample vessels and transmits a controlled release of thermal cooling in accordance with a temperature profile that maintains the interior region between about 1 to 10° C. during transport and without freezing the blood samples; and shipping the container from a first location to a second location, wherein each of the sample vessels arrives holding a majority of its capillary blood in a liquid, non-wicked form that is removable from the sample vessels for further processing. In another embodiment described herein, a method is provided for shipping a plurality of blood sample vessels, the method comprising shipping a container having a thermally-controlled interior that is configured to house 10 or more sample vessels in an array configuration, wherein each of the vessels holds a majority of its blood sample in a free-flowing, non-wicked form and wherein there is about 1 ml or less of blood in each of the vessels and each of the vessels has an interior with at least a partial vacuum atmosphere; wherein sample vessels are held in the array configuration to position said sample vessels at controlled distance and orientation from a cooling surface, wherein there is at least one preferential thermal pathway from the surface to the sample vessel. In another embodiment described herein, a method is provided for shipping a plurality of sub-1 ml sample vessels, the method comprising mixing sample with anti-coagulant prior to transferring sample into each of the sample vessels; associating each of the sample vessels with a subject and a panel of requested sample tests; and shipping a thermally-controlled container that houses the plurality of sub-1 ml sample vessels in an array configuration, wherein each of the vessels holds a majority of its sample in a free-flowing, non-wicked form, wherein vessels are arranged such that there are at least two vessels in each container is associated with each subject, wherein at least a first sample includes a first anticoagulant and a second sample includes a second anticoagulant in the matrix. In another embodiment described herein, a method is provided comprising a) placing said plurality of sample vessels in a temperature controlled transport container comprising a controlled uniform thermal profile, high heat of fusion material configured to be in thermal communication with the sample vessels, wherein the material does not cause freezing of sample fluid in the sample vessels; b) placing said thermal profile transport container in a product cavity defined by at least top and bottom walls of a transport container; c) placing an active cooling device in thermal communication with said cavity whereby said cooling device is adapted to cool said cavity upon activation, said sorption cooling device comprising an absorber positioned so as to dissipate heat generated in said absorber outside of said product cavity; d) activating said cooling device to initiate cooling of said cavity; e) transporting said transport container from a first location to a second location; and f) removing said product from said cavity. In another embodiment described herein, a method of shipping a plurality of sub-1 ml sample vessels is provided comprising: shipping a thermally-controlled container that houses the plurality of sub-1 ml sample vessels in an array configuration, wherein each of the vessels holds a majority of its sample in a free-flowing, non-wicked form and wherein vessels are arranged such that there are at least two vessels in each container is associated with each subject, wherein at least a first sample includes a first anticoagulant and a second sample includes a second anticoagulant in the matrix. It should be understood that any of the embodiments herein can be adapted to have one or more of the following features. In one non-limiting example, the bodily fluid sample is blood. Optionally, the bodily fluid sample is capillary blood. Optionally, collecting the bodily fluid sample comprises making at least one puncture on the subject to release the bodily fluid, wherein the puncture is not a venipuncture. Optionally, collecting comprises using at least one microneedle to make at least one puncture on the subject. Optionally, collecting comprises using at least one lancet to make at least one puncture on the subject. Optionally, the puncture may be formed by finger prick. Optionally, the puncture is formed by pricking skin on a forearm of the subject. Optionally, the puncture is formed by pricking skin on a limb of the subject. Optionally, the puncture is formed by pricking at least one ear of the subject. Optionally, the surface is the skin of the subject. Optionally, other non-finger alternate sites can be targeted to obtain at least one biological sample from the subject. Optionally, a solid non-coring penetrating member may be used to release the biological sample from the subject. Optionally, other embodiments may have a coring device that may be but is not limited to a coring needle or other coring penetrating member to both cause a release of liquid biological sample and to obtain a non-liquid sample in the coring penetrating member, such as but not limited to a tissue sample. Some embodiments may use at least one coring penetrating member and at least one non-coring penetrating member. Some embodiments may use a blade for creating the wound. Some may use a puncture-type motion while others may use a cutting type motion. Any of these penetrating member(s) may be configured for use for one or more of the target sites thereon. Optionally, the transport container has an interior that is initially at sub-atmospheric pressure. Optionally, the sub-atmospheric pressure is at least a partial vacuum. Optionally, the interior of the transport container is at a sub-atmospheric pressure that is at least at a pressure below ambient pressure. Optionally, the sub-atmospheric pressure is selected to provide sufficient force to draw a desired volume of sample into the sample vessel. Optionally, the transport container contains at least five or more sample vessels. Optionally, the transport container ships bodily fluid samples from a plurality of different subjects. Optionally, information associated with each of the sample vessels determine what tests will be run on the bodily fluid sample therein. Optionally, the transport container is placed inside another container during shipping. Optionally, the method further comprises pre-processing sample in the sample vessels prior to shipping to the second location. Optionally, at least a portion of the sample may be collected and dried, such as but not limited to collection on a paper sample collector. There may be multiple “spots” on the collector for the sample to be collected and then shipped on such paper sample collection member. The dried sample may be shipped together with the container having the liquid sample. Both may be coded with the same identifier or at least one that associates both collectors with the same subject. Optionally, the transport container has a sample vessel array density of at least about 4 vessels per square inch. Optionally, a cooling surface in the transport container provides a temperature profile within a desired range for sample vessels in the vessel. Optionally, the sample vessels are individually addressable. Optionally, the method further comprises using a cooled tray to hold the samples vessels in a cooling chamber prior to loading the vessels into the container and the same tray is used to hold the sample vessels in the vessel, wherein the samples are placed into container with the cooled tray. Optionally, sample vessels are arranged such that there are at least two vessels in each container with bodily sample fluid from the same subject, wherein at least a first sample includes a first anticoagulant and a second sample includes a second anticoagulant in the matrix. Optionally, the fluid sample comprises capillary blood for use in testing by FDA-cleared or FDA-certified assay devices and procedures, or testing by a CLIA-certified laboratory. Optionally, the fluid sample comprises blood for use in testing by FDA-cleared or FDA-certified assay devices and procedures, or testing by a CLIA-certified laboratory. Optionally, a housing providing a controlled thermal profile and high heat of fusion material providing at least one cooling surface facing the vessels. Optionally, a high heat of fusion material is embedded in material used to form the vessel. Optionally, a controlled thermal profile, high heat of fusion material comprises about 30% to 50%. Optionally, a controlled thermal profile, high heat of fusion material comprises about 10% to 30%. Optionally, the method further comprises a housing of metallic material having a resting temperature less than ambient temperature. Optionally, the method further comprises scanning an information storage unit on each sample at the receiving site and automatically placing the vessel into a cartridge. Optionally, the method further comprises scanning an information storage unit on each sample at the receiving site and automatically placing the vessel into a cartridge. Optionally, the method further comprises using the same tray to hold sample vessels in the array configuration when in a refrigeration device prior to transport and in the transport container during transport. Optionally, the method further comprises using a tray for holding the sample vessels that comprises a highly thermally conductive material. Optionally, the tray comprises a plurality of slots having a shape to hold sample vessels holders in a preferential orientation. Optionally, the tray is configured to directly engage sample vessel holders. Optionally, a tray locking mechanism is used to hold the tray within the vessel, wherein the tray locking mechanism releases the tray only upon application of magnetic force. Optionally, the method comprises maintaining a temperature range in the 2° C. to 8° C. during transport. Optionally, the method further comprises a temperature control material that maintains above freezing but about 10° C. or less during transport. Optionally, the method comprises using a temperature threshold detector to indicate if the sample vessel reaches a temperature outside a threshold level. Optionally, the method further comprises scanning a vessel in the tray prior to shipping to determine if a processing step on the sample had not been performed; using a processor to perform or re-perform a step. Optionally, the method further comprises a single-step loading of the sample vessel(s) into the tray and then a single-step loading of the tray into the transport container. Optionally, the transport container has a first surface configured to define a thermally conductive pathway to the controlled thermal profile, high heat of fusion material in the transport container. Optionally, the first surface is configured to be in direct contact with another surface cooled by a sorption cooling device. Optionally, the method comprises simultaneous bar code scanning of sample vessels in the tray. Optionally, the method comprises simultaneous bar code scanning undersides of sample vessels in the tray. Optionally, the method comprises bar code scanning rows of sample vessels. Optionally, the method comprises bar code scanning undersides of rows of sample vessels. Optionally, the method comprises shipping a plurality of the sample vessels in an inverted orientation. Optionally, the method comprises shipping a plurality of the sample vessels wherein blood cells and plasma are separated by a barrier material in the sample vessels. Optionally, the method comprises opening the transport container by unlocking it and opening it, wherein at least one hinge holds two pieces together. Optionally, the tray has at least one magnetic contact point for removing the tray from the vessel. Optionally, a computer controlled end effector is used to load and/or unload sample vessels from the transport container, wherein before, during, or after unloading, a reader obtains information from at least one information storage unit attached to one or more sample vessels. It should be understood that although the transport container is often used for transport, it can also be used as a storage container for the tray and/or sample vessels when the transport container is not used for transport. Accordingly, the uses for the container are not limited to transport and other suitable uses for any of the embodiments are not excluded. In yet another embodiment herein, a thermal-controlled transport container is provided for use in shipping a plurality of sample vessels, the transport container comprising: a container having at least a top, bottom, and side walls together defining a cavity, wherein at least one of said top, bottom and side walls comprises a phase change material; a frame sized to fit within the cavity and defining openings configured for holding a plurality of sample vessels and having sidewalls configured to be in contact with sidewalls of the sample vessels, wherein vessels are arranged such that each patient has at least a first sample with a first anticoagulant and a second sample with a second anticoagulant in the matrix. In another embodiment described herein, a thermal-controlled transport container is provided for use in shipping a plurality of sample vessels, the transport container comprising: a) a bottom container portion comprising a bottom wall and at least a first sidewall defining a cavity adapted to contain a product therein; b) a top container portion comprising a top surface and a bottom surface and adapted to combine with said bottom container portion to define a product cavity, said top container portion forming a top wall for said vessel; wherein at least one of said top, bottom and side walls comprises a phase change material. In another embodiment described herein, a thermal-controlled transport container is provided for use in shipping a plurality of sample vessels, the transport container comprising: a) a bottom container portion comprising a bottom wall and at least a first sidewall defining a cavity adapted to contain a product therein; b) a top container portion comprising a top surface and a bottom surface and adapted to combine with said bottom container portion to define a product cavity, said top container portion forming a top wall for said vessel; c) a holder for defining a plurality of sample vessel holding spaces to position the sample vessels in a pre-determined orientation; wherein at least one of said top, bottom and side walls comprises a phase change material. In another embodiment described herein, a transport container is provided for shipping sample vessels, the container comprising: a generally rectangular floor; generally parallel sides projecting from longitudinal edges of the floor; generally parallel ends projecting from end edges of the floor and bridging the sides; a cover fittable over the sides and ends and forming therewith and with the floor a generally closed space; a sample vessel holder removably coupled to the floor in an interior of the container and configured to define vessel-holding spaces. Optionally, the vessel holding spaces are configured to hold air-evacuated blood collection tubes having an interior volume of about 2 ml or less. In at least one embodiment, the vessel holding spaces are configured to hold vessels such as but not limited to air-evacuated collection tubes having an interior volume of about 1 ml, or less than about 500 μL, or less than about 250 μL, or less than about 100 μL, or less than about 50 μL, or less. In another embodiment described herein, a thermal-controlled transport container is provided for use in shipping a plurality of sample vessels, the transport container comprising: means for holding a plurality of sample vessels in at least one fixed orientation; means for thermally controlling temperature of the sample vessels to be within a desired range of about 0° C. to 10° C.; wherein the means from holding the plurality of sample vessels is removable from the transport container. Optionally, the vessel holding spaces are configured to hold air-evacuated blood collection tubes having an interior volume of about 2 ml or less. In embodiments, the vessel holding spaces are configured to hold air-evacuated collection tubes having an interior volume of about 1 ml, or less than about 500 μL, or less than about 250 μL, or less than about 100 μL, or less than about 50 μL, or less. It should be understood that some embodiments may comprise a kit that includes a transport container as recited in any of the above. Optionally, the kit includes a transport container and instructions for their use. In one embodiment described herein, a method is described for providing a whole blood sample and/or partition thereof from a sender to a recipient. The method comprises transporting a package comprising a sample vessel comprising one or more channels that contains (a) a whole blood sample and/or partition thereof in fluid state having a volume less than or equal to about 200 microliters (ul) and (b) one or more reagents used for preserving one or more analytes in the whole blood sample and/or partition thereof for analysis until at least when whole blood sample and/or partition thereof reaches the recipient, and wherein the depositing results in delivery of the sample vessel to the recipient. By way of non-limiting example, transporting the sample vessel may occur by using a parcel delivery service, a courier, or other shipping service. In one embodiment described herein, a method is described for preparing a whole blood sample for delivery to a sample processing station. The method comprises depositing a sample vessel having a whole blood sample in fluid state and a volume less than or equal to about 200 ul with a delivery service for delivering the sample vessel to the sample processing location for processing the whole blood sample. The sample vessel may be prepared by (a) drawing the whole blood sample from a subject with the aid of a capillary channel and (b) placing the whole blood sample into the sample vessel, wherein the whole blood sample is preserved in fluid state with one or more reagents contained in the capillary channel and/or the sample vessel. It should be understood that any of the embodiments herein may be adapted to have one or more of the following features. By way of non-limiting example, the sample in some embodiments may be a semi-solid or gel state. This may occur after the sample is in the sample vessel. Optionally, the delivery service is a mail delivery service. Optionally, the blood sample is collected from the subject at a point of care location. Optionally, the point of care location is a home of the subject. Optionally, the point of a care location is the location of a healthcare provider. In another embodiment described herein, a method for processing a whole blood sample comprises receiving at a processing station from a parcel delivery service, a sample vessel having a whole blood sample less than or equal to about 200 ul, wherein the sample vessel is received at the processing station with the whole blood sample in a fluid state; and performing, at the processing station, at least one pre-analytical and/or analytical assay on the whole blood sample in a fluid state. It should be understood that any of the embodiments herein may be adapted to have one or more of the following features. By way of non-limiting example, the assay has one or more steps. Optionally, the sample vessel is included in a housing having one or more environmental control zones. Optionally, the housing is adapted to control a humidity of each of the environmental control zones. Optionally, the housing is adapted to control a pressure of each of the environmental control zones. In yet another embodiment described herein, a computer-implemented method is provided for queuing a blood sample for processing at a processing location. The method comprises (a) identifying, with the aid of a geolocation system having a computer processor, the geolocation of a transport container having the blood or other bodily fluid sample; (b) estimating, with the aid of a computer processer, delivery time of the transport container to the processing location; and (c) based on the estimated time of delivery, providing a notification for preparative work for processing the sample at the processing location. In yet another embodiment described herein, a method is described for preparing a whole blood sample for delivery to a sample processing station. The method comprises depositing a sample vessel having a whole blood sample in fluid state with a delivery service for delivering the sample vessel to the sample processing location for processing the whole blood sample, wherein the sample vessel is prepared by (a) drawing the whole blood sample from a subject using a device and (b) placing the whole blood sample into the sample vessel. Optionally, depositing may encompass pick-up and/or drop-off of a sample vessel. Optionally, processing may include pre-analytic, analytic and post-analytic processing of a sample. Optionally, delivery service may include a subject's delivery service or a third party delivery service. Optionally, the whole blood sample is preserved in fluid state with one or more reagents contained in the capillary channel or the sample vessel. In yet another embodiment described herein, a method is provided for processing a whole blood sample at a processing station. The method comprises receiving, at the processing station from a delivery service, a sample vessel having a whole blood sample, wherein the sample vessel is prepared by (a) drawing the whole blood sample from a subject using a collection device and (b) placing the whole blood sample into the sample vessel. The method also includes performing, at the processing station, at least one pre-analytical or analytic assay on the whole blood sample. It should be understood that any of the embodiments herein may be adapted to have one or more of the following features. By way of non-limiting example, with the aid of a computer processor, providing a time for completion of the processing from the estimated time of delivery. Optionally, the method includes queuing the sample vessel for processing upon estimating the time of delivery of the sample vessel at the processing location. Optionally, the geolocation of the sample vessel is identified with the aid of a communications network. In one embodiment described herein, a computer-implemented method is described for providing an estimated time of completion for the processing of a blood sample. The method comprises receiving information about a transport container transported through a delivery service to a processing station that is for sample processing, the transport container having a blood sample removed from a subject. The method also includes calculating, with the aid of a computer processor, a position of the blood sample in a processing queue at the processing station, wherein the predicting is based on (i) information about the position of blood or other bodily fluid samples from other subjects in the processing queue and (ii) information about the geographic location of other sample vessels having blood samples from other subjects in relation to the sample vessel having the blood sample removed from the subject. The method includes predicting a time for processing the blood sample at the processing station upon delivery of the sample vessel by the delivery service to the processing station; and based on the predicting and an estimated time of delivery of the sample vessel to the processing station, providing the subject or a healthcare provider associated with the subject an estimated time for processing the blood sample from the subject, the estimated time measured from the point the sample vessel is deposited with the delivery service. Optionally, the sample is transported to a plurality of processing stations. It should be understood that processing as used herein is to be broadly interpreted and may include pre-analytical, analytical, and/or post-analytical step(s). In yet another embodiment described herein, a computer-implemented method is described for providing an estimated time of completion for the processing of a blood sample from a subject. The method comprises receiving information about a transport container transported through a delivery service to a processing station that is for sample processing, the transport container having at least one blood or bodily fluid sample removed from the subject. The method also includes calculating, with the aid of a computer processor, a position of the blood sample in a processing queue at the processing station, wherein the predicting is based on (i) information about the position of blood samples from other subjects in the processing queue and (ii) information about the geographic location of other sample vessels having blood samples from other subjects in relation to the transport container having the blood sample removed from the subject. The method includes predicting a time for processing the blood sample at the processing station upon delivery of the transport container by the delivery service to the processing station; and based on the predicting and an estimated time of delivery of the transport container to the processing station, allocating one or more resources at the processing station for processing the blood sample upon delivery to the processing station. It should be understood that any of the embodiments herein may be adapted to have one or more of the following features. By way of non-limiting example, the transport container has an information storage unit that allows identification of the transport container by the delivery service and/or the processing location. Optionally, the information storage unit is a radiofrequency identification (RFID) tag. Optionally, the information storage unit is a barcode. Optionally, the information storage unit is a microchip. Optionally, the transport container comprises one or more sensors for collecting one or more of the temperature of the bodily fluid sample (e.g., a blood sample), the pressure of the sample vessel, the pH of the sample, the turbidity of the sample, the viscosity of the sample, or other characteristic of the sample. Optionally, the processing location processes collected bodily fluid samples on an on-demand basis. Optionally, the transport container includes a geo-location device for providing the location of the sample vessel. Optionally, the anti-coagulating agent is selected from the group consisting of heparin, ethylenediaminetetraacetic acid, an anti-coagulant, or other additive. Optionally, the transport container, wherein the container holding spaces are configured to hold air-evacuated blood collection tubes, are configured to hold air-evacuated sample collection tubes having a partial vacuum of at most about 30% vacuum, or at most about 40% vacuum, or at most about 50% vacuum, or at most about 60% vacuum, or at most about 70% vacuum, or at most about 80% vacuum, or at most about 90% vacuum. In embodiments described herein involving a first vessel and a second vessel, in certain embodiments, the interior volume of the first vessel and second vessel is each 1000, 750, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 microliters, or less. In embodiments described herein involving a first vessel and a second vessel, in certain embodiments, the interior volume of neither the first vessel nor the second vessel exceeds 1000, 750, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments described herein involving one or more vessels, in certain embodiments, the interior volume of each of the one or more vessels is 1000, 750, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 microliters, or less. In embodiments described herein involving one or more vessels, in certain embodiments, the interior volume of none of the one or more vessels exceeds 1000, 750, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments described herein involving a first vessel and a second vessel, each containing a portion of a small volume bodily fluid sample, in certain embodiments, neither the first vessel nor the second vessel contains a portion of the small volume bodily fluid sample having a volume of greater than 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments described herein involving a vessel containing a small volume bodily fluid sample, in certain embodiments, the volume of the small volume bodily fluid sample in the vessel is no greater than 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments described herein involving one or more vessels containing bodily fluid sample, in certain embodiments, at least one of the one or more vessels contains bodily fluid sample which fills at least 99, 98, 97, 96, 95, 90, 85, 80, 75, 70, 60, 50, 40, 30, 20, 10, or 5% of the interior volume of the vessel. In embodiments described herein involving one or more vessels containing bodily fluid sample, in certain embodiments, all of the one or more vessels contains bodily fluid sample which fills at least 99, 98, 97, 96, 95, 90, 85, 80, 75, 70, 60, 50, 40, 30, 20, 10, or 5% of the interior volume of the vessel. In embodiments described herein involving a sample collection site and a sample receiving site, in embodiments, the sample collection site and sample receiving site may be in the same room, building, campus, or collection of buildings. In embodiments described herein involving a sample collection site and a sample receiving site, in embodiments, the sample collection site and sample receiving site may be in different rooms, buildings, campuses, or collection of buildings. In embodiments, a sample collection site and a sample receiving site may be separated by at least 1 meter, 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, or 500 kilometers. In embodiments, a sample collection site and sample receiving site may be separated by no more than 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, 500 kilometers, or 1000 kilometers. In embodiments, a sample collection site and a sample receiving site may be separated by at least 1 meter, 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, or 500 kilometers and no more than 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, 500 kilometers, or 1000 kilometers. In embodiments, a first location described herein may be a sample collection site and a second location described herein may be a sample receiving site. In embodiments described herein involving a vessel containing at least a portion of a small volume bodily fluid sample being transported from a sample collection site to a sample receiving site, in embodiments, the bodily fluid sample may be maintained in liquid form during the transport of the vessel. In embodiments described herein involving two or more vessels, each containing at least a portion of a small volume bodily fluid sample, being transported from a sample collection site to a sample receiving site, in embodiments, the bodily fluid sample in each of the vessels may be maintained in liquid form during the transport of the vessels. In embodiments described herein involving one or more vessels being transported from a sample collection site to a sample receiving site, in embodiments, the one or more vessels may be transported in a transport container. In embodiments described herein involving one or more vessels being transported in a transport container, in embodiments, the one or more vessels may be positioned in an array in the transport container, and the array may contain at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, or 100 vessels per square inch, when viewed from the top down. In embodiments described herein involving transporting one or more vessels in a transport container, in embodiments, the transport container may contain bodily fluid samples from at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, or 100 different subjects. In embodiments described herein involving a vessel containing at least a portion of a bodily fluid sample, in embodiments, the vessel may contain an anticoagulant. In embodiments involving two or more vessels which each contain a portion of a bodily fluid sample from a subject, in embodiments, at least one or all of the vessels may contain an anticoagulant. In embodiments, when two or more vessels which each contain a portion of a bodily fluid sample from a subject also each contain an anticoagulant, the vessels may contain the same anticoagulants or different anticoagulants. An anticoagulant in a vessel may be, for example, heparin or EDTA. In methods described herein involving the transport of a bodily fluid sample in one or more vessels from a sample collection site to a sample receiving site, in embodiments, the bodily fluid sample may arrive at the sample receiving site no more than 48 hours, 36 hours, 24 hours, 16 hours, 12 hours, 8 hours, 7 hours, 6 hours, 5 hours, 4 hours, 3 hours, 2 hours, 60 minutes, 45 minutes, 30 minutes, 20 minutes, 15 minutes, 10 minutes, or 5 minutes after the bodily fluid sample was obtained from the subject. In methods described herein involving transporting at least a vessel from a sample collection site to a sample receiving site, in embodiments, the method may further comprise centrifuging the vessel before it is transported. In methods described herein involving transporting a plurality of vessels from a sample collection site to a sample receiving site, in embodiments, the method may further comprise centrifuging the plurality of vessels before they are transported. In methods described herein involving transporting at least a first vessel from a sample collection site to a sample receiving site, in embodiments, at the sample receiving site and prior to the removal of sample from the first vessel, the first vessel is inserted into a sample processing device comprising an automated fluid handling apparatus. In methods described herein involving transporting at least a first vessel and a second vessel from a sample collection site to a sample receiving site, in embodiments, at the sample receiving site and prior to the removal of sample from the first vessel, the first vessel and second vessel are inserted into a sample processing device comprising an automated fluid handling apparatus. In embodiments, when a vessel comprising a sample is inserted into a sample processing device comprising an automated fluid handling apparatus, sample may be removed from the vessel by the automated fluid handling apparatus. In embodiments, prior to the insertion of a vessel comprising a sample into a sample processing device comprising an automated fluid handling apparatus, the vessel is inserted into a cartridge, and the cartridge is then inserted into the sample processing device. A cartridge may accommodate any number of vessels containing sample, such as at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, or 100 vessels. A cartridge may further comprise one or more reagents for performing one or more laboratory tests with the sample. In embodiments, a cartridge may comprise all of the reagents necessary to perform all of the tests that are to be performed with the sample(s) in the cartridge. In embodiments, a portion of a portion of a bodily fluid sample of a vessel may be of any amount. For example, in embodiments, a portion of a portion of a bodily fluid sample of a first vessel may be a portion of a first vessel original sample or a portion of a first vessel dilution sample. In another example, in embodiments, a portion of a portion of a bodily fluid sample of a second vessel may be a portion of a second vessel original sample or a portion of a second vessel dilution sample. In embodiments provided herein involving transporting one or more vessels, each containing at least a portion of a bodily fluid sample from a sample collection site to a sample receiving site, in embodiments, one or more steps of any number of laboratory tests may be performed with a portion of the at least a portion of the bodily fluid sample in the vessel. For example, in embodiments, one or more steps of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, or 1000 or more different laboratory tests may be performed with a portion of the at least a portion of bodily fluid sample. Each different laboratory test may use a separate portion of the bodily fluid sample, or in embodiments, more than one different laboratory test may be performed with a particular portion of the bodily fluid sample. The different laboratory tests may be of the same type, different types, or a mixture of same and different types. The one or more vessels may be, for example, a first vessel or a first vessel and second vessel. In embodiments, when a bodily fluid sample from a subject transported according to systems or methods provide herein is used for more than one laboratory test, each of the laboratory tests may use the equivalent of no more than 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.1, 0.05, or 0.01 of neat bodily fluid sample (e.g. undiluted whole blood, saliva, or urine) per test. In embodiments provided herein involving obtaining at a sample collection site a plurality of vessels collectively containing a small volume bodily fluid sample from a subject, in embodiments, the total volume of the small volume bodily fluid sample obtained from the subject between all of the vessels of the plurality of vessels may be no greater than 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments provided herein involving transporting a vessel containing at least a portion of a bodily fluid sample from a sample collection site to a sample receiving site, removing at the sample receiving site from the vessel an original sample, and then generating a dilution sample from the original sample, in embodiments, the dilution may be generated step-wise or serially. In embodiments, the dilution sample may have a total volume of no more than 1000, 900, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments, the dilution sample may be diluted at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000, 50,000, or 100,000-fold relative to the original sample. In embodiments provided herein involving transporting at least a first vessel and a second vessel, each containing a portion of the small volume bodily fluid sample obtained from the subject, from a sample collection site to a sample receiving site, in embodiments, at the sample receiving site, a first vessel original sample may be removed from the first vessel and a second vessel original sample may be removed from the second vessel. From the first vessel original sample a first vessel dilution sample may be generated. From the second vessel original sample a second vessel dilution sample may be generated. The first vessel dilution sample and second vessel dilution samples may have the same or different volumes and degrees of dilution. In embodiments, multiple different dilution samples may be generated from one or both of the first vessel original sample or second vessel original sample. The different dilution samples may be used for one or more different laboratory tests, which may be of different types. In embodiments, a first vessel dilution sample may be diluted at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000, 50,000, or 100,000-fold relative to the first vessel original sample and have a total volume of no more than 1000, 900, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters, and a second vessel dilution sample may be diluted at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000, 50,000, or 100,000-fold relative to the second vessel original sample and have a total volume of no more than 1000, 900, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments provided herein involving obtaining at a sample collection site a vessel, the vessel containing a small volume bodily fluid sample obtained from a subject, in embodiments, volume of the small volume bodily fluid sample in the vessel may be no greater than 500, 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, or 2 microliters. In embodiments provided herein involving obtaining at a sample collection site a vessel, the vessel containing a small volume bodily fluid sample obtained from a subject and transporting the vessel from the sample collection site to a sample receiving site, in embodiments, the small volume bodily fluid sample may be divided into any number of portions, such as, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, or 1000 different portions. The portions may be diluted in the same or in varying amounts, and may be used for, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, or 1000 or more different laboratory tests. In embodiments provided herein involving obtaining at a sample collection site at least a vessel containing at least a portion of a small volume bodily fluid sample from a subject, in embodiments, the obtaining step may include collecting the small volume bodily fluid sample from the subject (e.g. from a fingerstick or venous draw). In embodiments provided herein involving performing at least a portion of a laboratory test in an assay unit, in embodiments, the assay unit maybe movable, such as by a fluid handling apparatus. In embodiments including two or more assay units, in embodiments, the assay units may be independently movable. In embodiments provided herein involving transport of one or more vessels containing a bodily fluid sample, in some embodiments, the vessels may have any of the characteristics of vessels described herein, or of other vessels suitable for the storage of bodily fluids. In some embodiments, the vessels may be loaded with bodily fluid sample by any of the devices or methods provided herein, or by other suitable techniques for loading a vessel have a small interior volume. For example, in certain embodiments, a vessel to be transported according to a system or method provided herein may be loaded with a sample by a syringe or a pipette tip. Optionally, at least one embodiment of a sample collection device herein can separate a single blood sample into different vessels for different pre-analytical processing. This can be achieved through fluid pathways in the device and/or through different inlet ports on the device. In at least another embodiment described herein, a method is provided for use with a bodily fluid sample from a subject, the method comprising: shipping a plurality of sample containers from a first location to a second location, wherein each of said sample containers contains a sample of about 500 uL or less and wherein interior volume of each of the sample containers is about 600 uL or less, wherein shipping of the plurality of samples containers is accomplished using a first frame sized to fit in a shipping container, said first frame comprises a plurality of openings each sized and shaped to engage at least one of the sample containers and hold the sample containers in a desired orientation; obtaining data from each of the sample containers; providing a plurality of processing frames at the second location; using said data from the sample containers to determine which of said processing frames receive which of said sample containers; and moving said sample containers from the shipping frame to the processing frame based on data provided by the sample containers and based on sorting information; and handling the processing frame to simultaneously process the sample containers processing frame. Optionally, obtaining data comprises simultaneously scanning a plurality of sample container IDs simultaneously. Optionally, scanning occurs when the containers are in the shipping frame. Optionally, scanning comprises scanning an underside surface of the shipping containers. Optionally, determining which processing frames receive which of the sample containers comprises referencing the data with at least one database at a server. Optionally, determining comprises matching container ID with subject ID. Optionally, determining comprises matching container ID with pre-processing procedure. Optionally, at least some of the sample containers contain sample having a first anticoagulant and at least some other of the sample containers have a second, different anticoagulant. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. INCORPORATION BY REFERENCE All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-1B show perspective views of a sample collection device according to one embodiment as described herein. FIGS. 2A-2C show perspective views of a sample collection device without a cap according to one embodiment as described herein. FIGS. 3A-3B show side and cross-sectional views of a sample collection device according to one embodiment as described herein. FIGS. 4A-4B show side and cross-sectional views of a sample collection device according to one embodiment as described herein. FIGS. 5A-5B show perspective views of a sample collection device according to another embodiment as described herein. FIGS. 6A-6B show side views of a sample collection device according to one embodiment as described herein. FIGS. 7A-8B show side and cross-sectional views of a sample collection device according to one embodiment as described herein. FIGS. 9A-9C show side cross-sectional views of a sample collection device at various stages of use according to one embodiment as described herein. FIGS. 10A-10B show perspective views of a sample collection device according to one embodiment as described herein. FIGS. 11A-11Z show views of various examples of sample collection devices according embodiment as described herein. FIG. 12 shows a schematic of a tip portion of a sleeve and associated balance of forces associated with one embodiment as described herein. FIGS. 13A-13D show views of various collection devices with an upward facing collection location according to embodiments as described herein FIGS. 14-15 show various views of a collection device with a single collection location according to one embodiment as described herein. FIGS. 16-17 show perspective and end views of a sample collection device using vessels having identifiers according to one embodiment as described herein. FIGS. 18A-18G show various views of sample vessels according to embodiments as described herein. FIGS. 19A-19C show view of various embodiments of a front end of a sample collection device. FIGS. 20A-21 show various embodiments of sample collection device with an integrated tissue penetrating member. FIG. 22 shows a perspective view of a collection device for use with a blood vessel or other tissue penetrator and sample collector according to an embodiment described herein. FIG. 23-28 show various view of collection devices for use with various sample collectors according to embodiments described herein. FIGS. 29A-29C show schematics of various embodiments as described herein. FIGS. 30-31 show schematic of methods according to embodiments described herein. FIG. 32 shows a schematic view of one embodiment of system described herein. FIGS. 33 to 37 show yet another embodiment of a collection device described herein FIGS. 38A-39 show various views of a thermally controlled transport container transport device according to at least one embodiment described herein. FIGS. 40A-40C show schematics of various embodiments described herein. FIG. 41 shows a perspective view of one portion of a transport container having a plurality of sample vessels therein according to at least one embodiment described herein. FIG. 42 is an exploded perspective view of one portion of a transport container having a plurality of sample vessels therein according to at least one embodiment described herein. FIG. 43 shows a perspective view of a transport container according to yet another embodiment described herein. FIG. 44 shows a schematic of a sample collection and transport process according to one embodiment described herein. FIG. 45 shows a schematic of a sample collection and transport process according to yet another embodiment described herein. FIG. 46 shows a sample collection device according to one embodiment described herein. FIG. 47 shows a schematic view of one system for unloading sample vessels from a transport container according to one embodiment described herein. FIG. 48 is a graph showing the stability of an analyte in a sample in a vessel provided herein. FIGS. 49 to 51 show one non-limiting example of tests according to at least one embodiment described herein. FIGS. 52 to 55C show various views of devices and systems according to embodiments herein. FIGS. 56A to 59B show various views of sample transport devices according to at least some embodiments herein. FIG. 60 shows a view of a system according to at least some embodiments herein. DESCRIPTION OF THE SPECIFIC EMBODIMENTS It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a compound” may include multiple compounds, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings: “Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for a sample collection well, this means that the sample collection well may or may not be present, and, thus, the description includes both structures wherein a device possesses the sample collection well and structures wherein sample collection well is not present. As used herein, the terms “substantial” means more than a minimal or insignificant amount; and “substantially” means more than a minimally or insignificantly. Thus, for example, the phrase “substantially different”, as used herein, denotes a sufficiently high degree of difference between two numeric values such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the characteristic measured by said values. Thus, the difference between two values that are substantially different from each other is typically greater than about 10%, and may be greater than about 20%, preferably greater than about 30%, preferably greater than about 40%, preferably greater than about 50% as a function of the reference value or comparator value. As used herein, a “sample” may be but is not limited to a blood sample, or a portion of a blood sample, may be of any suitable size or volume, and is preferably of small size or volume. In some embodiments of the assays and methods disclosed herein, measurements may be made using a small volume blood sample, or no more than a small volume portion of a blood sample, where a small volume comprises no more than about 5 mL; or comprises no more than about 3 mL; or comprises no more than about 2 mL; or comprises no more than about 1 mL; or comprises no more than about 500 μL; or comprises no more than about 250 μL; or comprises no more than about 100 μL; or comprises no more than about 75 μL; or comprises no more than about 50 μL; or comprises no more than about 35 μL; or comprises no more than about 25 μL; or comprises no more than about 20 μL; or comprises no more than about 15 μL; or comprises no more than about 10 μL; or comprises no more than about 8 μL; or comprises no more than about 6 μL; or comprises no more than about 5 μL; or comprises no more than about 4 μL; or comprises no more than about 3 μL; or comprises no more than about 2 μL; or comprises no more than about 1 μL; or comprises no more than about 0.8 μL; or comprises no more than about 0.5 μL; or comprises no more than about 0.3 μL; or comprises no more than about 0.2 μL; or comprises no more than about 0.1 μL; or comprises no more than about 0.05 μL; or comprises no more than about 0.01 μL. As used herein, the term “point of service location” may include locations where a subject may receive a service (e.g. testing, monitoring, treatment, diagnosis, guidance, sample collection, ID verification, medical services, non-medical services, etc.), and may include, without limitation, a subject's home, a subject's business, the location of a healthcare provider (e.g., doctor), hospitals, emergency rooms, operating rooms, clinics, health care professionals' offices, laboratories, retailers [e.g. pharmacies (e.g., retail pharmacy, clinical pharmacy, hospital pharmacy), drugstores, supermarkets, grocers, etc.], transportation vehicles (e.g. car, boat, truck, bus, airplane, motorcycle, ambulance, mobile unit, fire engine/truck, emergency vehicle, law enforcement vehicle, police car, or other vehicle configured to transport a subject from one point to another, etc.), traveling medical care units, mobile units, schools, day-care centers, security screening locations, combat locations, health assisted living residences, government offices, office buildings, tents, bodily fluid sample acquisition sites (e.g. blood collection centers), sites at or near an entrance to a location that a subject may wish to access, sites on or near a device that a subject may wish to access (e.g., the location of a computer if the subject wishes to access the computer), a location where a sample processing device receives a sample, or any other point of service location described elsewhere herein. As used herein, a “bodily fluid” may be any fluid obtained or obtainable from a subject. A bodily fluid may be, for example, blood, urine, saliva, tears, sweat, a bodil secretion, a bodily excretion, or any other fluid originating in or obtained from a subject. In particular, bodily fluids include, without limitation, blood, serum, plasma, bone marrow, saliva, urine, gastric fluid, spinal fluid, tears, stool, mucus, sweat, earwax, oil, glandular secretions, cerebral spinal fluid, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, placental fluid, amniotic fluid, cord blood, lymphatic fluids, cavity fluids, sputum, pus, meconium, breast milk and/or other secretions or excretions. As used herein, “a bodily fluid sample collector” or any other collection mechanism can be disposable. For example, a bodily fluid collector can be used once and disposed. A bodily fluid collector can have one or more disposable components. Alternatively, a bodily fluid collector can be reusable. The bodily fluid collector can be reused any number of times. In some instances, the bodily fluid collector can include both reusable and disposable components. As used herein, “a sample collection unit” and/or any other portion of the device may be capable of receiving a single type of sample, or multiple types of samples. For example, the sample collection unit may be capable of receiving two different types of bodily fluids (e.g., blood, tears). In another example, the sample collection unit may be capable of receiving two different types of biological samples (e.g., urine sample, stool sample). Multiple types of samples may or may not be fluids, solids, and/or semi-solids. For example, the sample collection unit may be capable of accepting one or more of, two or more of, or three or more of a bodily fluid, secretion and/or tissue sample. As used herein, “non-wicked, non-matrixed form” means that a liquid or suspension is not absorbed by or pulled into a webbing, mesh, fiber pad, absorbent material, absorbent structure, percolating network of fibers, or the like which alters the form of the liquid or suspension or traps components of the sample therein to an extent that the integrity of sample in liquid form is changed and the sample cannot be extracted in liquid form while still maintaining sample integrity for sample analysis. The term “sample handling system,” as used herein, refers to a device or system configured to aid in sample imaging, detecting, positioning, repositioning, retention, uptake and deposition. In an example, a robot with pipetting capability is a sample handling system. In another example, a pipette which may or may not have (other) robotic capabilities is a sample handing system. A sample handled by a sample handling system may or may not include fluid. A sampling handling system may be capable of transporting a bodily fluid, secretion, or tissue. A sampling handling system may be able to transport one or more substance within the device that need not be a sample. For example, the sample handling system may be able to transport a powder that may react with one or more sample. In some situations, a sample handling system is a fluid handling system. The fluid handling system may comprise pumps and valves of various types or pipettes, which, may comprise but not be limited to a positive displacement pipette, air displacement pipette and suction-type pipette. The sample handling system may transport a sample or other substance with aid of a robot as described elsewhere herein. The term “health care provider,” as used herein, refers to a doctor or other health care professional providing medical treatment and/or medical advice to a subject. A health care professional may include a person or entity that is associated with the health care system. Examples of health care professionals may include physicians (including general practitioners and specialists), surgeons, dentists, audiologists, speech pathologists, physician assistants, nurses, midwives, pharmaconomists/pharmacists, dietitians, therapists, psychologists, chiropractors, clinical officers, physical therapists, phlebotomists, occupational therapists, optometrists, emergency medical technicians, paramedics, medical laboratory technicians, medical prosthetic technicians, radiographers, social workers, and a wide variety of other human resources trained to provide some type of health care service. A health care professional may or may not be certified to write prescriptions. A health care professional may work in or be affiliated with hospitals, health care locations and other service delivery points, or also in academic training, research and administration. Some health care professionals may provide care and treatment services for patients in private or public domiciles, community centers or places of gathering or mobile units. Community health workers may work outside of formal health care institutions. Managers of health care services, medical records and health information technicians and other support workers may also be medical care professionals or affiliated with a health care provider. A health care professional may be an individual or an institution that provides preventive, curative, promotional or rehabilitative health care services to individuals, families, or communities. In some embodiments, the health care professional may already be familiar with a subject or have communicated with the subject. The subject may be a patient of the health care professional. In some instances, the health care professional may have prescribed the subject to undergo a clinical test. The health care professional may have instructed or suggested to the subject to undergo a clinical test conducted at the point of service location or by a laboratory. In one example, the health care professional may be the subject's primary care physician. The health care professional may be any type of physician for the subject (including general practitioners, referred practitioners or the patient's own physician optionally selected or connected through telemedicine services, and/or specialists). The health care professional may be a medical care professional. The term “rack,” as used herein, refers to a frame or enclosure for mounting multiple modules. The rack is configured to permit a module to be fastened to or engaged with the rack. In some situations, various dimensions of the rack are standardized. In an example, a spacing between modules is standardized as multiples of at least about 0.5 inches, or 1 inch, or 2 inches, or 3 inches, or 4 inches, or 5 inches, or 6 inches, or 7 inches, or 8 inches, or 9 inches, or 10 inches, or 11 inches, or 12 inches. The term “cells,” as used in the context of biological samples, encompasses samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), cells, virions, and substances bound to small particles such as beads, nanoparticles, or microspheres. Characteristics include, but are not limited to, size; shape; temporal and dynamic changes such as cell movement or multiplication; granularity; whether the cell membrane is intact; internal cell contents, including but not limited to, protein content, protein modifications, nucleic acid content, nucleic acid modifications, organelle content, nucleus structure, nucleus content, internal cell structure, contents of internal vesicles, ion concentrations, and presence of other small molecules such as steroids or drugs; and cell surface (both cellular membrane and cell wall) markers including proteins, lipids, carbohydrates, and modifications thereof. As used herein, “sample” refers to an entire original sample or any portion thereof, unless the context clearly dictates otherwise. The invention provides systems and methods for multi-purpose analysis of a sample or health parameter. The sample may be collected and one or more sample preparation step, assay step, and/or detection step may occur on a device. Various aspects of the invention described herein may be applied to any of the particular applications, systems, and devices set forth below. The invention may be applied as a stand alone system or method, or as part of an integrated system, such as in a system involving point of service health care. In some embodiments, the system may include externally oriented imaging technologies, such as ultrasound or MRI or be integrated with external peripherals for integrated imaging and other health tests or services. It shall be understood that different aspects of the invention can be appreciated and practice individually, collectively, or in combination with each other. Referring now to FIGS. 1A-1B, one embodiment of a sample collection device 100 will now be described. In this non-limiting example, the sample collection device 100 may include a collection device body 120, support 130, and base 140. In some instances, a cap 110 may be optionally provided. In one embodiment, the cap may be used to protect the opening, keeping it clean, and for covering up the bloody tip after collection. Optionally or alternatively, the cap may also be used to limit flow rate during transfer of sample fluid into the sample vessels by controlling the amount of venting provided to the capillaries. Some embodiments may include vents pathways (permanently open or operably closable) in the cap while others do not. Optionally, the collection device body 120 can include a first portion of the device 100 having one or more collection pathways such as but not limited to collection channels 122a, 122b therein, which may be capable of receiving sample B. FIG. 1A shows that sample B only partially filling the channels 122a, 122b, but it should be understood that, although partial fills are not excluded in some alternative embodiments, in most embodiments, the channels will be fully filled with sample B when the fill process is completed. In this embodiment, the base 140 may have one or more fill indicators 142a, 142b, such as but not limited to optical indicators, that may provide an indication of whether sample has reached one or more vessel housed in the base. It should be understood that although this indication may be by way of a visual indication, other indication methods such as audio, vibratory, or other indication methods may be used in place of or in combination with the indication method. The indicators may be on at least one of the vessels. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. Although not shown for ease of illustration, the support 130 may also include one or more fill indicators showing whether a desired fill level has been reached in the channels 122a and 122b. This may be in place of or in addition to fill indicators 142a, 142b. Of course, the one or more pathway fill indicators can be positioned on a different part and is not limited to being on support 130. It should be understood that although this indication of fill level in one or more of the channels 122a and 122b may be by way of a visual indication, other indication methods such as audio, vibratory, or other indication methods may be used in place of or in combination with the indication method. The indicator may be on at least one of the collection pathways. Optionally, indicators are on all of the collection pathways. In the present embodiment, the support 130 can be used to join the body 120 and the base 140 to form an integrated device. It should be understood that although the device body 120, support 130, and base 140 are recited as separate parts, one or more of those parts may be integrally formed to simplify manufacturing and such integration is not excluded herein. In some embodiments herein, a cap 110 may be optionally provided. In one non-limiting example, the cap may be fitted over a portion of the collection device body 120. The cap 110 may be detachable from the collection device body 120. In some instances, the cap 110 may be completely separable from the collection device body 120, or may retain a portion that is connected to the collection device body, such as but not limited to being hinged or otherwise linked to the collection device. The cap 110 may cover a portion of the collection device body 120 containing exposed ends of one or more channels therein. The cap 110 may prevent material, such as air, fluid, or particulates, from entering the channels within the device body, when the cap is in place. Optionally, the cap 110 may attach to the collection body 120 using any technique known or later developed in the art. For instance, the cap may be snap fit, twist on, friction-fit, clamp on, have magnetic portions, tie in, utilize elastic portions, and/or may removably connect to the collection device body. The cap may form a fluid-tight seal with the collection device body. The cap may be formed from an opaque, transparent, or translucent material. In one embodiment, a collection device body 120 of a sample collection device may contain at least a portion of one or more collection pathways such as but not limited to channels 122a, 122b therein. It should be understood that collection pathways that are not channels are not excluded. The collection device body may be connected to a support 130 that may contain a portion of one or more channels therein. The collection device body may be permanently affixed to the support or may be removable with respect to the support. In some instances, the collection device body and the support may be formed of a single integral piece. Alternatively, the collection device body and support may be formed from separate pieces. During the operation of the device the collection device and support do not move relative to one another. Optionally, the collection device body 120 may be formed in whole or in part from an optically transmissive material. For example, the collection device body may be formed from a transparent or translucent material. Optionally, only select potions of the body are transparent or translucent to visualize the fluid collection channel(s). Optionally, the body comprises an opaque material but an opening and/or a window can be formed in the body to show fill levels therein. The collection device body may enable a user to view the channels 122a, 122b within and/or passing through the device body. The channels may be formed of a transparent or translucent material that may permit a user to see whether sample B has traveled through the channels. The channels may have substantially the same length. In some instances a support 130 may be formed of an opaque material, a transparent material, or a translucent material. The support may or may not have the same optical characteristics of the collection device body. The support may be formed from a different material as the collection device body, or from the same material as the collection device body. The collection device body 120 may have any shape or size. In some examples, the collection device body may have a circular, elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal), pentagonal, hexagonal, octagonal, or any other cross-sectional shape. The cross-sectional shape may remain the same or may vary along the length of the collection device body. In some instances, the collection device body may have a cross-sectional area of less than or equal to about 10 cm2, 7 cm2, 5 cm2, 4 cm2, 3 cm2, 2.5 cm2, 2 cm2, 1.5 cm2, 1 cm2, 0.8 cm2, 0.5 cm2, 0.3 cm2, or 0.1 cm2. The cross-sectional area may vary or may remain the same along the length of the collection device body 120. The collection device body may have a length of less than or equal to about 20 cm, 15 cm, 12 cm, 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, 1 cm, 0.5 cm, or 0.1 cm. The collection device body 120 may have a greater or lesser length than the cap, support or base, or an equal length to the cap, support, or base. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. In one embodiment, the collection pathways such as but not limited to channels 122a, 122b may also have a selected cross-sectional shape. Some embodiments of the channels may have the same cross-sectional shape along the entire length of the channel. Optionally, the cross-sectional shape may remain the same or may vary along the length. For example, some embodiments may have one shape at one location and a different shape at one or more different locations along the length of the channel. Some embodiments may have one channel with one cross-sectional shape and at least one other channel of a different cross-sectional shape. By way of non-limiting example, some may have a circular, elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal), pentagonal, hexagonal, octagonal, or any other cross-sectional shape. The cross-sectional shape may be the same for the body, support, and base, or may vary. Some embodiments may select a shape to maximize volume of liquid that can be held in the channels for a specific channel width and/or height. Some may have one of the channels 122a, 122b with one cross-sectional shape while another channel has a different cross-sectional shape. In one embodiment, the cross-sectional shape of the channel can help maximize volume therein, but optionally, it can also optimize the capillary pulling forces on the blood. This will allow for maximized rate of filling. It should be understood that in some embodiments, the cross-sectional shape of the channel can directly affect the capillary forces. By way of non-limiting example, a volume of sample can be contained in a shallow but wide channel, or a rounded channel, both containing the same volume, but one might be desirable over the other for filling speed, less possibility of air entrapment, or factors related the performance of the channel. Although the channels may have any shape or size, some embodiments are configured such that the channel exhibits a capillary action when in contact with sample fluid. In some instances, the channel may have a cross-sectional area of less than or equal to about 10 mm2, 7 mm2, 5 mm2, 4 mm2, 3 mm2, 2.5 mm2, 2 mm2, 1.5 mm2, 1 mm2, 0.8 mm2, 0.5 mm2, 0.3 mm2, or 0.1 mm2. The cross-sectional size may remain the same or may vary along the length. Some embodiments may tailor for greater force along a certain length and then less in a different length. The cross-sectional shape may remain the same or may vary along the length. Some channels are straight in configuration. Some embodiments may have curved or other shaped path shapes alone or in combination with straight portions. Some may have different orientations within the device body 120. For example, when the device is held substantially horizontally, one or more channels may slope downward, slope upward, or not slope at all as it carries fluid away from the initial collection point on the device. The channels 122a, 122b may be supported by the device body 120 and/or the support 130. In some instances, the entire length of the channels may be encompassed within the combination of the device body and the support. In some instances, a portion of the channels may be within the device body and a portion of the channels may be within the support. The position of the channels may be affixed by the device body and/or the support. In some embodiments, the channels may be defined as lumens inside a hollow needle. In some embodiments, the channels are only defined on three sides, with at least one side that is open. Optionally, a cover layer separate from the body may define the side that would otherwise be open. Some embodiments may define different sides of the channel with different materials. These materials can all be provided by the body or they may be provided by different pieces of the collection device. Some embodiments may have the channels all in the same plane. Optionally, some may have a shape that takes at least a portion of the channel to a different plane and/or orientation. Optionally, some channels may be entirely in a different plane and/or orientation. In some instances, a plurality of channels may be provided. In some embodiments, one channel splits into two or more channels. Optionally, some channels split into an even larger number of channels. Some channels may include a control mechanism such as but not limited to a valve for directing flow in the channel(s). At least a portion of the channels may be substantially parallel to one another. Alternatively, no portion of the channels need be parallel to one another. In some instances, at least a portion of the channels are not parallel to one another. Optionally, the channels may be slightly bent. Optionally, channels may have one cross-sectional area at one location and a smaller cross-sectional area at a different location along the channel. Optionally, channels may have one cross-sectional area at one location and a larger cross-sectional area at a different location along the channel. For some embodiments of the Y design, it may be desirable that the channels would have vents placed appropriately to define the sample for each vial such that there would not be sample pulled or cross contamination from other channels. By way of non-limiting example, one embodiment with vents is shown in FIG. 11I. A base 140 may be provided within the sample collection device. The base may be connected to the support 130. In some instances, a portion of the base may insertable within the support and/or a portion of the support may be insertable within the base. The base may be capable of moving relative to the support. In some instances, a sample collection device may have a longitudinal axis extending along the length of the sample collection device. The base and/or support may move relative to one another in the direction of the longitudinal axis. The base and/or support may be capable of moving a limited distance relative to one another. Alternatively, the base may be fixed relative to the support. The base may be provided at an end of the sample collection device opposite an end of the sample collection device comprising a cap 110. Optionally, some embodiments may include an integrated base/vessel part so that there are no longer separate vessels that are assembled into the base pieces. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. A base 140 may house one or more vessel therein. The vessels may be in fluidic communication with the channels and/or may be brought into fluidic communication with the channels. An end of a channel may be within the vessel or may be brought within the vessel. A base may have one or more optical indicator 142a, 142b that may provide a visual indication of whether sample has reached one or more vessel housed in the base. In some embodiments, the optical indicators may be optical windows that may enable a user to see into the base. The optical window may be formed from a transparent and/or translucent material. Alternatively, the optical window may be an opening without any material therein. The optical window may enable a user to directly view a vessel within the base. The vessel within the base may be formed from a transparent and/or translucent material that may enable a user to see if a sample has reached the vessel of the base. For example, if blood is transported along the channel to the vessels, the vessels may visually indicate the presence of blood therein. In other embodiments, the optical indicators may include other features that may indicate the vessel has been filled. For example, one or more sensors may be provided within the base or vessel that may determine whether a sufficient amount of sample has been provided within the vessel. The one or more sensors may provide a signal to an optical indicator on the base that may indicator whether the sample has been provided to the vessel and/or the amount of sample that has been provided to the vessel. For example, the optical indicator may include a display, such as but not limited to an LCD display, light display (e.g., LED display), plasma screen display that may provide an indication that the vessels have been sufficiently filled. In alternative embodiments, an optical indicator need not be provided, but alternative indicators may be provided, such as but not limited to an audio indicator or temperature controlled indicator can be used to indicate when the vessels have been filed. FIGS. 2A-2C provide views of a sample collection device 200 without a cap 110. The sample collection device 200 may include a body 220, support 230, and base 240. The body may be connected to the support. In the present embodiment, the base 240 may be connected to the support at an end opposing the end connected to the body. The body may support and/or contain at least a portion of one, two, or more channels 222a, 222b. The channels may be capable of receiving a sample 224a, 224b from a sample receiving end 226 of the device. The body 220 may have a hollow portion 225 therein. Alternatively, the body may be formed from a solid piece. The channels 222a, 222b may be integrally formed into the body. For example, they may be passageways that pass through a solid portion of the body. The passageways may have been drilled through, or formed using lithographic techniques. Alternatively, the channels may be separate structures that may be supported by the body. For example, the channels may be formed of one or more tube that may be supported by the body. In some instances, the channels may be held in place at certain solid portions of the body and may pass through one or more hollow portion of the body. Optionally, the body 220 may be formed from two pieces joined together to define the channels 222a and 222b therein. The channels 222a, 222b may include one or more features or characteristics mentioned elsewhere herein. At least a portion of the channels may be substantially parallel to one another. Alternatively, the channels may be at angles relative to one another. In some embodiments, the channels may have a first end that may be at a sample receiving end 226 of the sample collection device. The first end of a channel may be an open end capable of receiving a sample. In some embodiments, the ends of each of the channels may be provided at the sample receiving end of the sample collection device. One, two, or more channels may have a first end at the sample receiving end of the sample collection device. Separate channels can be used to minimize the risk of cross contamination of blood between one channel and another channel. Optionally, the channels may have an inverted Y configuration with the channels starting with a common channel and the splitting into two or more separate channels. This Y configuration may be useful in situation where contamination is not an issue. Optionally, an alternative method to a Y configuration would be a straight channel and have the sample collection vessels move to sequentially to engage the same needle from a straight channel. In some instances, a plurality of channels may be provided. The ends of the channels at the sample receiving end may be in close proximity to one another. The ends of the channels at the sample receiving end may be adjacent to one another. The ends of the channels at the sample receiving end may be contacting one another, or may be within about 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 12 mm, 15 mm, or 20 mm of one another edge to edge, or center to center. The channels may diverge from one another from the sample receiving end. For example, the other ends of the channels opposing the ends of the channels at the sample receiving ends may be further apart from one another. They may be greater than or equal to about 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 12 mm, 15 mm, 20 mm, 25 mm, or 30 mm apart from one another edge to edge or center to center. In some embodiments, the body 220 may have an elongated shape. The body may have one or more tapered portion 228 at or near the sample receiving end 226. The sides of the body may converge at the sample receiving end. The tapered portion and/or sample receiving end may be curved. Alternatively, edges may be provided. A surface of the tapered portion may be provided at any angle relative to the longitudinal axis of the device. For example, the tapered portion may be about 5 degrees, 10 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, or 75 degrees relative to the longitudinal axis. The sample receiving end 226 of the device may be contacted to a sample. The sample may be provided directly from the subject. The sample receiving end may contact the subject or a sample that is contacting or being exuded from the subject. For example, the sample receiving end may contact a drop of blood on a subject's finger. The blood may enter the channels. The blood may be transported through the channels via capillary action, pressure differential, gravity, or any other motive force. The blood may travel through the channels from a sample receiving end to a sample delivery end. The sample delivery end may be in fluid communication or may be brought into fluid communication with one or more vessels housed within a base of the device. The sample may pass from the channels to the vessels. The sample may be driven into the vessels via pressure differential, capillary action, gravity, friction, and/or any other motive force. Optionally, the sample might also be blood introduced with a pipette, syringe, etc. . . . . It should be understood that although FIG. 2B shows that sample B only partially filling the channels 222a, 222b, but in most embodiments, the channels will be fully filled with sample B when the fill process is completed. FIGS. 3A-3B show an example of a sample collection device 300 prior to bringing the channels 322a, 322b into fluid communication with one or more vessels 346a, 346b housed within a base 340 of the device. The sample collection device may include a cap 310, body 320, support 330, and base 340. The body and/or support may support and/or encompass at least a portion of one, two, or more channels. The base may support and/or encompass one, two, or more vessels. In one embodiment, a body 320 and/or support 330 may support one or more channels 322a, 322b in the sample collection device. In one example, two channels are provided, although descriptions relating to a two-channel embodiment may apply to any number of channels including but not limited to 1, 3, 4, 5, 6, or more channels. Each of the channels may have a first end 323a, 323b that may be provided at a sample receiving end 326 of the device. The first ends of the respective channels may be open. The channels may be open to ambient air. When the first ends of the channels contact a fluid, such as blood, the fluid may be drawn into the channels. Blood may be drawn in via capillary action, or any other of the techniques described elsewhere herein. The blood may travel along the length of the channels to the respective second ends 325a, 325b of the channels. The channels may be fluidically segregated from one another. For example, a fluid may enter a first channel 322a via a first end 323a, pass through the length of the channel, and exit the first channel at the second end 325a. Similarly, fluid may enter a second channel 322b via a first end 323b, pass through the length of the channel, and exit the second channel at the second end 325b. The first and second channels may be fluidically segregated so that fluid from the first channel does not pass into the second channel and vice versa. In some embodiments, the fluid may pass to the second ends of the channels without exiting initially. The channels 322a, 322b may have a diverging configuration. For example, the first ends 323a, 323b of the channels may be closer together than the second ends 325a, 325b of the channels. More space may be provided between the second ends of the channels than between the first ends of the channels. The first ends of the channels may or may not be in contact with one another. The first ends of the channels may be adjacent to one another. A base 340 may be connected to a support 330 of the sample collection device. The base 340 may or may not directly contact the support. The base may be movable relative to the support during use of the device. In some embodiments, the base may slide in a longitudinal direction relative to the support. In some instances, the base may slide in a longitudinal direction relative to the support without rotating. In some instances, the base may slide co-axially with the support without rotating. In some instances, a base may rotate while moving relative to the support. A portion of the base may fit within a portion of the support, or vice versa. For example, a portion of the base may be insertable into a portion of the support and/or a portion of the support may be insertable into the base. One or more stop feature may be provided in the base and/or the frame to provide a controlled degree of movement between the base and the support. The stop feature may include a shelf, protrusion or groove. The base 340 may be capable of supporting one or more vessels 346a, 346b. The base may have a housing that may at least partially surround the one or more vessels. In some instances, the vessels may be completely surrounded when the base is engaged with a support 330. The base may have one or more indentation, protrusion, groove, or shaped feature to accept the vessels. The base may be formed with a shape that is complementary to the shape of the vessels. The vessels may be maintained in an upright position relative to the base. The same number of vessels may be provided as the number of channels. For example, if N channels are provided, then N vessels may be provided, wherein N is a positive whole number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or more). Each channel may correspond to a respective vessel. In one example, a sample collection device may have a first channel and a second channel, as well as a respective first vessel and second vessel. A first channel 322a may be in or may be configured to be brought into fluid communication with a first vessel 346a, and a second channel 322b may be in or may be configured to be brought into fluid communication with a second vessel 346b. In some embodiments, each vessel may have a body 349a, 349b and a cap 348a, 348b. In some instances, the vessel body may be formed from a transparent or translucent material. The vessel body may permit a sample provided within the vessel body to be visible when viewed from outside the vessel. The vessel body may have a tubular shape. In some instances, the vessel body may have a cylindrical portion. The bottom of the vessel may be flat, tapered, rounded, or any combination thereof. The vessels may comprise an open end and a closed end. The open end may be a top end of the vessel, which may be at the end of the vessel closer to one or more channel. The closed end may be a bottom end of the vessel, which may be at the end of the vessel further from one or more channel. Various embodiments of vessels may be described in greater detail elsewhere herein. A base 340 may have one or more optical indicators, such as optical windows 342a, 342b. The optical windows may be positioned over the vessels 346a, 346b. In some instances, the optical windows may be positioned over the vessel bodies. A single window may provide a view to a single vessel or to multiple vessels. In one example, the same number of optical windows may be provided as vessels. Each optical window may correspond to a respective vessel. Both the optical window and vessels may be formed of an optically transmissive material that may permit a user to view whether a sample has reached the vessel from outside the sample collection device. In some embodiments, there may be optical windows of the channels 322a and 322b so that a user may observe when a desired fill level has been reached in the channels. Some embodiments where the body 320 is entirely transparent or translucent, there may be a marker or indicator mark along the channels to note when a desired fill level has been reached. The vessels may be sized to contain a small fluid sample. In some embodiments, the vessels may be configured to contain no more than about 5 ml, 4 ml, 3 ml, 2 ml, 1.5 mL, 1 mL, 900 uL, 800 uL, 700 uL, 600 uL, 500 uL, 400 uL, 300 uL, 250 uL, 200 uL, 150 uL, 100 uL, 80 uL, 50 uL, 30 uL, 25 uL, 20 uL, 10 uL, 7 uL, 5 uL, 3 uL, 2 uL, 1 uL, 750 nL, 500 nL, 250 nL, 200 nL, 150 nL, 100 nL, 50 nL, 10 nL, 5 nL, or 1 nL. The vessels may be configured to contain no more than several drops of blood, a drop of blood, or no more than a portion of a drop of blood. The vessels may contain a cap 348a, 348b. The plug may be configured to fit over an open end of the vessel. The cap may block the open end of the vessel. The cap may fluidically seal the vessel. The cap may form a fluid-tight seal with the vessel body. For example, the cap may be gas and/or liquid impermeable. Alternatively, the cap may permit certain gases and/or liquids to pass through. In some instances, the cap may be gas permeable while being liquid impermeable. The cap may be impermeable to the sample. For example, the cap may be impermeable to whole blood, serum or plasma. In some instances, a portion of the cap may fit into a portion of the vessel body. The cap may form a stopper with the vessel body. The cap may include a lip or shelf that may hang over a portion of the vessel body. The lip or shelf may prevent the cap from sliding into the vessel body. In some instances, a portion of a cap may overlie a top and/or side of the vessel body. Any description herein of vessels may be applied in combination with the sample collection device. Optionally, some embodiments may include an additional part in the vessel assembly such as cap holder. In one embodiment, the purpose of the cap holder is to maintain a tight seal between the cap and vessel. In one embodiment, the cap holder engages an attachment, lip, indentation, or other attachment location on the outside of the vessel to hold the cap in position. Optionally, some embodiments can combine the function of both the cap and the cap holder into one component. One or more engagement assemblies may be provided. The engagement assembly may include a channel holder 350 and/or a force-exerting component, such as a spring 352 or elastic. In one embodiment, the holder 350 may keep the adapter channel 354 affixed to the support. As will be described elsewhere herein, the adaptor channel 354 may be formed integrally with the collection channel or may be a discrete element that may be a stand-alone piece, part of the collection channel, or part of the vessel. In one embodiment, the holder 350 may prevent the adapter channel 354 from sliding relative to the support. The holder 350 may optionally provide a support upon which a force-exerting component, such as a spring, may rest. In one example, the engagement assemblies may each include a spring 352 which may exert a force so that the base 340 is at an extended state, when the spring is at its natural state. When the base is at its extended state, space may be provided between the vessels 346a, 346b and the engagement assemblies. In some instances, when the base 340 is in its extended state, the second ends of the channels may or may not contact the caps of the vessels. The second ends of the channels 325a, 325b may be in a position where they are not in fluid communication with the interiors of the vessels. A sample collection device may have any number of engagement assemblies. For example, the same number of engagement assemblies may be provided as number of channels. Each channel may have an engagement assembly. For example, if a first channel and a second channel are provided, a first engagement assembly may be provided for the first channel, and a second engagement assembly may be provided for the second channel. The same number of engagement assemblies and vessels may be provided. In one embodiment, the engagement assembly may house an adapter channel 354 such as but not limited to an elongate member with angled, tapered or pointed end 327a and 327b. It should be understood that in some embodiments, the ends 327a and 327b are part of a needle that is formed separate from the channels 322a and 322b and then coupled to the channels 322a and 322b. The needles may be formed of the same or different material from the body defining the channels 322a and 322b. For example, some may use a metal to form the needles and a polymer or plastic material for the body defining channels 322a and 322b. Optionally, some embodiments may form the ends 327a and 327b on a member that is integrally formed with the channels 322a and 322b. In some instances, the second end of the channel may be configured to penetrate a material, such as a cap 348a, 348b of the vessel. In some embodiments, a portion of the adaptor channel 354 may be insertable within the collection channel or a portion of the collection channel may be insertable within the adaptor channel, or the two may be configured to align flush. Optionally, some embodiments may integrally form the adapter channel 354 with the collection channel 322a. It should be understood that FIGS. 3B (and 4B) shows that sample B only partially filling the channels 122a, 122b, but, in most embodiments, the channels will be fully filled with sample B when the fill process is completed. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. FIGS. 4A-4B show an example of a sample collection device 400 having channels 422a, 422b that are in fluid communication with the interior of vessels 446a, 446b within the device. The sample collection device may include a cap 410, body 420, support 430, and base 440. The body and/or support may support and/or encompass at least a portion of one, two, or more channels. The base may support and/or encompass one, two, or more vessels. In one embodiment, a body 420 and/or support 430 may support one or more channels 422a, 422b in a sample collection device. For example, a first channel and second channel may be provided. Each of the channels may have a first end 423a, 423b that may be provided at a sample receiving end 426 of the device. The first ends of the respective channels may be open. The channels may be open to ambient air. When the first ends of the channels contact a fluid, such as blood, the fluid may be drawn into the channels. The fluid may be drawn in via capillary action, or any other of the techniques described elsewhere herein. The fluid may travel along the length of the channels to the respective second ends 425a, 425b of the channels. In some embodiments, the fluid may reach the second ends of the channels via capillary action or other techniques described herein. In other embodiments, the fluid need not reach the second ends of the channels. The channels may be fluidically segregated from one another. In some embodiments, the fluid may pass to the second ends of the channels without exiting when the channels are not in fluid communication with the interiors of the vessels 446a, 446b. For example, the fluid may be drawn into the channel via capillary action, which may cause the fluid to flow to or near the end of the channel without causing the fluid to exit the channel. A base 440 may be connected to a support 430 of the sample collection device. The base may be movable relative to the support during use of the device. In some embodiments, the base may slide in a longitudinal direction relative to the support. In one example, the base may have (i) an extended position where the channels are not in fluid communication with the interior of the vessels, and (ii) a compressed position where the channels are in fluid communication with the interior of the vessels. A sample collection device may be initially provided in an extended state, as shown in FIG. 3. After the sample has been collected and flown through the length of the channel, a user may push the base in to provide the sample collection device in its compressed state, as shown in FIG. 4. Once the base has been pushed in, the base may naturally remain pushed in, or may spring back out to an extended state, once the pushing force is removed. In some instances, a base may be pulled out to an extended state, or may be pulled out completely to provide access to vessels therein. The base 440 may be capable of supporting one or more vessels 446a, 446b. The base may have a housing that may at least partially surround the one or more vessels. In some instances, the vessels may be completely surrounded when the base is engaged with a support 430. The base may have one or more indentation, protrusion, groove, or shaped feature to accept the vessels. The base may be formed with a shape that is complementary to the shape of the vessels. The vessels may be maintained in an upright position relative to the base. The same number of vessels may be provided as the number of channels. Each channel may correspond to a respective vessel. In one example, a sample collection device may have a first channel and a second channel, as well as a respective first vessel and second vessel. A first channel 422a may be in or may be configured to be brought into fluid communication with a first vessel 446a, and a second channel 422b may be in or may be configured to be brought into fluid communication with a second vessel 446b. The first channel may initially not be in fluid communication with a first vessel and the second channel may initially not be in fluid communication with the second vessel. The first and second channels may be brought into fluid communication with the interiors of the first and second vessels respectively when the base is pushed in relative to the support. The first and second channels may be brought into fluid communication with the first and second vessels simultaneously. Alternatively, they need not be brought into fluid communication simultaneously. The timing of the fluid communication may depend on the height of the vessel and/or the length of the channel. The timing of the fluid communication may depend on the relative distances between the second end of the channel and the vessel. In some embodiments, each vessel may have a body 449a, 449b and a cap 448a, 448b. The vessel body may have a tubular shape. In some instances, the vessel body may have a cylindrical portion. The bottom of the vessel may be flat, tapered, rounded, or any combination thereof. The vessels may comprise an open end and a closed end. The open end may be a top end of the vessel, which may be at the end of the vessel closer to one or more channel. The closed end may be a bottom end of the vessel, which may be at the end of the vessel further from one or more channel. A base 440 may have one or more optical indicators, such as optical windows 442a, 442b. The optical windows may be positioned over the vessels 446a, 446b. In some instances, the optical windows may be positioned over the vessel bodies. Both the optical window and vessels may be formed of an optically transmissive material that may permit a user to view whether a sample has reached the vessel from outside the sample collection device. In some embodiments, the vessels may incorporate markings on the vessels themselves to indicate fill level requirements. The vessels may contain a cap 448a, 448b. The cap may be configured to fit over an open end of the vessel. The cap may block the open end of the vessel. The cap may fluidically seal the vessel. The cap may form a fluid-tight seal with the vessel body. For example, the cap may be impermeable to whole blood, serum or plasma. In some instances, a portion of the cap may fit into a portion of the vessel body. The cap may include a lip or shelf that may hang over a portion of the vessel body. In some embodiments, the cap may have a hollow or depression. The hollow or depression may assist with guiding a second end of the channel to a center of the cap. In some instances, when the sample collection device is in an extended state, a second end of a channel 425a, 425b may lie above the cap of the vessel. The second end of the channel may or may not contact the vessel cap. In some instances, the second end of the channel may rest within a hollow or depression of the cap. In some instances, the second end of the channel may partially penetrate the cap without reaching the interior of the vessel. Optionally, some embodiments of the cap might include a crimping piece to hold vacuum. A second end of a channel may have an angled, tapered or pointed end 427a and 427b. It should be understood that in some embodiments, the ends 427a and 427b are part of a needle that is formed separate from the channels 422a and 422b and then coupled to the channels 422a and 422b. The needles may be formed of the same or different material from the body defining the channels 422a and 422b. For example, some may use a metal to form the needles and a polymer or plastic material for the body defining channels 422a and 422b. Optionally, some embodiments may form the ends 427a and 427b on a member that is integrally formed with the channels 422a and 422b. In some instances, the second end of the channel may be configured to penetrate a material, such as a cap 448a, 448b of the vessel. The cap may be formed of a material that may prevent sample from passing through in the absence of a penetrating member. The cap may be formed from a single solid piece. Alternatively, the cap may include a slit, opening, hole, thin portion, or any other feature that may accept a penetrating member. A slit or other opening may be capable of retaining sample therein, when the penetrating member is not in the slit or opening, or when the penetrating member is removed from the slit or opening. In some instances, the cap may be formed from a self-healing material, so that when a penetrating member is removed, the opening formed by the penetrating member closes up. The second end of the channel may be a penetrating member that may pass through the cap and into the interior of the vessel. In some embodiment, it should be clear that the penetrating member may be hollow needles that allow sample to pass through, and not just needles for piercing. In some embodiments, the piercing tip can be a non-coring design such as but not limited to a tapered cannula that pierces without coring the cap material. One or more engagement assemblies may be provided. The engagement assembly may include a channel holder 450 and/or a force-exerting component, such as a spring 452 or elastic. In one embodiment, the holder 450 may keep the adaptor channel 454 affixed to the support. As will be described elsewhere herein, the adaptor channel 454 may be formed integrally with the collection channel or may be a discrete element that may be a stand-alone piece, part of the collection channel, or part of the vessel. In one embodiment, the holder 450 may prevent the adaptor channel 454 from sliding relative to the support. The holder 450 may optionally provide a support upon which a force-exerting component, such as a spring, may rest. In one example, the engagement assemblies may include a spring 452 which may exert a force so that the base is at its extended state, when the spring is at its natural state. When the base is at its extended state, space may be provided between the vessels 446a, 446b and the engagement assemblies. The second ends of the channels 425a, 425b may be in a position where they are not in fluid communication with the interiors of the vessels. A sample collection device may have any number of engagement assemblies. For example, the same number of engagement assemblies may be provided as number of channels. Each channel may have an engagement assembly. For example, if a first channel and a second channel are provided, a first engagement assembly may be provided for the first channel, and a second engagement assembly may be provided for the second channel. In one embodiment, the same number of engagement assemblies and vessels may be provided. When the base is pressed in, the spring 452 may be compressed. The second ends 425a, 425b of the channels may penetrate the caps of the vessels. The second ends of the channels may enter the interior of the vessel. In some instances, a force may be provided to drive the fluid from the channels into the vessels. For example, a pressure differential may be generated between the first and second ends of the channels. A positive pressure may be provided at the first end 423a, 423b of the channels and/or a negative pressure may be provided at the second end of the channels. The positive pressure may be positive relative to the pressure at the second end of the channel, and/or ambient air. The negative pressure may be negative relative to the pressure at the first end of the channel and/or ambient air. In one example, the vessels may have a vacuum therein. When the second end of a channel penetrates a vessel, the negative pressure within the vessel may pull the sample into the vessel. In alternative embodiments, the sample may enter the vessel driven by capillary forces, gravity, or any other motive force. In embodiments, the vessel does not have a vacuum therein. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. In some instances, different types of motive forces may be used at different stages of sample collection. Thus, one type of motive force may be used to draw the sample into the channel, and then a different type of motive force may be used to move sample from the channel into the vessel. For example, a capillary force may draw the sample into a channel, and a pressure differential may drive the sample from the channel into the vessel. Any combinations of motive forces may be used to draw sample into the channel and into the vessel. In some embodiments, the motive force(s) used to draw sample into the channel is different from motive force(s) used to draw sample into the vessel. In some alternative embodiments, the motive force(s) may be the same for each stage. In some embodiments, the motive force(s) are applied sequentially or at defined time periods. By way of non-limiting example, motive force(s) to draw sample into the vessel is not applied until the at least one channel has reach a minimum fill level. Optionally, motive force(s) to draw sample into the vessel is not applied until the at least two channels have each reach a minimum fill level for that channel. Optionally, motive force(s) to draw sample into the vessel is not applied until all channels have each reach a minimum fill level for that channel. In some embodiments, the motive force(s) are applied simultaneously. Some embodiments may use a pressurized gas source coupled to the sample collection device and configured to push collected bodily fluid from the one or more channels into their respective vessels. Optionally, some may use a vacuum source not associated with the vessels to pull sample fluid towards the vessels. Additional, some embodiments of the channel may be configured such that there is sufficient capillary force within the channel such that once filled, the force is greater than that of gravity so that sample does not escape from the channel based only on gravitation force. An additional motive force is used to break the hold of the capillary action of the channel(s). Optionally, as described elsewhere herein, a device such as but not limited to a sleeve may contain the bodily fluid from exiting the channel at the end closest to the vessel, thus minimizing any loss until transfer to the vessel is initiated. Optionally, other materials such as but not limited to a lyosphere, sponge, or other motive force provider may be used to provide motive force that draws sample into the vessel. When multiple forces are being used, this may be a primary, secondary, or tertiary motive force to draw sample into the vessel. Optionally, some embodiments may include a push-type motive force provider such as but not limited to a plunger to move the sample in a desired manner. Some time may elapse after a sample has been introduced to a channel for traveling along the length of the channel. A user may introduce a sample to the sample collection device and may wait for the sample to travel the length of the channel. One or more optical indicator may be provided, which may indicate whether the sample has reached a desired fill level, such as not limited to the end of the channel. In other embodiments, the user may wait a predetermined amount of time before pushing in the base. The base may be pushed in after the user has determined the sample has traveled a sufficient length of the channel and/or a sufficient amount of time has passed since the sample was introduced. After the base is pushed in, the channels may be brought into fluid communication with the vessels, and sample may flow from the channel into the vessels. An optical indicator may be provided so that a user may know when the vessels have been filled. Once the vessels have been filled, they may be transferred to a desired location, using systems and methods described elsewhere herein. In some instances, the entire sample collection device may be transferred. The cap may be placed on the sample collection device for transfer. In other embodiments, the base portion and/or support portion may be removable from the rest of the device. In one example, the base may be removed from the sample collection device, and the vessels may be transferred along with the base. Alternatively, the base may be removed from the sample collection device to provide access to the vessels, and the vessels may be removed from the device and transmitted. The removal of the base may involve some disassembly of the sample collection device to detach the base. This may involve using sufficient force to overcome detents or stops built into the device to prevent accidental disengagement. Optionally, some other positive act such as but not limited to disengaging a latch or other locking mechanism may be performed by a user before detaching the base. Optionally, some embodiments may allow for removal of the vessels without removal of the base, but allow for access to the vessels by way of openings, access ports, or open-able covers on the base. In some embodiments, one or more of the channels and/or vessels may comprise features described elsewhere herein, such as separation members, coatings, anti-coagulants, beads, or any other features. In one example, the sample introduced to the sample collection device may be whole blood. Two channels and respective vessels may be provided. In this non-limiting example, each of the channels has a coating such as but not limited to an anti-coagulant coating in the channel. Such an anti-coagulant coating can serve one or more of the following functions. First, the anti-coagulant can prevent whole blood from clotting inside the channel during the sample collection process. Depending on the amount of whole blood to be collected, clotting could prematurely clog the channel before sufficient amount of blood has been brought into the channel. Another function is to introduce anti-coagulant into the whole blood sample. By have the anti-coagulant in the channel, this process can begin earlier in the collection process versus some embodiments which may only have it the vessels 446a or 446b. This early introduction of anti-coagulant may also be advantageous in case the whole blood sample will be led along a pathway that may have portions that are not coated with anti-coagulant, such as but not limited to, the inner surfaces of a needle connected to the channels 422a or 422b. Optionally, some embodiments may include surfactants that can be used to modify the contact angle (wettability) of a surface. In some embodiments the inner surface of the channel and/or other surfaces along the fluid pathway such as but not limited to the sample inlet to the interior of a sample collection vessel may be coated with a surfactant and/or an anti-coagulant solution. The surfactant provides a wettable surface to the hydrophobic layers of the fluidic device and facilitate filling of the metering channel with the liquid sample, e.g., blood. The anti-coagulant solution helps prevent the sample, e.g., blood, from clotting when provided to the fluidic device. Exemplary surfactants that can be used include without limitation, Tween, TWEEN®20, Thesit®, sodium deoxycholate, Triton, Triton®X-100, Pluronic and/or other non-hemolytic detergents that provide the proper wetting characteristics of a surfactant. EDTA and heparin are non-limiting anti-coagulants that can be used. In one non-limiting example, the embodiment the solution comprises 2% Tween, 25 mg/mL EDTA in 50% Methanol/50% H20, which is then air dried. A methanol/water mixture provides a means of dissolving the EDTA and Tween, and also dries quickly from the surface of the plastic. The solution can be applied to the channel or other surfaces along the fluid flow pathway by any technique that will ensure an even film over the surfaces to be coated, such as, e.g., pipetting, spraying, printing, or wicking. It should also be understood for any of the embodiments herein that a coating in the channel may extend along the entire path of the channel. Optionally, the coating may cover a majority but not all of the channel. Optionally, some embodiments may not cover the channel in the areas nearest the entry opening to minimize the risk of cross-contamination, wherein coating material from one channel migrates into nearby channels by way of the channels all being in contact with the target sample fluid at the same time and thus having a connecting fluid pathway. Although embodiments herein are shown with two separate channels in the sample collection device, it should be understood that some embodiments may use more than two separate channels. Optionally, some embodiments may use less than two fully separate channels. Some embodiments may only use one separate channel. Optionally, some embodiments may use an inverted Y-channel that starts initially as one channel and then splits into two or more channels. Any of these concepts may be adapted for use with other embodiments described herein. Collection Device with Self-Supporting Collection Channels FIGS. 5A-5B provide another example of a sample collection device 500 provided in accordance with an embodiment described herein. The sample collection device may include a collection device body 520, support 530, and base 540. In some instances, a cap may be optionally provided. The collection device body may contain one or more collection channels 522a, 522b defined by collection tubes, which may be capable of receiving sample. A base may have one or more optical indicator 542a, 542b that may provide a visual indication of whether sample has reached one or more vessel housed in the base. A support may have one or more optical indicator 532a, 532b that may provide a visual indication of whether sample has reached or passed through a portion of the channels. A collection device body 520 of a sample collection device may contain at least a portion of one or more tubes with channels 522a, 522b therein. Optionally, the device collection body 520 may also define channels that couple to channels 522a, 522b defined by the tubes. In some embodiments, a portion of the channels may extend beyond the collection device body. The channels may extend beyond one end or two ends of the collection device body. The collection device body 520 may be connected to a support 530. The support may contain a portion of one or more channels therein. The collection device body may be permanently affixed to the support or may be removable with respect to the support. In some instances, the collection device body and the support may be formed of a single integral piece. Alternatively, the collection device body and support may be formed from separate pieces. During the operation of the device the collection device body 520 and support 530 may move relative to one another. In some instances, a portion of the body 520 may be insertable within the support 530 and/or a portion of the support may be insertable within the body. The body may be capable of moving relative to the support. In some instances, a sample collection device may have a longitudinal axis extending along the length of the sample collection device. The body and/or support may move relative to one another in the direction of the longitudinal axis. The body and/or support may be capable of moving a limited distance relative to one another. The body and/or support may move co-axially without rotational motion. Alternatively, rotational motion may be provided. The collection device body 520 may be formed from an optically transmissive material. For example, the collection device body may be formed from a transparent or translucent material. Alternatively, the body may be formed from an opaque material. The support 530 may be formed from an optically opaque, translucent, or transparent material. The support may or may not have the same optical characteristics of the collection device body. The support may be formed from a different material as the collection device body, or from the same material as the collection device body. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. The collection device body, support, and/or base may have any shape or size. In some examples, the collection device body, support, and/or base may have a circular, elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal), pentagonal, hexagonal, octagonal, or any other cross-sectional shape. The cross-sectional shape may remain the same or may vary along the length. The cross-sectional shape may be the same for the body, support, and base, or may vary. In some instances, the collection device body, support, and/or base may have a cross-sectional area of less than or equal to about 10 cm2, 7 cm2, 5 cm2, 4 cm2, 3 cm2, 2.5 cm2, 2 cm2, 1.5 cm2, 1 cm2, 0.8 cm2, 0.5 cm2, 0.3 cm2, or 0.1 cm2. The cross-sectional area may vary or may remain the same along the length. The cross-sectional size may be the same for the collection body, support, and/or base, or may vary. The collection device body, support, and/or base may have a length of less than or equal to about 20 cm, 15 cm, 12 cm, 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, 1 cm, 0.5 cm, or 0.1 cm. The collection device body may have a greater or lesser length than support or base, or an equal length to the support, or base. The channels 522a, 522b may be supported by the device body 520 and/or the support 530. In some instances, the entire length of the tubes or the channels therein may be encompassed within the combination of the device body and the support. Alternatively, the channels may extend beyond the device body and/or support as seen in FIG. 5. In some instances, the channels may extend beyond one end of the device body/support combination, or beyond both ends. In some instances, a portion of the channels may be within the device body and a portion of the channels may be within the support. The position of the channels may be affixed by the device body and/or the support. In some instances, the channels may be affixed to device body and/or not move relative to the device body. The channels may be movable relative to the support. In some instances, a plurality of channels may be provided. At least a portion of the channels may be substantially parallel to one another. The channels may be parallel to one another and/or a longitudinal axis extending along a length of the sample collection device. Alternatively, no portion of the channels need be parallel to one another. In some instances, at least a portion of the channels are not parallel to one another. The channels may be slightly bent. Optionally, they may be straight, but aligned to be closer to one another as they near the sample collection point. It should be understood that the tubes defining the channels 522a and 522b may be made of optically transparent, transmissive, or other material sufficient to provide a detectable change that sample has reached a desired fill level in at least one channel. Optionally, the detectable change can be used to detect when both channels reach at least the desired fill level. A base 540 may be provided within the sample collection device. The base may be connected to the support 530. In some instances, a portion of the base 540 may insertable within the support 530 and/or a portion of the support may be insertable within the base. The base may be fixed relative to the support or may be movable relative to the support. The base may be provided at an end of the support opposite an end of the support connected to the body. The base may be formed as a separate piece from the support. The base may be separable from the support. Alternatively, the base may be affixed to the support and/or formed as an integral piece with the support. A base 540 may house one or more vessel therein. The vessels may be in fluidic communication with the channels and/or may be brought into fluidic communication with the channels. An end of a channel may be within the vessel or may be brought within the vessel. A base may have one or more optical indicator 542a, 542b that may provide a visual indication of whether sample has reached one or more vessel housed in the base. In some embodiments, the optical indicators may be optical windows that may enable a user to see into the base. The optical window may be formed from a transparent and/or translucent material. Alternatively, the optical window may be an opening without any material therein. The optical window may enable a user to directly view a vessel within the base. The vessel within the base may be formed from a transparent and/or translucent material that may enable a user to see if a sample has reached the vessel of the base. For example, if blood is transported along the channel to the vessels, the vessels may show the blood therein. In other embodiments, the optical indicators may include other features that may indicate the vessel has been filled. For example, one or more sensor may be provided within the base or vessel that may determine whether a sufficient amount of sample has been provided within the vessel. The sensor may provide a signal to an optical indicator on the base that may indicator whether the sample has been provided to the vessel and/or the amount of sample that has been provided to the vessel. For example, the optical indicator may include a display, such as an LCD display, light display (e.g., LED display), plasma screen display that may provide an indication that the vessels have been sufficiently filled. In alternative embodiments, an optical indicator need not be provided, but alternative indicators may be provided, such as but not limited to, an audio indicator, temperature controlled indicator, or other device that may indicate by a detectable signal, such as one detectable by a user, when the vessels have been filed. A support 530 may have one or more optical indicator 532a, 532b that may provide a visual indication of whether sample has reached or pass through a portion of a channel housed by the support. In some embodiments, the optical indicators may be optical windows that may enable a user to see into the support. The optical window may be formed from a transparent and/or translucent material. Alternatively, the optical window may be an opening without any material therein. The optical window may enable a user to directly view a portion of a channel within the support. The channels may be formed from a transparent and/or translucent material that may enable a user to see if a sample has reached the portion of the channel underlying the optical window. In other embodiments, the optical indicators may include other features that may indicate the sample has passed through a portion of the channel, such as sensors described elsewhere herein. Referring now to FIGS. 6A-6B, additional views of a sample collection device 500 are provided in accordance with one embodiment described herein. In some embodiments, a portion of the tubes containing channels 522a, 522b may extend beyond the collection device body 520. The portion of the channels that extend beyond may include portions of the channels that are configured to receive a sample from the subject. In one example, the channels may have a first end 523a, 523b that may be a sample receiving end of the channels. The channels may optionally be defined by a rigid material. Alternatively, the channels may be defined by a flexible material or may have flexible components. The channels may or may not be designed to bend or curve. The channels may or may not be substantially parallel to one another. In some instances, the first ends of the channels may be some distance apart when in a relaxed state. The first ends of the channels may remain that distance apart during operation of the device. Alternatively, the first ends of the channels may be brought closer together. For example, the first ends of the channels may be squeezed together. Each open end of the channels may separately receive a sample. The sample may be received sequentially. The sample may be from the same subject. Alternatively, the channels may be capable of receiving the same sample simultaneously. The channels 522a, 522b may include one or more features or characteristics mentioned elsewhere herein. At least a portion of the channels may be substantially parallel to one another. Alternatively, the channels may be at angles relative to one another. In some embodiments, the channels may have a first end that may be at a sample receiving end 526 of the sample collection device. The first end of a channel may be an open end capable of receiving a sample. In some embodiments, the ends of each of the channels may be provided at the sample receiving end of the sample collection device. One, two, or more channels may have a first end at the sample receiving end of the sample collection device. In some embodiments, the device body 520 may be movable relative to the support 530. A portion of the device body may be insertable within the support or vice versa. In one example, the device body may have a lip 527 and an interior portion 529. The lip may have a greater cross-sectional area than the interior portion. The interior portion may be capable of being inserted into the support. The lip may act as a stop to prevent the entire body from being inserted into the support. The lip may rest on a shoulder of the support. FIGS. 7A-7B shows partial cutaway views of an example of a sample collection device 700 provided in accordance with an embodiment described herein. The sample collection device in an extended state, prior to bringing the channels 722a, 722b into fluid communication with one or more vessels 746a, 746b housed within a base 740 of the device. The sample collection device may include a body 720, support 730, and base 740. The body and/or support may support and/or encompass at least a portion of one, two or more channels. The base may support and/or encompass one, two or more vessels. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. In one embodiment, a body 720 and/or support 730 may support one or more channels 722a, 722b in a sample collection device. In one example, two channels are provided, though descriptions relating to a two-channel embodiment may apply to any number of channels including but not limited to 1, 3, 4, 5, 6 or more channels. Each of the channels may have a first end 723a, 723b that may be a sample receiving end of the device. The first ends of the respective channels may be open. The channels may be open to ambient air. When the first ends of the channels contact a fluid, such as blood, the fluid may be drawn into the channels. Fluid may be drawn in via capillary action, or any other of the techniques described elsewhere herein. The fluid may travel along the length of the channels to the respective second ends of the channels. The channels may be fluidically segregated from one another. For example, a fluid may enter a first channel 722a via a first end 723a, pass through the length of the channel, and exit the first channel at the second end. Similarly, fluid may enter a second channel 722b via a first end 723b, pass through the length of the channel, and exit the second channel at the second end. The first and second channels may be fluidically segregated so that fluid from the first channel does not pass into the second channel and vice versa. In some embodiments, the fluid may pass to the second ends of the channels without exiting initially. The channels 722a, 722b may have a parallel configuration. For example, the first ends 723a, 723b of the channels may be about the same distance apart as the second ends of the channels. The first ends of the channels may or may not be in contact with one another. A support 730 may have one or more optical indicators, such as optical windows 732a, 732b. The optical windows may be positioned over the channels 722a, 722b. In some instances, the optical windows may be positioned over portions of the channels. A single window may provide a view to a single channel portion or to multiple channel portions. In one example, the same number of optical windows may be provided as channels. Each optical window may correspond to a respective channel. Both the optical window and channels may be formed of an optically transmissive material that may permit a user to view whether a sample has reached and/or passed through the underlying portion of the channel from outside the sample collection device. Such determination may be useful in determining when to compress the sample collection device. A base 740 may be connected to a support 730 of the sample collection device. The base may or may not directly contact the support. The base may be fixed relative to the support during use of the device. In some instances, the base may be removable from the support. A portion of the base may be insertable into the support and/or vice versa. In some embodiments, the base may slide out from the support in a longitudinal direction relative to the support. In some instances, the base may slide co-axially with the support without rotating. In some instances, a base may rotate while moving relative to the support. The base 740 may be capable of supporting one or more vessels 746a, 746b. The base may have a housing that may at least partially surround the one or more vessels. In some instances, the vessels may be completely surrounded when the base is engaged with a support 730. The height of the base may extend beyond the height of the vessels. Alternatively, the height of the base may extend to the same degree or less than the height of the vessels. The base may have one or more indentation, protrusion, groove, or shaped feature to accept the vessels. The base may be formed with a shape that is complementary to the shape of the vessels. For example, the base may have one or more tube shaped indentation into which tube shaped vessels may snugly fit. The vessels may friction-fit into the base. The vessels may be maintained in an upright position relative to the base. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. The same number of vessels may be provided as the number of channels. For example, if N channels are provided, then N vessels may be provided, wherein N is a positive whole number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or more). Each channel may correspond to a respective vessel. In one example, a sample collection device may have a first channel and a second channel, as well as a respective first vessel and second vessel. A first channel 722a may be in or may be configured to be brought into fluid communication with a first vessel 746a, and a second channel 722b may be in or may be configured to be brought into fluid communication with a second vessel 746b. In some embodiments, each vessel may have a body 749a, 749b and a cap 748a, 748b. The vessels may have any features or characteristics as described elsewhere herein. A base 740 may have one or more optical indicators, such as optical windows 742a, 742b. The optical windows may be positioned over the vessels 746a, 746b. In some instances, the optical windows may be positioned over the vessel bodies. A single window may provide a view to a single vessel or to multiple vessels. In one example, the same number of optical windows may be provided as vessels. Each optical window may correspond to a respective vessel. Both the optical window and vessels may be formed of an optically transmissive material that may permit a user to view whether a sample has reached the vessel from outside the sample collection device. Such visual assessment may be useful in determining when the sample has reached the vessels, and when the base can be removed from the sample collection device. One or more engagement assemblies may be provided. The engagement assembly may include a channel holder 750 and/or a force-exerting component, such as a spring 752 or elastic. In one embodiment, the holder 750 may keep the adaptor channel 754 affixed to the support. As will be described elsewhere herein, the adaptor channel 754 may be formed integrally with the collection channel or may be a discrete element that may be a stand-alone piece, part of the collection channel, or part of the vessel. In one embodiment, the holder 750 may prevent the adaptor channel 754 from sliding relative to the support. The holder 750 may optionally provide a support upon which a force-exerting component, such as a spring, may rest. In one example, the engagement assemblies may include a spring 752 which may exert a force so that the body 720 is at an extended state, when the spring is at its natural state. When the body is at its extended state, space may be provided between the vessels 746a, 746b and the engagement assemblies. When a body is in its extended state, the interior portion 729 of the body may be exposed and/or uncovered by the support 730. In some instances, when the body is in its extended state, the second ends of the channels 722a, 722b may or may not contact the caps of the vessels. The second ends of the channels may be in a position where they are not in fluid communication with the interiors of the vessels. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. A sample collection device may have any number of engagement assemblies. For example, the same number of engagement assemblies may be provided as number of channels. Each channel may have an engagement assembly. For example, if a first channel and a second channel are provided, a first engagement assembly may be provided for the first channel, and a second engagement assembly may be provided for the second channel. The same number of engagement assemblies and vessels may be provided. FIGS. 8A-8B provide an example of a sample collection device 800 having channels 822a, 822b that are in fluid communication with the interior of vessels 846a, 846b within the device. The sample collection device may include a body 820, support 830, and base 840. The body and/or support may support and/or encompass at least a portion of one, two or more channels. The channels may extend beyond an end of the body. The base may support and/or encompass one, two or more vessels. In one embodiment, a body 820 and/or support 830 may support one or more channels 822a, 822b in a sample collection device. For example, a first channel and second channel may be provided. Each of the channels may have a first end 823a, 823b that may be provided at a sample receiving end of the device that may extend beyond the body. The first ends of the respective channels may be open. The channels may be open to ambient air. The channels may be rigid or may be flexible. In some embodiments, the channels may have a length that may permit them to be bent into contact with one another. When the first ends of the channels contact a fluid, such as blood, the fluid may be drawn into the channels. Each channel end may be separately contacted to a fluid, which is drawn into the respective channel. This may involve angling the sample collection device so that only one opening into the channel is in contact with the sample fluid at any one time. Alternatively, all channels may be simultaneously contacted to the same sample which is simultaneously drawn into the respective channels. Alternatively, multiple but not all channels may be simultaneously contacted to the same sample which is then simultaneously drawn into the respective channels. The fluid may be drawn in via capillary action, or any other of the techniques described elsewhere herein. The fluid may travel along the length of the channels to the respective second ends of the channels. In some embodiments, the fluid may reach the second ends of the channels via capillary action or other techniques described herein. In other embodiments, the fluid need not reach the second ends of the channels. The channels may be fluidically segregated from one another. In some embodiments, the fluid may pass to the second ends of the channels without exiting when the channels are not in fluid communication with the interiors of the vessels 846a, 846b. For example, the fluid may be drawn into the channel via capillary action, which may cause the fluid to flow to or near the end of the channel without causing the fluid to exit the channel. The body 820 may be movable relative to the support 830 during use of the device. In some embodiments, the body may slide in a longitudinal direction relative to the support. In one example, the body may have (i) an extended position where the channels are not in fluid communication with the interior of the vessels, and (ii) a compressed position where the channels are in fluid communication with the interior of the vessels. A sample collection device may be initially provided in an extended state, as shown in FIG. 7. After the sample has been collected and flown through the length of the channel, a user may push the body in to provide the sample collection device in its compressed state, as shown in FIG. 8. In some instances, when the body is in an extended state, an interior portion of the body is exposed. When the body is in a compressed state, the interior portion of the body may be covered by the support. A lip of the body may contact the support. Once the body has been pushed in, the body may naturally remain pushed in, or may spring back out to an extended state, once the pushing force is removed. In some instances, a body may be pulled out to an extended state, or may be pulled out completely to provide access to vessels therein. Optionally, in some assemblies, removal of the body will not provide access to the vessels. A base 840 may be connected to a support 830 of the sample collection device. The base 840 may be capable of supporting one or more vessels 846a, 846b. The base may have a housing that may at least partially surround the one or more vessels. In some instances, the vessels may be completely surrounded when the base is engaged with a support 830. The base may have one or more indentation, protrusion, groove, or shaped feature to accept the vessels. The base may be formed with a shape that is complementary to the shape of the vessels. The vessels may be maintained in an upright position relative to the base. The same number of vessels may be provided as the number of channels. Each channel may correspond to a respective vessel. In one example, a sample collection device may have a first channel and a second channel, as well as a respective first vessel and second vessel. A first channel 822a may be in or may be configured to be brought into fluid communication with a first vessel 846a, and a second channel 822b may be in or may be configured to be brought into fluid communication with a second vessel 846b. The first channel may initially not be in fluid communication with a first vessel and the second channel may initially not be in fluid communication with the second vessel. The first and second channels may be brought into fluid communication with the interiors of the first and second vessels respectively when the body is pushed in relative to the support. The first and second channels may be brought into fluid communication with the first and second vessels simultaneously. Alternatively, they need not be brought into fluid communication simultaneously. The timing of the fluid communication may depend on the height of the vessel and/or the length of the channel. The timing of the fluid communication may depend on the relative distances between the second end of the channel and the vessel. In some embodiments, each vessel may have a body 849a, 849b and a cap 848a, 848b. The vessel body may have a tubular shape. In some instances, the vessel body may have a cylindrical portion. The bottom of the vessel may be flat, tapered, rounded, or any combination thereof. The vessels may comprise an open end and a closed end. The open end may be a top end of the vessel, which may be at the end of the vessel closer to one or more channel. The closed end may be a bottom end of the vessel, which may be at the end of the vessel further from one or more channel. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. A support 830 may have one or more optical indicators, such as optical windows 832a, 832b. The optical windows may be positioned over portions of the channels 822a, 822b. The optical windows may provide an indicator of whether a sample has reached and/or passed through the portion of the channels shown by the optical windows. This may be useful to assess whether the sample has flowed sufficiently for the user to push the body into the sample collection device. In some instances, it may be desirable for the sample to reach the second end of the channels, or to near the second end of the channels, before causing the channels to enter into fluid communication with the vessels. In some instances, the sample may need to reach a certain portion of the channel before pushing the body in to bring the channels into fluid communication with the vessels. The certain portion of the channel may underlie the optical windows. A base 840 may have one or more optical indicators, such as optical windows 842a, 842b. The optical windows may be positioned over the vessels 846a, 846b. In some instances, the optical windows may be positioned over the vessel bodies. The optical windows may provide an indicator of whether a sample has entered the vessels. The optical windows may show how much sample has filled the vessels. This may be useful to assess whether a sufficient amount of sample has entered the vessels. In some instances, it may be desirable for a particular amount of sample to enter the vessels before removing the vessels from fluid communication with the channels. A predetermined volume of sample in the vessels may be desired before removing a base of the device, thereby bringing the vessels out of fluid communication with the channels. The vessels and/or interfaces with the channels may have any characteristic or feature, such as those described elsewhere herein. In some instances, a second end of the channel may penetrate a cap of the vessel, thereby bringing the channel into fluid communication with the vessel. In some instances, the channel may be withdrawn from the vessel, and the cap of the vessel may form a fluid-tight seal, thereby permitting a fluid-tight environment within the vessel when the channel is brought out of fluid communication with the vessel. One or more engagement assembly may be provided. The engagement assembly may include a channel holder and/or a force-exerting component, such as a spring or elastic. The holder may keep the channel affixed to the body. The holder may prevent the channel from sliding relative to the body. The holder may optionally provide a support upon which a force-exerting component, such as a spring, may rest. In one example, the engagement assemblies may include a spring which may exert a force so that the body is at its extended state, when the spring is at its natural state. When the body is at its extended state, space may be provided between the vessels 846a, 846b and the bottom portion of the sample body 820. The second ends of the channels may be in a position where they are not in fluid communication with the interiors of the vessels. When the body is pressed in, the spring 852 may be compressed (see also FIGS. 9A-9C). The second ends of the channels may penetrate the caps of the vessels. The second ends of the channels may enter the interior of the vessel. In some instances, a force may be provided to drive the fluid from the channels into the vessels. For example, a pressure differential may be generated between the first and second ends of the channels. A positive pressure may be provided at the first end 823a, 823b of the channels and/or a negative pressure may be provided at the second end of the channels. The positive pressure may be positive relative to the pressure at the second end of the channel, and/or ambient air. The negative pressure may be negative relative to the pressure at the first end of the channel and/or ambient air. In one example, the vessels 846a and 846b may each have a vacuum therein. When the second end of a channel penetrates a vessel, the negative pressure within the vessel may suck the sample into the vessel. In alternative embodiments, the sample may enter the vessel driven by capillary forces, gravity, or any other motive force. Optionally, there may be single or multiple combinations of forces to fill the vessel with fluid. In some instances, different types of motive forces may be used to draw the sample into the channel, and from the channel into the vessel. For example, a capillary force may draw the sample into a channel, and a pressure differential may drive the sample from the channel into the vessel. Any combinations of motive forces may be used to draw sample into the channel and into the vessel. Some time may elapse after a sample has been introduced to a channel for traveling along the length of the channel. A user may introduce a sample to the sample collection device and may wait for the sample to travel the length of the channel. One or more optical indicator along the length of the channel may be provided, which may indicate whether the sample has reached the end of the channel. In other embodiments, the user may wait a predetermined amount of time before pushing in the body. The body may be pushed in after the user has determined the sample has traveled a sufficient length of the channel and/or a sufficient amount of time has passed since the sample was introduced. The body may have a flat surface which may be easy for the user to push. In some instances, the flat surface may have a cross-sectional area that may be sufficient for a user's fingers to press down on the body. After the body is pushed in, the channels may be brought into fluid communication with the vessels, and sample may flow from the channel into the vessels. An optical indicator may be provided so that a user may know when the vessels have been filled. Once the vessels have been filled, they may be transferred to a desired location, using systems and methods described elsewhere herein. As previously described, the entire sample collection device may be transferred. In other embodiments, the base portion may be removable from the rest of the device. In one example, the base may be removed from the sample collection device, and the vessels may be transferred along with the base. Alternatively, the base may be removed from the sample collection device to provide access to the vessels, and the vessels may be removed from the device and transmitted Referring now to FIGS. 9A-9C, examples of a sample collection device 900 and method of use will now be described. In one nonlimiting example, the device may have a body 920, support 930, and base 940. The body 920, support 930, and base 940 may be movable relative to one another. In some instances, the various components of the devices may be movable during different stages of use. Examples of stages of use may include when the device is in an extended state, compressed state, and separated state. FIG. 9A shows an example of the device 900 in an extended state. The body 920 may be extended relative to the support. Channels 922a, 922b configured to transport a sample may be affixed to the body. A first end of a channel may extend out from the body and/or the rest of the sample collection device. A second end of the channel may be within and/or encompassed by a portion of the sample collection device. The channel may be fluidically isolated from a respective vessel housed by the base 940. The support 930 may be positioned between the body and base. The support may at least partially encompass a portion of the channel. In some instances, the support may encompass the second end of the channel. When in an extended state, the device may have an extended length. The length of the device may be from the bottom of the base to the first end of the channels. Alternatively, the length of the device may be measured from the bottom of the base to the top of the body. As seen in FIG. 9A, the device 900 may be in an extended state when the sample is introduced to the device. For example, a sample may be contacted by at least a first end of a channel. The sample may be drawn into the channel via capillary action or any other technique or motive force described herein. The forces may act alone or in combination to draw sample into the device. The device 900 may remain in an extended state while the sample is traversing the channel. The sample may fill the entire length of the channel, a portion of the length of the channel, or at least a minimum portion to meet a desired sample acquisition volume. FIG. 9B shows an example of the device 900 in a compressed state. The body 920 may be compressed relative to the support. The channels 922a, 922b may be affixed to the body. The channels may be fluidic communication with their respective vessels. When the device is brought into a compressed state, a first channel may be brought into fluid communication with an interior of a first vessel, and a second channel may be brought into fluid communication with an interior of a second vessel. By way of nonlimiting example, a user may push the body 920 toward the support 930 (or vice versa) to bring the device into a compressed state. The relative motion between parts may involve movement of both pieces. Optionally, movement may involve moving only one of them. In the present example, the body 920 may be pushed all the way to the support 930 so that no interior portion of the body is exposed and/or a lip of the body contacts the support. Any stop mechanism may be used that may be engaged when the device is completely compressed. Alternatively, the body may only be partially pushed. For example, a portion of the interior portion of the body may be exposed. The support may be positioned between the body and base. The support may at least partially encompass a portion of the channel. In some instances, the second end of the channel may extend beyond the support of the device. When in a compressed state, it should be understood that the device 900 may have a compressed length. The length of the device 900 may be from the bottom of the base to the first end of the channels. Alternatively, the length of the device may be measured from the bottom of the base to the top of the body. The compressed length of the device may be less than the extended length of the device. In some embodiments, the compressed length of the device may be at least about 0.1 cm, 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm, 4.0 cm, or 5.0 less than the extended length of the device. The compressed length of the device may be less than or equal to about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% of the extended length of the device. One or more engagement assemblies may be provided with the device 900. The engagement assembly may include a channel holder 950 and/or a force-exerting component, such as a spring 952 or elastic. The holder 950 may keep the adaptor channel 954 affixed to the support. As will be described elsewhere herein, the adaptor channel 954 may be formed integrally with the collection channel or may be a discrete element that may be a stand-alone piece, part of the collection channel, or part of the vessel. In one embodiment, the holder 950 may prevent the adaptor channel 954 from sliding relative to the support. The holder 950 may optionally provide a support upon which a force-exerting component, such as a spring, may rest. The force-exerting component, such as a spring may be in a compressed state when the device is in a compressed state. The spring may exert a force on the body of the device when the device is in a compressed state. The device may be in a compressed state when the sample is transferred from the channels to the respective vessels. In some examples, the transfer may occur via pressure differential between the channels and the interiors of the vessels, when they are brought into fluidic communication. For example, a second end of the channel may be brought into fluidic communication with the interior of the vessel. The vessel may have a vacuum and/or negative pressure therein. The sample may be sucked into the vessel when the channel is brought into fluidic communication with the vacu-vessel. The device may remain in a compressed state while the sample is being transferred to the vessel. The sample may fill the entire vessel or a portion of the vessel. The entirety of the sample (and/or greater than 90%, 95%, 97%, 98%, 99%, 99.5% or 99.9% of the sample) from the channels may be transferred to the vessels. Alternatively, only a portion of the sample from the channels may be transferred to the vessels. Referring now to FIG. 9C, an example of a device 900 in a separated state will now be described. The base 940 may be separated from the rest of the device 900. The body 920 may be extended or compressed relative to the support 930. In one example, the extended state may be the natural state, so that when the force is no longer exerted on the body by the user, the body may extend back to the extended state. The channels 922a, 922b may be affixed to the body. When the device 900 is in a separated state, the base 940 may be separated from the support 930 of the device. The channels 922a, 922b may be removed from fluidic communication with their respective vessels 946a, 946b. When the device 900 is brought into the separated state, a first channel may be brought out of fluid communication with an interior of a first vessel, and a second channel may be brought out of fluid communication with an interior of a second vessel. This may occur sequentially or simultaneously. When the channels are removed from the vessels, the vessels may assume a sealed state to prevent undesired material from entering the vessels. In some embodiments, the vessels may be fluid-tight after removal of the channels. Optionally, the vessels may be gas-tight after removal of the channels. A user may separate the base 940 from the support 930 to bring the device into a separated state to remove the vessels therein. In some embodiments, the base may be separated from the support or vice versa. Separating the base from the support may expose the vessels 946a, 946b that are supported by the base. The vessels may be press-fit or otherwise held within the base. The vessels 946a, 946b may be removable from the base. By way of non-limiting example, removing the vessels 946a, 946b allows them to be placed with other vessels in a climate controlled transport container for transport to a receiving site such as but not limited to an analysis site. Optionally, the vessels 946a, 946b may be removed to allow for pre-treatment such as but not limited to centrifugation prior to being sent on for processing at a receiving site such as but not limited to an analysis site. Alternatively, the vessels 946a, 946b may remain with the base. FIGS. 10A-10B provide additional views of a sample collection device 1000 in a separated state. When in a separated state, the base 1040 may be separated (partially or completely) from the support 1030 and/or body 1020 of the device. This allows for the removal of the vessels 1046a and 1046b through the end of base 1040 previously not externally exposed when the device 1000 was not in a separate state. When the device is in a separated state, one or more channels 1022a, 1022b may be fluidically isolated from one or more vessels 1046a, 1046b housed by the base 1040. The vessels may be fluidically sealed from their environment. The vessels may contain sample therein, that had been transported through the collection channels, reached a minimum fill level, and then substantially fully deposited into the respective vessels. The base 1040 may include one or more optical indicator 1046a, 1046b. The optical indicator may show a portion of the vessels therein such that the device 1000 is not moved into the separate state until a minimum fill level has been reached in the vessels. By way of non-limiting example, the vessels may have an optically transmissive material that may permit a user to view the sample within the vessels from outside the base. In some embodiments, the base 1040 may encompass at least a portion of the vessels. The base may have a hollow interior and walls surrounding the hollow interior. The base may have one or more shaped feature that may support the vessels. The vessels may be provided within the hollow interior. The walls may surround the vessel. The base may have an open top though which the vessels may be exposed. The vessels may or may not be removed through the open top. Collection Device with Multiple Collection Channels Referring now to FIGS. 11A-11F, a still further embodiment as described herein will now be described. This embodiment provides a bodily fluid sample collection device 1100 for use in collecting a fluid sample that may be pooled or otherwise formed on a surface, such as but not limited to the skin or other target area of a subject. Although this embodiment shows a device body which defines at least two collection channels of different volumes therein, it should be understood that devices with fewer or greater numbers of collection channels are not excluded. Embodiments where the same collection volume is used for one or more the channels are also not excluded. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. FIG. 11A shows a perspective view of one embodiment of a bodily fluid sample collection device 1100 with a distal end 1102 configured to engage a fluid sample on a surface. In this embodiment, the distal end 1102 may have a configuration designed to better engage a droplet or pool of bodily fluid or sample formed on a surface. Some embodiments, in addition to a desired shape, may also have surface treatments at the distal end 1102, such as but not limited to, chemical treatments, texturing, surface features, or coatings to encourage fluid flow towards the one or more openings 1104 and 1106 on the distal end 1102 leading to the channels in the device 1100. As seen in FIG. 11A, this embodiment of the sample collection device 1100 has two openings 1104 and 1106 for receiving the sample fluid. It should be understood that some embodiments may have more than two openings at the distal end. Some embodiments may only have one opening at the distal end. Optionally, some embodiments may have additional openings along a side or other surfaces leading away from the distal end 1102 of the device 1100. The openings 1104 and 1106 may have any cross-sectional shape. In some non-limiting examples, the openings may have a circular, elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal), pentagonal, hexagonal, octagonal, or any other cross-sectional shape. The cross-sectional shape may remain the same or may vary along the length of the collection device body. In some instances, the openings may have a cross-sectional area of less than or equal to about 2 mm2, 1.5 mm2, 1 mm2, 0.8 mm2, 0.5 mm2, 0.3 mm2, or 0.1 mm2. Some embodiments have the opening be the same shape. Others may use different shapes for the one or more openings. The sample fill portion 1120 which may be the body of the sample collection device 1100 may be formed from a transparent and/or translucent material that may enable a user to see if a sample has entered sample collection channel(s) (see FIG. 11B) in the sample fill portion 1120. In some embodiments, the entire sample fill portion 1120 is transparent or translucent. Alternatively, some embodiments may only have all areas over the channel or only select portions of the channel or sample fill portion 1120 be transparent or translucent to allow a user to visualize the filling of sample into the sample collection device 1100. Optionally, the sample fill portion is made of an opaque material but has an opening or a window to allow for visualization of fill level therein. The device 1100 may further include one or more visualization windows 1112 and 1114 to allow a user to see when a desired fill level has been reached. The visualization window may be formed from a transparent and/or translucent material. Alternatively, the visualization window may be an opening without any material therein. Additional visualization windows can also be used to determine of all of the fluid in the collection channels have been emptied into the vessels 1146a and 1146b (see FIG. 11B). FIG. 11A also shows that some embodiments of support 1130 may have optical windows 1132 and 1134 which are positioned to show fill levels in the vessels 1146a and 1146b to show if the vessels in base 1140 have been moved into position to receive sample fluid. Optionally, the windows 1132 and 1134 may be cutouts that act as guides for the snap feature of based in order to define the start and end positions during activation. It should be understood that the base can be configured to hold one or more sample vessels. By way of example and not limitation, the entire base 1140 can be removed from the sample collection device before or after sample fill. The base 1140 can be used as holder to retain the sample vessels therein during transport, and in such an embodiment, the base 1140 along with the sample vessels would be loaded into a shipping tray or other holder for transport. Alternatively, some embodiments may remove the sample vesssels from the base 1140 and then transport the vessels without the base 1140 holding them. FIG. 11B shows a cross-sectional view along section lines B-B of the embodiment shown in FIG. 11C. FIG. 11B shows the channels 1126 and 1128 in the portion 1120. The sample fill portion 1120 may be formed from two or more pieces which join together to define the portion 1120. Some may define the channels in one piece and then have another piece which mates to the first piece to define an opposing or top wall surface of the channel. In terms of manufacturing, this allows one piece to have channels molded or otherwise formed into the body and the opposing piece will mate to act as a cover for the channels or may also include portions of the channel too. The channels 1126 and 1128 may be formed only in portion 1120 or may also extend into support 1130 that has features to connect with the vessels held in base or carrier 1140. Some embodiments may integrally form portions 1120 and 1130 together. Support 1130 may also be configured to hold adapter channel 1150 which will fluidically connect the channels 1126 and 1128 with their respective vessels 1146a and 1146b. Although these embodiments herein are described using two channels and two vessels, it should be understood that other numbers of channels and vessels are not excluded. Some embodiments may have more channels than vessels, wherein some channels will couple to the same vessel. Some embodiments may have more vessels than channels, in which case multiple vessels may operably couple to the same channel. As seen in FIG. 11B, the channels 1126 and 1128 may be of different sizes. This allows for different fluid volumes to be collected in each channel before they are simultaneously transferred into the vessels 1146a and 1146b. Optionally, some embodiments may have the channels 1126 and 1128 sized to contain the same volume of fluid. In some embodiments, the fluid pathway of the channels 1126 and 1128 are shaped and/or angled so that openings near the distal end 1102 are closer together than proximal ends, which may be further apart to align them for entry into the vessels 1146a and 1146b. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. FIG. 11B also shows that some embodiments may use needles for the adapter channels 1150 and 1152 in the body 1130 which are in communication with the channels 1126 and 1128. The needles each has a channel to allow for fluid to pass therethrough from the collection channels 1126 and 1128 to the ends of the needles. As seen in FIG. 11B, the vessels 1146a and 1146b in the base 1140 are slidable relative to the support 1130 as indicated by arrow 1156. Relative motion between support 1130 and base 1140 can close the gap 1154. Closing the gap 1154 brings the adapter channels 1150 into the cap 1148a of the vessel 1146a until there is fluid communication between the interior of vessel 1146a and the collection channel 1126. At that time, motive force in the form will then move fluid in the channel 1126 into the vessel 1146a. By way of example and not limitation, any combinations of motive forces may be used to draw sample into the vessel. Some embodiment may use pull from vacuum in the vessels 1146a to draw sample into the vessel. Some may use pushing force from external pressure to move fluid into the vessel. Some embodiments may use both. Some may rely on capillary and/or gravity. In some embodiments, the motive force(s) used to draw sample into the channel is different from motive force(s) used to draw sample into the vessel. In some alternative embodiments, the motive force(s) may be the same for each stage. In some embodiments, the motive force(s) are applied sequentially or at defined time periods. By way of non-limiting example, motive force(s) to draw sample into the vessel is not applied until the at least one channel has reach a minimum fill level. Optionally, motive force(s) to draw sample into the vessel is not applied until the at least two channels have each reach a minimum fill level for that channel. Optionally, motive force(s) to draw sample into the vessel is not applied until all channels have each reach a minimum fill level for that channel. In some embodiments, the motive force(s) are applied simultaneously. This features recited may be applicable to any of the embodiments herein. Referring now to FIG. 11E, an enlarged cross-sectional view of the device 1100 is shown. This embodiment shows that the support 1130 has a lip portion 1136 sized to extend over the adapter channels 1150 and 1152 in an amount sufficient to prevent a user from inserting a finger into the gap 1154 and piercing the finger on one of the needle. Additionally, as shown in FIGS. 11B and 11E, the present embodiment has at least two channels in the sample collection device 1100. This allows for each of the channels 1128 and 1126 to each introduce a different material into the sample. By way of non-limiting example, if the sample is whole blood, one channel can introduce heparin into the blood while another channel introduces ethylenediaminetetraacetic acid (EDTA). Not only do these anti-coagulants prevent premature clogging of the channels during fill, but also introduce anti-coagulant into the whole blood in preparation for transport in the vessels 1146a and 1146b. Optionally, the channel(s) may also be plasma coated in addition to or in place of the anti-coagulants. The plasma coating can reduce the flow resistance of the body fluid sample in the channels. Such a coating can be applied in patterns such as but not limited to strips, rings, or other patterns along with any other coating(s) to be used in the channels. Optionally, there is sufficient quantity of anti-coagulant in the respective channel such that the sample fluid will contain a desired level of anti-coagulant in the sample fluid after only a single pass of the fluid through the channel. In traditional blood vials, the blood sample does not contain anti-coagulant until it enters the vial and once in the vial, the technician typically repeatedly tilts, shakes, and/or agitates the vial to enable mixing of anti-coagulant in the vials. In the present embodiment, the sample fluid will contain anti-coagulant prior to entering the sample vessel and it will do so without having to repeatedly tilt or agitate the sample collection device. In the embodiment herein, a single pass provides enough time and sufficient concentration of additive such as anti-coagulant into the sample fluid. In one embodiment, an EDTA channel has a volume of 54 uL coated by 200 mg/mL EDTA; a channel for Heparin has a volume of about 22 uL coated by 250 units/mL Heparin. In another embodiment, the EDTA channel has a volume of 70 uL coated by 300 mg/mL EDTA; the channel for Heparin has a volume of about 30 uL and is coated by 250 units/mL Heparin. By way of non-limiting example, a channel of volume from 50 to 70 uL can be coated by EDTA in the range from about 200 to 300 mg/mL EDTA. Optionally, a channel of volume from 70 to 100 uL can be coated by EDTA in the range from about 300 to 450 mg/mL EDTA. Optionally, a channel of volume from 20 to 30 uL can be coated by Heparin in the range from 250 units/mL Heparin. By way of example, the material may be solution coated onto the target surface for less than 1 hour and then dried overnight. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. Referring now to FIG. 11G, a still further embodiment will now be described. The embodiment of FIG. 11G shows that at a distal end 1202 of the sample collection device 1200, instead of having one opening 1204 for each of the channels, the sample collection device 1200 merges two or more of the channels into a single channel. The embodiment of FIG. 11G shows that there is common channel portion prior to the split of the common channel into to a plurality of separate channels. As will be described below in FIG. 11I, optionally, there may be back flow preventer such as but not limited to a vent positioned along the separate channel to reduce the possibility of drawing sample from one channel into another channel during filling and/or extraction of sample from the channels into the sample vessel(s). As seen in FIG. 11H, this use of common flow paths can result in a reduced number of openings on the exterior of the sample collection device 1200, which may make it align the opening 1204 to engage the bodily fluid sample. It may also increase the capillary force for drawing bodily fluid sample into the sample collection device 1200 by having more capillaries pulling on the same channel where the bodily fluid sample enters the collection device. Referring now to FIG. 11I, a cross-sectional view of select components of a sample collection device will now be described. FIG. 11I shows that the sample collection device can have two channels 1182 and 1184 that have a common portion 1186 leading towards an inlet opening on the device. In some embodiments, the common portion 1186 is a continuation of one of the channels 1182 or 1184 in terms of size, shape, and/or orientation. Optionally, the common portion 1186 is not of the same size, shape, and/or orientation of any of the channels 1182, 1184, or any other channel that may be in fluid communication with the common portion 1186. FIG. 11I shows that in one non-limiting example, there may be a step at the interface 1188 between the channel 1182 and 1184. This interface 1188 may be configured to ensure flow into both of the channels so that they will both reach a full fill. In one embodiment, the interface 1188 has a size greater than the channel 1182 leading away from the interface 1188. Although other sizes are not excluded, this interface 1188 of greater size may ensure that sufficient flow will enter the channel 1182, which in the present embodiment, has a smaller diameter and reduced volume relative to the channel 1184. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. FIG. 11I also shows that there may be vents 1190 and 1192 that can be used to prevent cross-flow between channels, particularly when sample is being transferred into the sample vessels. In one embodiment, the vents 1190 and 1192 are open at all times. In another embodiment, the vents 1190 and 1192 may be open only at select times, such as but not limited to after the channels 1182 and 1184 are filled or substantially filled. Some embodiments may use a dissolvable material the plugs the vents 1190 and 1192 until they are in contact with sample fluid. Optionally, some embodiments may use a slidable covers one or more of the vents 1190 and 1192 such that they are only opened at times selected by the user. In one embodiment, the covers are linked to the sample vessels such that movement of the sample vessels to move into fluid communication with the channels will also open one or more vents 1190 and 1192 to reduce the risk of cross-flow between channels. Optionally, other anti-crossflow mechanisms such as but not limited to valves, gates, or plugs can also be used to prevent fluid transfer between channels 1190 and 1192. FIG. 11I also shows that there may be anti-leakage devices 1194 positioned over the adapters 1150 and 1152. In this embodiment, the anti-leakage devices 1194 are frits which may be slidably moved from a first position where they prevent sample from leaking out from the adapters 1150 and 1152 to a second position wherein they allow the adapters to deliver fluid into the sample vessels. In one non-limiting example, the anti-leakage devices 1194 will slide when they are engaged by the sample vessels or the housing that holds the sample vessels. The movement of the sample vessels or the housing in this non-limiting example shows that the movement of those elements will also cause movement of the anti-leakage devices 1194. Referring now FIG. 11J, yet another embodiment of a sample collection device 1160 will now be described. This embodiment of the sample collection device 1160 shows that the device 1160 has a sample entry location 1204 that leads to a plurality of channels 1162 and 1164 in the device 1160. Although FIG. 11J show that the channels 1162 and 1164 may have different shapes and/or sizes, some embodiments may be configured to have the same volumes and/or shapes. It should also be understood that the sample entry location 1204 can be on the surface of the device 1160, or optionally, it can be part of a tip, nozzle, stub, or other protrusion that extends from the body of the device 1160. This protrusion may be in the same plane and aligned parallel with the body of the device or optionally, it may be angled so that the axis of the protrusion intersects the plane of the device 1160. FIG. 11J further shows that for some embodiments, there may be sample flow features 1166 and 1168 to draw or otherwise preferentially direct sample in a desired direction. In some embodiments, the features 1166 and 1168 are guides that operate to decrease channel dimension in at least one axis, such as but not limited to width or height, and thus increase capillary action through those areas of reduced dimension. In one non-limiting example, these flow features 1166 and 1168 can assist fluid flow through the channel areas positioned near the anti-crossflow features 1170 during sample entry into the channels. In one embodiment, the flow features 1166 and 1168 are sized so as to preferentially improve flow in the inbound direction when flow is drawn primarily by capillary action. Outbound flow, in one scenario, is not based on capillary force but on vacuum pulling force (such as from an adjacent channel), and these flow features 1166 and 1168 of the present embodiment are not configured to provide assistance under those vacuum, non-capillary flow conditions. Thus, some but not all embodiments of flow features 1166 and 1168 are configured to assist under at least one type of flow condition but not certain other flow condition(s). Optionally, some embodiments may use other techniques alone or in combination with the guides, such as but not limited to, shaped features, hydrophobic material(s), hydrophilic material(s), or other techniques to push/pull samples towards a desired location. FIG. 11J also shows that in the one or more embodiments herein, there may be angled side wall features 1167 that conically or otherwise narrow the cross-sectional area of the channel in a manner that funnels sample to minimize the amount of sample that may be retained in the channel and not collected. FIG. 11J also shows that there may be locating feature(s) 1169 to facilitate joining of parts together in a define location and orientation during manufacturing. FIG. 11K shows a side view of this embodiment of the sample collection device 1160. The side view of the device 1160 shows that there are embodiments where there are one or more anti-crossflow features 1170 such as but not limited to vents to minimize undesired crossflow of sample between the channels 1162 and 1164, particularly once a desired fill level has been reached in the respective channels. The anti-crossflow features 1170 and 1172 can prevent crossflow due to the break in fluid pathway created by the vents. The crossflow issue presents itself most commonly when the vessels in the holder 1140 are engaged and provide an additional motive force to pull the sample from the channels into the vessels. This “pulling” effect may inadvertently draw sample from one channel to an adjacent channel. To minimize crossflow, forces associated with pulling sample from the channel into the vessel will pull from the vent and not fluid in an adjacent channel, thus minimizing undesired comingling of sample. FIG. 11K also shows that in some embodiments herein, there may be common portions 1130 and 1140 which can be adapted for use with different sample fill portions 1120. Some may use different capillary fill portions 1120. Some embodiments may use fill portions that use different types of capture techniques, such as but not limited to, samples acquired from venous draws, arterial draws, or other sample drawn from an interior location or target site of the subject. Referring now to FIG. 11L, one embodiment of the sample flow features 1166 and 1168 are shown. This cross-sectional view of sample collection portion with the channels 1162 and 1164 and the sample flow features 1166 and 1168 near the common inlet pathway 1165 shows that the features are desired in one embodiment near where the sample is entering the channels. FIG. 11L also shows, for channels of different volumes, it can be desirable to position the inlet 1165 closer to the channel 1164 that has the larger volume, as seen by the asymmetric location of inlet 1165. It can also be seen that in some embodiments, location(s) of the sample flow features 1166 and 1168 can also be selected to control filling rate, filling volume, or the like in the sample collection device 1160. It should be understood that one or more of features described can be adapted for use with other embodiments herein. Referring now to FIG. 11M, channels 1162 and 1164 with sample anti-crossflow features are shown. In one embodiment, the sample anti-crossflow features are vents 1170 and 1172 located on at least one surface of the channels 1162 and 1164. In one nonlimiting example, these sample anti-crossflow features are located near any sample flow features 1166 and 1168 in the device. In one embodiment, these anti-crossflow features are configured to prevent flow between channels. These anti-crossflow features can be located near the maximum fill locations of each of the channels such that as the channel is at or near its maximum sample capacity, the anti-crossflow features 1170 and 1172 are positioned to prevent overfilled sample from causing sample that has been treated in one channel from entering another channel and undesirably mixing samples from two channels together. FIG. 11N shows a perspective view of the sample collection device 1160 with sample fill indicators 1112 and 1114. In one embodiment, these indicators 1112 and 1114 are openings or transparent portions of the device 1160 that allows for observation of at least one portion of the channel(s) 1162 or 1164. When sample is visible in at least one of the indicators 1112 and 1114, it provides a cue to the user to then take another action such as but not limited to engaging the sample vessels in the holder 1140. In some embodiments, there is only one sample fill indicator which is a proxy for sufficient fill of sample in two or more of the channels. In some embodiments, the action to engage the sample vessels is only taken when indicated by indicators 1112 and 1114. In some embodiments, the action to engage the sample vessels is only taken when indicated by only one of the indicators. Referring now to FIGS. 11O, 11P, and 11Q, cross-section at various locations along one embodiment of the device 1160 in FIG. 11J are shown. FIG. 11O shows a cross-section showing the sample flow features 1166 and 1168. The anti-crossflow features 1170 and 1172 are also shown. Engagement features 1174 can also be provided to enable mating of pieces together to form the device 1160. FIG. 11P shows that the adapter channels 1150 and 1152 are positioned to extend into or at least be in fluid communication with the sample channels 1162 and 1164. Optionally, some embodiments may have multi-lumen adapter channels 1150 or 1152. Optionally, some embodiments may have multiple adapter channels per sample channel, wherein such additional channels may be parallel to, angled, wrapped, or otherwise oriented relatively to each other. FIG. 11Q shows that in some embodiments, the vessel holder 1140 can be shaped asymmetrically (in the cross-sectional plane) or otherwise shaped to enable only one orientation that the holder 1140 can be received in the device 1160. This can be particularly desirable when it is desired to direct sample from a certain channel into a selected vessel. If the holder 1140 can be inserted in various orientations, the sample from one channel may end up in the wrong vessel. Optionally, other features such as alignment features, slots, visual cues, texture cues, and/or the like may be used to encourage a preferred orientation of sample vessels in the device. Integrated Tissue Penetrating Member Referring now to FIG. 11R, yet another embodiment of a sample collection device will now be described. This sample collection device 1210 comprises features similar to that shown in FIG. 11G, except that it further includes a tissue penetrating member 1212 that is mounted to the sample collection device 1210. An actuation mechanism 1214 such as but not limited to a spring actuator can be used to launch the tissue penetrating member. FIG. 11R shows the actuation mechanism 1214 in a resting state and that it can be a spring that can be compressed to launch a tissue penetrating member 1212 towards target tissue. The tissue penetrating member 1212 can be housed inside a housing 1216 (shown in phantom). In one embodiment, the housing 1216 comprises a portion that can be peeled back, pierced, released or otherwise opened to allow the tissue penetrating member 1212 to exit the housing but also maintain sterility of the tissue penetrating member 1212 prior to its use. In some embodiments, the portion may be a foil, a cap, a polymer layer, or the like. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. In one embodiment, the tissue penetrating member 1212 path can be controlled along both the “normal” (i.e., forward direction of the tissue penetrating member) and “orthogonal” (i.e., perpendicular to main motion vector) of the trajectory. Some embodiments may have not have a hard stop or bang stop at the deepest point of penetration (i.e., return point), which is the main cause for spontaneous pain. Some embodiments may use a cushion, a cam pathway, or other non-hardstop mechanism to prevent pain associated with the shockwave of a sudden stop. Such a shockwave is detrimental even if the tissue penetrating member successfully avoids hitting nerves near the wound location as the shockwave can activate such nerves even if direct contact was avoided. Optionally, some embodiments may have the tissue penetrating member follow a non-jitter path, to prevent a rough wound channel (residual pain). This may be achieved in some embodiments through tighter tolerance in any guide pathway used with tissue penetrating member or a pin associated with the tissue penetrating member. This may be a non-jitter path when penetrating the tissue. Optionally, this may be a non-jitter path for the tissue penetrating member both outside the tissue and when it is inside the tissue. This can reduce overall motion “wobble” of the tissue penetrating member that may cause residual pain, long-lasting trauma, and scarring. Some embodiments may have a controlled outbound speed to prevent slow and delayed wound closure and after bleeding. By way of nonlimiting example, the controlled outbound speed of the tissue penetrating member can be controlled by mechanical mechanisms such as but not limited cams or higher friction materials. Some embodiments may also include anti-bouncing mechanisms to prevent unintended re-lancings that can be associated with an uncontrolled tissue penetrating member that rebounds into the tissue after initial wound creation. Some embodiments herein may have “parking” mechanisms or lock-out mechanisms that will engage the tissue penetrating member or its attachments to prevent re-entry of the tissue penetrating member once it has retracted out of the tissue or some other desired distance. The abruptness with which the lancet comes to a stop in the skin at maximum depth, before it starts its outbound motion and returning to its starting position, is an inherent issue of this design. With the lancet at its deepest point of penetration, the greatest amount of force is applied to the skin. The drive mechanism simply bounces off the end of the device like a ball bounces back from the floor. The lancet, coming to an abrupt stop at the end point of its inbound motion, sends a shockwave into the skin, causing many pain receptors in the vicinity of the lancet to fire, even though they are not directly struck. This amplifies spontaneous pain substantially. As mentioned, instead of simple spring actuated tissue penetrating members, some embodiments may use mechanical cam actuation. Devices with cam-actuation design can minimize “hard stopping” of the tissue penetrating member. A cam mechanism is usually spring driven and generally offers a better guided actuation. The trajectory of the tissue penetrating member is tightly controlled through a guided path of the tissue penetrating member holder via a pin riding in a cam. The cam mechanism allows for a predetermined speed profile with a softer return and distinct speed control for the tissue penetrating member outbound trajectory. This mechanism also effectively avoids a bounce back of the lancet into the skin when the mechanism reaches its motion end point. In addition, the mechanical oscillation (or jitter/wobble) of the lance path in both directions is reduced when fired in air. Some embodiments herein may also minimize any mechanical wobble of the drive mechanism (e.g., due to uneven or rough cam slots) to prevent transfer of such drive mechanism wobble directly into the tissue because of its “forced motion profile.” Optionally, some embodiments may use electronic actuation through an electronically controlled drive mechanism. This technology uses a miniaturized electronic motor (e.g., voice coil, solenoid) coupled with a very accurate position sensor, moving the tissue penetrating member into and out of the skin with precisely controlled motion and velocity. Following rapid entry, the device decelerates the tissue penetrating member to an exact, preset depth to return smoothly, without jitter, and relatively slowly. This allows quick wound closure and avoids long-term trauma. With this device, the force required to penetrate the lancet into the skin is controlled while the tissue penetrating member is progressing. The benefit of tightly controlling the tissue penetrating member actuation “profile” is a reproducible painless lancing that yields a sufficient and consistent blood sample for testing. In terms of puncture site creation for blood sample extraction, it may be desirable to elect the appropriate puncture site on one of the patient's fingers (ring or middle) on their non-dominant hand. The puncture sites may be on the sides of the tips of the fingers. In one nonlimiting example, it may be desirable to hold the hand warmer strip against the patient's selected finger for 15 seconds. Optionally, some may warm the patient's finger(s) from 10 to 60 seconds. Others may warm for longer. The warming will increase blood flow to the target site. To prepare the target site, it may be desirable to wipe the side tip of the selected finger or surface of the subject with an alcohol wipe or similar cleaning agent, being sure to wipe the selected puncture site. In some embodiments, it is desirable to wait until the skin is completely dry. Typically, one does not dry with gauze or blow air on the fingertip to accelerate drying. After a puncture has been formed, hold the finger downward, below the patient's waist, in order to allow blood to flow. Massage the finger lightly from base to tip until a blood drop has formed. Carefully fill the blood collection device by touching the tip of the device to the bead of blood on the finger. Make sure the device is completely filled. Once the blood collection device is filled, press the bleeding area of the finger against the gauze pad on the table. Transfer the blood sample into the collection vessels. Place a bandage over the finger. Place the vessels with the sample into the shipping box inside the refrigerator. Discard all supplies in the biohazard sharps vessel. All supplies are single-use only. If enough blood is not obtained from the first puncture, carefully place the blood collection device on the table surface, ensuring that the device remains horizontal. Place a bandage over the finger that was punctured. Select the appropriate puncture site on a different finger on the patient's same hand. If the ring finger was punctured first, choose a new puncture site on the middle finger, and vice versa. Hold the hand warmer strip against the patient's selected finger for 60 seconds. Optionally, some may warm the patient's finger(s) from 30 to 90 seconds. This will increase blood flow to the finger. These techniques for blood collection using a sample collection device such as any of those herein can enable sufficient sample collection of capillary blood for use in laboratory testing at Clinical Laboratory Improvement Amendments (CLIA) certified facility and/or standards. Referring now to FIG. 11S, yet another embodiment of a sample collection device 1220 will now be described. In this embodiment, the tissue penetrating member 1222 may be mounted at an angled relative to the sample collection device 1220. This angled configuration allows for tissue penetrating member to create a wound at a location that aligns with sample acquisition opening(s) 1103 and 1105. Although a standard spring-launched actuator is shown as the drive mechanism 1224 for the tissue penetrating member 1222, it should be understood that cam and/or electrical drive systems may also be used in place of or in combination with the spring launcher. When the drive mechanism 1224 is a spring, the spring can be compressed to move the tissue penetrating member 1222 to a launch position and the released to penetrate into the target tissue. FIG. 11S shows the tissue penetrating member 1222 in a resting position. Although the figures show a spring for the drive mechanism 1224, it should be understood that other drive mechanism suitable for use in launching a tissue penetrating member to create a healable wound on a subject are not excluded. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. A housing 1226, similar to that described for housing 1216, may be formed around the tissue penetrating member 1222. Although FIG. 11S shows two tissue penetrating members 1222 mounted on the sample collection device, it should be understood that devices with more or fewer tissue penetrating members are not excluded. For example, some embodiments may have only one tissue penetrating member 1222 mounted to the sample collection device 1220. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. Referring now to FIG. 11T, another embodiment of a sample collection device 1230 will now be described. This embodiment shows that the tissue penetrating member 1232 is contained within the sample collection device 1230 and as seen in FIG. 11T, it is actually co-axially aligned with the central axis of the sample collection device. This positions the tissue penetrating member 1232 to extend outward from the sample collection device 1230 at a location close to where openings 1103 and 1105 are positioned on the sample collection device 1230. Of course, devices having more or fewer openings are not excluded and the embodiment of FIG. 11T is exemplary and non-limiting. FIG. 11T shows that in one embodiment of the sample collection device, a firing button 1234 may be mounted on the sample collection device 1230. Optionally, some embodiments may have the shaped front end 1236 function as the actuation button, wherein upon pressing the tissue against the front end 1236 to a certain depth and/or certain pressure, the tissue penetrating member will be actuated. Once fired, the tissue penetrating member 1232 moves as indicated by arrow 1233. In some embodiments, the tissue penetrating member 1232 is fully contained inside the sample collection device 1230 prior to actuation. Some embodiments may have a visual indicator 1235 on the device 1230 to help guide the user on where the tissue penetrating member 1232 will exit the device and where approximately the wound will be formed. In this non-limiting example, the entire device 1230 may be in a sterile pouch or package that is only opened before the device 1230 is used. In this manner, sterile conditions are maintained for the tissue penetrating member and the collection device prior to use. This external sterile pouch or package is also applicable to any of the other embodiments herein. FIG. 11L also shows that a shaped front end 1236 (shown in phantom) that can be integrally formed or separately attached to the sample collection device 1230. This shaped front end 1236 can provide suction to draw sample fluid into the sample collection device 1230. Optionally, the shaped front end 1236 can be used to stretch the target tissue and/or force it into the shaped front end to apply pressure to increase sample fluid yield from wound formed by the tissue penetrating member 1232. It should be understood that any of the embodiments herein can be adapted to have a shaped front end 1236. Optionally, the shaped front end may have select hydrophobic area(s) to direct sample fluid to towards one or more collection areas on the front end. Optionally, the shaped front end may have select hydrophilic area(s) to direct sample fluid to towards one or more collection areas on the front end. Referring now to FIG. 11U, yet another embodiment of a sample collection device will now be described. This embodiment is similar to that of FIG. 11T except that, instead of single tissue penetrating member such as a lancet, the embodiment of FIG. 11T uses a plurality of tissue penetrating members 1242. In one embodiment, these tissue penetrating members are microneedles 1242 that are of reduced diameter as compared to traditional lancets. A plurality of microneedles 1242 can be simultaneously actuated for device 1240 and create multiple wound sites on the tissue. The spacing of the microneedles 1242 can result in more capillary loops being pierced and more channels being available for blood to reach the tissue surface. This also allows for a more “square” penetration profile as compared to a lancet which has a pointed tip and a tapered profile. This may enable the microneedles 1242 to engage more capillary loops over a larger area without penetrating too deep into deeper tissue layers that are more densely populated with nerve endings. Referring now to FIGS. 11V and 11W, a still further embodiment of a sample collection device will now be described. In the embodiment shown in these figures, the sample collection device 1100 may be mounted angled to a dedicated wound creation device 1250 that has a tissue penetrating member 1252 configured to extend outward from the device 1250. The sample collection device 1100, which may optionally be configured to have a shaped front end 1236 (with or without an opening to accommodate the tissue penetrating member 1252), can be removably mounted to the wound creation device 1250. Optionally, the sample collection device 1100 may be flat mounted to the device 1250. Optionally, there may be a shaped cut-out on device 1250 for press-fit holding the sample collection device 1100. It should be understood that other techniques for removably mounting the sample collection device 1100 are not excluded. This de-coupling of the collection device and the wound creation device allows for the use of a more sophisticated, possible non-disposable wound creation device 1250 that can create a more controlled, reduced-pain wound creation experience. FIG. 11W shows that the sample collection device 1100 can be aligned to be more or less horizontal to be neutral with regards to gravity effects on the sample collection. Other mounting configurations of device 1100 to would creation device 1250 are not excluded. Referring now to FIGS. 11X to 11Z, still further embodiments of various sample collection devices will now be described. FIG. 11X shows a sample collection device 1240 where a shaped front end 1236 may be used with the device 1240. This shaped front end 1236 is similar to that previously described. A vacuum source 1270 can be used to assist in drawing bodily fluid sample into the device 1240. The vacuum source 1270 may be linked to the body of device 1240 and/or to the shaped front end 1236. It should be understood that any of the embodiments described in this disclosure can be adapted for use with a sample acquisition assist device such as but not limited to a vacuum source 1270. FIG. 11Y shows yet another embodiment of a sample collection device. This embodiment uses a pipette system having a tip 1280 for collecting sample fluid. The tip may include a coaxially mounted tissue penetrating member 1282. Optionally, a side mount or angled tissue penetrating member 1284 is shown to create the wound at the target site. The pipette system with tip 1280 can apply vacuum to pull sample fluid from the subject. Optionally, a shaped front end 1236 may be used with the tip 1280 to assist in skin stretching or tissue reshaping at the target site. FIG. 11Z shows that some embodiments may use a diaphragm 1291 linked actuation mechanism to create a vacuum for drawing blood sample. This linkage allows for the diaphragm to create a vacuum on the return stroke of the tissue penetrating member 1292 from the target site. In one embodiment, the tissue penetrating members 1292 are microneedles. The actuation of the tissue penetrating members as indicated by arrows 1294 launches the tissue penetrating members 1292 and on the return path, creates the vacuum due to the motion of the diaphragm linked to the motion of the tissue penetrating member 1292. One or more vessels 1296 can be coupled to hold fluid collected by the device 1290. Some embodiments may have only one vessel 1296. Some embodiments may have one set of vessels 1296. Some embodiments may have multiple sets of vessels 1296. Some embodiments may be mounted externally on device 1290. Some embodiments may be mounted internally in device 1290. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. Vertical Outflow Restrictors FIG. 11E also more clearly shows that there are sleeves 1156 around the adapter 1150 and 1152. Although only shown in FIGS. 11A-11F, it should be understood that sleeves with or without vents may be configured for use with any of the embodiments contemplated herein. As seen in the embodiment of FIG. 11E, the channels may be defined by needles. These sleeves 1156 prevent premature flow of fluid sample out from the adapter channels 1150 and 1152 before the vessels 1146a and 1146b engage the needles. Because of the low volumes of sample fluid being acquired, preventing premature flow reduces the amount of fluid loss associated with transfer of fluid from the channels to the vessels. In one embodiment, the sleeves 1156 can minimize that fluid loss by providing a sleeve that is liquid tight, but not air tight. If the sleeve were airtight, it may prevent the capillary action of the channels from working properly. Optionally, some embodiments may locate vents near the base of the needle, away from the tip, such that the sleeve can contain the sample at locations away from the vents. FIG. 11F shows that in an exemplary embodiment, the sleeve 1156 is configured to have an opening 1158 through the sleeve. This provides an improved embodiment over traditional sleeves which are typically loosely fitted over a needle. Because of the loose fit, in traditional sleeves, there is sleeve space in the tip and in side wall space between the needle and the sleeve within which fluid sample can accumulate. Although a sleeve of this design can help prevent greater loss of fluid by restricting the loss to a defined amount as compared to a needle without a sleeve which can lose fluid continuously, the fluid accumulating in the sleeve area along the tip and side wall is still lost and not collected by the vessels 1146a or 1146b. The sleeve 1156 may also include a narrowed area 1176 to facilitate engagement of the sleeve against the device providing fluid communication with the channels 1126 and 1128, such as but not limited to the needle, probe, tube, channel, or other adapter channel 1150. In the embodiment of FIG. 11F, the opening 1158 is sized based on calculations which are sufficient to withstand fluid pressure associated with the flow from the capillary action of the channels in sample fill portion 1120. This forces allows the opening 1158 to be there to vent air from the channel but also prevent fluid from exiting the sleeve until the vessels 1146a and 1146b are pushed to engage the adapter channels 1150 and 1152. Because of the vent effect created by the opening 1158, the side wall and other areas of the sleeve can be made to much more tightly engage the needle than in traditional sleeves. This reduces the gap space between the needle and the sleeve and thus minimizes the amount of fluid that can be lost as compared to sleeves without a vent hole which have a much greater gap space due to the looseness of the fit. Additionally, the opening 1158 can also be sized such once fluid reaches the opening, that it provides enough resistance so that flow out from the channel or needle is also stopped so that here is minimal fluid loss in any gap between the sleeve and the needle tip. The calculations for sizing the opening are as shown in FIG. 12. The desire is to balance the forces such that there is sufficient leak-prevention force associated with the hydrophobic material defining the vent to contain outflow of sample fluid outside of the sleeve. In FIG. 12, the side walls of the sleeve 1156 may be in direct contact with the needle or in some embodiments, there may be a gap along the sidewall with the sleeve. In one embodiment, the sleeve 1156 comprises a hydrophobic material such as but not limited to thermoplastic elastomer (TPE), butyl rubber, silicone, or other hydrophobic material. In one embodiment, the thickness of the sleeve will also determine the length of the side walls of the opening or vent 1158 in the sleeve 1156. The opening 1158 may be located at one or more positions along the sleeve 1156. Some may have it as shown in FIG. 12. Alternatively, some embodiments may have the opening 1158 on a side wall of the sleeve. Other locations are not excluded. Optionally, the sleeve 1156 may have multiple openings through the sleeve, but configured such that fluid does not exit from the sleeve and resistance from the openings is sufficient to prevent additional outflow from the channel until the vessels 1146a or 1146b are engaged and in fluid communication with the channels. With regards to how the device 1100 is used to collect a sample, in one technique, the sample collection device 1100 is held to engage the target bodily fluid and is held in place until a desired fill level is reached. During this time, the device 1100 may be held horizontally to minimize gravitational force that would need to be overcome if the device 1100 were held more vertically. After a fill level is reached, the device 1100 may either be disengaged from the target fluid and then vessels 1146a and 1146b engaged to draw collected fluid into the vessels. Optionally, the device 1100 may be left in contact with the target fluid and the vessels engaged into fluid contact with the channels so that the fill will draw fluid in the channel and perhaps also any additional sample fluid that remains at the target site. This may ensure that enough bodily fluid is drawn into the vessels. After filling the vessels 1146a and 1146b, they may be prepared for shipment. Optionally, they may be sent for pre-treatment before being shipped. Some embodiments of the vessels 1146a and 1146b include a material in the vessel of a density such that after a pre-treatment such as centrifugation, the material due to its selected density will separate one portion of the centrifuged sample from another portion of the centrifuged sample in the same vessel. The vessel 1146a or 1146b may have a vacuum and/or negative pressure therein. The sample may be drawn into the vessel when the channel is brought into fluidic communication with the vacu-vessel. Optionally, the vessel may take the form of a test tube-like device in the nature of those marketed under the trademark “Vacutainer” by Becton-Dickinson Company of East Rutherford, N.J. The device may remain in a compressed state with the base 1140 closing gap 1154 while the sample is being transferred to the vessel. The sample may fill the entire vessel or a portion of the vessel. The entirety of the sample (and/or greater than 90%, 95%, 97%, 98%, 99%, 99.5% or 99.9% of the sample) from the channels may be transferred to the vessels. Alternatively, only a portion of the sample from the channels may be transferred to the vessels. In one embodiment as described herein, a two-stage filling of the sample fluid into the sample collection device 1100 allows for i) metered collection of the sample fluid to ensure that a sufficient amount is obtained in a collection channel that is treated to prevent premature clotting and then ii) an efficient manner of transferring a high percentage of the sample fluid into the vessel. This low loss filling of vessel from pre-fill channels to meter a minimum amount of sample fluid into the vessel 1146 provides for multiple advantages, particularly when dealing with collecting small volumes of sample fluid. Pre-filling the channels to a desired level ensures sufficient volume is present in the vessel to perform the desired testing on the sample fluid. As described herein, the entire device including the sample fill portion 1120, support 1130, and base 1140 are entirely transparent or translucent to allow for visualization of the components therein. Optionally, only one of the sample fill portion 1120, support 1130, and base 1140 are fully transparent or translucent. Optionally, only select portions of sample fill portion 1120, support 1130, or base 1140 are transparent or translucent. The user may then more accurately determine when to perform various procedures based on progression of sample fluid filling and engagement of the sample vessels to the channels in sample fill portion 1120. Air bubbles in the collection channel may be visible during filling and if they are seen, a user may adjust the position of the sample collection device 1100 to better engage the target sample fluid to minimize air being drawn into the channels. It will also allow the user to know when to breakaway or disengage pieces such as the base or vessel holder 1140 when filling is completed. It should be understood that other methods can be used to prevent outward sample flow from the adapter channels 1150 and 1152 if the device is held at a non-horizontal angle such as but not limited to downwardly in a vertical manner. In one embodiment, a frit 1194 can be used with needles with a central bore that are used as the adapter channels 1150 and 1152. The frits can be in the body of sample collection device or on the collection vessels. In some embodiments, the frits comprise of a material such as but not limited to PTFE. Optionally, some embodiments may use tape/adhesive over the needles that are functioning as the adapter channels 1150 and 1152. In one embodiment, the tape and/or adhesive may be used to cover the needle openings to prevent premature discharge of sample. Optionally, some embodiments may have adapter channels 1150 and 1152 having hydrophobic surface to prevent controlled outflow from the adapter channel openings leading toward the sample vessels. In some embodiments, the adapter channels 1150 and 1152 are needles with hydrophobic material only on the interior surfaces near an exit. Optionally, the hydrophobic material is only on the exterior needle surfaces near an exit. Optionally, the hydrophobic material is on interior and exterior needle surfaces. Optionally, another method of preventing downward flow is increasing the surface area of the capillaries by varying the cross-section. By way of non-limiting example, some embodiments may introduce teeth- or finger-like structures within the capillary in order increase surface are in the cross-section of the capillary. Optionally, some embodiments may include fins oriented toward and/or against the fluid flow within the capillary in order increase surface are in the cross-section of the capillary. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. One Sample Collector Location to Multiple Channels Referring now to FIGS. 13A-13B, yet another embodiment as described herein will now be described. FIG. 13A shows a top down view of a sample fill portion 1320 with a single collection location 1322 such as but not limited to a collection well where two channels 1324 and 1326 meet to draw fluid away from the single collection location 1322. Optionally, some embodiments may use an Y-split channel configuration wherein only a single channel lead away from the collection location 1322 and then splits into channels 1324 and 1326 after having been a single common channel leading away from the collection location 1322. Members providing fluid communication to the channels 1324 and 1326, such as but not limited to a needle, probe, tube, channel, hollow elongate member, or other structure, may be coupled to one end of the sample fill portion 1320. FIG. 13B shows a side-cross-sectional view, wherein the collection location 1322 is shown and in fluidic communication with channel 1326 which is in turn in fluid communication with an adapter channel 1352 such as but not limited to a fluid communication member. Some embodiments, the fluid communication member may have sufficient stiffness and a sufficiently penetrating tip to pierce a septum, cap, or other structure of the vessel. Some may have the adapter channel 1352, 1150, or the like to be a non-coring structure so as not to leave behind a hole that will not seal in the septum, cap, or other structure of the vessel. As seen in FIG. 13B, sample fluid may be applied or dropped into the collection location 1322 as indicated by droplet D. Optionally, some may directly apply or directly contact the collection location 1322 to apply the sample fluid. Although the embodiments herein are shown to use only a single collection location 1322, it should be understood that other embodiments where multiple channels couple to a common sample collection point are envisioned. By way of nonlimiting example, one embodiment of a collection device may have two collection locations 1322, each with its own set of channels leading away from its respective collection location. Some embodiments may combine common collection point channels shown in FIGS. 13A-B with channels that are separate such as shown in FIGS. 11A-11F. Other combinations of common collection location structure with other structures with separate channels are not excluded. FIG. 13B also shows that this embodiment may include one or more tissue penetrating members 1327 configured to extend outward from the collection location 1322. In one embodiment, this enables the user to place target tissue simultaneously over the collection location 1322 and the wound creation location for fluid sample acquisition. Optionally, a trigger 1323 can be positioned to launch the tissue penetrating member. Optionally, the trigger is built into a tissue interface of the device to enable launch of the device when the target tissue is contacted and/or when sufficient pressure or contact is in place. This overlap of these two locations allows for simplified protocol for users to follow for successful sample acquisition. The tissue penetration member(s) 1327 may be actuated by one or more actuation techniques such as but not limited to spring actuated, spring/cam actuated, electronically actuated, or single or multiple combinations of the foregoing. It should be understood that other assist methods such as but not limited to vacuum sources, tissue stretching devices, tissue engagement nose pieces, or the like may be used alone or in combination with any of the foregoing for improved sample acquisition. Referring now to FIG. 13C, a still further embodiment of a sample collection device will now be described. This embodiment shows a cartridge 1400 with a sample collection device 1402 integrated therein. There is a collection location 1322 and one or more sample openings 1325 and 1329 where sample collection at location 1322 can then be accessed such as but not limited to handling by a pipette tip (not shown). The sample from droplet D will travel along pathway 1326 as indicated by arrow towards the openings 1325 and 1329, where the sample in the opening and any in the pathways 1324 and/or 1326 leading towards their respective openings 1325 and 1329 are drawn into the pipette P. As indicated by arrows near the pipette P, the pipette P is movable in at least one axis to enable transport of sample fluid to the desired location(s). In this embodiment, the cartridge 1400 can have a plurality of holding vessels 1410 for reagents, wash fluids, mixing area, incubation areas, or the like. Optionally, some embodiments of the cartridge 1400 may not include any holding vessels or optionally, only one or two types of holding vessels. Optionally, in some embodiments, the holding vessels may be pipette tips. Optionally, in some embodiments, the holding vessels are pipette tips that are treated to contain reagent(s) on the tip surface (typically the interior tip surface although other surfaces are not excluded). Optionally, some embodiments of the cartridge 1400 may include only the sample collection device 1402 without the tissue penetrating member or vice versa. Referring now to FIG. 13D, a side cross-sectional view of the embodiment of FIG. 13C is shown. Optionally, a tissue penetrating member 1327 may be included for use with creating the wound for the sample fluid to be collected at location 1322. FIG. 14 shows that the sample fill portion 1320 may be joined with support 1330 and 1340 to form the sample collection device 1300. There may be a visualization window 1312 to see if sample fluid has reached a desired fill level. A force-exerting component, such as a spring 1356 or elastic may be included. The channel holder may keep the channel affixed to the support. In one embodiment, the holder may prevent the channel from sliding relative to the support. It may use a press fit, mechanical fastening, adhesive, or other attachment technique to couple to the channel. The holder may optionally provide a support upon which a force-exerting component, such as a spring, may rest. In one example, the engagement assemblies may include a spring 1356 which may exert a force so that the base 1340 is at an extended state, when the spring is at its natural state. When the base is at its extended state, space may be provided between the vessels 1346a, 1346b and the engagement assemblies. In some instances, when the base 1340 is in its extended state, the second ends of the channels may or may not contact the caps of the vessels. The second ends of the fluid communication members 1352 may be in a position where they are not in fluid communication with the interiors of the vessels. Bringing the support 1330 and the base 1340 together will bring the channels 1324 and 1326 into fluid communication with the vessels 1346a and 1346b when the members 1352 penetrate through the cap on the vessels and thus draw sample fluid into the vessels 1346a and 1346b. The vessel 1346a or 1346b may have a vacuum and/or negative pressure therein. The sample may be drawn into the vessel when the channel is brought into fluidic communication with the vacu-vessel. The device may remain in a compressed state with the base 1340 positioned so that vessels are in fluid communication with the channels 1326 and 1328 when the sample fluid is being transferred to the vessels. The sample may fill the entire vessel or a portion of the vessel. The entirety of the sample (and/or greater than 90%, 95%, 97%, 98%, 99%, 99.5% or 99.9% of the sample) from the channels may be transferred to the vessels. Alternatively, only a portion of the sample from the channels may be transferred to the vessels. As seen in FIG. 15, in one embodiment as described herein, a two-stage filling of the sample fluid into the sample collection device 1300 allows for i) metered collection of the sample fluid to ensure that a sufficient amount is obtained in a collection channel that is treated to prevent premature clotting and then ii) an efficient manner of transferring a high percentage of the sample fluid into the vessel. This low loss filling of vessel from pre-fill channels to meter a minimum amount of sample fluid into the vessel 1346 provides for multiple advantages, particularly when dealing with collecting small volumes of sample fluid. Pre-filling the channels to a desired level ensures sufficient volume is present in the vessel to perform the desired testing on the sample fluid. Referring now to FIGS. 16 and 17, still further embodiments will now be described. FIG. 16 shows a blood collection device 1300 with a secondary collection area 1324 around the collection location 1322. The secondary collection area 1324 can be used to direct any overflow, spilled, or mis-directed fluid sample towards the collection location 1322. FIG. 17 further shows that the vessels 1346a and 1346b may each have an identifier associated with the vessels 1346a and 1346b. FIG. 17 shows that in one nonlimiting example, the identifier 1600 and 1602 may be at least one of: a barcode (e.g., 1-D, 2-D, or 3-D), quick response (QR) code, image, shape, word, number, alphanumeric string, color, or any combination thereof, or any type of visual identifier. Others may use identifiers that are not in the visible spectrum. Others may use RFID tags, RF identifiers, IR emitting tags, or other markers that do not rely on identification through signals sent through the visual spectrum. Identifiers 1600 and 1602 may be used to identify sample and/or types of sample in a sample collection device. There may be one or more identifiers per vessel. Some may also use identifiers on the vessel holders. Identifiers may identity the sample collection device, one or more individual vessels within the device, or components of the device. In some instances, the sample collection device, a portion of the sample collection device, and/or the vessels may be transported. In one example, the sample collection device, portion of the sample collection device may be transported via a delivery service, or any other service described elsewhere herein. The sample may be delivered to perform one or more test on the sample. The sample identity and/or the identity of the individual who provided the sample could be tracked. Information associated with the individual or individuals (e.g., name, contact information, social security number, birth date, insurance information, billing information, medical history) and other information of who provided the sample may be included. In some instances, the type of sample (e.g., whole blood, plasma, urine, etc.) may be tracked. The types of reagents that the sample will have encountered (e.g., anticoagulants, labels, etc.) could also be tracked. Additional information about the sample collection, such as date and/or time of collection, circumstances under which sample was collected, types of tests to be run on the sample, insurance information, medical records information, or any other type of information may be considered. Identifiers may assist with tracking such information. The identifiers may be associated with such information. Such information may be stored off-board the sample collection device, on-board the sample collection device, or any combination thereof. In some instances, the information may be stored on one or more external devices, such as servers, computers, databases, or any other device having a memory. In some instances, the information may be stored on a cloud computing infrastructure. One or more resources that store the information may be distributed over the cloud. In some instances, a peer-to-peer infrastructure may be provided. The information may be stored in the identifier itself, or may be associated with the identifier elsewhere, or any combination thereof. An identifier may provide unique identification, or may provide a high likelihood of providing unique identification. In some instances, the identifier may have a visible component. The identifier may be optically detectable. In some instances, the identifier may be discernible using visible light. In some examples, the identifier may be a barcode (e.g., 1-D, 2-D, or 3-D), quick response (QR) code, image, shape, word, number, alphanumeric string, color, or any combination thereof, or any type of visual identifier. In other embodiments, the identifier may be optically detectable via any other sort of radiation. For example, the identifier may be detectable via infrared, ultraviolet, or any other type of wavelength of the electromagnetic spectrum. The identifier may utilize luminescence, such as fluorescence, chemiluminescence, bioluminescence, or any other type of optical emission. In some instances, the identifier may be a radio transmitter and/or receiver. The identifier may be a radiofrequency identification (RFID) tag. The identifier may be any type of wireless transmitter and/or receiver. The identifier may send one or more electrical signal. In some instances, GPS or other location-related signals may be utilized with the identifier. An identifier may include an audio component, or acoustic component. The identifier may emit a sound that may be discernible to uniquely identify the identified component. The identifier may be detectable via an optical detection device. For example, a bar code scanner may be capable of reading the identifier. In another example, a camera (e.g., for still or video images) or other image capture device may be capable of capturing an image of the identifier and analyzing the image to determine the identification. FIGS. 16 and 17 show examples of identifiers provided for use with a sample collection device 1300 in accordance with an embodiment described herein. In one example, a sample collection device may include a base 1340 which may support and/or contain one or more vessels 1346a, 1346b. Sample may be provided to the sample collection device. The sample may be provided to the sample collection device via an inlet 1322. The sample may travel to one or more vessels 1346a, 1346b within the device. One or more identifier 1600, 1602 may be provided on the sample collection device. In some embodiments, identifiers may be positioned on a base 1340 of the sample collection device. The identifiers may be positioned on a bottom surface of the base, side surface of the base, or any other portion of the base. In one example, the base may have a flat bottom surface. The identifiers may be on the flat bottom surface of the base. One or more indentation may be provided in the base. The identifier may be located within the indentation. The indentations may be on the bottom or side surface of the base. In some embodiments, the base may include one or more protrusion. The identifier may be located on the protrusion. In some instances, the identifiers may be provided on an exterior surface of the base. The identifiers may alternatively be positioned on an interior surface of the base. The identifiers may be detected from outside the sample collection device. In some embodiments, the identifiers may be provided on the vessels 1346a, 1346b. The identifiers may be on an exterior surface of the vessels or an interior surface of the vessels. The identifiers may be detectable from outside the vessels. In some embodiments, the identifiers may be provided on a bottom surface of the vessels. In one example, the base may include an optically transmissive portion. The optically transmissive portion may be on a bottom of the base or a side of the base. For example, a transparent or translucent window may be provided. In another example, the optically transmissive portion may be a hole without requiring a window. The optically transmissive portion may permit a portion inside the base to be visible. The identifiers may be provided on an exterior surface of the base on the optically transmissive portion, an interior surface of the base but may be visible through the optically transmissive portion, or on an exterior or interior surface of the vessel but may be visible through the optically transmissive portion. In some instances, the identifier may be provided on an interior surface of the vessel, but the vessel may be optically transmissive so that the identifier is viewable through the vessel and/or optically transmissive portion. The identifier may be a QR code or other optical identifier that may be optically visible from outside the sample collection device. A QR code may be visible through an optical window or hole at the bottom of the base of the sample collection device. The QR code may be provided on the sample collection device base or on a portion of the vessel visible through the base. An image capturing device, such as a camera or scanner may be provided externally to the sample collection device, and may be capable of reading the QR code. A single or a plurality of QR codes or other identifiers may be provided on a sample collection device. In some instances, each vessel may have at least one identifier, such as a QR code associated with it. In one example, at least one window may be provided in a base per vessel, and each window may permit a user to view a QR code or other identifier. For example, two vessels 1346a, 1346b may be housed within a base 1340, each of which has an associated identifier 1600, 1602 discernible from outside the sample collection device. The base 1340 may be separable from the support 1330 or other portions of the sample collection device. The identifier(s) may be separated from the rest of the sample collection device along with the base. In some embodiments, the identifiers may be provided with vessels housed by the base. Separating the base from the rest of the sample collection device may cause the vessels to be separated from the rest of the sample collection device. The vessels may remain within the base or may be removed from the base. The identifiers may remain with the vessels even if they are removed from the base. Alternatively, the identifiers may remain with the base even if vessels are removed. In some instances, both the base and vessels may have identifiers so that the vessels and bases may be individually tracked and/or matched even when separated. In some instances, any number of vessels may be provided within the sample collection device. The sample vessels may be capable of receiving sample received from a subject. Each sample vessel may have a unique identifier. The unique identifier may be associated with any information relating to the sample, subject, device, or component of the device. In some instances, each identifier for each vessel may be unique. In other embodiments, the identifier on the vessel need not be unique, but may be unique for the device, for the subject, or for the type of sample. A sample collection device may receive a sample from a subject. The subject may directly contact the sample collection device or provide the sample to the device. The sample may travel through the device to one or more vessels within the device. In some instances, the sample may be treated prior to reaching the vessels. One or more coating or substance may be provided within a sample collection unit and/or channel that may convey the sample to the vessels. Alternatively, no treatment is provided to the sample prior to reaching the vessel. In some embodiments, the sample may or may not be treated within the vessel. In some instances, a plurality of different types of treatments may be provided to a sample before or when the sample reaches the vessel. The treatments may be provided in a preselected order. For example, a first treatment desired first, and may be provided upstream of a second treatment. In some instances, the sample is not treated at any point. In some embodiments, the sample may be a blood sample. A first vessel may receive whole blood and a second vessel may receive blood plasma. Anticoagulants may be provided along the fluid path and/or in the vessels. Once the sample has been provided to the vessels and the vessels have been sealed, the vessels may be sent to a separate location for sample analysis. The separate location may be a laboratory. The separate location may be a remote facility relative to the sample collection site. The entire sample collection device may be sent to the separate location. One or more identifiers may be provided on the sample collection device and may be useful for identifying the sample collection device and/or vessels therein. Alternatively, the base 1340 may be removed from the sample collection device and may be sent to the separate location with the vessels therein. One or more identifiers may be provided on the base and may be useful for identifying the base and/or vessels therein. In some instances, vessels may be removed from the base and may be sent to the separate location. One or more identifier may be provided on each vessel, and may be useful for identifying the vessels. The identifiers may be read by any suitable technique. By way of example and not limitation, in some instances, the identifiers are read using an optical detector, such as an image capture device or barcode scanner. In one example, an image capture device may capture an image of a QR code. Information relating to the vessel may be tracked. For example, when a vessel arrives at a location, the identifier may be scanned, and record of the arrival of the vessel may be kept. The progress and/or location of the vessel may be updated actively and/or passively. In some instances, the identifier may need to be scanned intentionally in order to determine the location of the vessel. In other examples, the identifier may actively emit a signal that may be picked up by signal readers. For example, as an identifier travels through a building, signal readers may track the location of the identifier. In some instances, reading the identifier may permit a user to access additional information associated with the identifier. For example, the user may capture an image of the identifier using a device. The device or another device may display information about the sample, subject, device, component of the device, or any other information described elsewhere herein. Information about tests to be conducted and/or test results may be included. The user may perform subsequent tests or actions with the sample based on information associated with the identifier. For example, the user may direct the vessel to the appropriate location for a test. In some instances, the vessel may be directed to an appropriate location and/or have appropriate sample processing (e.g., sample prep, assay, detection, analysis) performed on the contents of the vessel in an automated fashion without requiring human intervention. Information relating to sample processing may be collected and associated with the identifier. For example, if a vessel has an identifier and sample processing has been performed on the contents of the vessel, one or more signals produced in response to the sample processing may be stored and/or associated with the identifier. Such updates may be made in an automated fashion without requiring human intervention. Alternatively, a user may initiate the storing of information or may manually enter information. Thus, medical records relating to a subject may be aggregated in an automated fashion. The identifiers may be useful for indexing and/or accessing information related to the subject. Sample Vessels FIGS. 18A-18B show one nonlimiting example of a sample vessel 1800 that may be utilized with a sample collection device in accordance with an embodiment described herein. In some instances, the sample vessels may be supported by the sample collection device. Optionally, the sample vessels may be encompassed or surrounded by a portion of the sample collection device. In one example, the sample collection device may have a first configuration where the sample vessels are completely enclosed. A second configuration may be provided where the sample collection device may be opened and at least a portion of the sample vessels may be exposed. In some examples, the sample vessels may be supported and/or at least partially enclosed by a holder of the sample collection device. The holder may be separable from the rest of the sample collection device, thereby providing access to the sample vessels therein. In the case of bodily fluid collection, the sample fluid may be extracted from the patient using a sample collection device such as but not limited to that described in U.S. Patent Application Ser. No. 61/697,797 filed Sep. 6, 2012 and U.S. Patent Application Ser. No. 61/798,873 filed Mar. 15, 2013, both of which are fully incorporated herein by reference for all purposes. In the non-limiting example of blood samples, some embodiments may collect the blood sample through collection of capillary blood from the subject. This may occur by way of a wound, a penetration site, or other access site to capillary blood from the subject. Optionally, blood could also be collected by venipuncture or other puncture of a blood vessel to obtain blood sample for loading into the sample vessel(s). For example, the blood could be collected by a device configured for collection of a small volume of blood by venipuncture. Such a device, for example, may include a hollow needle fluidically connected with or capable of being fluidically connected with a vessel having a small interior volume. The vessel having a small interior volume may have an interior volume, for example, of equal to or no more than 5 ml 4 ml, 3 ml, 2 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 100 μl, 90 μl, 80 μl, 70 μl, 60 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, or 5 μl. Other types of devices and techniques used to collect bodily fluid are not excluded. A bodily fluid may be drawn from a subject and provided to a device in a variety of ways, including but not limited to, fingerstick, lancing, injection, pumping, swabbing, pipetting, venous draw, venipuncture, and/or any other technique described elsewhere herein. In some embodiments, the sample may be collected from the subject's breath. The bodily fluid may be provided using a bodily fluid collector. A bodily fluid collector may include a lancet, capillary, tube, pipette, syringe, needle, microneedle, pump, or any other collector described elsewhere herein. In some embodiments, the sample may be a tissue sample which may be provided from the subject. The sample may be removed from the subject or may have been cast off by the subject. In one embodiment, a lancet punctures the skin of a subject and withdraws a sample using, for example, gravity, capillary action, aspiration, pressure differential or vacuum force. The lancet, or any other bodily fluid collector, may be part of the device, part of a cartridge of the device, part of a system, or a standalone component. Where needed, the lancet or any other bodily fluid collector may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In one example, a subject's finger (or other portion of the subject's body) may be punctured to yield a bodily fluid. The bodily fluid may be collected using a capillary tube, pipette, swab, drop, or any other mechanism known in the art. The capillary tube or pipette may be separate from the device and/or a cartridge of the device that may be inserted within or attached to a device, or may be a part of a device and/or cartridge. In another embodiment where no active mechanism is required, a subject can simply provide a bodily fluid to the device and/or cartridge, as for example, with a saliva sample. A bodily fluid may be drawn from a subject and provided to a device in a variety of ways, including but not limited to, fingerstick, lancing, injection, and/or pipetting. The bodily fluid may be collected using venous or non-venous methods. The bodily fluid may be provided using a bodily fluid collector. A bodily fluid collector may include a lancet, capillary, tube, pipette, syringe, venous draw, or any other collector described elsewhere herein. In one embodiment, a lancet punctures the skin and withdraws a sample using, for example, gravity, capillary action, aspiration, or vacuum force. The lancet may be part of the device, part of the cartridge of the device, part of a system, or a standalone component. Where needed, the lancet may be activated by a variety of mechanical, electrical, electromechanical, or any other known activation mechanism or any combination of such methods. In one example, a subject's finger (or other portion of the subject's body) may be punctured to yield a bodily fluid. Examples of other portions of the subject's body may include, but are not limited to, the subject's hand, wrist, arm, torso, leg, foot, or neck. The bodily fluid may be collected using a capillary tube, pipette, or any other mechanism known in the art. The capillary tube or pipette may be separate from the device and/or cartridge, or may be a part of a device and/or cartridge. In another embodiment where no active mechanism is required, a subject can simply provide a bodily fluid to the device and/or cartridge, as for example, could occur with a saliva sample. The collected fluid can be placed within the device. A bodily fluid collector may be attached to the device, removably attachable to the device, or may be provided separately from the device. Sample obtained from a subject may be stored in a sample vessel 1800. In one embodiment described herein, the sample vessel 1800 comprises a body 1810 and a cap 1820. In some instances, at least portions of the sample vessel body may be formed from a transparent or translucent material. The sample vessel body may permit a sample provided within the sample vessel body to be visible when viewed from outside the sample vessel. The sample vessel body may be optically transmissive. The sample vessel body may be formed of a material that may permit electromagnetic radiation to pass through. In some instances, the sample vessel body may be formed of a material that may permit selected wavelengths of electromagnetic radiation to pass through while not permitting other non-selected wavelengths of electromagnetic radiation to pass through. In some instances a portion or all of the body may be formed of a material that is opaque along selected wavelengths of electromagnetic radiation, such as wavelengths for visible light. Optionally, some portions of the sample vessel body may be shaped to provide a certain optical path length. Optionally, some portions of the sample vessel body may be shaped to provide a flat surface (exterior and/or interior) or other structure to allow for analysis of sample while it is in the sample vessel. In one embodiment, an open end and a closed end may be provided on a sample vessel body 1810. The open end may be a top end 1812 of the sample vessel 1800, which may be at the end which may be configured to engage with a cap. The closed end may be a bottom end 1814 of the sample vessel, which may be at the end of the sample vessel opposite the cap. In alternative embodiments, a bottom end may also be an open end that may be closable with a floor. In some embodiments, the cross-sectional area and/or shape of the top end and the bottom end may be substantially the same. Alternatively, the cross-sectional area of the top end may be larger than the cross-sectional area of the bottom end, or vice versa. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. In one embodiment, a sample vessel body may have an interior surface and an exterior surface. The surfaces of the sample vessel body may be smooth, rough, textured, faceted, shiny, dull, contain grooves, contain ridges, or have any other feature. The surface of the sample vessel body may be treated to provide a desired optical property. The interior surfaces and exterior surfaces may have the same properties or may be different. For example, an exterior surface may be smooth while the interior surface is rough. Optionally, the sample vessel body may have a tubular shape. In some instances, the sample vessel body may have a cylindrical portion. In some instances, the sample vessel may have a circular cross-sectional shape. Alternatively, the sample vessel may have any other cross-sectional shape which may include elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal, parallelogram), pentagonal, hexagonal, heptagonal, octagonal, or any other shape. The cross-sectional shape of the sample vessel may or may not have a convex and/or concave shape. The cross-sectional shape of the sample vessel may remain the same along the length of the sample vessel, or may vary. The sample vessel may have a prismatic shape along the length of the body. The prism may have a cross-sectional shape as those described herein. Optionally, the bottom 1814 of the sample vessel may be flat, tapered, rounded, or any combination thereof. In some instances, the sample vessel may have a hemispherical bottom. In other embodiments, the sample vessel may have a rounded bottom with a flat portion. The sample vessel may or may not be capable of standing on a flat surface on its own. In one embodiment, the sample vessels 1800 may be sized to contain a small fluid sample. In some embodiments, the sample vessels may be configured to contain no more than about 5 ml, 4 ml, 3 ml, 2 ml, 1.5 mL, 1 mL, 900 uL, 800 uL, 700 uL, 600 uL, 500 uL, 400 uL, 300 uL, 250 uL, 200 uL, 150 uL, 100 uL, 80 uL, 50 uL, 30 uL, 25 uL, 20 uL, 10 uL, 7 uL, 5 uL, 3 uL, 2 uL, 1 uL, 750 nL, 500 nL, 250 nL, 200 nL, 150 nL, 100 nL, 50 nL, 10 nL, 5 nL, 1 nL, 500 pL, 300 pL, 100 pL, 50 pL, 10 pL, 5 pL, or 1 pL. By way of non-limiting example, the sample vessels may have the information storage units thereon such as discussed for FIGS. 1F and 1G. In one non-limiting example, the sample vessels 100 may hold the small volume of sample fluid in liquid form without the use of a wicking material, mesh, solid matrix, or the like to hold the sample fluid during transport. This allows the sample fluid to be substantially removed in liquid form from the sample vessel without loss of sample or sample integrity due to liquid being absorbed by the wicking or other material. Optionally, the sample vessels 1800 may be configured to contain no more than several drops of blood, a drop of blood, or no more than a portion of a drop of blood. For example, the sample vessel may have an interior volume of no greater than the amount of fluid sample it is configured to contain. Having a small volume sample vessel may advantageously permit storage and/or transport of a large number of sample vessels within a small volume. This may reduce resources used to store and/or transport the sample vessels. For example, less storage space may be required. Additionally, less cost and/or fuel may be used to transport the sample vessels. For the same amount of exertion, a larger number of sample vessels may be transported. In some embodiments, the sample vessel 1800 may have a small length. For example, the sample vessel length may be no greater than 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3.5 cm, 3 cm, 2.5 cm, 2 cm, 1.7 cm, 1.5 cm, 1.3 cm, 1.1 cm, 1 cm, 0.9 cm, 0.8 cm, 0.7 cm, 0.6 cm, 0.5 cm, 0.4 cm, 0.3 cm, 0.2 cm, 0.1 cm, 700 um, 500 m, 300 um, 100 um, 70 um, 50 um, 30 um, 10 um, 7 um, 5 um, 30 um, or 1 um. In some instances, the greatest dimension of the sample vessel (e.g., length, width, or diameter) may be no greater than 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3.5 cm, 3 cm, 2.5 cm, 2 cm, 1.7 cm, 1.5 cm, 1.3 cm, 1.1 cm, 1 cm, 0.9 cm, 0.8 cm, 0.7 cm, 0.6 cm, 0.5 cm, 0.4 cm, 0.3 cm, 0.2 cm, 0.1 cm, 700 um, 500 m, 300 um, 100 um, 70 um, 50 um, 30 um, 10 um, 7 um, 5 um, 30 um, or 1 um. The sample vessel 1800 may have any cross-sectional area. The cross-sectional area may be no greater than about 16 cm2, 8 cm2, 7 cm2, 6 cm2, 5 cm2, 4 cm2, 3.5 cm2, 3 cm2, 2.5 cm2, 2 cm2, 1.5 cm2, 1 cm2, 0.9 cm2, 0.8 cm2, 0.7 cm2, 0.6 cm2, 0.5 cm2, 0.4 cm2, 0.3 cm2, 0.2 cm2, 0.1 cm2, 0.07 cm2, 0.05 cm2, 0.03 cm2, 0.02 cm2, 0.01 cm2, 0.5 cm2, 0.3 cm2, or 0.1 cm2. The cross-sectional area may remain the same or may vary along the length of the sample vessel. The sample vessel 1800 may have any thickness. The thickness may remain the same along the length of the sample vessel or may vary. In some instances, the thickness may be selected and/or may vary in order to provide a desired optical property. In some instances, the thickness may be no greater than 5 mm, 3 mm, 2 mm, 1 mm, 700 um, 500 um, 300 um, 200 um, 150 um, 100 um, 70 um, 50 um, 30 um, 10 um, 7 um, 5 um, 3 um, 1 um, 700 nm, 500 nm, 300 nm or 100 nm. In one embodiment, the sample vessel 1800 may have a shape conducive to enabling centrifugation of small volume blood samples. This allows the collected sample in the sample vessels to be taken directly to a centrifuge without having to further transfer the sample fluid to yet another sample vessel that is used in the centrifuge device. Optionally, the sample vessels may contain a cap 1820. The cap 1820 may be configured to fit over an open end of the sample vessel. The cap may block the open end of the sample vessel. The cap may fluidically seal the sample vessel. The cap may form a fluid-tight seal with the sample vessel body. For example, the cap may be gas and/or liquid impermeable. Alternatively, the cap may permit certain gases and/or liquids to pass through. In some instances, the cap may be gas permeable while being liquid impermeable. The cap may be impermeable to the sample. For example, the cap may be impermeable to whole blood, serum or plasma. Optionally, the cap may be configured to engage with the sample vessel body in any manner. For example, the cap may be press-fit with the sample vessel body. A friction fit and/or interference fit may permit the cap to stay on the body. In other examples, a locking mechanism may be provided, such as a sliding mechanism, clamp, fastener, or other technique. In some instances, the cap and/or the sample vessel body may be threaded to permit a screw-type engagement. In other examples, adhesives, welding, soldering, or brazing may be utilized to connect the cap to the sample vessel body. The cap may be removably attached to the sample vessel body. Alternatively, the cap may be permanently affixed to the sample vessel body. In some instances, a portion of the cap may fit into a portion of the sample vessel body. The cap may form a stopper with the sample vessel body. In some instances, a portion of the sample vessel body may fit into a portion of the cap. The plug may include a lip or shelf that may hang over a portion of the sample vessel body. The lip or shelf may prevent the cap from sliding into the sample vessel body. In some instances, a portion of a cap may overlie a top and/or side of the sample vessel body. Optionally, some embodiments may include an additional part in the vessel assembly such as cap holder. In one embodiment, the purpose of the cap holder is to maintain a tight seal between the cap and sample vessel. In one embodiment, the cap holder engages an attachment, lip, indentation, or other attachment location on the outside of the sample vessel to hold the cap in position. Optionally, some embodiments can combine the function of both the cap and the cap holder into one component. In some embodiments, the sample vessel body may be formed of a rigid material. For example, the sample vessel body may be formed of a polymer, such as polypropylene, polystyrene, or acrylic. In alternate embodiments, the sample vessel body may be semi-rigid or flexible. The sample vessel body may be formed from a single integral piece. Alternatively, multiple pieces may be used. The multiple pieces may be formed from the same material or from different materials. Optionally, the sample vessel cap may be formed of an elastomeric material, or any other material described elsewhere herein. In some instances, the cap may be formed from a rubber, polymer, or any other material that may be flexible and/or compressible. Alternatively, the cap may be semi-rigid or rigid. The sample vessel cap may be formed from a high friction material. The sample vessel cap may be capable of being friction-fit to engage with the sample vessel body. When the sample vessel cap is engaged with the sample vessel body, a fluid-tight seal may be formed. The interior of the sample vessel body may be fluidically isolated from the ambient air. In some instances, at least one of the cap and/or portion of the sample vessel body contacting the cap may be formed from a high friction and/or compressible material. In one embodiment, the cap 1820 may be a needle and/or a cannula-penetrable self-sealing gas-proof closure in sealing engagement in the open end of the sample vessel so as to maintain a vacuum and/or a close atmosphere inside the sample vessel. In some embodiments, the interior of the sample vessel is only at a partial vacuum and not at a full vacuum. Excessive vacuum can damage formed blood components in the sample fluid. By way of non-limiting example, the partial vacuum is in the range of about 50 to 60% of a full vacuum. Optionally, the partial vacuum does not exceed about 60% of a full vacuum. Optionally, the partial vacuum does not exceed about 50% of a full vacuum. Optionally, the partial vacuum does not exceed about 40% of a full vacuum. By way of non-limiting example, the partial vacuum is in the range of about 10% to about 90% of a full vacuum, or between about 20% to about 70%, or between about 30% to about 60% of a full vacuum. By way of non-limiting example, the partial vacuum is in the range of about 10% to about 60% of a full vacuum, or between about 20% to about 50%, or between about 30% to about 50% of a full vacuum. In this manner, a reduced amount of force is exerted on the bodily fluid sample to minimize issues with regards to sample integrity. Optionally, after sample transfer, the atmosphere is at ambient pressure. Optionally, after sample transfer, the atmosphere is at some partial vacuum. Optionally, only one of the plurality of sample vessels is at partial vacuum, while others are at higher vacuum levels or at full vacuum. In some embodiments, the cap 1820 may be a closure device having one end interior of the sample vessel and another end exterior of the sample vessel, wherein the end interior having a surface in continuous sealing contact with the sample vessel, the end interior having an annular sleeve extending from the surface toward the closed end, the annular sleeve having a first notch extending through a wall of the annular sleeve and juxtaposed against the sample vessel. In one embodiment, the closure has an indented ring formed about the first notch of the end interior and the indented ring engaging a hump of the tubular sample vessel. Optionally, the sample vessel cap may be formed from a single integral piece. Alternatively, multiple pieces may be used. The multiple pieces may be formed from the same material or from different materials. The cap material may be the same as or different from the sample vessel body material. In one example, the sample vessel body may be formed from an optically transmissive material while the cap is formed from an opaque material. Optionally, the cap 1820 may be removably engaged with the body. A portion of the cap may be insertable into the body. The cap may include a lip which may rest on top of the body. The lip is not inserted into the body. In this non-limiting example, the lip may prevent the cap from being entirely inserted into the body. The lip may form a continuous flange around the cap. In some instances, a portion of the lip may overlap or overlie a portion of the body. A portion of the body may be insertable into a portion of the cap. Optionally, the portion of the cap that may be insertable into the body may have a rounded bottom. Alternatively, the portion may be flat, tapered, curved, contoured, or have any other shape. The cap may be shaped to be easily insertable into the body. In some instances, a depression may be provided at the top of the cap. The depression may follow the portion of the cap that is inserted into the body. In some instances, a hollow or depression may be provided in the cap. The depression may be capable of accepting a portion of a channel that may be used to deliver a sample to the sample vessel. The depression may assist with guiding the channel to a desired portion of the cap. In one example, the channel may be positioned within the depression prior to bringing the channel and interior of the sample vessel into fluid communication. Optionally, the channel and cap may be pressed together so that the channel penetrates the cap and enters the interior of the sample vessel, thereby bringing the channel and interior of the sample vessel into fluid communication. In some instances, the cap may have a slit through which the channel passes. Alternatively, the channel may poke through uninterrupted cap material. The channel may be withdrawn from the sample vessel, thereby bringing the channel and sample vessel out of fluid communication. The cap may be capable of resealing when the channel is removed. For the example, the cap may be formed of a self-healing material. In some instances, the cap may have a slit that may close up when the channel is removed, thereby forming a fluid tight seal. In some embodiments, the body may include one or more flange or other surface feature. Examples of surface features may include flanges, bumps, protrusions, grooves, ridges, threads, holes, facets, or any other surface feature. The flange and/or other surface feature may circumscribe the body. The flange and/or surface feature may be located at or near the top of the body. The flange and/or other surface feature may be located at the top half, top third, top quarter, top fifth, top sixth, top eighth, or top tenth of the body. The surface features may be useful for support of the sample vessel within a sample collection device. The surface features may be useful for removing the sample vessel from the sample collection device and/or positioning the sample vessel within the sample collection device. The flange and/or other surface feature may or may not engage with the cap. Optionally, the cap may have any dimension relative to the sample vessel body. In some instances, the cap and/or body may have similar cross-sectional areas. The cap may have the same or a substantially similar cross-sectional area and/or shape as the top of the body. In some instances, the cap may have a lesser length than the body. For example, the cap may have a length that may be less than 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 7%, 5%, 3% or 1% of the length of the body. Referring now to FIGS. 18C to 18E, a still further embodiment of sample vessel 1800 may include a cap holder 1830 that fits over the cap to hold the cap in place. By way of non-limiting example, the cap holder 1830 may also include an opening in the cap holder 1830 that allows for a member such as an adapter to slide through and penetrate the cap 1820. FIG. 18C shows the parts in an exploded view. FIG. 18D shows a cross-section view showing one embodiment wherein the sample vessel body 1810 having a cap 1820 covered by a cap holder 1830. As seen in FIG. 18D, the cap holder 1830 has a locking feature 1832 for securing the cap holder 1830 to the sample vessel body 1810 and/or the cap 1820. In one embodiment, the locking feature 1832 comprises an interior ridge which will engage one or more of the ridges 1812 and 1814 on the sample vessel body 1810. FIG. 18E shows a side view of the cap holder 1830 coupled to the sample vessel body 1810. In some instances, a surface (interior and/or exterior) of the sample vessel may be coated and/or treated with a material. For example, an interior surface of the sample vessel may be coated with fixatives, antibodies, optical coatings, anticoagulant, sample additives and/or preservatives. These may be the same or different from any material coatings in the channels. In one non-limiting example, the coating may be but are not limited to polytetrafluoroethylene, poly-xylene, polysorbate surfactant (e.g. polysorbate 20) or other material as a treatment for surfaces to reduce the surface tension. In embodiments, sample vessels may contain a blood clotting activator (e.g. thrombin, silica particles, glass particles), an antiglycolytic agent (e.g. sodium floride), or a gel to facilitate the separation of blood cells from plasma. In examples, sample vessels may contain sodium polyanethol sulfonate (SPS), acid citrate dextrose additives, perchloric acid, or sodium citrate. Some embodiments may include at least one material from each of the above groupings. Optionally, it should also be understood that other additives or materials are not excluded, particularly if the additives do not interfere with each other in terms of functionality. Optionally, the coating is applied on all interior surfaces of the sample vessel. Optionally, some embodiments may apply the coating in a pattern covering only select areas in the sample vessel. Some embodiments may only cover upper interior regions of the sample vessel. Optionally, some may cover only lower interior regions of the sample vessel. Optionally, some may cover strips, lanes, or other geometric patterns of the interior regions of the sample vessel. Optionally, some embodiments may also coat the surfaces of the cap, plug, or cover that is used with the sample vessel. Some embodiments may have the surfaces where sample enters the sample vessel to be coated to provide for a smooth transfer of sample away from the entry area and towards a destination site such as but not limited to a bottom portion of the vessel. Optionally, the coating may be a wet or dry coating. Some embodiments may have at least one dry coating and at least one wet coating. In some instances one or more reagents may be coated and dried on the interior surface of the sample vessel. The coating may alternatively be provided in a moist environment or may be a gel. Some embodiments may include a separator gel in the sample vessel to keep select portions of the sample away from other portions of the sample. Some embodiments may include serum separator gel or plasma separator gel such as but not limited to polyester-based separator gels available from Becton Dickinson. Optionally, one or more solid substrates may be provided within the sample vessel. For example, one or more beads or particles may be provided within the sample vessel. The beads and/or particles may be coated with reagents or any other substance described herein. The beads and/or particles may be capable of dissolving in the presence of the sample. The beads and/or particles may be formed from one or more reagents or may be useful for treating the sample. A reagent may be provided in a gaseous form within the sample vessel. The sample vessel may be sealed. The sample vessel may remain sealed before the sample is introduced into the sample vessel, after the sample has been introduced to the sample vessel, and/or while the sample is being introduced into the sample vessel. In one embodiment, the sample vessels may have smooth surfaces and/or round bottoms. This is helpful to minimize the stress on the blood sample, especially during centrifugation. Of course, in alternative embodiments, other shapes of the bottom of the sample vessel are not excluded. In embodiments, a bodily fluid sample in a sealed sample vessel may retain dissolved gases in the bodily fluid sample, such that sample stored in the sealed sample vessel retains a dissolved gas composition similar to or the same as that of bodily fluid sample freshly extracted from a subject's body or of a freshly prepared from a different sample (e.g. plasma freshly prepared from whole blood). In embodiments, a bodily fluid sample in a sealed sample vessel may retain at least 99%, 98%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20% of a dissolved gas over 10 minute, 20 minute, 30 minute, 45 minute, 1 hour, 2 hour, 4 hour, 6 hour, 8 hour, 12 hour, 16 hour, 24 hour, 48 hour, or 72 hour time period. In such embodiments, typically, the time period starts at the time of depositing a sample into a sample vessel or the time of sealing the sample vessel. To facilitate the preservation of dissolved gases in a bodily fluid sample, the sample may be stored in a sealed sample vessel at a selected temperature, such as, for example, 20 C, 15 C, 10 C, 4 C, or at a freezing temperature below 0 C. Other temperatures for sample storage are not excluded. Similarly, in embodiments, a bodily fluid sample in a sealed sample vessel may retain analytes in the bodily fluid sample, such that sample stored in the sealed sample vessel retains an analyte composition similar to or the same as that of bodily fluid sample freshly extracted from a subject's body or of a freshly prepared bodily fluid sample (e.g. plasma freshly prepared from whole blood). In embodiments, a bodily fluid sample in a sealed sample vessel may retain at least 99%, 98%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20% of an analyte over 10 minute, 20 minute, 30 minute, 45 minute, 1 hour, 2 hour, 4 hour, 6 hour, 8 hour, 12 hour, 16 hour, 24 hour, or 48 hour time period. In such embodiments, typically, the time period starts at the time of depositing a sample into a sample vessel or the time of sealing the sample vessel. To facilitate the preservation of one or more analytes in a bodily fluid sample, the sample may be stored in a sealed sample vessel at a selected temperature, such as, for example, 20 C, 15 C, 10 C, 4 C, or at a freezing temperature below 0 C. Other temperatures for sample storage are not excluded. Optionally, a sample vessel may be centrifuged after a sample is introduced into the vessel. For example, a sample vessel may be centrifuged within 30 seconds, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 7 days, or 10 days of introduction of the sample into the vessel. Centrifuging a sample vessel containing a sample may, for example, in the case of a whole blood sample, facilitate the separation of blood cells from plasma, to yield plasma and pelleted cells. In some circumstances, centrifuging a sample increases the stability of one or more analytes in blood or plasma. FIG. 18F further shows that the sample vessels may each have at least one information storage unit associated with the sample vessels. Optionally, some embodiments may have one information storage unit convey information about a plurality of sample vessels, particularly (but not exclusively) in cases where the sample vessels all contain sample from the same subject. Such an information storage unit could be on the carrier that holds the multiple sample vessels, instead of being on the sample vessels themselves. FIG. 18F shows a bottom-up view of an underside of one of the sample vessels that in one nonlimiting example, the information storage unit 1860 may be at least one of: a barcode (e.g., 1-D, 2-D, or 3-D), quick response (QR) code, image, shape, word, number, alphanumeric string, color, or any combination thereof, or any type of visual information storage unit. Others may use information storage units that are not in the visible spectrum. Others may use RFID tags, RF information storage units, IR emitting tags, or other markers that do not rely on identification through signals sent through the visual spectrum. Of course, the information storage unit 1860 may also be positioned to be on a top end surface of the sample vessel. FIG. 18G shows that, optionally, an information storage unit 1860 may also be included on a side surface of the sample vessel. This may be in addition to or in place of the top or bottom positioned information storage unit(s) 1860. In one non-limiting example, information storage unit 1860 may be used to identify sample and/or types of sample in a sample collection device. Optionally, there may be one or more information storage units per sample vessel. Some may also use information storage units on the sample vessel holders. Information storage units may identify the sample collection device, one or more individual sample vessels within the device, or components of the device. In some instances, the sample collection device, a portion of the sample collection device, and/or the sample vessels may be transported. In one example, the sample collection device or a portion of the sample collection device, may be transported via a delivery service, or any other service described elsewhere herein. The sample vessel may be delivered so that one or more tests may be performed on the sample. Optionally, the sample identity and/or the identity of the individual who provided the sample could be tracked. By way of non-limiting example, information associated with the individual or individuals (e.g., name, contact information, social security number, birth date, insurance information, billing information, medical history) and other information of who provided the sample may be included. In some instances, the type of sample (e.g., whole blood, plasma, urine, etc.) may be tracked. Optionally, the types of reagents that the sample will have encountered (e.g., anticoagulants, labels, etc.) could also be tracked. Additional information about the sample collection, such as date and/or time of collection, circumstances under which sample was collected, types of tests to be run on the sample, setting(s) for the tests, test protocols, insurance information, medical records information, or any other type of information may be considered. In at least one or more embodiments described herein, information storage units may assist with tracking such information. The information storage units may be associated with such information. Such information may be stored off-board the sample collection device, on-board the sample collection device, or any combination thereof. In some instances, the information may be stored on one or more external devices, such as servers, computers, databases, or any other device having a memory. In some instances, the information may be stored on a cloud computing infrastructure. One or more resources that store the information may be distributed over the cloud, through the internet from a remote server, wireless to a remote computer processor, or the like. In some instances, a peer-to-peer infrastructure may be provided. The information may be stored in the information storage unit itself, or may be associated with the information storage unit elsewhere, or any combination thereof. Optionally, an information storage unit may provide unique identification, or may provide a high likelihood of providing unique identification. In some instances, the information storage unit may have a visible component. The information storage unit may be optically detectable. In some instances, the information storage unit may be discernible using visible light. In some examples, the information storage unit may be a barcode (e.g., 1-D, 2-D, or 3-D), quick response (QR) code, image, shape, word, number, alphanumeric string, color, or any combination thereof, or any type of visual information storage unit. In other embodiments, the information storage unit may be optically detectable via any other sort of radiation. For example, the information storage unit may be detectable via infrared, ultraviolet, or any other type of wavelength of the electromagnetic spectrum. The information storage unit may utilize luminescence, such as fluorescence, chemiluminescence, bioluminescence, or any other type of optical emission. In some instances, the information storage unit may be a radio transmitter and/or receiver. The information storage unit may be a radiofrequency identification (RFID) tag. The information storage unit may be any type of wireless transmitter and/or receiver. The information storage unit may send one or more electrical signal. In some instances, GPS or other location-related signals may be utilized with the information storage unit. Optionally, an information storage unit may be and/or include an audio component or acoustic component. The information storage unit may emit a sound that may be discernible to uniquely identify the identified component. Optionally, the information storage unit may be detectable via an optical detection device. For example, a bar code scanner may be capable of reading the information storage unit. In another example, a camera (e.g., for still or video images) or other image capture device may be capable of capturing an image of the information storage unit and analyzing the image to determine the identification. Optionally, the information storage units may be on the holder of the sample vessel(s). One or more indentation may be provided in the holder. The information storage unit may be located within the indentation. The indentations may be on the bottom or side surface of the holder. In some embodiments, the holder may include one or more protrusion. The information storage unit may be located on the protrusion. In some instances, the information storage units may be provided on an exterior surface of the holder. The information storage units may alternatively be positioned on an interior surface of the holder. The information storage units may be detected from outside the sample collection device. In some embodiments, the information storage units may be on an exterior surface of the sample vessels or an interior surface of the sample vessels. The information storage units may be detectable from outside the sample vessels. In some embodiments, the information storage units may be provided on a bottom surface of the sample vessels. In one non-limiting example, the holder may include an optically transmissive portion. The optically transmissive portion may be on a bottom of the holder or a side of the holder. For example, a transparent or translucent window may be provided. In another example, the optically transmissive portion may be a hole without requiring a window. The optically transmissive portion may permit a portion inside the holder to be visible. The information storage units may be provided on an exterior surface of the holder on the optically transmissive portion, an interior surface of the holder but may be visible through the optically transmissive portion, or on an exterior or interior surface of the sample vessel but may be visible through the optically transmissive portion. In some instances, the information storage unit may be provided on an interior surface of the sample vessel, but the sample vessel may be optically transmissive so that the information storage unit is viewable through the sample vessel and/or optically transmissive portion. Optionally, the information storage unit may be a QR code, bar code, or other optical information storage unit that may be optically visible, such as but not limited to being visible from outside the sample collection device. A QR code may be visible through an optical window, hole, or the like at the bottom of the holder of the sample collection device. The QR code may be provided on the sample collection device holder or on a portion of the sample vessel visible through the holder. An image capturing device, such as a camera or scanner may be provided external to the sample vessels or the transport container, and may be capable of reading the QR code. In some embodiments, a single or a plurality of QR codes or other information storage units may be provided on a sample collection device. In some instances, each sample vessel may have at least one information storage unit, such as a QR code associated with it. In one example, at least one window may be provided in a holder per sample vessel, and each window may permit a user to view a QR code or other information storage unit. For example, two sample vessels may be housed within a holder, each of the sample vessels having an associated information storage unit discernible from outside the holder. In some embodiments, the information storage units may be provided with sample vessels housed by the holder. Separating the holder from the rest of the sample collection device may cause the sample vessels to be separated from the rest of the sample collection device. The sample vessels may remain within the holder or may be removed from the holder. The information storage units may remain with the sample vessels even if they are removed from the holder. Alternatively, the information storage units may remain with the holder even if sample vessels are removed. In some instances, both the holder and sample vessels may have information storage units so that the sample vessels and holders may be individually tracked and/or matched even when separated. In some instances, any number of sample vessels may be provided within the sample collection device. Some embodiments may connect all of these sample vessels to the sample collection device all at once. Optionally, the sample vessels may be coupled in a sequential or other non-simultaneous manner. The sample vessels may be capable of receiving sample received from a subject. Each sample vessel may optionally have a unique information storage unit. The unique information storage unit may be associated with any information relating to the sample, subject, device, or component of the device. In some instances, each information storage unit for each sample vessel may be unique or contain unique information. In other embodiments, the information storage unit on the sample vessel need not be unique. Optionally, some embodiments may have information unique for the device, for the subject, and/or for the type of sample. In some embodiments, the information on the information storage unit may be used to associate several sample vessels with the same subject or the same information. In some embodiments, the information storage unit is attached to or otherwise associated (physically or by non-physical association such as database pointer or linkage) with the sample vessel or groups of sample vessels at the collection appointment. If associated by group, the association can be based on all being from the same user or other factor as set forth herein. Optionally, some embodiments may have information storage units already on the sample vessels or groups of sample vessels. In one non-limiting example, the information storage unit provides identifier information that is then associated with the subject at or near the time of sample collection. In this example, the information on the information storage unit remains the same but is then linked to the subject. In another embodiment, the information on the information storage unit is changed to include information about the subject. Optionally, some embodiments may have both, wherein some information is changed and some is not (but may be then associated with the subject or other information about the collection event such as time date or the like). Referring now to FIGS. 19A to 19C, various embodiments of a front end of a sample collection device will now be described. FIG. 19A shows on view of a front end of the sample collection device with openings 1103 and 1105 for their respective channels. In the present embodiment, the openings 1103 and 1105 are placed in close proximity to each other with the divider wall 1910 between the openings 1103 and 1105. In one non-limiting example, the thickness of divider wall 1910 is set to be the minimum thickness that can be reliably formed through a manufacturing process used to form the sample collection device. In one embodiment, wall thickness should be about 1-10 mm. In some embodiments, instead of being side by side, the openings 1103 and 1105 may be in a top-bottom configuration, diagonal configuration, or other configuration where the two openings are in close proximity to one another. Referring now to FIG. 19B, this embodiment shows the openings 1910 and 1912 configured to be coaxial, relative to one another. This coaxial configuration of openings 1910 and 1912 allows for greater overlap between the two openings. Referring now to FIG. 19C, this embodiment is similar to that of FIG. 19B except that instead of square shaped openings, these openings 1920 and 1922 are round. It should be understood that any variety of shapes may be used including but not limited to circular, elliptical, triangular, quadrilateral (e.g., square, rectangular, trapezoidal), pentagonal, hexagonal, octagonal, or any other cross-sectional shape. Of course, it should be understood that different shapes can be used for each opening and that a collection device need not have the same cross-sectional shape for all openings. Some embodiments may have a one cross-sectional shape for the opening but have a different cross-sectional shape for channel downstream from the opening. Single Channel Sample Collection Device Referring now to FIGS. 20A-20B, although the embodiments herein are typically described as sample collection devices with two separate channels, it should be understood that some embodiments may use a single entry channel 2010. This single entry channel 2010 may or may not be coated. Suitable coatings include but not are limited to an anti-coagulant, plasma, or other materials. FIG. 20A shows that in this embodiment of sample collection device 2000, a tissue penetrating member 2112 can be mounted coaxially within the single entry pathway 2010. This allows the wound at the target tissue to be formed in a manner that will be aligned with the single entry pathway 2010. The tissue penetrating member 2012 can be activated by one of a variety of techniques such as but not limited to actuation upon pressing a trigger, actuation upon contact of the device front end with the target tissue, or by pressure once the device is pressed against the target tissue with sufficient pressure. After actuation, the tissue penetrating member 2012 can remain in the single entry pathway 2010. Optionally, the tissue penetrating member 2012 may retract out of the single entry pathway 2010. The sample fluid entering the sample collection device 2000 may split into two or more separate pathways 2014 and 2016 from the single entry pathway 2010. This enables the sample fluid to be split into at least two portions from a sample collected from a single point of contact. The two portions may optionally be held in two separate holding chambers 2018 and 2020. These chambers may each have one or more adapter channels 2022 and 2024 to transfer the sample fluid to the vessels such as but not limited to vessels 1146a and 1146b. It should be understood that the holding chambers 2018 and 2020 and/or the vessels 1146a and 1146b may contain anti-coagulant therein to prepare the sample fluid for processing. Referring now to FIG. 20B, this embodiment shows that the single entry pathway 2010 with a tissue penetrating member 2012 therein that, after actuation, is configured to remain in whole or in part within the single entry pathway 2010. It should be understood that this embodiment may use a solid penetrating member or one that is hollow, with a lumen therein. Referring now to FIG. 21, yet another embodiment of a sample collection device 2030 will now be described. This embodiment shows a reduced length single entry pathway 2032 with a tissue penetrating member 2012 configured to extend outward from the pathway 2032. After actuation, the tissue penetrating member 2012 may be in the pathway 2032 or optionally, retracted to not be in the pathway 2032. The sample fluid entering the sample collection device 2030 may split into two or more separate pathways 2034 and 2036 from the single entry pathway 2032. This enables the sample fluid to be split into at least two portions from a sample collected from a single point of contact. This embodiment shows that the pathways 2034 and 2036 remain in capillary channel configuration and do not enlarge to become chambers such as the embodiments of FIGS. 20A-20B. It should be understood that any of the embodiments herein may include one or more fill indicators for the collection pathways and/or the vessels on the devices so that users can know when sufficient fill levels have been reached. It should also be understood that due to the small sample volume collected with vessels such as but not limited to vessels 1146a and 1146b, the “pull” from reduced pressure, such as but not limited to vacuum pressure, in the vessels is minimally or not transferred into the body of subject in a manner that may collapse or detrimentally reshape the blood vessel or other lumen from which sample fluid is being collected. For example, pediatric and geriatric patients typically have small and/or weak veins that can collapse when traditional, large volume vacutainers are used, due the higher vacuum forces associated with drawing larger sample volumes into those traditional vessels. In at least one embodiment of the device, it will not have this problem because it will not impart a vacuum (suction) force on the vein. In one embodiment, the amount of vacuum force draws no more than 120 uL of sample fluid into the vessel 1146a. Optionally, the amount of vacuum force draws no more than 100 uL into the vessel 1146a. Optionally, the amount of vacuum force draws no more than 80 uL into the vessel 1146a. Optionally, the amount of vacuum force draws no more than 60 uL into the vessel 1146a. Optionally, the amount of vacuum force draws no more than 40 uL into the vessel 1146a. Optionally, the amount of vacuum force draws no more than 20 uL into the vessel 1146a. In one embodiment, this type of draw is performed without the use of a syringe and based primarily on pulling force from the vessels and any force from the fluid exiting the subject. Optionally, the shaped pathway through the device to draw sample that has reached an interior of the device can assist in reducing force transfer from the vessels 1146a and 1146b to the subject's blood vessel or other body lumen. Some embodiments may use about three-quarter vacuum or less in the small volume vessels listed above to minimize hemolysis of the sample and to prevent collapsing of blood vessel in the subject. Some embodiments may use about half vacuum or less in the small volume vessels listed above to minimize hemolysis of the sample and to prevent collapsing of blood vessel in the subject. Some embodiments may use about one quarter vacuum or less in the small volume vessels listed above to minimize hemolysis of the sample and to prevent collapsing of blood vessel in the subject. Vacuum herein is full vacuum, relative to atmospheric pressure. It should also be understood that, in one embodiment, the chamber cross-sectional area in the device is greater than the cross-sectional diameter of the needle and/or flexible tubing used for drawing the bodily fluid from the subject. This further assists in reducing the force transfer to the subject. The vacuum pull from the vessels are drawing most immediately on liquid sample in the device, not directly on sample in the needle which is more proximate to the subject. The longer pathway, buffered by the larger volume chamber in the collection device dampens the pull on the blood vessel in the subject. Additionally, the initial peak force pull is substantially less in a small volume vessel versus a larger volume vessel that is also under vacuum. The duration of the “pull” is also longer to enable the larger amount of sample to enter the vessel. In a smaller volume, a significant portion of the sample to be collected is already in the device and there is less that is drawn from the subject that is not already in the device prior to beginning the sample pull. Referring now to FIG. 22, yet another embodiment of a sample collection device will now be described. This embodiment shows a collection device 2100 that has a connector 2102 such as but not limited to Luer connector that allows for connection to a variety of sample acquisition devices such as a tissue penetrating member, needle, or the like. Some Luer connectors may use a press-fit to engage other connectors while some embodiments of the connector 2102 may include threads to facilitate engagement. FIG. 22 shows that in this current embodiment, a butterfly needle 2104 is coupled to a fluid connection pathway 2106 such as but not limited to a flexible tube that leads to a connector 2108 to connect the sample acquisition features to the sample collection device 2100. The flexible tubing 2106 allows the needle portion 2104 to be located away from but still operably fluidly coupled to the sample collection device 2100. This allows for greater flexibility in terms of positioning of the needle 2104 to acquire sample fluid without having to also move the sample collection device 2100. Optionally, some embodiments may directly couple the tissue penetrating member to the device 2100 without the use of flexible tubing. At least some or all of the embodiments can have a fill indicator such as but not limited to a view window or opening that shows when sample is present inside the collection device and thus indicate that it is acceptable to engage the sample vessel(s). Optionally, embodiments that do not have a fill indicator are not excluded. Some embodiments may optionally include one or more vents, such as but not limited to a port, to allow air escape as the channels in the collection device are filled with sample. In most embodiments, the filled sample vessel(s) may be disconnected from the sample collection device after a desired fill level is reached. Optionally, additional sample vessel(s) can be engaged to the sample collection device to collect additional amounts of bodily fluid sample. Optionally, the interior conditions of the sample vessels are such that the vessels has a reduced pressure configure to draw in only a pre-determined amount of sample fluid. FIG. 23 shows an exploded view of one embodiment of the sample collection device 2100. In this non-limiting example, the portion 1130 may be configured to hold the vessel holder 1140 and the portion with sampling device holder 2160. The device 2100 may include an anti-leakage device 2162 that can engage the open ends of the adapter channels 2022 and 2024 to minimize sample loss through the open ends until the vessels in holder 1140 are engaged to draw sample in any vessel(s) therein. In the current embodiment, the anti-leakage device 2162 covers at least two adapter channels 2022 and 2024 and is configured to be movable. The present embodiment of anti-leakage device 2162 is sized so that it can be moved to uncover the openings on adapter channels 2022 and 2024 while still allowing the adapter channels 2022 and 2024 to engage the vessel(s) in the holder 1140. Referring now to FIGS. 24 and 25, one embodiment of the sampling device holder 2160 is shown in more detail. FIG. 24 shows the sampling device holder 2160 as an assembled unit. FIG. 25 shows an exploded view of the sampling device holder 2160 with a first portion 2164 and a second portion 2166. The adapter channels 2022 and 2024 are also show as being removable from the second portion 2166. Although this embodiment of the sampling device holder 2160 is shown as two separate portions, it should be understood that some alternative embodiments can configure the sample device holder 2160 as a single unitary unit. Optionally, some embodiments may configure to have more than two portions that are assembled together to form the holder 2160. Optionally, some embodiments may create separate portions along a longitudinal axis 2165 or other axis of the holder 2160, instead of along a lateral axis of holder 2160 this is shown by the separation in FIG. 25. Referring now to FIGS. 26 through 28, various cross-sectional views of embodiments of the sample device holder 2160 and the device 2100 are shown. FIG. 26 shows a cross-sectional view of the portions 2164 and 2166. Although not being bound by any particular theory, the use of the separation portions 2164 and 2166 can be selected simplify manufacturing, particularly for forming the various internal channels and chambers in the holder 2160. For example, at least one wall 2167 of the chamber can be formed in the first portion 2164 while complementary walls 2168 of the chamber can be formed in the second portion 2166. FIG. 27 shows a top-down end view of the portion 2166 with the wall 2168 visible from the end view. Referring now to FIG. 28, a cross-sectional view of the assembled device 2100 will now be described. This FIG. 28 shows that sample entering the device through the connector 2102 will enter the common chamber 2170 before leading to the adapter channels 2022 and 2024. From the adapter channels 2022 and 2024, movement of the holder 1140 in the direction indicated by arrow 2172 will operably fluidically couple the vessels 1146a and 1146b to the adapter channels 2022 and 2024, moving sample from the channels into the vessels. In the present embodiment, there is sufficient space 2174 to allow for movement of the vessels 1146a and 1146b to have the adapter channels 2022 and 2024 penetrate the caps of the vessels 1146a and 1146b so that the adapter channels 2022 and 2024 are in fluid communication with the interior of the vessels 1146a and 1146b. Although only two vessel and adapter channel sets are shown in the figures, it should be understood that other configuration with more or less sets of vessels and adapter channels can be configured for use with a device such as that shown in FIG. 28. Modular Sample Collection Device Referring now to FIGS. 29A-29C, although the embodiments herein typically describe sample collection device as having an adapter channel for connecting the sample collection channels with the vessels, it should be understood that embodiments without such configurations are not excluded. By way of non-limiting example in FIG. 29A, as previously suggested herein, some embodiments may be without a discrete, separate adapter channel. Herein the collection channel 2422 may connect directly to the vessel 2446 by way of relative motion between one or both of those elements as indicated by the arrow 2449. By way of non-limiting example in FIG. 29B, one or more adapter channels 2454 may be discrete elements not initially in direct fluid communication with either the collection channel 2422 or the vessels 2446. Herein the collection channel 2422 may connect to the vessel 2446 by way of relative motion between one or more of the collection channel, the adapter channel(s) 2454, or the vessel 2446 (sequentially or simultaneously) to create a fluid pathway from the collection channels through the one or more adapter channels into the vessels. By way of non-limiting example in FIG. 29C, one or more adapter channels 2454 may be elements initially in contact with the vessels 2446. The adapter channels 2454 may not be directly in communication with the interior or the vessels. Herein the collection channel 2400 may connect to the vessel by way of relative motion between one or more of those elements (sequentially or simultaneously) to create a fluid pathway from the collection channels through the one or more adapter channels into the vessels. Some embodiments may have a septum, sleeve, sleeve with vent, or cover 2455 over the end of the collection channel which will be engaged by the adapter channel. The engagement of the various elements may also move the adapter channel 2454 into the interior of the vessel 2446, as initially, the adapter channel 2454 may not be in fluid communication with the interior. Some embodiments herein may have more than adapter channel and some embodiments may use adapter channels with pointed ends on both ends of the channel. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. It should be understood that any of the embodiments herein could be modified to include the features recited in the description for FIGS. 29A-29C. Sample Processing Referring now to FIG. 30, one embodiment of bodily fluid sample collection and transport system will now be described. FIG. 30 shows a bodily fluid sample B on a skin surface S of the subject. In the non-limiting example of FIG. 30, the bodily fluid sample B can be collected by one of a variety of devices. By way of non-limiting example, collection device 1530 may be but is not limited to those described in U.S. Patent Application Ser. No. 61/697,797 filed Sep. 6, 2012, which is fully incorporated herein by reference for all purposes. In the present embodiment, the bodily fluid sample B is collected by one or more capillary channels and then directed into sample vessels 1540. By way of non-limiting example, at least one of the sample vessels 1540 may have an interior that is initially under a partial vacuum that is used to draw bodily fluid sample into the sample vessel 1540. Some embodiments may simultaneously draw sample from the sample collection device into the sample vessels 1540 from the same or different collection channels in the sample collection device. Optionally, some embodiments may simultaneous draw sample into the sample vessels In the present embodiment after the bodily fluid sample is inside the sample vessels 1540, the sample vessels 1540 in their holder 1542 (or optionally, removed from their holder 1542) are loaded into the transport container 1500. In this embodiment, there may be one or more slots sized for the sample vessel holder 1542 or slots for the sample vessels in the transport container 1500. By way of non-limiting example, they may hold the sample vessels in an arrayed configuration and oriented to be vertical or some other pre-determined orientation. It should be understood that some embodiments of the sample vessels 1540 are configured so that they hold different amount of sample in each of the vessels. By way of non-limiting example, this can be controlled based on the amount of vacuum force in each of the sample vessels, the amount of sample collected in the sample collection channel(s) of the collection device, and/or other factors. Optionally, different pre-treatments such as but not limited to different anti-coagulants or the like can also be present in the sample vessels. As seen in FIG. 30, the sample vessels 1540 are collecting sample at a first location such as but not limited to a sample collection site. By way of non-limiting example, the bodily fluid samples are then transported in the transport container 1500 to a second location such as but not limited to a receiving site such as but not limited to an analysis site. The method of transport may be by courier, postal delivery, or other shipping technique. In many embodiments, the transport may be implemented by having a yet another vessel that holds the transport container therein. In one embodiment, the sample collection site may be a point-of-care. Optionally, the sample collection site is a point-of-service. Optionally, the sample collection site is remote from the sample analysis site. Although the present embodiment of FIG. 30 shows the collection of bodily fluid sample from a surface of the subject, other alternative embodiments may use collection techniques for collecting sample from other areas of the subject, such as by venipuncture, to fill the sample vessel(s) 1540. Such other collection techniques are not excluded for use as alternative to or in conjunction with surface collection. Surface collection may be on exterior surfaces of the subject. Optionally, some embodiments may collect from accessible surfaces on the interior of the subject. Presence of bodily fluid sample B on these surfaces may be naturally occurring or may occur through wound creation or other techniques to make the bodily fluid surface accessible. Referring now to FIG. 31, yet another embodiment is described herein wherein bodily fluid sample can be collected from an interior of the subject versus collecting sample that is pooled on a surface of the subject. This embodiment of FIG. 31 shows a collection device 1550 with a hypodermic needle 1552 that is configured to collect bodily fluid sample such as but not limited to venous blood. In one embodiment, the bodily fluid sample may fill a chamber 1554 in the device 1550 at which time sample vessel(s) 1540 may be engaged to draw the sample into the respective vessel(s). Optionally, some embodiments may not have a chamber 1554 but instead have very little void space other than channel(s), pathway(s), or tube(s) used to direct sample from the needle 1552 to the sample vessel(s) 1540. For bodily fluid samples such as blood, the pressure from within the blood vessel is such that the blood sample can fill the chamber 1554 without much if any assistance from the collection device. Such embodiments may optionally include one or more vents, such as but not limited to a port, to allow air escape as the channels in the collection device are filled with sample. Optionally, some embodiments may have, instead of tubing connection to a needle, a direct needle attach to the collection device 1550, similar to that shown in FIG. 44 where the needle is rigidly or substantially rigidly connected to the collection device. Some embodiments may have a removable connection, a releasable connection, a Luer connection, a threaded connection, or other needle connection technique that may be developed in the future. At least some or all of the embodiments can have a fill indicator such as but not limited to a view window or opening that shows when sample is present inside the collection device and thus indicate that it is acceptable to engage the sample vessel(s) 1540. Optionally, embodiments that do not have a fill indicator are not excluded. The filled sample vessel(s) 1540 may be disconnected from the sample collection device after a desired fill level is reached. Optionally, additional sample vessel(s) 1540 can be engaged to the sample collection device 1550 (or 1530) to collect additional amounts of bodily fluid sample. Point of Service System Referring now to FIG. 32, it should be understood that the processes described herein may be performed using automated techniques. The automated processing may be used in an integrated, automated system. In some embodiments, this may be in a single instrument having a plurality of functional components therein and surrounded by a common housing. The processing techniques and methods for sedimentation measure can be pre-set. Optionally, that may be based on protocols or procedures that may be dynamically changed as desired in the manner described in U.S. patent application Ser. Nos. 13/355,458 and 13/244,947, both fully incorporated herein by reference for all purposes. In one non-limiting example as shown in FIG. 32, an integrated instrument 2500 may be provided with a programmable processor 2502 which can be used to control a plurality of components of the instrument. For example, in one embodiment, the processor 2502 may control a single or multiple pipette system 2504 that is movable X-Y and Z directions as indicated by arrows 2506 and 2508. The same or different processor may also control other components 2512, 2514, or 2516 in the instrument. In one embodiment, tone of the components 2512, 2514, or 2516 comprises a centrifuge. As seen in FIG. 32, control by the processor 2502 may allow the pipette system 2504 to acquire blood sample from cartridge 2510 and move the sample to one of the components 2512, 2514, or 2516. Such movement may involve dispensing the sample into a removable vessel in the cartridge 2510 and then transporting the removable vessel to one of the components 2512, 2514, or 2516. Optionally, blood sample is dispensed directly into a vessel already mounted on one of the components 2512, 2514, or 2516. In one non-limiting example, one of these components 2512, 2514, or 2516 may be a centrifuge with an imaging configuration to allow for both illumination and visualization of sample in the vessel. Other components 2512, 2514, or 2516 perform other analysis, assay, or detection functions. All of the foregoing may be integrated within a single housing 2520 and configured for bench top or small footprint floor mounting. In one example, a small footprint floor mounted system may occupy a floor area of about 4 m2 or less. In one example, a small footprint floor mounted system may occupy a floor area of about 3 m2 or less. In one example, a small footprint floor mounted system may occupy a floor area of about 2 m2 or less. In one example, a small footprint floor mounted system may occupy a floor area of about 1 m2 or less. In some embodiments, the instrument footprint may be less than or equal to about 4 m2, 3 m2, 2.5 m2, 2 m2, 1.5 m2, 1 m2, 0.75 m2, 0.5 m2, 0.3 m2, 0.2 m2, 0.1 m2, 0.08 m2, 0.05 m2, 0.03 m2, 100 cm2, 80 cm2, 70 cm2, 60 cm2, 50 cm2, 40 cm2, 30 cm2, 20 cm2, 15 cm2, or 10 cm2. Some suitable systems in a point-of-service setting are described in U.S. patent application Ser. Nos. 13/355,458 and 13/244,947, both fully incorporated herein by reference for all purposes. The present embodiments may be configured for use with any of the modules or systems described in those patent applications. Referring now to FIGS. 33 to 37, a still further embodiment of a sample collection device will now be described. As seen in FIGS. 33 and 34, at least one embodiment shows a sample collection region 2600 that has a capillary channel region and then a lower flow resistance region 2610 that increases the cross-sectional area of the channel to provide for lower flow resistance and increased flow rates. In at least one embodiment, this lower flow resistance region 2610 is still a capillary channel, but one with lower flow resistance. Optionally, other embodiments may increase the size wherein the sample flows therein but not under capillary action. The increased size of the channel can also be used to store sample therein. By way of non-limiting example, this storage can be temporary during collection, longer term such as for transport from collection site to refrigeration, from collection site to receiving site, other location to location transport, or other purpose. One embodiment can be configured to have caps that go on both ends of the device so that sample is contained therein without need for transferring to vessels 1146a and 1146b. Because the joint between regions 2600 and 2610 can be located across the mid-line 2620, this can also reduce the amount of bonding material used to join the items together. It should be understood that embodiments can have channels 2612 and 2614 be of the same cross-sectional size and/or be configured to contain the same or substantially same volume in the channel. Optionally, the channels 2612 and 2614 can be configured to hold different volumes. The same may be true for the channels as they continue into region 2610. Optionally, some embodiments may have different sizes when in region 2610 while have the same in region 2600 or vice versa. Other configurations of sizes are not excluded. Although the channels here are shown as linear, it should be understood that for any of embodiments disclosed herein, some embodiments may have curved or other non-straight portion of the channel(s). The other parts are similar to those previously described herein with regards to the vessels 1146a and 1146b, adapter channels, frits, holders 130, etc. . . . . Wicking of both channels at the junction (both fill times <6-secs) has been improved (step removed) and blood got in to the channel easily and passed the junction area without need for tilting. The parts may be made of PMMA, PET, PETG, etc. . . . . In this embodiment, this can provide a 7.5× faster fill relative to a capillary channel of one cross-sectional size because the increase in size of channel in region 2610 will allow for easier flow into this region. The flow resistance decreases to the fourth power in region 2610 based on changes in channel size as seen in the formula: M . = π ⁢ ⁢ ρ ⁢ ⁢ g 32 ⁢ ⁢ μ ⁡ [ σ ρ ⁢ D 3 L + H 4 ⁢ D 4 L ] It should be understood that once a desired amount of sample is in the channel(s), some embodiments may be configured so that the sample can be manipulated to be moved into a storage vessel. By way of non-limiting example, this movement of sample can be by way of a pull force, a push force, or both. In one embodiment, pull force may be provided by a vessel that has vacuum therein, a vessel with a plunger or other movable surface that moves to increase volume and draw sample therein, or an active vacuum force. In one embodiment, push force can be pressure from air or other gas provided from behind a bolus or other fluid grouping. In embodiment, compressed gas, pressure from a cap with a seal around the device being slid over the collection device, a syringe coupled to one end and apply gas pressure, or other force can be exerted to urge gas forward. Force being provided may be different from the motive force used to collect the sample in the channel(s). Optionally, some embodiments may use, different motive force per channel. Optionally, some may use a different motive force in region 2600 relative to zone 2610. While the teachings has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, with any of the above embodiments, it should be understood that the fluid sample may be whole blood, diluted blood, interstitial fluid, sample collected directly from the patient, sample that is on a surface, sample after some pre-treatment, or the like. Those of skill in the art will understand that alternative embodiments may have more than one vessel that may be sequentially operably coupled to the needle or opening of the channel to draw fluid in the vessel. Optionally, some embodiments may have the vessels configured to operably couple to the channels simultaneously. Some embodiments may integrate a lancing device or other wound creation device with the sample collection device to bring targeted sample fluid to a tissue surface and then collect the sample fluid, all using a single device. By way of nonlimiting example, a spring actuated, mechanically actuated, and/or electromechanically actuated tissue penetrating member may be mounted to have a penetrating tip exiting near an end of the sample collection device near sample collection channel openings so that the wound site that is created will also be along the same end of the device as the collection openings. Optionally, an integrated device may have collection openings on one surface and tissue penetrating elements along another surface of the device. In any of the embodiments disclosed herein, the first opening of the collection channel may have a blunt shape, which is configured to not readily puncture human skin. Additionally, the use of heat patches on the finger or other target tissue can increase blood flow to the target area and thus increase the speed with which sufficient blood or other bodily fluid can be drawn from the subject. The heating is used to bring the target tissue to about 40 C to 50 C. Optionally, the heat brings target tissue to a temperature range of about 44 to 47 C. Furthermore, those of skill in the art will recognize that any of the embodiments as described herein can be applied to collection of sample fluid from humans, animals, or other subjects. Some embodiments as described herein may also be suitable for collection of non-biological fluid samples. Some embodiment may use vessels that are not removable from the carrier. Some may have the fluid sample, after being metered in the sample collection portion, be directed by the second motive force to a cartridge that is then placed into an analyte or other analysis device. Optionally, it should be understood although many embodiments show the vessels in the carriers, embodiments where the vessels are bare or not mounted in carrier are not excluded. Some embodiments may have the vessels that are separate from the device and are only brought into fluid communication once the channels have reached minimum fill levels. For example, the vessels may be held in a different location and are only brought into contact by a technician once sufficient amount of blood or sample fluid is in the sample collection device. At that time, the vessels may be brought into fluid communication simultaneously or sequentially to one or more of the channels of the sample collection device. Additionally, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the explicitly recited limits of about 1 nm and about 200 nm, but also to include individual sizes such as 2 nm, 3 nm, 4 nm, and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, etc. . . . . Transport Container Referring now to FIGS. 38A-38B, an exploded perspective view is shown of one non-limiting example of a transport container 3200 provided in accordance with one embodiment described herein. It should be understood that the transport container 3200 may be configured to have one or more features of any other transport container described elsewhere herein. By way of non-limiting example, the transport container 3200 may be useful for transporting one or more sample vessels therein. In some embodiments, the transport container 3200 provides a thermally controlled interior area to minimize undesired thermal decomposition of the sample during transport to another location, such as but not limited to an analysis facility. It should be understood that the transport container may be placed inside one or more other vessels during transport. In one embodiment, the sample vessels may be provided from a sample collection device that collected the bodily fluid sample. By way of non-limiting example, the sample vessels may contain sample therein in liquid form. In most embodiments, liquid form also includes embodiments that are suspensions. By way of non-limiting example, the transport container 3200 may have any dimension. In some instances, the transport container 3200 may have a total volume of less than or equal to about 1 m3, 0.5 m3, 0.1 m3, 0.05 m3, 0.01 m3, 1000 cm3, 500 cm3, 300 cm3, 200 cm3, 150 cm3, 100 cm3, 70 cm3, 50 cm3, 30 cm3, 20 cm3, 15 cm3, 10 cm3, 7 cm3, 5 cm3, 3 cm3, 2 cm3, 1.5 cm3, 1 cm3, 700 mm3, 500 mm3, 300 mm3, 100 mm3, 50 mm3, 30 mm3, 10 mm3, 5 mm3, or 1 mm3. The footprint and/or a largest cross-sectional area of the transport container may be less than or equal to about 1 m2, 0.5 m2, 0.1 m2, 0.05 m2, 100 cm2, 70 cm2, 50 cm2, 30 cm2, 20 cm2, 15 cm2, 10 cm2, 7 cm2, 5 cm2, 3 cm2, 2 cm2, 1.5 cm2, 1 cm2, 70 mm2, 50 mm2, 30 mm2, 10 mm2, 5 mm2, or 1 mm2. In some instances, the transport container may have a dimension (e.g., height, width, length, diagonal, or circumference) of less than or equal to about 1 m, 75 cm, 50 cm, 30 cm, 25 cm, 20 cm, 15 cm, 12 cm, 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, 1 cm, 0.7 cm, 0.5 cm, 0.3 cm, or 1 mm. In some instances, the largest dimension of the transport container may be no greater than about 1 m, 75 cm, 50 cm, 30 cm, 25 cm, 20 cm, 15 cm, 12 cm, 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, 1 cm, 0.7 cm, 0.5 cm, 0.3 cm, or 1 mm. Optionally, the transport container may be lightweight. In some embodiments, the transport container may weigh less than or equal to about 10 kg, 5, kg, 4 kg, 3 kg, 2 kg, 1.5 kg, 1 kg, 0.7 kg, 0.5 kg, 0.3 kg. 100 g, 70 g, 50 g, 30 g, 20 g, 15 g, 10 g, 7 g, 5 g, 3 g, 2 g, 1 g, 500 mg, 300 mg, 200 mg, 100 mg, 70 mg, 50 mg, 30 mg, 10 mg, 5 mg, or 1 mg, with or without the sample vessels having sample therein. As seen in FIGS. 38A and 38B, one embodiment of the transport container may have a top cover 3210, a housing for a thermal regulating device 3220, one or more insert trays for the transport containers 3230a, 3230b, and a bottom plate 3240. In one embodiment, the top cover 3210 has a substantially flat shape although other shapes are not excluded. The top cover 3210 may cover a thermal regulating device such as but not limited to heater or cooler contained in the transport container. The top cover may or may not have the same footprint as a housing 3220 for the thermal regulating device. A cooler, heater, or other thermal regulating device 3220 may be provided within the transport container 3200. Optionally, the device 3220 may be active or passive units. The thermal regulating device may keep the sample vessels within the transport container 3200 at a desired temperature or below a predetermined threshold temperature. Optionally, the thermal regulating device may be any temperature control unit known in the art. Optionally, the thermal regulating device may be capable of heating and/or cooling. Optionally, the thermal regulating device may be a thermoelectric cooler. Optionally, the thermal regulating device may be encased between the top cover and the housing for the cooler. Optionally, the top cover and the housing may or may not form an airtight seal. The top cover and/or housing may be formed from a material with a desired thermal conductivity. For example, the housing 3220 may have a selectable thermal conductivity. In one embodiment, the housing may include an embedded phase change material (PCM) within the box material, so the temperature is substantially uniform throughout. PCM holds a very good temperature profile. It is desirable not to have supercooling of the sample, such as that associated with ice, which may create a negative drop to −5° C. PCM can be configured to control to temperature ranges above freezing. By way of nonlimiting example, thermal conductivity may be in the range between about 100-250 W/m/K (watts/meter/Kelvin). Optionally, each sample vessel will come into contact with the PCM. Some embodiments may have one PCM for each layer. The PCM material may be flow molded into the transport container material. Optionally, there may be a chamber for the PCM material. Optionally, gaps in the tray may be filled with PCM. The PCM can provide a passive thermal control technique. Optionally, the PCM may be incorporated into the injection molding material. In such an embodiment, the entire vessel may be a cooling medium. This can also prevent leakage of PCM from chambers in the transport container. Transport container size can also shrink when the PCM is directly integrated into the transport container material. Energy density is greater since storage capacity per mass is increased. Mixing plastics with PCM material can be configured to have both strength and cooling. By way of non-limiting example, 30% of the material may be PCM and the remainder is plastic for rigidity. By way of non-limiting example, between 20% to 40% of the material may be PCM while the remainder is another material such as but not limited to plastic for mechanical rigidity. Some embodiments may use a blow-molded outer that is filled with PCM or other material. Inner could be formed with a different technique as it is may not be critical for the interior to be cosmetically appealing. Optionally, cast molding or other lower temperature molding process could also be used in place of or in combination with injection molding of the PCM integrated transport container material. Embedded PCM could also be in the trays. Some embodiments could be a tray that is much more thermally conductive to achieve even, uniform cooling profile. Optionally, the PCM material is contained in a chamber inside the chassis of the transport container, wherein the wall of the chamber may be thinner than wall thickness of other areas of the shipping box chassis. In one embodiment, the transport container 3200 may also have each of the trays 3230a and 3230b configured so that any information storage units on the sample vessels are easily readable without having to remove the sample vessels from the trays 3230a and 3230b. In one example, the holders have openings at the bottom that allow information storage units on the bottom to be visualized while the sample vessels are still in the trays 3230a and 3230b. FIG. 39 shows a plurality of views of the transport container 3200. Some show that the sample vessel holders in the trays 3230a or 3230b may have open bottoms such that any information storage unit, such as but limited to a barcode or other information storage unit, can be read from underneath or other orientation that does not require that sample vessels be removed from the transport container 3200. Optionally, only certain portions of the transport container 3200 such as but not limited to a layer, a tray, or the like is removed to obtain the desired information. Optionally, bar codes or other information storage units can be accessed through one or more openings in the tray. That allows for bar code scanning of very small transport container. Optionally, one could scan rows of sample vessels individually or can scan entire tray all at once. Optionally, a user can see all sample vessel holders. Optionally, a computer vision system can also scan to see if a step such as centrifugation was completed. This can be at either end of the shipping process. The computer vision system can visualize the sample vessel and determine if the sample there is in a form that confirms that a desired step was completed. If it detects an error, the system can inform the user or the system of the issue and/or re-perform the missing and/or incorrectly performed step. Optionally, the holders may have closed bottoms and information may be on the sides or other surfaces of the transport container 3200. In some embodiments, the shapes of the holders may also be designed to follow the contours of the sample vessels 3134 therein to increase surface area contact and improve thermal control of the sample vessels. Optionally, thermal control of the sample vessels may occur through thermal transfer with tray and/or the PCM, but not in direct contact with the PCM. Optionally, some sample vessels 3134 could also be in direct contact with the vessel and/or the PCM. The openings for the sample vessels and/or the holders may be in linear rows, in a honeycomb pattern, or be in another pattern. Referring now to FIGS. 40A and 40B, a transport container 3200 is shown fully assembled. FIG. 40B shows a plurality of sample vessels 3134 such as those associated with the sample collection device. The sample vessels 3134 can all be from sample associated with one subject in which case an information storage unit associated with tray 3230a can be used to provide information about this group of samples. Optionally, individual sample vessels may still each have an information storage unit that is the same as that of the tray 3230a or they may each be unique. Some embodiments may insert sample vessels from multiple subjects into the same tray 3230a. Optionally, some may only partially fill each tray. Some may fill each opening in the tray, but not every sample vessel will have sample therein (i.e. some may be empty sample vessels inserted to provide uniform thermal profile). These stackable trays 3230a may have closure devices that use elements such as but not limited to magnets, mechanical latches, or other coupling mechanisms to couple trays together. In some embodiments, magnets may be used to engage the tray holding the sample vessels to enable ease of opening during automation of loading and unloading. Optionally, the user cannot remove the tray from the transport container. Optionally, the user cannot remove the tray from the transport container without the use of a tool to release the tray. Some embodiments have a keying mechanism (magnetic or other technique). In this manner, the patient service center can put sample in but cannot take it out. Optionally, some embodiments can have shaped openings selected so that one cannot put the sample vessels and/or their holders in the wrong way to prevent user error. In one embodiment, the loading and/or unloading may occur in a temperature regulated room or chamber to maintain samples in a desired temperature range. In one embodiment, it is desirable to have a temperature range between about 1° to 10° C. Optionally, it is desirable to have the temperature range between about 2° to 8° C. Optionally, it is desirable to have a temperature range between about 4° to 5° C. Optionally, the materials of the trays 230a and 230b may be used to provide thermally controlled atmosphere for the sample vessels. Some use convection to control thermal profile inside the transport container 200. FIG. 40B also shows that in this particular embodiment, there may be a groove 3232 for an o-ring or other seal that can provide a tight connection between layers of the transport container. The system may also include closure mechanisms 3234 such as but not limited magnetic closure devices to maintain the stackable insert tray in the desired position. It should also be understood that some embodiments may have through-holes 3236 for wiring sensor(s) to detect conditions experienced the stackable insert tray during shipment. FIG. 40C shows various perspective views of the embodiment of FIGS. 40A and 40B when the various components such the stackable trays and the lids are joined together to form the transport container 3200. As seen in FIG. 40C, the transport container may be comprised of multiple layers of sample vessels or trays having sample vessels. Optionally, some embodiments may have only a single layer of sample vessels. Some embodiments may use actively cooling or thermal control in one or more layers of the transport container 3200. By way of non-limiting example, one embodiment may have a thermo-electric cooler in the top layer. Optionally, some embodiments may use a combination of active and passive thermal control. By way of non-limiting example, one embodiment may have a thermal mass such as but not limited to a phase change material (PCM) that is already at a desired temperature. An active thermal control unit may be included to keep the PCM in the desired temperature range. Optionally, some embodiments may use only a thermal mass such as but not limited to a PCM to maintain temperature in a desired range. Transport Container with Removable Tray Referring now to FIG. 41, yet another embodiment of a transport container will now be described. FIG. 41 shows a transport container 3300 having a thermally-controlled interior 3302 that houses a tray 3304 that can hold a plurality of sample vessels 3306 in an array configuration, wherein each of the vessels 3306 holds a majority of its sample in a free-flowing, non-wicked form and wherein there is about 1 ml or less of sample fluid in each of the vessels. Optionally, there is about 2 ml or less of sample fluid in each of the vessels. Optionally, there is about 3 ml or less of sample fluid in each of the vessels. In one non-limiting example, the vessels are arranged such that there are at least two vessels in each transport container with sample fluid from the same subject, wherein at least a first sample includes a first anticoagulant and a second sample includes a second anticoagulant in the matrix. Although FIG. 41 shows the sample vessels 3306 are held in an array configuration, other predetermined configurations are not excluded. Some may place the sample vessels into hinged, swinging, or other retaining mechanism in the tray that may allow for motion in one or two degrees of freedom. Some embodiments may place the sample vessels into a device that has first configuration during loading and then assumes a second configuration to retain the sample vessels during transport. Some embodiments may place the sample vessels into a material that has first material property during loading and then assumes a second property such as but not limited to hardening to retain the sample vessels during transport. In some embodiments, the sample vessels are in holders 3310 and the tray 3304 defines openings and/or cavities sized to fit the holders 3310 and not the sample vessels. By way of non-limiting example, the holders 3310 can be used to keep associated vessels 3306 physically together while in the tray 3304. Some embodiments have the holders 3310 directly contacting the tray 3304 so that the vessels are protected from direct contact with the tray 3304. In one non-limiting example, the tray can hold at least 100 vessels, or optionally, at least 50 holders each having two vessels. Referring still to FIG. 41, this embodiment of transport container 3300 may have some retaining mechanism 3320 such as but not limited to clips, magnetic areas, or the like to hold the tray 3306. The retaining mechanism 3320 may be configured to hold the tray 3304 in a manner releasable when desired. Optionally, the retaining mechanism 3320 may be configured to hold the tray 3304 in an un-releasable manner. In the embodiment shown in FIG. 41, the retaining mechanism 3320 is shown as magnetic and/or metallic members in tray 3304 that are attracted to metal and/or magnetic members in the transport container 3300. When the transport container 3300 arrives at a processing facility, the tray 3304 may be configured to be removed from the transport container 3300. This can occur by use of one or more techniques including but not limited to using strong magnets to engage the magnetic and/or metallic members in tray 3304. Some embodiments may use grippers, hooks, or other mechanical mechanisms to remove the tray 3304 from the transport container 3300. Some embodiments may use a combination of techniques to remove the tray 3304. It should also be understood that some embodiments may opt to remove the vessels 3306 and/or the holders 3310 while the tray 3304 remains in the transport container 3300. Some techniques may perform at two or more of the foregoing techniques. It should also be understood that the transport container 3300 may itself be a cooling device, comprising a thermal control material such as but not limited to ice, a PCM, or the like. Other embodiments may directly integrate the thermal control material into the material used to form the transport container 3300. As seen in FIG. 41, some embodiments of the transport container 3300 may have a substantial void space 3324 in which one or more the thermal control material is housed or integrated therein. Referring still to FIG. 41, the transport container 3300 may also include openings 3330 for attachment of hinges or other connection devices for covers or connections to other layers of the transport container 3300. For ease of illustration, the cover and/or connections to the cover or other layer are not shown in FIG. 41. Although some embodiments may only use a single layer, it should be understood that multi-layer embodiments are not excluded. Referring now to FIG. 42, an exploded perspective view of yet another embodiment of a transport container 3400 will now be described. The embodiment of FIG. 42 is designed to hold a tray 3402 in the transport container interior 3404. The exploded perspective view shows a plurality of vessels 3406 in holders 3410 in a tray 3402. The tray 3402 may be configured to have some or all portions of the retention mechanism 3420 similar to retention mechanisms 3320 in the tray 3402. It should also be understood that the tray 3402 may have one or more cutouts, protrusions, or features to allow the tray 3402 to be inserted into the interior in a limited number of pre-determined orientations. Some embodiments may be configured to only enable one orientation of the tray in the vessel. Some embodiments may be configured to only enable two possible orientations of the tray in the vessel. FIG. 42 shows that in one embodiment, the transport container 3400 may be formed from two separate pieces 3430 and 3432. Optionally, some embodiment may be formed from three or more pieces. Optionally, some embodiment may be a single piece. The pieces 3430 and 3432 can have openings that filled by plugs 3434 and 3436. The interior 3438 of the transport container 3400 can retain a thermal control material such as but not limited to ice, a phase change material, or the like. Other embodiments may directly integrate the thermal control material into the material used to form the transport container 3400. In one instance, the interior 3433 of the piece 3432 can be filled with a thermal control material such as but not limited to a PCM. Optionally, one embodiment could use an active thermal control material such as but not limited to a thermoelectric cooler to cool the interior. Referring now to FIG. 43, yet another embodiment of the transport container 3500 will now be described. FIG. 43 shows that the transport container 3500 may include a lid 3502 for covering the features and/or sample vessels therein. In some embodiments, the lid 3502 may contain thermal insulating material. Optionally, the lid 3502 may include a thermal control unit to assist in keeping the interior of the transport container 3500 within a desired temperature range. Optionally, some embodiments may configure lid 3502 to be a thermally conductive material that can be useful in keeping the interior of the transport container 3500 within a desired temperature range through thermal transfer from an external thermal control source. By way of non-limiting example, the thermal control source may be a cooling source, a heating source, a thermoelectric heat exchanger, or other thermal control device. It should also be understood that similar thermal control source such as but not limited to a PCM or an active cooling device can also be included in the void space 3514 below the layer 3516. It should be understood that the features 3512 for retaining holders 3310, 3410, or other shaped holders for the vessels may be in a piece separate from the transport container or they can be integrally formed inside of the transport container. Optionally, the features 3512 can be part of a tray such as the trays 3302 and 3402 shown in FIGS. 41 and 42. Such a tray can be fixed or removable from the transport container 3500. Retaining mechanisms 3520 may also be incorporated into the tray to allow it to be held in place during transport. Sample Collection and Transport In embodiments, provided herein are systems and methods for collection or transport of small volumes of bodily fluid sample. In embodiments, a sample vessel containing a small volume of bodily fluid sample may be transported. The sample and sample vessel may have any of the respective characteristics described elsewhere herein. In embodiments, a sample vessel may contain less than or equal to 5 ml, 3 ml, 4 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, or 5 μl bodily fluid sample. In embodiments, a sample vessel may have an interior volume of less than or equal to 5 ml, 3 ml, 4 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, or 5 μl. In embodiments, a sample vessel may have an interior volume of less than or equal to 5 ml, 4 ml, 3 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, or 5 μl, and may contain bodily fluid sample which fills at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the interior volume of the vessel. In embodiments, the sample vessel may be sealed, for example, with a cap, lid, or membrane. Any of the vessel interior dimensions or sample dimensions described herein may apply to the interior dimensions of a sealed sample vessel, or to the dimensions of a sample therein, respectively. In embodiments, a sealed sample vessel may have an interior volume of less than or equal to 5 ml, 4 ml, 3 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, or 5 μl, and it may contain bodily fluid sample which fills at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% the interior volume of the vessel, such that less than or equal to 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, 5 μl, 4 μl, 3 μl, 2 μl, or 1 μl of air is present in the interior volume of the sealed vessel. Thus, for example, a sealed sample vessel may have an interior volume of less than or equal to 300 μl and it may contain bodily fluid sample which fills at least 90% of the interior volume of the vessel, such that less than or equal to 30 ul of air is present in the interior volume of the sealed vessel. In another example, a sealed sample vessel may have an interior volume of less than or equal to 500 μl and it may contain bodily fluid sample which fills at least 80% of the interior volume of the vessel, such that less than or equal to 100 ul of air is present in the interior volume of the sealed vessel. In another example, a sealed sample vessel may have an interior volume of less than or equal to 150 μl and it may contain bodily fluid sample which fills at least 98% of the interior volume of the vessel, such that less than or equal to 3 μl of air is present in the interior volume of the sealed vessel. In embodiments, sample vessels containing a sample may also contain an anticoagulant. The anticoagulant may be dissolved in the sample or otherwise present in the vessel (e.g. dried on one or more interior surfaces of the vessel or in solid form at the bottom of the vessel). A sample vessel containing a sample may have a “total anticoagulant content”, wherein the total anticoagulant content is the total amount of anticoagulant present in the interior volume of the vessel, and includes anticoagulant dissolved in the sample (if any), as well as anticoagulant in the vessel which is not dissolved in the sample (if any). In embodiments, a sample vessel containing a sample may contain no more than 1 ml sample and have a total anticoagulant content of no more than 3 mg EDTA, may contain no more than 750 μl sample and have a total anticoagulant content of no more than 2.3 mg EDTA, may contain no more than 500 μl sample and have a total anticoagulant content of no more than 1.5 mg EDTA, may contain no more than 400 μl sample and have a total anticoagulant content of no more than 1.2 mg EDTA, may contain no more than 300 μl sample and have a total anticoagulant content of no more than 0.9 mg EDTA, may contain no more than 200 μl sample and have a total anticoagulant content of no more than 0.6 mg EDTA, may contain no more than 150 μl sample and have a total anticoagulant content of no more than 0.45 mg EDTA, may contain no more than 100 μl sample and have a total anticoagulant content of no more than 0.3 mg EDTA, may contain no more than 75 μl sample and have a total anticoagulant content of no more than 0.23 mg EDTA, may contain no more than 50 μl sample and have a total anticoagulant content of no more than 0.15 mg EDTA, may contain no more than 40 μl sample and have a total anticoagulant content of no more than 0.12 mg EDTA, may contain no more than 30 μl sample and have a total anticoagulant content of no more than 0.09 mg EDTA, may contain no more than 20 μl sample and have a total anticoagulant content of no more than 0.06 mg EDTA, may contain no more than 10 μl sample and have a total anticoagulant content of no more than 0.03 mg EDTA, or may contain no more than 5 μl sample and have a total anticoagulant content of no more than 0.015 mg EDTA. In embodiments, a sample vessel containing a sample may contain no more than 1 ml sample and have a total anticoagulant content of no more than 2 mg EDTA, may contain no more than 750 μl sample and have a total anticoagulant content of no more than 1.5 mg EDTA, may contain no more than 500 μl sample and have a total anticoagulant content of no more than 1 mg EDTA, may contain no more than 400 μl sample and have a total anticoagulant content of no more than 0.8 mg EDTA, may contain no more than 300 μl sample and have a total anticoagulant content of no more than 0.6 mg EDTA, may contain no more than 200 μl sample and have a total anticoagulant content of no more than 0.4 mg EDTA, may contain no more than 150 μl sample and have a total anticoagulant content of no more than 0.3 mg EDTA, may contain no more than 100 μl sample and have a total anticoagulant content of no more than 0.2 mg EDTA, may contain no more than 75 μl sample and have a total anticoagulant content of no more than 0.15 mg EDTA, may contain no more than 50 μl sample and have a total anticoagulant content of no more than 0.1 mg EDTA, may contain no more than 40 μl sample and have a total anticoagulant content of no more than 0.08 mg EDTA, may contain no more than 30 μl sample and have a total anticoagulant content of no more than 0.06 mg EDTA, may contain no more than 20 μl sample and have a total anticoagulant content of no more than 0.04 mg EDTA, may contain no more than 10 μl sample and have a total anticoagulant content of no more than 0.02 mg EDTA, or may contain no more than 5 μl sample and have a total anticoagulant content of no more than 0.01 mg EDTA. In embodiments, a sample vessel containing a sample may contain no more than 1 ml sample and have a total anticoagulant content of no more than 30 US Pharmacopeia (USP) units heparin, may contain no more than 750 μl sample and have a total anticoagulant content of no more than 23 USP units heparin, may contain no more than 500 μl sample and have a total anticoagulant content of no more than 15 USP units heparin, may contain no more than 400 μl sample and have a total anticoagulant content of no more than 12 USP units heparin, may contain no more than 300 μl sample and have a total anticoagulant content of no more than 9 USP units heparin, may contain no more than 200 μl sample and have a total anticoagulant content of no more than 6 USP units heparin, may contain no more than 150 μl sample and have a total anticoagulant content of no more than 4.5 USP units heparin, may contain no more than 100 μl sample and have a total anticoagulant content of no more than 3 USP units heparin, may contain no more than 75 μl sample and have a total anticoagulant content of no more than 2.3 USP units heparin, may contain no more than 50 μl sample and have a total anticoagulant content of no more than 1.5 USP units heparin, may contain no more than 40 μl sample and have a total anticoagulant content of no more than 1.2 USP units heparin, may contain no more than 30 μl sample and have a total anticoagulant content of no more than 0.9 USP units heparin, may contain no more than 20 μl sample and have a total anticoagulant content of no more than 0.6 USP units heparin, may contain no more than 10 μl sample and have a total anticoagulant content of no more than 0.3 USP units heparin, or may contain no more than 5 μl sample and have a total anticoagulant content of no more than 0.15 USP units heparin. In embodiments, a sample vessel containing a sample may contain no more than 1 ml sample and have a total anticoagulant content of no more than 15 USP units heparin, may contain no more than 750 μl sample and have a total anticoagulant content of no more than 11 USP units heparin, may contain no more than 500 μl sample and have a total anticoagulant content of no more than 7.5 USP units heparin, may contain no more than 400 μl sample and have a total anticoagulant content of no more than 6 USP units heparin, may contain no more than 300 μl sample and have a total anticoagulant content of no more than 4.5 USP units heparin, may contain no more than 200 μl sample and have a total anticoagulant content of no more than 3 USP units heparin, may contain no more than 150 μl sample and have a total anticoagulant content of no more than 2.3 USP units heparin, may contain no more than 100 μl sample and have a total anticoagulant content of no more than 1.5 USP units heparin, may contain no more than 75 μl sample and have a total anticoagulant content of no more than 1.2 USP units heparin, may contain no more than 50 μl sample and have a total anticoagulant content of no more than 0.75 USP units heparin, may contain no more than 40 μl sample and have a total anticoagulant content of no more than 0.6 USP units heparin, may contain no more than 30 μl sample and have a total anticoagulant content of no more than 0.45 USP units heparin, may contain no more than 20 μl sample and have a total anticoagulant content of no more than 0.3 USP units heparin, may contain no more than 10 μl sample and have a total anticoagulant content of no more than 0.15 USP units heparin, or may contain no more than 5 μl sample and have a total anticoagulant content of no more than 0.08 USP units heparin. In embodiments, two or more sample vessels containing sample from a single subject may be obtained or transported. When two or more sample vessels containing sample from a single subject are obtained or transported, the two or more sample vessels may be stored or transported in a vessel that does or does not contain samples from other subjects. In embodiments, at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 sample vessels containing sample from a single subject may be obtained or transported. In embodiments, no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 sample vessels containing sample from a single subject may be obtained or transported. In embodiments, at least 2, 3, 4, 5, 6, 7, 8, or 9 sample vessels and no more than 3, 4, 5, 6, 7, 8, 9, or 10 sample vessels containing sample from a single subject may be obtained or transported. In embodiments involving two or more sample vessels containing sample from the same subject, the sample in each sample vessel may be obtained from a subject at the same or at different times. In some embodiments involving two or more sample vessels containing sample from the same subject, the sample in each sample vessel may be from the same location or source site on the subject. For example, two sample vessels containing whole blood from the same subject may be obtained, in which both sample vessels contain whole blood from the same fingerstick site. In other embodiments involving two or more sample vessels containing sample from the same subject, the sample in each sample vessel be from a different location/source site on the subject. For example, two sample vessels containing whole blood from the same subject may be obtained, in which one sample vessel contains whole blood from a first fingerstick site (e.g. on a first digit) and a second sample vessel contains whole blood from a second fingerstick site (e.g. on a second digit). In embodiments involving two or more sample vessels containing sample from a single subject, the two or more sample vessels may contain different types of anticoagulants or other blood additives. For example, a first sample vessel may contain whole blood with EDTA and a second sample vessel may contain whole blood with heparin, wherein the samples are from the same subject. In another example, a first and second sample vessel may contain whole blood with EDTA and a third sample vessel may contain whole blood with heparin, wherein the samples are from the same subject. In another example, a first sample vessel may contain whole blood with EDTA, a second sample vessel may contain whole blood with heparin, and a third sample vessel may contain whole blood with sodium citrate, wherein the samples are from the same subject. In embodiments involving two or more sample vessels containing sample from a single subject, the two or more sample vessels may contain different types of sample from the subject. For example, a first sample vessel may contain whole blood and a second sample vessel may contain plasma from the same subject. In another example, a first sample vessel may contain whole blood and a second sample vessel may contain urine from the same subject. In another example, a first and second sample vessel may contain whole blood and a third sample vessel may contain saliva from the same subject. In systems and methods provided herein, a total volume of bodily fluid sample may be obtained from a subject. The total volume of bodily fluid sample may be transferred into a single sample vessel, or into two or more sample vessels. For example, a total volume of 500 microliters of bodily fluid sample may be obtained from a subject, and it may be transferred into a single sample vessel, wherein the single sample vessel has a maximum interior volume of 600 microliters. In another example, a total volume of 500 microliters of bodily fluid sample may be obtained from a subject, and it may be transferred into a two sample vessels, wherein each sample vessel has a maximum interior volume of 300 microliters. In another example, a total volume of 500 microliters of bodily fluid sample may be obtained from a subject, and it may be transferred into a two sample vessels, wherein one sample vessel has a maximum interior volume of 400 microliters and one sample vessel has a maximum interior volume of 100 microliters. In systems and methods provided herein, a total volume of bodily fluid sample of less than or equal to 5 ml, 4 ml, 3 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, 5 μl or 1 μl may be obtained from a subject. The total volume of bodily fluid sample from the subject may be divided between 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more sample vessels, as described elsewhere herein. When a total volume of a bodily fluid sample from a subject is divided between two or more sample vessels, portions of the total volume of bodily fluid sample in some or all of the different sample vessels may contain different anticoagulants or other additives. For example, a total volume of 500 microliters of bodily fluid sample may be obtained from a subject, and it may be transferred into a two sample vessels, wherein one sample vessel contains 250 microliters of the bodily fluid sample mixed with EDTA, and one sample vessel contains 250 microliters of the bodily fluid sample mixed with heparin. Typically, as used herein, a total volume of bodily fluid sample refers to a single type of bodily fluid sample—e.g. whole blood or urine or saliva, etc. In embodiments, a sample vessel containing whole blood may be centrifuged before it is stored or shipped, such that the whole blood is separated into plasma and pelleted cells in the sample vessel before it is shipped. In other embodiments, a sample vessel containing whole blood is not centrifuged before it is stored or shipped. In some embodiments of systems and methods provided herein, a bodily fluid sample may be dried after it is collected and before it is transported. In embodiments, a dried sample may later be reconstituted into liquid form, such as at a time of analysis or processing of the sample. In embodiments of systems and methods provided herein, a sample vessel may be transported from a first location to a second location. A first location may be a location where a sample is collected from a subject, and a second location may be a location where one or more steps are performed for processing or analyzing the sample. The sample and sample vessel may have any of the respective characteristics described elsewhere herein. For example, the sample may be in a liquid, non-matrixed, non-wicked form. The sample vessel may be transported in a transport container as described herein or other structure. For example in some optional embodiments, a sample vessel may be transported in a bag, pouch, envelope, box, capsule, or other structure. In embodiments, the first location and the second location may be within the same room, building, campus, or collection of buildings. In embodiments, a first location and second location may be separated by at least 1 meter, 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, or 500 kilometers. In embodiments, a first location and second location may be separated by no more than 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, 500 kilometers, or 1000 kilometers. In embodiments, a first location and second location may be separated by at least 1 meter, 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, or 500 kilometers and no more than 5 meters, 10 meters, 50 meters, 100 meters, 500 meters, 1 kilometer, 5 kilometers, 10 kilometers, 15 kilometers, 20 kilometers, 30 kilometers, 50 kilometers, 100 kilometers, 500 kilometers, or 1000 kilometers. In embodiments in which a first location is a location where a sample is obtained from a subject, a sample vessel may be transported from a first location to a second location within 48 hours, 36 hours, 24 hours, 12 hours, 8 hours, 6 hours, 4 hours, 3 hours, 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, 5 minutes, 1 minute, or 30 seconds of collection of the sample from the subject. As used herein, a “sample receiving site” is a place where a transported sample may be received, and wherein one or more steps may be performed with the sample. For example, a sample which arrives at a sample receiving site may be processed, analyzed, or handled at the sample receiving site, for example, as part of a test or assay with the sample. A sample may be transported, for example, in any vessel or device as described herein. In embodiments, a sample receiving site may contain one or more sample processing devices, which may be used for processing or analyzing the sample. A sample processing device may be as described in, for example, U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011, or as in any other document incorporated by reference elsewhere herein. During the transport of a sample from a sample collection site to a sample receiving site, the sample may pass through any number of locations. In embodiments, a first location may be a sample collection site and a second location may be a sample receiving site. Referring now to FIG. 44, one embodiment of bodily fluid sample collection and transport will now be described. FIG. 44 shows a bodily fluid sample B on a skin surface S of the subject. In the non-limiting example of FIG. 44, the bodily fluid sample B can be collected by one of a variety of devices. By way of non-limiting example, collection device 3530 may be but is not limited to those described in U.S. Patent Application Ser. No. 61/697,797 filed Sep. 6, 2012, which is fully incorporated herein by reference for all purposes. In the present embodiment, the bodily fluid sample B is collected by one or more capillary channels and then directed into sample vessels 3540. By way of non-limiting example, at least one of the sample vessels 3540 may have an interior that is initially under a partial vacuum that is used to draw bodily fluid sample into the sample vessel 3540. Some embodiments may simultaneously draw sample from the sample collection device into the sample vessels 3540 from the same or different collection channels in the sample collection device. Optionally, some embodiments may simultaneous draw sample into the sample vessels In the present embodiment after the bodily fluid sample is inside the sample vessels 3540, the sample vessels 3540 in their holder 3542 (or optionally, removed from their holder 3542) are loaded into the transport container 3500. In this embodiment, there may be one or more slots sized for the sample vessel holder 3542 or slots for the sample vessels in the transport container 3500. By way of non-limiting example, they may hold the sample vessels in an arrayed configuration and oriented to be vertical or some other pre-determined orientation. It should be understood that some embodiments of the sample vessels 3540 are configured so that they hold different amount of sample in each of the vessels. By way of non-limiting example, this can be controlled based on the amount of vacuum force in each of the sample vessels, the amount of sample collected in the sample collection channel(s) of the collection device, and/or other factors. Optionally, different pre-treatments such as but not limited to different anti-coagulants or the like can also be present in the sample vessels. As seen in FIG. 44, the sample vessels 3540 are collecting sample at a first location such as but not limited to a sample collection site. By way of non-limiting example, the bodily fluid samples are then transported in the transport container 3500 to a second location such as but not limited to a receiving site such as but not limited to an analysis site. The method of transport may be by courier, postal delivery, or other shipping technique. In many embodiments, the transport may be implemented by having a yet another container that holds the transport container therein. In one embodiment, the sample collection site may be a point-of-care. Optionally, the sample collection site is a point-of-service. Optionally, the sample collection site is remote from the sample analysis site. Although the present embodiment of FIG. 44 shows the collection of bodily fluid sample from a surface of the subject, other alternative embodiments may use collection techniques for collecting sample from other areas of the subject, such as by venipuncture, to fill the sample vessel(s) 3540. Such other collection techniques are not excluded for use as alternative to or in conjunction with surface collection. Surface collection may be on exterior surfaces of the subject. Optionally, some embodiments may collect from accessible surfaces on the interior of the subject. Presence of bodily fluid sample B on these surfaces may be naturally occurring or may occur through wound creation or other techniques to make the bodily fluid surface accessible. Referring now to FIG. 45, yet another embodiment is described herein wherein bodily fluid sample can be collected from an interior of the subject versus collecting sample that is pooled on a surface of the subject. This embodiment of FIG. 45 shows a collection device 3550 with a hypodermic needle 3552 that is configured to collect bodily fluid sample such as but not limited to venous blood. In one embodiment, the bodily fluid sample may fill a chamber 3554 in the device 3550 at which time sample vessel(s) 3540 may be engaged to draw the sample into the respective vessel(s). Optionally, some embodiments may not have a chamber 3554 but instead have very little void space other than channel(s), pathway(s), or tube(s) used to direct sample from the needle 3552 to the sample vessel(s) 3540. For bodily fluid samples such as blood, the pressure from within the blood vessel is such that the blood sample can fill the chamber 554 without much if any assistance from the collection device. Such embodiments may optionally include one or more vents, such as but not limited to a port, to allow air escape as the channels in the collection device are filled with sample. At least some or all of the embodiments can have a fill indicator such as but not limited to a view window or opening that shows when sample is present inside the collection device and thus indicate that it is acceptable to engage the sample vessel(s) 3540. Optionally, embodiments that do not have a fill indicator are not excluded. The filled sample vessel(s) 3540 may be disconnected from the sample collection device after a desired fill level is reached. Optionally, additional sample vessel(s) 3540 can be engaged to the sample collection device 3550 (or 530) to collect additional amounts of bodily fluid sample. FIG. 46 shows a still further embodiment of a sample collection device 3570. This embodiment described herein has a tissue penetrating portion 3572 such as but not limited to a hypodermic needle with a handling portion 3574. The handling portion 3574 can facilitate positioning of the tissue penetrating portion 3572 to more accurately enter the patient to a desired depth and location. In the present embodiment, the sample collection vessel(s) 3540 are in a carrier 3576 that is not in direct physical contact with the tissue penetration portion 3572. A fluid connection pathway 3578 such as but not limited to a flexible tube can be used to connect the tissue penetrating portion 3572 with the sample collection vessel(s) 3540. Some embodiments have the sample vessel(s) 3540 configured to be slidable to only be in fluid communication with the tissue penetrating portion 3572 upon control of the user. At least some or all of the embodiments can have a fill indicator such as but not limited to a view window or opening that shows when sample is present inside the collection device and thus indicate that it is acceptable to engage the sample vessel(s) 3540. Optionally, embodiments that do not have a fill indicator are not excluded. Some embodiments may optionally include one or more vents, such as but not limited to a port, to allow air escape as the channels in the collection device are filled with sample. In most embodiments, the filled sample vessel(s) 3540 may be disconnected from the sample collection device after a desired fill level is reached. Optionally, additional sample vessel(s) 3540 can be engaged to the sample collection device 3570 to collect additional amounts of bodily fluid sample. Sample Processing Referring now to FIG. 47, a system view is shown of the transport container 3500 having its contents unloaded after arriving at a destination location by unloading assembly 3600. In one embodiment, after the lid 3502 is positioned in an open position, the sample vessels in the vessel 3500 can be removed from therein. By way of non-limiting example, the removal may occur by removing an entire tray of the sample vessels, removing holders of multiple sample vessels from the tray, and/or by removing the sample vessels individually. Some embodiments may use a robotically controlled structure 3602 that can move vertically as indicated by arrow 3604 and/or horizontally as indicated by arrow 3606 along a gantry 3608 to remove sample vessels from the transport container 3500. A programmable process 3610 can be used to control the position of the structure 3602 that is used to manipulate the sample vessels. In one embodiment, the structure 3602 includes a magnet for engaging the retention mechanisms to remove the tray from the structure 3602. Other embodiments using robotic arms and/or other types of programmable manipulators can be configured for use herein and are not excluded. In embodiments, upon the arrival of a sample vessel containing a sample at a location for processing or analysis of the sample, the sample may be removed from the sample vessel. The sample vessel may processed (e.g. shaken, rotated, mixed, or centrifuged) before the sample is removed from the sample vessel. Sample may be removed from the sample vessel by any appropriate mechanism, such as aspiration (e.g. by a fluid handling system or pipette), pouring, or mechanical force (e.g. by forcing the sample from the vessel by reducing the dimensions of the interior region of the sample vessel). In embodiments, upon the removal of the sample from the sample vessel, little or no sample remains behind in the vessel (e.g. as mechanical/transfer loss). For example, after the removal of sample from the vessel, less than or equal to 50 μl, 40 μl, 30 μl, 20 μl, 15 μl, 10 μl, 5 μl, 4 μl, 3 μl, 2 μl, 1 μl, or 0 μl of sample may remain in the sample vessel. By way of non-limiting example, the samples in the sample vessels can then be processed using systems such as that described in U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011, fully incorporated herein by reference for all purposes. The analysis system can be configured in a CLIA compliant manner as described in U.S. patent application Ser. No. 13/244,946 filed Sep. 26, 2011, fully incorporated herein by reference for all purposes. In embodiments, a sample transported according to systems or methods provided herein may be divided into two or more smaller portions upon arrival at location for processing or analysis, and various assays may be performed with the sample. For example, in embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, or 50 assays may be performed with a sample transported according to systems or methods provided herein. The assays may include assays of different types (e.g. to assay for protein, nucleic acid, or cells), and use one or more detection methods (e.g. cytometry, luminescence, or spectrophotometer-based). In embodiments, two or more sample vessels containing sample from a single subject may be transported, wherein the two or more sample vessels contain at least two different anticoagulants mixed with the sample (e.g. one sample vessel contains EDTA-sample and one sample vessel contains heparin-sample). Sample from the EDTA-sample vessel may then be used for one or more assays that are heparin-sensitive or EDTA-insensitive. Similarly, sample from the heparin-sample vessel may then be used for one or more assays that are EDTA-sensitive or heparin-insensitive. In embodiments, a sample transported according to systems and methods provided herein may be divided into two or more portions upon arrival at a destination, and analyzed on 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different sample analyzers. Referring now to FIGS. 49 to 51, it should be understood that at least any two of the tests on the list (FIGS. 49 to 51) can be performed using a sample from a subject prepared or transported according to a system or method provided herein. For example, at least two tests on the list may be performed using a bodily fluid sample from a subject, wherein the total volume of bodily fluid sample used to perform the test is no more than 300 microliters, and the total volume of bodily fluid sample from the subject is transported in liquid form a sample vessel having an interior volume of 400 microliters or less. In another example, at least two tests on the list may be performed using a bodily fluid sample from a subject, wherein the total volume of bodily fluid sample used to perform the tests is no more than 300 microliters, and the total volume of bodily fluid sample from the subject is transported in liquid form in a first sample vessel and a second sample vessel, each vessel having an interior volume of 200 microliters or less, the first sample vessel containing bodily fluid sample mixed with a first anticoagulant and the second sample vessel containing bodily fluid sample mixed with a second anticoagulant. In embodiments, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 50, or 60 of the tests on the list (FIGS. 49 to 51) may be performed using a bodily fluid sample from a subject having a total volume of no greater than or equal to 5 ml, 4 ml, 3 ml, 2 ml, 1.5 ml, 1 ml, 750 μl, 500 μl, 400 μl, 300 μl, 200 μl, 150 μl, 100 μl, 75 μl, 50 μl, 40 μl, 30 μl, 20 μl, 10 μl, 5 μl or 1 μl. The total volume of the bodily fluid sample may be stored or transported from a collection site to an analysis or processing location in a single sample vessel, or it may be divided between 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, or more sample vessels. When the total volume of a bodily fluid sample from a single subject is divided into two or more sample vessels, the sample portions in some or each of the sample vessels may contain a different anticoagulant or other additive. In an example, no more than a total volume of 300 microliters of bodily fluid sample from a subject may be used for performing two or more of the tests, wherein at least one portion of the no more than 300 microliter sample is mixed with first anti-coagulant and a second portion of the no more than 300 microliter sample is mixed with a second anti-coagulant different from the first. Optionally, each portion of the no more than 300 microliter sample is in its own sample vessel. Optionally, two or more of the tests may be performed, wherein all of the no more than 300 microliter sample is transported in a single vessel and contains a single anti-coagulant. Optionally, at least any three of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. Optionally, at least any five of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. Optionally, at least any seven of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. Optionally, at least any ten of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. Optionally, at least any fifteen of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. Optionally, at least any twenty of the tests on that list can be conducted using no more than a total volume of 300 microliters of blood from a subject for all of the tests. For any of the above, in at least some embodiments, at least one portion is of a first anti-coagulant and a second portion is of a second anti-coagulant different from the first. Referring now to FIG. 52, yet another embodiment is shown of a device for bodily fluid sample collection. FIG. 52 shows a bodily fluid sample B on the subject being collected by a collection device 3710. As seen in FIG. 52, the collection device 3710 may include a collection portion 3712 such as but not limited to capillary tube or other collection structure. The collection portion 3712 draws fluid therein, eventually directing it towards an inner cavity 3714 of the device 3710. After the collection portion 3712 has collected a desired amount, the entire device 3710 can be oriented as shown in FIG. 52 so that gravity can then draw the sample into the cavity 3714. After all the sample B has been moved into the cavity 3714, the collection portion 3712 can be removed from device 3710. In one embodiment, the cap and the collection portion 3712 is removed and replaced with a closed cap 3718. In one non-limiting example, the cap 3718 can be one without any openings thereon. Optionally, some may have a septa or other closable opening in the cap, wherein the collection portion 3712 can be removed without having to replace the cap with a new one of a different configuration. Modular Sample Collection Device Referring now to FIGS. 53A-53C, although the embodiments herein typically describe sample collection device as having an adapter portion 3750 for connecting the sample collection portion 3740 with the sample storage vessels 3760, it should be understood that embodiments without such configurations are not excluded. By way of non-limiting example in FIG. 53A, one or more adapter portion 3750 may be discrete elements not initially in direct fluid communication with either the collection portion 3740 or the sample storage vessels 3760. Herein the collection portion 3740 may connect to the vessel 3760 by way of relative motion between one or more of the collection portion, the adapter portion 3750, or the vessel(s) 3760 (sequentially or simultaneously) to create a fluid pathway from the collection channels through the one or more adapter channels into the vessels. By way of non-limiting example in FIG. 53B, as previously suggested herein, some embodiments may be without a discrete, separate adapter portion 3750. Herein the collection portion 3740 may connect directly to the vessel 3760 by way of relative motion between one or both of those elements as indicated by the arrow 3770. As seen in FIG. 53B, there may be a fluid flow feature 3780 that with relative motion between one or both of those elements as indicated by the arrow 3782. In one non-limiting example, this fluid flow feature 3780 can be a cap that engages one end of the collection portion 3740 to encourage fluid flow in to the vessel 3760. Optionally, the fluid flow feature 3780 may be a cap that has a front surface shaped to engage the collection portion 3740. Optionally, the fluid flow feature 3780 may be a plunger, a rod, and/or other device to encourage flow towards the sample storage vessel 3760. Optionally, the fluid flow feature 3780 is not fully engaged until the sample collection portion 3740 is ready to engage the vessel 3760. Optionally, some embodiments may be configured so that the flow from collection portion 3740 to sample storage vessel 3760 is without the use of the fluid flow feature 3780, but is instead based on a different motive force, such as but not limited to gravity, vacuum suction, or blowing force provided at the appropriate end of the collection portion 3740. By way of non-limiting example in FIG. 53C, one or more embodiment may use the collection portion 3740 as the storage vessel. Some embodiments may simply cap both ends with caps 3790 and 3792 once the desired fill level is reached. As seen in Figure in FIG. 53C, the caps 3790 and 3792 can hold the fluid therein, even when the portion 3740 is in a vertical orientation. There may be variations and alternatives to the embodiments described herein and that no single embodiment should be construed to encompass the entire invention. For example, there can be two or more capillary tubes in the collection portion 3740. Optionally, they can be each formed as discrete tubes or channels. Optionally, some may have a common initial portion but separate exits ports such as but not limited to a Y configuration. It should be understood that any of the embodiments herein could be modified to include the features recited in the description for FIGS. 53A-53C. Referring now to FIG. 54, after a sample vessel 3800 arrives at a desired processing destination, the sample in the vessel 3800 can be appropriately prepared. In one embodiment, the vessel 3800 is similar to that of vessel 3710. As seen in FIG. 54, the sample can be processed to aliquot one portion into a processing device such as but not limited to an inlet on a cartridge 3802 and to another inlet on another cartridge 3804. In one embodiment, both of the cartridges 3802 are microfluidic discs that process sample for blood chemistry testing such as but not limited to Comprehensive Metabolic Panel (ALB, ALP, ALT, AST, BUN, Ca, Cl—, CRE, GLU, K+, Na+, TBIL, tCO2, TP), Basic Metabolic Panel (BUN, Ca, CRE, eGFR, GLU, Cl—, K+, Na+, tCO2) Lipid Panel (CHOL, HDL, CHOL/HDL, LDL, TRIG, VLDL, nHDLc); Lipid Panel Plus (tCHOL, HDL, CHOL/HDL Ratio, LDL, TRIG, VLDL, GLU, ALT, AST, nHDLc); Liver Panel Plus (ALB, ALP, ALT, AST, AMY, TBIL, TP, GGT); Electrolyte Panel (Cl—, K+, Na+, tCO2); General Chemistry (ALB, ALP, ALT, AMY, AST, BUN, Ca, CRE, eGFR, GGT, GLU, TBIL, TP, UA); General Chemistry 6 (ALT, AST, CRE, eGFR, GLU, BUN, GGT) Renal Function Panel (ALB, BUN, Ca, CRE, eGFR, GLU, Cl—, K+, Na+, tCO2 PHOS); Metlyte (Cl—, K+, Na+, tCO2, BUN, CK, CRE, eGFR, GLU); Kidney Function (BUN, CRE, eGFR; Hepatic Function Panel (ALB, ALP, ALT, AST, DBIL, TBIL, TP); Basic Metabolic Panel (BUN, Ca, CRE, eGFR, GLU, Cl—, K+, Na+, tCO2, Mg, LDH); MetLyte Plus CRP (Cl—, K+, Na+, tCO2, BUN, CK, CRE, eGFR, GLU, CRP); BioChemistry Panel Plus (ALB, ALP, ALT, AMY, AST, BUN, Ca, CRE, eGFR, CRP, GGT, GLU, TP, UA); MetLac (ALB, BUN, Ca, CRE, GLU, K+, LAC, Mg, Na+, Phos, tCO2). It should be understood that other fluid handling technologies that may be developed in the future can also be adapted for use in at least one of the embodiments herein. In some embodiments, the sample can be delivered to a general chemistry microfluidic/centrifugal cartridge(s) 3802 (and/or 3804) using tubing to carry the fluid to a destination such as but not limited to fluid receiving port on the cartridge. At least one or more other cartridges, such as but not limited to an open-fluid movement type cartridge as described in the applications incorporated by reference herein, can also be used to improve the types of testing available. Although at least two destination cartridges are shown, it should be understood that embodiment with more than two are not excluded (as shown by the additional cartridge shown in phantom). Fluid transport may be by way of pipette, by fluidic tubing, microfluidics, or by other fluid handling technologies that may be developed in the future. Referring now to FIG. 55A, it should be understood that some embodiments can use a sample handling system with pipette(s) or the like the extract the sample in a tubeless manner from the vessel 3800. Although pipette(s) are described in this embodiment, it should be understood that other fluid handling technologies that may be developed in the future can also be adapted for use in at least one of the embodiments herein. FIG. 55A shows that an automated system can be used to aliquot the sample. It should also be understood that in some embodiments, prior to, during, or after aliquoting, there can be sample dilution to increase the liquid volume of the sample. This can be beneficial for various purposes. FIG. 55A also shows that in some embodiments, the sample can be delivered to a general chemistry microfluidic/centrifugal cartridge(s) 3802 (and/or 3804). At least one or more other cartridges, such as but not limited to an open-fluid movement type cartridge as described in the applications incorporated by reference herein, can also be used to improve the types of testing available. Although at least two destination cartridges are shown, it should be understood that embodiment with more than two are not excluded (as shown by the additional cartridge shown in phantom). Fluid transport may be by way of pipette, by fluidic tubing, microfluidics, or by other fluid handling technologies that may be developed in the future. Some embodiments may use the same techniques to move sample to the cartridges or other destination(s), or optionally, some may use a combination of one or more of the techniques to move the sample. By way of example and not limitation, testing may involve using other detection techniques such as but not limited to ELISA, nucleic acid amplification, microscopy, spectrophotometry, electrochemistry and/or other detection techniques to augment the types of analysis that can be done, in addition to the general chemistry testing using the cartridge 3802. Optionally, it should be understood that more than one cartridge 3802 and/or individual unit cartridge 3806 can be used herein with the system of aliquoting from the vessel 3800. Referring now to FIG. 55B, a still further embodiment is shown wherein a vessel 3800 is shown having a sample fluid therein. In one example, the sample fluid therein may be “neat” or undiluted. Optionally, some embodiments may be configured so that sample may have been pre-processed at the collection site and/or at the receiving site to dilute the sample and/or provide certain chemical material into the sample. As seen in FIG. 55B, a fluid handling system may use a pipette 3602 to aliquot sample from vessel 3800 to one or more other vessels 3810, 3812, and/or 3814. By way of non-limiting example, these vessels 3810, 3812, or 3814 may be the same vessel as that of vessel 3800. Optionally, they may be different type of vessel. Based on bar code or other information about the sample, the processor programmed to determine at least a desired sample dilution for a sample and at least a desired number of aliquot(s). In this non-limiting example, the aliquots are each transported to one sample processing unit 3820, 3822, and 3824. These may all be the same type of processing unit, each may be a type different from the other, or some may be the same and some different. In at least one non-limiting example, the sample processing unit can be single sample processor or a batch processor that can handle a plurality of sample simultaneously. FIG. 55C shows a still further embodiment wherein a sample is collected at a collection site and then transported to a second site while sample remains in liquid form. FIG. 55C shows that a plurality of vessels having sample can be collected from a single wound on the subject. This allows the subject to provide multiple samples that can be treated by different types of chemicals in each of the vessels. FIG. 55C shows a courier that can transport a transport container that may include samples from only one subject or multiple samples from multiple subjects to a receiving site. Although a human courier is shown, it should be understood that robotic transports, drones, or other transport techniques, systems, or devices that may be developed in the future are not excluded (including but not limited to transport of “virtual” version(s) of the sample). In this non-limiting example, the receiving site may load one or more vessels 1504 from the transport container into a cartridge having independently movable reagent units and/or assay units. This cartridge can then be loaded into one or more processing modules 701 to 707. These units may be identical modules. Optionally, at least one of the modules is different from the others. Similar to FIG. 55B, some embodiments may include a processor 3830 that may coordinate dilution and/or aliquoting of sample from vessel 1504 (based on vessel ID or other associated information) prior to loading the vessel 1504 or other vessel(s) that contain the sample and/or pre-diluted sample into the cartridge. In at least one embodiment herein, each of the modules can receive at least one cartridge and at least one sample vessel. Optionally, more than one sample vessel can be placed in each cartridge. Optionally, the sample vessels may contain different types of sample so that cartridge can have more than one type of sample loaded into it. Optionally, some embodiments may have modules with at least one receiving area for a cartridge and at least one receiving area for a sample. Optionally, some embodiments may have only one location for receiving a cartridge which then also contains at least one sample. In this manner, a user has decreased risk of having to load separate items into the module. Once loaded, at least one embodiment herein is configured so that there is no more user manipulation of the sample once it is inserted in the module. This non-limiting example can be used minimize error associated with human factors once the sample is being processed in the module. It should also be understood that some embodiments may handle a plurality of sample simultaneously using centrifugal or other force to bring the sample down to a settled level inside the sample vessels. In one non-limiting example, this can be achieved by way of a tray centrifuge such as but not limited to a 384 well plate centrifuge. FIG. 55C shows a system 700 having a plurality of modules 701-706 and a cytometry station 707, in accordance with an embodiment of the invention. The plurality of modules include a first module 701, second module 702, third module 703, fourth module 704, fifth module 705 and sixth module 706. The cytometry station 707 is operatively coupled to each of the plurality of modules 701-706 by way of a sample handling system 708. The sample handling system 708 may include a pipette, such as a positive displacement, air displacement or suction-type pipette, as described herein. The cytometry station 707 includes a cytometer for performing cytometry on a sample, as described above and in other embodiments of the invention. The cytometry station 707 may perform cytometry on a sample while one or more of the modules 701-706 perform other preparation and/or assaying procedure on another sample. In some situations, the cytometry station 707 performs cytometry on a sample after the sample has undergone sample preparation in one or more of the modules 701-706. The system 700 includes a support structure 709 having a plurality of bays (or mounting stations). The plurality of bays is for docking the modules 701-706 to the support structure 709. The support structure 709, as illustrated, is a rack. Each module is secured to rack 709 with the aid of an attachment member. In an embodiment, an attachment member is a hook fastened to either the module or the bay. In such a case, the hook is configured to slide into a receptacle of either the module or the bay. In another embodiment, an attachment member includes a fastener, such as a screw fastener. In another embodiment, an attachment member is formed of a magnetic material. In such a case, the module and bay may include magnetic materials of opposite polarities so as to provide an attractive force to secure the module to the bay. In another embodiment, the attachment member includes one or more tracks or rails in the bay. In such a case, a module includes one or more structures for mating with the one or more tracks or rails, thereby securing the module to the rack 709. Optionally, power may be provided by the rails. An example of a structure that may permit a module to mate with a rack may include one or more pins. In some cases, modules receive power directly from the rack. In some cases, a module may be a power source like a lithium ion, or fuel cell powered battery that powers the device internally. In an example, the modules are configured to mate with the rack with the aid of rails, and power for the modules comes directly from the rails. In another example, the modules mate with the rack with the aid of attachment members (rails, pins, hooks, fasteners), but power is provided to the modules wirelessly, such as inductively (i.e., inductive coupling). In some embodiments, a module mating with a rack need not require pins. For example, an inductive electrical communication may be provided between the module and rack or other support. In some instances, wireless communications may be used, such as with the aid of ZigBee communications or other communication protocols or protocols that may be developed in the future. Each module may be removable from the rack 709. In some situations, one module is replaceable with a like, similar or different module. In an embodiment, a module is removed from the rack 709 by sliding the module out of the rack. In another embodiment, a module is removed from the rack 709 by twisting or turning the module such that an attachment member of the module disengages from the rack 709. Removing a module from the rack 709 may terminate any electrical connectivity between the module and the rack 709. In an embodiment, a module is attached to the rack by sliding the module into the bay. In another embodiment, a module is attached to the rack by twisting or turning the module such that an attachment member of the module engages the rack 709. Attaching a module to the rack 709 may establish an electrical connection between the module and the rack. The electrical connection may be for providing power to the module or to the rack or to the device from the module and/or providing a communications bus between the module and one or more other modules or a controller of the system 700. Each bay of the rack may be occupied or unoccupied. As illustrated, all bays of the rack 709 are occupied with a module. In some situations, however, one or more of the bays of the rack 709 are not occupied by a module. In an example, the first module 701 has been removed from the rack. The system 700 in such a case may operate without the removed module. In some situations, a bay may be configured to accept a subset of the types of modules the system 700 is configured to use. For example, a bay may be configured to accept a module capable of running an agglutination assay but not a cytometry assay. In such a case, the module may be “specialized” for agglutination. Agglutination may be measured in a variety of ways. Measuring the time-dependent change in turbidity of the sample is one method. One can achieve this by illuminating the sample with light and measuring the reflected light at 90 degrees with an optical sensor, such as a photodiode or camera. Over time, the measured light would increase as more light is scattered by the sample. Measuring the time dependent change in transmittance is another example. In the latter case, this can be achieved by illuminating the sample in a vessel and measuring the light that passes through the sample with an optical sensor, such as a photodiode or a camera. Over time, as the sample agglutinates, the measured light may reduce or increase (depending, for example, on whether the agglutinated material remains in suspension or settles out of suspension). In other situations, a bay may be configured to accept all types of modules that the system 700 is configured to use, ranging from detection stations to the supporting electrical systems. Each of the modules may be configured to function (or perform) independently from the other modules. In an example, the first module 701 is configured to perform independently from the second 702, third 703, fourth 704, fifth 705 and sixth 706 modules. In other situations, a module is configured to perform with one or more other modules. In such a case, the modules may enable parallel processing of one or more samples. In an example, while the first module 701 prepares a sample, the second module 702 assays the same or different sample. This may enable a minimization or elimination of downtime among the modules. The support structure (or rack) 709 may have a server type configuration. In some situations, various dimensions of the rack are standardized. In an example, spacing between the modules 701-706 is standardized as multiples of at least about 0.5 inches, or 1 inch, or 2 inches, or 3 inches, or 4 inches, or 5 inches, or 6 inches, or 7 inches, or 8 inches, or 9 inches, or 10 inches, or 11 inches, or 12 inches. The rack 709 may support the weight of one or more of the modules 701-706. Additionally, the rack 709 has a center of gravity that is selected such that the module 701 (top) is mounted on the rack 709 without generating a moment arm that may cause the rack 709 to spin or fall over. In some situations, the center of gravity of the rack 709 is disposed between the vertical midpoint of the rack and a base of the rack, the vertical midpoint being 50% from the base of the rack 709 and a top of the rack. In an embodiment, the center of gravity of the rack 709, as measured along a vertical axis away from the base of the rack 709, is disposed at least about 0.1%, or 1%, or 10%, or 20%, or 30%, or 40%, or 50%, or 60%, or 70%, or 80%, or 90%, or 100% of the height of the rack as measured from the base of the rack 709. A rack may have multiple bays (or mounting stations) configured to accept one or more modules. In an example, the rack 709 has six mounting stations for permitting each of the modules 701-706 to mount the rack. In some situations, the bays are on the same side of the rack. In other situations, the bays are on alternating sides of the rack. In some embodiments, the system 700 includes an electrical connectivity component for electrically connecting the modules 701-706 to one another. The electrical connectivity component may be a bus, such as a system bus. In some situations, the electrical connectivity component also enables the modules 701-706 to communicate with each other and/or a controller of the system 700. In some embodiments, the system 700 includes a controller (not shown) for facilitating processing of samples with the aid of one or more of the modules 701-706. In an embodiment, the controller facilitates parallel processing of the samples in the modules 701-706. In an example, the controller directs the sample handling system 708 to provide a sample in the first module 701 and second module 702 to run different assays on the sample at the same time. In another example, the controller directs the sample handling system 708 to provide a sample in one of the modules 701-706 and also provide the sample (such as a portion of a finite volume of the sample) to the cytometry station 707 so that cytometry and one or more other sample preparation procedures and/or assays are done on the sample in parallel. In such fashion, the system minimizes, if not eliminates, downtime among the modules 701-706 and the cytometry station 707. Each individual module of the plurality of modules may include a sample handling system for providing samples to and removing samples from various processing and assaying modules of the individual module. In addition, each module may include various sample processing and/or assaying modules, in addition to other components for facilitating processing and/or assaying of a sample with the aid of the module. The sample handling system of each module may be separate from the sample handling system 708 of the system 700. That is, the sample handling system 708 transfers samples to and from the modules 701-706, whereas the sample handling system of each module transfers samples to and from various sample processing and/or assaying modules included within each module. In the illustrated example of FIG. 55C, the sixth module 706 includes a sample handling system 710 including a suction-type pipette 711 and positive displacement pipette 712. The sixth module 706 includes a centrifuge 713, a spectrophotometer 714, a nucleic acid assay (such as a polymerase chain reaction (PCR) assay) station 715 and PMT 716. An example of the spectrophotometer 714 is shown in FIG. 55C (see below). The sixth module 706 further includes a cartridge 717 for holding a plurality of tips for facilitating sample transfer to and from each processing or assaying module of the sixth module. In an embodiment, the suction type pipette 711 includes 1 or more, or 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more, or 15 or more, or 20 or more, or 30 or more, or 40 or more, or 50 or more heads. In an example, the suction type pipette 711 is an 8-head pipette with eight heads. The suction type pipette 711 may be as described in other embodiments of the invention. In some embodiments, the positive displacement pipette 712 has a coefficient of variation less than or equal to about 20%, 15%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.3%, or 0.1% or less. The coefficient of variation is determined according to, wherein ‘ ’ is the standard deviation and ‘ ’ is the mean across sample measurements. In an embodiment, all modules are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, fourth, fifth, and sixth modules 701-706 include a positive displacement pipette and suction-type pipette and various assays, such as a nucleic acid assay and spectrophotometer. In another example, at least one of the modules 701-706 may have assays and/or sample preparation stations that are different from the other modules. In an example, the first module 701 includes an agglutination assay but not a nucleic acid amplification assay, and the second module 702 includes a nucleic acid assay but not an agglutination assay. Modules may not include any assays. In the illustrated example of FIG. 55C, the modules 701-706 include the same assays and sample preparation (or manipulation) stations. However, in other embodiments, each module includes any number and combination of assays and processing stations described herein. The modules may be stacked vertically or horizontally with respect to one another. Two modules are oriented vertically in relation to one another if they are oriented along a plane that is parallel, substantially parallel, or nearly parallel to the gravitational acceleration vector. Two modules are oriented horizontally in relation to one another if they are oriented along a plane orthogonal, substantially orthogonal, or nearly orthogonal to the gravitational acceleration vector. In an embodiment, the modules are stacked vertically, i.e., one module on top of another module. In the illustrated example of FIG. 55C, the rack 709 is oriented such that the modules 701-706 are disposed vertically in relation to one another. However, in other situations the modules are disposed horizontally in relation to one another. In such a case, the rack 709 may be oriented such that the modules 701-706 may be situated horizontally alongside one another. In yet another embodiment of a system 730 is shown with a plurality of modules 701 to 704. This embodiment shows a horizontal configuration wherein the modules 701 to 704 are mounted to a support structure 732 on which a transport device 734 can move along the X, Y, and/or optionally Z axis to move elements such as but not limited sample vessels, tips, cuvettes, or the like within a module and/or between modules. By way of non-limiting example, the modules 701-704 are oriented horizontally in relation to one another if they are oriented along a plane orthogonal, substantially orthogonal, or nearly orthogonal to the gravitational acceleration vector. It should be understood that, like the embodiment of FIG. 55C, modules 701-704 may all be modules that are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, and/or fourth modules 701-704 may be replaced by one or more other modules that can occupy the location of the module being replaced. The other modules may optionally provide different functionality such as but not limited to a replacing one of the modules 701-704 with one or more cytometry modules 707, communications modules, storage modules, sample preparation modules, slide preparation modules, tissue preparation modules, or the like. For example, one of the modules 701-704 may be replaced with one or more modules that provide a different hardware configuration such as but not limited to provide a thermal controlled storage chamber for incubation, storage between testing, and/or storage after testing. Optionally, the module replacing one or more of the modules 701-704 can provide a non-assay related functionality, such as but not limited to additional telecommunication equipment for the system 730, additional imaging or user interface equipment, or additional power source such as but not limited to batteries, fuel cells, or the like. Optionally, the module replacing one or more of the modules 701-704 may provide storage for additional disposables and/or reagents or fluids. It should be understood that although some embodiments show only four modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this horizontal mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. It should be understood that, like the embodiment of FIG. 55C, modules 701-706 may all be modules that are identical to one another. In another embodiment, at least some of the modules are different from one another. In an example, the first, second, third, and/or fourth modules 701-706 may be replaced by one or more other modules that can occupy the location of the module being replaced. The other modules may optionally provide different functionality such as but not limited to a replacing one of the modules 701-706 with one or more cytometry modules 707, communications modules, storage modules, sample preparation modules, slide preparation modules, tissue preparation modules, or the like. It should be understood that although some embodiments show only six modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this horizontal and vertical mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. Some embodiments may provide a system with a plurality of modules 701, 702, 703, 704, 706, and 707. Such an embodiment may have an additional module that can with one or more modules that provide a different hardware configuration such as but not limited to provide a thermal controlled storage chamber for incubation, storage between testing, or storage after testing. Optionally, the module replacing one or more of the modules 701-704 can provide a non-assay related functionality, such as but not limited to additional telecommunication equipment for the system, additional imaging or user interface equipment, or additional power source such as but not limited to batteries, fuel cells, or the like. Optionally, the module replacing one or more of the modules 701-707 may provide storage for additional disposables and/or reagents or fluids. It should be understood that although FIG. 55C shows seven modules mounted on the support structure, other embodiments having fewer or more modules are not excluded from this mounting configuration. It should also be understood that configurations may also be run with not every bay or slot occupied by a module, particularly in any scenario wherein one or more types of modules draw more power that other modules. In such a configuration, power otherwise directed to an empty bay can be used by the module that may draw more power than the others. In some embodiments, the modules 701-706 are in communication with one another and/or a controller of the system 700 by way of a communications bus (“bus”), which may include electronic circuitry and components for facilitating communication among the modules and/or the controller. The communications bus includes a subsystem that transfers data between the modules and/or controller of the system 700. A bus may bring various components of the system 700 in communication with a central processing unit (CPU), memory (e.g., internal memory, system cache) and storage location (e.g., hard disk) of the system 700. A communications bus may include parallel electrical wires with multiple connections, or any physical arrangement that provides logical functionality as a parallel electrical bus. A communications bus may include both parallel and bit-serial connections, and can be wired in either a multidrop (i.e., electrical parallel) or daisy chain topology, or connected by switched hubs. In an embodiment, a communications bus may be a first generation bus, second generation bus or third generation bus. The communications bus permits communication between each of the modules and other modules and/or the controller. In some situations, the communications bus enables communication among a plurality of systems, such as a plurality of systems similar or identical to the system 700. The system 700 may include one or more of a serial bus, parallel bus, or self-repairable bus. A bus may include a master scheduler that control data traffic, such as traffic to and from modules (e.g., modules 701-706), controller, and/or other systems. A bus may include an external bus, which connects external devices and systems to a main system board (e.g., motherboard), and an internal bus, which connects internal components of a system to the system board. An internal bus connects internal components to one or more central processing units (CPUs) and internal memory. In some embodiments, the communication bus may be a wireless bus. The commuincations bus may be a Firewire (IEEE 1394), USB (1.0, 2.0, 3.0, or others), Thunderbolt, or other protocols (current or developed in the future). In some embodiments, the system 700 includes one or more buses selected from the group consisting of Media Bus, Computer Automated Measurement and Control (CAMAC) bus, industry standard architecture (ISA) bus, USB bus, Firewire, Thunderbolt, extended ISA (EISA) bus, low pin count bus, MBus, MicroChannel bus, Multibus, NuBus or IEEE 1196, OPTi local bus, peripheral component interconnect (PCI) bus, Parallel Advanced Technology Attachment (ATA) bus, Q-Bus, S-100 bus (or IEEE 696), SBus (or IEEE 1496), SS-50 bus, STEbus, STD bus (for STD-80 [8-bit] and STD32 [16-/32-bit]), Unibus, VESA local bus, VMEbus, PC/104 bus, PC/104 Plus bus, PC/104 Express bus, PCI-104 bus, PCIe-104 bus, 1-Wire bus, HyperTransport bus, Inter-Integrated Circuit (I2C) bus, PCI Express (or PCIe) bus, Serial ATA (SATA) bus, Serial Peripheral Interface bus, UNDO bus, SMBus, 2-wire or 3-wire interface, self-repairable elastic interface buses and variants and/or combinations thereof. In some situations, the system 700 includes a Serial Peripheral Interface (SPI), which is an interface between one or more microprocessors and peripheral elements or I/O components (e.g., modules 701-706) of the system 700. The SPI can be used to attach 2 or more, or 3 or more, or 4 or more, or 5 or more, or 6 or more, or 7 or more, or 8 or more, or 9 or more, or 10 or more or 50 or more or 100 or more SPI compatible I/O components to a microprocessor or a plurality of microprocessors. In other instances, the system 700 includes RS-485 or other standards. In an embodiment, an SPI is provided having an SPI bridge having a parallel and/or series topology. Such a bridge allows selection of one of many SPI components on an SPI I/O bus without the proliferation of chip selects. This is accomplished by the application of appropriate control signals, described below, to allow daisy chaining the device or chip selects for the devices on the SPI bus. It does however retain parallel data paths so that there is no Daisy Chaining of data to be transferred between SPI components and a microprocessor. In some embodiments, an SPI bridge component is provided between a microprocessor and a plurality of SPI I/O components which are connected in a parallel and/or series (or serial) topology. The SPI bridge component enables parallel SPI using MISO and MOSI lines and serial (daisy chain) local chip select connection to other slaves (CSL/). In an embodiment, SPI bridge components provided herein resolve any issues associated with multiple chip selects for multiple slaves. In another embodiment, SPI bridge components provided herein support four, eight, sixteen, thirty two, sixty four or more individual chip selects for four SPI enabled devices (CS1/-CS4/). In another embodiment, SPI bridge components provided herein enable four times cascading with external address line setting (ADR0-ADR1). In some situations, SPI bridge components provided herein provide the ability to control up to eight, sixteen, thirty two, sixty four or more general output bits for control or data. SPI bridge components provided herein in some cases enable the control of up to eight, sixteen, thirty two, sixty four or more general input bits for control or data, and may be used for device identification to the master and/or diagnostics communication to the master. One embodiment may use an SPI bridge scheme having master and parallel-series SPI slave bridges, in accordance with an embodiment of the invention. The SPI bus is augmented by the addition of a local chip select (CSL/), module select (MOD_SEL) and select data in (DIN_SEL) into a SPI bridge to allow the addition of various system features, including essential and non-essential system features, such as cascading of multiple slave devices, virtual daisy chaining of device chip selects to keep the module-to-module signal count at an acceptable level, the support for module identification and diagnostics, and communication to non-SPI elements on modules while maintaining compatibility with embedded SPI complaint slave components. FIG. 41B shows an example of an SPI bridge, in accordance with an embodiment of the invention. The SPI bridge includes internal SPI control logic, a control register (8 bit, as shown), and various input and output pins. Each slave bridge is connected to a master (also “SPI master” and “master bridge” herein) in a parallel-series configuration. The MOSI pin of each slave bridge is connected to the MOSI pin of the master bridge, and the MOSI pins of the slave bridges are connected to one another. Similarly, the MISO pin of each slave bridge is connected to the MISO pin of the master bridge, and the MISO pins of the slave bridges are connected to one another. Each slave bridge may be a module (e.g., one of the modules 701-706 of FIG. 55C) or a component in a module. In an example, the First Slave Bridge is the first module 701, the Second Slave Bridge is the second module 702, and so on. In another example, the First Slave Bridge is a component of a module. At least one non-limiting example may use a module component diagram with interconnected module pins and various components of a master bridge and slave bridge, in accordance with an embodiment of the invention. Slave bridges may be connected to a master bridge, in accordance with an embodiment of the invention. The MISO pin of each slave bridge is in electrical communication with a MOSI pin of the master bridge. The MOSI pin of each slave bridge is in electrical communication with a MISO pin of the master bridge. The DIN_SEL pin of the first slave bridge (left) is in electrical communication with the MOSI pin of the first slave bridge. The DOUT_SEL pin of the first slave bridge is in electrical communication with the DIN_SEL of the second slave (right). Additional slave bridges may be connected as the second slave by bringing the DIN_SEL pins of each additional slave bridge in electrical communication with a DOUT_SEL pin of a previous slave bridge. In such fashion, the slave bridge are connected in a parallel-series configuration. In some embodiments, CLK pulses directed to connected SPI-Bridges capture the state of DIN_SEL Bits shifted into the Bridges at the assertion of the Module Select Line (MOD_SEL). The number of DIN_SEL bits corresponds to the number of modules connected together on a parallel-series SPI-Link. In an example, if the two modules are connected in a parallel-series configuration (e.g. RS486), the number of DIN_SEL is equal to two. In an embodiment, SPI-Bridges which latch a ‘1’ during the module selection sequence become the ‘selected module’ set to receive 8 bit control word during a following element selection sequence. Each SPI-Bridge may access up to 4 cascaded SPI Slave devices. Additionally, each SPI-Bridge may have an 8-Bit GP Receive port and 8-Bit GP Transmit Port. An ‘element selection’ sequence writes an 8 bit word into the ‘selected module’ SPI-Bridge control register to enable subsequent transactions with specific SPI devices or to read or write data via the SPI-Bridge GPIO port. In an embodiment, element selection takes place by assertion of the local chip select line (CSL/) then clocking the first byte of MOSI transferred data word into the control register. In some cases, the format of the control register is CS4 CS3 CS2 CS1 AD1 AD0 R/W N. In another embodiment, the second byte is transmit or receive data. When CSL/ is de-asserted, the cycle is complete. In an SPI transaction, following the element selection sequence, subsequent SPI slave data transactions commence. The SPI CS/ (which may be referred to as SS/) is routed to one of 4 possible bridged devices, per the true state of either CS4, CS3, CS2 or CS1. Jumper bits AD0, AD1 are compared to AD0, AD1 of the control register allow up to four SPI-Bridges on a module. One embodiment shows a device having a plurality of modules mounted on a SPI link of a communications bus of the device, in accordance with an embodiment of the invention. Three modules are illustrated, namely Module 1, Module 2 and Module 3. Each module includes one or more SPI bridges for bringing various components of a module in electrical connection with the SPI link, including a master controller (including one or more CPU's) in electrical communication with the SPI link. Module 1 includes a plurality of SPI slaves in electrical communication with each of SPI Bridge 00, SPI Bridge 01, SPI Bridge 10 and SPI Bridge 11. In addition, each module includes a Receive Data controller, Transmit Data controller and Module ID jumpers. In other embodiments, the modules 701-706 are configured to communicate with one another and/or one or more controllers of the system 700 with the aid of a wireless communications bus (or interface). In an example, the modules 701-706 communicate with one another with the aid of a wireless communications interface. In another example, one or more of the modules 701-706 communicate with a controller of the system 700 with the aid of a wireless communications bus. In some cases, communication among the modules 701-706 and/or one or more controllers of the system is solely by way of a wireless communications bus. This may advantageously preclude the need for wired interfaces in the bays for accepting the modules 701-706. In other cases, the system 700 includes a wired interface that works in conjunction with a wireless interface of the system 700. Although the system 700, as illustrated, has a single rack, a system, such as the system 700, may have multiple racks. In some embodiments, a system has at most 1, or 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 10, or 20, or 30, or 40, or 50, or 100, or 1000, or 10,000 racks. In an embodiment, the system has a plurality of racks disposed in a side-by-side configuration. In some embodiments, a user provides a sample to a system having one or more modules, such as the system 700 of FIG. 55C. The user provides the sample to a sample collection module of the system. In an embodiment, the sample collection module includes one or more of a lancet, needle, microneedle, venous draw, scalpel, cup, swab, wash, bucket, basket, kit, permeable matrix, or any other sample collection mechanism or method described elsewhere herein. Next, the system directs the sample from the sample collection module to one or more processing modules (e.g., modules 701-706) for sample preparation, assaying and/or detection. In an embodiment, the sample is directed from the collection module to the one or more processing modules with the aid of a sample handling system, such as a pipette. Next, the sample is processed in the one or more modules. In some situations, the sample is assayed in the one or more modules and subsequently put through one or more detection routines. In some embodiments, following processing in the one or more modules, the system communicates the results to a user or a system (e.g., server) in communication with the system. Other systems or users may then access the results to aid in treating or diagnosing a subject. In an embodiment, the system is configured for two-way communication with other systems, such as similar or like systems (e.g., a rack, such as that described in the context of FIG. 55C) or other computers systems, including servers. Devices and methods provided herein, by enabling parallel processing, may advantageously decrease the energy or carbon footprint of point of service systems. In some situations, systems, such as the system 700 of FIG. 55C, has a footprint that is at most 10%, or 15%, or 20%, or 25%, or 30%, or 35%, or 40%, or 45%, or 50%, or 55%, or 60%, or 65%, or 70%, or 75%, or 80%, or 85%, or 90%, or 95%, or 99% that of other point of service systems. In some embodiments, methods are provided for detecting analytes. In an embodiment, a processing routine includes detecting the presence or absence of an analyte. The processing routine is facilitated with the aid of systems and devices provided herein. In some situations, analytes are associated with biological processes, physiological processes, environmental conditions, sample conditions, disorders, or stages of disorders, such as one or more of autoimmune disease, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, and endocrine diseases. In some situations, a device processes one sample at a time. However, systems provided herein are configured for multiplexing sample processing. In an embodiment, a device processes multiple samples at a time, or with overlapping times. In an example, a user provides a sample to a device having a plurality of modules, such as the system 700 of FIG. 55C. The device then processes the sample with the aid of one or more modules of the device. In another example, a user provides multiple samples to a device having a plurality of modules. The device then processes the samples at the same time with the aid of the plurality of modules by processing a first sample in a first module while processing a second sample in second module. The system may process the same type of sample or different types of samples. In an embodiment, the system processes one or more portions of the same sample at the same time. This may be useful if various assaying and/or detection protocols on the same sample are desired. In another embodiment, the system processes different types of samples at the same time. In an example, the system processes a blood and urine sample concurrently in either different modules of the system or a single module having processing stations for processing the blood and urine samples. In some embodiments, a method for processing a sample with the aid of a point of service system, such as the system 700 of FIG. 55C, comprises accepting testing criteria or parameters and determining a test order or schedule based on the criteria. The testing criteria is accepted from a user, a system in communication with the point of service system, or a server. The criteria are selectable based on a desired or predetermined effect, such as minimizing time, cost, component use, steps, and/or energy. The point of service system processes the sample per the test order or schedule. In some situations, a feedback loop (coupled with sensors) enables the point of service system to monitor the progress of sample processing and maintain or alter the test order or schedule. In an example, if the system detects that processing is taking longer than the predetermined amount of time set forth in the schedule, the system speeds up processing or adjusts any parallel processes, such as sample processing in another module of the system. The feedback loop permits real-time or pseudo-real time (e.g., cached) monitoring. In some situations, the feedback loop may provide permit reflex testing, which may cause subsequent tests, assays, preparation steps, and/or other processes to be initiated after starting or completing another test and/or assay or sensing one or more parameter. Such subsequent tests, assays, preparation steps, and/or other processes may be initiated automatically without any human intervention. Optionally, reflex testing is performed in response to an assay result. Namely by way of non-limiting example, if a reflex test is ordered, a cartridge is pre-loaded with reagents for assay A and assay B. Assay A is the primary test, and assay B is the reflexed test. If the result of assay A is meets a predefined criteria initiating the reflex test, then assay B is run with the same sample in the device. The device protocol is planned to account for the possibility of running the reflex test. Some or all protocol steps of assay B can be performed before the results for assay A are complete. For example, sample preparation can be completed in advance on the device. It is possible also to run a reflex test with a second sample from the patient. In some embodiments, devices and systems provided herein may contain components such that multiple different assays and assay types may be reflex tested with the same device. In some embodiments, multiple tests of clinical significance may be performed in a single device provided herein as part of a reflex testing protocol, where the performance of the same tests with known systems and methods requires two or more separate devices. Accordingly, systems and devices provided herein may permit, for example, reflex testing which is faster and requires less sample than known systems and methods. In addition, in some embodiments, for reflex testing with a device provided herein, it is not necessary to know in advance which reflexed tested will be performed. In some embodiments, the point of service system may stick to a pre-determined test order or schedule based on initial parameters and/or desired effects. In other embodiments, the schedule and/or test order may be modified on the fly. The schedule and/or test order may be modified based on one or more detected conditions, one or more additional processes to run, one or more processes to no longer run, one or more processes to modify, one or more resource/component utilization modifications, one or more detected error or alert condition, one or more unavailability of a resource and/or component, one or more subsequent input or sample provided by a user, external data, or any other reason. In some examples, one or more additional samples may be provided to a device after one or more initial samples are provided to the device. The additional samples may be from the same subject or different subjects. The additional samples may be the same type of sample as the initial sample or different types of samples (e.g., blood, tissue). The additional samples may be provided prior to, concurrently with, and/or subsequent to processing the one or more initial samples on the device. The same and/or different tests or desired criteria may be provided for the additional samples, as opposed to one another and/or the initial samples. The additional samples may be processed in sequence and/or in parallel with the initial samples. The additional samples may use one or more of the same components as the initial samples, or may use different components. The additional samples may or may not be requested in view of one or more detected condition of the initial samples. In some embodiments, the system accepts a sample with the aid of a sample collection module, such as a lancet, scalpel, or fluid collection vessel. The system then loads or accesses a protocol for performing one or more processing routines from a plurality of potential processing routines. In an example, the system loads a centrifugation protocol and cytometry protocol. In some embodiments, the protocol may be loaded from an external device to a sample processing device. Alternatively, the protocol may already be on the sample processing device. The protocol may be generated based on one or more desired criteria and/or processing routines. In one example, generating a protocol may include generating a list of one or more subtasks for each of the input processes. In some embodiments, each subtask is to be performed by a single component of the one or more devices. Generating a protocol may also include generating the order of the list, the timing and/or allocating one or more resources. In an embodiment, a protocol provides processing details or specifications that are specific to a sample or a component in the sample. For instance, a centrifugation protocol may include rotational velocity and processing time that is suited to a predetermined sample density, which enables density-dependent separation of a sample from other material that may be present with a desirable component of the sample. A protocol is included in the system, such as in a protocol repository of the system, or retrieved from another system, such as a database, in communication with the system. In an embodiment, the system is in one-way communication with a database server that provides protocols to the system upon request from the system for one or more processing protocols. In another embodiment, the system is in two-way communication with a database server, which enables the system to upload user-specific processing routines to the database server for future use by the user or other users that may have use for the user-specific processing routines. Referring now to FIGS. 56A and 56B, the transport container 4000 may be configured to contain therein a plurality of bodily fluid samples from a plurality of subjects such as patients. In some embodiments there are multiple vessels of sample from each subject. Optionally, at least two of the samples from the same subject have had different chemical pre-treatment, such as but not limited to different anti-coagulant in each vessel. Optionally, some embodiments may use a vessel that has two or more separate chambers, wherein each chamber is configured to hold a portion of the fluid sample separate from fluid sample in another chamber. Some embodiments may include samples from a subject in single chamber vessels and/or multi-chamber vessels. As seen in FIGS. 56A and 56B, various views of one embodiment of the transport container 4000 wherein the lid 4010 has a least a mesa portion 4012 that is sized to fit into a recess 4020 on the bottom of the transport container 4000 as seen in FIG. 57A so that the vessels 4000 may be stackable. The transport container 4000 may have any of the features described herein for other embodiments of transport containers described herein. FIG. 57B shows that there may be a tray 4030 in the transport container 4000 that is fixed and/or removable from the transport container 4000. In one embodiment, the tray 4030 is held in place by a fixture device such as but not limited to magnetic or metal portions 4032 that align with metal or magnetic portions in the chassis of the transport container 4000 to form a magnetic connection. In some embodiments, the length-to-width aspect ratio is in the range of about to 128:86 to 127:85. Optionally, the length-to-width aspect ratio is in the range of about to 130:90 to 120:80. Optionally, the length of the tray is in the range of about to 130 mm to 120 mm and the width is in the range of about 90 mm to 80 mm. In some embodiments, the height or thickness of the tray is in the range of about 14 to 20 mm. The aspect ratio and/or size is configured to hold a tray that is sized to fit a slot, recess, or other holder on a plate centrifuge. In this manner, the entire tray 4030 can be centrifuged to prepare a plurality of the samples therein. As seen in FIGS. 57B and 58B, the tray 4030 has a plurality of slots 4034, wherein the slots 4034 are sized to hold at least one of the sample storage vessels. At least one portion 4040 of the slot 4034 has a first shape and at least a second portion 4042 having a second shape different from the first shape, wherein the shapes are keyed in a manner that the sample vessel can only be inserted into the slot 4034 in a desired orientation. As seen in FIG. 58B, one end is semi-circular while the other is asymmetrically shaped. The tray 4030 can also be shaped to have cut outs 4036 or other shapes so that the tray 4030 can only be inserted in one orientation into the transport container 4000. It should also be understood that the tray 4030 can be held in the tray so that a user cannot remove it using their fingers from the vessel 4000 without the use of a tool or other tray extraction device. This minimizes the risk of user tampering. The tray 4030 can be configured to be held in the transport container 4000 even when the transport container 4000 is upside down and can resist the pull of earth gravity. FIGS. 59A and 59B show yet another embodiment wherein there a plurality of slots 4100 in a tray 4102. The tray has a different aspect ratio (closer to square) and has a plurality of shaped slots in the tray to hold the sample vessels. Referring now to FIG. 60, at least one embodiment of a sample sorting system will now be described. In this non-limiting example, a frame 5000 such as but not limited to a tray from a shipping container is provided. The number of sample containers (not shown for ease of illustration) that may fit into the slots 5002 of the frame 5000 may be sorted based on one or more criteria. The sample containers may be sorted as indicated by the arrows to frames 5010 that may be of a different size or form factor than the frame 5000. The frame 5010 may be configured to be sized to fit certain equipment such as but not limited to standard plates of 96 well or other standard plate sizes. As seen in FIG. 60, by having at least one sort process from the frame 5000 that arrive from shipping to the frames 5010 that may be used for sample processing, the shipping frame 5000 is not constrained by any particular equipment format. Optionally, even some embodiments may use the same form-factor frames for shipping and processing, there may still be at least one sorting step to group sample containers based on one or more factors such as but not limited the types of common processing to be performed on the sample, type of sample, other common denominator, or other factor. It should be understood that some embodiments may use centrifuge equipment that can centrifuge an entire frame 5000 or 5010. In this manner, a plurality of samples can be processed at once. Some embodiments may centrifuge before sorting, after sorting, or during sorting. Entire frames may be centrifuged or only certain sample containers. Centrifugation of an entire frame allows from simultaneous processing of many of the sample containers at once, which can be particularly helpful if all of the sample containers are sorted such that those with a certain anti-coagulant or other pre-treatment will be pre-processed in the same manner. Optionally, some embodiments may scan all barcodes on the sample containers while they are in shipping frame 5000. Optionally, some may scan or read bar codes, RFID, or other sample container identifier both before and after the sort. Optionally, some may perform a scan after the sort. Some may not sort based on bar code or other information storage unit on the sample container, but based on some other information such as but not limited to color of the container or other information provided through non-bar code methods. Some embodiments may scan all of the slots in the frame 5000 singly, line by line, rastering, in groups, or all at once. A user interface maybe provide to let an operator know if the system detects a barcode or information storage unit but fails to get an accurate read. The system, in one non-limiting example, may prevent the operator from moving on to the sort step until all detected sample containers have had their information properly read. A pick-and-place robot or other transport device can be used to perform the sort. Sample containers may be moved singly or in groups. Some embodiments may move entire frames 5010 to new stations where the entire set of sample containers may be imaged, centrifuged, or otherwise processed. There may be register marks or other positioning guides on the frames to assist in positioning during these whole frame movements. Some embodiments may also begin un-capped or otherwise accessing the sample inside the containers while they are frames 5000 or 5010 to begin sample preparation. It should be understood that some embodiments may also image each of the containers individually by removing them from frames 5010 or 5000 as desired. It should also be understood that some embodiments may have cascading sets of these sorting stations where samples from frames are sorted from one frame to yet another frame, carrier, or other grouping apparatus. Some embodiments may aliquot sample from the sample containers, may dilute them (single or serially), may begin to transport sample to different shaped or sized sample vessels more suited for other equipment that will process the samples. They may also be taken to various other sample processing stations, with sample handling robots or devices to handle this transportation. In at least some embodiments, a medical provider (or their staff when appropriate) can be the sample collector, test result recipient, and/or both. For example, in one embodiment, a healthcare professional such as but not limited to a dentist can collect a sample as part of or separate from a dental procedure. Optionally, some embodiments may have the sample collected from suctioned blood and/or saliva from the subject's dental procedure. The collected sample can be processed in the dental office and/or shipped to a receiving location that receives a plurality of samples for processing. In embodiments, a bodily fluid sample used in a system, device, or method provided herein may be diluted. In embodiments, a bodily fluid sample may be diluted before it is transported from a first location to a second location. In embodiments, a bodily fluid sample may be diluted after it is transported from a first location to a second location. In embodiments, a bodily fluid sample may be diluted both before and after it is transported from a first location to a second location. In embodiments, the bodily fluid sample may be diluted after it is transported from a first location to a second location and before it is used for performing one or more steps of a laboratory test at the second location. An original bodily fluid sample may be diluted, for example, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000, 50,000, or 100,000-fold. As used herein, an “n-fold” dilution refers to a ratio by which an original sample is diluted—e.g. an original sample which is diluted 5-fold contains, after dilution, original sample at ⅕ of its original concentration (i.e. the diluted sample contains sample at ⅕ of the concentration of sample in the original sample); similarly, an original sample which is diluted 500-fold contains, after dilution, original sample at 1/500 of its original concentration. Thus, for example, if an original sample contains 5 mg protein/microliter, and it is diluted 2-fold, the diluted sample contains 2.5 mg protein/microliter. A bodily fluid sample may be divided into any number of portions, and the various portions may be diluted to varying degrees of dilution, such that an original bodily fluid sample may be processed to yield multiple diluted samples, each having a different degree of dilution. Thus, for example, an original bodily fluid sample may be divided into 5 portions, with one portion being diluted 8-fold, another portion being diluted 12-fold, another portion being diluted 3-fold, another portion being diluted 400-fold, and another portion being diluted 2,000-fold. Dilution of a sample may be performed serially or in a single step. For a single-step dilution, a selected quantity of sample may be mixed with a selected quantity of diluent, in order to achieve a desired dilution of the sample. For a serial dilution, two or more separate sequential dilutions of the sample may be performed in order to achieve a desired dilution of the sample. For example, a first dilution of the sample may be performed, and a portion of that first dilution may be used as the input material for a second dilution, to yield a sample at a selected dilution level. For dilutions described herein, an “original sample” or the like refers to the sample that is used at the start of a given dilution process. Thus, while an “original sample” may be a sample that is directly obtained from a subject (e.g. whole blood), it may also include any other sample (e.g. sample that has been processed or previously diluted in a separate dilution procedure) that is used as the starting material for a given dilution procedure. In some embodiments, a serial dilution of a sample may be performed as follows. A selected quantity (e.g. volume) of an original sample may be mixed with a selected quantity of diluent, to yield a first dilution sample. The first dilution sample (and any subsequent dilution samples) will have: i) a sample dilution factor (e.g. the amount by which the original sample is diluted in the first dilution sample) and ii) an initial quantity (e.g. the total quantity of the first dilution sample present after combining the selected quantity of original sample and selected quantity of diluent). For example, 10 microliters of an original sample may be mixed with 40 microliters of diluent, to yield a first dilution sample having a 5-fold sample dilution factor (as compared with the original sample) and an initial quantity of 50 microliters. Next, a selected quantity of the first dilution sample may be mixed with a selected quantity of diluent, to yield a second dilution sample. For example, 5 microliters of the first dilution sample may be mixed with 95 microliters of diluent, to yield a second dilution sample having an 100-fold dilution factor (as compared with the original sample) and an initial quantity of 100 microliters. For each of the above dilution steps, the original sample, dilution sample(s), and diluent may be stored or mixed in fluidically isolated vessels. Sequential dilutions may continue in the preceding manner for as many steps as needed to reach a selected sample dilution level/dilution factor. In embodiments, a sample may be diluted as described in, for example, U.S. patent application Ser. No. 13/769,820, filed Feb. 18, 2013, or any other document incorporated by reference elsewhere herein. As used herein, a reagent that is, or may be used as, a “diluent” is one which is, e.g., useful for increasing the volume of a sample, or portion of a sample, or is useful for the preparation of a liquid formulation, such as a formulation reconstituted after lyophilization, or for adding to a sample, solution, or material for any other reason. In embodiments, a diluent may be buffered (e.g., to have a pH near pH 7, or near pH 7.4, or other desired pH), and may be pharmaceutically acceptable (safe and non-toxic for administration to a human). A diluent typically does not react with, or bind to, an analyte in a sample. Water may be a diluent, as may be an aqueous saline solution, a buffered solution, a solution containing a surfactant, or any other solution. Exemplary diluents include sterile water, bacteriostatic water for injection (BWFI), a pH buffered solution (e.g. phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution. In embodiments, diluents can include aqueous solutions of salts or buffers. In embodiments, a bodily fluid sample or portion thereof which has been, for example, collected from a subject, processed, or transported according to a system or method provided herein may be divided into at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 or more different portions. For descriptions of division of a sample into multiple portions provided herein, an “original sample” or the like refers to the sample that is used at the start of a given sample division process. Thus, while an “original sample” may be, for example, a sample that was directly obtained from a subject (e.g. whole blood), it may also include any other sample (e.g. sample that has been processed or previously divided in a separate sample division procedure) that is used as the starting material for a given sample division procedure. In embodiments, an “original sample” may be subject to both sample division and dilution steps; in such circumstances, reference to the “original sample” refers to a starting material that is used for the combination sample dilution/sample division procedure. When a sample is divided into different portions, the different portions may contain different amounts of the original sample. For instance, if an original sample having of volume of 100 microliters is divided into 5 portions, one portion may contain 50 microliters original sample, another portion may contain 25 microliters original sample, another portion may contain 15 microliters original sample, another portion may contain 8 microliters original sample, and the last portion may contain 2 microliters original sample. Likewise, when a sample is both diluted and divided into different portions, the different portions may have different degrees of dilution relative to the original sample. For example, if an original sample is divided into three portions, one portion may be diluted 5-fold relative to the original sample, another portion may be diluted 20-fold relative to the original sample, and the third portion may be diluted 200-fold relative to the original sample. Thus, in an example, a bodily fluid sample may be collected from a subject at a first location (e.g. a sample collection site). The bodily fluid sample as first collected from the subject may be considered an “original sample”. Such an “original sample” may be, for example, a small quantity (e.g. less than 400, 300, 200, or 100 microliters) of whole blood from the subject. Shortly after or concurrent with the collection of the “original sample” from the subject, the “original sample” may be divided into at least a first portion and a second portion, after which the first portion is transferred into a first vessel and the second portion is transferred into a second vessel. In embodiments, the first vessel may contain a first anticoagulant (e.g. EDTA) and the second vessel may contain a second anticoagulant (e.g. heparin). The first and second vessels may be transported according to a system or method provided herein from the first location to a second location. In embodiments, at the second location, the sample in one or both of the vessels or portions thereof may be subject to further processing or analysis steps. For example, the sample in one or both of the vessels or portions thereof may be divided into additional portions, diluted, and/or used for performing one or more tests. In another example, a bodily fluid sample may be shipped in a vessel from a first location to a second location according to systems and methods provided herein. The bodily fluid sample in the vessel may be the entirety of a sample that was collected from a subject, or a portion thereof. At the second location, at least some of the bodily fluid sample in the vessel may be removed from the vessel and used for a sample division and/or dilution procedure. The sample that is removed from vessel and used for the sample division and/or dilution procedure may be considered an “original sample”. That original sample may be, for example, whole blood, plasma, serum, saliva, or urine, and may constitute the entirety of the sample that was transported in the vessel, or a portion thereof. That original sample may be divided into any number of portions; the various portions may have different degrees of dilution relative to the original sample. For example, the original sample removed from a transported vessel may have a volume of less than or equal to 400, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 microliter. The original sample removed from a transported vessel may then be divided into at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 or more different portions. In embodiments, the different portions may have different degrees of dilution relative to the original sample. For example, the different portions may have at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, or 5,000 different degrees of dilution relative to the original sample, with the condition that the number of portions having different degrees of dilution does not exceed the total number of portions prepared from the original sample. The different portions may have any type of dilution relative to the original sample, including, for example, no dilution, at least 2-fold dilution, at least 3-fold dilution, at least 5-fold dilution, at least 10-fold dilution, at least 20-fold dilution, at least 50-fold dilution, at least 100-fold dilution, at least 500-fold dilution, at least 1000-fold dilution, at least 5000-fold dilution, at least 10,000-fold dilution, at least 50,000-fold dilution, or at least 100,000-fold dilution. In embodiments, one or more different portions of an original sample may be used for a laboratory test. In embodiments, one portion of an original sample may be used for one laboratory test. A portion of an original sample used for a laboratory test may be a diluted sample. In embodiments, an original sample may be a whole blood sample obtained from a subject. The original sample may be obtained from a subject's digit. The original sample may have a volume of no greater than 400, 300, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 microliters. The original sample may be divided into multiple portions. Division of the sample into multiple portions may occur before, after, or a combination of before and after the sample is transported from a first location to a second location according to a system or method provided herein. In embodiments, the original sample may be divided into at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 or more different portions, and the different portions are used to perform at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 different laboratory tests. The different portions of the original sample may have diluted original sample. In embodiments, no more than 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, or 0.01 microliter of the original sample is used per each laboratory test. In embodiments, an original sample may be plasma or serum obtained from whole blood sample obtained from a subject. The whole blood may be obtained from a subject's digit. The whole blood sample from which the plasma or serum is obtained may have a volume of no greater than 400, 300, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 microliters. The plasma or serum original sample may have a volume of no greater than 300, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 microliters. The original sample may be divided into multiple portions. Division of the sample into multiple portions may occur before, after, or a combination of before and after the sample is transported from a first location to a second location according to a system or method provided herein. In embodiments, the original sample may be divided into at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 or more different portions, and the different portions are used to perform at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 different laboratory tests. The different portions of the original sample may have diluted original sample. In embodiments, the equivalent of no more than 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, or 0.01 microliter of an original sample is used for a laboratory test. For example, if an original sample is whole blood, and the original sample is divided into multiple portions, and at least one of the portions contains a diluted sample which contains original sample which has been diluted 100-fold, and 5 microliters of that diluted sample is used to perform a laboratory test, then the equivalent of 0.05 microliters of the original sample (e.g. whole blood) is used for that test (5 microliters×1/100 dilution). In another example, an original sample may be whole blood. That whole blood may be processed to yield plasma [e.g. by separating the liquid components of the blood from the solid components of blood (e.g. cells]. A certain volume of plasma may be obtained from a certain volume of whole blood—e.g. the volume of plasma that may be obtained from a volume of whole blood may be, for example, at least or about 30%, 40%, 50%, 60%, or 70% of the volume of whole blood. Thus, for example, if the volume of plasma from whole blood is 50%, from 2 ml whole blood, 1 ml plasma may be obtained. The plasma from whole blood may be further diluted, and one or more diluted portions of the plasma may be used to perform one or more laboratory tests. In another example, an original sample may be whole blood. The whole blood may be processed to yield plasma, where the volume of plasma from the whole blood is 60% of the whole blood (e.g. from 100 microliters whole blood, 60 microliters plasma is obtained). The plasma may be diluted 10-fold. 2 microliters of the diluted plasma may be used to perform a laboratory test. Thus, for that laboratory test, the equivalent of about 0.33 microliters original sample (whole blood) is used to perform the test (2 microliters×1/10 dilution×100/60 whole blood/plasma conversion). In another example, an original sample may be plasma, and the original sample may be divided into multiple portions, and at least one of the portions contains a diluted sample which contains original sample which has been diluted 50-fold, and 4 microliters of that diluted sample is used to perform a laboratory test, then the equivalent of 0.08 microliters of the original sample (e.g. plasma) is used for that test (4 microliters×1/50 dilution). In embodiments, an original sample may be divided into at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 or more different portions, and the different portions may be used to perform at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 300, 400, 500, 1000, 5,000, 10,000 different laboratory tests. In some embodiments, at least as many portions of sample are prepared as laboratory tests are performed with portions of a sample (e.g. in order to perform 10 laboratory tests with an original sample, the original sample may be divided into at least 10 portions, with at least 1 portion being used per test). In certain other embodiments, more than one laboratory test may be performed with a single sample. For instance, in embodiments, an optical property of a sample may be measured (e.g. cell count in a blood sample), and then the same sample may be used to assay for an analyte in the blood. Thus, in some embodiments, more laboratory tests may be performed with an original sample than the number of portions which are prepared from the same original sample (e.g. 10 laboratory tests may be performed from an original sample which is divided into only 8 portions). When an original sample is divided into multiple portions, and the multiple portions are used to perform two or more laboratory tests, the laboratory tests may be of the same type of laboratory test, or they may be of different types of laboratory test. For instance, if an original sample is divided into 10 portions, and the 10 portions are each used for a laboratory test, the laboratory test with each of the portions may be an immunoassay. In another example, if an original sample is divided into 5 portions, and the 5 portions are each used for a laboratory test, the laboratory test with each of the portions may be a nucleic acid amplification-based test. In other situations, when an original sample is divided into multiple portions, and the multiple portions are used to perform two or more laboratory tests, at least two of the laboratory tests may be of different types of laboratory test. For instance, if an original sample is divided into 5 portions, and the 5 portions are each used for a laboratory test, 2 of the portions may be used for an immunoassay (e.g. ELISA) and 3 of the portions may be used for a nucleic acid amplification-based test. A bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in various types of laboratory test, such as an immunoassay, nucleic acid amplification assay, general chemistry assay, or cytometry assay. In embodiments, a bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in any type of assay or laboratory test as described in, for example, U.S. patent application Ser. No. 13/769,820, filed Feb. 18, 2013, or any other document incorporated by reference elsewhere herein. In some embodiments, a bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in an immunoassay. As used herein, an “immunoassay” refers to any assay which involves probing for an analyte with an antibody which has affinity for the analyte Immunoassays may include, for example, enzyme-linked immunosorbent (ELISA) assays and may include competitive and non-competitive based-assays. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that comprise an antigen-binding unit (“Abu” or plural “Abus”) which specifically binds (“immunoreacts with”) an antigen. Structurally, the simplest naturally occurring antibody (e.g., IgG) comprises four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. The immunoglobulins represent a large family of molecules that include several types of molecules, such as IgD, IgG, IgA, IgM and IgE. The term “immunoglobulin molecule” includes, for example, hybrid antibodies, or altered antibodies, and fragments thereof. Antigen-binding unit can be broadly divided into “single-chain” (“Sc”) and “non-single-chain” (“Nsc”) types based on their molecular structures. Also encompassed within the terms “antibodies” and “antigen-binding unit” are immunoglobulin molecules and fragments thereof that may be human, nonhuman (vertebrate or invertebrate derived), chimeric, or humanized. For a description of the concepts of chimeric and humanized antibodies see Clark et al., 2000 and references cited therein (Clark, (2000) Immunol. Today 21:397-402). In embodiments, “immunoassays” as provided herein may also include assays in which the analyte to be measured in the assay is an antibody, and the antibody is probed for with a molecule to which the antibody has affinity (e.g. a target molecule of the antibody). In some embodiments, a bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in a nucleic acid amplification assay. As used herein, a “nucleic acid amplification assay” refers to an assay in which the copy number of a target nucleic acid may be increased. Nucleic acid amplification assays may include both isothermal and temperature-variable amplification techniques, and include, for example, techniques such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP). Typically, a nucleic acid amplification assay includes at least i) a nucleic acid polymerase, ii) primers which can bind to a target nucleic acid sequence, and iii) free nucleotides which may be incorporated into synthesized nucleic acid by a polymerase. Amplification of a target nucleic acid may be detected in various ways, such as measuring the fluoresecence or turbidity of a reaction over a period of time. In some embodiments, a bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in a general chemistry assay. General chemistry assays may include, for example, assays of a Basic Metabolic Panel [glucose, calcium, sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate), creatinine, blood urea nitrogen (BUN)], assays of an Electrolyte Panel [sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate)], assays of a Chem 14 Panel/Comprehensive Metabolic Panel [glucose, calcium, albumin, total protein, sodium (Na), potassium (K), chloride (Cl), CO2 (carbon dioxide, bicarbonate), creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), total bilirubin] assays of a Lipid Profile/Lipid Panel [LDL cholesterol, HDL cholesterol, total cholesterol, and triglycerides], assays of a Liver Panel/Liver Function [alkaline phosphatase (ALP), alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), total bilirubin, albumin, total protein, gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), prothrombin time (PT)], alkaline phosphatase (APase), hemoglobin, VLDL cholesterol, ethanol, lipase, pH, zinc protoporphyrin, direct bilirubin, blood typing (ABO, RHD), lead, phosphate, hemagglutination inhibition, magnesium, iron, iron uptake, fecal occult blood, and others, individually or in any combination. In general chemistry assays provided herein, in some examples, the level of an analyte in a sample is determined through one or more assay steps involving a reaction of the analyte of interest with one or more reagents, leading to a detectable change in the reaction (e.g. change in the turbidity of the reaction, generation of luminescence in the reaction, change in the color of the reaction, etc.). In some examples, a property of a sample is determined through one or more assay steps involving a reaction of the sample of interest with one or more reagents, leading to a detectable change in the reaction (e.g. change in the turbidity of the reaction, generation of luminescence in the reaction, change in the color of the reaction, etc.). Typically, as used herein, “general chemistry” assays do not involve amplification of nucleic acids, imaging of cells on a microscopy stage, or the determination of the level of an analyte in solution based on the use of a labeled antibody/binder to determine the level of an analyte in a solution. In some embodiments, general chemistry assays are performed with all reagents in a single vessel—i.e. to perform the reaction, all necessary reagents are added to a reaction vessel, and during the course of the assay, materials are not removed from the reaction or reaction vessel (e.g. there is no washing step; it is a “mix and read” reaction). General chemistry assays may also be, for example, colorimetric assays, enzymatic assays, spectroscopic assays, turbidimetric assays, agglutination assays, coagulation assays, and/or other types of assays. Many general chemistry assays may be analyzed by measuring the absorbance of light at one or more selected wavelengths by the assay reaction (e.g. with a spectrophotometer). In some embodiments, general chemistry assays may be analyzed by measuring the turbidity of a reaction (e.g. with a spectrophotometer). In some embodiments, general chemistry assays may be analyzed by measuring the chemiluminescence generated in the reaction (e.g. with a PMT, photodiode, or other optical sensor). In some embodiments, general chemistry assays may be performed by calculations, based on experimental values determined for one or more other analytes in the same or a related assay. In some embodiments, general chemistry assays may be analyzed by measuring fluorescence of a reaction (e.g. with a detection unit containing or connected to i) a light source of a particular wavelength(s) (“excitation wavelength(s)”); and ii) a sensor configured to detect light emitted at a particular wavelength(s) (“emission wavelength(s)”). In some embodiments, general chemistry assays may be analyzed by measuring agglutination in a reaction (e.g. by measuring the turbidity of the reaction with a spectrophotometer or by obtaining an image of the reaction with an optical sensor). In some embodiments, general chemistry assays may be analyzed by imaging the reaction at one or more time points (e.g. with a CCD or CMOS optical sensor), followed by image analysis. Optionally, analysis may involve prothrombin time, activated partial thromboplastin time (APTT), either of which may be measured through a method such as but not limtied to turbidimetry. In some embodiments, general chemistry assays may be analyzed by measuring the viscosity of the reaction (e.g. with a spectrophotometer, where an increase in viscosity of the reaction changes the optical properties of the reaction). In some embodiments, general chemistry assays may be analyzed by measuring complex formation between two non-antibody reagents (e.g. a metal ion to a chromophore; such a reaction may be measured with a spectrophotometer or through colorimetry using another device). In some embodiments, general chemistry assays may be analyzed by non-ELISA or cytometry-based methods for assaying cellular antigens (e.g. hemagglutination assay for blood type, which may be measured, for example, by turbidity of the reaction). In some embodiments, general chemistry assays may be analyzed with the aid of electrochemical sensors (e.g. for carbon dioxide or oxygen). Additional methods may also be used to analyze general chemistry assays. In some embodiments, a spectrophotometer may be used to measure a general chemistry assay. In some embodiments, general chemistry assays may be measured at the end of the assay (an “end-point” assay) or at two or more times during the course of the assay (a “time-course” or “kinetic” assay). In some embodiments, a bodily fluid sample or portion thereof transported according to a system or method provided herein may be used in a cytometry assay. Cytometry assays are typically used to optically, electrically, or acoustically measure characteristics of individual cells. For the purposes of this disclosure, “cells” may encompass non-cellular samples that are generally of similar sizes to individual cells, including but not limited to vesicles (such as liposomes), small groups of cells, virions, bacteria, protozoa, crystals, bodies formed by aggregation of lipids and/or proteins, and substances bound to small particles such as beads or microspheres. Such characteristics include but are not limited to size; shape; granularity; light scattering pattern (or optical indicatrix); whether the cell membrane is intact; concentration, morphology and spatio-temporal distribution of internal cell contents, including but not limited to protein content, protein modifications, nucleic acid content, nucleic acid modifications, organelle content, nucleus structure, nucleus content, internal cell structure, contents of internal vesicles (including pH), ion concentrations, and presence of other small molecules such as steroids or drugs; and cell surface (both cellular membrane and cell wall) markers including proteins, lipids, carbohydrates, and modifications thereof. By using appropriate dyes, stains, or other labeling molecules either in pure form, conjugated with other molecules or immobilized in, or bound to nano- or micro-particles, cytometry may be used to determine the presence, quantity, and/or modifications of specific proteins, nucleic acids, lipids, carbohydrates, or other molecules. Cytometric analysis may, for example, be by flow cytometry or by microscopy. Flow cytometry typically uses a mobile liquid medium that sequentially carries individual cells to an optical, electrical or acoustic detector. Microscopy typically uses optical or acoustic means to detect stationary cells, generally by recording at least one magnified image. In embodiments, a cytometry assay may involve obtaining images of one or more cells in a sample. In embodiments, a sample may be provided on or in a microscope slide or cuvette, which may permit cells in a sample to settle in a desired configuration for imaging. Images of cells may be obtained, for example, with a CCD or CMOS-based camera. In some embodiments, laboratory test types may be classified based on how the results of the test are detected. Different types of laboratory test result detection may include, for example, i) luminescence detection; ii) fluorescence detection; iii) absorbance detection; iv) light scattering detection; and v) imaging. Each of these detection methods are described, for example, in U.S. patent application Ser. No. 13/769,820, filed Feb. 18, 2013, which is hereby incorporated in its entirety for all purposes. Briefly, luminescence may be detected from tests which yield a measurable light signal. Such reactions may be, for example, chemiluminescent reactions. In order to detect the result of a luminescent reaction, a light detector such as a PMT or photodiode may be used to detect light from an assay unit containing a luminescent reaction. Fluorescence may be detected, for example, with an optical set up which includes a light source and a light detector. The light source may emit light of a particular wavelength(s). An assay unit containing the test material may be situated in the path of the light source, such that light of the particular wavelengths) reaches the contents of the assay unit (“excitation wavelengths)”). The assay unit may contain a molecule of interest which, at least under some circumstances, absorbs light at the particular wavelengths) from the light source, and, subsequently, releases light of a different wavelength. The light detector may be configured to detect light released by the molecule of interest (“emission wavelengths)”). The light source and/or light detector may include a band-pass filter after the light source or before the light detector, in order to restrict the wavelengths) of light from the light source or reaching the light detector. The light source may be, for example, a light bulb, a laser or an LED, and the light detector may be, for example, a PMT or photodiode. Absorbance may be detected, for example, with an optical set up which includes a light source and a light detector. The light source and light detector may be situated in line with each other, and configured such that an assay unit containing the test material may be situated between the light source and light detector, such that some light may pass through the test material to the light detector and some light may be absorbed. Different amounts of light may be absorbed by the test material, based on the outcome of the test. Similarly, transmission of light through the test material may be determined. For an absorbance/transmission determination assay, the wavelengths) of light emitted by the light source may be same as the wavelengths) of light detected by the light detector. The light source may be, for example, a light bulb, a laser or an LED, and the light detector may be, for example, a PMT or photodiode. Light scattering may be detected, for example, with an optical set up which includes a light source and a light detector. The light source and light detector may be situated at an angle relative to each other, and configured such that an assay unit containing the test material may be situated in line with both the light source and light detector, such that light from the light source may reach the assay unit and be scattered by test material in the assay unit, to reach the light detector. Different amounts of light may be scattered by the test material, based on the outcome of the test. The light source may be, for example, a light bulb, a laser or an LED, and the light detector may be, for example, a PMT or photodiode. Images of a test material may be obtained, for example, by a detector which includes an image sensor (e.g. a CCD or CMOS sensor). Typically the image sensor will be included in a camera. Images of test material may be analyzed, for example, by automated or manual image analysis, in order to determine test results. Bodily fluid samples as provided herein may also be used in laboratory tests which detect results through non-optical based detection methods (e.g. measurements of conductivity, radioactivity, or temperature). In embodiments, in order to perform an assay/test with a portion of a bodily fluid sample, the portion of the bodily fluid sample may be transferred into an assay unit for at least one step of the assay/test. Assay units may have various form factors, such as a pipette tip, a tube, or a microscope slide. Steps of an assay that may occur in an assay unit may include, for example, an analyte in the sample binding to a binder (e.g. an antibody) for the analyte, a target nucleic acid in the sample being amplified in a nucleic acid amplification reaction, a sample coagulating based on the addition of one or more reagents to the sample, or a sample adopting a configuration for optical analysis (e.g. cells settling on a surface of a microscope slide in order to facilitate obtaining one or more images of the cells). As used herein, the terms “assay” and “test” may be used interchangeably, unless the context clearly dictates otherwise. EXAMPLES The following examples are offered for illustrative purposes only, and are not intended to limit the present disclosure in any way. Example 1 A whole blood sample was obtained from a subject. The whole blood sample was centrifuged in a vessel, in order to separate the whole blood into pelleted cells and a plasma supernatant. The centrifuged vessel was moved to an argon-purged glove box. Plasma was aspirated from the centrifuged vessel and then aliquoted into 5 separate sample vessels as provided herein, wherein the sample vessels each had an interior volume of no greater than 100 microliters, wherein no greater than 95 microliters plasma was aliquoted into each sample vessel, and wherein each of the sample vessels was of the same size and received the same volume of plasma. The vessels each had a removable butyl rubber cap. The 5 sample vessels were associated with the labels “0 hour”, “1 hour”, “2 hours”, “8 hours”, and “24 hours”. At the respective time period associated with each sample vessel, the sample in each vessel was assayed for bicarbonate. The results of the assays are provided below in Table 1. TABLE 1 Time (hours) 0 1 2 8 24 Concentration 32.7 30.4 29.8 31.6 31.1 Bicarbonate (mM) As shown in Table 1, the bicarbonate in the sample was stable for at least 24 hours in a sample vessel provided herein. Example 2 A whole blood sample was obtained from a subject. EDTA was mixed with the whole blood sample. Eighty microliters of the EDTA-containing blood was aliquoted into each of 10 sample vessels as provided herein, wherein each sample vessel had an interior volume of no greater than 100 microliters, and was of the same size. The sample vessels were associated with labeled for analysis as follows: Real-time: Day 1, 2, 3, 4, 5, and 7; Pre-centrifuged: Day 1, 2, 4, and 7. Each of the “pre-centrifuged” vessels were centrifuged at the time of aliquoting the sample into the vessel, to generate plasma and pelleted cells. Each of the “real-time” vessels was centrifuged on the respective day, to generate plasma and pelleted cells. After sample was aliquoted into each sample vessel, it was capped. On the respective day for each vessel, plasma was removed from the vessel and assayed for blood nitrogen urea (BUN). The BUN assay results are shown in the graph in FIG. 48. As shown in the graph, BUN remains stable in a sample in a sample vessel provided herein for at least 7 days, in both whole blood and plasma samples. The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. The following applications are fully incorporated herein by reference for all purposes: in U.S. Provisional Patent Application No. 61/435,250, filed Jan. 21, 2011 (“SYSTEMS AND METHODS FOR SAMPLE USE MAXIMIZATION”), and U.S. Patent Publication No. 2009/0088336 (“MODULAR POINT-OF-CARE DEVICES, SYSTEMS, AND USES THEREOF”). The following applications are also fully incorporated herein by reference for all purposes: U.S. Patent Publication 2005/0100937, U.S. Pat. No. 8,380,541; U.S. Pat. App. Ser. No. 61/766,113, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,798, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,779, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/769,820, filed Feb. 18, 2013; U.S. patent application Ser. No. 13/244,947 filed Sep. 26, 2011; PCT/US2012/57155, filed Sep. 25, 2012; U.S. application Ser. No. 13/244,946, filed Sep. 26, 2011; U.S. patent application Ser. No. 13/244,949, filed Sep. 26, 2011; and U.S. Application Ser. No. 61/673,245, filed Sep. 26, 2011, the disclosures of which patents and patent applications are all hereby incorporated by reference in their entireties. EMBODIMENTS In one embodiment described herein, a device for collecting a bodily fluid sample from a subject is provided comprising: at least two sample collection pathways configured to draw the bodily fluid sample into the device from a single end of the device in contact with the subject, thereby separating the fluid sample into two separate samples; a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection pathways, the sample vessels operably engagable to be in fluid communication with the sample collection pathways, whereupon when fluid communication is established, the vessels provide a motive force to move a majority of the two separate samples from the pathways into the vessels. In another embodiment described herein, a device for collecting a bodily fluid sample is provided comprising: a first portion comprising at least one fluid collection location leading to at least two sample collection pathways configured to draw the fluid sample therein via a first type of motive force; a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection pathways, the sample vessels operably engagable to be in fluid communication with the sample collection pathways, whereupon when fluid communication is established, the vessels provide a second motive force different from the first motive force to move a majority of the bodily fluid sample from the pathways into the vessels; wherein at least one of the sample collection pathways comprises a fill indicator to indicate when a minimum fill level has been reached and that at least one of the sample vessels can be engaged to be in fluid communication with at least one of the sample collection pathways. In another embodiment described herein, a device for collecting a bodily fluid sample is provided comprising a first portion comprising at least two sample collection channels configured to draw the fluid sample into the sample collection channels via a first type of motive force, wherein one of the sample collection channels has an interior coating designed to mix with the fluid sample and another of the sample collection channels has another interior coating chemically different from said interior coating; a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection channels, the sample vessels operably engagable to be in fluid communication with the collection channels, whereupon when fluid communication is established, the vessels provide a second motive force different from the first motive force to move a majority of the bodily fluid sample from the channels into the vessels; wherein vessels are arranged such that mixing of the fluid sample between the vessels does not occur. In another embodiment described herein, a device for collecting a bodily fluid sample is provided comprising: a first portion comprising a plurality of sample collection channels, wherein at least two of the channels are configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force; a second portion comprising a plurality of sample vessels for receiving the bodily fluid sample collected in the sample collection channels, wherein the sample vessels have a first condition where the sample vessels are not in fluid communication with the sample collection channels, and a second condition where the sample vessels are operably engagable to be in fluid communication with the collection channels, whereupon when fluid communication is established, the vessels provide a second motive force different from the first motive force to move bodily fluid sample from the channels into the vessels. In another embodiment described herein, a sample collection device is provided comprising: (a) a collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid sample via capillary action from the first opening towards the second opening; and (b) a sample vessel for receiving the bodily fluid sample, the vessel being engagable with the collection channel, having an interior with a vacuum therein, and having a cap configured to receive a channel; wherein the second opening is defined by a portion the collection channel configured to penetrate the cap of the sample vessel, and to provide a fluid flow path between the collection channel and the sample vessel, and the sample vessel has an interior volume no greater than ten times larger than the interior volume of the collection channel. In another embodiment described herein, a sample collection device is provided comprising: (a) a collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid sample via capillary action from the first opening towards the second opening; (b) a sample vessel for receiving the bodily fluid sample, the vessel being engagable with the collection channel, having an interior with a vacuum therein, and having a cap configured to receive a channel; and (c) an adaptor channel configured to provide a fluid flow path between the collection channel and the sample vessel, having a first opening and a second opening, the first opening being configured to contact the second opening of the collection channel, the second opening being configured to penetrate the cap of the sample vessel. In another embodiment described herein, a sample collection device is provided comprising: (a) a body, containing a collection channel, the collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid via capillary action from the first opening towards the second opening; (b) a base, containing a sample vessel for receiving the bodily fluid sample, the sample vessel being engagable with the collection channel, having an interior with a vacuum therein, and having a cap configured to receive a channel; and (c) a support, wherein, the body and the base are connected to opposite ends of the support, and are configured to be movable relative to each other, such that sample collection device is configured to have an extended state and a compressed state, wherein at least a portion of the base is closer to the body in the extended state of the device than in the compressed state, the second opening of the collection channel is configured to penetrate the cap of the sample vessel, in the extended state of the device, the second opening of the collection channel is not in contact with the interior of the sample vessel, and in the compressed state of the device, the second opening of the collection channel extends into the interior of the sample vessel through the cap of the vessel, thereby providing fluidic communication between the collection channel and the sample vessel. In another embodiment described herein, a sample collection device is provided comprising: (a) a body, containing a collection channel, the collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid via capillary action from the first opening towards the second opening; (b) a base, containing a sample vessel for receiving the bodily fluid sample, the sample vessel being engagable with the collection channel, having an interior with a vacuum therein and having a cap configured to receive a channel; (c) a support, and (d) an adaptor channel, having a first opening and a second opening, the first opening being configured to contact the second opening of the collection channel, and the second opening being configured to penetrate the cap of the sample vessel, wherein, the body and the base are connected to opposite ends of the support, and are configured to be movable relative to each other, such that sample collection device is configured to have an extended state and a compressed state, wherein at least a portion of the base is closer to the body in the extended state of the device than in the compressed state, in the extended state of the device, the adaptor channel is not in contact with one or both of the collection channel and the interior of the sample vessel, and in the compressed state of the device, the first opening of the adaptor channel is in contact with the second opening of the collection channel, and the second opening of the adaptor channel extends into the interior of the sample vessel through the cap of the vessel, thereby providing fluidic communication between the collection channel and the sample vessel. In another embodiment described herein, a device for collecting a fluid sample from a subject is provided comprising: (a) a body containing a collection channel, the collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid via capillary action from the first opening towards the second opening; (b) a base, engagable with the body, wherein the base supports a sample vessel, the vessel being engagable with the collection channel, having an interior with a vacuum therein, and having a cap configured to receive a channel; wherein the second opening of the collection channel is configured to penetrate the cap of the sample vessel, and to provide a fluid flow path between the collection channel and the sample vessel. In another embodiment described herein, a device for collecting a fluid sample from a subject is provided comprising: (a) a body containing a collection channel, the collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid via capillary action from the first opening towards the second opening; (b) a base, engagable with the body, wherein the base supports a sample vessel, the sample vessel being engagable with the collection channel, having an interior with a vacuum therein and having a cap configured to receive a channel; and (c) an adaptor channel, having a first opening and a second opening, the first opening being configured to contact the second opening of the collection channel, and the second opening being configured to penetrate the cap of the sample vessel. It should be understood that one or more of the following features may be adapted for use with any of the embodiments described herein. By way of non-limiting example, the body may comprise of two collection channels. Optionally, the interior of the collection channel(s) are coated with an anticoagulant. Optionally, the body comprises a first collection channel and a second collection channel, and the interior of the first collection channel is coated with a different anticoagulant than the interior of the second collection channel. Optionally, the first anticoagulant is ethylenediaminetetraacetic acid (EDTA) and the second anticoagulant is different from EDTA. Optionally, the first anticoagulant is citrate and the second anticoagulant is different from citrate. Optionally, the first anticoagulant is heparin and the second anticoagulant is different from heparin. Optionally, one anticoagulant is heparin and the second anticoagulant is EDTA. Optionally, one anticoagulant is heparin and the second anticoagulant is citrate. Optionally, one anticoagulant is citrate and the second anticoagulant is EDTA. Optionally, the body is formed from an optically transmissive material. Optionally, the device includes the same number of sample vessels as collection channels. Optionally, the device includes the same number of adaptor channels as collection channels. Optionally, the base contains an optical indicator that provides a visual indication of whether the sample has reached the sample vessel in the base. Optionally, the base is a window that allows a user to see the vessel in the base. Optionally, the support comprises a spring, and spring exerts a force so that the device is at the extended state when the device is at its natural state. Optionally, the second opening of the collection channel or the adaptor channel is capped by a sleeve, wherein said sleeve does not prevent movement of bodily fluid via capillary action from the first opening towards the second opening. Optionally, the sleeve contains a vent. Optionally, each collection channel can hold a volume of no greater than 500 uL. Optionally, each collection channel can hold a volume of no greater than 200 uL. Optionally, each collection channel can hold a volume of no greater than 100 uL. Optionally, each collection channel can hold a volume of no greater than 70 uL. Optionally, each collection channel can hold a volume of no greater than 500 uL. Optionally, each collection channel can hold a volume of no greater than 30 uL. Optionally, the internal circumferential perimeter of a cross-section of each collection channel is no greater than 16 mm. Optionally, the internal circumferential perimeter of a cross-section of each collection channel is no greater than 8 mm. Optionally, the internal circumferential perimeter of a cross-section of each collection channel is no greater than 4 mm. Optionally, the internal circumferential perimeter is a circumference. Optionally, the device comprises a first and a second collection channel, and the opening of the first channel is adjacent to an opening of said second channel, and the openings are configured to draw blood simultaneously from a single drop of blood. Optionally, the opening of the first channel and the opening of the second channel have a center-to-center spacing of less than or equal to about 5 mm. Optionally, each sample vessel has an interior volume no greater than twenty times larger than the interior volume of the collection channel with which it is engagable. Optionally, each sample vessel has an interior volume no greater than ten times larger than the interior volume of the collection channel with which it is engagable. Optionally, each sample vessel has an interior volume no greater than five times larger than the interior volume of the collection channel with which it is engagable. Optionally, each sample vessel has an interior volume no greater than two times larger than the interior volume of the collection channel with which it is engagable. Optionally, establishment of fluidic communication between the collection channel and the sample vessel results in transfer of at least 90% of the bodily fluid sample in the collection channel into the sample vessel. It should be understood that one or more of the following features may be adapted for use with any of the embodiments described herein. Optionally, establishment of fluidic communication between the collection channel and the sample vessel results in transfer of at least 95% of the bodily fluid sample in the collection channel into the sample vessel. Optionally, establishment of fluidic communication between of the collection channel and the sample vessel results in transfer of at least 98% of the bodily fluid sample in the collection channel into the sample vessel. Optionally, establishment of fluidic communication between the collection channel and the sample vessel results in transfer of the bodily fluid sample into the sample vessel and in no more than ten uL of bodily fluid sample remaining in the collection channel. Optionally, establishment of fluidic communication between the collection channel and the sample vessel results in transfer of the bodily fluid sample into the sample vessel and in no more than five uL of bodily fluid sample remaining in the collection channel. Optionally, engagement of the collection channel with the sample vessel results in transfer of the bodily fluid sample into the sample vessel and in no more than 2 uL of bodily fluid sample remaining in the collection channel. In another embodiment described herein, a method is provided comprising contacting one end of a sample collection device to a bodily fluid sample to split the sample into at least two portions by drawing the sample into at least two collection channels of the sample collection device by way of a first type of motive force; establishing fluid communication between the sample collection channels and the sample vessels after a desired amount of sample fluid has been confirmed to be in at least one of the collection channels, whereupon the vessels provide a second motive force different from the first motive force to move each of the portions of bodily fluid sample into their respective vessels. In another embodiment described herein, a method is provided comprising metering a minimum amount of sample into at least two channels by using a sample collection device with at least two of the sample collection channels configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force; after a desired amount of sample fluid has been confirmed to be in the collection channels, fluid communication is established between the sample collection channels and the sample vessels, whereupon the vessels provide a second motive force different from the first motive force use to collect the samples to move bodily fluid sample from the channels into the vessels. In another embodiment described herein, a method of collecting a bodily fluid sample is provided comprising (a) contacting a bodily fluid sample with a device comprising a collection channel, the collection channel comprising a first opening and a second opening, and being configured to draw a bodily fluid via capillary action from the first opening towards the second opening, such that the bodily fluid sample fills the collection channel from the first opening through the second opening; (b) establishing a fluid flow path between the collection channel and the interior of a sample vessel, said sample vessel having an interior volume no greater than ten times larger than the interior volume of the collection channel and having a vacuum prior to establishment of the fluid flow path between the collection channel and the interior of the sample vessel, such that establishment of the fluid flow path between the collection channel and the interior of the sample vessel generates a negative pressure at the second opening of the collection channel, and the fluidic sample is transferred from the collection channel to the interior of the sample vessel. In another embodiment described herein, a method of collecting a bodily fluid sample is provided comprising (a) contacting a bodily fluid sample with any collection device as described herein, such that the bodily fluid sample fills the collection channel from the first opening through the second opening of at least one of the collection channel(s) in the device; and (b) establishing a fluid flow path between the collection channel and the interior of the sample vessel, such that establishing a fluid flow path between the collection channel and the interior of the sample vessel generates a negative pressure at the second opening of the collection channel, and the fluidic sample is transferred from the collection channel to the interior of the sample vessel. It should be understood that one or more of the following features may be adapted for use with any of the embodiments described herein. Optionally, the collection channel and the interior of the sample vessel are not brought into fluid communication until the bodily fluid reaches the second opening of the collection channel. Optionally, the device comprises two collection channels, and the collection channels and the interior of the sample vessels are not brought into fluidic communication until the bodily fluid reaches the second opening of both collection channels. Optionally, the second opening of the collection channel in the device is configured to penetrate the cap of the sample vessel, and wherein a fluidic flow path between the second opening of the collection channel and the sample vessel is established by providing relative movement between the second opening of the collection channel and the sample vessel, such that the second opening of the collection channel penetrates the cap of the sample vessel. Optionally, the device comprises an adaptor channel for each collection channel in the device, the adaptor channel having a first opening and a second opening, the first opening being configured to contact the second opening of the collection channel, and the second opening being configured to penetrate the cap of the sample vessel, and wherein a fluidic flow path between the collection channel and the sample vessel is established by providing relative movement between two or more of: (a) the second opening of the collection channel, (b) the adaptor channel, and (c) the sample vessel, such that the second opening of the adaptor channel penetrates the cap of the sample vessel. In another embodiment described herein, a method for collecting a bodily fluid sample from a subject is provided comprising: (a) bringing a device comprising a first channel and a second channel into fluidic communication with a bodily fluid from the subject, each channel having an input opening configured for fluidic communication with said bodily fluid, each channel having an output opening downstream of the input opening of each channel, and each channel being configured to draw a bodily fluid via capillary action from the input opening towards the output opening; (b) bringing, through the output opening of each of the first channel and the second channel, said first channel and said second channel into fluidic communication with a first vessel and a second vessel, respectively; and (c) directing said bodily fluid within each of said first channel and second channel to each of said first vessel and second vessel with the aid of: (i) negative pressure relative to ambient pressure in said first vessel or said second vessel, wherein said negative pressure is sufficient to effect flow of said bodily fluid through said first channel or said second channel into its corresponding vessel, or (ii) positive pressure relative to ambient pressure upstream of said first channel or said second channel, wherein said positive pressure is sufficient to effect flow of said whole blood sample through said first channel or said second channel into its corresponding vessel. In another embodiment described herein, a method of manufacturing a sample collection device is provided comprising forming one portion of a sample collection device having at least two channels configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force; forming sample vessels, whereupon the vessels are configured to be coupled to the sample collection device to the provide a second motive force different from the first motive force use to collect the samples to move bodily fluid sample from the channels into the vessels. In another embodiment described herein, computer executable instructions are provided for performing a method comprising: forming one portion of a sample collection device having at least two channels configured to simultaneously draw the fluid sample into each of the at least two sample collection channels via a first type of motive force. In another embodiment described herein, computer executable instructions for performing a method comprising: forming sample vessels, whereupon the vessels are configured to be coupled to the sample collection device to provide a second motive force different from the first motive force use to collect the samples to move bodily fluid sample from the channels into the vessels. In yet another embodiment described herein, a device for collecting a bodily fluid sample from a subject, the device comprising: means for drawing the bodily fluid sample into the device from a single end of the device in contact with the subject, thereby separating the fluid sample into two separate samples; means for transferring the fluid sample into a plurality of sample vessels, wherein the vessels provide a motive force to move a majority of the two separate samples from the pathways into the vessels. While the above is a complete description of the preferred embodiment as described herein, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context expressly dictates otherwise. Thus, in contexts where the terms “and” or “or” are used, usage of such conjunctions do not exclude an “and/or” meaning unless the context expressly dictates otherwise. The following US patent applications are incorporated herein by reference for all purposes: 61/733,886 filed Dec. 5, 2012, 61/875,030 filed Sep. 7, 2013, and 61/875,107 filed Sep. 8, 2013. This document contains material subject to copyright protection. The copyright owner (Applicant herein) has no objection to facsimile reproduction of the patent documents and disclosures, as they appear in the US Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice shall apply: Copyright 2013 Theranos, Inc. 14737412 theranos ip company, llc USA B1 Utility Patent Grant (no pre-grant publication) issued on or after January 2, 2001. Open Mar 30th, 2022 06:12PM Mar 30th, 2022 06:12PM Theranos Health Care Pharmaceuticals & Biotechnology

Request a demo to view additional historical data, and much more.

Make fast
queries

No longer rely on engineers to access data; build and share queries with intuitive tools, and derive insights in real time.

Bookmark queries with your team

Save and share custom queries using a private bookmarking feature, accessible to your whole team.

Be first to know with alerts

Scan data points across millions of companies and receive emails when relevant metrics cross critical thresholds.

Visualize data for quick insights

Create custom keyword-based word clouds, charts, and advanced visualizations to quickly analyze the data.

Map competitor locations

Analyze competitor presence and growth over time by overlaying store locations with the Nearby Competitor feature.

Add widgets to your dashboards

Access existing maps, charts, word clouds, and other visualizations to understand your data quickly. Or build custom widgets to view data just the way you want it.